
AFIT/GE/ENG/91D-38 , r.r ,

AD-A243 823 +'

AN INVESTIGATION OF A DESIGN FOR A
FINITE-DIFFERENCE TIME DOMAIN (FDTD)

HARDWARE ACCELERATOR

THESIS

James Raley Marek
Captain, USAF

AFIT/GE/ENG/91D-38

91-19243

Approved for public release; distribution unlimited

eA7

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

Pj41ic 'eo 'd r ourden 'o, ts clection of irfornation is estimated to av age 1 hour per response, including the time for reviewing instructions. searching e.,sting data sources,
gather.ng and riail, tanIng the data needed, and comrpleting and reviewng the collection of information. Send comments regarding this burden estimate or any other aspect of this
coieeton f information. including suggestions for reducing this ourden. to Washington Headguarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Dat;s Hi .h o. Sute 1204 Arlington, VA 22202-4302. and to the Office of Management and Budgel. Paperwork Reduction Project (0704-0188). Washington, CC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1991 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

AN INVESTIGATION OF A DESIGN FOR A FINITE-DIFFERENCE
TIME DOMAIN (FDTD) HARDWARE ACCELERATOR

6. AUTHOR(S)
James Raley Marek

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATIONREPORT NUMBER
Air Force Institute of Technology, WPAFB OH 45433-6583 AEOTNGER

AFIT/GE/ENG/91D-38

g. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

WL/AARA-2 (Capt Pierre LeFevre) AGENCY REPORT NUMBER

Avionics Directorate, Wright Laboratory
WPAFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
"- This study investigated increasing the speed of Finite-Difference Time Domain (FDTD) cell calculations

through a special purpose architecture using Very Large Scale Integration (VLSI). These FDTD cell equations
model inhomogeneous, isotropic, lossy magnetic and dielectric materials. Special attention was given to simplicity
and performance, using the fastest compcnents generally available in AFIT VLSI programs, while attempting
to minimize component count. A VHSIC Hardware Description Language simulation of the proposed chip
established design feasibility and provided performance estimates: 350 ns to generate the first cell value, 200 ns
thereafter (30 MFLOPS maximum double-precision).

This study also implemented boundary conditions in hardware as well. No nytv hardware was designed;
instead, the algorithm was translated into microcode for use by the AFIT FloatingPoint Application Specific
Processor. The first boundary value is computed in 850 ns, with successive results calculated every 300 ns
thereafter (43 MFLOPS maximum double-precision).

Standard FDTD FORTRAN codes were run on a SPARC2 workstation and execution times compared to
modified codes simulating the implementation of the above hardware. On a 66 cubic cell free-space computational
domain, these chips reduced total FDTD code execution time by a factor of 4.9, and cell and boundary calculation
time by a factor of 9.5. _

14. SUBJECT TERMS 15. NUMBER OF PAGES

FDTD, VLSI, Vector Processing, Microprogramming, Finite-Difference Time Do- 118

main, Electromagnetic Fields, Computer Architecture, Wry Larg- Scale hItegration 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 75Z0-0"-280.5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std Z39-18

298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablitv Statement.
Denote public availability or limitation. Cite

Block 2. Report Date. Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Seenon Technial
Jun 87 - 30 Jun 88). Statements on Technical

Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reports
number(s), and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS - NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract, Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms. Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Addreea) Self-explanatory. Block 16. Price Code, Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number, Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. S;onsorino/Monitoring Agency Regulations (i.e., UNCLASSIFIED). If form
Names(s) and Address(es). Self-explanatory. contains classified information, stamp

Block 10. Sponsoring/Monitoring Agency, classification on the top and bottom of the page.

Report Number. (If known)
Block 20. Limitation of Abstract. This blockBlock 11. SuoDlementary Notes. Enter must be completed to assign a limitation to the

information not included elsewhere such as: must b e ete to (nlimited) o the

Prepared in cooperation with...; Trans. of To abstract. Enter either UL (unlimited) or SAR

be published in When a report is revised, (same as report). An entry in this block is

include a statement whether the new report necessary if the abstract is to be limited. If

supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.
Standard Form 298 Back (Rev. 2-89)

AFIT/GE/ENG/91D-38

AN INVESTIGATION OF A DESIGN FOR A

FINITE-DIFFERENCE TIME DOMAIN (FDTD)

HARDWARE ACCELERATOR

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

AirUniversity
A,,l

In Partial Fulfillment of the ,

Requirements for the Degree of , ,

Master of Science in Electrical Engineering

James Raley Marek, B.S.E.E. * 'ior

Captain, USAF

December 1991

Approved for public release; distribution unlimited

Preface

This study grew out of an interest to try to use dedicated computer architectures to speed up

computational electromagnetics calculations. At first, an attempt was made at speeding up

moment method calculations. It soon became clear, however, that working with the finite-

difference time domain equations would be a simpler task, and as time was growing short,

simplicity became the rule.

My thanks go to Dr. Raymond Luebbers of Pennsylvania St. University and Dr. Edward

Newman of Ohio St. University, both of whom provided guidance and insight into the world

of computational electromagnetics. I give special thanks to Dr. Andrew Terzuoli, my faculty

advisor, and Capt Mark Mehalic, who both supported me in my quest for a mix of

electromagnetics and computer architecture, as well as Maj Harry Barksdale and Maj Bill

Hobart for their encouragement and expertise. I also wish to thank the all the members of

my committee, including LTC Baker and Dr. Lamont.

Finally, I thank my wife, Candy, who never ceases to amaze me and whom I admire more each

day, and who brought forth our beautiful daughter Ariece, the only person who can reset my

computer and bring a smile to my face at the same time. Most importantly, I thank God for

the blessings of a wonderful family, for the abilities that I possess, and for the strength and

guidance he has given me.

ii

Table of Contents

Preface..ui

List of Figures .. vii

List of Tables .. viii

Abstract... ix

1. Background .. 1

Introduction ... 1

Problem Statement..2

Scope .. 3

Assumptions...3

Approach ... 4

II. Current Efforts ... 6

General Purpose Parallel Architectures...........................6

FDTD Specific Parallel Architectures 8

111. The FDTD Algorithm ... 10

General .. 10

iii

Radiation Boundary Conditions................................ 15

Recent Advances... 17

IV. Design and Architecture of the FDTD Chip.......... 20

Objective .. 20

Initial Ideas .. 20

Description ... 22

VHDL Simulation.. 25

Accuracy... 27

Timing .. 29

Assessing Impact .. 29

Results with an FDTD Coprocessor............................. 31

Vector Application of the FDTD Design.......................... 32

Vlector Results of the FDTD Design............................. 33

Summary .. 34

V A Radiation Boundary Condition Evaluator Using the FPASP................. 35

Objective .. 35

Initial Ideas .. 35

Plan of Attack...37

Microcode Operation.. 39

Microcode Simulation 40

Assessing Impact .. 41

FPASP Coprocessor Results 41

FPASP Vector Application.................................... 42

iv

FPASP Vector Results....................................... 43

Results of the Combination of FDTD and FPASP Chips 44

Summary .. 47

VI. Parallel Implementations .. 48

Communication.. 48

Grid Scenario ... 49

Beyond the FDTD Chip...................................... 51

Beyond FDTD... 52

VII. Conclusions and Recommendations 53

Conclusions ... 53

Recommendations.. 55

Appendix A -- FDTD Chip Timing ... 56

Appendix B -- VHDL Code ... 59

Appendix C -- XHDL Results ... 83

Appendix D -- Performance, Run Time and Loop Data 86

Appendix E -- Fully Modified Code... 88

Appendix F -- Radiation Boundary Condition Microcode 95

v

Appendix G - Initial Data for FPASP...................................... 103

Appendix H -- Microcode Results .. 105

Bibliography ... 106

Vita ... 108

List of Figures

Figure 1 -- Yee Cell .. 11

Figure 2 -- Modified Field Names .. 14

Figure 3 -- FDTD Chip Architecture 23

Figure 4 -- FDTD Data Sequence Diagram 24

Figure 5 -- FPASP Architecture ... 36

Figure 6 -- Performance Gains .. 45

Figure 7 -- Actual Run Times ... 45

Figure 8 -- ELXSI Tim es .. 46

Figure 9 -- Cell Splitting Between Processors 48

Figure 10 -- Performance Comparison of Selected Computers 50

vii

List of Tables

Table 1 -- FPASP Memory Map of Data for Boundary Condition Evaluator........... 38

Table 2 -- Iteration Count.. 86

Table 3 -- Run Times of All Codes.. 87

Table 4 -- Cost/Performance Data .. 87

viii

Abstract

This study investigated increasing the speed of Finite-Difference Time Domain (FDTD)

cell calculations through a special purpose architecture using Very Large Scale Integration

(VLSI). These equations model inhomogeneous, isotropic, lossy magnetic and dielectric FDTD

problems. Special attention was given to simplicity and performance, using the fastest

components generally available in AFIT VLSI programs, while attempting to minimize

component count. A VHSIC Hardware Description Tanguage simulation of the proposed chip

established design feasibility and provided performance estimates: 350 ns to generate the first

cell value, 200 ns thereafter (30 MFLOPS maximum double-precision).

This study also implemented boundary conditions in hardware as well. No new

hardware was designed; instead, the algorithm was translated into microcode for use by the

AFIT Floating-Point Application Specific Processor. The first boundary value is computed in

850 ns, with successive results following every 300 ns (43 MFLOPS maximum double-

precision).

Execution times of standard FDTD FORTRAN codes run on a SPARC2 workstation were

compared to those of modified codes simulating the implementation of the above hardware.

On a 66 cubic cell free-space computational domain, these chips reduced total FDTD code

execution time by a factor of 4.9, and cell and boundary calculation time by a factor of 9.5.

ix

HARDWARE IMPLEMENTATION

OF THE

FINITE-DIFFERENCE TIME DOMAIN EQUATIONS

L Background

Introduction

In general, the solution to Maxwell's electromagnetic equations in the presence of a

scatterer cannot be written in closed form and must be approximated. With the advent of the

electronic computer, researchers and engineers today can study and compute the scattering

from complex, yet small, shapes. However, computers still do not possess the power necessary

to determine the scattering from large, complex objects. Various ray tracing methods exist for

studying these larger problems, but generally their solution error is much higher than many

research programs can tolerate.

When high accuracy is desired, one must usually consider numerical approximations of

the solution to Maxwell's equations. Among these are variational techniques, moment

methods, and time domain methods. The problem with these methods, however, is that they

require large amounts of memory and large numbers of floating-point (real and complex)

computations in order to determine a result. Therefore, these techniques are effectively

limited to objects on the order of tens of wavelengths or less. When engineers need to exceed

these limits, they pay the price in time spent waiting for results. Even with an eight processor

Cray Y-MP/8 supercomputer, researchers have calculated the electromagnetic scattering from

1

structures only the size of aircraft engine intakes (1:16-19). Moreover, the dollar cost of even

this limited capability can easily exceed most research budgets.

Since the U.S. Air Force is interested in the scattering from entire aircraft, an

alternative approach is necessary if they are to find accurate solutions to such problems in

reasonable amounts of time and at a reasonable cost. Standard sequential computer

architectures are presently too slow to efficiently solve the large scattering problems. Current

research is attempting to find efficient solutions to these problems through the use of general-

purpose, parallel and vector computer architectures, as well as through specialized hardware

but, as yet, no one has attempted to develop a simple, inexpensive, high performance

architecture committed solely to computing electromagnetic fields. A specialized, high-speed

computer architecture, when produced in large numbers and operating in parallel, may be able

to significantly decrease the time required for these field calculations, and do so at a lower

cost.

Problem Statement

The objective of this study was to speed up electromagnetic scattering calculations

through the use of Very Large Scale Integration (VLSI) technology. Specifically, this study

presents the design of a circuit that rapidly computes the cell field values of the finite-

difference time domain (FDTD) method and investigates how such a circuit might improve the

run times of FDTD computer programs. Furthermore, the possibilities of speeding up the

calculation of the FDTD radiation boundary condition is also explored.

2

Scope

Due to the constrained time frame of this thesis effort, this study is limited to the

following:

1. Development of a specification for computational circuitry that embodies the Yee

equations of the FDTD method (2:303). This specification takes the form of Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language (VHDL) files, which model the

FDTD circuit down to at least the functional unit level.

2. Investigation of computational circuitry which might speed up the calculation of the

FDTD radiation boundary condition equations.

This study did not attempt to resolve any of the limitations of the FDTD method, nor did it

result in the actual construction of any hardware.

Assumptions

In order to further simplify this study, the following assumptions have been made:

1. Interface circuitry shall be designed at a later time. This permits design decisions

free from the constraints of external interface requirements, and leaves the interface design

to be studied as a completely separate issue.

2. The external world is able to supply the FDTD chip with data at 40 MHz clock rates.

This allows greater simplification in the analysis of the maximum possible speed-up achievable

due to the operation of the circuit. This is not an unrealistic assumption, since several vendors

3

are already producing 20-ns, 1-Mbit static random access memory (RAM) chips for under $100

with 4-Mbit RAM chips of the same speed soon to come (3:99-105).

3. Input and output conform to the IEEE 754-1985 64-bit floating-point representation

(double-precision) for numbers (4). This is a well-accepted standard and provides for a 53-bit

mantissa.

Approach

The cell and boundary condition equations of the FDTD method are the foundation upon

which this design is based. The tasks accomplished in this study are as follows:

1. Studied and manipulated both cell and boundary equations to improve computational

efficiency.

2. Developed a data sequence diagram describing an FDTD cell equation evaluator. This

diagram was based directly upon the equations and provides a graphic reference for the

following work.

3. Implemented this proposed architecture in VHDL code. All of the functional blocks

in the data sequence diagram have behavioral or structural descriptions in VHDL code.

4. Ran VHDL simulations of this code. These simulations helped validate the design

of the FDTD chip, and also provided data for performance analysis.

4

5. Wrote Floating-Point Application Specific Processor (FPASP) microcode for calculating

the FDTD boundary values. Ran simulations of the FPASP in VHDL using this microcode to

validate the correctness of the microcode and determine computation times.

6. Ran simulations of existing FDTD FORTRAN code as well as codes modified to reflect

the presence of the above designs. Reported on the performance of the design. Stated probable

performance effects on FDTD code run times. Attempted to determine cost/performance ratio

and relate to the that of present designs.

7. Studied and reported on likely connection networks and data communication needs

in a parallel application of this hardware.

It should be noted that several of the above steps will involve iteration and trade-off analysis.

Throughout this entire effort, issues and decisions shall be appropriately documented so that

the basis of the final design can be readily understood.

5

II. Current Efforts

General Purpose Parallel Architectures

Recent attempts to reduce computation time through parallelization of the FDTD method

have focused primarily on general purpose machines. Among those most often reported in the

technical literature are hypercubes, a relatively large-grained, distributed-memory computer

architecture, the Connection Machine, an extremely fine-grained (64K 1-bit processors),

distributed-memory computer architecture, and the Cray Y-MP/8, a large grained, shared-

memory vector computer architecture.

The FDTD method chops the volume of space where scatterer and the unknown fields

exist into very small, identical cubes. Each cube in a plane of the volume, as implemented by

Perlik on the Connection Machine (5:2912), or a sub-volume of cubes, as implemented by

Calalo on the hypercube (6:2900), is assigned to a specific processor in a parallel computer.

Since waves fields travel through space along continuous paths and do not jump around, the

processors rely only on nearest neighbor communication to pass on information concerning the

traveling fields.

It would appear that the Connection Machine might outperform the hypercube

architecture simply because it is working on some 65,000 cells in parallel while the hypercube

is working on only 32. The Connection Machine is handicapped by its one bit-at-a-time

processing capability and the need for a great deal of inter-processor communication, but its

shear "mass" still enables it to perform significantly faster. One must also note that the

Connection Machine studied in the literature was equipped with the optional 32-bit floating-

point coprocessors, which were reported to improve run time by a factor of ten (5:2911).

6

Although the specific algorithm details are lacking, the reports indicate a Connection Machine

is capable of processing a 2.4+ million cell volume in about 1.7 seconds per simulation time

step (5:2912), while a 32 node hypercube calculates a 2.0+ million cell volume at around 15

seconds per simulation time step (6: 2900). It should be noted that both cell capacities stated

above appear to be the maximum that each machine was capable of supporting in machine

memory alone.

Daniel Katz and Allen Taflove reported some (comparatively) stunning computation

times on a CRAY Y-MP/8. This eight processor supercomputer ran 1800 time steps through

a 3,886,920 cell volume in 3 minutes, 40 seconds (a reported computation rate of 1.6 GFLOPS),

or about 0.12 seconds per time step. The problem involved computing the fields propagating

inside a 25.4 wavelength (30 inches at 10 GHz) serpentine jet engine duct. Although it is not

stated, the figure depicting the problem in the report appears to display a stair-step

representation to curvature, suggesting that their FDTD lattice only approximated the smooth

duct. The report also states that work is progressing on 30 wavelength structures, automatic

mesh generation, subcell models for fine-grained structural features, and higher-order

algorithms (1:16-19).

In each of these reports, the scatterer is on the order of tens of wavelengths or less.

Somewhat surprisingly, no reports could be found of any implementation of electromagnetic

scattering code on the nCUBE-2, a fine-grained, distributed-memory architecture consisting

of up to 8,192 64-bit processors (each the equivalent of a VAX 8650), with up to 32 Mbytes of

memory per processor. It is touted by its maker as "the fastest super computer for science,"

possessing a maximum computation rate of 27 GFLOPS (7,8). The nCUBE promises not

only faster solutions, but its significant memory should allow larger problems to be solved

7

completely within the machine, without the need for external storage of intermediate results.

Assuming only one-forth of its memory is available for the storage of the FDTD data

structures, the high end nCUBE computer could compute (in memory) a one billion cell

structure (a 10' by 10' by 10' computational domain at 10 GHz, one million cubic feet at 1

GHz). Of course, this performance is not without its price: $250,000 for a 64 node machine,

$23 million for the 8,192 node version (8). Still, its maker claims its systems "deliver

cost/performance advantages 50 times better than traditional supercomputers" (7).

FDTD Specific Parallel Architectures

Researchers are also attempting to improve the computation speed of the finite-difference

time domain method through the use of specific computer architectures designed exclusively

for the FDTD method.

Researchers at Electro Magnetic Applications, Inc. (Denver, Colorado) report on a study

of a parallel, pipelined architecture with the capability to calculate (in parallel) the six electric

and magnetic field components required by the FDTD method. Since the architecture is

pipelined, results are generated every clock cycle after the pipe fills (9:2913-2915). This

report confirms ideas that were intended to be a part of this thesis study, but for reasons

discussed later, it was decided that an architecture of this type did not suit current and near

future needs. The papt r also discusses a normalization technique designed to reduce the

number of multiplications in computing the E and H fields and an apparently new technique

for modelling thin wires (9:2915). Although this paper discusses a different (computationally

faster) expression for the first-order Mur radiation boundary condition, even the second-order

Mur equation is ineffective in some classes of problems, so there seems to be little practical

use of this particular formulation.

8

Wavetracer (Acton, Massachusetts) is marketing a massively parallel (between 4,096 and

16,384 single bit processing elements), single instruction multiple data (SIMD) computer

capable of handling million-cell FDTD problems at 0.85 seconds per time step, with an

apparent maximum of a 4 million cell problem space (10). This computer reportedly sells

for uider $100,000 for the smaller model and just over $400,000 for the largest (11). The

machine makes use of parallel data input/output to achieve bandwidths of 1 Gbyte/second.

This appears to be a Connection Machine with more memory (up to 32K per node) and a

specialized three-dimensional connection scheme (10). This computer seems to possess some

of the best price/performance numbers of all the machines reported in the literature. It is

slower thin the Cray by only a factor of seven, yet less expensive by a factor of 70. However,

the Wavetracer's maximum problem size is smaller than that of the Cray computer.

9

III. The FDTD Algorithm

General

The Finite Difference Time Domain method is a discretization of the Maxwell Equations

in differential form (curl equations). Starting with Maxwell's equations:

VxH-- E +eE(1)

VxE=- t-_.H (2)

where pi is the magnetic permeability, e is the dielectric permittivity, q is the total equivalent

conductivity giving rise to electric dissipative currents, and am is the corresponding parameter

giving rise to magnetic dissipative currents (12:684, 13:77, 14:27-28). All parameters

are real. These equations are separated according to their vector components into a scalar

form:

aH z- ally aE .-H- --H ,E . (3)
Oy az at

aHx aH_ CJE y (4)
OJz ---x - :J-t e y

2JHY 3H. _ aJE. Y (5)
ax ay a t

a3EZ _ E 1 aH. (YH (6)Jy - z -- --
O x az at

--EX -, =j -omHy (7)

aEy _ aEx, H, (8)
ax 0/--- -

10

z

i

I Hz

(i,j,k))

Figure 1 -- Yee Cell

The FDTD method uses centered differences which are based on the following first-order

approximations to the derivative (12):

F(i +. j,k, t) -F(i -- ,k,(9)
F(ijkt) 2 X 2)

ax 8x

• At At

F(ij,k,t+ t)-F(i,j k,t-)
aF(ij, k,t0 2 2 + O(At 2) (10)

at At

The derivatives in space and time in Maxwell's equations are replaced by these centered

differences. Evaluation of the values of E and H fields are offset in space by one half intervals

as shown in Figure 1 (2:303). Notice that the H field values are defined as entering the cell

11

and the E field values are defined along the three orthogonal edges nearest to the origin

(indexes ij,k are positive valued) and, in this study,

8=8X=(11)

E and H are also offset in time by one half intervals. The FDTD method solves alternately

for E and H as time is incremented in one half time steps. The individual equations are as

follows:

2e~i+ Jk) + 1/2'4j, k)

+ At * 1(12)

2c(i + ,j,k)[Hnl+'(i + 1j+, k) -Hn +'(i+1/j -/2, k)

nI(ij+'~k) 2E(ij+ /2k) n i+hk
Y 1+ Oe,J+ ,)-

2c(ij+ /,k)
+ At * 1 (13)

TU j+ -h,)8 2+Eci,j+ h,k)[Hc(i + k

Hn +N -'j+ ,k)-Hn+h (ij+,k)

2c(ijk+ h)Z

+ At * 1(14)

2c(ij,k +1/2)

[jH/(i112,k+)H;(i+12,k+A)J

12

1- m,(j+ ,k+ h)At

H7: 1/2(i , +,/2)= 2p(ij+ , k+ h) n - 1/
o,~(j+ k+ At ~i~(ij+ ,k+ h)

2p(ij+ h,k+ /)

+ A1+

1-O~+, k +)A+t.i+12kl)t(5

2p~i+j~k+ 2 j"(i+1/,k+)

En(j+ 112 k+l)At n i+hk

[2E (i+,,k+ /) - ~j ,1

+ 3(At2j k 1 (16)

H,''(~lh 1ki/- (i+j k h nGm(J~k A
1+ G~i+1zj~k1+A

2pp~i + j~k +)

E 1,i+j,k +)-E n(ij,k+ l)

[E n(. .hjk) -E (i + /j,k+1)

1 -I (i + , j + , k)~k

H% 'i /2, k) 2li(i+ hj+ k) n-'A

1+ Gym(i+ j +'h,k)

2p(i+ hj+V ,k)
+ At 1(7

P(i+'1j +'1, k)8 1+Cm(+ j+/,k) (7

E"(i+hj+1,)-2x(i +j ,k)

[E:n(i +j+,k) -En(i l+1 ,k

where 8 is the lattice spacing increment, At is the time step increment (12:685). In order to

guarantee stability, the choice of time step and spacing increments should satisfy the

following-

VMQxXAt r_1 +_+1 (18)

13

or, in our case,

At< (19)
F3Vmax

where vmax is the maximum phase velocity within the computational domain (15:625). As

presented, these equations can handle isotropic, inhomogeneous, lossy magnetic and lossy

dielectric materials.

Note that these equations can all be represented in the following form (see Figure 2):

+ Dual 1 -Dual2 (20)
ld+Dual3Dual4

Dual 4/ Dual 2

Dual1 Field pre Fieldnext

8/2

Dual 3
Figure 2 -- Modified Field Names

14

where

Kl(ij,k)= 2c(ij, k) (21)
1+-
1 +.°e(i~J,k)

2c(ij,k)

K2(ij,k)= Atl . 1
(ij, k)8 +1+ e(ij'k) (22)

2c(ij, k)

for equations (12)-(14) and

1- am(ij,k)

K1(ij,k)= 2p(iJ,k) (23)
1+ Om(ijk)

2p(ij,k)

K2(ij,k)= Al ,. 1
i(ij, k)5 1+ ...(ij'k) (24)

2p(ij,k)

for equations (15)-(17), and Dual is the dual of the field being calculated. This simplified form

leads to a straightforward method to compute these fields in hardware.

Radiation Boundary Conditions

Another computational problem area of the FDTD method is the radiation boundary

condition that must be satisfied at all six faces of the volume. It arises from the fact that the

fields are supposedly in an unbounded space, yet researchers lack the computational power

and time to even approximate this environment. Therefore, the cell lattice is truncated along

planes close to the subject of study and a radiation boundary condition is imposed. This

condition attempts to determine values for the fields lying on the external boundary, since

there are no fields external to these with which to calculate them using the standard cell

equations. Although not nearly as computationally intense as the O(n 3) FDTD cell equations

problem, the calculation time for these exterior points increases as O(n 2), where n is the linear

15

dimension of the problem space. In large problems, this may account for a significant amount

of time.

Many researchers using the FDTD method employ the second-order Mar radiation

boundary equation, which, for the x=O face, is (16:380):

En+ 0~ + C=-t8 (1j'~l,k+ 'A+E/(O2)1~
c A t -8 (+ 1+k 1 n - (0 j k l)

* 28 *1E(0j,k+ 1)+Ezr(1,j,k+ h)l

+ (cAt)2

28(cAt +8)

+Ez(0j-,k+A)+ Ezn(1,j+1,k+1A2)

n2*El(j,k+A) + E~t (1j-1,k+'A)
2*E

+E2(0,j,k+1'A) -2 *Ezn(Oj,k+ h)L+E;:(0,jA-1/) + E._n(1j,k+1 /)
n2E(Ij,k+A) + Ez(1j,k- 1)

A total of sixteen additions and seven multiplications are required to generate this boundary

value. (The leading terms of each multiply turn out to be constant.) Combining terms to

decrease the number of floating-point operations gives:

E,,n+(C~k1t2m-z3 nj~+ . n

+ *IE"+ (lg,k+)+En -(Og,k+ /)l
cAt+8

" 282-4cAt 2 *(tO~ h En jk1)
CAt +8

" (cAt)2 (26)
-28(cAt +8)

En(oj+ 1, k +1/) +Ezn (0j -1, k + h)

*+Ezn(l j+ 1, k +h) +Ez 2 (1j- 1, k +1h4)

+E."(0j,k+ 1 h)+Ezn(Oj,k-14)

+Ezn(1j,k+ 1 1)+E2z1~k

16

The results from this equation are based (in part) on the field values at cells to the left and

right, and directly above and below the cell in question.

I

Simplifying further, the following expression is obtained:

Ey +(Oj,k +)-=-E-1(1j,k+ /)
n+1+K1 *{En (1,j,k +)+En-1 (Oj,k +1/)}

+K12 *{En(Oj,k +)+Ezn(lj,k +))

E (Oj+l,k+)+E(Oj-l,k +) (27)

+En(ik • ,)E(0~-12+E n(1j+,k+ /)+Ezj(1,-1k+)

where

K1 . cAt-8 (28)
cAt +8

K2= 28 2 -4cAt 2 (29)
cAt'8

K3= (cA4)2 (30)

28(cAt+8)

This expression now contains only twelve additions and three multiplications. It was decided

that this equation could be implemented in hardware as well, so that at the conclusion of this

study, the groundwork would be laid for a complete, single board FDTD computational engine

capable of generating all cell and boundary field values.

Recent Advances

One of the primary limitations of FDTD is the fact that any body modeled by this method

must be constructed from cubes. Even with a large number of tiny cubes, the resulting model

possesses discontinuities that may not exist on the actual object, resulting in scattered fields

17

that are not generated by a smooth surface. Recent attempts have been made to alleviate or

even eliminate this requirement.

One method is to retain the cube lattice structure for the entire volume except for those

cubes which intersect the surface of the object. Here the boundaries of these cubes are

deformed to match that of the surface. The fields in these deformed cells are obtained by the

application of Faraday's Law or Ampere's Law. These form the solutions to the fields in the

area of the scatterer and are integrated into the solution for the total volume. The cells not

adjoining the volume remain unchanged, enabling the use of the standard finite difference

equations. Reports suggest accuracy of this method to within 1.5% of a 30-term modal solution

for the scattering from a circular metal cylinder (12:688).

Another interesting method involves adapting the coordinate system to the scattering

object. (This method, however, supports only two-dimensional problems. The authors report

that a three-dimensional algorithm is under development.) This method surrounds the object

with a curvilinear grid, which approximates a cylindrical coordinate system and closely

conforms to the surface of the object. Farther away from the object, the generalized grid

begins to take on the appearance of a conventional cylindrical coordinate system, until, at the

outer boundary, the grid is purely cylindrical. As it turns out, the authors report no

significant (order of magnitude) gains over the rectilinear method other than the fact that the

radiation condition at the outer boundary is considerably simplified, since only one surface is

involved in the calculation (17:88).

Researchers are also interested in the radar scattering from moving surfaces. A report

by Fady Harfoush and others detail a FDTD method for determining the scattering from one

18

and two-dimensional, perfectly conducting, relativistically moving mirrors. Apparently

excellent agreement with analytical results is obtained for the case of uniform vibration and

uniform translation in one dimension, and good agreement is obtained for a two-dimensional

infinite vibrating mirror with oblique incidence (18:55).

Dr. Raymond Luebbers and others report on an extension of the traditional FDTD

method to one capable of modelling some of the dispersive characteristics of materials. His

method includes "a discrete time-domain convolution, which is efficiently evaluated using

recursion." His validation of computing the wide-band reflection coefficient at an air-water

boundary appears to exactly match the analytical frequency domain solution. Although the

report discusses only two-dimensional problems, the report states that the extension to three

dimensions is "straightforward" (19:222).

Recently, researchers have raised several issues within the context of FDTD, and as yet,

these have not been resolved. Many deal with problems that arise when attempting to run

simulations possessing a large dynamic range, such as computing high gain antenna patterns.

Daniel Katz and others suggest the need for more study of improved boundary conditions.

They also report that "the standard second-order Yee differencing algorithm may itself be

unsuitable for problems" involving large dynamic ranges, saying that investigation into fourth-

order methods may be necessary to reduce error (20:1210-1211).

19

IV. Design and Architecture of the FDTD Chip

Objective

The goal of this study was the design of a single-chip VLSI FDTD accelerator, which

could be used as an individual coprocessor or as the central processing unit of a separate

vector processing board in a computer (IBM/PC, workstation, Intel Hypercube). Simulations

revealed the performance characteristics of this processor. Simplicity and performance were

the overriding considerations for this design.

Initial Ideas

The initial idea was the development of a chip design capable of solving all six equations

simultaneously (It is quite similar to the processor mentioned in reference (9), but directly

attributable to a prior AFIT thesis describing a parallel approach to solving the vector wave

equations (21).) Out of the desire for simplicity, it was decided to implement only one

equation to illustrate the idea. If, at the conclusion of this study, more processing ability was

required, then this work could be used as a first step toward the design of a simultaneous

solver. (This one equation idea is also mentioned in reference (9).)

The first major decision was to work exclusively in double-precision. Although most

reports today deal with single-precision, there has been some mention of making grid sizes

finer, and with finer grids may come the need for double-precision. Also, as more people begin

to use FDTD for precise calculations and perhaps even validation of other methods, the need

for double-precision may become more apparent.

20

This first design would read in all seven operands (right hand side of Equation (20))

every clock cycle and also write out a result every clock cycle, once the pipeline was full. After

the completion of dataflow diagrams and the writing of significant amounts of VHDL,

investigations of AFIT's FPASP (Floating-Point Application Specific Processor) program

suggested a second look at the design attempt.

First, the floating-point adder and multiplier on the FPASP took up about one-third of

the area of the large chip (350 mil by 350 mil), while the 144 pin pads took up almost another

fifth (22:6-2). The FDTD design required two multipliers and four adders, and the need for

eight double-precision numbers per clock cycle would force a minimum of 512 pins. This would

require a VLSI die larger than that of the FPASP and a package with twice as many pins,

substantially increasing the costs of production. Second, the multiplier and adder are quite

fast (25 ns cycle time, double-precision) (23). This would require large bandwidths (2.56

Gbytes/sec) to keep the chip in continuous operation. Up until this point, the assumption was

that this device could be fed by a simple dynamic RAM system. Although possible, this was

not practical for a simple system, since this level of bandwidth would require large bus

structures or complicated interleaving strategies. Even though it was assumed from the

beginning that data would be made available to the chip as fast as required, it was decided

not to force the interface designer into providing these high bandwidths.

These realities brought forth the present design, a single chip containing five registers,

one multiplier, and one adder, all double-precision. Data is transferred via a 64-bit data bus,

with multiplexed input and output, so only 64 pins are required for data transfer. This, along

with three control lines (clock, reset, and overflow), means that pin counts are relatively low.

Based on the numbers in Comtois' thesis (22), chip area might be around 250 mil by 250 mil.

21

Numbers are read into the chip, one-at-a-time, instead of in parallel. This increases the

amount of time it takes to input data, but keeps the bandwidth at about 320 Mbytes/sec.

Although this bandwidth is beyond the reach of simple dynamic RAM systems, it is

comfortably within the capabilities of simple, yet large and expensive, static RAM systems.

As a separate coprocessor, one would send the chip a set of data and then wait for the

answer. However, since this chip could also serve as the heart of a FDTD accelerator board,

great care was taken to ensure that maximum processing efficiency was obtained when the

chip operated on streams of data vectors, instead of individual data elements. Even as

computations are continuing on one set of data elements, new data is simultaneously being

read in and being processed. Operating in this capacity, the interface logic external to the chip

must be capable of generating pointers to the addresses of at least eight different locations in

memory in order to access all of the operands and specify a location to store the result. Also

this logic must possess some sort of counter that would signal the output of the last result and

halt the FDTD chip.

Description

Figure 3 shows the overall layout of the FDTD chip design. Out of the five 64-bit

registers in the design, two are the input registers to the multiplier (R1,R2), two are the input

registers to the adder (R3,R4), and the last holds the computed result until it is ready for

output (R5). There are six bus switches, three are one bus to two bus selectors (S1,S2,S6) and

three are two bus to one bus multiplexers (S3,S4,S5). A special multiplexed bus switch (7),

connected to the input/output pins, is used to route incoming data into the chip and .utgoing

data from the re ilt register. The multiplier (MUL) and adder (ADD) are practically identical

to those used in the FPASP program and take two pipelined cycles to calculate results. There

are a total of eighteen different buses running between the switches, registers, and floating-

22

C1 3 F Bus3 i Aur

Bu S M

BU2Bus6 L
BBus1

O utp ut
O u t

Buusl

Bus""

Figure 3 -- FDTD Chip Architecture

point units. An eight-state sequencer (Cl) controls the operation of the above hardware, but

the control signal paths are not shown in the figure to improve clarity.

The first five numbers (the first two of the four dual-field components, the previous field

value, the third dual-field component, and the constant K1) are sent into the chip during cycles

to to t4 (and latched at the beginning of t1 to ts, see Figure 4). During t, output data is made

available to the off-chip circuitry. No data is output during the first occurrence oft5 , however,

since all of the data is not yet entered and the calculations are not complete until the next

occurrence of t 5. During t 6, the last dual-field component is entered and the last constant, K2,

is loaded during t7 , the final tick of the cycle. A new data set is entered starting with to .

23

Du all,1
Dual2 t

FieldPrev + 13

Dua13 t4

Dua14 t

0 K2 -::

Dual1 t

Dual 2 t2

Fieldpre L 13

+ Dua13 t

KI t5

Dual 4 17

0 K2 -to

+ ti

t2

13

+ t4

15

Field Next t

Figure 4 -- FDTD Data Sequence Diagram

24

During the next occurrence of t5 , the result from the previous data set is output. Therefore,

the output of the result of the first data set takes 14 clock cycles, with the subsequent results

following in 8 cycle intervals. (Appendix A contains a cycle-by-cycle explanation.)

VHDL Simulation

The registers' and switches' operation are modelled in VHDL behavioral descriptions (see

Appendix B). The multiplier and adder consist of structural models of more basic units (which

have behavioral descriptions). The VHDL code for this project is not directly compatible with

the VHDL for the FPASP program, primarily since the FPASP floating-point units are driven

by a two-phase non-overlapping clock, while the floating-point units in this project are driven

by a single control line (24). This control line signals only the onset of the second phase of

the multiply (modeled as a latch of the first stage), since the first stage is considered a

combinational circuit with outputs available soon after the inputs are latched. Therefore, the

floating-point outputs are valid until shortly after the next operation is signaled. These

differences, however, are relatively minor, and can be resolved in later stages of design.

Another difference in the two VHDL representations is the fact that even for double-precision,

the VHDL for the FPASP uses only single-precision calculations in modelling the behavior.

The VHDL routines for the FDTD chip, on the other hand, calculate the full double-precision

answer. (Even though a commitment was made to double-precision at the outset of this

project, an attempt was made in the writing of the VHI)L to accommodate any level of

precision. This feature, however, has not been tested.)

This VHDL model is intended to not only show the behavior of this particular algorithm

but also to specify an architecture that implements the behavior, in order to demonstrate

feasibility and enable a study of the performance. The design put forth in this thesis, however,

is not intended to be the final specific architecture; the hardware will most likely be put

25

together from existing components and cells, and therefore minor changes to details such as

rising- or falling-edge triggering, and one- or two-phase clocking are to be expected.

Items of interest include:

1. The only control signal (besides the clock) is the reset signal. Reset is asynchronous

and clears all registers. Calculations begin with the first rising clock after the fall of the reset

signal.

2. One goal was to keep the number of components to a minimum. During t o to t 3 , the

result of Kl*Fieldpre must be delayed until K2*(Dual-Fields) is completed. Instead of laying

out another bus with a register to delay the value (and another bus switch), Kl*Fieldprev is

run through the adder, with a floating-point zero as the other addend. This "null" addition

effectively delays Kl*Fieldprev so that is arrives at the proper time. The floating-point zero

is not actually loaded, but is created by a register reset signal.

3. The critical path involves the addition of the four dual-fields, their multiplication by

K2, and finally the addition to Kl*Fieldprev. Since each multiplication and addition lasts two

clock cycles, the fastest time possible to achieve a result is ten clock cycles for the math

operations, plus two to read in the first two operands, plus one to output the result or thirteen

cycles. This FDTD chip design arrives at the first result in fourteen clock cycles. The

fourteenth clock cycle provides a necessary gap in the sequence of operations to output the

calculated result from the previous data set. This design, therefore, computes the first result

in the nearly minimum amount of time, given the hardware available and the objective of

simplicity. Note al -, that after the first result is output, the input/output bus is continously

26

operating with valid data and answers are generated every eight cycles. Based on the

constraints of this study, this circuit design is highly efficient.

4. The only IEEE exception support provided is for overflow. This condition is checked

in the renormalizer section of the adder, and in the exponent adder and renormalizer sections

of the multiplier. This signal is made available outside the chip but has no effect on operation.

It is left to the interface designer to halt the chip with the reset signal or to continue

processing when an overflow exception occurs. The signal is cleared by a non-overflowing

calculation.

5. Subtraction is performed by inverting the sign bit of a floating-point number and then

adding. This inversion is performed by an exclusive-or gate enabled by a boolean combination

of signals from the controller.

6. The input/output bus is a VHDL resolved signal type. Instead of defining a three-state

logic to provide information on connections and disconnections, null assignments are used to

disconnect drivers that are not permitted on the bus at that particular time. The bus

resolution function therefore need only select the first element in the resolved bus array, since

only one is allowed to drive the bus at one time. This simplifies the VHDL code and

eliminates the need for a new type definition.

Accuracy

To best achieve a "validation" of the VHDL model, it was decided to prepare a pseudo-

random input stream of double-precision real numbers, sending these (bit-vectors) to the

VHDL chip description while also converting them to real number representations. Totally

random numbers were avoided since these could cause overflow conditions and halt the

27

simulation. Because VHDL currently lacks the capability to directly represent double-

precision real numbers, the output of the FDTD chip was compared to results obtained from

single-precision real number operations, and the relative error was quantified based on the

following:

RelError= SP- Fieldnext-DP-Fieldnext (31)
DP_Fieldnext

It was initially assumed that the relative error between the two formats would be on the

order of one half the least significant bit in single-precision (0.5 x 2-23 or 5.96 x 10-8). Out of

thirty-five test cases, the relative error was zero in fifteen (see Appendix C). Ten more were

below 10 7 . However, the two largest cases were between 2 x 10-6 and 2 x 10 -5 . Overall, these

results show that the VHDL is operating correctly, however, the understanding of error was

incorrect. It is believed that these special cases are the result of a loss of significant figures

caused by subtraction of near equal numbers. To illustrate, assume that the following

operations performed in both single and double-precision:

SDuall-Dual2 (2
DP-Feld next- K xFieldprev +K2X E Dual3_Dual4 (32)

[+Dual 3 -Dual 2 j

SP_Fieldnext-K1 xFieldprev +K2x Dual Dual2 (33)
L+Dual3-Dual4J

Consider K1=O, Fieldprev=Dual2 =Dual4=1 and Dual 1 =Dual 3 =1+E. If c is 0.5 x 2

Dual1 =Dual3= 1 in single-precision since, in this case, c is too insignificant to represent. Since

all of the significant figures are lost, SPFieldnext is simply zero. However, DPFieldnext= 2c

which, when converted to a single-precision representation, is still 2c. This yields a relative

28

error of 100%, an extreme case, but it demonstrates that combinations of numbers which lose

their significance during the calculations cii (correctly) exhibit large relative error.

Timing

The timing simulations showed that the first output of the FDTD VHDL description

occurred at 336 ns when reset fell at the leading edge of the first clock pulse, and at 360 ns

when reset fell anywhere else within the first clock pulse. Subsequent outputs occur at 192

ns intervals (see Appendix C). These numbers correspond to fourteen cycles for the first

output and eight cycles for every output thereafter, given a 24 ns clock. (The VHDL did not

recognize the fraction portion of the 12.5 ns half cycle). Since the parts in this study are

specified for operation at 40 MHz, the first output is assumed to take place at 350 ns, with

subsequent outputs occurring at 200 ns intervals.

Assessing Impact

In order to characterize the impact a FDTD chip would have on electromagnetic analysis,

it was necessary to obtain a working FDTD FORTRAN code and make time measurements.

(All measurements were obtained on Sun SPARCstation 2 workstations.) Dr. Raymond

Luebbers of Penn State had provided a FDTD code to Aeronautical Systems Division of which

he allowed the use for these timing measurements (25). This code operates on a 66x66x66

cell computational domain, running 1024 time steps. It appears that this size allows the data

structures to reside entirely in main memory, without resorting to memory paging to and from

disk. Just the storage of the cell fields and material types alone occupies almost eight Mbytes

of RAM.

29

First, the code was run as provided, with no changes at all. Next, the code was modified

to reflect the presence of a FDTD chip that would perform the FDTD equations. Since no chip

is actually available, a suitable method of simulating its presence had to be determined.

It was decided that an easy way to simulate the FDTD chip would be to replace the

mathematical expressions involved with a series of assignments to specific variables. This

would simulate the moving of the operands to a special location in memory (most likely a small

region of 20-25 ns RAM, where the FDTD chip could operate at top speed). Also, the variable

that was to receive the result (in the original code) would also be assigned some value, to

simulate the transfer of the output of the FDTD chip back to regular memory. The only piece

missing was the actual execution time of the FDTD chip. This was based on how many results

the chip would calculate and was added back into the execution times. As it turned out, the

FDTD code was well documented so these modifications proved to be an easy task.

The FDTD chip was designed for the non-dispersive, inhomogeneous, lossy magnetic and

electric materials, based on the original equations. The FDTD code, however, was even more

flexible, in that it could handle the above materials as well as some dispersive ones. Since the

code's lossy dielectric equations were set up under a different formulation, and substituting

the chip might constrain the types of problems that the code could solve, it was decided to only

make comparisons using the free-space capability of both the code and the chip. Thus, the

simulations with the FDTD code possessed no scatterer, just empty space. Note that this

generates conservative claims, since a scatterer would have no impact on the FDTD chip

calculation time, but causes the FDTD FORTRAN code to execute more complex expressions.

30

Results with an FDTD Coprocessor

The runs of the original code took 2 hours 17 minutes. With the changes described above

the code ran 2 hours and 52 minutes. To this, one must add the calculation time of the FDTD

chip. Assuming that the entire problem domain is free-space, the chip would be called 1024

x 1,609,920 or 1,648,558,080 times during the course of this problem. (For iteration

information, see Appendix D, Table 2.) The chip takes 14 cycles to compute a result (we are

not relying on its vector pipeline capability) at 25 ns per clock, leaving the total chip

calculation time at 577 seconds or 9.6 minutes. The projected total runtime with the FDTD

chip is about 3 hours and 2 minutes.

The reason for such lackluster results may lie in the fact that the SPARC2 is a fairly

high-performance workstation. Perhaps the SPARC2 can perform a floating-point operation

in the time it takes it to determine where an element of a multidimensional array is located

in memory and fetch it. This would mean that a floating-point operation would take about as

long as an assignment. Another reason may be that the memory cycle time is significantly

slower than that of the SPARC2, therefore more time is tied up in fetching and writing data

than in calculating additions and multiplies. The original program loop features one

assignment (seven reads and one write), two multiplications, and four additions. The modified

program features only eight assignments (eight reads and eight writes), but this is double the

number of memory references in the original code. One speculation is that the SPARC2

possesses a write-through cache, so that all writes take place at main memory speed. Also,

caches are often designed under the assumption that few memory accesses are writes, an

assumption that our modified program appears to violate (26:448).

31

Vector Application of the FDTD Design

The results obtained so far assume that the FDTD chip is being used as a coprocessor,

that is, the main processor sends data to the chip and then waits for the results to be

generated. As stated earlier, the FDTD chip is most efficient when supplied with a constant

stream of data, especially when obtained directly from the main memory of the host computer

(eliminating intermediate transfers from main memory to the memory located on the FDTD

board.) Again, since it was specified that only free-space exists in the computational domain,

again only the free-space equations in the FDTD code were modified.

In order for the FDTD chip to run at maximum speed in this mode, however, the main

memory must be as fast as the chip. In order to simulate this type of operation, it is assumed

that sufficient amounts of 20-25 ns memory are present on the FDTD board, along with the

previously mentioned interface logic. As stated earlier, 1-Mbit 20-ns RAM chips are readily

available and 4-Mbit RAM chips are already appearing on the market, so this large amount

of fast memory should not prove to be difficult to obtain. This memory must appear to be

generic main memory to the host, so that the entire problem domain lies within this on-board

memory and not external to it. This prevents the need for the transfer of data from external

memory outside the board to memory on the board. Since the FDTD chip has direct access to

this fast, on-board memory, it can operate without wait states.

The next step is to modify the code to act as if it only sends the location of the vector to

the FDTD chip which then calculates a vector of results. This can be simulated by assignment

statements specifying the locations of the vectors of data to be processed, the number of data

elements in the vectors, and the location where the results are to be stored (see Appendix E

for an example). (FORTRAN 77 is not well suited for the manipulation of data structures and

32

is not able to pass pointers to arrays, so it is only possible to simulate this operation.) The

vectors are assumed to run in the direction of increasing x. Therefore, in the code, "I" is set

to a constant, with only "J" and "K" varying to locate a particular vector. This simulation

assumes that the cell data is stored in "I" major order, so that increasing "I" by one gives the

next higher memory location. Added to the time to run this simulation is the time the FDTD

chip takes to calculate all of the elements of all the vectors, times the number of time steps.

This total, compared to that above, would reveal the true speed-up (or slowdown) achieved as

a result of the presence of the FDTD chip. Again, as before, the FDTD chip calculation times

are for double-precision while the FDTD code uses only single-precision numbers.

Vector Results of the FDTD Design

Recall that the original code ran in 2 hours and 17 minutes. The vectorized code ran in

28 minutes. This time is increased by the estimated calculation time of the FDTD chip

operating on the vectors. The execution time of the FDTD chip can be expressed by the

following (in ns):

FDTD Chip Run Time = nx200 + 150 (34)

where n is the number of sets of data elements to be calculated. Each full time step requires

12,545 calculations of vectors 64 elements in length and 12,416 calculations of vectors 65

elements in length (see Appendix D, Table 2). With 1024 total time steps, the full calculation

time of the FDTD chip is 5.56 minutes. Therefore, the total run time of the problem with the

FDTD chip is 33.6 minutes, a factor of four reduction in the original execution time. This

simulation reveals the performance benefits of the vector operations of the FDTD chip. No

longer must every value be passed individually to the chip. Instead, only the pointer to the

vector in each data structure in question is passed to the FDTD logic. The FDTD board

33

interface logic steps through the on-board memory, feeding data to the FDTD chip and writing

the results back to memory.

In order to see the actual benefits of the FDTD chip with respect to just the calculation

time of FDTD problem (and not the problem setup, initialization, and data reduction), the

original code was modified to exclude all of the cell and boundary calculations. The run time

for this "overhead" was 15 minutes. Subtracting this overhead from both configurations, the

original possesses 122 minutes of single-precision FDTD calculations, while the FDTD chip

configuration possesses 18.6 minutes of double-precision FDTD calculations, a speed-up of over

a factor 6.5 in the actual FDTD algorithm calculation process.

Summary

This chapter introduced a design for a single-chip FDTD vector accelerator. This design

evaluates the FDTD cell equations as a coprocessor or as a vector processor. The first result

is calculated in fourteen clock cycles, with subsequent results following every eight cycles.

Operating with a 40 MHz clock, this design develops a maximum of 30 double-precision

MFLOPS. When modelled as a coprocessor, this design increased the execution times of a

FDTD code on a SPARC2 workstation. Operating as a vector processor, this design reduced

the execution time by a factor of four.

34

V A Radiation Boundary Condition Evaluator Using the FPASP

Objective

The goal of this study was the design of a single-chip VLSI accelerator for evaluating the

FDTD boundary values. This chip design can be used as an individual coprocessor or as the

central processing unit of a separate vector processing board in a computer. Due to the

complexity of the boundary value expression, an existing AFIT design was used. Simulations

were performed to demonstrate the performance characteristics of this processor. Also,

simulations were performed on the combination of this design and the FDTD chip design

described earlier.

Initial Ideas

It was obvious that the complexity of the boundary equations would result in a fairly

intricate custom chip. Having been exposed to the design of the Floating-Point Application

Specific Processor (FPASP), it was decided that these equations would make a good candidate

for the FPASP program. AFIT designed and specified the original FPASP, but the program

has since been adopted by Rome Laboratory. The chip has been substantially changed and

now stands at version 4.7, the version upon which much of this work is based.

The FPASP is, in its simplest form, a ROM-microcoded, high-speed floating-point unit,

capable of performing one double-precision multiply and one double-precision add every two

clock cycles. Figure 5 shows a simplified diagram of the FPASP (22). (Note all data paths are

32 bits wide.) Both of the floating-point units are pipelined so that a maximum of two double-

precision floating-point results are generated every clock cycle (80 MFLOPS with a 25 ns

clock). The chip possesses several 32-bit registers, including 25 general purpose double-

35

FP S~ rder - - - - - - - - - - - - - -

4 Shift ALU Insert ALU Shift I

1 Incrementer nrm te

I Registers(3) Rgses3

Bus Tie

Figuree 5-PPS rhtc urpos

D I36

precision registers, incrementable registers, as well as memory pointer registers. In contrast

to the FDTD chip described earlier, the FPASP requires little outside logic since pointers,

counters, and memory signal controllers are all located on the chip. The control resides in

programmable read only memory, so FPASPs can be cheaply produced in mass numbers and

later microprogrammed by the individual users, each according to his needs.

Again, as with the FDTD chip, this FPASP boundary value processor was designed to

operate exclusively in double-precision. And, as before, it could be used as a coprocessor to the

main computer or it could be used to process vectors of data.

Plan of Attack

One of the first decisions was the order of data storage. The selection was arbitrary,

since at the time this work was being performed, no actual codes had been acquired; Table 1

lists an order that was found to be useful. This order assumes calculation of z-directed E field

boundary points on the x=O face of the cube, corresponding to Equation (27). For vector

operations, the data is ordered in the increasing y direction. The next task was to lay out (in

time) the various operations to be performed, where operands were to be stored on the chip,

and how long the floating-point units would take to compute results. At the same time, the

operations had to be aligned in context with the facilities that the hardware had to offer. For

example, of the three buses communicating with the floating-point units, the operands for

multiplies could only come from the A and B buses. Operands for additions could come from

the B and C buses, but not A. Writes going into the registers had to use the C bus. These

hardware "rules" were not expressly written down, but had to be deduced from the hardware

diagrams and from the list of microinstructions found in the Wafer Scale Vector Processor

User's Manual (23).

37

Table 1 -- FPASP Memory Map of Data for Boundary Condition Evaluator

ADDRESS T UPPER MEMORY J LOWER MEMORY

0 START ITERATIONS

START K1 same

+2 K2 same

+4 K3 same

+6 UP DOWN

+8 (BLANK) OUT

+10 Ezn(0j-1,k+lh) same

+12 Ezn(1j-l,k+ h) same

+14 Ezn(0j,k+) same

+16 EZ'(1j,k+) same

+18 Ezn+l(1j,k+) same

+20 Ezn'(0j,k+) same

+22 E z n-l(1j,k+lh) same

+24 E zn(oj+l,k+) same

+26 Ezn(1j+l,k+) same

+28 Ezn+l(1j+1,k+l) same

+30 Ezn'l(0j+ 1,k+) same

+32 Ezn 1 (1j+1,k+/2) same

+34 Ezn(0j+2,k+l) same

38

Next came the writing of microcode. All important is the ordering of the fields in each

line. The assembler will not recognize a field that is out of proper order. Care was taken to

keep the floating-point adder as busy as possible since additions are the predominate operation

in calculating the result. Multiplies were worked into time slots during and between the

additions. The algorithm was condensed down to a total of twelve additions and three

multiplies. This result is available after 32 clock cycles. If a vector of data is being processed,

then thereafter only ten additions and three multiplies are required. These results are

available every ten cycles after the first. (Note that an addition is performed every clock

cycle.)

Microco& Operation

This microcode makes no assumptions on the prior state of the FPASP nor tries to

preserve it. It uses the memory address register (MAR), the memory buffer register (MBR),

and general purpose registers R1, R2, R4, R5, R7-R9, and R13. All register assignment-

(except R1 and R2) are arbitrary; other general purpose registers could easily substitute for

these in an actual implementation. This algorithm uses all four variable increment registers

(A INC - D INC), all four pointer registers (A PTR - D PTR), accumulators A and B (ACCA &

ACCB), and the third fixed incrementer (IN3). The stack file in the floating-point unit is

untouched.

The first line of microcode (for complete listing, see Appendix F) loads zero into the MAR,

and sets the most significant bit of lower R1. The next line loads the address of the first 64-bit

data word (constant K1) and the number of sets of data to be calculated. This statement also

sets the status bits of the floating-point unit, enabling double-precision operation. The next

lines read in the constants (K1, K2, and K3), pointers to previous and following rows (the k+1/2

and k- h terms or UP and DOWN), and the pointer to the location wher : the results are to be

39

stored. These lines also set up the increments for the variable increment registers. At the

ninth statement, the first of the several operands is read in, beginning the actual algorithm

to calculate the boundary value. Finally, by line 32, the result of the calculations are written

to memory. If more than one set of data is to be calculated, the microcode branches back to

line 24 to continue calculations. Once the last result is written to memory, the program

continues to line 33, which sets the DONE status bit and raises the external DONE signal.

Microcode Simulation

The microcode is compiled using the "assem" microcode compiler. "doassem" is a script

file that calls "assem" as well as renames files for use by VHDL. The VHDL model of the

FPASP assumes the existence of the microcode "ROM" fie produced by the assembler above,

as well as "RAM" files which, in this case, contain the contents of Table 1. (The actual data

is in Appendix G). A mapping ROM file also provides input for the VHDL model. Since this

algorithm did not use this, all elements in this ROM are set to zero. The VHDL model of the

FPASP itself was created and stored in the Intermetrics work directory using the "buildinter"

script file and the FPASP VHDL code, both provided by Rome Laboratory. With al of the

above in place, a "sim" is performed. In our case, the VHDL FPASP completed three sets of

computations in under 5 minutes on a SPARC 2 workstation (1750 ns in simulation time).

During and after the simulation, several FPASP4_XXXXXDAT files are created which chart

the status of registers, buses, and so forth, as the simulation progresses. One of these fies

contains the upper 32 bits of RAM memory at the conclusion of the simulation. An annotated

version of this file (FPASP4_U0.DAT) is in Appendix H.

It took only a few false starts to work out the errors in the microcode and generate

correct results. It turned out that several unwritten rules were violated and not until these

were discovered and applied did the microcode behave as expected. One is that the statement

40

following a branch is always executed, whether the branch is taken or not. One problem (a

faulf of the VHDL model of the FPASP) is that the initial contents of all registers are

unknown. In attempting to exclusive-or a register with itself, an unknown result was

generated, when, in fact, the result is always zero, no matter what the original contents of the

register. Fortunately, a zero result can be obtained by other means. If the FPASP VHDL

truly modeled the hardware, this would not have been necessary.

Assessing Impact

Again, as with the FDTD chip, it was important to quantify the usefulness of an

application of the FPASP in computing the boundary values. As before, the benchmarks were

determined using the FDTD code supplied by Luebbers (25). The time to run the original code

was compared with the time required to run a modified code which would simulate the

presence of an FPASP. This was accomplished by assigning all of the operands of the

boundary condition equation to new variables, which simulated the moving of these values to

specific locations in memory where the FPASP could access them for its calculations. Since

the program was set up for H-field radiation boundary conditions as received, only these

portions of the code were modified.

FPASP Coprocessor Results

As stated above, the original code takes about 2 hours and 17 minutes to run. The

modified code takes 2 hours and 17 minutes to run. The run time of the FPASP must be

added to this time to get the total run time. The chip is called 23,064 x 1024 x 2 (each

subroutine call performs two evaluations) or 47,235,072 times when running this problem.

(For iteration information, see Appendix D, Table 2.) Since an answer is computed in 33

cycles, at 40 MHz the run time of the FPASP is about 39 seconds. The total run time with the

FPASP coprocessor remains at about 2 hours and 17 minutes.

41

Again, it appears that finding each of the operands and performing the floating-point

operations takes almost as long as finding the operands and storing them individually back

to main memory. This is a disheartening result, but does not altogether signal failure, due to

the method of simulating the operation of the FPASP in the code. One obvious conclusion that

can be reached with these limited results is, as simulated, an FPASP chip, microprogrammed

to solve the boundary condition equation, would not speed u program execution of this FDTD

code as implemented on a SPARC 2 machine.

FPASP Vector Application

In order to really assess the impact of the full capability of the FPASP boundary

condition solver, the FDTD code was modified to simulate the ability of the chip to process a

vector of data in a single pass. In doing this two assumptions were made: one is that the

passing of a pointer to a data array can be simulated with an assignment and two, that the

FPASP does not require the data to be completely structured as in Table 1, but can locate all

variables based on pointers and offsets. This second assumption was not accomplished in this

thesis effort. However, speculation on how this might be accomplished is presented so that

further studies of speed-up may be performed.

The ability of the microcode to access values to the left, right, up, and down (when

working on the x=O face) already exists. Two new pointers would be needed for the E"' l and

E' -1 values. One clock cycle would be needed before the loop begins to load these values

(perhaps into the IN1 and IN2 registers). There appears to be time on the C bus in which to

move these values to the MAR without adding any cycles before the loop. Inside the loop,

however, the C bus is never free, so this might necessitate the addition of at most two extra

statements. Note that these might be avoided by judicious use of the accumulator stacks, but

this study assumes the worst case. This means the first result is available after 34 clocks and

42

the following results are available at 12 cycle intervals. This can be represented by the

following relation:

B ,' .-'ary Condition Calc Time = nx300 + 550 (35)

where n is the number of data sets in the vector and the time is in nanoseconds.

The FORTRAN code was modified by removing the innermost loop in the radiation

subroutines. In order to access the data in the proper sequence, the following must hold: Of

the three position variables I, J, and K, one is the inner loop, one is the outer, and the last

takes on the values 1, 2, 3, or 4. The data must be stored in major order based on this latter

variable, with the inner loop variable being the next most major. This will ensure that data

is accessed correctly as the FPASP chip progresses through the vector. (This structuring was

not specifically accomplished in the simulations, but could be accomplished without time

penalty by re-indexing the equations which appear at the tail of each of the radiation

subroutines in the FDTD code.)

FPASP Vector Results

Recall, the time to run the original FDTD code was 2 hours and 17 minutes. The time

to run the modified program was 2 hours and 17 minutes. The FPASP must compute 124

vectors of length 61, 370 vectors of length 62, and 248 vectors of length 63 every time step.

With 1024 time steps, the execution time of the FPASP chip was 14.6 seconds, s') the total

execution time of the code remained 2 hours and 17 minutes. This result was completely

unexpected and does not fit with previous and following measurements. To verify the accuracy

of the simulated code, selected cases were run on one node of AFIT's ORION (ELXSI)

computer. As expected, the radiation boundary vectorized code displayed an acceptable

43

amount of reduction in execution time on the ELXSI compared to the original code (537

minutes for the vectorized versus 568 minutes for the original). Since the explanation for this

result on the SPARC2 is not obvious to the author and since a thorough investigation is

beyond the scope of this work, no further studies were made.

Results of the Combination of FDTD and FPASP Chips

Code simulating the presence of both of the FDTD chip and the FPASP chip (a complete

FDTD engine) was timed to see how it might speed up the calculations operating on vector

data structures. This FORTRAN code ran in about 22 minutes. To this was added the

processing times of the FDTD chip (5.6 minutes) and the FPASP chip (14.6 seconds) for a total

run time of 27.8 minutes. (See Table 3, Appendix D for all execution times.) Given the

original code had a run time of 137 minutes, this dual chip engine reduced run time by a

factor of 4.9. In order to isolate the actual effect of the chips on just the pure FDTD

calculations, the overhead was subtracted from both calculations, giving a calculation time of

122 minutes for the original FDTD code calculations, and 12.8 minutes for the calculation time

for the FDTD engine. As Figure 6 shows, these numbers revealed a speed-up factor of 9.5 for

just the calculation of the FDTD cell and radiation boundary condition equations alone. This

was still cons-rvative considering that problems involving magnetic or electric loss would slow

down the FDTD code, but would have no effect on the calculation time of the FDTD chip.

Figure 7 shows a summary of the run times discussed above. The "original" column is the run

time of the FDTD code actually computing the free-space problem. The "cell" column shows

the total run time using the FDTD chip design as a coprocessor for cell calculations, the "rad"

column displays the total run time obtained when using the FPASP as coprocessor for

boundary value calculations, and the "all" column measures the run time with both. The "vec

cell" column shows the time obtained using the FDTD chip design as a vector accelerator for

cell calculations, the "vec rad" displays the run time obtained using the FPASP as a vector

44

S~peed-up -- FDTD Engine-
10-

9 -------------------------------

87--------------------------- ----------

76-------------------------- ----------

0

4 ---------------------

3 ----------- - - - -- - - - -

2 ------ 0 --------- ---- ----

1 --- - --- - - --- - - -

0
Total Run Time Calculations Only

Figure 6 -- Performance Gains

IFDTD Run Times - SPARC21
180-

140 -----------

120 -- - - - ----

S100 ----- ----- ------- -

80 ------ -- -- -- - - - - - -

60 --- -- ------- ----- - - - -

40 ----- ------

original rad vec cell vec all
cell all vec rad

Overhead =Code Time MEIIII FPASP Chip M FDTD Chip

Figure 7 -- Actual Run Times

45

,FDTD Run Times - ELXSII
600-

500- ---------

4 00 -- -- -- -- - -- ---.- -- - -- -- - -- -

40o ---- ----------------- ----------

p300 ' ...

2 00 -- -- -- -- - -- ---.- -- - -- -- --- -

100 ----- - - -

0-
original vec rad

vec cell vec all

m Overhead li Code Time 1 FPASP Chip M FDTD Chip

Figure 8 -- ELXSI Times

accelerator for boundary value calculations, and "vec all" show the time obtained when using

both. "Code Time" is the measured execution time minus the overhead. For comparison (and

to contrast the unusual time for the "vec rad" case on the SPARC2), Figure 8 shows selected

run times on the ELXSI. Note that the time difference between the original and vec rad cases

is the same as that between the vec cell and vec all cases.

Again, it must be emphasized that these results apply to the speed-up that one might

expect on a SPARC2 workstation. For a person running FDTD on a Macintosh or IBM PC,

the speed-ups would most likely be even more substantial (for example, the ELXSI times).

Since the FDTD and FPASP chips would be performing the majority of the numerical

46

operations, the total run times on these machines would compare favorably to those of the

SPARC2/FDTD system as well.

Finally, even greater speed-ups would be expected if all of the vector location data for

a given field component could be sent to the chip at one time. The upper limits for the speed-

up in overall run time is about 9.1, while the upper limit for the speed-up in calculation time

alone is about 21. These figures assume that the overhead time is the run time of the

modified code (Code Time equals zero) and that the total engine computation time is still 5.8

minutes.

Summary

This chapter introduced a boundary value vector processor that is based on AFIT's

FPASP design. Simulations ran on VHDL descriptions of the FPASP help validate the

radiation boundary condition microcode. These simulations demonstrated that as a

coprocessor, the FPASP could calculate a result every 33 clock cycles at 40 MHz, for a total of

about 18 MFLOPS. It is assumed that in a vector mode, the FPASP could (once the pipeline

is full) generate results every 12 clock cycles, for a maximum of 43 MFLOPS. Although

simulation on existing FDTD codes revealed no significant increases or decreases in run time

when using the FPASP with the SPARC2, in conjunction with the previously discussed FDTD

chip design, the FPASP reduced total run time from 33.6 minutes to 27.8 minutes. Together,

these chips reduced code total run time by a factor of 4.9 and FDTD calculation time by a

factor of 9.5.

47

VI. Parallel Implementations

Processor A IEi > Processor B

Hz Hz

tt

-E

E
.. Ez E z

Hy "I I/ Hy
------ ------

xA

...

'
:

.........."""................ q,!.i t..-.

=)y

Figure 9 -- Cell Splitting Between Processors

Communication

One of the next levels of improvement to the idea of a FDTD engine is parallelization.

The problem would most likely be divided up into subcubes, each assigned to an individual

node. The only message passing required would be between the faces of subcubes. Assuming

that E and H fields are calculated at alternate half time steps, it appears that the maximum

data transfer would be two field values per cell face per half time step, or four field values per

cell face per full time step. Figure 9 shows corresponding cells on either side of a split down

48

the X-Z plane. Processor A requires H. and H to calculate E. and E. respectively. Processor

B requires E, and E_ to calculate H. and H, respectively. Given large problems (while keeping

the number of parallel processors constant), the computational time per node will increase on

the order of n 3 (n being the length of one side of the cube), while the communication

requirements will increase on the order of n2 . This suggests that the communication times on

each node will be of much smaller consequence compared to the total execution time for a large

problem.

Grid Scenario

A likely parallel architecture features several FDTD boards plugged into the bus of a

host workstation. These would possess the same features of the board described earlier in this

study as well as a DMA communications controller. This controller would be used to connect

all of the board together in the form of a 2-D or 3-D grid, perhaps using optical fiber

technology. The problem space would be allocated to the memory banks of each of the boards,

perhaps through the system bus or through the DMA communications chip connected to

dedicated disks. The geometry of the partitioning would depend on several factors, especially

communication time. If communication is extremely fast, a partition favoring long vectors of

data would be indicated. If communication is slow, minimizing the face area between shared

processors would be necessary. (Note, however, that the communication time is not entirely

additive to the previous uniprocessor case. Radiation boundary condition calculation time has

been replaced by commmunication time on these shared faces.) The memory on each board

might be dual partitioned such that data transfer between boards could operate on one bank,

while the FDTD and FPASP operate on data in the other bank. Directions on which

operations to perform would come from the host over the bus. With sixteen nodes, one could

expect to solve a problem with 132 cells by 132 cells by 264 cells in about 27.8 minutes plus

communication time.

49

Time Cost per Cell I
Finite-Difference Time Domain

1800-

1600--- ---

1400 --------------------------

1200

0
8n100 ----- ---------------

o40 ------- - -------------------

40(-------

0-
Cray Y-MP/8 Sun SPARC2 Wavetracer FDTD engine

Machine

Figure 10 -- Performance Comparison of Selected Computers

For comparison, increasing the number of iterations from 1024 to 1800 (a factor of 1.76

times everything but the overhead) results in an execution time of 37.5 minutes to solve a

problem with 27 million vector field unknowns. Taflove reports solving a FDTD problem with

23 million vector unknowns after 1800 time steps on a Cray Y-MP/8 in 3 minutes and 40

seconds (1). Assuming the FDTD boards could be produced for under $20,000 each, one could

solve Cray size problems for $320,000, less than 10 times slower but 100 times cheaper

(considering the cost of a Cray to be around $30 million (27)). Defildng a performance

metric as the cost of a computer times the problem run time (at 1800 time steps) divided by

the number of cells in the problem (time cost per cell), the relative performance of the FDTD

engine can be compared with some other computers mentioned in this study, as seen in

50

Figure 10 (data in Table 4, Appendix D). As one might expect, the FDTD specific computers

offer lower time costs per cell than the general purpose architectures. Note that the FDTD

engine is better than the Cray by a factor of 10 and the Wavetracer by a factor of 3.5. The

SPARC2 is limited by the relatively small problem size that it can handle in main (RAM)

memory. The usefulness of the Cray is offset by the large initial investment. The FDTD

engine, on the other hand, is scalable in small dollar increments ($20,000) so that one could

start small and upgrade as budget permits and problem demands. This scalability is virtually

limitless since a grid communication scheme means that each node communicates with its only

nearest neighbors during computations. (Of course, only a limited number of nodes could be

controlled through a bus architecture, so some other means of control would be implemented

for large numbers.)

Beyond the FDTD Chip

The FDTD chip, as stated earlier, performs six floating-point operations in eight 25 ns

cycles, for a total maximum throughput of 30 MFLOPS. The bus interface to the chip is

moving eight bytes every clock cycle (the maximum possible) for a bandwidth of 320 Mbytes

per second. The FPASP chip performs thirteen floating-point operations in twelve cycles for

a maximum throughput of 43 MFLOPS (out of a hardware maximum of 80 MFLOPS). The

bus transfers eight bytes on nine out of every twelve cycles for an average bandwidth of 240

Mbytes per second. The figures point out the fact that even without a dedicated architecture,

the FPASP is able to perform well. Indeed, because ten floating-point additions are performed

every twelve cycles, even a dedicated architecture might not significantly improve the

performance. It appears to be quite possible that the FPASP could perform the FDTD cell

calculations just as well as the dedicated architecture described in this study.

51

The idea that the FPASP could perform both the cell update equations and the radiation

boundary equations means that only one computational chip is needed, instead of two. Both

algorithms could be microcoded in the FPASP and called by the host according to the

computation to be performed at that time. Due to the ability of the FPASP to maintain and

modify pointers to memory locations, much of the interface hardware required by the FDTD

chip could be eliminated, simplifying board design, freeing valuable board area, and lowering

costs. Given the FPASP would be produced in much larger numbers than the FDTD chip, the

costs associated with a special purpose architecture would be eliminated, lowering the cost of

the implementation even more, perhaps by thousands of dollars.

Beyond FDTD

Although this study has devoted itself to the development of a high-performance FDTD

vector processor, one might question the rationale for spending tens of thousands of dollars for

a machine that solves only electromagnetic problems. As stated above, the FPASP is a

microcoded machine. Instead of microprogramming the FPASP in ROM by laser or through

masking, an alternative is suggested: microprogramming the FPASP in RAM through the

interface pins. This would allow the FPASP-based computer to accept a wide range of

application-specific microcode, and thereby support a wide range of numerically intensive

applications. Each user would practically possess the performance of a hardwired, application

dedicated computer, optimized for his particular needs. Yet all users would use the same

machine. This gives the machine all of the performance of a specialized computer, the

flexibility and price of a workstation, and the affordable scalability of a parallel machine,

allowing one to upgrade based on problem difficulty and money availability. As Figure 10

indicates, the cost premium for a general purpose computer would be eliminated, while still

retaining the performance advantages of a dedicated, algorithm-specific computer.

52

VII. Conclusions and Recommendations

Conclusions

This study demonstrated the feasibility of a chip design which would directly and

exclusively compute the FDTD cell field values. It also presented and validated an FPASP

microcode program for the evaluation of the second-order Mur radiation boundary conditions.

This study further demonstrated the impact of these designs on typical FDTD codes and

problems. The data suggests that at least at the higher language level, these designs would

have little to negative impact on run times when used as coprocessors. However, when used

a vector processors, these designs appear to speed up computational time by a factor of 9.5 and

corresponding total run time by a factor of 4.9. Given these designs could be fully

implemented on a single board for under $20,000, one can acquire a FDTD machine running

at the speed and power often fully parallel SPARCstation 2 workstations for the price of just

two (including a $20,000 SPARC2 host). This kind of power could open the door for new

research in the FDTD method and the problems it could solve, especially when this type of

architecture is applied in parallel. Sixteen of these accelerator boards connected in an

appropriate fashion with commercially available technology could solve problems currently

being studied on eight processor Cray computers. Moreover, the time cost per cell of this

performance is more than an order of magnitude less than that of a Cray, more than five times

less than that of a high performance workstation such as the SPARC2, and more than three

times less than that of the Wavetracer computer. The only drawback is that this accelerator,

like the Wavetracer, can only solve FDTD electromagnetic problems.

In the area of architecture, this research has demonstrated the ability of the FPASP to

compute algorithms other than those related to signal processing. Indeed, the FPASP was so

53

successful at computing the complex boundary condition expressions at nearly full possible

speed that it might have no trouble computing the cell field equations as well. By

microprogramming the FPASP with both the cell and boundary value equations, the expenses

of developing and fabricating a separate chip, as well as the costs associated with designing

and producing the external interface and control circuitry required by the FDTD chip, are

eliminated. Printed circuit board area would be saved, perhaps for more on-board memory or

a communications controller, and the cost of the total board would be reduced. Both the cell

equations and the radiation equations could be programmed onto the same chip and called by

the host when required. Since the FPASP is programmed after fabrication, manufacturers

could produce generic boards designed to accelerate virtually any computationally intensive

application and program the ROM before shipment. This type of generic applicability means

increased volume of boards resulting in lower per board costs.

Since the FPASP algorthims are microcoded there is another benefit that may be

realized: reprogrammability. Once a researcher has finished studies in FDTD, he might

reprogram his system to run moment method codes, finite element codes, or even fluid

dynamics codes. Moreover, as new algorithms (such as improved radiation boundary

conditions) become available, microcodes can be updated and the benefits immediately realized.

This enables the performance benefits of algorithm dedicated hardware with the flexibility of

generic computers, eliminating the only real advantage of a Cray or even a workstation. One

might obtain five to ten times the computational capability for the same cost and in small

increments.

54

Recommendations

Based on this study, the following is recommended:

1. Implement the FDTD cell equations (perhaps separating them into individual

magnetic and electric, conductive and dispersive equations) and the radiation boundary

condition equations (perhaps conditions more accurate than the Mur conditions used in this

study) as individual, callable vector operations in microcode on an FPASP. This effort should

attempt to maintain the pointers and offsets necessary to directly access all r ecessary

operands as stored in the data structures of typical FDTD codes, so that no intermediate

movement or reordering of the data is necessary. (Slight modification to the FORTRAN code

may be required to accomplish this.)

2. Study, design, and perhaps fabricate a purely reprogrammable FPASP A strong

attempt should be made to preserve much of the hardware that has already been designed,

since this has -roven to be effective. There are two exceptions. First, the Memory Address

Register (MAR) should be able to store values in the pointer registers. Second, more pointer

registers would help keep track of positions in complex data structures. This is not as

important as the first, but might permit more efficient microcode.

55

Appendix A -- FDTD Chip Timing

The movement of data into and out of the FDTD chip attempts to make maximum use of the

floating point units. The calculations are pipelined in. the sense that calculations on two

separate results may be simultaneously proceeding at any one time. The order of operations

is as follows:

to: The first dual-field value is made available to the chip, to be clocked in by the

rising clock starting t1.

ti: Clocks in the first field value into register 3. The second dual-field value is

made available to the chip over the input/output bus at this time.

t2: Clocks in the second dual-field value into register 4 and marks the start of the

addition operation. The previous field value is made available during this

time.

t3 : Clocks in the previous field value into register 1. The third dual-field value

is made available during this time. The chip inverts the sign bit of this value.

The two cycle addition from the previous cycle continues.

t4: The negated field value is loaded into register 4. The now complete sum is

loaded into register 3 and a new addition begins. K1 is made available.

56

t5 : Ki is latched into register 2. The addition started in t 4 continues. (No value

is made available since this time is reserved for output of the final result See

t 5 below.)

t 6 : The final dual-field value is made available to the chip.

t7 : The multiply starts. The sum from the addition above is loaded into register

3. The final field value is clocked into register 4 and addition begins. K2 is

made available to the chip.

to: The addition from t 7 cc., .Lnues. A floating point "0" is clocked into register 3

while the result of the previous multiply is clocked into register 4. The

addition of these numbers begins. K2 is clccked into register 2.

ti: The addition from to continues. The result of the addition started in t 7 is

clocked into register 1 and a multiply is started.

t2 : The multiply from t1 continues.

t3: The result from the addition are loaded into register 3 and the results from the

multiplication are loaded into register 4. The addition of these numbers

begins.

t: " The addition from above continues.
'47

57

t5 : The result from the addition is clocked into the output register and is put onto

the input/output bus to be clocked into the off-chip circuitry.

58

Appendix B -- VHDL Code

This appendix lists all of the VHDL code required to simulate the FDTD chip. The bench

program, however, uses the "random" procedure supplied by ZYCAD to generate random

numbers. The codes are listed in alphanumerical order, according to file names. All files

except SEQUENCE.VHD require the use of FDLOGIC.VHD. The VHDL hierarchy for these

codes (except for FDLOGIC.VHD) is as follows:

fdlogic.vhd

small.vhd

smallcircuit.vhd

12busswitch.vhd

21buswitch.vhd

add.vhd

compare.vhd

renormal.vhd

shift.vhd

iobusswitch.vhd

multiply.vhd

multiplier.vhd

renormal.vhd

parts.vhd

register.vhd

sequence.vhd

59

--TITLE: 12BUSSWITCH.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Switches an input bus

to one of two outputs
--OPERATING SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD
--HIlSTORY/REVISIONS: None
...

use work.FiniteDifferenceLogic.all;

entity busswitch_1_2 isport(Input : in RealNumber := blank; -- Real Number is collection of bits,
Outputl,Output2 : out Real-Number := blank; -- not a single floating point value
control : in bit); '1' Outputl, 0' Output2

end busswitch-_2;

architecture behavior of busswitch-1-2 is

begin

process (control, Input) -- Combinational circuitry

begin

if control='' then
Outputl <= Input after 2 ns;

else
Output2 <= Input after 2 ns;

end if;

end process;

end behavior;

60

--TITLE: 21BUSSWITCH.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Switches one of two input
-- buses to one output bus

OPERATING SYSTEM: UNIX
LANGUAGE: VHDL

--MODULES USED: FDLOGIC.VHD
-HISTORY/REVISIONS: None
...

use work.FiniteDifference_Logic.all;

entity busswitch_2_1 isport(Input1, Input2 : in RealNumber := blank;
Output : out Real Number:= blank;
control : in bit); -- "I" selects Input2, "0" selects Inputl

end busswitch_2_1;

architecture behavior of busswitch_2_1 is
begin

g oess (control, Inputl, Input2) -- Combinational circuit
gin
if control = '0' then

Output <= Inputl after 2 ns;
else

Output <= Input2 after 2 ns;
end if;

end process;
end behavior;

61

--TITLE: ADD.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Structural description
-- of a (2 cycle minimum)
-- floating point adder
--OPERNii-NG SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD, PARTS.VHD
--HISTORY/REVISIONS: None

use work.FiniteDifferenceLogic.all;
use work.Components.all;

entity Add is
port(

Inputl, Input2 : in Real Number := blank; -- Bit representation of real number
Out ut out RealNumber := blank; -- Same
enable in Bit, -- "1" clocks register for second cycle of calculations
Over : out Bit); Overflow signal (active high)

end Add;

architecture complete of Add is

signal Leadl, Lead2 : Bit Vector (0 to 0) := "0"; - Bit in front of binary point
signal Zero,Pick : Bit := '0';
signal Delay, UnNormal : RealNumber := blank;
signal Shift : Shift-bus := (others=>'0');
signal LateBitsExtraBits : Bit-Vector (1 downto 0) := "00";

for all : Comparator use entity work.Comparator (behavior);
for all Shift andAdd use entity work.ShiftandAdd (behavior);
for all : D_ Register use entity work.FD_Register (behavior);
for all : Renormalizer use entity work.Renormalizer (behavior);

begin

Cl:Comparator port map (Inputl.exp, Input2.exp, Delay.exp, Shift,
Pick);

Sl:Shiftand-add port map (Shift, Inputl.sign, Input2.sign, Delay.sign,
Inputl.man, Input2.man, Delay.man, Pick,
Lead1, Lead2, ExtraBits);

Fl:FDRegister port map (Delay, UnNormal, Zero, enable);

Rl:Renormalizer port map (UnNormal, Output, LateBits, Over);

Leadl <= "0" when Inputl.exp = blank.exp - Lead bit 0 when number is 0
else fl i+.

Lead2 <= "0" when Input2.exp = blank.exp -- Same
else

LateBits <= ExtraBits when enable='1' and enable'activ - Used as register to delay a cycle
else

LateBits;

end complete;

62

--TITLE: ADDER.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Adds exponents and
-- Padjusts for offsets
--OPERATING SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD
--HISTORY/REVISIONS: None

use work.FiniteDifferenceLogic.all;

entity Adder isport(El : in Exp-bus := (others => '0');
E2 : in Exp-bus (others => '0')-
E3 : out Expbus:= (others => 0));

end Adder;

architecture behavior of Adder is

begin

process (El,E2)

variable adjust,holder : ntArray := (others => 0);
variable temp : Exp bus;

begin

adjust(0) := Offset; -- Bias determined by number of exponent bits
holder Bus to Int(E1) + Bus to Int(E2); -- Dummy variable to hold sum in array form

if adjust > holder then -- ">" defined in FDLOGIC.VHD

E3 <= blank.exp; -- Number is too small to represent

else

Int-to Bus (holder - adjust, temp); -- Adjust for offset and convert
E3 <= temp after delay.exp-add;

end if;

end process;

end behavior;

63

--TITLE: COMPARE.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Determine the larger of two
-- exponents for processing
-- an addition, and determine
-- amount of right shift for

smaller number
--OPERATING SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHID
--HISTORY/REVISIONS: None
...

use work.FiniteDifference Logic.all;

entity Comparator is
port (

E1,E2 : in Exp-bus := (others => '0');
E3 :out Exp bus := (others => '0');
S1 :out Shiftbus := (others => '0'); -- How mukh to shift
SelectShift : out bit := '0'); -- Which one to shift

-- '1' for 1, '0' for 2
end Comparator;

architecture behavior of Comparator is

begin
process (El,E2)

varirble Shiftamount : Shift bus := (others => '0');
variable A, B, Amount IntArray := (others => 0);

begin
A:= Bus to Int(El);
B:= Bus-tolInt(E2);

if B>A then
Select Shift <= '1' after delay.compare; -- El is smaller
Amount := B - A; -- Subtraction only defined for positive answer
E3 <= E2 after delay.compare; Pass on the larger (E2)

else
Select Shift <= '0' after delay.compare; -- E2 is smaller
Amount := A - B; -- Same as above (see FDLOGIC.VHD)
E3 <= El after delay.compare; -- Pass on the larger (El)

end if;

if Amount(0) > (ShiftBusMHIGH+l)**2 then -- If one is much greater than the other,
Shift-amount := (others => '1'); all bits of the other are lost

else
Int to Bus (Amount, Shift-amount); -- Otherwise, determine the number of bits to shift

end if;

S1 <= Shiftamount;

end process;

end behavior;

64

--TITLE: FDLOGIC.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Creates constants, types and

tions for use by the
FDTD chip VHDL descriptions

--OPERATING SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: None
--HISTORY/REVISIONS: None
...

package FiniteDifferenceLogic is
constant Bits-perDigit : integer := 15; -- # bits / integer digit
constant Digit-Max : integer := 2**Bits-perDigit; -- Max integer represented
constant ManBits : integer := 52; -- Mantissa ** User set <= ?
constant Man-Digits : integer := ManBits/BitsperDigit+1; - # of integers to hold mantissa
constant Ex p Bits : integer := 11; -- Exponent ** User set <= 16?
constant Of set : integer := 2**(Exp_Bits-1)-1; -- Exponent bias
subtype ManBus is BitVector (ManBits-1 downto 0); -- Mantissa bus
constant Zeros : Man bus := (others => '0'); -- Empty Mantissa bus
subtype ShiftBus is bit Vector (6 downto 0); - Bus to transmit amount of shift
subtype Exp-Bus is Bit-Vector (ExpBits-1 downto 0); -- Exponent bus

type Real Number is record -- Entire digital number
Sign : Bit;
Exp : Exp Bus;
Man Man_Bus;

end record;

constant Blank : RealNumber := ('0',(others=> '0'),Zeros); -- a real number zero

type delays is record -- Propagation delays
exp add :time;
man_add :time;
sign add :time;
multiply :time;
sign :time;
renormal :time;
compare :time;
end record;

constant delay delays := (0 ns, 00 ns, 0 ns, 0 ns, 0 ns, 0 ns, 0 ns); -- *** User set
type IntArray is array (2*ManDigits-1 downto 0) of Integer; - each >1 outside routines
type Input_ Aray is array (0 to 7) of RealNumber;
type InputVector is array (0 to 7) of Real;
type Real_A-ray is array (Natural range<>) of RealNumber;
function RealResolve (Input:RealArray) return RealNumber; -- For in/out bus of FDTD chip
subtype Resolved Bus is Real Resolve Real Number; -- Type for the in/out bus
function Busto_ nt (inbus: Bit-vector) return IntArray; -- Convert bit string to int array
function "+" (A, B : Int Array) return IntArray; -- Add integer arrays
function ... (A, B : IntArray) return Int_Array; Subtract integer arrays
function "*" (A, B : IntArray) return IntArray; -- Multiply integer arrays
function ">" (A, B : IntArray) return Boolean; -- Compare integer arrays
function Bus to Real (A: Real-Number) return Real; -- Convert to real single precision #
procedure InttoBus (int : in IntArray; outbus : inout Bitvector); - Converts int array to bits

end FiniteDifference Logic;

65

package body FiniteDifferenceLogic is

..

-- This function resolves a RealNumber bus by
selecting the first signal assigned to the bus.
In this implementation, only one driver is
ever assigned to the bus (the others are
disconnected with a "null" assignment) and
therefore the desired signal is always the first

-- in the input array.
..

function Real Resolve (Input:Real Array) return RealNumber is

begin

if Input'LOW=O then - Make sure something is connected
return Input(O);

else
return blank;

end if,

end RealResolve;
..

-- This function takes a string of bits of limited length,
-- breaks them up into groups of Bits-periDigit,

converts each group into an integer, and assigns it
to a corresponding position in an array.

..

function Bus-tojInt (inbus: Bitvector) return IntArray is
variable Answer : IntArray := (others=>O);
variable Digit, Position, Advance :integer 0;
variable Convert BitVector (inbus'TIGH downto inbus'LOW);

begin
Convert := inbus; -- Assign to work variable
l°° or Index in Bits perDigit-1 downto 0 loop -- Index goes high to low

Position := Advance + Index + inbusLow; Position zig zags through bit
If Position <= inbus'IUGH then Make sure doesn't go out of bounds

Answer(Digit) := Answer(Digit) * 2; -- Shift by two
If Convert(Position)=1' then

Answer(Digit) := Answer(Digit) +1; -- Insert a one
end if;

else
next; -- Too high, try next lower

end if;
end loop;
Digit := Digit +1; -- Next integer array element
Advance := Advance + Bitsper_.Digit; Next group of digits
If Advance > inbusIMIGH then

exit; -- Done
end if;

end loop;
return Answer;

end Bus toInt;

66

-This function overloads the 4"
operator for addition on integer arrays

..

function "+" (A, B : IntArray) return IntArray is
variable C : Intarray := (others => 0);

b'eginfor i in 0 to Man Digits loop
C(i) := A(i) + B(i) + C(i); Add plus carry from previous
if C(i) > DigitMax-1 then If add is too big,

C(i) = i)- DigitMax; subtract off value of next digit
C(i+l) "= 1; A carry to the next higher order digit

end if;
end loop;
return C;

end 0+";

...

-- This function overloads the "-"
-- operator for subtraction on integer arrays.

This function REQUIRES that the first operand be
larger than the second, since th- operation must
generate apositive result.

..

function "-" (A, B : Int Array) return IntArray is
variable C : Int array := (others => 0);

for i in Man Digits downto 0 loop
C(i) := A() -B(i); -- Subtract corresponding digits

end loop;
for i in 0 to ManDigits loop Working up the entire array

if C(i) <0 then If a negative result was generated
C(i) := C(i) + Digit-Max; then add the value of the next higiest digit
C(i+l) := C(i+l)-l; -- and borrow from it.

end if;
end loop;
return C;

end ;

-- This function overloads the "'
-- operator for multiplication on integer arrays.

The operands must be less than half full inter
-- arrays, since the result requires an integer at,

twice the operands' size.
..

function "*" (A, B : Int Array) return IntArray is
variable C :Int-array (others => 0);
variable Index : integer 0;

begin
for i in 0 to Man Digits-1 loop

for jin 0 to Man Digits-1 loop
Index := i+j; -- Maintains pointer in answer array
C(Index) := A(i) * B(j) + C(Index); -- Generate partial product and add to answer

-- This code determines if an element in the answer
-- array is too large. If so, it normalizes it to

a value less than Digit max and adds the
appropriate amount to the next most significant
element in the array.

if C(Index) > DigitMax-1 then
C(Index+l) := integer(C(IndexY/DigitMax) + C(Index+l);
C(Index) := C(Index) mod Digit-Max;

end if;
end loon;

end loop;
return C;

end

67

-- This function overloads the '>"
operator for comparison of integer arrays. Note
that each element in the array can contain only

-- positive values.
..

function ">" (A, B : Int Array) return Boolean isbegin
for i in Man-digits downto 0 loop -- Go down the line

if A(i) > B(i) then -- A is greater
return true;

elsif A(i) < B(i) then -- B is greater
return false;

end if;

end loop;return false;
-- Both are equal

end ">";

-- This function takes the series of bits associated with
a real number and converts them into a single

-- precision reai number, no matter what the precision
of the original string of bits.

function Bus-to Real (A: RealNumber) return Real is
variable Result : Real := 1.0; Start with assumed 1.0
variable t : Real := 0.5; -- First bit position worth 0.5
variable temp : IntArray :=(others=> 0);

befor i in ManBusTIUGH downto 0 loop

if A.man(i) = T then -- If a one,
Result := Result + t; -- add corresponding place value

end if;

t := t/2.0;
-- Value of significance of each bit position

end loop;

temp := Bus-to-Int(A.exp); -- Convert exponent into an integer
assert temp(0) < 1148 report "big exponent" severity warning;
if temp(0) >1148 then -- Exponent larger than supported by single precision

temp(0) := 1148; -- So just make it big
end if;
Result := Result * 2.0**(temp(0) - Offset); *- Multiply by appropriate power of 2
if A.sign = T then Positive or negative

Result := Result * (-1.0);
end if;
return Result;

end Bus toReal;

68

-- This procedure converts a positive valued integer
array into a string of bits. Note that the result
-bitvector is passed so that the procedure can

determine the limits of iteration. One should always
-- make sure that this target contains enough room,

or the result is meaningless.

procedure Int to Bus (int : in Int_Array; outbus : inout Bit-vector) is
variable Digit integer := 0;
variable Work Int Array;
variable Nextdigit integer := Bitsper_Digit-l+outbus'LOW;

beWork := int; -- Assign to work variable
for Position in outbus'LOW to outbus'HIGH loop -- Position goes from low to high

if Work(Digit) mod 2 = 1 then
outbus(Position) '1';

else
outbus(Position) '0';

end if;
Work(Digit):= integer(Work(Digit)/2); -- Move the next digit to the one's place
if Position = Nextdigit then -- If at boundary,

Nextdigit Nextdigit + BitsperDigit; move boundary
Digit Digit+l; and up to next element of integer array

end if;
end loop;

end Int toBus;

end FiniteDifferenceLogic;

69

--TITLE: IOBUSSWITCH.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Chip interface to external

wor d. Manages the
internal drive of the
multiplexed resolved bus.

-- OERAINGSYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD
--HISTORY/REVISIONS: None

use work.FiniteDifference-Logic.all;

entity busswitchinout is

port (
Ri : inout Resolved Bus bus := blank; -- Bus interface to chip
R2 : out RealNumber := blank; -- Bus for data into chip
R3 : in RealNumber := blank; -- Bus for data leaving chip
Selector : in Bit := '0'); -- Direction of data flow, "0" in, "' out

end busswitch_inout;

architecture behavior of busswitchinout is

begin

process(R 1,R3,Selector)

begin

if Selector='0' then -- Data is coming in
RI<= null; -- Don't drive the bus
R2 <= R1; -- Put external data into chip

else
R1 <= R3; -- Send internal data off of chip

end if;

end process;

end behavior;

70

--TITLE: MULTIPLIER.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesi;
--AUTHOR: Raley Marek
--PROCESS: Performs multiplication of two

RealNumber data types
-- including their leading bits

-- OERAINGSYSTEM: UNIX
--LANGUAGE: VHi)L
--MODULES USED: FDLOGIC.VHD
--HISTORY/REVISIONS: None

use wvork.FiniteDifferenceLogic.all;

entity multiplier is
port(

RI : in RealNumber;
R2 :in RealNumber;
R3 :out Real -number;
Xl,X2 in Bit :=,0'O - Bits leading binary oint
X3 :out Bit-Vector (1 downto 0) :="00"); -- Same, but two possitle after multiply

end Multiplier;

architecture behavior Of Multiplier is

signal A,B,C : mnt-array := (others=>0);

bv.gin

process (R1,R2,X1,X2)

variable temp :Bit_-Vector (2*Man_Bits+1 downto 0); -- Ans work variable
variable to p:integer :=temp'HIGH; -- Work pointer
variable Tjist, holdeIr : mtArray :=(others => 0);
variable MlI, M2 :ManBus :=Zeros;
variable temp-exp, zerofixp, El, E2: Expbus :~(others => 0;

Ibegin

All Rinin;
El R1.vxp;
M2: R2.man;
E2= R2.exp;

Ju~t toBus (Buis-tolIat(Xl&MJ)*Buis-to-Int(X2&M2), temp): -- Multiply and convert to integer

R:3.mann <= tenip(t.7)p-2 downto top-1-Man-Bits) after delay.multiply; -- M-intissa bits
X3 <= temp (top downto top-i) after del ay multiply; -- Leading order bits
R3..sign <= Risign xor R.Lsign after delay.sign;
ad . st(0) :Offset; -- Floating point bin's
ho iler :=Bus-toInt(El) + Bus-toInt(E2);

if' adjus;t , holder or El=zero-exp or E2=zero-exp then -- Multiplication of two small numbers
R8i.vxp <= blankexp after dely.exp-add; -- (or 0) results in 0
R:3ruri! <= Zeros atler delaymiultiply;
X3 <zO""

else
Int to Bus holder - adjust, teinp-exp); -- Re-bis the exponent and send out
R3 exp <= temnp exp aifter delayvexp add;

end if;

end Process;

eild beb avior;

--TITLE: MULTIPLYVHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Structural description of a
-- (2 cycle minimum)

floating point multiplier
--OPERATING SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD
--HISTORY/REVISIONS: None
...

use work.FiniteDifferenceLogic.all;
use work.Components.all;
entity Multiply is

port(Inputl, Input2 : in RealNumber;
Output : out RealNumber;
enable : in Bit;
Over : out Bit);

end Multiply;

architecture complete of Multiply is

signal Un_Norm, Delayed : Real Number := blank;
signal ExtraBits, Latebits : BitVector (1 downto 0) := "00"; -- Bits leading binary point
signal Leadl, Lead2 : Bit := 0' Same
signal Zero : Bit := 0,

for all:Renormalizer use entity work.Renormalizer (behavior);
for all:Multiplier use entity work.Multiplier (behavior);
for all:FD-Register use entity work.FDRegister (behavior);

begin

M t:Multiplier
port map (Inputl, Input2, UnNorm, Leadl, Lead2, ExtraBits);

Fl: FDRegister
port map (Un-Norm, Delayed, Zero, enable);

Rl:Renormalizer
port map (Delayed, Output, LateBits, Over); -- Shifts mantissa & lead bits and adjusts exp

Lead 1 <= 10' when Inputl.exp=blank.exp -- Lead is 0 only for 0 and denormal #s
else T ;

Lead2 <= '0' when Input2.exp=blank.exp -- Same
else

-- The following acts as the register above for the
-- extra bits to give them the same timing as the rest
-- of the number.

Late_ Bits <= Extra Bits when enable=' and enable'ACT1VE -- Only on rising edge

Late Bits; -- Otherwise, don't change

en] conplet.;

72

--TITLE: PARTS.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: List of all functional units
--OPERATING SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD
--HISTORY/REVISIONS: None

use work.FiniteDifferenceLogic.all;

package Components is

component Comparator -- Exponent comparison for adder
port (E1,E2 :in Exp-bus;

E3 out Exp-bus;
S1 out Shiftbus;
SelectShift : out Bit);

end component;

component Multiplier Multiplier unit only
port (R1,R2 : in RealNumber;

R3 : out RealNumber;
X1,X2 : in Bit;
X3 : out BitVector(1 downto 0));

end component;

component Multiply - Full multiplication, w/ renormalization
port (Inputl, Input2 : in RealNumber;

Out ut : out RealNumber;
enable : in Bit
Over out Bit;

end component;

component Add -- Full addition w/ renormalization
port (Inputl,Input2 : in Realnumber;

Output : out Realnumber;
enable : in Bit;
Over out Bit);

end component;

component Shift andAdd -- Addition unit only
port (El : in Shiftbus;

S1,S2 : in Bit;
S3 : out Bit;
Ml,M2 : in Man_Bus;
M3 : out ManBus;
SelectShift in Bit;
X1,X2 in BitVector;
X3 out BitVector);

end component;

component Renorinalizer -- Renormalizes numbers
port (RI :in RealNumber;

R2 out RealNumber;
El in BitVector;
Overflow out Bit);

end component;

component FDRegister -- Rising edge triggered register
port (Input in RealNumber;

Output : out Real Number;
reset,write in bit);

end component;

73

component busswitch_1_2 -- 1 in to 2 out bus multiplexer
port (Input in RealNumber;

Outputl, Output2 out RealNumber;
control in bit);

end component;

component busswitch_2_1 -- 2 in to 1 out bus decoder
port (Inputl, Input2 in RealNumber;

Output out RealNumber;
control in bit);

end component;

component busswitch inout -- Bi-directional bus switcher
port (R1 inout ResolvedBus bus;

R2 out RealNumber;
R3 in RealNumber;
Selector in Bit);

end component;

component Seq -- 8 state sequencer
port (clock in bit;

reset in bit;
control out BitVector(O to 8));

end component;

end Components;

74

--TITLE: REGISTER.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Rising edge triggered register

-- OERAINGSYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD
--HISTORY/REVISIONS: None

use work.FiniteDifferenceLogic.all;

entity FDRegister isport(Input : in Real Number := blank;
Output : out RealNumber := blank;
reset,write : in bit := '0');

end FDRegister;

architecture behavior of FDRegister is

begin

process (reset,write)

begin

if reset='l' then

Output <= blank ; -- Clears register

elsif write='' then

Output <= Input; -- Transfer input to output only when write rises
en or reset falls when write is high.end if;

end process;

end behavior;

75

--TITLE: RENORMAL.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Renormalizes number by

-- finding first occurrence of
-- a "1" in string of lead and
-- mantissa bits, shifts it to
-- lead the binary point, and
-- adjusts the exponent
-- accordingly.

-- OERAINGSYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD
--HISTORY/REVISIONS: None

use work.FiniteDifference-Logic.all;

entity Renormalizer is

pot(R1 : in Real-Number :=Blank;
R2 : out RealNumber := Blank;
El :in Bit_-Vector; -- Bits leading the binary point
Overflow :out Bit :='0');

end 1.1enormalizeT;

architecture behavior of Renormalizer is

begin

process (R1,El) -- Purely combinational circuit
variable temp .Ex bus;
variable work .Bit Vector(Man_Bits+E 1'HGH downto 0);
variable holder, shift, exponent, Factor I nt. Array :=(others => 0);
variable point

.integervariable Round .BitVector(ManBits downto 0) := (others=>'0');

shf(ais1 -Amount of left shift. If no is found, shift all bits out

Factor(o, .=1;

:El&Rl.man; -- Leading bits and mantissa
Overflow <= '0'; -- Turn off overflow signal

for i in work'HIGH downto 0 loop -- Find first "1"
if work(i) = '1'then

shift(0) := ManBits -i;
exit,

en d if;,
end loop;

exponent := Bus-toThit(R1.exp);

if exponent(0) > 2*Offset then -- Number already overflowed

end if;

poin t := Man _Bits-shift(0); -- Points to "I"

if shift(O)>O then -- ft shifts required

if shift > exponent then -- Makes for denormalized number
Int-to-Bus((others =>0), temp);

else
In t-to-Bus (exponent-sh ift,temp);

end if;

if shift(O) > Man-bits then -- No "I's found, number is zero

76

R2.exp <= zeros(Exp-Bits downto 1) after delay.expadd;
R2.man <= zeros after dehqayrenormal;

else
R2.exp <= temp after delay.exp-add;

if Shift(O)=Man_-Bits then -Ol'Tisteoenfrtofbaypit
R2.man <= zeros after delay.renormal;--Ol 1isteoenfrtofbaypit

else -- Shift correct amount, update exponent, and send out
R2.man <= work(Ooint-1 downto O)&zeros(shift(O)-1 downto 0) after delayrenormal;

end if;

end if;,

elseRihornshfsned
shift(O) :=abs(sbift(O))-- ih rn hfsnee
holder :=exponent + shift;

if shift(0) = 0 then -- No shifts needed, exponent OK
R2.man <= work(point-1 downto 0) after delayrenormal;

else -- Right shifts needed
Round :=work(point-1 downto shift(0)-1); -- String is Man bits+1 in length
Int-to-Bus(Bus-tont(Round) + Factor, Round); -- Add T1" to the last bit to be lost

-to round up.
if Round(Round'HJGI{ downto 1) = Zeros then -Round went up to the most significant

holder :=holder + Factor; -- bit, so just increment exponent
end if;,

if holder(0) > 2*Offset then -- Overflow upon renormalization
holder(0) := 2*Offset +1;
R2.man <= Zeros after delayrenormal; -- Set number equal to infinity representation
Overflow <= T1;

else -- Else output proper mantissa
R2.man <=Round(RoundMHGH downto 1) after del ayrenormal;

end if;,

end if;

Int-to-Bus (holder, temp);
R2.exp <= temp after delay.exp-add; -- Output exponent

end if;,

R2.sign <= RLsign after delay.sign; -- Output sign

end process;

end behavior;

77

--TITLE: SEQUENCE.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: 8 state controller. Registers 3
-- and 4 and adder control bits
-- are always zero on last half of
-- clock so that successive "l"s
-- still have rising edges.
--OPERATING SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: None
--HISTORY/REVISIONS: None

entity Sequencer isport(clock : in bit;
reset : in bit;
control : out BitVector(0 to 8));

end Sequencer;

architecture behavior of Sequencer is

begin
process (clock,reset)

variable state : integer :=0;
variable code BitVector(0 to 8) := "000000000"; -- Notice left bit is 0, right is 8!!

begin

if reset='1' then -- Resets state but not output. Just holds.
state := 0;

elsif clock='1' and not clock'QUIET then -- Clock rising edge

ca se sta te is --
when 0 => -- Bits mapped to switches(S), registers, floating

code := "001100110"; -- point units(*,+), and negator (Neg) as follows:
when 1 => --

code := "000011010"; -- 0 S1
when 2 => --

code := "110000101"; -- 1 S2, S5, Neg
when 3 => --

code := "000101110"; -- 2 S3, S4, S6
when 4 => --

code := "100001110"; -- 3 RI
when 5 => --

code := "110010010"; -- 4 R2
when 6 => --

code := "000000000"; -- 5 R3
when others => --

code := "110001101"; -- 6 R4
state :=-1; --

end case; -- 7 +

control <= code; -- 8 *
state := state +1; --

end if;

if clock ='0' then -- Registers need rising edges to clock data. Force to zero
control(5 to 7) <= "000"; on last half of cycle so successive "1's have rising edges

end if;

end process;

end behavior;

78

--TITLE: SWr=.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Shifts mantissas appropriate

amount and adds them
--OPERATING SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD
--HISTORYfREVISIONS: None
...

use work.FiniteDifferenceLogic.all;

entity Shift andAdd isport(El : in Shiftbus := (others => '0'); -- Amount to shift smaller number
S1,S2 : in Bit := 0, Sign bits
S3 : out Bit := 0, Same
M1,M2 : in ManBus; -- Mantissas
M3 : out ManBus; -- Same
SelectShift : in bit; -- '1" shifts 1, "0" shifts 2
X1 X2 : in BitVector; -- Leading bits in front of
X3 : out BitVector); -- binary point

end ShiftandAdd;

architecture behavior of ShiftandAdd is

begin

process (E1,Sl,S2,MlM2,SelectShift,XlX2)

variable A1,A2,amounthold : IntArray := (others => 0);
variable Shiftamount : integer;
variable T3 Bit Vector (XlIIHGH + MI'HIGH+2 downto 0);
variable V1,V2 : BitVector (ManBits + XI'HIGH downto 0);

begin

V1 := Xl&M1; -- Mantissas and their leading bits
V2 :=X2&M2;
amounthold := Bus to-Int(E1);
Shiftamount := amount-hold(0); -- Convert to single integer

if Select Shift = '0' then -- "0" means 2nd needs shifting
Al :-Bus to Int(Vl);
A2 :=Bus to Int(V2(Vl'IGH downto Shiftamount));

else -- "1" means 1st needs shifting
Al .- Bus to Int(Vl(Vl'HIGH downto Shiftamount));
A2 :=Bus tolInt(V2);

end if;

if S1=S2 then -- Add the numbers
Int to-Bus(AI+A2,T3);
S3 <= S1 after delay.sign-add; -- Sign is sign of either since they are same

elsif AI>A2 then Subtraction required - Need to find
InttoBus(Al-A2,T3); -- correct order to generate positive int array
S3 <= S1 after delay.signadd; -- Sign is sign of largest

else
Int to Bus(A2-A1 T3);
S3 <= S2 after defay.sign-add; -- Sign is sign of largest

end if;
M3 <= T3(Man Bits-1 downto 0) after delay.manadd;

X3 <= T3(Man-Bits+XI'FUGH+l downto Man-Bits) after delay.manadd;

end process;

end behavior;

79

--TITLE: SMALL.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Generates pseudo-random
-- numbers to test the FDTD
-- chip and compares output
-- to single precision VHDL
-- floating point results.
--OPERATING SYSTEM: UNIX
--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD, ZYCAD's
-- random number generator
--HISTORY/REVISIONS: None

library zycad;
use ZYCAD.istributions.random;
entity test is end test;
use work.FiniteDifferenceLogic.all;
architecture structural of test is

component FDCircuit
port(

Inoutbus : inout ResolvedBus bus;
clock, reset : in bit;
Overflow : out Bit);

end component;

signal Databus : Resolved Bus bus := Blank;
signal Stop • boolean := false;
signal rel error, error, expected, value, temp, templ : real := 0.0;
signal clkOver : bit := '0';
signal reset : bit := '1';

for all:FDCircuit use entity work.FDCircuit(smal]);

begin

Chip : FDCircuit
port map (Databus, elk, reset, Over);

stop <= TRUE after 4000 ns; -- Length of simulation

elk <= '1'when clk'stable(20 ns) -- Trickery to let clock change to high immediately!
else

not clk after 12.5 ns; -- Otherwise clock period of 25 ns

reset <= '0' after 0 ns; -- Allows start at absolute beginning of simulation

stopcontrol : process -- Stops simulation

begin
wait until stop= TRUE;
assert false report "Simulation done" severity failure;

end process stopcontrol;

create : process(clk,reset) - Generates random numbers for FDTD chip and checks result
against the single precision calculations of VHDL

variable A : Input Array := (others => blank); -- Holds data to send to chip
variable num,k real := 0.5; Used for random number generation
variable b : Input-vector; Real number data for VHDL calculations
variable stage : integer 0;-- Maintains synchronization with FDTD

chip

variable Hold : boolean := true; -- Delay state to get chip output data

80

begin

if reset = '1' then
stage := 0;

elsif clk = 1 and not clk'QUIET then

if stage = 0 then
Hold := true;
RelError <= error/value; -- Signal assignments for monitoring
tempi <= temp;

for j in 0 to 6 loop

for i in 0 to man bits-i loop -- Generate random mantissa bits
random (k,num);
if num > 0.5 then

A(j).man(i) :='1';
else

Aj).man(i) :0';en d if-

end loop;

random (k,num);

if num>0.5 then -- Generate randon, sign bit
AOj).sign :=...

end if;

AO).exp "01111111111"; -- Generate actual exponent <= 0
random(k,num);
A(j).exp(integer(4.0*num)) :='0';

end loop;

random(knum); -- Set one number to zero
A(integer(6.0*num)) := blank;

for i in 0 to 6 loop - Convert to real numbers
b(i):= bus to real (A(i));

end loop;

temp <= b(2)*b(4)+(b(0)+b(1)-b(3)-b(5))*b(6); -- VHDL single precision answer
end if;

if stage = 5 and Hold then -- Disconnect to allow receive of output data
Databus <= null;
Hold := false;

else

if stage = 5 then -- Get output data from chip
error <= bus-to real(Databus) - tempi;
value <= bus to real(Databus);
expected <= tempi;end if;

Databus <= A(stage); -- Connect & transmit (except when 5 and
stage (stage+1) mod 7; -- hold) according to state

end if;

end if;

end process create;

end structural;

81

--TITLE: SMALLCIRCUIT.VHD
--DATE: 7 Nov 91
--VERSION: 1.0
--PROJECT: Thesis
--AUTHOR: Raley Marek
--PROCESS: Structural description of

-- the FDTD chip
-- OERAINGSYSTEM: UNIX

--LANGUAGE: VHDL
--MODULES USED: FDLOGIC.VHD, PARTS.VHI)
--HI1STORY/RE'VISIONS: None

use work.Finite_-Difference_-Logic.alI;
use work.Components.all;

entity FD-Circuit is

pr(Inout -bus :inout ResolvedBus bus;
clock, reset :in bit;
Overflow :out Bit);

end FDCircuit;

architecture small of FDCircuit is

signal busO , busi, bus2, bus3, bus4, bus5, bus6,
bus7, bus8, bus9, buslO, bushl, busl2,
busl3, busl4, busl5, bus16, bus17 :RealNumber :=Blanik;

signal Clear, Done, Ovenl, Over2,
K1, K(2, K(3, 1(4, K(5, K6, :Bit : 0';

signal Control BitVector(0 to 8) "=000000000';

for all D EDRegister use entity work.FD.Register (behavior);
for all :Seq use entity work.Sequencer (behavior);
for all :busswitch_2_1 use entity work.busswitch-2- (behavior);
for all busswitch_1_ -2 use entity work.busswitch12 (behavior);
for all :busswitch-inout use entity work.busswitchin out (behavior);
for all :Add use entity work .Add (complete);
for all :Multiply use entity work.Multiply (complete);

begin

Al :Add port map (busl2, busl3, bus7, control(7), Ovenl);
Ml: Multiply port map (buslO, bush,: bus9, control(8), Over2);
RI : FD -egister port map (bus3, buslO, reset, control(3));
R2 : ED -Register port map (bus5, busll, reset, control(4));
R3 F D -Register port map (busl4, busl2, Clear, control(5)); -- "Clear", not "Reset"
R4 :FD Register port map (bu 6 u 3 ee, control(6));
R5 : ED -Register port map (bus7, bus 17, reset, Done);
S1: busswitch-12 port map (busO, bush, bus2, control(0));
S2 :busswitchl12 port map (busl, bus3, bus4, control(1));
S3 busswitch-2l port map (bus4, bus7, bus5, control(2));
S4 :busswitch2l port map (bus7, bus6, bus14, contro](2));
S5 :busswitcL2j port map (bus2, bus9, busiS, control(1));
S6 :busswitchl12 port map (busiS, bus6, bus8, control(2));
S7 :busswitch-inout port map (Inout-bus, busO, busl7, Done);

Done <= control(1) and contro](0); -- Switches S7 & R5 for output of result
Clear <= reset or control(2); -- Generates 0 required by calculations
busl6.sign <= bus8.sign xor not(contro](0) or contro](4)); -- Negates value (just sign bit change)
busl6.man <= bus8.man; -- Pass
bus16.exp -,= bus8.exp; -- Pass
Overflow <= Ovenl or Over2; -- Signal oi.erflow form adder or multiplier

end small;

82

Appendix C -- VHDL Results

This is the ZYCAD VHDL output for the FDTD chip. "VALUE" is the value output by the

FDTD chip. The relative error is displayed roughly 48 ns after the value is output. Note that

the first true value occurs at 336 ns.

Script started on Mon Nov 18 20:04:49 1991
ares[51]: zvsim test
ZYCAD 1076 VHDL Simulator Version 2.Ob

(c) Copyright 1988,1989 ZYCAD CORPORATION. All rights reserved.

This Program is an unpublished work fully protected by the United States
copyright laws and is considered a trade secret belonging to ZYCAD
CORPORATION. It is not to be divulged or used by parties who have not
received written authorization from Zycad Corporation.

cd test
H monitor active value relerror
run
0NS

MI: ACTIVE /TEST/RELERROR (value = NaN.0)
14 NS

M: ACTIVE /TEST/VALUE (value = 0.0)
192 NS

MI: ACTIVE /TEST/RELERROR (value = NaN.0)
336 NS

M: ACTIVE TEST/VALUE (value = -.104292)
384 NS

Ml: ACTIVE /TEST/RELERROR (value = -0.0)
528 NS

M: ACTIVE /TEST/VALUE (value = 0.0100549)
576 NS

Ml: ACTIVE /TEST/RELERROR (value = 0.0)
720 NS

M: ACTIVE /TESTNALUE (value = -.242096)
768 NS

Ml: ACTIVE /TEST/RELERrOR (value = -0.0)
912 NS

M: ACTIVE /TEST/VALUE (value = 0.051225)
960 NS

MI: ACTIVE ITEST/RELERROR (value = -7.2724e-08)
1104 NS

M: ACTIVE /TESTNALUE (value = 9.25844e-05)
1152 NS

MI: ACTIVE /TEST/RELERROR (value = 2.82914e-06)
1296 NS

M: ACTIVE /TEST/VALUE (value = 0.30185)
1344 NS

MI: ACTIVE /TEST/RELERROR (value = 0.0)
1488 NS

M: ACTIVE /TEST/VALUE (value = 0.00237772)
1536 NS

MI: ACTIVE /TEST/RELERROR (value = 9.79217e-08)
1680 NS

M: ACTIVE TEST/VALUE (value = 0.168917)
1728 NS

MI: ACTIVE /TEST/RELERROR (value = 8.8216e-08)

83

1872 NS
M: ACTIVE TEST/VALUE (value = -0.0253436)

1920 NS
Ml: ACTIVE /TEST/RELERROR (value = 1.46991e-07)

2064 NS
M: ACTIVE [PEST/VALUE (value = 0.00189692)

2112 NS
Ml: ACTIVE /TEST/RELERROR (value = -6.137 07e-08)

2256 NS
M: ACTIVE /TEST/VALTE (value = 0.14736)

2304 NS
Ml: ACTIVE TEST/RELERROR (value = -1.0112le-07)

2448 NS
M: ACTIVE /TEST/VALUE (value = -.448674)

2496 NS
Ml: ACTIVE /TEST/RELERROR (value = -0.0)

2640 NS
M: ACTIVE /TEST/VALUE (value = 0.0908642)

2688 NS
Ml: ACTIVE /TEST/RELERROR value = -8.19 9 6 8e-08)

2832 NS
M: ACTIVE /TEST/VALUE (value = 3.3044e-05)

2880 NS
MI: ACTIVE [PEST/RELERROR (value = 0.0)

3024 NS
M: ACTIVE TEST/VALUE (value = 0.000149153)

3072 NS
M1. ACTIVE /TEST/RELERROR (value = 1.95 12 8e-07)

3216 NS
M: ACTIVE /TEST/VALUE (value = 0.0687306)

3264 NS
MI: ACrIVE /TESTfRELERROR (value = 0.0)

3408 NS
M: ACTIVE /TEST/VALUE (value = 0.310541)

3456 NS
MI: ACTIVE /TEST/RELERROR (value = 0.0)

3600 NS
M: ACTIVE /TEST/VALUE (value = -0.0589758)

3648 NS
Ml: ACTIVE /TEST/RELERROR (value = 6 .3 1665e-08)

3792 NS
M: ACTIVE /TEST/VALUE (value = 0.000124374)

3840 NS
Ml: ACTIVE /TEST/RELERROR (value = 1.3 3 382e-05)

3984 NS
M: ACTIVE /TEST/VALUE (value = -0.000907746)

4032 NS
M 1: ACTIVE /TEST/RELERROR (value = -0.0)

4176 NS
M: ACTIVE /TEST/VALUE (value = 0.0066361)

4224 NS
MI: ACTIVE /TEST/RELERROR (value = 0.0)

4368 NS
M: ACTIVE /TEST/VALUE (value = -.11466)

4416 NS
MI: ACTIVE /TEST/REL ERROR (value = -0.0)

4560 NS
M: ACTIVE /TEST/VALUE (value = 2.0128e-05)

4608 NS
MI: ACTVE /TEST/RELERROR (value = 9.03711e-08)

4752 NS
M: ACTIVE /TEST/VALUE (value = 0.0360449)

4800 NS
MI: ACTIVE /TEST/RELERROR (value = -7 .2346e-07)

4944 NS
M: ACTIVE /TEST/VALUE (value = 0.00191726)

4992 NS
Ml: ACTIVE /EST/RELERROR (value = 0.0)

5136 NS
M: ACTIVE [TEST/VALUE (value = -0.0154797)

84

5184 NS
Ml: ACTIVE ITEST/RELERROR (value = -1.20328e-07)

5328 NS
M: ACTIVE fTESTNALUE (value = -.54597)

5376 NS
Ml: ACTIVE /TEST/RELERROR (value = -0.0)

5520 NS
M: ACTTVE ITEST/VALUE (value = 0.0106245)

5568 NS
Ml: ACTIVE /TESTIRELERROR (value =0.0)

5712 NS
M: ACTIVE /TESTNALUE (value = -3.70337e-05)

5760 NS
Ml: ACTIVE iTESTIRELERROR (value = 1.96469e-07)

5904 NS
M: ACTIVE /TESTVALTJE (value = 0.231103)

5952 NS
Ml: ACTIVE ,TEST/RELERROR (value = 6.44783e-08)

6096 NS
M: ACTIVE ITESTNALUE (value = 0.0052199)

6144 NS
Ml: ACTIVE /TESTJRELERROR (value = 1.78418e-07)

6288 NS
M: ACTIVE /TESTNALUE (value = 0.839034)

6336 NS
Ml: ACTIVE iTEST/RELERROR (value = 7.10396e-08)

6480 NS
M: ACTIVE /TEST/VALUE (value = 0.0270926)

6528 NS
Ml: ACTIVE /TESTIRELERROR (value = 1.37502e-07)

6672 NS
M: ACTIVE /TEST/VALUE (value = 7.72364e-08)

6720 NS
Ml: ACTIVE /TEST/RELERROR (value = 0.0)

6864 NS
M: ACTIVE /TESTNALUE (value = 0.137487)

6912 NS
Ml: ACTIVE ITEST/RELERROR (value = 1.08382e-07)

7000 NS
Assertion FAILURE at 7000 NS in design unit STRUCTURAL from process ITEST/STOPCONTROL:

"Simulation done"
quit
ares[531: exit
ares[54 I:
script done on Mon Nov 18 20:08:10 1991

85

Appendix D -- Performance, Run lime and Loop Data

Table 2 -- Iteration Count

Subroutine i jk

EXSFLD 1,NX1 2,NY1 2,NZ1

EYSFLD 2,NX1 1,NY1 2,NZ1

EZSFLD 2,NX1 2,NY1 1,NZ1

IMXFLD 2,NX1 1,NY1 1,NZ1

HYSFLD 1,NX1 2,NY1 1,NZ1

HZSFLD 1,NX1 1,NY1 2,NZ1

RADEZX ______ 3,NY1-1 2,NZ1-1

RADEYX _______ 2,NY1-1 3,NZ1-1

RADEZY 3,NX1-1 2,NZ1-1

RADEXY 2,NX1-1 3,NZ1-1

RADEXZ 2,NX1-1 3,NY1-1

RADEYZ 3,NX1-1 2,NY1-1

RADHXZ 3,NX1-1 3,NY-3

RADHYX ________ 3,NY1-1 3,NZ-3

RADHZY 3,NX-3 3,NZ1- 1

RADBXY 3,NX1-1 ________ 2,NZ-2

RADHYZ 2,NX-2 3,NY1-1

RADHZX ________ 2,NY-2 3,NZ1-1

Note that for Table 2, all timing runs for this work were made with NX=NY=NZ=66 and with

NX1=NY1=NZ1=65. Each radiation subroutine ("RADXXX") performs two boundary point

evaluations.

86

Table 3 -- Run Times of All Codes

CODE VERSION TIME

ORIGINAL 137

MODIFIED CELL EQUATIONS 172

MODIFIED BOUNDARY EQUATIONS 134

ALL EQUATIONS MODIFIED 171

VECTORIZED CELL EQUATIONS 28

VECTORIZED BOUNDARY EQUATIONS 58

ALL EQUATIONS VECTORIZED 22

NO CELL OR RADIATION EQUATIONS 15

ALL BUT CELL EQUATIONS 24

ALL BUT RADIATION EQUATIONS 127

Table 4 -- Cost/Performance Data

cost number of cells time

Cray Y-MP/8 $30 Million 3,833,000 220 secs

Sun SPARC2 $20,000 287,500 13,767 secs

Wavetracer $400,000 1,049,000 1,530 secs

16 node FDTD engine w/ $340,000 4,600,000 2,220 secs
host

87

Appendix E -- Fully Modified Code

This listing shows the differences (UNIX "duff' command) between the vectall.f file (which

simulates the presence of the FDTD chip design and the FPASP boundary point evaluator,

both operating as vector processors) and the original fdtdd.f file. New variables used in

assigmnents are prefixed "FDTDSTUDY".

127a128
> CALL BUILD
1194c1195
< C Subroutine EXSFLD modified

1198d1198
< IFDTDSTUDY=NX1

1203c1203
<C DO 10 I=1,NX1

> DO 10 I=1,NX1
1212c1212
< C FREE SPACE -- ~ modified here!!

>C FREE SPACE
1214,1222c1214,1215
< C110 EXS(I,J,K)=EXS(I,J,K)+(HZS(I,JK)-HZS(I,J-1 ,K))*DTEDY
<C $ -(HYS(IJK)-HYS(I,J,K-1))*DTEDZ

"110 FDTDSTUDY1=EXS(1,JK)
" FDTDSTUJDY2=HZS(,JK)
" FDTD_-STUTDY3=HZS(1,J-1,K)
" FDTDSTEJDY4=DTEDY
" FDTD_-STUDY5=HYS(1,JK)
" FDTDSTUJDY6=HYS(1,J,K-1)
" FDTDSTUDY7=DTEDZ

*110 EXS(I,J,K)=EXS(I,J,K)+(HZS(I,J,K)-HZS(I,J1,K))*DTEDY
* $ -(HYS(I,J,K)-HYS(I,J,K- 1))*DTEDZ

1263c1256
<C Subroutine EYSFLD modified

1267d1259
< IFDTDSTTJDY=NX1-1

1272c1264
<C DO 10 I=2,NX1

> DO 10 I=2,NXI
1281c1273
< C FREE SPACE -- ~modified here!!!

> TREE SPACE
1283,1291c1275,1276
<C 110 EYS(I,JK)=EYS(I,JK)+(HXS(I,J,K)-HXS(,J,K-1))*DTEDZ
<C $ -(HZS(I,J,K)-HZS(I-1,JK))*DTEDX
" 110 FDTDSTDY=EYS(2,JK)
" FDTDSTDY2=XS(2,JK)

" FDTD-STUDY3=HXS(2,J-1,K)
" FDTDSTUDY4=DThDZ
" FDTD_-STUDY5=TIZ,-2,JX12
" FDTD_-SITTDY6=HZS(2,JK-1)
" FDTDSTUJDY7=DTEDX

88

>110 EYS(I,J,K)=EYS(I,J,K)+(HXS(I,J,K)HXS(IJ,K-1))*DTEDZ
> $ -(HZS(I,J,K)-HZS(I-1,JK))-DTEDX

1332c1317
<C Subroutine EZSFLD modified

1336d1320
<IFDTDSTUJDY=NX1-1

1341c1325
<C DO 10 I=2,NX1

> DO 10 I=2,NX1
1349a1334
> C FREE SPACE
1351,136161336,1337
< C FREE SPACE -- ~modified here !!!
< C
< C 110 EZS(I,J,K)=EZS(IJK)+(H-YS(I,JK)lHYS(I-1,J,K))*DTEDX
< C $ -(HXS(IJ,K)IXS(I,J1,)*DTEDY
" 110 FDTDSTUDY=EZS(2,J,K)
" FDTDSTIJDY2=IYS(2,J,K)

" FDTD_-SThTDY3=HYS(2,J-1,K)
" FDTDSTUDY4=DTEDX

" FDTD_-STUDY5=HXS(2,JK)
" FDTDSTUDY6=HIIXS(2,J,K-1)
" FDTDSTUDY7=DTEDY

>110 EZS(I,J,K)=EZS(I,J,K)+(HYS(I,J,K)-HYS(I-1 ,J,K))*DTEDX
> $ -(HXS(I,J,K)HXS(I,J1,K))*DTEPDY
1774c1750
<C Subroutine HXLSFLD modified

1778d1753
< IFDTDSTUDY=NX1-1
178361758
<C DO 10 I=2,NX1

> DO 10 1=2,NX1
179261767
< C NON-MAGNETIC MATERIAL -- ~modified code!!

> C NON-MAGNETIC MATERIAL
1794,1802c1769,1770
< C 105 HXS(I,JK)=HXS(I,J,K)-(EZS(I,J+1,K)EZS(I,J,K))*DTMY
<C $ +(EYS(I,J,K+1)-EYS(I,J,K))*DTMDZ
" 105 FDTDSTUDY1=IXS(2,JK)
" FDTDSTUDY2=EZS(2,J+1,K)
" FDTD-STJDY3=EZS(2,JK)
" FDTDSTUDY4=DTMDY
" FDTD -STUDY5=EYS(2,JK+1)
" FDTD-STUDY6=EYS(2,JX)
" FDTDSTUTDY7=DTMDZ

> 105 HXS(IJ,K)=HXS(I,JK)-(EZS(I,J+1 K)-EZS(I,JK))*DTMDY
> $ +(EYS(I,JK+1)-EYS(I,JK))*DTMDZ
183761805
< C Subroutine HYSFLD modified

1841id1808
< IFDTDSTUTDY=N-X1

1 846c1813
< C DO 10 I=1,NX1

> DO 10 I=1,NX1
1855c i S22
< C NON-MAGNETIC MATERIAL -- *S*modified code !!!!

89

>C NON-MAGNETIC MATERIAL
1857,1865cl824,1825
< C 105 HYS(I,J,K)=HYS(I,J,K)-(EXS(I,J,K+ 1)-EXS(I,J,K))*DTMDZ
<C $ +(EZS(I+1,J,K)-EZS(I,J,K))*DTMT)X

"105 FDTDSTUDYI=TH-YS(1,J,K+1)
" FDTD STCJDY2=EXS(1,J,K)
" FDTDSTUDY3=EXS(1,J,K)
"F DTD STUDY4=DThffZ
"F'DTDSTLUDY5=EZS(2,JK)
" FDTD -STJDY6=EZS(1,JK)
" FDTD-STJDY7=DTMDX

>105 HYS(I,JK)=HYS(I,J,K)-(EXS(I,J,K+1)-EXS(I,JK))*DTMDZ
> $ +(EZS(I+1,J,K)-EZS(I,J,K))*DTMDX

1900c1860
< C Subroutine HZSFLD modified

1904d 1863
< IFDTDSTUDY=NX1

1909c1868
< C DO 10I=1,NX1

> DO 10 I=1,NX1
1918c1877
< C NON-MAGNETIC MATERIAL -- ~modified code !!!

> C NON-MAGNETIC MATERIAL
1920,1928cl879,1880
< C 105 HZS(I,J,K)=H-ZS(I,J,K)-(EYS(1+1,J,K)-EYS(I,J,K))*DTAMX
<C $ +(EXS(I,J+1,K)-EXS(I,J,K))*DTMDY

"105 EDTDSTrJDY1=HZS(1,J,K)
" FDTDSTU-DY2=EYS(2,J,K)

" FDTD_-STUDY3=EYS(1,J,K)
" FDTDSTtJDY4=DTMDX

" FDTD -STUDY5=EXS(1,J41,K)
" rDTI)STUrDY6=EXS(1 ,J,K)
" PDTD_STDY7=DTMDY

>105 HZS(.I,J,K)=HZS(I,J,K)-(EYS(I+1,JK)-EYS(IJK))*DTMIDX
> $ +(EXS(I,J+1,K)-EXS(I,J,K))*DTAMY

1963c1915
< C Subroutine RADHXZ modified

1989,199ldl940
< C---------------********** modified here !!!!
< C

< IFDTDSTUDY=NX1-3
1993,2017c1942,1954
< C DO 102 1=3,NXI-1
< C HXS(I,J,1)=-11XSZ2(I,J,2)+CZD*EIXS(I,J,2)+HXSZ2(IJ,1))
< C 2+CZZ*(HXSZ1(,J,1)+HXSZ1(I,J,2))
< C 3+CZFXD*(HXSZ1(I+1,J, 1)-2.*HXSZ1(I,J,1)+HEXSZ1(I-1 J 1)
< C 4 +BXSZ1(I+ lJ,2)2.*HXSZI(I,J,2)+HXSZ1(I-1,J,2)
" C 3+CZFYD*(HXSZ(IJ+1, 1)-2.*HXSZ1(IJ,1)+BXSZ1(IJ-1,1)
< C 4 +HXSZ1(I,J+,2)-2.*HXSZ(I,J,2)+HXSZ1(,J-1,2))
< C HXS(IJNZ1)=-HXSZ2(,J,3)+CZJ*(BXS(I,JNZ-2)+XSZ2(IJ,4))
< C 2+CZZ*(HXSZ1(I,J,4)+HXSZ1(,J,3))
< C 3+C7ZFXD*(HXSZ1(I+1 ,J,4)2.*HXSZI(I,J,4)+HXSZ(I-1,J,4)
< C 4 +HXSZ1(I+ 1,J,3)2.*HXSZ1(IJ,3)+HXSZ1(1 1,J,3))
< C 3+CZFYD*(XSZ(J+1,4)2.*LXSZ(I,J,4)+HXSZ(IJ-,4)
< C 4 +HXSZ1(1,J+ 1,3)-2.*HXSZ1(1,J,3)+HXSZ1(I,J-1,3))

" FDTD-STUJDY =XS(3,J,2)
" FDTDSTJDY2=XSZ2(3,J,1)
" FDTD-STJDY3=XSZ1(2,J,l)

FDTD_-STUDY4=XSZ(3,J+1,1)
" FDTDSTUDY5=XSZ1(3,J-1,1)
" F'DTD_-STIJDY6=dXSZ2(3,J.3)
" FDTDSTTDY7=HXS(3,J,1)

90

" FDTD_-SrUDY8=HXs(3,J,NZ-2)
" FDTDSTUDY9=HXS(3,J,1)
" FDTD_-STUDY 1O=BXSZ1(2,J,3)
" FDTDSTIJDY11=HXSZ1(3,J+1,3)
" FDTDSTrIDY12=HXsZ1(3,J-1,3)

* DO 102 I=3,NX1-1
* HXS(IJ,1)=-HXSZ2(I,J,2)+CZD*(HXS(I,J,2)+HXSZ2(I,J,1))
* 2+CZZ*(HXSZ1(I,J,1)+HXSZ1(I,J,2))
* 3+CZFXD*(HXSZ1(1+1,J,1)-2.*HXSZ1(I,J,1)+HXSZ1(I-I J 1)
* 4 +HXSZ1(I+1,J,,2)-2.*BXSZ1(I,J,2)+HXSZ1(I-1,J,2)

* 4 +HXSZ1(I,J+1,2)-2.*HXSZ1(I,J,2)+HXSZ1(I,J-1,2))
HXS(I,JNZ1)=-HXSZ2(I,J,3)+CZU(1IXS(IJNZ-2)+HXSZ2(I,J,4))
* 2+CZZ*(HXSZ1(I,J,4)+HXSZ1(I,J,3))
* 3+CZFXD*(HXSZ1(I+1,J,4)-2.*HXS~zl(I,J,4)+HXSZ1(-1 J 4)
* 4 +HXSZ1(I+1,J,3)-2.*HiXSZ1(I,J,3)+HXSZI(I-1,J,3)
* 3+CZFYD*(HXSZ1(I,J+1,4)-2.*HXSZ1(I,J,4)+HXSZ1(I,J-1,4)
* 4 +HXSZ1(TJ+ 1,3)-2.*HXSZ1(I,J,3)+H-XSZ1(I,J-1,3))

2038c1975
< C Subroutine RADHYX modified

2064,2067d2000
< C ------------ modified here!.!!!
< C
" IFDTDSTEJDY=NY1-3
" JFDTD_ STJDY=NY1
2069,2093c2002,2014
"<C DO 102 J=3,NY1-1
"<C HYS(1,JK)=-HYSX2(2,J,K)+CXD*(HIYS(2,JK)+HYSX2(1,J,K))
"<C 2+CXX*(HYSX1(1,J,K)+HYSX1(2,JK))
"<C 3+CXPYD*(HYSX1(1,J+ 1,K)-2.*HYSX1(1,JK)-.HYSX1(1,J-1,K)
"<C 4 +HYSX1(2,J+1,K)-2.*HYSX1(2,J,K)+HYSX1(2,J-1,K))
"<C 3+CXFZD*(HYSX1(1,J,K..1)-2.*HYSX1(1,J,K)+HYSX1(1,j,K-1)
< C 4 +HYSX1(2,J,K+1)-2.*HYSX1(2,J,K)+HYSX1(2,J,K-1))
"<C HYS(NX1,JK)=-HYSX2(3,J,K)+CXU*(HYS(NX-2,JK)+HYSX2(4,J,K))
"<C 2+CXX*(HYSX1(4,J,K)+HYSXI(3,JK))
"<C 3+XY*HS14J1K-.HYX(,,)HS14J1K
< C 4 +HYSX1(3,J+1,Y)-2.*HYSX1(3,J,K)+H-YSX1(3,J-1,K))
"<C 3+CXFZD*(HYSX1(4,J,K+1)-2.*HYSX1(4,JK)+HYSX1(4,JK-1)
< C 4 +HYSX1(3,JK41)-2.*HYSX1(3,J,K)+H-YSX1(3,J,K-1))
" FDTD_-STIJDY1=HYS(2,3,K)
" FDTDSTUTDY2=HYSX2(1,3,K)
" FDTDSTUDY3=HYSX1(1,2,K)
" FDTD_-STUJDY4=HYSX1(.L,3,K+1)
" FDTD_-STUTDY5=HYSX1(1,3,K-1)
". FDTD -STrJDY6=HYS(1,3,K)
" FDTDSTUDY7=HYSX2(3,3,K)
" FDTDSTUDY8=HYS(NX-2,3,K)

" FDTDSTEJDY9=HYS(NX1,3,K)
" FDTD_-STUDY 1O=HYSX1(3,2,K)
" FDTDSTUDY11=HYSX1(3,3,K+1)
" FDTDSTTJDY12=HYSX1(3,3,K-1)

* DO 102 J=3,NY1-1
* HYS(1,J,K)---1YSX(2,J,K)4+CXD*(HYS(2,J,K)+HYSX2(1,JK))

* 2+CX-X*(HYSX1(1,J,K)+HYSX1(2,JK))
3+CXFYD(HYSX1(1,J+1,K)-2.*HYSX1(1,J,K)+HYSX1(1,J-1,K)
* 4 +HYSX1(2,J+ 1,K)-2.*HYSX1(2,J,K)+HYSX1(2,J-1,K))
* 3+CXFZD*(HYSX1(1,JK+-,2.*HYSX1(1,JK)+HYSX1(1,J,K-1)
* 4 +HYSX1(2,J,K+1)-2.*HYSX1(2,JK)+HYSX1(2,JK-1))
HYS(N-Xl,JK)=-HYSX2(3,JK)+CXU(HYS(NX-2,J,K)+H-YSX2(4,J,K))
* 2+CXX*(HYSX1(4,.JK)+HYSX1(3,J,K))

* 3+CXFYD*(HYSX1(4,J+1,K)-2.*HYSX1(4,JK)+HYSX1(4,J-1,K)
* 4 .,HYSXI(3,J+1,K)-2.*HYSX1(3,JK)+HYSX1(3,J-1,K))

3+CXFZD(HYSX1(4,JK+1)-2.*HYSX1(4,JK)+HYSX1(4,JK-1)
* 4 +HYSX 1(3,JK+1)-2.*HYSX1(3,JK)+HYSX1(3,JK-1))
21 10d2030
< JFDTDSTUDY=1

91

2115c2035
< C Subroutine RADH-ZY modified

2141d2060
< IFDTDSThDY=NX-5

2143,2 167c2062,2074
"<C DO 102 I=3,NX-3
< C HZS(I, 1K)=-HZSY2(I,2,K)+CYD*(HZS(I,2,K)+HZSY2(I,1,K))
< C 2+CYY*(HZSY1(I,1,K)+HZSY1(I,2,K))
< C 3+CYFXD*(HZSY1(I+1,1,K)-2.*HZSY1(I, 1,K)+HZSY1(I-1 ,1,K)
< C 4 +.HZSY1(I+1,2,K)-2.*HZSY1(1,2,K),HZSY1(I-1,2,K))
"<C 3+CYFZD*(HZSY1(I,1,K+1)-2.*HZSY1(I,1,K)+HZSY1(I,1,K-1)
< C 4 +HZSY1(I,2,K+1)-2.*HZSY1(I,2,K)+HZSY1(I,2,K-1))
< C HZS(I,NY1,K)=-HZSY2(I,3,K)+CYrJ*(HZS(INY-2,K)+HZSY2(I,4,K))
< C 2+CYY*(HZSY1(I,4,K)+HZSYI(I,3,K))
< C 3+CYFXD*(HZSY1(I+1,4,K)-2.*HZSYI(I,4,K)+d{ZSY1(I-1,4,K)
< C 4 +HZSY1(I+1,3,K)-2.*HZSYI(I,3,K)+HZSY1(I-1,3,K))
< C 3+CYFZD*(HZSY1(I,4,K+1)-2.*HZSY1(I,4,K)+HZSY1(I,4,K-1)
< C 4 +HZSY1(I,3,K+1).AHZSY1(I,3,K)-dIZSY1(I,3,K-1))

" FDTD_-STUDY1=HZSY2(3,1,K)
" FDTDSTDY2=HZSY1(2,1,K)
" FDTD_-STUTDY3=HZSY1(3,1,K+l)
" FDTDSTIJDY4=HZSY1(3,1,K-1)
" FDTD_-STUDY5=HZS(3,1,K)
" FDTDSTIJDY6=HZSY2(3,3,K)
" FDTD_-STUJDY7=HZS(3,NY-2,K)
" FDTDS TUDY8=HZSY1(2,3,K)
" Fn=DSTtJDY9=HZSY1(4,3,K)
" FDTDSTUDY1O=HZSY1(3,3,K+1)
" FDTD_-STUDY11=1{ZSY1(3,3,K-1)
" FDTDSTUDY12=HZS(3,NY1,K)

* DO 102 I=3,NX-3
* HZS(I, 1,K)=-HZSY2(I,2,K)+CYD*(H-ZS(I,2,K)+HZSY2(I,1,K))
* 2+CYY*(HZSY1(I,1,K)+HZSY1(1,2,K))
3+CYFXD(HZSY1(I+1 ,1,K)-2.*HZSY1(I,1 ,K)+HZSYI(1-1,1,K)
* 4 +HZSY1(I+1,2,K)-2.*HZSY1(I,2,K)+HZSYI(I-1,2,K))
3+CYFZD(HZSY1(I,1,K+1)-2.*HZSY1(I,1,K)+HZSY1(I,1,K-1)
* 4 +HZSYI(T,2,K+1)-2.*HZSY1(I,2,K)+HZSY1(I,2,K-1))
HZS(I,NY1,K)=-HZSY2(I,3,K)+CYU(HZS(INY-2,K)+HZSY2(I,4,X))
* 2+.CYY*(HZSY1(I,4,K)+HZSY1(I,3,K))
3+.CYFXiD(HZSY1(I+1 ,4,K)-2.*HZSY1(I,4,K)+HZSY1(I-1,4,K)
* 4 +HZSY1(I+1 ,3,K)-2.*HZSY1(I,3,K)+HZSY1(I1 1,3,K))
* 3+CYFZD*(HZSY1(I,4,K+1)-2.*HZSY1(,4,K)+HZSY1(I,4,K-l)
* 4 +HZSY1(I,3,K+1)-2.*HZSY1(I,3,KW+HZSYI1,3,K- 1))

2188c2095
< C Subroutine RADHXY modified

2214,2216d2120
< C---------------~ modified here!!!!!!!
< C
< IF'DTDSTUTDY=NX1-3
22 18,2242c2122,2134
< C DO 102 I=3,2NX1-1
< C HXS(I,1,K)=-HXSY2(I,2,K)+CYD*(HXS(1,2,K)+HXSY2(I,1,K))
"<C 2+CYY*(HXSY1(I,1,K)+HXSY1(1,2,K))
" C 3+CYFXD*(BXSY1(I+1,1,K)-2.*HXSY1(I,1 ,K)+HXSY1(I-1,1,K)
< C 4 +HXSY1(I+ 1,2,K)-2.*HXSYI(I,2,K)+BXSY1(I-1,2,K))
< C 3+CYFZD*(HXSYI1,1,K+1)-2.*HXSY1(I,1,K)+HXSY1(I,1 ,K-1)
< C 4 +HXSYI1,2,K+1)-2.*HXSY1(I,2,K)+HXSY1(I,2,K-1))
< C HXS(INY1,K)=-BXSY2(I,3,K)+CYU*(HXS(INY-2,K)+HXSY2(I,4,K))
"<C 2+CYY*(HXSY1(I 4,K)+HXSYI(I 3,K))
"<C 3+CYFXD*(HXSY1l(I+1,4,K)-2.*AXSY1(I,4,K)+HXSY1(I-1,4,K)
"<C 4 +IIXSY1(I+ 1,3,K)-2.*BXSY1(I,3,R)+HXSY1(I-1,3,K))
"<C 3+CYFZD*WIXSY1(I,4,K+1)-2.*HXSY1(I,4,K).IHXSY1(I,'4 K- 1)
"<C 4 +HXSY1(I,3,K+1)-2.*HXSY1(T,3,K)+HXSY1(I,3,K- 1))
" FDTD_-STUDY1I=HXSY2(3,1,K)

" FDTDSTUDY2=HXSY1(2,1,K)

92

" FDTD_-STUDY3=HXSY1(3,1,K+1)
" FD'rD STUDY4=HXSY1(3,1,K-1)
" FDTD -STUDY5=BXS(3,1,K)
" FDTDSTUTDY6=HXSY2(3,3,K)
" FDTD_-STUDY7=]HXS(3,NY-2,K)
" FDTD STUDY8=HXSYI(4,3,K)
" FDTD -STUDY9=HXSYI(2,3,K)
" FDTD-STUTDY10=HXSY1(3,3,i(+1)
" FDTD_-STIJDY11=HXSY1(3,3,K-1)
" FDTDSTUDY12=HXS(3,NY1,K)

* DO 102 I=3,NX1-1
* HXS(I,1,K)=-HXSY2(I,2,K)+CYD*(HXs(I,2,K)+HXSY2(I,1,K))
* 2+CYY*(B~YY(I,1,K)+HXSY1(I,2,K))

* 4 +HIXSY1(I+1,2,K)-2.*HXsY1(I,2,K)+HXSY1(I-1,2,K))

* 4 +HXsY1(I,2,K+1)-2.*BXsY1(I,2,K)+HXSY1(I,2,K-1))
HXS(INY1,K)=-HXSY2(I,3,K)+CYtJ(HXS(INY-2,K)+BXSY2(I,4,K))
* 2+CYY*(BXSY1(I,4,K)+HXSY1(I,3,K))
* 3+C'YFXD*(HXSY1(I+1,4,K)-2.*HXCSY1(I,4,K)+HXSYI(I-1,4,K)
* 4 +HXSY1(I+1,3,K)-2.*HXSY1(I,3,K)+IHXSY1(I-1,3,K))
* 3+CYFZD*(HXSY1(I,4,K+1)-2.*HXSY1(I,4,K)+H-XSY1(I,4,K-1)
* 4 +HXSY1(I,3,K-. 1)-2.*HXSY1(I,3,K)+HIXSY1(I,3,K-1))

2263c2155
< C Subroutine RADHYZ modified

2289,2291d2180
< C ---------- ~ modified here !!!!!!!!
< C

< IFDTDSTUDY=NX-3
2293,23 17c2182,2194
"<C DO 102 I=2,NX-2
"<C HYS(IJ,1)=-HYSZ2(,J,2)+C2D*(HIYS(I,J,2)+HYSZ2(I,J,1))
"<C 2+CZZ*(HIYSZI(I,J,1)+HYSZl(I,J,2))
"<C 3+CZFXD*(HlYSZI(I+1,J,1)-2.*HIYSZ1(I,J,1)+HYSZ1(I.1,J,1)
"<C 4 +HYSZ1(1+1,J,2)-2.*HYSZ1(I,J,2)+HYSZ1(I-1,J,2))
"<C 3+CZFYD*(HYSZ1(I,J+1,1)-2.*HYSZ1(IJ,1)+HYSZ1(I,J- 1,1)
"<C 4 +HYSZ1(1,J,1,2)-2.*HYSZ1(I,J,2)+HYSZ1(I,J-1,2))
< C HYS(I,JNZ1)=-HYSZ2(I,J,3)+CZU*(HYS(I,JNZ-2)+11YSZ2(I,J,4))
"<C 2+CZZ*(HYSZ1(I,J,4)+HYSZ1(I,J,3))
< C 3+CZFXID*(HYSZ1(I+ 1,J,4)-2.*HYSZ 1(IJ,4)+HYSZ1(I-1,J,4)
"<C 4 +HYSZ1(I+ 1 J,3)-2.*HYSZ1(IJ,3)+HYSZ1(I-1,J,3))
< C 3+CZFYD*(HYSZI(I,J,+1,4)-2.*HYSZ1(I,J,4)+HYSZ1(I,J- 1,4)
"<C 4 +HYSZ1(I,J+1,3)-2.*H-YSZ1(I,J,3)+HYSZ1(I,J-1 ,3))

" FDTD_-STUTDY1=HYSZ2(2,J,1)
" FDTDSTUDY2=HYSZ1(1,J,1)

" FDTD_-STUJDY3=HYSZ1(2,J+1,1)
" FDTDSTLJDY4=HYSZ1(2,J-1,1)
" FDTD_-STIJDY5=HYS(2,J,1)
" FDTDSTTDY6=HYSZ2(2,J,3)

" FDTD_-STLTDY7=HYS(2,JNZ-2)
" FDTD_-STLTDY8=HYSZ1(2,J,3)

" FDTDSTLDY9=HYSZ1(1,J,3)
" FDTD_-STUDY 10=H-.YSZ1(2,J+ 1,3)
" FDTDSTUJDY11=H-YSZ1(2,J-1,3)
" FDTDSTIJDY12=HYS(2,J,NqZ1)

* DO 102 I=2,NX-2
* 2+CZZ(JHYZ(I,J,)+YZ(,2)) +YS2(,J1
* 4 +HYSZ(I1J,)2HYSZ(I,J,2)+HS1I),,)

3+CZFYD(HYSZ1(1,+1,,1)-2.*I-IYSZ1(I,J,1)+HYSZl1I,-1 j,1)
* 4 +HYSZ1(I+,J1,2)-2.*HYSZ1(I,J,2)+HYSZ1(I-,J1,2))

IIYS(I,J,NZ1)=-HYSZ2(I,J,3)+CZUJ(HYS(IJ,NZ-2)+HYSZ2(1,J,4))
2+CZZ(HIYSZ(IJ,4)+HYSZ1(I,J,3))
3+CZFXD(IIYSZ1(I+ 1,J,4)-2.*HYSZ1(I,J,4)+1{YSZ1(I 1 ,J,4)
*4 +HYSZ1(I+1 ,J,3)-2.*llYSZ1(IJ,3)+HYSZ1(I1 1,J,3))

93

* 3+CZFYD*(HYSZ1(I,J+i1,4)-2.*HYSZ1(I,J,4)+HYSZ1(I,J- 1,4)
* 4 +HYSZ1(I,J+ 1,3)-2.*HYSZ1(I,J,3)+HYSZ1(I,J-1,3))

2338c2215
< C Subroutine RADHZX modified

>0C
2364,236702240
< C------------------------- modified here !!!
< C

" IFDTDSTUDY=N-Y-3
" JFDTDSTUDY=NY
2369,2393c224f2,2254
"<C DO 102 J=2,NY-2
"<C H-ZS(1,J,K)=-HZSX2(2,J,K)+CXD*(HZS(2,J,K)+HZSX2(1,J,K))
"<C 2+CXX*(HZSX1(1,J,K)+HZSX1(!2,J,K))
"<C 3+CXFYD*(HZSX1(1,J+ 1,K)-2.*HZSX1(1,J,K)+HZSX1(1,J-1 ,K)
< C 4 +HZSX1(2,J+1,K)-2.*HZSX1(2,J,K)IHZSX1(2,J-1,K))
"<C 3+CXFZD*(HZSX1(1,J,K+1)-2.*HZSX1(1,JK)+HZSX1(1,JK1)
< C 4 +HZSX1(2,J,K+,1)2.*HZS1(2,JK)4{ZSX1(2,J,K-1))
"<C HZS(NX1,JK)=-I-ZSX2(3,J,K)+CXU*(HZS(NX-2,J,K)+HZSX2(4,JK))

< C 3+.CXFYD*(HZSXI(4,J+ 1,K)-2.*HZSXI(4,JK)+HZSX1(4,J-1 ,K)
" C 4 +HZSX1(3,J+1,K)-2.*HZSX1l(3,J,K)+HZSX1(3,J.1,K))
< C 3+CXFZD*(HZSX1(4,J,K+1)-2.*HZSXI(4,J,K)+HZSXI(4,J,K-1)
< C 4 +,HZSX1(3,J,K+1)-2.*HZSX1(3,J,K)+HZSX1(3,J,K-1))

" FDTD_-STUDY 1=HZSX2(1,2,K)
" FDTDSTUTDY2=HZSX1(1,1,K)
" FDTD_-STUDY3=HZSX1(1,2,K+1)
" FDTDSTIJDY4=HZSX1(1,2,K-1)
" FDTD_-STrrJDY5=HZS(1,2,1)
" F'DTDSTUDY6=HZSX2(3,2,K)

" FDTD_-STUTDY7=HYS(NX-2,2,K)
" FDTDSTUDY8=HZSX1(3,1,K)

" FDTD_-STIJDY9=HZSX1(3,3,K)
"FDTDSTrJDY10=HZSX1(3,2,K+l)
" FDTD_-STUJDY 11=HZSX1(3,2,K- 1)
"FDTDSTUTDY12=HZS(NX1,2,K)

" DO 102 J=2,NY-2
" HZS(1,JK)=-HZSX2(2,J,K)+4CXD*(HZS(2,J,K)+HZSX2(1,JK))

2.+CXX*(HZSX1(1,J,K)-d{ZSX1(2,J,K))
* 3+CXFYD*(HZSX1(1J+ 1,K)-2.*HZSX1(1,J,K)eHZSX1(1,J-1,K)
* 4 -4-ZSX1(2,J+ 1,K)-2.*HZSX1(2,J,K)+HZSX1(2,J- 1,K))
3+CXFZD(HZSX1(1,J,K-.1)-2.*HZSX1(1,J,K)+HZSX1(1,JK-1)
* 4 +HZSX1(2,JK-.1)2.*HZSX1(2,J,K)+HZSX,1(2,J,K-1))
* HZS(NX1,J,K)=-HZSX2(3,J,K)+CXU*(HZS(NX-2,JK)+HZSX2(4,J,K))
* 2+CXX*(HZSX1(4,J,K)+H-ZSX1(3,JK))

* 3+CXFYD*(HZSX1(4,J+ 1,K)-2.*HZSX1(4,JK)+iHZSX1(4,J-1 ,K)
* 4 +HZSX1(3,J+ 1,K)-2.*1{ZSX(3,J,K)+HZSX1(3,J- 1,K))
* 3+CXFZD*(HZSX1(4,J,K+4)-2.*HZSX1(4,J,K)+HZSX1L *,J,K-1)
* 4 +HZSX1(3,JK+1)-2.*HZSX1(3,J,K)+HZSX1G3,J,K-1))
2410d 2270

< JEDTDSTEJDY=1

94

Appendix F -- Radiation Boundary Condition Microcode

TITLE: boundary

VERSION: 1.0

DATE: 11 Nov 91

AUTHOR: Raley Marek

PURPOSE: Computes the value of the 2nd order Mur boundary
equation for the method of finitr -difference
time domian. Using double precision math, this
code achieves roughly 50 MFLOPS when operating
on long vectors of data.

REGISTERS: R1, R2, R4, R5, R7, R8, R9, R11, R12, R13,
ACCA, ACCB, MBR. MAR, STAT

POINTERS: APT, BPT, CPT, DPT, AIN, BIN, CIN, DIN, IN3

LINES: 33

LANGUAGE: FPASP Microcode Assembler Version 4.7

HISTORY: 11 Nov 91 - Code written for thesis - jrm

1 Clear the MAR and R1 upper.

XOR precharged buses (w/ no drivers so both buses all ones).
This roads zeros into shifter. Shift put 1 in upper bit, so
RI lower has all zeros except for highest order bit.

RI=CU R1=CL XORL GNDCU SRIL MAR=CU;

2 MBR upper = START ADDR

MBR lower = ITERATIONS

AIN, CIN = 2

Floating point unit set to double precision by flipped R1.

Increment & left shift R1 upper which loads "2' into AIN & CIN.

..

AU=R1 BU=R1 BL=R1 CTIE FLIPB MBR=D FP+LDF INCU SLOU AIN=CU
CIN=CL MAR+2 READ BACT;

95

3 MAkR,BPT=STAI4?

IN3 = -(ITERAYJIONS)

AU=MBR AL=MBR BPT=CU 1N3=CL MOVNU NEGAL PASSU PASSL MAR=CU;

4 MBR =K1

BIN, CIN = 10 (ten)

CTIE MBR=D MOVNU PASSU BIN=CIU DIN=CL MiAR+2 READ) BACT ILZJJ
#6000000000001010;

5 MBR =K2

R7 =K1

BPT =START +10

CD C=NMR R7=CU R7=CL MBR=D BPT+B MAiR+2 READ BACT;

6 MBR =K3

R1= 6

R8 =K2

BPT =START +20

CD C=MBR RS=CU R8=CL MBR=D BPT+B MARh-2 READ BACT;

7 MBR lower=IUP

MBR upper =DOWN

R9 =K3

BPT = START + 22

BU=MBR BL=MBR CD C=MBR R9=CU R9=CL MBR=D BPTiA
MAR+2 READ BACT;

96

8 MBR lower = OUT

APT = UP

CPT =DOWN

CD C=NMR APT=CU CPT=CL MBR=D MAR+2 READ BACIP,

9 MBR =Eii(Oj-1)

DPT =DOWN

BPT START + 24

CD C=NMR DPT=CL MBR=D BPT+A MAiR+2 READ BACT;

10 MBR =En(1,j-1)

ACCB = En(Oj-1)

BU=MBR BL=MBR MBR=D ACCB=BBUS MAR+2 READ BACI',

11 Ri = En(0,j)

BU=MBR BL=MBR R1=D FP++ a=ACCB b=BBUS MARh-2 READ BACTL,

12 R2 =En(lj)

R2=D MAR+2 READ BAACT;

13 MBR = En+I(1j)

ACCA = En(0,j-1) + En(lj-1)

BU=R2 BL=R2 CD C=R1 MBR=D FP++ a=CBUS b=BBUS ACCA=FP+
MAR+2 READ BACT;

97

14 RI = En- 1(O0j)

ACCB = En+1(1,j)

BU=MBR BL=MBR Rl=D ACCB=BBUS MAR+2 READ BACT-,

15 R2 = En-l(1,j)

ACCB = En(Oj) + En(1,j)

MA4R = UP

AU=R8 AL=R8 BU=FP+ BL=FP+ CD C=R1 R2=D FP* FP++ a=CBUS b=ACCB
ACFP+B ACCB=FP+ MAR=E E=APT READ BACT;,

16 Ri = En(Oj,k+1.5)

ACCB =En-1(1,j)

R4 = En(Oj)+En(lj)

BU=R2 BL=R2 CD C=FP+ R4=CU R4=CL R1=D BCFP+B ACCB=BBUS MAIR+2
READ BACT;,

17 R2 = En(1,j,k+1.5)

ACCB = En+l(1,j) + En- 1(Oj)

APTr= UP +10

CPT =DOWN+ 10

MA4R = DOWN

CD C=FP* R2=D FP-- a=CBUS b=ACCB ACCB=FP+ APT+B CPT+D MIAR=E
E=CPT READ BACT

18 R = En(lj,k-.5)

BU=Rl BL=R1 CD C=R2 Rl=D FP++ a=CBUS b=BBUS MAR+2 READ BAC1',

98

19 R2 = En(,k-.5)

MAR = START424

R5 = K2*[En(j)+En(li)] - En-l(1,j)

AU=R7 AL=R7 BU=FP+ BL=FP+ CD C=FP+ R5=CU R5=CL R2=D FP* BBFP+C
MAR=E E=BPT READ BACL',

20 Ri = En(0,j~l)

BPT = START + 26

ACCB = En(Ojik+1.5) + En(1,j,k+1.5)

BU=R1 BL=R1 CD C=R2 R1=D FP++ a=CBUS b=BBUS ACCB=FP+ BPT+A
MAR+2 READ BACT;,

21 R2 = En(0,j+1)

ACCA = Kl * En-1(1,j) + En+l(0,j) I

BPT = START + 28

R2=D FP++ a=ACCA b=ACCB ACCA=FP* BPT+A MAR+2 READ BACI,

22 MAR = START + 28

ACCB = En(0,jk-.5)+En(1,j,k-.5)

BU=R2 BL=R2 CD C-rRl FP++ a=CBUS b=BBUS ACCB=FP+ MAR=E E-BPP'

99

Parameters inside the loop may be a function of N,

where N is the number of times through the loop,

starting at 1. N must be less than INCREMENT.

LOOP:

23 MBR =En+1(Oj+N)

R13 En(Oj+N-1) + En(lj+N-1)

BPT= START +30

ACCB= R2*[En(Oj+N-1)+En(ilj+N-1)] - En-l(1,j+N-1)

BU=R5 BL=R5 CD C=R4 R13=CU Ri3=CL MBR=D FP-i+ a=FP+ b=ACCB
ACCB=BBUS BPT+A MAR+2 READ BAC1',

24 Ri = En- 1(Oj+N)

ACCB = En(Oj+N)+En(1j+N)

R4 = En(Oj+N)+En(lj+N)

BPT =START +32

CD C=FP4 R4=CU R4=CL RI=D FP++ a=ACCA b=ACCB ACCB=FP+ BPT -
MAIR+2 READ BACT;

25 R2 =En-1(ij+N)

ACCA = En+i(Oj+N)

MAR = UP + 10

AU=R8 AL=R8 BU=FP+ BL=FP+ CD C=MBR R2=D FP* FP++ a=FP+ b=ACCB
BBFP+C ACCA=CBUS MAR=E E=APT READ BACT,

100

26 Ri = En(Oj+N,k+1.5)

ACCA = En-1(1jiN)

ACCB = K1*[En+i(ij+N-i) + En-l(oj+N-1)I
+ K2*[En(Oj+N-1) + En((lj+N-i)I

-En-i(1j+N-1)

BPT = START + 34

BU=Rl BL=Rl CD C=R2 Ri=D FP++ a=ACCA b=BBUS ACCA=CBUS
ACCB=FP+ BPT+A MAR+2 READ BACT;,

27 R2 = En(ij+N,k+i.5)

MAR =DOWN + 1O*N

APT =UP + iO*(N+1)

CPT =DOWN + iO*(N+1)

AU=R9 AL=R9 BU=FP+ BL=FP+ CD C=FP* R2=D FP* EP-- a=CBUS
b=ACCA ACFP+B APT+B CPT+D MAR=E E=CPT READ BACT;

28 Ri = En(Oj+N,k-.5)

ACCA = En-i(Oj+N)+En+i(Oj+N)

BU=R2 BL=R2 CD C=R1 Ri=D FP++ a=CBUS b=BBUS ACCA=FP+ MAIR+2
READ BACT;,

29 R2 = En(ilj+N,k-.5)

IN3 = N - INCREAIENT

MAR= START+24+iO*N

R5 = K2*[En(Oj+N)+En(lj+N) 1 - En-l(ij)

AU=R7 AL=R7 BU=FP+ BL=FP+ CD C=FP+ R5=CU R5=CL R2=D 1N3+ FP*
FP++ a=ACCB b=FP* MAR=E E=BPT READ BACT;

101

30 R1 = En(QI+l+N)

ACCB = En(Oj+N,k+1.5)+En(lj+N,k+1.5)

BPT =START+26 +10*N

BU=R1 BL=R1 CD C=R2 R1=D FP++ a=CBUS b=BBUS ACCB=FP+ BPT+A
MAR+2 READ BACT;

31 R2 = En(1,j+l-+N)

MBR = En+l(0,j+N-1) -- (Final Answer N)

ACCA= K1i (En-i + En+1)

MAR= OUT+10*(N-1)

BPT = STAIRT+28 + 10*N

BU=R13 BL=R13 CD C=FP+ MBR=CU MBR=CL R2=D FP+i a=ACCB b=BBUS ACCA=FP*
BPT+A MAIR=E E=D1T READ BACT BR IN3NZ LOOP;

32 MAR= START+28+l0*N

ACCB = En(Oj+N,k-.5)+En(lj+Nk-.5)

DPT= OUT + 10*N

BU=R2 BL=R2 CD C=R1 FP++ a=CBUS b=BBUS ACCB=FP+
DPT+D MAR=E E=BPT WRITE BACT;

END:

33 Set done status bit

AU=R1 BU=R1 STAT=CU XORU SL1U;

102

Appendix G -- Initial Data for FPASP

This is an annotated listing of UOLOADMOD and LOLOADMOD. Since the output will be

in hex, the expected result is entered into these data tables as well, to make comparison

easier. Upper mcmnory and lower memory are both 32 bits wide. Addresses are in hex. "H"

stands for hex, and "D" stands for double-precision. Note that the double precision numbers

span both upper and lower memory blocks. Comments in "t}" and indented show other parts

of data structure not used by this simulation.

Address Upper Memory Lower Memory COMMENTS

0 H 0000002E H 00000003 Pointer to START, # of Iterations
2 H 00000000 H 00000000
4 H 00000000 H 00000000
6 H 00000000 H 00000000
8 H 00000000 H 00000000 (1}) [Previous data vector]
A H 00000000 H 00000000 (1K21
C H 00000000 H 00000000 {K3)
E H 00000000 H 00000000 {UPDOWN}
10 H 00000000 H 00000000 {(Blank),OUT)
12 H 00000000 H 00000000 1En(0-lX-))
14 H 00000000 H 00000000 1En(1.j-1,k- A))
16 D 108.6 D 108.6 En0 ,k-) [Address UP]
18 D 7.6 D 7.6 En(1,j k-'
1A H 00000000 H 00000000 {E+O (0~jk-)}
iC H 00000000 H 00000000 {E.'(0j k-)]
1E H 00000000 H 00000000 {En' (1jk-)1
20 D 4.3 D 4.3 En(0j+1,k-')
22 D 3.3 D 3.3 En1I l14-)
24 H 00000000 H 00000000 1 n (0 +l k-)
26 H 00000000 H 00000000 {En1 (0j+l, k-))
28 H 00000000 H 00000000 {En'(1j+1,k-))
2A D 1.3 D 1.3 En(0,+2,k-)
2C D 2.3 D 2.3 En(1j+2,k-)
2E D 1.2 D 1.2 K1 [START of present data vector]
30 D 1.4 D 1.4 12
32 D 0.6 D 0.6 K3
34 H 00000016 H 00000072 UP, DOWN
36 H 00000000 H 0000008A (Blank), OUT
38 D 5.3 D 5.3 E'n(0,j-l,k+)
3A D 3.2 D 3.2 E"(1.j-1,k+)
3C D 4.6 D 4.6 E'0j,k+)
3E D 1.1 D 1.1 EnJj,k+)
40 D 4.1 D 4.1 f (0 +)
42 D 2.1 D 2.1 E ".(0 +1)
44 D 6.7 D 6.7 En'l(1j,k+)
46 D 4.7 D 4.7 En(0,j+l,k+1)
48 D 2.5 D 2.5 En+ ,k+1)
4A D 3.5 D 3.5 En0 0j+lik+)
4C D 3.2 D 3.2 E' (1,j+,k+)4E D 4.4 D 4.4 Ent1, +k+)

50 D 5.4 D 5.4 E(0,j+ 2,k+)
52 D 7.3 D 7.3 E 2+)
54 D 4.3 D 4.3 En j+2,k+)
56 D 0.6 D 0.6 En'1(04+2,k+1)
58 D 0.2 D 0.2 E n"(lj+2,k+)
5A D 0.5 D 0.5 E"(0 O+3,k+ h)
5C D 4.5 D 4.5 E(1j+3,k+)

103

5E H 00000000 H 00000000
60 H 00000000 H 00000000
62 H 00000000 H 00000000 {K1) [Next data vector]
64 H 00000000 H 00000000 fK2}
66 H 00000000 H 00000000 {K3)
68 H 00000000 H 00000000 {UPDOWN}
6A H 00000000 H 00000000 {(Blank),OLT}
6C H 00000000 H 00000000 {En(0 -1,k+1)}
6E H 00000000 H 00000000 [En(1j-lX+1)}
70 H 00000000 H 00000000 En(0j,k+1 h) [Address DOWN]
72 D 8.1 D 8.1 En(OJ,k+1)
74 D 7.1 D 7.1
76 H 00000000 H 00000000 {En+'(0jk+1)}
78 H 00000000 H 00000000 {En'-(00jk+h)}
7A H 00000000 H 00000000 IEn-'(1j,k+1)}
7C D 4.1 D 4.1 En(0j+l,k+1 A)
7E D 3.1 D 3.1 En(0J.+1 +1)
80 H 00000000 H 00000000 11, (0j+1 k+)}
82 H 00000000 H 00000000 {E'-1(04+lk+)}
84 H 00000000 H 00000000 {En'l(1j+l k+)}
86 D 1.1 D 1.1 En0,j+2,k+1'A)
88 D 2.1 D 2.1 En(Oj+2,k+1)
8A H 00000000 H 00000000 Expect first answer here (138 decimal)
8C H 00000000 H 00000000
SE H 00000000 H 00000000
90 H 00000000 H 00000000
92 H 00000000 H 00000000
94 H 00000000 H 00000000 Expect second answer here (148 decimal)
96 H 00000000 H 00000000
98 H 00000000 H 00000000
9A H 00000000 H 00000000
9C H 00000000 H 00000000
9E H 00000000 H 00000000 Expect third answer here (158 decimal)
AO H 00000000 H 00000000
A2 D 96.98 D 96.98 Expected Answer #1
A4 D 33.64 D 33.64 #2
A6 D 34.86 D 34.86 #3

104

Appendix H -- Microcode Results

This printout of FPASP4_UO.DAT shows the correct answers at decimal addresses 138, 148,

and 158. Note how they match the preplaced values at 162, 164, and 166. FPASP4_UO.DAT

contains only the less significant 32 bits of the double-precision numbers and is not shown.

0: 0000002E 00000000 00000000 00000000 00000000

10: 00000000 00000000 00000000 00000000 00000000

20: 00000000 405B2666 401E6666 00000000 00000000

30: 00000000 40113333 400A6666 00000000 00000000

40: 00000000 3FF4CCCC 40026666 3FF33333 3FF66666

50: 3FE33333 00000016 00000000 40153333 40099999

60: 40126666 3FF19999 40106666 4000CCCC 401ACCCC

70: 4012CCCC 40040000 400C0000 40099999 40119999

80: 40159999 401D3333 40113333 3FE33333 3FC999)9

90: 3FEOOOOO 40120000 00000000 00000000 00000000

100: 00000000 00000000 00000000 00000000 00000000

110: 00000000 00000000 40203333 401C6666 00000000

120: 00000000 00000000 40106666 4008CCCC 00000000

130: 00000000 00000000 3FF19999 4000CCCC 40583EB8

140: 00000000 00000000 00000000 00000000 4040DlEB

150: 00000000 00000000 00000000 00000000 40416E14

160: 00000000 40583EB8 4040DlEB 40416E14 00000000

105

Bibliography

1. Katz, Daniel S. and Allen Taflove. "Large-scale Methods in Computational
Electromagnetics," Cray Channels, 13: 16-19 (Spring 1991).

2. Yee, Kane S. "Numerical Solution of Initial Boundary Value Problems Involving
Maxwell's Equations in Isotropic Media," IEEE Transactions on Antennas and
Propagation, 14: 302-307 (May 1966).

3. Child, Jeffrey. "256-kbit SRAMs provide many choices, while 1-Mbit chips gain
speed," Computer Design (30: 99-105) April 1, 1990.

4. ANSI/IEEE Std 754-1985. IEEE Standard for Binary Floating-Point
Arithmetic. The Institute of Electrical and Electronics Engineers, Inc., New
York, 1985.

5. Perlik, Andrew T. and others. "Predicting Scattering of Electromagnetic Fields Using
FD-TD on a Connection Machine," IEEE Transactions on Magnetics, 25: 2910-2912
(July 1989).

6. Calalo, R. H. and others. "Hypercube Parallel Architecture Applied to Electromagnetic
Scattering Analysis," IEEE Transactions on Magnetics, 25: 2898-2900 (July 1989).

7. The nCUBE 2 Supercomputers. Sales Brochure 1002.1090. nCUBE Corporation,
Beaverton, OR, 1990.

8. Corcoran, Mark, Sales Executive. Telephone Conversation. nCUBE Corporation,
Cincinnati, OH, 17 Oct 1991.

9. Larson, Ronal W., and others. "Special Purpose Computers for the Time Domain
Advance of Maxwell's Equations," IEEE Transactions on Magnetics, 25: 2913-2915
(July 1989).

10. EM Wavetracer Version 1.0. Sales Sheet. Wavetracer, Inc, Acton, MA, 01720.

11. Telephone interview, Wavetracer Inc., 289 Great Road, MA, 4 Oct 1991.

12. Taflove, Allen, and Korada R. Umashankar. "Review of FD-TD Numerical Modeling
of Electromagnetic Wave Scattering and Radar Cross Section," Proceedings of the
IEEE, 5: 682-699 (May 1989).

13. Balanis, Constantine A. Advanced Engineering Electromagnetics. New York: John
Wiley and Sons, 1989.

14. Harrington, Roger F. Time-Harmonic Electromagnetic Fields. New York: McGraw-
Hill Book Company, 1961.

106

15. Taflove, Allen, and Morris E. Brodwin. "Numerical Solution of Steady-State
Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's
Equations," IEEE Transactions on Microwave Theory and Techniques, 23: 623-630
(August 1975).

16. Mur, Gerrit. "Absorbing boundary Conditions for the Finite-Difference
Approximation of the Time-Domain Electromagnetic-Field Equations," Transactions
on Electromagnetic Compatibility, 23: 377-382 (November 1981).

17. Fusco, Mario. "FDTD Algorithm in Curvilinear Coordinates," IEEE Transactions on
Antennas and Propagation, 38: 76-89 (January 1990).

18. Harfoush, Fady, and others. "A Numerical Technique for Analyzing Electromagnetic
Wave Scattering from Moving Surfaces in One and Two Dimensions," IEEE
Transactions on Antennas and Propagation, 37: 55-63 (January 1989).

19. Luebbers, Raymond, and others. "A Frequency-Dependent Finite-Difference Time-
Domain Formulation for Dispersive Materials," IEEE Transactions on
Electromagnetic Compatibility, 32: 222-227 (August 1990).

20. Katz, Daniel S. and others. "FDTD Analysis of Electromagnetic Wave Radiation from
Systems Containing Horn Antennas," IEEE Transactions on Antennas and
Propagation, 39: 1203-1212 (August 1991).

21. Strauss, Capt Jack L. Architectural Implications of a Parallel Computational
Approach to the Vector Wave Equation. MS Thesis, AFIT/GE/ENG/87M-5. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
March 1987.

22. Comtois, Capt John Henry. Architecture and Design for a Laser Programmable
Double Precision Floating Point Application Specific Processor. MS Thesis,
AFIT/GE/ENG/88-5. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1988.

23. WSVP User's Manual, Version 4.7 Rome Laboratory/OCTS.

24. Enriquez, Arnel B., and Keith R. Jones. Design of a Multi-Mode Pipelined Multiplier
for Floating Point Applications. Unpublished report. February 5, 1991.

25. Luebbers, Raymond J. Penn State University Finite Difference Time Domain
Electromagnetic Analysis Computer Code -- Version D. Penn State University,
University Park, PA, 16802.

26. Hayes, John P. Computer Architecture and Organization (Second Edition). McGraw-
Hill Book Company, 1988.

27. Hogberg, Dan, Account Manager, Telephone Interview, Cray Research, Inc.,
Minneapolis, MN, 17 Oct 1991.

107

