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Preface

The purpose of this study is to investigate the effectiveness of low-thrust

propulsion techniques in satellite attitude control. Of particular interest are any

differences in attitude control system design methods that make use of the

advantages of low-thrust propulsion, such as small minimum impulse bits, high

frequency of operation, or controllability.

I would like to thank Capt. Jim Planeaux, who assisted rne and'advised

me during the initial stages of this project. I would also like to thank Dr. Wiesel,

who then assumed his duties as my advisor, and gave me the guidance and

questioning I needed to accomplish my goal. Finally, am grateful to my

classmates, who found the time to share their knowledge and expertise.
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t.tract

j
--" Equations of motion for a satellite controlled through continuous, low

thrust propulsion systems are analyzed through numerical integration

techniques. The equations of motion, are derived using the Euler Moment

Equations. The properties of the satellite model are based upon the Intelsat VII

design of communications satellite. A simple rate and error feedback controller

is used in providing active attitude control about two and three axis.

Perturbation models are createc and applied based upon the satellite model.

Parameters varied include thrust levels and controller deadband widths.

System response times, pointing accuracy, and total impulse required for

attitiude control are determined as measurements of relative performance.

viii



APPLICATION OF LOW THRUST PROPULSION TECHNIQUES

TO SATELLITE ATTITUDE CONTROL SYSTEMS

I. Introduction

Satellite designers are constantly working towards improving the

performance and life expectancy of their spacecraft designs. One approach to

this goal has been the use of non-chemical propulsion techniques, such as

electrothermal or electrostatic, in the attitude control systems. Some.,examples

of research in this area are presented by Beattie [4], Burton [6,71, Ghislanzoni

[101, Hirata [12], Sovey [17], and Valentian [191. These examples cover just a

few of the possible non-chemical propulsion techniques available today or in the

near future. Non-chemical methods have the potential for a much higher

specific impulse than is available from chemical propulsion, resulting in lower

fuel consumption and thus a longer satellite lifetime, for a given' propellant mass.

However, they also require a electrical' power supply. If the power requirements

are to be kept reasonable .for a soiar powered satellite, the maximum possible

thrust is low.

This low thrust can be advantaoeous, in that greater control of total,

impulse applied over a period of time is possible. However, it may also

requires a different approach to modeling spacecraft attitude dynamics.

- Typically, chemical thrusters have a relatively high ;mpulse delivered per

S' ~1-1 , •



shortest possible firing time. This minimum impulse bit limits the maximum

possibie accuracy of the system. If too narrow of limits are attempted for the

attitude accuracy, the thrusters fire nearly continuously, with each pulse pishing

the spacecraft axis from one side of the limits to the other. The much smaller

minimum impulse bit available to low-thrust propulsion can allow much smaller

accuracy limits to be used.

If the primary mode of attitude control is the use of reaction wheels, with

the thrusters merely used to remove excess momentum due to secular

perturbations, the accuracy cf the system is not limited by the minrimum impulse

bit, as long' as the momentum wheels are capable of counteracting the impulse.

In this case, determining relative effectiveness of different propulsion systems

simply involves calculating the total momentum to be removed over the life

expecancy of the satellite and determining the propulsion system that requires

-he least mass in order to accomplish this. Hcwever, if the propulsion system is

the primary attitude control actuator, then the effectiveness of the system

depends upon the magnitude of the impulse bit and the frequency of thruster

operations.

Therefore, this thesis will examine the spacecraft attitude dynamics,

using a non-linear numerical analysis scheme. The' primary goal is to

determine the potent'.al eff: 'tiven',ss of low-level propulsion in controlling the

attitude of a satellite, and investigat, how the application of these systems to

attitude control differs from that of chemical thrusters. Figures of merit will

1-2



include the ability to maintain optimal attitude in the presence of perturbative

effects, time required to realign the attitude, and the thruster usage percentage.

The analysis will use a non-linear dynamical model of a non-spinning,

non-symmetrical satellite in a geosynchronous orbit about the Earth.

Perturbative influences examined will include gri.vitational gradient torques,

solar radiation pressure, radio-frequency transmission pressure, and the effects

of impel 2c:.onns ir, the spacecraft orbit. Perturbations that affect the orbit itself

will not be modeled, as station keeping methods using low-thrust propulsion

have already been examined in many papers, such those by Day [8],

Ghislanzoni [10]. and Sovey [17], and are outside of the area of interest in this

discussion., Activation of the thrusters will be determined though a simple rate-

and-error feedback controller.

In addition to gaining insight into the rel .ve performance of low thrust

levels, this analysis w~il 'also examine the magnitude of the perturbative effects

and the lower limit 'hey set upon attitude control systems. While the

p'erturbations . je. to solar radiation and radio-frequency pressures are highly

dependent upon spacecraft configuration, the other perturbations Will be.

applicahle to any spacecraft.

All calculations and simulations will be based upon several assumptions.

First, the mass properties of the satellite will be held constart. This means that

the mass expelled by the thrusters is considered to be negligible, and that the

spacecraft is treated as a rigid body. In addilion, all thrusters are assumed to

1-3



be perfectly. aligned, with repeatable performance.

The information to be gained through this analysis will aid in determining

the effectiveness of non-chemical attitude control systems. It will provide

figures of merit for use in comparing possible performance with that of chemical

Systems, and will. be of use in the design and selection of satellite systemns.

1-4



II. Theory

Th. ; chapter follows the derivation of the equations of motion of a non-

symmetrical, 3-axis stabilized satellite. These equations are derived using

Newtonian dynamics, resulting in a set of second order, nonlinear differential

equations. A satellite model is then created and used to determine the

perturbative forces acting on the satellite. A range of thrust levels of interest is

determined, and two simplified controllers are designed using rate and position

feedback.

2.1 Equations of Motion'

Euler's' Moment Equations are used as a starting point in the derivation

of the equations of motion for the attitude of a non-symmetric satellite. These'

equations are reduced to the form of six nonlinear, coupled, first order

-differential equations to form a state vector for the satellite attitude. The

equations are left in a general form to allow for' greater flexibility in the analysis.

Since numerical integration techniques ate used in the analysis. the equations

are not linearized. However,. the development of these equations follows the

linear derivations presented by Agrawal 11:106-1311.

2. 1.1 Angular Attitude Velocity. The coordinate frames used in this

development include a body frame B, a nominal attitude frame A, and an

2-1



inertial reference frame I. Figure (2.1) shows the orientation of the nominal

attitude frame with respect to the inertial reference frame. The Z axis lies in the

plane of the orbit and points alorg the radius vector towards the Earth. The X

axis lies in the plane of the orbit in the direction of satellite motion. The Y axis

is perpendicular lo the orbit plane, and completes a standard Right-Hand-Set

coordinate system.

K

J 
Orbitl track

AA
x

Fiq I v 2.1 Nornlinal At t itude Coozdiriate [.tame V s . Inertial
Fraine

The b(dy frame is obtained from the A frame by a 3-2-1 rotation through

the angles W, 0, and 4. The relationship between these two fra.:'.s is shown in

figure (2.2). The body frame is fixed with respect to the satellite and is aiigned
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along the Principal Moment Axis. Therefore, the satellite's angular velocity is

the sum of the rotation rates from the inertal frame to the body frame.

(2.1)

S/

Fligure 2.2 Spacecra t. Body Frame vs. Nominlal Attituade Frame

The rotation rate of the A frame with respect to the inertial frame is the rate of
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change of the true anomaly for the orbit, wc, with the ixis of rotation being

along the -Y axis.

The rotation rate of the body frame with respect to the A frame can be

broken down into three parts - the yaw rate dc'/dt about the Z axis. .'e pitch

rate de/dt about an intermediate axis Y', and the roll rate dVdt about the X", or

x axis. Therefore:

1 0 -sin e
={0 } Cos { 4O+{coso sin (2.2)

0, -sin () Cos 0 Cos )

for use in the analysis, the rotation rates must be expressed in a common

reference frame, and the body frame was chosen in order to simplify

perturbation modeling and the Moment of Inertia matrix. The rotation matrix

from the A to the B frame as the. result of the 3-2-1 rotation is:

cosocosv Cos(1sinM -sin 0

-cos(sinO cosqpcos, sin~coso J 2.3)
j! ' *sinsinosinoosw, +sin)sinosinW, 1
k sinosinW ' -sinr Ocosi .cos (cos 0 K

÷cos'ýsinocosW ÷cosq~sinesinW

The intermediate axis system is obtained from the body frame through the

rotation through W about the z axis. Summing these angular velocities results
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in the total angular velocity of the body frame with respect to inertial space:

1 cos€ cossin 0

L0 -sin4, cos 0 Cos I 1 (2.4)

r 'cos 9 J.in 4
CLIOa it Cos +, *sin b sin 0 sin

-sin 4 cos 'I + cos 4 sin 0 sin q

To simplify equations, this will be written as

w [R]r - wuN (2.5)

2.1.2 Angular Momentum. Since the angular momentum of the system

ic the sum of the momenta of its parts, the satellite angular momentum can be

divided into that of the rotating body (Hb). and that of any reaction or momentum

wheel system (h).

H= Hb +h (2.6)

where the momentum of the rotating body is

Hb = (2.7)

The rate of change of the angular momentum of the system equals the

external moments applied to that system, and determining the derivative of the

2-5.



angular momentum vector in a non-inertial frame results in:

M = /, =B. . )B"x H, + Bho'xh (2.8).

Replacing Hb with equation (2.5) and apply:,ng the ch-in rule for derivatives,

M = [6e/' + [ + ,)l x[ iG, +Bh - oPx h (2.9)

Assuming a rigid satellite structure, the moments of inertia' are constant

and d[l]/dt =[O].

The momentum and rate of change of the momentum of any momentum

wheel system (h and dh/dt), if one is used in the spacecraft, depends upon the

control system used and its effects upon the wheel speeds. Therefore these

two vectors will be left as parameters to be varied as required.

Replacing do)/dt with the derivative of equation (2.5) results in:

M [I][[= : t [R]Z -6o) 0N - uoN]+ x [)o, Ix ,,•' h (ei"x h (2.10)

Solving for d2cldt2 :

S(.211)[]-,-,[ - ,ON (211

2. 1.3 Reduction to State Vector format. Since the body frame is aligned

with the principal axis, [I] is a diagonal matrix and is easily inverted:
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0 0

0 0 (2.12)

0 0 1
Izz

The [R] matrix is more complex, but the inverse can still be dcterrrinied,

along with the first derivative of [R]:

[1 sin ýtan 0 cos Otan 1
[ 0]-1  0 coso -sin 0 (2.13)

L0 sinmsece cososece

0 s0 -4ecoseos

[R]-- (2.14)(A 0 --siný -sin 0sin ÷ o 0 cot 2. 4

0 *-cosO -bsinocos4-4cososino

Separating the •,ectors into their components results in:

27



+6),N,+wNV+-r6cosO)

K (2.1 .5)

+0Y NNY4 sin + 6O'jsin 0 sin4 -ýfrcosocos p

+60 N,+ 0 I2)N+(cosO +OfsinOcoso+A*cosesin4)

Applying equation (2.13) and simplifying results in three second- order

equations:

+ sin 4dan e M0 x~I 2 (h-~~~hO 1

/,Y (2.16)

siný 4 ___
4(3)070s +W( 41ON M 60s (tan 0 cos V) + C~os 6tan 0

Cos 0 oh' cs

sin,,O(M, (.7

+6cs~o)ýi~i -*sinVi)-~~s
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1 sin M
coseL 0 ,YZ

, OS{ (M _(yl, w,)XOy-lt~ / X~,ocisd?(M. • (2.18)

-ý60 sin snVKo(+eos-ein sin.o+OcosJsin)

These can then be represented as six, first order equations forming the state

vector of the satellite attitude dynamics:

2-9
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+ sin (plan 0 M(-)c-j-~~+ 1~

+ cos otan 0I I)ii

sifl w,(* COSI + (ptanfcosi,1 )+ V*+6ptano 2.9
Cos6 0 Cos 0 cose.

Cos_ M-I,-I)u-h-huho)

+60 Cos NJ +W,((sin sin V -*isin1 V) -'p'*cos 0

+.Cos... I (Mz-(I.)-I 2 2)(oxj~-h -hy,o,.hp.,)Y

6, &'sin 0 sinNI4f o0,(*sin 0 cos V-ýCos w
~cos osin V) ~4sin o]
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2.2 Satellite Model

The spacecraft model is based t,,"n an idealizaiion of the Intelsat VII

communication sateilite. This satellite was chosen since work has already been

conducted on the application of non-impulsive propulsion techniques to orbit

maintenance [9]. The spacecraft design was simplified, resulting in the layout

shown in figure (2.3)'. This design can be broken down into just a few simple

structures for the purpose of analyzing the dynamics of the vehicle. The

dimensions for the spacecraft are available from Neyret [15] and Wilson

[20:369]. The values are rounded off for simplicity of use.

The center of mass of the spacecraft is located at the geometric center

of the central body. The two solar arrays are positioned along the + and - y

axis, symmetrically with respect to the satellite center of mass. The feed horn

structure is modeled as a homogeneous box centered on the +z axis. The two

antenna reflectors are treated as flat disks. They are mounted with their

centers of mass on the x axis, the 2.5 meter diameter transmit antenna along

the,+x and fhe 1.5 meter receive antenna-on the -x. Both antenna reflectors

are canted at a 30 degree angle from the x-y plane.

All components are treated as simple, homogeneous structur( " the

spacecraft model. From this layout, the approximate values for the Moments of

Inertia are determined. Since the spacecraft body frame is aligned along the

Principal axis, the Moment of Inertia matrix is a simple diagonal matrix.

2-11
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D

lxx = 8000

lyy = 3700

Izz = 7850

Figure 2.3 Spacecraft Layout
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2.3 Perturbative Forces

In the absence of perturbations, it would theoretically be possible to

place the satellite into an orbit so that it wou!d maintain a perfect attitude,

rotating about its y axis once per orbit so as to remain pointing at the same

spot on the Earth's, surface. In such a case, the only purpose of an attitude

control system would be to change the spot on the Earth at which' the satellite

is pointing. For this purpose, any level of thrust is sufficient, affecting only the

time required to change spots. However, the perturbations present in actual

satellite operations set lower limits on the thnr:,t levels capable of maintain the

desired attitude. In this analysis, a rumber of sources of perturbations will be

considered.

2.3.1 Gravity Gtr-,•,ent Torques. The method foilowed for determin'ng

the gravity gradient torcue3 is based upon the presentation by Agrawal (1: 131-

133]. The gravitational force, F. operating on a differential element of mass, dM,

is:

F -- •tRdM p,(Ro- r)dM (2.20)

jRi) 1 Ro-rl"

where r is the position vector of the element with respect to the spacecraft

center of mass, as shown in figure (2.4).
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ERrthh,

Figure 2.4 Soulrc~e of Gravity Gradiont. Torqu,,-;

Reducing this,

F ,i(RO -r) dM 3r-RO r2}
F

(2.21)1

--. i.(R 0-r)dM F~.3 r.Rl

The moment on the spacecraft is then the sum of the moments of the

diffr." ltial elements.
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M f JrxRo)(r'Rn)dM (2.22)

Expressing Ro in body frame coordinates and separating the moment vector

into its components gives:

f(y 2-z 2 )dM sinoqosocos'o

=3p f(x2-z2)dM sinecosocose

f(y2-x2)dM sinOcosOsin4 '

(2.23)

(/,,,-/Isin 4cos 4cos0 0

= (i,2_/,)sinocoscos4ý

(/J-/),)sinecosesino

Since I.>I,, > lI., the gravitational moment about the x axis is perturbing, and

,the morment about the y axis is correcting. The moment about the z axis is a

function of the error about that axis only so much as that error is a function of

the roll and pitch errors. It is primarily a function of the errors about the x and

y axis.
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2.3.2 Solar Radiation Pressure Torques. The reflection or absorption of

photons involves a transfer of momentum, resulting in a force acting on the

satellite. This force, where non-symmetrical about the center of mass, results

in a net torque. Solar radiation pressure acting on a symmetric satellite simply

results in a transverse force, with no resulting torque. The calculations used in

modeling these forces are similar to those presented in Agrawal [1:133-135].

A percentage of the photons, p, will be reflected from the spacecraft,

while the remainder will be absorbed In general, the reflected photons would

be divided between those diffusely and, those specularly reflected, but in order

to determine a limiting value for the solar pressure, all reflected photons will be

treatod as specularly reflected.

The number of photons impinging on a spacecraft surface depends upon

the surface's effective area with' respect to the sun's radiation. Given a surface

of area A, with a normal vector n, as shown in figure (2.5), its effective surface

area-with respect to the direction of the sunlight, S, is

A,,,, A n.S! (2.24)

If a photon is absorbed, it transfers its entire momentum vector to the surface,

resulting in a force due to absorption of
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Figure 2.5 Geometry of Solar Radiation Forces

F =(1 -p)PA W"SI S (2M)25

where P is the value of the solar radiation pressure at the satellite's orbit.

For specularly reflected photons, the photons reverse the component of

their momentum vector normal to the surface, resulting in a net change of 2p

cos VI = 2p(n-S), where p is the magnitude of the momentum vector. This

change In momentum is applied along the normal vector, n, and results in a

force due to reflection Of:

F, - 2pPA In.SI (nlS)n (2.26)

Combining these two forces gives a net force of:
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F= PA In-Si 1(1 -P)S÷2p(n-S)nJ (2.27)

Therefore tie moment acting on the spacecraft due to the solar radiation

pressure on this cie surface is

M=PA .Slr × 1-p)S42p(n.S)J (2.28)

where r is the vector from the spacecraft center of mass to the center of

pressure of the surface. The total moment is then the sum of the moments due

to all contributing (non-symmetrical) surfaces.

The satellite model used in this analysis has only three areas of non-

symmetry - the feed horn assembly, and the two antenna reflectors. The

anternna reflectors are modeled as flat plates, and for the purpose of

determining solar pressure, the feed horn assembly is treated as two flat plates

perpendicular to each other, one in the x-z plane, the other in the y-z plane.

The areas, position vectors, and normal vectors of these surfaces, expressed in

body frame coordinates, are:
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Surface Area r n

2.5 m Antenna 4.91 m 2  (3.40,0,0) (-0.5,0,0.866)

1.5 m Antenna 1.77 M2  (-2.85,0,0) (0.5,0,0.866)

x-z plate 3 M2  .(0,0,2) (0,1,0)

y-z plate 3 M2 (0,0,2) (1,,0,0)

Table 2.1 Non-symmetric Components

The unit vector S for the direction of the solar radiation is

S=sinacosSl sin8J +cosatcosSK (2.29)

where 8 is the declination of the sun and a is the orbit angle as measured from

th,- spacecraft local noon. Translating in to body frame coordinates.

cos~os~inccos cos~sini~sin6 -sin~cosacosS

(-ýcossinV.s-sinOincosV,)sinaco's8 (2.30)

S + (cotocosVi ,si~n~sinffsinW~)sin8 -'sin~co~so-csacosS

(sinosinaWI. cososcososcosacos6s

The position of satellite local noon moves along the orbit at a rate of
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approximately 1 0 per day, but the variation in S over one orbit is sufficiently

small that S can be treated as a constant vector.

Therefore the total torque due to solar radiation pressure is

-2,43 IS, I(I+p}S,-2A4 ISl(1-p~s,

-2A3  I S (1 -p)SY - 2A, S" (1l .p)S

*3.4A, j-1/2S, +V3 /2S"I(1-p)SY

-2.85A, j1/2S, +F3/2S, I(1-p)S,

where S,, SY, and Sz are the body frame components of the S unit vector.

2.3.3 Transmitter Radio-Frequency Torque. The'photons making up the

satellite downlink also have momentum, and transmitting them results in a

change of momentum to the spacecraft, acting at the transmitting antenna. If

the beamwidth of the transmitting antenna is narrow enough, the photuns can

all be'treated as having the same velocity vector. Assuming that this

transmitted beam is directed in the z direction, the force acting on the antenna

is
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Ft =, _Ptz (2.32)

C

where Pt is the power transmitted.

The center of pressure of this force is at the geometric center of the

antenna, and it has a position vector of

3.4 (2.33)

Thus the net torque due to Radio Frequency transmission from the primary,

antenna is

0

M F (2.34)

0.

A total transmitted power for all channels of 5 0 watts is assumed for this

analysis, based upon data on the capabilities of Intelsat VII presented by Nabi

[131,. giving a torque of

M 5.66x10- 6 A-m j (2.35)
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2.3.4 Effects of Imperect Orbits. If the satellite is in a perfect

geosynchronous orbit, with both the eccentricity and the inclination equal to

zero, then by rotating the spacecraft at a rate of wo about the -J axis, the

satellite remains pointing at the same point on the surface of the Earth.

However, imperfections in the orbit will have two types of effects and may

recjire the attitude control system to compensate.

The first effect is, caused by the fact that the angular motion of the

satellite, dv/dt, is not constant in an elliptical orbit. Thus the satellite must

change its rate of rotation in order to remain pointing at the center of the Earth.

In the derivation of the equations of motion in section (2.1), this rate of rotation

corresponds to the angular rate of the A frame with respect to inertial space,

and is termed o,). Using the relationship between the true anomaly, v, and the'

mean motion, shown in Bate [3:185-1871, an equation can be derived

expressing the rate at which oo changes as a function of v.

-2&nesinv(1 -ecosv). (236)

(1-e 2 )3/1

This value can then be used in the state vector equations in order to take these

effects into account.

The second effect of a non-geosynchronous orbit is due to the fact that

the satellite is often aligned with a specific point on the Earth's surface, and not

at the center of the Earth. The vector from the satellite to this surface point is
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at an angle to the satellite's position vector with respect to the center of the

Earth, as shown in figure (2.6)

R

Aiming PoIl ,|

Figure 2.6 Off-center Pointing

The angle y is the difference between the satellite's position vector and

the sub-point position vecto& with respect to the center of the Earth. Solving for

I the angle X results in

(OSX R-cos (2.37)(P' +1-2Rcosy)"1

where R is expressed in units of Earth radii.

If the satellite's orbit is circular, but inclined, then y is a function of the

orbital inclination and the angle, u, between the ascending node and the
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satellite's current position, and measures the angle from the orbital plane. In

this case,

. .= sinr (sini sin U) (2.38)

If the satellite is in an elliptical, eccentric orbit, then y is a function of the true

anomaly, v, and the Earth's rotation since the satellite's last perigee passage.

In this case, X is in the plane of the orbit and has a value of

cos?, R-cos(we t-v) (2.39)
(RF2 +1 -2Rcos(e. t-v))' t2

If the orbit is both inclined and elliptical, X is'a fiunction of a combination of the

two factors. For orbits that are nearly geosy'chronous, with inclination less

than 20 and eccentricity of less than 0.01, the maximum value for X is still small,

on the order of 0.40. The second derivative of ?, is the value of greatest

interest,' since it determines the angular acceleration that the satellite must

achieve in order to maintain the proper attitude. This can be determined from

x. p(R 2 +1 -2Rcosy)(Rcosy-I )- j? Rsiny(R 2 -1) (2.40)
(R 2 -1 -2Rcos-y) 2

wherey is the result of the combined angles determined in equations (2.37) and

(2.39).

For an orbit within the limits expressed above, the required angular
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acceleration is on the order of 10-° radians/sec 2. For 'he satellite modelled in

this analysis, this requires a torque on the order of 106 Nm. Note that for

satellites in a lower altitude, highly eccentric orbit, such as a Molniya orbit, the

requirements for angular acceleration will be much highc-.

2.3.5 Net PerturbJiive Torques. The net torques applied to the satellite

are therefore a combination of secular and cyclic components. The major

component is caused by the solar radiation pressure, which acts about all three

axis if the solar declination is non-zero. In the case of an orbit with a

declination of 00, the so)lar radiation pressure contributes a moment about only

the y axis. The torques, caused by solar radiation and radio frequency pressure

ure plotted over the period of one orbit in figures (2.7 - 2.10).
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2.4 Thruster Performance Limits

The thrust of an electric propulsion system depends upon three

parameters - the effecve exhaust velocity (Ve), tneinput power (P), and the

system efficiency (ij). From these three parameters, the thrust delivered can be

modeled as

Thrust -2 Pil (2.41)
Ve

Current electric pIopulsion methods have V,'s that range from 3000 m/s

for Resistojets to 100000 m/s for Ion engines [161. Higher levels are possible,

but the power levels required for a meaningful level of thrust become exorbitant.

Since the thrusters will be used at short intervals with a somewhat

irregular period, they need to be ready to operate at all, times. In some forms of

electric propulsion, this requires electrical power to maintain the system in a

staidby mode due to the need to maintain heater temperatures or avoid a

length power-up [9:7. 14:7]. Therefore, the use of batteries as the primary

so rce of power is not acceptable, since they. would be in constant use. Either

additional solar arrays must be added to increase the available power, or the

thrusters must operate on the margin of power available after spacecraft

pa load, housekeeping, and battery recharging demands are met.

The specific mass of the solar arrays and required support equipment for
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Intelsat VII is 78 kg/kW [8:5]. Any additional solar arrays added will also

increase the satellites moments of 'nertia.

If no additional solar arrays are added, then the system must require less

power than remains after other spacecraft needs are met. On the Intelsat VII,

this is 399 watts at End-of-Life power levels [15:4].

System efficiencies vary considerably depending upon the method of

propulsion in use. Electrothermal systems have efficiencies up to q = 0.8,

dropping off with increasing Ve to a value of 0.3 at Ve of 10000 m/s.

Electrostatic systems also have efficiencies of 0.3 at 10000 m/s, but the

efficiencies rise to about 0.8 above V,' of 40000 m/s (6:41.

Using these limits, for a system with V, of 3000 m/s, P of 400 watts, and

Tj of 0.8, a maximum thrust of 0.22 N is calculated. A lower level of thrust

corresponding to a system with lower power or a higher V, could be used, with

the only limit being that the thrust be required to exceed the pertuýbative forces.

There are far too many types of electrothermal, electromagnetic, and

electrostatic propulsion systems fcr them to be described here. Some, such as

resistojets, operate in much the same manrer as chemical thrusters, being

controlled by limiting, the propellant flow [2:21. Others, such as Radio-frequency

ion thrusters, can be controlled by varying the radio power applied to the

ionization chamber or by controlling the voltage applied across the accelerator

grid [11, 5:21. Pulsed ion and electrothermal thrusters typically have no direct

control of the thrust delivered per pulse. Instead, they control total impulse by
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varying the number of pulses used or the pulse duration [7:142, 10:3, 18:1].

2.5 Controller Design

Twc different controller designs are used in this analysis. Both are

based using upon a rate-and-error feedback system to determine when to fire

the thrusters. The first design drives three sets of thrusters, one set about each

of the body axis. The other combines a momentum wheel with its spin axis

aligned along the -y axis arid one set of thrusters acting about an axis lying in

the x-z plane. The systems are based upon calculations provided by Agrawal

[1:137-146] and Dougherty [9].

In the controller developed to command the three-axis thruster package,

a linear, non-coupled sc-t of equations is used so that each axis may be

considered separately. The system uses rate and error feedback to develop a

proportional signal for the thrusters. In chemical thrusters, such a signal is

typically used to modulate the pulsing of the thruster valves, thus producing a

net impulse proportional to the signal 11:142). The signal is determined by

M- K,(7 0.-) (2.42)

where

K, Thrust-Moment arm (2.43)'
deadband
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"=2 'a (2.44)
TK2

This produces a signal profile as shown in figure (2.11). However, since the

thruster are being treated as on/off devices, with each thruster pulse lasting for

one time step, the impulse delivered to the spacecraft is as shown in figure

(2.12).

Thrust

Kt&+QO

Figure 2.11 Proportional signal to Thrusters
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Signal to
Thrusters

DeadbandKr

Figure 2.12 Controller Output Signal to Th,-rusters

The second method investigated in this thesis actively con!,'.ls the pitch

and roll axis, while leaving the yaw axis to be controlled through gyroscopic

coupling. This is done because of the difficuity and expense in ,ccurately

sensing yaw errors throughout the entire crbit [1:1421. While sur, sx,-sors can

be used, they do not function during eclipse season at either sateite re:c• or

midnight.

The errors about the y axis are controlled through a reaction wheel, with

its angular momentum vector aligned along, the -v axis of the spacecraft. By

controlling the speed of the reaction wheel, the a gu!ar velocity of the

2-32

""a *" -.-. .... .' - -.... . .. i- - - - - - -. -....- ." *:



spacecraft about that axis is controlled. The wheel is biased so as to always

have angular momentum, thus providing gyroscopic stiffness to the satellite.

Because of this gyroscopic effect, the x and z axis are coupled, and

attitude errors in both can be corrected with a single set of thrusters. The

sensors detect only the roll errors, but as the satellite proceeds around its orbit,

the yaw and roll errors interchange, upon which they are detected and

corrected. The thrusters pairs are not mounted directly along the spacecraft y-z

plane, but are instead offset so as to provide torque about both the roll and the

yaw axis. This offset is selected so as to damp out the oscillations introduced

by the spacecraft's orbital frequency, and is calculated from

Ctan-' 2 'Z%(2.45)

where h is the magnitude of the momentum wheel's angular momentum and

N.m= - 1 1.,1K o (2.46)

The profile for this, system, is identical in shape to that of the previous

method. The equations used in the controller are

M, =-KcosC(T$4+0) (2.47)
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M, =Ksin[(Tr+p), (2.48)

where

=2 I, (2.49)
NmKcos_

These two, contro! systems will both be used and the results compared in

order provide repeatability. This will assure that any characteristics of operation

revealed are not caused solely by the controller used in the study.
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Ill. Method of Numerical Analysis

This chapter provides a description of the numerical integration

techniques used in this analysis. The Haming integrator, the method used in

propagating the state vector, will be described, along with the requirements for

its use. The characteristics of the system rniodeled will then be'specified. The

parameters to be varied. will be described, and the range of values chosen for

the investigation will be defined. Some of the difficufties encountered in using

the Haming to model this system will be discussed. Finally, the programs

developed and their use will be described.

The dynamical system developed in this analysis was encoded using

Fortran 77, and compiled and executed on the AFIT computer network Sun

workstations. One form of the code developed is presented in Appendix A.

Several other forms of the code were created using different initial condition,

output, and the attitude controller sections. 'All versions use identical spacecraft

equations of motion and perturbation equations.

3.1, The Haming Integrator

The Haming Int,.jrator uses a fourth-order prediction--correction algorithm

in. order to integrate first-order differential equations, such as the equations of

motion of the satellite attitude state vector presented in equation (2.1S). It

requires continuous differential equations, with continuous derivativ'es of those
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equations. If an equation has a discontinuity, Haming treats it as a continuous

equation through a form of curve-fitting. In order to integrate discontinuous

equations, the state vector must be propagated across the discontinuity using

some other method, and Haming reinitialized.

Haming also requires that the differential equations be smooth over the

interval determined by the step size. If a differential equation varies too greatly

over one step, the Haming integrator algorithm used fails to initialize. Reducing

the step size can solve this problem, but the integrations take a correspondingly

larger amount of processing capability.

3.2 Special Requirements for Modeling with Haming

The largest problem encountered in propagating the state vector with a

Haming integrator is the need for a very small step size, especially as the

desired attitude error limits get smaller. This requirement is. most obvious when

the thrusters are active. By reducing the step size, the processing time

required is increasea. Since the angular accelerations due to the perturbations

are very small, the state vector must be propagated through a relatively long

period in order to collect the desired data. Thus, the use of Haming and a

computer model to examine this subject is very expensive in terms of

computing power.

Discontinuities in the equations of motion also require special care.

Activating and deactivating thrusters results in a discontinuity in the applied
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moments. As a result, the iteration must be halted and Haming reinitialized

with the new moments applied. By treating the activation/deactivation of

thrusters as an instantaneous event, with no rise or fall time in the thrust, no

other method of propagation is required, since the new initial state vector is

simply the same as the last state vector obtained. For long thrust times this is

an accurate assumption. For burn times that are short relative to the rise and

fall times, this method may still be used if the effective thrust used reflects an

average thrust over the burn time.

Discontinuities also occur in the moments due to the solar radiation

pressure. These are spaced around the orbit at approximately 600 iniervals',

and are a result of the different sections rotating to an edge-on aspect to the

sun, resulting in a sharp minimum in solar pressure at that attitude. The exact

time depends upon the satellite's attitude and therefore must be determined as

the state vector is propagated. At each of these discontinuities, the iteration is

halted, and the state vector is propagated across the discontinuity by

t = X(t)4-At.F(f) (3,1)

Haming is then reinitialized and the process continues. The loss of accuracy

through using this form for the propagation is minimal due to the small step size

and the small changes in the derivatives of the state vector over one step.

These breaks in the propagation are used to allow greater efficiency in

the program. During the periods the thrusters are inactive and the rate of
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change of the state vector is small, the step size is increased, and processing

is faster. When the thrusters are active, Haming is reinitialized with a smaller

step size to allow the algorithm to integrate the equations of motion more

accurately. Thus the program matches the step size to the requirements of the

moment.

/

3.3 Description of Programs

One principal program was written for this analysis, and several variants

created from it in order to investigate different facets. The primary program

includes the assignment of constants, the equations for the perturbations, the

first-order derivatives of the state vector elements for use by Haming, Haming

itself, and an iterative loop to initialize and then drive Haming though the

desired interval. The variants added the desired controller and its

,implementation, output, and initial condition sections, and made necessary

changes to the iterative loop.

The form of the code included in this paper propagates the equations of

motion throughout one orbit of the satellite about the Earth. During this time a

record is kept of the success of the satellite' in maintaining its attitude within the

desired limits and the amount of time that the thrusters were used.in

maintaining that attitude. .This information is collected for a range of thrust

levels for each of several pointing error deadbands.

The second 'primary form of the code was deve!oped in order to model
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error correction response times. The attitude initial conditions are chosen with

a pointing error that is greater than the allowed limit. The program then

propagates the state vector until the attitude is corrected, while recording the

time required to meet pointing requirements and the total thruster use during

that time.

A third form of the program was developed in order to examine the

effects of faster controller rates and better control of thruster output. The

controller rate is simulated by varying the integration step size, thus performing

the controller calculations more often. The control of thruster output is modeled

by limiting the number of possible levels the thrusters at which the thrusters

may be operated.

In addition, the basic program is used to verify controller operation in the

absence of perturbations and to examina the magnitudes ofthe perturbations

and their dependency on the satellite attitude. The program is also used to

integrate the perturbative moments and thus determine total impulse required

over one orbit.

3.4 System Specifications

The satellite model described in, section (2.2) provides the dynamical

constants and perturbation equations used in the analysis. The perturbation

calculations are performed with the following constants -and orbital data:
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- p=0.9 Reflectivity of polished aluminum

- 8=23.44 0 Maximum declination attainable

- e=0.01 High end of eccentricity for geostationary satetites

- i=0° Inclination effects are described in section (2.3.4)

In all cases it is assumed that the desired sdtellite orientation is with the body

frame and the A frame aligned (i.e. antenna directed at the center of the Earth).

Each set of integrations begin at satellite noon, which also corresponds to the

perigee passage.,

3.5 Parameters

The initial data is collected by varying the thrust produced and

determining the relative pointing accur•,cy and the thruster usage required.

Thrust is varied using a logarithmic selection of values from a high of 0.2 N to a

low of 0.00025 N. The high limit is slightly less than twice the expected

maximum as calculatec in section (2.4) if only one pair of thrusters are used on

"the spacecraft. The lower limit is selected so as to provide a control moment

,J that is still greater than the maximum moment due to perturbative forces. The

values selected to cove, this range are shown in table (3.1).

In addition, the desired 'pointing error limits are varied to examine the

effect that this will have on the performance at different thrust leve~s. One

advantage of low thrust engines is the fact that the total impulse delivered

during one thruster action is more controllable than that of a chemical
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propulsion system, thus allowing greater pointing accuracy. The pointing error

limits examined range between 0.50 and 0.00050, with the points selected

presented in table (3.1).

Finally, the step size used in the Haming integration will be varied. Since

the program requires that a thruster pulse last an entire step, this models the

effect of different pulse lengths and 'controller operation rates. The step sizes

used are between 0.5/0.1 seconds, which is the, largest steps that Haming can

complete a simulation with, and 0.05/0.01 seconds. The first of each pair is the

step size used when no thrusters are firing, and program changes tc the shorter

"step size when Haming is reinitialized when a thruster is turned on. The

smallest pair of step sizes nears ,the lower practical limit for the compuiter

system used. At this step size, integrating over an entire orbit requires

approximately an hour per thrister setting. To complete an entire data

collection run withten thruster levels and ten error limits at this rate would

require on the order of eighty hours of computer operations, plus additional time

for formatting the results.

The simulations that are processed with the largest step, size cover the

period of one orbit. The data collected at'shorter step sizes represent results

over a four hour period of the orbit. In addition, integrations over smaller

periods of time are made in order to validate the operation of the model. Other

values are also used for these parameters as the data collected shows areas of

further interest. These values are specified in Chapter IV as the results are
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discussed.

Thrust Levels Deadbands Step Size
0.2 N 0.50 0.5/0.1 sec
0.1 N 0.20 0.25/0.05 sec
0.05 N, 0.10 0.1/0.02 sec
0.02 N 0.050 0.05/0.01 sec
0.01 N 0.020°
0.005 N 0.010
0.002 N. 0.0050
0.001 N 0.0020
0.0005 N 0.0010
0.00025 N 0.00050

Table 3.1 Parameters
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iV. Results

The numerical integrations programs are used to generate data on the

performance of low-level thrusters over a variety of conditions. The first series

of calculations are performed in order to validate the controller design and the

satellite dynamics package. Data is then collected on the ability of the system

to maintain Earth pointing within the limits specified, and on the thruster usage

required in accomplishing this. This data is then examined, and additional

calculations performed to more closely investigate areas of interest.

4.1 Verification of Controller

In order to verify the performance of the controllers, an initial computer

run is made and the errors graphed versus time. The graphs are made with an

initial deadband of 0.50, step sizes of 0.5/0.1 seconds, and thrust of 0.2

Newtons per thruster. Figures (4.1 - 4) demonstrate the errors for the first

controller, design'. The first two curves resemble the responses expected from

an impulsive control scheme, with sharp corners as the pointing errors

approach the'deadbands and relatively'constant rates of change between*

thruster firings. This is due in part to the step size, which places a lower limit

on the minimum impulse allowed. Thus the thrusters are firing for longer than

is required, resulting in the cycling between limits seen in the plots.

Figure (4.3) represents a case in which the perturbative forces are acting

to keep the error near one limit. This is shown in greater detail in figure (4.4).
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The initial portion of each plot also show the effects of the perturbative

moments quite clearly.
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Figure 4.4 Error in •, T = 0.00025 N, db = 0.00050. A~t = 0.5/0.1
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4.2 Pointing Accuracy

The pointing accuracy graphs are constructed by comparing the total

time that the error about at least one of axis is greater. than the allowable limit

and comparing this time with the duration of the integration. These graphs

clearly show the accuracy in maintaining narrow pointing Oimits using a simple

on-off controller. The most interesting point about these graphs is the fact that

at the narrowest tolerance examined, the more powerful thrusters start to be the

least capable. The least powerful thrusters maintain their performance

capability despite the change in the limits. The graphs shown here are all using

the three-axis control method.
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Figure 4.5 Pointing accuracy, Method 1, db = 0.5°, At - 0.5/0.1
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When using the momentum wheel plus one axis control, the error in 4)

follows the same pattern. The error in 8 is dependent upon the controller, not

the thrusters used. The error in 4' is out of the limits for most of the time. In

order to maintain this axis within limits it is necessary to increase the angular

momentum of the momentum wheel, thus providing greater gyroscopic stiffness.

It is clear from these graphs that accurate attitude control can be

maintained with thrust levels as low as 0.5 mN per thruster. At the lowest

thrust setting, 0.25 mN, the limits are exceeded approximately 14% of the time.

This figure is independent of the pointing limits desired.

"Thrust levels above this remain consistently within the limits, except for

the at the narrowest limits, where the highest thrust settings lose the ability to

maintain the satellite attitude within limits. This is due to the fact that the
0

minimum impulse bit is too large and the operating frequency too low for the

limits specified. One pulse from a thruster results in an angular velccity that is

too high to be consistently c )rrected before the error limit is exceeded. As a

result, 'the spacecraft i-, .nable to maintain pointing accuracy within the selected

limits.

4.3 Total Angular Impulse Required

The total angular impulse required in order to maintain the spacecraft's

attitude is also of interest, as it is this factor that determines the total mass of

propellant required over the life of the satellite. In these graphs, the time that
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each thruster pair was active is summed over the orbital period and multiplied

times the moment delivered by the thruster to obtain a total angular impulse.

~~~~~T -. . .... .. .. . ..)

8.0

S..11

S5.0

TI•-u.t (N)

Figure 4.15 Total Impulse, Method 1, db = 0.'5, At = 0.5/0.1.

7.87.6

L.a

Thru.t (N)

Figure 4.16 Total impulse, Method 1, ob =0.20,' At r-0.5/0.1'
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Figure 4.18 Total Impulse, Method 1, db 0.0*5, At = 0.5/0.1
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Figure 4.19 Total impulse, Method 1, db - 0.020, At - 0.5/0.1
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Figure 4.34 Total impulse, Method 2, db = 0.0005°. At = 0.5/0.1

The total angular impulse can be seen to be near constant for a given

deadband as long as the thrust level is low. At higher thrust levels, the total

angular impulse required increases sharply, because of the larger minimum

impulse bit. Where the total is constant, the thrusters are merely acting to push

the satellite axis away from one side of the deadband, and allowing the

perturbative moments to force it back. As the thrust level is increased, a single

pulse from the thruster drives the axis to the other side of the deadband,

causing the opposing thruster to fire and drive it back. Instead of the thrusters

being used to maintain only one side of the deadband, they are used on both

sides, resulting in a reduction in efficiency. At still higher levels of thrust, the

axis traverses the deadband in a shorter time,' requiring the thrusters to fire

more often. The limiting case is reached when the thrusters are firing during

every time step. When this occurs, the system loses the' ability to maintain the

attitude within limits.
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Figure (4.25) is of special interest, as it represents a set of conditions

that requires no thruster firings during the period observed. Due to the

gyroscopic effect of the mome ntum wheel, the small mag~nitudes of the

perturbing moments cannot cause the attitude error in 4to exceed the limits

within one orbital period.
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4.4 Effects of Smaller Step Size

When examining the data already collected, it becomes obvious that the

limiting factor is the minimum impulse bit. By reducing the step size, the

minimum duration of one thruster firing can be reduced, thus reducing the

minimum impulse bit. The next series of graphs show the data changes

caused in the system effectiveness by reducing the step size. All data covers a

period of one-sixth of an orbit. The first set, figures (4.35-41) uses a deadband

of 0.00050, while varying the step size. The pointing accuracy results for a step

size of 0.05/0,01 seconds is not included as it is identical to the results with a

step size of 0.1/0.02 seconds. In both of these cases, the system is able to

maintain itself within the limits with 100% accuracy.
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Figure 4.35 Pointing accuracy, Method 1, db = 0.00050, At = 0.5/0.1
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Figure 4.36 Pointing accuracy, Method 1, db 0.0005', At= 0.25/0.05
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As a final look at the effect of step size on system effectiveness, data is

presented on performance with error limits of 0.0000020, or approximately one-

hundredth ol an arcsecond. The data covers a period of one-sixth of an orbit,

and is presented in figures (4.42-49).

Thlua~t (N)

Figure 4.42 Pointing accuracy, Method 1, db =0.0000020, At =0.5/0.1

01
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Figure 4.43 Pointing accuracy, Method 1, db = 0.000002°0,At = 0.25/0.05
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Figure 4.49 Total impulse, Method 1, db = 0.000002°, At = 0.05/0.01

From the graphs, it can be seen that none of the levels of thrust

examined offer acceptable performance if a time step of 0.5/0.1 is used, as all

result in the attitude being out of limits during over 98% of the control system

sampling .times. At shorter time steps, it becomes possible to achieve adequate

performance, and each further reduction in the time step results in higher levels

of thrust being acceptable.

As a result of the data collected, it can be seen that the two factors of

greatest importance in the performance of the attitude control are the minimum

angular impulse delivered and the frequency of the controller. Either reducing

the change in angular momentum per pulse or increasing the frequency of

control actions allows narrower limits to be met. The level of thrust provided

/V has no effect on the ability of the system, except in as much as it affects the

minimum impulse bit and as long as it surpasses the perturbative forces acting

on thq spacecraft. If the thrust level is decreased beyond that required to
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achieve an acceptable minimum angular impulse, there is no effect on the total

angular impulse required to maintain proper attitude control. Thus it has no

effect upon the mass of propellant required, since the propellant required to

deliver a given total angular impulse is a function of the thruster specific

impulse and position, not of its thrust. This is true in all of the combinations of

factors examined in this analysis.
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4.5 Response Time

The analysis of the response times is brief. The results of the data

collected indicates that the nonlinearities, axis coupling, and perturbations have

very little effect upon the time required for the system to recover from an

attitude error about one axis. Instead, all responses can be approximated by

Newtonian dynamics, where the anguiar acceleration equals the applied

moments divided by the Moment of Inertia of that axis, Thus, doubling the

"thrust will reduce the time required to correct an error by the square root of two.

Verification of this treatment is provided by the following plots of response times

shown in figures (4.50-52). Each graph shows three curves: one with the

perturbative forces opposing the corrective action, one with the perturbative

forces assisting the corrective action, and the third generated from a Newtonian

treatment of the control laws. In each graph, the Newtonian approximation

results in a value between the other two.
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V. Conclusion

In order to investigate the use of low thrust propulsion systems using

numerical integration techniques, it is necessary to use a very small step size.

The impulse bit of the thruster as applied by this analysis is limited to no less

than the thrust times the step size. Therefore, in order to examine the

advantages -of low thrust systems versus chemical rockets, the step size must

approximate the thruster pulse durations. At the same time, the low angular

accelerations experienced means that relatively long periods of time must be

covered in the integration limits in order to examine cyclic behavior. These two

facets combine to require a large amount of computer processing time. If the

effects of variations in the perturbative moments are to be considered, the

duration covered by the integration'must be still longer, since these effects

follow a cycle with a period of one day.

However, such integrations are not necessary in the design process.

The primary figures ,f merit in a propulsion system for attitude control are the

minimum impulse bit. and the pulse rate. Beyond that, as long as the thrusters

procuu,; greater moments than those caused by the perturbations, the thrust of

the system hýas no effect upon its efficiency or accuracy. Thus low thrkist

systems can be treated the same chemical propulsion systems of much

higher thrust. The propella-, required in either case is determined by the total

impulse required divir:'d by the specific impulse of the thruster. In this case, a

low thrust system might have a mass advantage due to its higher' specific
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impulse and correspondingly lower mass of propellant required. However, the

decision must be based upon total mass of the system, including the thruster

itself and any supporting equipment. The equations for determining the

optimum specific impulse for a given total impulse are well understood and in

common use in satellite design.

The influence of response times upon the system design is dependent

upon the purpose and requirements of the spacecraft. A communications

satellite, such as the Intelsat VII has no need to perform rapid attitude changes

during normal operations, and a low thrust system is adequate for its use.

However, during initial deployment of the spacecraft, some supplementary

method may be needed for in order to 'allow the spacecraft to attain an Earth

pointing attitude within a reasonable time frame. At the lowest thrust level

examined in this analysis, a satellite the size of Intelsat VII would require over

one hundred and seventy hours to nalt a rotation of one revolution per minute.

If the satellite cannot dep~oy its solar arrays until the attitude has stabilized, all

of this maneuver;-Ig must be performed using battery power. Therefore the,

restrictions on how long the deployment and attitude acquisition sequence can

take may restrict the minimum thrust allowed, require additional despin thrusters

to halt spacecraft spin, or require that spacecraft injection into the

geosynchronous orbit be accomplished with near zero residual angular motion.

The results of this analysis indicate that low thrust systems are capable

of accurate attitude control. Their treatment in designing an attitude control
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system should be no different than that of chemicalipropulsion. In both cases,

thie limiting factor is the minimum impulse bit of the thruster and the operations

rate of the system. Further examination of this subject is not recommended.

5-3



Appendix A
PROGRAM thesis

c This program uses a Hamming Integrator to apply perturbations to
c satellite dynamics. Thruster firings are continuous, with haming
c being reinitialized as thrusters turn on and off.

implicit double precision (a-h,m,o-z)
double precision Ix,ly,lz,nu,thrusts(10),nun
data thrusts/0.2,0.1,0.05,0.02,0.01 ,0.005,0.002,0.001,0.0005,
1 0.00025/
logical flagxp,flagxm,flagyp,flagym,flagzp,flagzm

C
common /ham/ t,x(1 2,4),f(1 2,4),errest(1 2),n,h
common /wheel/ hx,hy,hz,hxdot,hydot,hzdot
common /cons' lx,ly,lz,wO,wOdot,ecc
common /state/ phi,theta,psi,phidot,thetadot,psidot
common /moments/ db,thrust,mcx,mcy,mcz,mx,my,mz
common /sun/ alphaO,delta,Sx,Sy,Sz
common /nominal/ phi0,theta0,psi0
common /dbug/ xblock,yblock,zblock,wx,wy,wz

c
c OPEN OUTPUT FILES
C

open(1 5,file='th2a.o',status='unknown')
open(1 4,file='Iim2a.o',status='unknown')

c
c SET CONSTANTS
C

Ix = 8000
ly = 3700
Iz = 7850
alphaO = 0.0
psio = 0.0
theta0 = 0.0
phi0 = 0.0
delta =23.443597"3.1415962/180.0
ecc . 0.01
db = 0.5*3.1415962/180.0
h = 0.5

c WRITE HEADERS TO OUTPUT FILES
write (15,43) db
write (14,43) db

43 format(2x,' Deadband ',f 10.8,', Step- 0.5, 0.1')
c
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c SET UP TIMING AND DIMENSIONS FOR HAMING
C

n=10

t O .D 00
tf =((23*60+56))*60

nstep =' int((tf-t)*h)
c
c INTEGRAItE OVER ONE PERIOD FOR EACH LEVEL OF THRUST
C

do 300 kl= 1,10
C
c INITIAL CONDITIONS
C

thrust = thrusts(kl.)
arm ::= 1.25
gain = 2*thrust*arm/db
tau = 2*sqrt(lxlgain)
meanmot = 23.141 5962/((23*60+56)*60)
zeta = datan(2*sqrt(Iz*meainmotl35))
X(1,1)=0
x(2,1 )=0
x(3,1 )=0
x(4,1)=0

x(6,1 )=0
x(7,1 )=0
x(8,1)=-35
x(9,1 )=0
x(10,1)=0
hy =x(8,1)

c ZERO OUT PERFORMANCE STATISTICS
onx=0O
ony=0
onz=0
off x=0
offy = 0
off z = 0
inx - 0
iny = 0
inz - 0
outx = 0
outy = 0
outz - 0,
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outtot =0

flagxp = .alse.
ftagxm = .alse.
flagyp = .alse.
flagym = .alse.
flagzp = .alse.
flagzm = .alse.
rncx = 0
Mcy = 0
Mcz = 0
ct =0

C
c INITIALIZE HAMING
C

nxt = 0
call haming(nxt)
if(nxt .ne. 0) go to 50
write (15,1)

1 format(2x,' hamning, did not initialize')
stop

50 continue
c
c INTEGRATION LOOP
c
200 continue

if (ct .ge. tf) then
goto 100
else

phi = x(1,nxt)
theta = x(2,nxt)
psi - x(3,nxt)
phidot = x(4,nxt)
thetadot = x(5,nxt)
psidot = x(6.,nxt)
hx = x(7,nxt)
hy - x(8,nxt)
hz = x(9,nxt)

c CONTROL SYSTEM OPERATIONS

c SET TRIGGERS

tri tau*phidot+phi
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c CHECK FOR THRUSTER START/STOP

c CHECK X-AXIS
if ((tri .ge. db) .and. (flagxp .eq. (.false.))) then

Mcx = -2.5*thrust
Mcz = 2.5*thrust*dtan (z~eta)
flagxp = true.
flagxm f .alse.
call initharn(nxt)

endif
* if ((tri Ilt. db) .and. (flagxp .eq. (.true.))) then

mcx = 0.-
Mtz = 0
flagxp = .false.
call initham(nxt)

endif
if ((tri .le. (0-db)) .and. (flagxm .eq. (.false.))) then

Mcx = 2.5*thrust
Mcz = -2.5*thrust*dtan (zeta)
flagxm = true.
flagxp = .alse.
call initham(nxt)

endif
if ((tri .gt. (0-db)) .and. (flagxn '.eq. (.true.))) then

Mcx = 0
Mcz= 0
flagxm = Jfaise.
call initham(nxt).

endif

c CHECK FOR PERTURBATION DISCONTINUITIES
bl = 1.047197551
b2 ='0.017453292
if (dmod((x(10,nxt)+b2),bl) .le. (2b12)) then

c Manually Propagate State Vector
Phid = phi+hvphidot
phidotn = phidot+h*F(4,rixt)
thetan '..theta+ h *th etadot
the~tadotn = thetadot + h*F(5,nxt)
psin = psi+h'psidot
psidotn' psidot+h*F(6,nxt)
nun = x(1O,nxt)+hif(10,nxt)
alphan= nun+alpha0
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c Determine next Solar unit vector
Sxn = dcos(th etan) *dcos (psi n) *dsin (alphan)
1 *dcos (delta) +dcos(th etan)
2 *dsjn (psi n) *dsi n(delta) -dsi n (th etan) *dcos(alphan) *dcos(delta)
Syn = (dsin(thetan)*dsin (phin)*dcos(psin)-dcos(phin)*dsin(psin))
1 *dsi n(a! phan) *dcos (delta)+ (dcos(phini)* *dcos(psin) +dsin (ph in)
2 *dsin(thetan)*dsin(psin))*dsin(delta.)+dsjn (phin)*dcos(thetan)
3 *dcos(alphan)*dcos(delta)
Szn = (dsin(phin)*dsin(psin)+dcos(phin)*dsin(thetan)*dcos(psin))
1 *dsin (alphan)*dcos(delta)+ (dcos(p'hin)*dsin(thetan)*dsin (psin)
2 , dsin (ph in) *dcos(psin)) dsin (delta) +dcos(phin)*dcos(thetan)
3 *dcos (al ph an) *dcos (delta)

c Check to see if crossing occurs
z= 0
if ((sxn~sx) .1e. (0.0)) then

z=z+1
endif

if ((Syn*Sy) .le. 0.0) then
Z.=z+1

endif.
if (((Sxn/2+O.8660254*Szn)* (Sxi'2+O.866O254*Sz)) .le. 0.0) then

z=z+,I
endif

if (((Sxn/2-0.8660254*Szn) (Sx/2-0.8660254*Sz)) .le.. 0.0) then
z=z+1

endif

c If crossing occurs, Remnit Haming with Propagated state
if (z .gt. 0) then
x(1,11) = phin

*x(4,1) = phidotn
x(2,il) = thetan
x(5,1) = thetadotn

*x(3,1) = psin
x(6.1) - psidotn
x(10,1) = nun
t = t+h
nxt = 0
call haming(nxt)
if (nxt .ne. 0) go to 91
Write(15,6) 'Haming bombed'
stop
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91 continue

endif

endif

c *STEP HAMING THROUGH TO NEXT TIME INCREMENT
call haming(nxt)

c CHECK LIMITS AND TOTAL THRUSTER ACTIVITY
if (dab8(phi) .gt. (db)) then

outx =outx+h

else
inx = inx-,h

endif
if (dabs(theta) .gt. (db)) then

outy = outy+h
else

mny = iny+h
endif

if (dabs(psi) .gt. (db)) then
outz =outz+h

else
inz =.inz+h

endif
if (Mox .eq. 0.0) then

* offX =offX+h

else
onx onx+h

* endif

* ~if ((dabs(theta) g.(db)) .or.
1 ((dabs(psi) .gt. (db)) .or.- (dabs(phi) .gt. (db)))) then

outtot =outtot+h

endif

*c ýGRAPHING DATA OUTPUT BLOCK
c if (tt .ge. 500) then

*c write(l 5,*) ct, phi, ph idot,theta, thetadot,psi,psidiot, f(4, nxt)
c write( 1 4,) wx,wy,wz, x block, ybloc k, zblock

C ftt=0.
c endif
c tt =tt+h

ct ct+ h
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goto 200
endif

100 continue
NumFire = onX+onY+onZ
time = ct

) percentx =onx/time
percenty= ony/time
percentz = onz/time
outx=outx/time
outy=outy/time
outz=outz/time
outtot = outtotltime
percentt = percentx+percenty+percentz
timp = percenftttf *2.5*th rust
write(1 4,41) thrust,time,outx,outy,outz,outtot
write(1 5,44) thrust, percentt,ti mp, hy

41 format(fl 0.8,fl 2.2,4(x,f 10.8))
44 format(2(x,f 10.8) ,x,fl12.4,x,f 10.6)
300 continue

close(1 4)
close(1 5)
stop
end

C
C

SUBROUTINE initham(nxt)
C
c REINITIALIZE HAMING AFTER THRUSTER START/STOP

'C implicit double pre cision(a-h,m,o-z)
double precision lx,Iy,lz,nu,thrusts(12)

common /ham/ t,x( 12 ,4) ,f(l 12,4) ,errest( 12) ,n,h
common /wheel/ hx,hy,hz,.hxdot,hydot,hzdot
common /const/lIx,Iy,I'z,wO,w~dot,ecc
common /state/ ph i,th eta, psi ,ph idot,th etadot,psidot
common /rhoments/ db,thrust,mcx,mcy,mcz,mx,my,mz
common /sun/ alpha0,delta,Sx,Sy,Sz
common /nominal/ phi0,theta0,psiQ

x(1,1) = phi
x(2,1) atheta
x(3,1) =psi
xý(4,1) -phidot
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x(5,1) = thetadot
X(6,1) = psidot
X(7,1) = hx
x(8,1) = hy
x(9,1) = hz
x(10,1) =x(10,nxt)

nxt = 0
if ((mcx .eq. 0)) then

h = 0.5
else
'h =0. 1

endif
call haming(nxt)
if~nxt .ne. 0) go to 51
write (15,4') ' haming did not reinitialize'

NumFire =onX+onY.+onZ

time =ct

stop
51 continue

return
end

SUBROUTINE perts(nxt)
c
c
C Determines pet-lurbative effects

implicit double precision (a-h,m,o-z)
double precision lx,ly,Iz,nu
common /ham/ t,x(1 2,4),f (1 2,4),errest(1 2),n,h
common /const/lIx,ly,Iz,wO,w~dot,ecc
common /state/ phi,th eta, psi ,phidot~thetadot,psidot
common /moments/ db,th rust, Mcx, Mcy, Mcz,Mx, My, Mz
common /sun/ alp haO,delta,Sx, Sy, Sz

C DETERMINE SATELLITE MEAN MOTION AND ANGULAR VELOCITY

meanmot = 24'3. 141 59621((23*60+56)*60)
nu =,x(10,nxt)
wO - mean mot*( 1 +ecc *dcos(n u)) * 21(( 1 -ecc* ecc)4' 1.5)
f(10O,nxt) = wO
mu =meanmot4 2.O*3 ((1 +ecc~dcos.(nu))/( -ecc~ecc))**3.0
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C
c GRAVITATIONAL TORQUES
C

Mgx = mu*(Ilz-1y)*cjsin(phi)*dcos(phi)*dcos(theta)
1 *dcos(theta)
Mgy = m u* (Iz-Ix) *dsin (theta) *dcos(th eta)
1 *dcos(phi)
Mgz = m u* (lx-y) *dsin (theta) *dcos(th eta) *dsi n(ph i)

C
c SOLAR PRESSURE TORQUES
C

Al = 1.25*1.25*3.1415962
A2= 0.75*0.75*3.1415962

A3 = 3.0
A4 = 3.0
Ps = 4.644D-6
rho =0.9

rt3 =sqrt(3.0)

alpha = alphaO+nu

c DETERMINE SOLAR UNIT VECTOR IN BODY FRAME COORDINATES

Sx = dcos (theta) *dcos(psi) *dsin (alpha) dcos(delta) +dcos (theta)
1 *,dsin (psi)*Osin (delta) -csin (theta) *dcos(alpha) *dcos(delta)
Sy =(dlsin (theta) *dsin (phi)*dcos(psi)-dcos(phi)*dsin (psi))
1 *dsin (alpha) dcos (delta)+ (dcos (phi) *dcos (psi) +dsi n (phi)
2 *dsin (theta) *dsin (psi)) dsin (delta) +dsi n(pii ) *dcos(theta)
3 *dcos (al pha) *dcos (delta)
Sz = (dlsin (phi) *dsin (psi) +dcos(ph i) dsin (theta) *dcos (psi))
1 'dsi 'n (alpha) *dcos(dc-ta) +(dcos(phi) *dsin (theta) *dsin (psi'
2 -dlsin (phi) *dcos(psi)) *dsi n,(delta) +dcos(phi) dcos (theta)
3 *dcos(alpha)*dccs(delta)

c CALCULATE SOLAR PRESSURE TORQUES

Msx .- Ps*(2*A3*dabs(Sy) *( 1 +rho)*Sy+2*A4*dabs(Sx)" (1 -rho) *Sy)
Msy .Ps*(-3.4*A1*dabs(0..3x/2+rt3/2*Sz)*(Sz*(1 +rhol2)
1 -r32*rho&Sx)+2.85*A2*dabs('SxI2+rt3/2*Sz)
2 ((1 +rho/2) * z-rt3/2*rho*Sx) +2 A3*dabs(Sy) (1 -rho) *x
3 +2*A4*dabs(Sx')(1 +rho)*Sx)
Msz -Ps* (3. 4A 1 *dabs (-Sx/2+rt3/2*Sz) *(1 -rho) S

1 -2.85*A2,'dabs(SxI2+ rt3/2 Sz) (1 -rho)*Sy)
C
c CALCULATE WODOT
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C
wOdot = O-2*meanmot*meanr!iot*ecc*dsint nfu) (1 +ecc*dcos(n4))**3
wOdot = w0uot/,1,-ecc*ecc)*3)

c CALCULATE RADIO-FREQUENCY 1ORQUE-SZ
c

Mtx = 0 0
Mty = 5.667d-6
Mtz,= 0.0

c

c SUM DIST[URBANCE TORQUES
C

Mx = Mgx+Msx+Mtx
My = Mgy+Msy+Mty
Mz = Mgz+Msz+Mtz
return
end

C
SUBROUTINE rhs(nxt)

C

c rhs is the right hand side of the differential equations.

C'

implicit double precision (a-h,m,o-z)
double precision Ix,ly,lz
common /ham/ t,x( 12,4),f( 12,4),errest(12),n,h
common /constl lx,ly,lz,wO,w0dot,ecc
common /wheel/ hx,hy,hz,hxdot,hydot,hzdot
common /state/ phi,theta,psi,ph idot,th etadot,psidot
common /moments/ db,thrust,Mcx,Mcy,Mcz,Mx,My,Mz
common /dbug/ xblock,yblock,zblock,wx,wy,wz

c
c wO satellite mean motion
c wOdot - rate of change 'of wo
c phi . roll :x(1)
c theta = pitch :x(2),
c psi - yaw :x(3),
c phidot, thetadot, and, psidot are first derivatives
C Mx, My, M? are moments about each axis
c hx,hy,hz are reaction. wheel moments, and __dot are their rates of
c change
C
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c Set nlew values of Phi,Theta, Psi and dot terms
C

phi = x(1,nxt)
theta = x(2,nxt)
psi = x(3,nxt)
phidot = x(4,nxt)
thetadot = x(5,nxt)
psidot = x(6,nxt)
hx = x(7,nxt)
hy = x(8,nxt)
hz = x(9,nxt)

C
c CALL SUBROUTINES TO DETERMINE MOMENTS
C

call perts(nxt)
Mx = Mx+Mcx
My = My+Mcy
Mz = Mz+Mcz
hydot=592 * (5*th etadot+th eta)

c wx,wy,wz are the rotation of the body frame wrt inertial space
c

wx = ph idot-psidot dsi n (th eta)-wO~dcos (theta) dsin (psi)
WY = thetadot*dcos(phi) +psidot~dcos(theta) dsin (phi)-wO* (dcos(phi1)
1' *dcos (psi) +dsi n (phi) *dsi n (theta) *ds in (psi))

wz= psidot~dcos(theta) *dcos(phi)-thetadot*dsin(phi)+wO*(dsin (phi)
1 *dcos (psi) -dcos (phi) dsi n (theta) *dsin (psi))

c
c. F(1) =PHI'

1 F(1 ,nxt)=PHIDOT
C F(2) =THETA'

2 *F(2,nxt)=THETADOT
C F(3) =PSI'
.3 F(3,nxt) - PSIDOT

C F(4) . PHI"
C F(5) . THETA"
C F(6) - PSI"

xblock = (Mx-wy~wz*(Iz-Iy)+wz~hy)/Ix
yblock - (My-hydot-wx~wz*(Ix-lz))/Iy
zblock - (Mz-wy*wx*(Iy-lx)-wx 'hy)IIz

4 F(4,nxt)=xblo 'ck+dsi n(phi)*dtan (theta) yblock
1 +dcos(ph i) dtan (theta) zblock
2 +wOdot~dsin(psi)/dcos(theta)
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3 +wO*(psidot*dcos(psi)/dcos(theta)
4 +phidot*dtan(theta)*dcos(psi))
5 +thetadot*psidot/dcos (theta)
6 +thetadot*ph idot*dtan (theta)

5 F(5,nxt)=dcos(phi)*yblock-dsinf(phi)*zblock
1 +w0dot*dcos(phi)
2 +wO*(phidot*dsin (theta)*dsin (psi)-psidot*dsi n(psi))
3 -phidot*psidot*dcos(theta)

6 F(6,nxt)=(dsin (phi)*yblock+dcos(phi)*zblock
1 +wO*(thetadot*dcos(theta)*dsifn (psi)-phidot*dcos(psi)

2 +psidot*dsin(theta) *dcos(psi))
3 +w0dot*dsin(th eta)*dsin (psi)
4 +phidot*thetadot+th etadot*psidot*dsin (theta))

f(6, nxt)=F(6,nxt)/(dcos(theta))
7 F(7,nxt)=0
8 F(8,nxt)=hydot
.9 F(9,nxt)=0

return
end

C
SUBROUTINE HAMING(NXT)

* Version of 11/07/90
* Purpose
* Subroutine for integrating a system of first order differential

* equations. 'It is a fourth order predictor-corrector algorithm

* which means it carries tthe last four values of the state vector,

* and extrapolates'these values to obtain a predicted next value

° (the prediction step) and evaluates the equations of motion at

* the predicted point, and then corrects the extrapolated point

* using a higher order polynomial. (the correction step).,

* Input
* NXT = specifies which of the four values of the state vector is

*' the current one. NXT is updated by HAMING automatically,

* but must be set to ZERO on the first call.

* Call Subroutines
RHS(NXT) = evaluates the equations of motion

* External Functions
* None
* Common Blocks
* HAM = Memory block shared by the main driver and subroutine RHS.

SThe common block contains:

X - is the independent 'variable (often time)

Y(MAX,4) - the state vector (4 copies), with NXT pointing to
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* .the current one, the limit of MAX EOM can be changed
* through the PARAMETER in main driver, sub program
* RHS, and below.
* F(MAX,4) = are the EOM evaluated at the same times as the state
* vector Y ... it is the job of sub program RHS to
* calculate these.
* ERR(MAX) = is an estimate of the one-step integration error
S* N = is the number of ODES ... limit is MAX unless you change
* the PARAMETER statement in main driver, sub program
* RHS, and below.
* H = is the timestep ... one call to HAMING increments X by H
* References

* Donald G. M. Anderson - Harvard (1972)
* Analysis
* William Wiesel-- AFIT

Programmer
* Rodney D. Bain' AFIT
"* Program Modifications
* Original program slightly modified by Weisel and Bain.
" Comments
* TOL = is HAMING's startup tolerance ... set to reasonable value

as necessary in PARAMETER statement.
• The user must supply a main driver, and the subroutine RHS(NXT)
* which evaluates the equations of motion.

IMPLICIT REAL*8 (A-H,O-Z) I Global double precision
PARAMETER (ZERO=0.DO, ONE=1 .DO, TWO=2.DO, THFEE=3.DO,

1 FOUR=4.DO, MAX=12, TOL=1.D-12)
COMMON /HAM/ X,Y(MAX,4),F(MAX,4),ERR(MAX),N,H

Check if this is the first call ... HAMING (like all predictor-

* correctors) needs 'previous' values

IF(NXT) 190,10,200

* It is a forward Picard iteration (slow and expensive) to step
* backwards in time three steps to get the 4 previous points. A
* successful startup returns NXT=1, and time has not been
* incremented. If startup fails, NXT will be returned as ZERO.

10 XO-X
HH=H/TWO
CALL RHS(1)
DO 40 L-2,4
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,X=X+HH
DO 20 I=1,N

20 Y(l,L)=Y(I,L-1)+HH*F(I,L-1)
CALL RHS(L)
X=X+HFI

DO 30 1=1 ,N
30 Y(I,L)=Y(I,L-1 )+H*F(l,L)
40 CALL RHS(L)

JSW=-1 0
50 ISW=1

DO 120 1=1,N
HH=Y(I,1 )+H*(9.DO*F(I,1 )+1 9.D0*F(l,2)-5.OOý-*F(I,3)

1 +F(I,4))/24.DO
JF( DA8S(HH-Y(I,2)) .LT. TOL) GOTO 7n
lsw=0

70 Y(l,2)=HH
HH~=Y(I,1 )+H*(F(I,1 )+FOUR*F(1,2)+F(I,3))/THREE
IF( DABS(HH-Y(I,3)) .LT. TOL) GOTO 90
lsw=0

90 Y(I,3)=HH
HH=Y(l,1 )+H*(THREE* F(I, 1)+9.DO*F(I,2)+9.DO*F(I,3)
1 +THREE* F(I,4))/8.DO
IF( DABS(HH-Y(l,4)) .LT. TOL) GOTO 110
Isw=0

110 Y(I,4)=HH
120 CONTINUE

x=xO
DO 130 L=2,4

X=X+H
130 CALL RHS(L)

IF(ISW) 140,140,150
140 JSW-JSW+ 1

IF(JSW) 50,280,280
150 X=XO

Isw=1

DO 160 I=1,N
160 ERR(I)=ZERO

NXT-1
GOTO 280

*A call to HAMING with NXT=-NXT, after a successful startup,
Swill turn off the second evaluation of the equations. of motion
following the corrector step. In systems where the equations of
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* motion are very expensive, this can halve your run time.'

190 JSW=2
NXT=IABS(NXT)

* This is the predictor-corrector algorithm ... first the indices
* are premuted.

200 X=X+H
NP1 =MOD(NXT,4)+1
GOTO (210,230),ISW

210 GOTO (270,270,270,220),NXT
220 ISW=2
230 NM2=MOD(NP1,4)+1

NM1=MOD(NM2,4)+1
NPO=MOD(NM1,4)+1

* ... then the predictor part is run to find an extrapolated value
* of the state vector at the new time ...

DO 240 I=1,N
F(I,NM2)=Y(I,NP1 )+FOUR*H*(TWO*F(I,NPO)-F(I,NM1)

1 +TWO*F(I,NM2))/THREE
240 Y(I,NP1 )=F(I,NM2)-0.925619835D0*ERR(l)

* The equations of motion are evaluated at the extrapolated value
* of the state vector ...

CALL RHS(NP1)

* and the corrector algorithm is used to add this new information,
"* and obtain a better valLe of the new state vector

DO 250 1=1,N
Y(I.NP!1)=(9.D0"Y(I,NPO)-Y(I,NM2),THREE*H'(F(I,NP1)

I' +TWO*F(I,NPO)-F(I,NM1)))/8.DO
ERR(I)=F(I,NM2)-Y(I,NPi)

250 Y(I,NP1)-.Y(I,NP1)+0.0743801653D0*ERR(l)
GOTO (260,270),ISW

* Finally, the equations of motion are re-evaluated at the better
"# value of the state vector ... this can be suppressed.

260 CALL RHS(NP1)
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270 NXT=NP1

280 RETURN
END
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