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Abstract

This thesis develops and demonstrates software that models finite-precision effects in

digital filters. Coefficient quantization and internally generated roundoff noise effects are

simulated by rounding coefficients and multiplier output values to (B+1) bits. Outputs

include magnitude and phase responses that may be plotted to show results of coefficient

quantization. The output noise power due to roundoff is calculated.

Three types of digital filter structures are examined. The first type is direct form I im-

plementation for FIR and IIR structures, second is direct form II, and third is cascading the

canonic direct form II second-order sections for higher order filter designs. Re-arrangement

of the second-order sections can be done to examine the change in the roundoff power gen-

erated. One other feature converts the cascade canonic form into a direct form for analysis.

The software is menu driven with help screens written in FORTRAN77 Options include

managing output files and tailoring the simulation results. Examples are ien to show that

the simulation provides accurate results. Theoretical results are developed and compare

favorably to the simulation output for verification.

xiv



SIMULATION OF FINITE-PRECISION

EFFECTS IN DIGITAL FILTERS

L Introduction

Research in the area of digital filtering systems increased dramatically in the early

70's with the availability of the microprocessor. Previous work done in the area of digital

filters peaked during this time when microprocessors were in their infancy. At this time,

the theory to model internal noise sources formed [12, 7, 4]. However, techniques to model

digitally generated noise sources takes on new flavors. Many new formats now exist for the

representation of numbers. Some formats are unique to the manufacturer and other formats

are defined by IEEE. In addition, the increased width of the data bus path provides a

mechanism to attenuate much of the noise problems associated with coefficient quantization

and roundoff noise generation in digital filters from addition and multiplication.

1. 1 Background

In 1965 the Cooley-Tukey algorithm established a new mechanism to perform Fourier

analysis in a very fast routine [1:297-301]. This algorithm provided to the signal processing

engineer an efficient mechanism to compute the frequency content of a signal. The bi-linear

transform also made significant contributions to the signal processing engineer during this

time period. The bi-linear transform provided a mechanism to derive the digital equivalent of

the analog filters [9:221-236]. These powerful tools boosted the importance of digital signal

processing.

This thesis effort continues research in the area of finite-precision effects. Performance

criteria drives how accurate the filter needs to be, but digital filter implementation has some

difficulties. Two basic problems exist in the realization of digital filters. Coefficient quan-

tization effects and roundoff noise sources result from implementing digital filters. Linear

time-invariant discrete-time systems are most common to implement the filter operation, so

this research will focus on the realization of these types of digital filters. The two structures

used are the direct form and the cascade form.
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Performance criteria drives how accurate the filter needs to be. Digital filters are de-
signed with constants like ir with theoretically infinite accuracy. The coefficients or weights

used in the digital filter are also designed as irrational numbers. The weights are used as
multipliers within the filter structure. Computers can only provide a finite number of bits
to represent digital data. Thus, truncating of the weights in the designed filter coefficients

results in a process called coefficient quantization. Since designers are interested in im-

plementations requiring the most simplistic design in software and hardware, the effects of
coefficient quantization must be studied.

Results from the multiplication and addition used within the filter structure are often
numbers requiring more digits of accuracy than the multiplicants used for the multiplication
process. When a B-bit length number is multiplied by another B-bit length number, the
result will require a 2B-bit length number to hold the result. However, the result is truncated

back into a B-bit data value. This process of truncating the results of multiplication is called

roundoff noise error.

Another problem results from the form that the digital filter takes. Different structures

of the same filter will result in different performance results. Often digital filters are designed
by lumping together second-order sections. This process is called second-order cascade design
when cascade structures are used. The second-order cascade sections are generally more

robust than the direct form. The degradation in performance due to structural differences

is due to both coefficient quantization and roundoff noise.

1.2 Problem Statement

Implementations of digital filters suffer from the effects of coefficient quantization and

roundoff noise. This research seeks to build a software tool to observe the effects of the
unwanted characteristics of coefficient quantization and roundoff noise power of digital filters.

1.3 Computer Simulation of Digital Filters

To simulate a digital filter on a computer is a natural process. The digital filter itself
is a discrete system stepping through iterations. Each iteration provides one output from

the computer model. The simulation is stopped after each iteration for additional processing

of statistical data and then the computer model is started again. The computer simulation

allows the research to progress very quickly since each digital filter can be simulated without

actually building the digital signal processing hardware.
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The results of the digital filter implemented by the simulation are compiled in files

for display. The magnitude plot of the frequency range can be compared to the design

performance specifications. After the comparison, the designer is able to make conclusions

about the realized filter's performance and if the application will need further modification.

1.4 Thesis Objectives

The objective of this thesis effort is to design and realize a general purpose computer

program useful for simulating the effects of coefficient quantization and finding noise perfor-

mance of different filter structures.

The simulation package to model the effects of internally generated noise sources uses

existing theory relating to the implementation of digital filters and internally generated

noise sources. The simulator will include options to specify the number of bits to represent

coefficients. This will allow a designer to include the accuracy of the coefficients.

1.5 Assumptions

Computer simulations are done with single precision numbers using the IEEE single

precision format. Care is taken not to exceed the bounds on the magnitudes available to

represent both intermediate and final results. The software simulator will catch division

by zero conditions. The structured programming language Fortran77 will provide the user

interface necessary for all input/output information and file access.

This research assumes a limit on the number of bits available when the filter is realized

to 24-bits. The simulator will be able to handle up to 32-bits for implementing the filter using

the Sparc station 2 workstations. The magnitude of the results from the math operations

performed within the filter are limited to the IEEE 32-bit floating format.

Noise sources are modeled as uncorrelated, independent random processes with uniform

probability density functions. The error due to internal rounding is modeled by a uniform

probability density function over the range of the smallest quantization step.

1.6 Scope

Limitations apply to this research effort. The software simulator will be written to

provide results on two structures, Direct form I and Direct form II. The Direct form II is

limited to second-order sections. The filters will be constant coefficient designs.
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There are two basic structures of digital filters. Both forms will be able to simulate

Finite Impulse Response (FIR) filters and Infinite Impulse (IIR) filters. The FIR filter has

a limited response to one impulse as input to the filter. The IIR will continually produce

output from just one impulse into the input of the filter.

The software simulator will take coefficients for the desired filter and perform calcula-

tions to show the finite-precision effects. Internally generated noise sources from implement-

ing digital filters affect the transfer function of the filter from a theoretical design perspective.

The results are to show changes in the transfer function of the filter and perform roundoff

power calculations.

1.7 Methodology

The first objective will involve the understanding necessary to describe the coefficient

quantization effects on a digital filter. A simulation of the filter will provide the results from

the implemented transfer function that describes the filter. The amount of error resulting

from the quantization noise will be related to the movement of poles and zeros that describe

the transfer function in the z-plane.

The second objective will involve learning and developing theory necessary to model

roundoff noise within digital filters. All digital filters will have limited registers to hold the
binary representation resulting from addition and multiplication. Each point in the digital

filter that contains a multiplier will have a source of roundoff noise. The roundoff noise source

will model the appropriate mathematical operation performed at the node. The operation is

pre-determined by the design process and the desired type of implementation for the filter.

The third objective will involve modeling the effects of filter structure when second-

order sections are cascaded in a digital filter. More often than not, the performance require-

ments given to the filter will require the use of more than a second-order filter. These higher

order filters are built from cascaded second-order sections. The ordering of these second-

order sections will affect the overall noise performance of the filter. A haphazard approach

ultimately results in less than desired performance realizations. The simulator will need to

describe the effects of cascaded second-order sections on the roundoff noise generated. A

roundoff power figure in watts will be found for the filter under study. Furthermore, the

user will be able to move the order of the cascaded sections to observe the affect on roundoff

power.

The fourth objective will entail the design and realization of a general purpose sim-

ulator useful for finding the effects of quantizing the coefficients and evaluating the noise
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performance of different filter strutures. A computer based model will allow a designer to

measure the effects on a specified realization. The software model will be a tool, usable by

a menu driven option system. The simulator must have the capability to input the filter

coefficients. The filter structure is determined by the user. The results will be the response

of the filter in magnitude, phase, and linear error from the theoretical magnitude response.

The required number of bits can then be found for the representation of filter weights and

lengths of internal storage registers in order to maintain specified performance.

1.8 Benefits of the Research

First, this thesis provides a convenient way to show finite-precision effects. Comparable

software packages are more general and do not show these finite-precision effects directly.

Second, this research allows the Air Forice to have an engineer skilled in the design

of digital filters for applications. Demand to implement filters increases in areas of ground

support equipment, air platforms, and space platforms.

Third, this thesis allows a blending of design needs between the digital communication

area and the Very Large Scale Integration (VLSI) area. Requirements for each of these two

design groups don't meet. The VLSI area requires the structure of a filter using the least

amount of complexity while the communication area provides theoretical designs without

simulating the realization. Results of this work minimize the problems when designs are

passed from one group to the other. Furthermore, this work appropriates sure mechanisms

to allow each group to express their specific design criteria.

Lastly, this research provides to the designer a concise treatment of the problems found

within digital filter realizations. This thesis grants to the designer a mathematical model to

avoid very costly mistakes, assuring sound designs and trouble free realizations.

1.9 Equipment

The equipment used for the research is primarily a Sun computer work station that

has a compiler for fortran code and a PC/AT. The PC/AT is used to develop and edit text

for the thesis. Sun workstations provide the graphic tools for the thesis and the publisher

to create this document.
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1.10 Thesis Organization

This thesis is organized into six chapters. Chapter I provides an introduction to the the-

sis. The problem is stated and some background is expressed. Chapter II is the background

review. Specific articles in this topic area are reviewed and conclusions given. Chapter III

explains each step in the methodology used to build the theory and applicability of methods

to solve the problems. The theory of discrete time signals is reviewed as it applies to the

thesis. Chapter IV covers the program that performs the analysis on the filter structure.

The sections of code are explained so the user can understand the algorithms designed to

implement each task. Chapter V reveals the results from the software tool and verifies the

software tool's output. Examples are shown to verify different parts of the software. Chap-

ter VI provides conclusions based on the research and addresses areas for further research.

Appendices iticiuue the code developed, explainations of subroutines, and a users manual.
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I. Background

In this chapter, background is given on the effects of finite-precision effects. Quantifying

these effects is done by injection of noise sources into the filter and finding the resulting power.

Theory needed to perform the calculations include difference equations and the z-transform.

Differences in the Direct Form I and Direct Form II are presented. Coefficient quantization is

examined in the filter structure as well as roundoff error. These two forms of finite-precision

effects are explored by use of theory.

2.1 Noise Sources

With discrete-time signal processing, a few areas need direct attention. Discrete-time

signal processing involves the use of discrete-time filters. These discrete filters, also known

as digital filters, have some inherent areas of errors. The following errors exist:

" quantization errors occur during the transformation of continuous-amplitude signals to

discretc-amplitude signals

" quantization errors occur in the process of representation of the desired weights in the

digital filter and

" roundoff errors occur after arithmetic multiplication computations.

Digital filters can be designed without consideration of the quantization and roundoff

noise introduced by implementation. Filter designs use a variety of methods to develop and

implement the filter in hardware. The results of the design may or may not prove acceptable.

The designer needs to know how to determine the minimum number of bits required

for the filter implementation. Trade-offs between the number of bits and design performance

can be made to produce economical and practical implementations.

2.2 Discrete-Time Filter Design

In order to analyze the noise introduced within the digital filter, certain tools that

provide simulation of finite-precision effects must be used to focus in on the changes in

frequency response. In addition, digital filters can be placed into two types: finite impulse
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response and infinite impulse response. The research will involve the use of both finite and

infinite impulse response filters.

The reader is directed to texts [3, 4, 15] for background with the topics of difference

equations and the z-transforms. These tools allow the design engineer to analyze systems

during the design process. The analysis can also show where the most critical sections will

be during realization. Areas in the realization that will cause the most deviation in the

magnitude response can be found.

2.2.1 Difference Equations. Difference equations embody the concepts of discrete

values of time where the filter will perform computations resulting in an output value [8:28-

361. Digital filters receive input sequence and produces an output sequence. Consider the

difference equation given by the general form as

N M

- k bkX[n - k].
k=O k=O

The general form can be rearranged as

N M

y[n] = E -aky[n - k] + E bkx[n - k]. (2.2)
k=1 k=O

where the coefficients are normalized by the value of a0 in Equation 2.2.

The system that is represented by this general form has the input sequence x[n] and

the output sequence y[n]. Delayed input and output values are represented by the integer

value, k.

The difference equations used are causal in that only present and past values can be

represented in the system. The coefficients are constant and the equation is linear. Feedback

terms present in the difference equation raise stability issues in the design process. In general,

the use of feedback terms causes the filter to have an infinite impulse response. When no

feedback terms are used, the filter has a finite impulse response [15:206-213].

2.2.2 The z-Transform. The z-transform is related to the difference equation by a

substitution process. The z-transform analysis is applied to the discrete-time signals using

the counter k for discrete points in time. The z-transform is a complex transform. The
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variable z is a complex variable with properties that are useful to transform from continuous-

time domain to discrete-time domain signals[3:194-213].

The z-transform is written with the following form

+oo

X(z)= 1: x[k]z - ' .  (2.3)
k=-oo

The z-transform of the difference equation shown in Eq. 2.2 can be written as

Y(z)= H(z) = 1 M=bkz- (2.4)
X(z) -EN I akZ -k'

where H(z) is the transfer function.

The difference equation is arranged as a transfer function with the form of Y(z)/X(z).

The roots of the numerator and denominator polynomials are referred to as poles and zeros.

Locations of the poles and zeros in a transfer function will directly affect the response of the

filter. The pole and zero locations are determined by the values of the coefficients.

When a filter requires the use of higher order polynomials, then multiple second-order

sections can be cascaded. If the order of the numerator or denominator in the transfer

function is not an even power of two, certain coefficients can take on the value of zero to

gain the desired order.

To illustrate the utility of the z-transform, consider the following difference equation

with corresponding transfer function Hi(z):

72y[n - 4] - 126y[n - 3] + 67y[n - 2] - 14y[n - 1] + y[n] = (2.5)

-30x[n - 4] - 16x[n - 31 - 0.5x[n - 21 - 5.5x[n - 1] + lx[n].

By rearranging terms, we obtain the following transfer function in terms of second-

order sections using the z-transform:

H r(1 + 2.5z- 1 + 3z- 2 )] [(1 + 3z-' -Iz- 2 ) 1H,(z) = 1~(1 - 5z-1 + 4z-2) j (1 - 9z- + 18z2)] (2.6)

2-3



or by using the direct form, the difference equation can be written as

Y(z) = X(z) - 5.5X(z)z-' - 0.5X(z)z - 2 - 16X(z)z - 3 - 30X(z)-' (2.7)

+ 14Y(z)z - 1 - 67Y(z)z- 2 + 126Y(z)z - 3 - 72Y(z)z - 4 .

The structure shown in Figure 2.1 shows the filter implemented in the direct form and

Figure 2.2 shows the canonic form in second-order cascade sections.

The direct form is the direct realization of a filter taken from the difference equation.

The difference equation uses the input x[n] and output y[n]. The system transfer function

can be found from the difference equation. The direct form is known as Direct Form I, is

shown in Eq. 2.6. Figure 2.1 shows how Eq. 2.6 is implemented. The canonic form results

when the minimum number of delay elements are used to realize the filter. The canonic

form is known as Direct Form II, is shown in Eq. 2.8. Figure 2.2 shows how Eq. 2.8 is

implemented. The two structures implement the same poles and the same zeros.

2.2.3 Quantization Errors for Digital Filters. Some of the errors that occur within

a digital filter are due to quantization. These quantization errors affect the performance of

the digital filter. Quantization errors are classified into three categories:

1. analog-to-digital conversion noise,

2. coefficient quantization, and

3. roundoff noise[16].

The direct form realization of the filter follows directly from the difference equation.

However, different schemes can be used to implement the same filter design, but the different

realizations will have a different number of multipliers, adders, and memory elements. How-

ever, for infinite impulse response structures, the roundoff noise increases dramatically. The

cause of this increase in sensitivity is due to the poles in the trpir-fr fi'nction [10:chapter

7]. The direct form of realization for FIR filters will be less sensitive when compared to the

IIR structure, due to the non-recursive structure.

2.2.3.1 Quantization in Analog-to-Digital (A-D) Conversion. Quantization er-

rors are introduced by the A-D converter. This process transforms a continuous-time signal

into a sampled discrete-time signal. The continuous-time signal is comprised of a continuum
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Figure 2.1. Direct Form 1 11R digital filter.
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Figure 2.2. Second order sections cascaded in Direct Form II.

of points varying in amplitude. A digital signal can only have a finite amount of time be-

tween sampled points and a finite number of discrete levels to comprise the signal. There are

finite levels available for an A-D converter. For example, an 8-bit A-D converter has only

256 discrete levels to represent a continuous signal. The difference between the actual signal

and the quantized version of the signal constitutes quantization error.

2.2.3.2 Coefficient Quantization. Quantization of the filter coefficients directly

affects the system transfer function. In general, designs for filters depend upon irrational

numbers. The infinite-length binary word representation does not exist in hardware. The

rounding off of the irrational numbers used as weights for the filter coefficients changes the

filter's transfer functi, a.

Since there exists a limit on the word register length, not all decimal numbers will map

exactly into binary. Numbers that are an integer multiple of 2 -B bits, where B is the number

of bits to right of the binary point, will map exactly; all others will require quantizing.

2.2.3.3 Quantization in Roundoff Noise. When a multiply is performed on two

words in binary format, the result will require twice the number of bits of the starting binary
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xein]

z-1 z-1

x[n -2] yn-2

e3[n] [n]

Figure 2.3. Linear noise modeling for direct form I showing the injection of noise sources
after each multiplication.

format. Since the structure of memory organization is fixed by the digital hardware, the least

significant bits in the binary format are truncated or rounded. In either case, this type of

error is called roundoff noise.

The analysis of roundoff assumes that roundoff noise can be modeled as a zero-mean

white noise source with a uniform probability distribution function [8:188]. The variance of

this noise source is then X 2/12, where X is the quantization step size in the binary word.

The noise sample can take on a value between the interval (-X/2, X/2). Each point in the

filter where multiply operations occur can be modeled as having the roundoff noise added to

the result. These noise sources are uncorrelated with other noise sources and the sampled

signal. Figures 2.3 and 2.4 show the modeling of roundoff noise by the noise sources added

into the filter structure for the direct form and the cascade form.

The form of realization determines the extent of change in the output of a filter due

to roundoff noise. Computation of the effects of roundoff noise involves the addition of a

noise source where rounding occurs. The added noise source would then directly sum with
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the output at that particular node. By the use of superposition of the noise sources, all the

injected noise sources can be represented by one noise source.

The feedback coefficients will filter the roundoff noise generated within the filter. How-

ever, the feedfoward terms will not filter the roundoff noise generated. The feedfoward terms

only contribute to the roundoff noise. Figure 2.3 shows the paths for the feedfoward and feed-

back coefficients. The output power from the noise source can be found by using simulation

or by analytical techniques. This is further discussed in Section 3.5.2.

2.2.3.4 Analysis of Filter Response Errors. For the case of FIR systems, the

concern of coefficient quantization centers on the zeros in the transfer function. To further

illustrate consider,
M

H(z) = h[n]z- (2.8)
n 0

where h[n] is the impulse response of the system [15:345].

When the realization of the filter is done, the coefficients will be quantized to some

new value dependent on how accurate the computer can represent coefficients. The impulse

response to include the error, can be written as

h[n] = h[n] + Ah[n]. (2.9)

By using Eq. 2.8 we can then write the system transfer function as

M

H-(z) = E h[n]z- = H(z) + AH(z) (2.10)
n=O

where the amount of change in the the transfer function due to the quantization is found as

M
A H(z) = E Ah[n]z - . (2.11)

n=O

The amount of change in the system transfer function is a linear function of the quantization

errors in the difference equation. This output due to coefficient quantization is then added

to the output due to the ideal transfer function without the effects of quantization. The new

filter function is the sum of the ideal transfer function added to the transfer function due to

coefficient quantization. The scheme is shown in Figure 2.5.

2-9



H(z)

x[n] y[n]

AH(z)

Figure 2.5. Model to calculate the output of a transfer function to include the effects due
to coefficient quantization shown as AH(z).

2.3 Roundoff Noise in Digital Filters

Because roundoff noise effects the performance of the digital filter, the designer is

faced with how to minimize this quantity. Lee attempts to demonstrate how to minimize the

roundoff error using fixed-point arithmetic and sinusoidal inputs to the filter designs [13:424].

Each of the roundoff noise sources are modeled as white noise with uniform pdfs and are

independent from other noise sources. Lee introduces a method to help guide the design

process called the minimax noise principle. The minmax noise principle provides a means

to reduce the effects of roundoff.

2.3.1 Modeling Roundoff Error In Cascaded Filter Sections. Signal overflow can oc-

cur within filter structures and adversely affect the assumptions used to find the output
power due to roundoff noise [13:422][15:3591. To prevent overflow, the filter gains are < 1.0

at branch nodes where the signal enters. This assumption allows the modeling of roundoff

noise to be done, without concern for random overflow conditions.

Jackson modeled roundofT noise as additive white noise sources that are uncorrelated

from sample to sample. Jackson also showed the best performance to minimize roundoff

noise results from FIR and IIR filters limited to a second order [6:119]. Higher order filters

are generated by cascading the second-order sections. Since cascaded sections are placed in
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series, another variable introduced to the filter structure is the gain of the roundoff error

through each second-order section.

Since each section of the filter will have two poles and two zeroes in the z plane,

cascaded sections will have P! ways to order the pairs of zeros and poles for each section,

where P is the number of cascaded sections [12:24]. The number of ways to arrange the

second-order sections is raised to the second power since there are two singularities per

section. The result is the number of ways to order the poles or zeros in a cascaded filter

design. The ordering of each second-order section changes the ordering of the gain terms.

The section with the highest gain may be last in the cascaded structure or it may come first.

The best SNR due to roundoff vill be dependent on the order of each section's gain term.

The error in the frequency response can be determined from the effects of roundoff.

The mean-square error described has a zero mean and non-zero variance given by the uniform

probability distribution [15:353]. Each of the noise sources are effectively summed at the

output of the feed forward section. The feedback section will continue to filter the roundoff

power signal. The value of the summed noise sources can then be used as an input to the

filter's feedback section. This input is then multiplied by the transfer function of the filter's

feedback section. Hence, only the poles of the transfer function will recursively filter the

roundoff power.

2.3.1.1 The Minimax Approach. This thesis does not use the minimax approach

directly. The designer can apply the principle of minimax to manipulate the second-order

cascade sections to reduce the roundoff noise term. The total noise output power through

the filter is proportional to the ratio between the minimum discrete signal levels and the

maximum discrete signal levels throughout the cascaded filter, hence the name minimax.

Lee's paper resulted in a theoretical analysis of the spread of the noise power in terms

of the variance. The best design resulted by pairing up the poles and zeros that minimized

the dynamic range at the output of the summer nodes in all sections of the cascaded filter.

A search is performed on all the pole/zero pairs to pick the best matched pairs to accomplish

the minimization ratios. The filter is then built by ordering the cascade sections with the

optimized matching pole/zero coefficients for each summer node. The use of the minimax

approach improves the signal to noise ratio of the designed filter, thus minimizing the roundoff

noise [13].
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2.4 Summary

Two forms of finite precision effects exist when implementing a digital filter. The use

of the z-transform is introduced to model filter performance. Two types of filter structures

are used as a baseline to model the digital filters: the Direct Form I, and the Direct Form

II. Implementation of a difference equation using Direct Form I and Direct Form II is given.

The representation of coefficients limited in resolution due to the number of bits used will

affect the transfer function. Theory to represent the coefficient quantization is persented.

Roundoff noise occurs after multiplication due to the result being limited to the length of

the multiplicants.
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III. Theory of Finite-Precision Effects

3.1 Overview

This chapter presents specific areas of theory to explain the methods used with this

digital filter analyzer software tool. The use of z-transforms [15:866] are used as the means to

identify the filter's response to input signals. This thesis investigates two types of structures

and realizations of digital filters. The first is the direct form that follows directly from the

difference equation. The second form is cascade realization. This form requires effort on

the part of the designer to manipulate the difference equation to correctly attain factored

sub-sections to form the realization. The cascade realization requires the use of poles and

zeros that are complex conjugates in order to build the second-order sections.

After the coefficients for the digital filter are determiped, the particular implementa-

tion chosen can adversely affect filter performance. The amount of degradation can be such

that the theoretical infinite-precision performance specifications are not met by the actual

finite-precision system. The problems associated with quantization and roundoff are always

associated with the use of finite wordlength registers (the cause of finite-precision arithmetic).

This thesis provides the designer a tool to immediately see the results of the specific imple-

mentation and wordlength limitations in terms of the realized H(z). This chapter shows the

effects of coefficient quantization and roundoff noise generation in digital filters.

3.2 Realization of Difference Equations

3.2.1 Filter Forms Digital filter design requires more than producing a difference

equation. Filter design requires the incorporation of the effects of finite-precision arithmetic.

This ensures that performance of a system doesn't degrade beyond acceptable tolerances

when implemented with finite wordlength registers.

The most common forms to mathematically represent a digital filter are difference

equations, unit impulse responses, and z-transforms. From these mathematical forms, two

basic structures to imph-ment the filter can be derived. Direct Form I is determined directly

from the difference equation [15:296-297]. A variation in the implementation of Direct Form I

that has reduced memory storage requirements and computations is called Direct Form II.

Direct Form II is aiso called Caiiunic Direct Form since this form uses the minimum number of

delay elements [15:2961. These two structures are used in this thesis. These basic structures
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can include an all-pole design, an all-zero design, or both poles and zeros in the design.

The all-zero filter is of special interest since its structure has the quality of linear phase for

symmetric taps.

3.2.2 Arranging the Difference Equation. To represent a difference equation using

block diagrams we consider a second-order difference equation

y[n] = aly[n - 1] + a 2y[n.- 21 + bix[n]. (3.1)

The difference equation reveals a recursive structure and hence an infinitely long im-

pulse response. Since the impulse response is infinite in length, a discrete convolution is

impossible to implement. The difference equation written in the z-transform domain be-

comes

Y(Z) = aiz-'Y(Z) + a2 Y(Z)z - 2 + biX(Z). (3.2)

Since all difference equations can be implemented using the transfer function, we write

H(z) = 1 - alz - 1 - a2 z 2  (3.3)

The use of the block diagram in Figure 3.1 shows the direct form implementation and allows

us to visualize the computer algorithm.

The direct form is only one method of implementing this filter. There exists many

structures for implementing a particular system [2:109-118]; some structures will require

fewer computations, be more insensitive to finite-precision effects, and provide increased

robustness. The type of structures with decreased computational intensity and increased

robustness are most desired. These issues are explored with the tool developed in this thesis.

The implementation of this filter using discrete components becomes a straight forward

process. Registers will hold values in the summation nodes, values at the output node, and

values from delayed versions of the output. Adders will sum the signals at the summation

nodes as well as form the building blocks to perform the multiplication. We note a direct

correlation of the number of items in the block diagram to the number of discrete components

to actually implement the filter. As we continue, we'll see that the use of alternatu forms

will have some advantages.
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3.2.3 Direct Form L Equation 3.1 can be written to include many more coefficients

as in

N M

y[n] = E akY[n - k] + E bkx[n - k]. (3.4)
k=1 k=O

This equation car be thought of as two difference equations. We can re-write Eq. 3.4 as two

distinct equa.tions is the following:

M
[n] = E bx[n- k] (3.5)

k=O
N.

y[n] = E aky[n- k] + n]. (3.6)
k=1

This set of difference equations shows the output y[n] is found with an additional

sequence [n]. The value of [n] must be computed first. Then the value of [n] can be
used by the second difference equation. From an implementation issue, this adds more clock

cycles to control when [n] can be used. The block diagram in Figure 3.2 is from direct

application of Eq. 3.6.

By observation of Figure 3.2 one can visualize the two sections in the block diagram.

The sections are separated by the term [n] that serves as an output from the first section

and as an input to the second section.

Since the system output from two frequency transfer functions in serial is independent

of the order of the two transfer functions, we can make the following observations. Two

sequences are produced in Figure 3.2. The first is the intermediate result, [n], that is

produced by the input x[n]. The second result is the output sequence value y[n] term. This

constitutes two independent transfer functions. Rearrangement of the transfer functions will

not cause any change in the overall system performance.

3.2.4 Direct Form I. The transfer function

H(z) = H(z)H2(z) = H 2(z)Hl(z) = 1 1  bkz-k (3.7)

k= - k
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Figure 3.2. Block diagram for the general order difference equation in direct form 
1.
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where

Hi(z) = (:bkz
- k

H2 (z) = (1 I_' akZ-k

shows how the transfer functions can be interchanged. By setting the intermediate value to

[n], the following is found from Figure 3.2

Z{ (z)} = H,(z)X(z) = bkz -k X(z) (3.8)

Y(z) = H2 (z)Z{f(z)} = 1 Ev' k) Z{(z)}. (3.9)

Then from Figure 3.3 we can write the following where P(z) is an intermediate result

as:

P(z) = I 2(z)X(z) = (1 - X(Z) (3.10)

Y(z) = H,(z)P(z) = ( bkz - k P(z). (3.11)
\k=O /

The order of implementation will yield intermediate results that will be different. In the

first case as in Eq. 3.8 the intermediate results are dependent on the transfer function H1 (z)

that contains the zeros of the overall transfer function. In the second equation as in Eq. 3.10

the overall transfer function is found by the multiplication of the intermediate result with the

transfer function containing the poles. The rearrangement of the order of implementation

as in Equations 3.10 and 3.11, will still yield the same overall transfer function response.

Since there are two transfer functions in the z-domain in Figure 3.2, the order of each

respective transfer function can be changed. The first transfer function can go where the

second transfer function is and vica versa. When a design has many cascade sections, the

number of ways to arrange the sections is found by taking the factorial of the number of

sections [12:24]. With each rearrangement of this form comes a different way to compute

algorithmically the filter's response.
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Figure 3.3. Block diagram for the general order difference equation in direct form 11.
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As shown in Figure 3.2 and Figure 3.3, the total number of delay elements is (N + M).

Figure 3.3 shows that the intermediate value P[n] and its delayed versions traverse both sets

of delay elements. This will result in the same value of P[n] in both legs. Therefore, the entire

figure can be re-drawn. This will have the effect of reducing the number of delay elements

to a minimum form. The implementation with the minimum number of delay elements is

referred to as the canonical form or as the direct form II realization [15:297]. This reduction

of delay elements will correspondingly reduce the number of registers needed to implement

the filter. The canonic form of a general IIR filter is found in Figure 3.4. Also included is

the canonic form for a second-order section in Figure 3.4. This second-order canonic form

is the basis for much of the research done in this thesis. The use of second-order sections to

build a digital filter has advantages that are clearly seen in the results of this thesis effort.

3.2.5 Cascading Second Order Direct Form If Sections. In cascade design, the output

of one section is connected to the inpuL of the next section. This is repeated until the final

output is determined. Two linear time invariant systems will behave exactly alike when the

impulse responses are convolved to form one impulse response as shown in Figure 3.5. The

impulse response of a cascade network is independent of the order in which the sub-systems

are cascaded.

3.3 Finite-Precision Considerations for the Digital Filter

When the designer implements a digital filter, the first area of concern is the amount of

computational accuracy that will be available as well as the number of registers and adders

required. The delay elements in a filter all require input, output, and temporary storage of

intermediate results. The coefficients used by the filter require their own storage. The basic

elements for a discrete-time system include adders, multipliers, delay registers, and memory

for storage. All these elements are limited in the resolution of numerical representation.

3.3.1 Finite-Precision Representation. Every theoretical filter has a unique advan-

tage over hardware filters; theoretical filters avoid finite-precision effects. In hardware, binary

values may be limited to only a few bits or include as many as 23-bits or more. The number

of bits available for each binary value will effect filter performance, depending on the struc-

ture. In general, using fewer bits to represent coefficient values results in a degradation of

system performance.

Three basic areas are involved in finite-precision.
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Figure 3.5. Fourth-order filter and an eighth-order filter realized with cascaded second-
order sections.
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1. Conversion of analog signals to digital representation of those signals results in quan-

tization errors.

2. Filter coefficient values are rounded to the available resolution dependent on the finite

wordlength and the number representation scheme.

3. All intermediate results are rounded within the filter structure due to the finite register

wordlength and the number representation scheme.

3.3.2 Floating-Point Notation Used by the Simulator Tool. All internal data values

and coefficients are in binary format. The computer that runs the software simulator uses

the IEEE single precision standard floating point format. The IEEE floating point format

is 32-bits in length. It has 24-bits for the mantissa that includes sign and 12-bits for the

exponent to include the sign. That leaves 23-bits to represent a number. The format assumes

a one to the left of the binary point and 23-bits available to the right of the binary point.

The accuracy of the format then becomes

2-23 1.2E0 - 7 .

That means about seven digits are available to represent all numberb.

3.3.3 Fixed-Point Notation Used By The Digital Filter Simulator Tool. The software

simulator assumes the use of a format called two's complement, a fixed-point representation.

The two's complement register has a bit reserved for the sign of the number. Therefore,

(B+1) bits are used to indicate the resolution, where B is the number of bits available

to represent the number. Figure 3.6 shows the format for the representation of a two's

complement word. All the numbers represented within the filter will be truncated to a

maximum magnitude of (1 - 2 -B). The software simulator has routines to change the

single-precision values into the fixed-point notation in order to correctly simulate the two's

complement binary format.

The resolution of the number is determined by the smallest increment available. This

is calculated from the least significant bit position. When fixed point notation is used, the

smallest increment is a function of the number of bits to the right of the binary point. A

four-bit word (one bit is dedicated to the sign of the number) can represent numbers to the

nearest 2 or 0.125.
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binary point B bits for f action

sign __least
bit significant

bit

Figure 3.6. Allocation of bits in a fixed-point two's complement representation (16-bit word
shown).

Table 3.1 shows an example of two's complement notation using only 2-bits. Table 3.2

shows an example of two's complement notation using 3-bits.

The result of the quantizer routine will allow for a value of ± unity. This assumes the

use of adders with logic circuits that includes a carry bit. The use of a carry bit will expand

the accuracy available in the binary representation of the coefficients and intermediate results

using two's complement.

Table 3.1. Representation of numbers with 2-bits.
Binary Number Integer Values(binary point at left) One's Complement

2-bit number system
00 0 +0.0
01 1 1.0
10 2 -0.0
11 3 -1.0

3.4 Quantization Error

The implementation of the design process changes the resulting coefficients through the
effects of quantization. Errors occur from the amount of quantization from the full precision
coefficient to the quantized coefficient. Also, the location in the z-plane of the singularities

changes the amount of quantization that occurs. These areas are discussed.
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Table 3.2. Representation of numbers with 3-bits.

Binary Number Integer Values(binary point at left) One's Complement

3-bit number system
000 0 0.0
001 1 0.25
010 2 0.50
011 3 0.75
100 4 -0.0
101 5 -0.25
110 6 -0.50
111 7 -0.75

3.4.1 Pole-Zero Locations To gain some insight into the effects of coefficient quantiza-

tion, an understanding of the pole-zero locations is necessary. The problems of quantization

are easily seen by Figure 3.7. The results from the summation nodes as well as the mul-

tiplication with the coefficients must fit into a specific set of allowable steps. Figure 3.7

represents a system with four bits. Three bits contribute to the resolution and one bit de-

termines the sign. Once saturation occurs, the corresponding error will continue to increase

without bound.

In Figure 3.7, the quantization error is shown on the bottom. The error value is linear

across the quantization value. At the limits of the quantization values, the error is shown

to either increase or decrease without bound. The quantizer is in saturation when it is at

the maximum value that can be represented with the input signal continuing to increase.

Likewise, the error is in cut-off when the quantizer is at the minimum value with the input

signal continuing to decrease.

Normalizing the maximum coefficient to a value of unity will avoid the saturation

regions from multiplications since the coefficients will be numbers less than one. However,

it can be seen that a summation node can exceed the limits of even the carry bit. Two's

complement can retain the correct value if it unwraps and its use is most common [15:329].

The effect of quantization is to restrict the locations of poles and zeros. If a singularity

location doesn't exactly match the possible locus of points on the grid in the z-plane, a shift

will be made in the singularity location. The singularity will have to shift to the closest

one of four possible grid locations (two in the real axis and two in the imaginary axis).

This shifting causesthe transfer function H(z) to be different from the design using infinite
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aturation 
level
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Figure 3.7. Number quantization effects with 4-bits, Two's complement rounding.
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precision. In some cases this shift can cause instability. Consider a causal IIR filter in both

direct and cascade form given as

1
Hc(z) = (1 -0.901z 1 )(1 -0.943z 1 ) cascade form (3.12)

1
Hp (z) =1dietfr.(13

(1 - 1.844z - 1 + 0.849643z-2) direct form. (3.13)

It can be seen that rounding even to the nearest 2- , the cascade form transfer function

becomes

(1 - 0.90z- 1)(1 - 0.95z-1)

with poles at z=0.90 and z=0.95. This filter is stable since the poles are inside the unit

circle [15:31]. But consider using the direct form

1 1

H(z) = (1 - 1.85z - 1 + 0.85z - 2) = (1 - 0.85z- 1)(1 - 1.0z- 1 ) (3.15)

with poles at z=0.85 and z=1.00. The pole on the unit circle causes this filter to become

unstable [11:399-400]. The process of quantization restricts the possible values the singular-

ities can be for both the poles and zeros. Figure 3.9 shows the case for poles only assuming

the use of two's complement notation.

3.4.2 Quantization of Singularities. There exists a grid of possible pole-zero locations

in the z-plane for a transfer function. Consider the following complex conjugate poles,

1
H (z) = 1(-6

(1 - rejez-I)(1 - re-z - 1) (3.16)
1

(1 - 2rcos(O)z-1 - r2)z- 2

y[n] = x[n] - 2rcosOy[n - 1] + r 2y[n - 2]

Y(z)[1 + 2r cos 0z - 1 - r 2z-2] = X(z). (3.17)

Figure 3.8 shows the direct form implementation of this difference cquation in Eq. 3.17. When

the coefficients are quantized, the value of r 2z - 2 can take on seven positive quantized values

and zero while the other coefficient, 2rcos(O)z - 1 can take on seven positive values, zero,
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Figure 3.8. Direct form implementation for a complex-conjugate pole pair.

and seven negative values (eight negative values if two's complement is used). Coefficient
quantization restricts the positions of the poles as shown in Figure 3.9.

Figure 3.9 shows the possible zero singularities for 4-bit word lengths. Only one quad-
rant is shown. The other quadrants in the z-plane are mirror images of the one shown.
Notice in Figure 3.9 that the grid is more sparse around the real axis. If a design has zeros
(or poles) that are close to the real axis, they will be shifted further. This will certainly
cause more degradation in implementation [15:342].

3.4.3 Sensitivity of Pole/Zero Locations. A designer needs to be aware of the limited

set of possible locations in the z-plane for all poles and zeros. If pole and zero singularities are
real values, or where the angle from the real axis in the z-plane is close to zero, longer word
lengths may be needed to maintain desired filter performance. Narrowband lowpass filters
and narrowband highpass filters have poles that fall near Izi ; ±1.0 [8:185]. These filters
will show higher sensitivity to the coefficient quantization process. Also, numerical analysis

[8:183-185] shows that coefficient sensitivity will get worse as the order of the polynomial
increases. Higher order polynomials will have a higher sensitivity to the roots. Accuracy
must then increase for the coefficients in higher order polynomials to maintain acceptable
results.
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Figure 3.9. Possible locations for singularities of a second-order FIR direct form
implementation.
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3.5 Linearized Models For Roundoff Errors

The translation from analog to digital will result in a quantization error as shown in

Figure 3.7 and defined by

e[n] =.i~n] - x[n]

where i[n] is the quantized sample.

When a three-bit quantizer is used, then the error will always maintain a magnitude

within the smallest quantization step 2 -B where B is the number of bits. This is shown by

the error in quantization at the bottom of Figure 3.7 limited to the size of the quantization

step. The error magnitude is linear across the quantization level. The variance is found

by [15:838]

V(X) = E(X 2) - E 2 (X) (3.18)

Substituting into Eq. 3.18 with the definition of the expected value and the second

moment we have
V(X) =J 0X 2 f (X)dx - [L0xf (x)dx]2 (3.19)

where f(x) is the probability distribution function over the smallest quantization step. The

variance then depends only upon the range of the quantization interval. The variance can

then be written as
2 (3.20)

where q is the quantization step equal to 2 B .

The roundoff noise can then be modeled by the variance of a uniformly distributed

random process. The modeling of the roundoff noise as an addition of a noise source was

proposed by Jackson [7]. Each noise source requires the three assumptions:

1. The error sequence from each noise source model is a sample function of a stationary

random process.

2. Each error sequence modeled as a noise source is uncorrelated with the input sequence

x[n] and uncorrelated with all other noise sources.

3. The probability distribution of the error process is uniform over the smallest quanti-

zation step associated with the process.

to help simplify the analysis considerably. These assumptions are not valid when the system

under study has a step function for x[n]. However, the type of systems most commonly
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implemented will have a much more complicated signal for input. The input signal needs to

flucLuate in an unpredictable manner in order for these assumptions to hold. Heuristically,

these assumptions are valid when the signal is complex and the quantization step small,

so the input signal sufficiently traverses a majority of the quantization steps. For further

treatment, the reader is directed to studies by Widrow [18].

3.5.1 Signal-to-Quantization Noise By re-writing Eq. 3.20 with the measure for a

quantization step we have
2  

2 -2B (3.21)
e 12 12

where q = 2 -B that is the quantization interval and 0.2 is the variance due to the error in

quantization. The number of bits b, can be represented as (B + 1) where B is the precision

and the one is for sign. The quantization step can be written as

2L L
q = B I=q -2~ l -2B-

where L is the range of the quantizer when the pdf is calculated.

The signal-to-noise ratio can be defined as

SNRQ = 1O 1 o () (3.22)

where 0,2 is the signal power and a.2 is the quantization noise power. The signal-to-noise

ratio can then be re-written by substituting in for the signal powers as

SNRQ = 10 10glo (12.2 2 B ) (3.23)

= 6.02B + 10.8 - 20loglo (- . (3.24)

From Eq. 3.24 we find that the signal-to-noise ratio increases by approximately 6dB
with each bit added to the word length of the registers. The power in the term Ox is the

rms value of the signal. The range of the quantizer L is fixed. When the input signal power

expressed by o. is too large, then distortion will result known as saturation. When or, is
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small, then the last term in Eq. 3.24 will decrease the signal-to-noise ratio. The optimum
value for o, is where the input to system uses the full range of values possible.

3.5.2 Modeling Of Roundoff Noise. The autocorrelation function is used to model

the roundoff noise. To start, consider the autocorrelation output relation R, for development

refer to [17:222-238], as

Ryy(k) = Rxx(k) * h(k) * h(-k). (3.25)

Equation 3.25 can be re-written by noting that the convolution in the time domain is

multiplication in the frequency domain. Also, the fourier transform of the autocorrelation

results in the power spectral density. The value of the power spectral density at w = 0 is the

total power in the process. Hence the total power is designated by the use of variance. The

magnitude squared of the effective transfer function is equivalent to the convolution of h(k)

with h(-k). The following result is found as

0.2o' - 1 IH(eaw)12dw (3.26)

ta? 2ir J

where i2 is the variance of the sum of the input noise sources and a2 is the variance at the

output (the total power).

With the use of Eq. 3.26, the ouput power due to roundoff can be found by modeling

the input noise sources. Each noise source is injected just after each multiply as shown in

Figure 3.10.

By the use of superposition, all the noise sources are added forming a single noise

injection point shown in Figure 3.11, and can be written as

e[n] = ei[n] + e2[n] + e3[n] + e4 [n] + e5 [n]. (3.27)

The output [n] is the estimated output from the output of the system plus the output

due to the injected error in the filter.

Provided the noise sources are independent of the input and independent from all other

noise sources, the variance can be found using Eq. 3.21 we have,
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Figure 3.11. Linear noise modeling for direct form I showing the summing of noise sources

into one noise source.
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2 = - 2 -U2 +a2 + a - 2 + 0 -2  (3.28)
e Cj e2 e3 e4  C5

= (2)-2 (3.29)

for model in Figure 3.11.

This technique can be applied to other direct forms by adjusting for the number of

multipliers. To find the variance of the output noise sequence, we integrate the power spectral

density. Output power is found by using Eq. 3.25 in terms of power spectral density as

S'y(f) = S-(f)IH(f)!2  (3.30)

E{y 2(t)} = 0SYY(f)df (3.31)

= RYy(7')IT=o. (3.32)

where E{y 2 (t)} is the total power in the process assuming zero mean.

The output power due to roundoff is found by evaluation of the output autocorrelation

function at r zero. The power spectral density results in the following output noise power

equation

1 i/
2f -=2 Pff(w)dw (3.33)

= 2rJ_,r

21 IU f.(ei) 12dw. (3.34)
22

where al is the total output noise power due to roundoff, Pff(w) is the total power over

the frequency range w, a, is the sum of all linear models for roundoff noise injected in the

system, Hejl is the effective transfer function.

By using Parseval's theorem, we write Eq. 3.34 in terms of the complex variable z as,

a2 = a2 1 Hff(z)H !f(z-')z-1dz" (3.35)

Equation 3.35 is evaluated using residue theory to integrate over the regions of convergence

with n set to the place of origin. Normally, the term n is set equal to zero, since the contour

is evaluated at time step [0] for the impulse response from the transfer function.
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Using the example shown in Figure 3.11 with the effective transfer function He1f(z) =

B(z)/A(z) and by Eq. 3.35, the analysis provides the following solution for the total variance

due to the roundoff as

2 52 -2B 1 H
) = 5 j(z-1)z-'dz (3.36)

= 5 ( 2B 1 ( B(Z)) -1 z-ldz (3.37)
12 m7r (z) ] ,A(z)

= 5-2B) IHef [n[]' (3.38)

with
IHof f[n]l I B(z)

A(z)

3.5.3 Roundoff Power Computation. This section provides an example of theoret-

ical computation of roundoff power. The use of theoretical computation of the contour

integral becomes very tedious and complex for filters beyond fourth order. The results of

the theoretical example are presented in Table 3.3.

The theoretical computation is begun by considering the transfer functions

1.0

F(z) = 1.0 (3.39)
(z -0.4)

0.75
G(z) = 0.5 (3.40)

(z-O0.5)

For purposes of this comparison, the cascade realization is used.

The cascade form is found by the multiplication of each of these two transfer functions

as
0.75

H(z) = (z - 0.4)(z - 0.5)' (3.41)

Rearranging into a second-order section for implementation yeilds

H (z) = 0.0 + O.Oz-, + 0.75z - 2

1 - 0.9z-1 - ( 0.45)Z-2 (3.42)
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From this transfer function we can write the difference equation as

y[n] = 0.75x[n - 2] + 0.9y[n - 1] - 0.45y[n - 2]. (3.43)

From Eq. 3.36, the roundoff power is found using the second-order cascade structure as

o 3(2
- )1 1.0) (2 -0.35) 1. ) (zl _0.5)1 0  zldz (3.44)

noting that only three mulitiplies will result in roundoff power. Simplification yields

fr2=2-2B ) m i z z(.512i ( 2 1 i (z - 0.4)(z - 0.5)( 2 .5 - z)(2.0 - z)dz (3.45)

The two poles are within the contour of integration at z = 0.4 and at z = 0.5. The residues

are found by

z

residue, = Iz=0.4= -2.976 (3.46)
(z - 0.5)(2.5 - z)(2.0 - z)z

residue2 = z - ) .z=°5= 3.333 (3.47)
(z - 0.4)(2.5 - z)(2.0 - z)2..

Therefore, we now write
Tn = 3 2 (-2.976 + 3.333) 

(3.48)

that reduces to the form

2 = 3 ( 2 2B) (0.3573) , and (3.49)

= ( 2  (0.0893). (3.50)

The use of various wordlengths will provide different values for the roundoff power

measurements. For a comparison of different wordlengths, Table 3.3 displays the results.

The wordlengths are specified by the number of bits used in the simulation. Table 3.3 shows

the results from the theoretical calculations.
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Table 3.3. Roundoff power measurements for different wordlengths computed by theoretical
means.

Number of Bits Theory
22-bits 0.0507E-13
20-bits 0.8124E-13
18-bits 0.1300E-11
16-bits 0.2080E-10
14-bits 0.3328E-09
12-bits 0.5324E-08
8-bits 0.1363E-05
6-bits 0.2181E-04

The theory is difficult to work through when the contour integral has repeated roots.

The reader can refer to [19:126-127] for further insight into how to evaluate the complex

integral.

3.5.3.1 Summary. The two structures for the digital filters used in this thesis

were then developed. The two structures, the 1D and the 2D, are used for the digital filter

analyzer software tool developed in this thesis. The finite precision effects from the notation
were presented. The effects of coefficient quantization were modeled and shown in terms of

the placement of the singularities in the z-plane. The means to find the roundoff power were

presented along with an example computation.
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IV. Digital Filter Analysis Tool

This chapter will cover some the more important subroutines and algorithms used in

the software. Methods to simulate the structures of both filter representations are given.

The more general sections of code are found in Appendix B, and a User's Manual is found

in Appendix C. The user's manual provides a short introduction into the type of filters used

and the input file styles. Then a description is given for each of the main menu options.

4.1 Overview of the Digital Filter Analysis Tol

The purpose of this thesis was to build a software tool to study and exemplify the

effects of coefficient quantization and calculate roundoff error power generated with the

digital filter. These effects occur from the digital representation of numbers within a finite

length register. These objectives were to be applied to the two digital structures, direct form

and cascade form. The tool developed provides a useful means to study this advanced topic

in discrete signal analysis. The software tool is written in FORTRAN. The compiler used

was the f77 compiler. I used AFIT's Sun work stations to develop the program.

4.2 The Main Computation Section for Computations

This section of code immediately follows the controlling section where the main menu

options are. This computation section runs when a user hits the return key at the main menu

options. This section of the program does the number crunching to generate the output files.

The output files are all the result of performing the analysis of coefficient quantization. The

roundoff power measurements are run as a separate option under the main menu.

The input to the digital filter analysis tool is a set of numbers that represents the filter

coefficients. These coefficients can be input using up to eight significant digits. The output

from the digital filter analysis tool are files. These output files contain the results of a filter

simulation. Three basic types of files are produced. The magnitude file shows the magnitude

response of the filter to different frequencies. The phase file shows the phase relationship

for different frequencies. The error file shows the user difference between the best precision

available from the input coefficients to the precision available from the number of bits used in

the simulation. The error file is a linear difference between the unquantized (single precision)

and the quantized version of the magnitude responses. However, some of the error plots in

Section 5.3 are calculated as the linear difference from the "design criteria."
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The output files that have the magnitude and phase response are listed as two types.

The two types correspond to the unquantized (single precision) and the quantized (less than

23-bit fractional number) versions. When the digital filter analysis tool is used, the opening

menu displays all the options for the user to select from. Two options allow the user to

associate a two digit number with the output files. One of these two options puts a two

digit number with the unquantized simulation results. This two digit number is attached to

the magnitude and phase plot. The second option associates a two digit number tag onto

the quantized output files- magnitude, phase, and the error. By looking at the names of

the output files, a user can immediately tell if the file is the unquantized or the quantized

simulation results.

4.2.1 Calculation of Unquantized Magnitude and Phase The main routine uses the

starting radian frequency point and then hands off control to either the direct magnitude

calculation subroutines or the cascade magnitude calculation subroutines. The results from

running either one is the value of the transfer function at that point in frequency. The next

set of calculations performed are the magnitude and the phase. They are found by classical

means as

Magnitude of H(z) = IH(z)I = numerator of H(z) (4.1)
denominator of H(z)

imaginary part of H(z)'
Phase of H(z) = O(z) = tan - ' real part of H(z)

The group delay is also found but not used. This section continues to step through a

specified number of spectral points. The arrays built are the single precision (unquantized)

magnitude data array and the unquantized phase data array. These two arrays correspond

to the unquantized calculations.

With the single precision (unquantized) data arrays built, the next two sections simply
write out to the disk the two arrays. However, the magnitude is converted into logarithmic

scale before being written to the disk.

4.2.2 Calculation of Quantized Magnitude and Phase Once the unquantized (single

precision) data files are written to disk, the quantization analysis section begins. This section
will account for the restricted word register lengths to represent the coefficients. The first

step is to find the value of all the coefficients in a quantized form.
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A subroutine is called (quant) to find the values of the quantized coefficients. This

subroutine takes a value specified by single precision format and returns a new value that is

dependent on the number of available bits as selected by the user. The new coefficients are

used to find the magnitude and phase responses just as in the single precision (unquantized)

section. The transfer function is recomputed. Then the magnitude and phase are calculated

from the transfer function at the spectral frequency. The magnitude is written in terms

of a logarithmic scale. At this point one more calculation is performed. An error measure

can be found from the difference between the 24-bit precision magnitude and the further

quantized magnitude plots. The error measurement is a linear measure of the error between

both magnitude data arrays at the same spectral frequency.

The data arrays for the quantization effects are saved as files. Error checking for out-

of-bound numbers is done. Also checks for division by zero is performed and prevented with

a message to the user. A useful check for the user is one when the coefficients are quantized.

If a quantized version of a coefficient is going to take a value of zero, then a message is sent

to the screen telling the user of the program that one of the coefficients was just quantized

to zero. More of these messages will occur as less bits are used to represent the coefficients

and further degradation in magnitude response can be expected.

4.3 Subroutines Called by the Main Option Menu and Main Computation Section

The Digital Filter Analyzer has many subroutines. This section is to provide an

overview of each of the ,ubroutines used that execute tasks. Explanations are given to

provide some detail beyond the user's manual level. This section helps to explain how the

design was broken down into smaller, manageable sections of code.

4.3.1 Function Quant; Performs the Quantization and Roundoff Computations The

main routine calls this function to quantize the coefficients. There are error checks for zero

conditions after quantization, and violation of out of bound conditions. Numbers are limited

to be within the range ±1.0 in two's complement format. The routine will provide to the

user error messages that display the quantized value and the maximum that is allowed. If the

range of the quantized value is beyond the range then the quantized value will be truncated

to the minimum or the maximum value.

This routine will return the value of a number in a quantized representation. The

effect of quantization and roundoff is similar when applied to number representations. Each

source of error degrades the precision to representing the result.
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The smallest quantization interval (2
- B) is added up until the number is reached. The

amount of the smallest incremental steps is added up, then rounded up or down depending

on the sign of the number being represented. The integer part is taken from this and then

divided by the total number of incremental steps possible with the bits available. The

function quant uses the IFIX function in FORTRAN to take the integer part of a number.

quantized value = IFIX(2 (number of bits) * (X) + 0.5) for X > 0.0.

2 (number of bits)

and

quantized value = IFIX(2 (number of bits) * (X) - 0.5) for X < 0.0.
2 (number of bits)

where X is the number being represented.

4.3.2 Roundoff Power Computations The filter is pulsed by a unit impulse and 100

impulse response values are used to compute the roundoff power. The output of the filter

is used to find the roundoff power. Two types of output are found. One output accounts

for the effects of roundoff and the other output does not account for the effects of roundoff.

The error between the outputs is used to compute the roundoff powcr. The type of structure

changes how this approach is applied.

4.3.2.1 Function Roundq; Quantization Routine for the Roundoff Power Calcu-

lations. This function does the exact same function as the Quant routine but without the

error checking that is done in function Quant. The purpose of this function is to represent a

given number to the precision given by the number of bits available for quantization. Out of

bound conditions are not checked for in this function (quantized values can be larger than

11.01. The roundoff error measurements call this function not the quantizer routine.

4.3.2.2 Subroutine Roundoff; Controls the Roundoff Computations. The inputs

to this subroutine are the coefficients, type of filter and number of bits available. The

subroutine will direct the flow of the program into one of two types of digital filters structures.

The two structures are the direct structure and the cascade structure.

Once the control is passed back to the subroutine, another option for the user to enter

is provided. When a cascade structure is being used, then the user will have the option to
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change the order of the cascade sections. This provision is applicable in the reduction of

roundoff power. Control is returned to the main menu.

4.3.2.3 Subroutine Roundcascade; Computes Roundoff Power Generated By Cas-

cade Sections. This subroutine finds the output for the cascade structure in both the single

precision (unquantized) and the quantized ((B+ 1) bit fixed point) structures. The difference
between the two outputs is used to estimate the power due to roundoff noise.

The routine requires that the cascade design is used. Therefore, an iterative structure
is used to compute the responses. The impulse response is found from the transfer function
using the first 100 output points. The impulse response is first computed without the effects

of the roundoff noise. Then, the routine computes the impulse response for the first 100

points that account for the effects of roundoff noise. The number of bits available are input
by the main menu. The use of 100 points will generally provide time for the impulse response

to vanish. The algorithm that is used is difficult to understand unless the form of the cascade
section is known. Each node has a new value with each iteration in the impulse response.

Figure 4.1 shows the structuie to implement the algorithm. The value of P[n] is

computed first, then the others follow as in the following set of equations. The parameter

K steps though cascaded second-order sections to the input that was generated by the prior

section's output.

P[N] = X[N] + (PI[N] * a2) + (P2[N] * a - 3) (4.2)

Y[N,K] = (P[N] *b- 1) +(PI[N] *b2) + (P2[N] *b3 ) (4.3)

The summation nodes of Pl[n] and P2[n] are updated with the value one discrete time
previous to the present discrete time. This provides the node with the values to be used

during the next iteration. This process gives a result in a two dimensional array Y[N, K].

The second dimension is a means to keep the output of each cascade section. The output of

each cascade section becomes the input for the next cascade section.

The same algorithm is used again except the results from each multiply are sent to the
roundoff routine (accounts for roundoff errors). The roundoff routine simulates the effect of
having only a limited number of bits available to represent the result from the multiplies.

Once the impulse response is found for the first 100 points in the cascade filter account-
ing for roundoff, roundoff power can be estimated. To find the roundoff power, the mean for
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n]y[n]

Figure 4.1. Cascade structure with Direct Form II realization for the second-order section.

the error between the two impulse responses is found. The impulse response from the cas-

cade filter without accounting for the affects of roundoff is subtracted from the the impulse

response from the cascade filter that does account for the effects of the roundoff errors from

multiplication. The expected value of the difference is found. A recursive estimator is used

since it can apply to many applications [20], as shown in Equation 4.4. A pictorial view of

the implementation is given in Figure 4.2. The equation to use the estimator that finds the

current mean y[n] is as follows:

90[n] = 9[n - 1] + 1N(x[n] - y[n - 1]) (4.4)

The noise power is found by the use of [14:298]

error =- (hk - hk) (4.5)

hk = impulse resonse calculated without rounding.
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]y[n]

F "_ 

I Z- 1 r

Predicting

Correcting

Figure 4.2. Recursive Mean Estimator Implementation

hk = impulse response calculated with rounding.

and

roundoff power = ((error - L)2. (4.6)
(N -- 1) n=1

where p is the mean value of the 100 points in the error sequence.

The roundoff power is sent to the screen. The order of the cascade sections can be

changed by the user. After a change in the order of the cascade sections, the roundoff power

is computed and displayed again to show the effects of changing the order of the second-order

cascade sections.

4.3.2.4 Subroutine RoundDirect; Computes the Roundoff Power in Direct Form

I. This subroutine is called by the subroutine roundoff. The purpose of this routine is to

find the impulse response of the filter for the first 100 sample points. Then the routine finds

the impulse for a Direct Form I digital filter that accounts for the effects of roundoff from the

multiplications. The same approach is used for the Direct Form I to find the power in the

roundoff noise as in the approach to find the power in cascade forms. Equations 4.4 and 4.6
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are used to find the roundoff noise power generated by the filter. This information is used

to find the power in the roundoff error as it applied to the current filter structure.

The use of 100 sample points only applies to the infinite impulse response forms. The

use of Direct Form I for the FIR case need only contain twice as many sample points as

there are delay elements. Figure 4.3 shows the form of an infinite impulse response filter

with second-order feed forward and second-order feed back loops.

The value of the roundoff power is presented to the user on the screen. Once the

analysis for the roundoff power is done for the Direct Form I, control is returned to the main

menu.

xij bo - ° y[n]

z-1 
Z - 1

Direct --b3 L

Form I

Figure 4.3. Infinite Impulse Response structure, second-order feedback and second order
feedfoward sections.

4.3.3 Subroutine ChangeCascade Order; Allows Manipulation of the Cascade Sections

for the Numerator and the Denominator. This subroutine is called by the subroutine round

cascade. Once the calculation for the roundoff power is completed, the user is presented with

the option to change the order of the cascade sections. By manipulating the order of the

cascade sections, the user will be able to maintain the same transfer function of th, digital

filter, but the user will be able to manipulate the resulting roundoff power developed within

the filter.
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The basic idea is to manipulate the order of the second-order sections. Since it has been

shown that the order of the transfer functionL will not change the overall system response
(assumes unquantized coefficients), the designer is assured of frequency performance goals.
Therefore, the designer is further able to refine the design by finding the lowest possible

roundoff power measurement. The process is best done by matching the pole zero pairs that
are close to each other. Then the order for the filter sections should start with those pole

zero pairs that are closest to the unit circle [5]. As shown in Figure 4.4, the pairing procedure
can be done by a graphical means. This can serve a starting point. The designer can then

try to change the order of the sections to minimize the roundoff power.

Unit Circle

Re0 Zeos
X Poles

Figure 4.4. Pole-zero plot for a fourth-order filter showing pairing of most reasonable pairs.

When thi3 subroutine is entered, the coefficients for the cascade designed filter are sent
to the screen. Once the coefficients are sent to the screen, the roots of the cascade sections

are found and sent to the screen. The user can view the roots of each section in both the

numerator and the denominator. By seeing the location of these roots, the user can choose

ihe best order to place the cascade sections.
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The roots are normally complex conjugates of the second-order polynomial. With this

in mind the equation
-bA 4-b 2 -4ac

roots =
2a

is used to find the roots. If the user wants to separate the complex conjugates by splitting

up the conjugate pair, the re-building of the second-order polynomial will have the following

form:

(z + (a + j/3))(z + (- + jb)) (4.7)

where the real part and imaginary part of the roots are no longer complex conjugates. By

expanding Equation 4.7 we obtain,

(z2 + (a + j/3)z + (-Y + j5)z + j/3 + j60 - /3 5). (4.8)

This can also be written by combining terms as,

(z2 + (a + -1 + (J3 + S)j)z + (/37 + ba)j - /306). (4.9)

Two coefficients in Eq. 4.9 have real and imaginary parts. Separating the complex conjugates

will lead to a more complex heuristic design process for the designer.

Since the complex conjugate no longer will zero the imaginary terms shown in Eq. 4.9,

the resulting second-order section will have complex coefficients. This form can not be

implemented by any realization directiy. The only solution is to use higher order sections

to incorporate the complex conjugates. The final lowest order polynomial may indeed be a

direct, form realization. In this case, the designer will more than likely achieve better results

with lower cost in implementation by adding a bit to the word length and working with the

best performance achievable by the effects of the roundoff design. This clearly shows how a

designer is faced with the trade-offs of complexity and higher performance.

Fortunately, the pole-zero plot will have the placement of the complex conjugates in

a form where the designer can always choose the pair closest to the real axis ai d the unit

circle. The designer must keep the complex conjugates as a pair in the numerator and

the denominator sections. The digital analyzer tool does this. The designer can move the

complex conjugate pairs as a unit in the cascade designed filter. By so doing, the rebuilding

of the second-order sections is guaranteed to have real coefficients, a reqiuirenient for design.
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4.3.4 Summary The method to quantize numbers for representing them in binary

format with the decimal point to the left of the most significant bit was given. The quan-

tization process is used to simulate the coefficient quantization and aid in the simulation of

roundoff noise. The process to calculate the roundoff power was given. The subroutines to

perform the calculations were reviewed. Finally, the method to rearrange the second-order

sections to reduce the roundoff power generated within the structure was reviewed. Appendix

C contains further detail information on subroutines not mentioned in this chapter.
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V. Experimental Results From The Digital Filter Simulator Tool

5.1 Overview of Chapter

In this chapter, the results from using the digital filter simulator tool are presented. A

comparison of roundoff power is done using theoretical means and the digital filter analyzer

tool. Results from the comparison use various lengths for the representatior coefficients

to establish a pattern in the roundoff power measurement.

Analyses of FIR and IIR filters in Direct and Cascade forms are presented. Filter

responses are verified against other works. The mechanism used to verify the results is to

visually compare between the magnitude response plots. This section is not concerned how

the coefficients are generated rather, on the effects of specific realizations.

The plots in this chapter will show the number of bits used for the precision. The

number of bits used for the representation is (B + 1) where B is the number of bits for

precision and the 1 is for the sign of the number being represented. The coefficients for the

filter are assumed to be in two's complement representation.

5.2 Comparison Of Roundoff Power Computations.

The results of the theoretical calculations are compared to the results of the simulator.

Conclusions are then drawn from the comparison.

The results from the digital filter simulator tool will provide sound computation of

the roundoff power generated within the filter. A simple cascade section is implemented by

the simulator tool. The software simulator estimates the power generated by the roundoff

errors. The theoretical computation of the same cascade section is done in Section 3.5.3.

The results are compared in Table 5.2.

For purposes of this comparison, the second-order cascade realization is used. The

cascade form can be from the transfer function

0.75
H(z) = (5.1)

(z - 0.4)(z - 0.5)

as
H (z) 0.0 0_.z' + 0.75z- 2

(0 - 0.9z - 1 - (-0.45)z2 (5.2)
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The digital filter simulator tool used the coefficient file shown in Table 5.1 to generate

the output roundoff power measurements for different wordlengths. The wordlengths are
specified by the number of bits used in the simulation. Table 5.2 compares the results from

the theoretical calculations and the simulated calculations.

Table 5.1. Coefficients for the Cascade section used for roundoff power calculation
comparisons.

Coefficient Position Coefficient Value

Section Number One
a, 1.00
a2  0.90
a 3  -0.45
bi 0.00
b2 0.00
b3  0.75

The Difference column is found by taking the difference between the theoretical and

simulation results.

Simulating the effects of the roundoff power is a quicker method than using the contour
integral. The results, when compared to the theory, are close (in the same order of mag-

nitude). Table 5.2 shows the roundoff from theory is larger and smaller than the roundoff
generated by the simulator. The probability distribution for the error is assumed to be a
linear distribution that causes the theory to find a consistent roundoff power figure. The
simulator will find and account for the actual error produced within the simulation roundoff

process.

Table 5.2. Comparison of roundoff power measurements for different wordlengths computed
by theoretical means and by the software simulator.

[Number of Bits Theory Simulation % ErrorI Less Power in Sim.?
22-bits 0.507E-13 0.2317E-13 78% no
20-bits 0.8124E-13 0.8956E-13 9% no
18-bits 0.1300E-11 0.5802E-11 77% no
16-bits 0.2080E-10 0.1180E-10 43% yes
14-bits 0.3328E-09 0.3486E-09 5% no
12-bits 0.5324E-08 0.5741E-08 7% no
8-bits 0.1326E-05 0.1037E-05 24% yes
6-bits 0.2181E-04 0.1867E-04 14% yes
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Table 5.3. Unquantized and quantized coefficients for an FIR filter.
Impulse Value Coefficient Quantized Coefficient to 8-bits

h[0]=h[28] 1.359657E-3 0.00000000
h[1]=h[27] -1.616993E-3 0.00000000
h[2]=h[26] -7.738032E-3 -7.8125E-3
h[3]=h[251 -2.686841E-3 0.00000000
h[4]=h[24] 1.255246E-2 1.56250E-2
h[5]=h[23] 6.591530E-3 7.81250E-3
h[6]=h[22] -2.217952E-2 -2.34375E-2
h[7]=h[21] -1.524663E-2 -1.56250E-2
h[8]=h[20] 3.720668E-2 3.90625E-2
h[9]=h[19] 3.233332E-2 3.12500E-2

h[10]=h[18] -6.537057E-2 -6.2500E-2
h[11]=h[17] -7.528754E-2 -7.8125E-2
h[12]=h[16] 1.560970E-1 1.56250E-1
h[13]=h[15] 4.394094E-1 7.81250E-3

The simulator computes the roundoff power by using 100 samples of the impulse re-
sponse from the transfer function h[n]. Generally, for the IIR type filters, 100 iterations will

allow most of the impulse response to be close to zero. A more complicated input/output

signal and extending the iterations to reach a minimum value may have given a tigher agree-
ment. Details for the computation can be found in Section4.3.2.3.

5.3 FIR Example With Linear Phase Showing Results with Coefficients Quantized.

A simple illustration is presented of an FIR filter that was designed with the Parks-
McClellan design technique. The design was to meet the following constraints:

0.99 <1 H(eJ' ) 1 _ 1.01, 0 < w < 0.4r

I H(e') 1< 0.001(-60dB), 0.67r < w < r

Table 5.3 shows the resultant coefficients and the corresponding 8-bit quantized version.

Since this is an FIR filter with even symmetry about the center of the impulse response,
the phase is linear. The results show that even symmetry is maintained after quantizing the

coefficients.
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Figure 5.1 through Figure 5.19 show the results of the coefficient quantization for eight

cases: 24-bits (unquantized), 16-bits, 14- bits, 13-bits,12-bits, 10-bits, and 8-bits, and 6-bits.

The design criteria is met in the 16-bit, 14-bit, and 13-bit representations. However, the 12-

bit magnitude plot shows the stop band criteria of 60dB attenuation is not met. Figure 5.5

shows that some frequencies are only 53dB down. Figure 5.7 (8-bits) of the magnitude shows

that the stop band is more than 10 times the desired level of output.

Figure 5.8 (6-bits representing the coefficients) shows degradation in the transition

region to the stop band region verses the 24-bit plot. This plot does have about 13% of the

frequency band in the transition region. This example shows how the transition region holds

it form during the quantization process. Once beyond 60% of the frequency band, the stop

band does hold 20dB down.

The digital filter simulatcr tool did truncate 14 of the 28 filter coefficients to a value

of zero when only 6-bits were available to represent the filter coefficients. Since the zeros

that were truncated were very close to the value of zero, the actual amount of change is still

limited to the accuracy of the number of bits available. In reality, all the coefficients were

truncated to accuracies limited to the number of bits. The coefficients close to zero may

have the distance moved to the new coefficient location (zero for this case) that is actually

le, distance than other coefficients that did not suffer truncation to zero.

The error and phase plots using 6-bits to represent the coefficients are omitted, since

they show similar information. The error plots in Figure 5.9 through Figure 5.14 show

the error corresponding to either the design criteria or the 24-bit version of the magnitude

response. In particular, Figures 5.10 and 5.12 show the linear error from the design criteria.

The first section of Figures 5.10 and 5.12 correspond to the pass band region; the error past

1.5 radians corresponds to the error in the stop band region. The transision region is set to

zero for these two plots.

The error shows how much deviation occurs from the unquantized plots (shows the

deviation from optimal conditions). Another type of error plot shows the deviation from the

design criteria (shows the absolute error). The deviation in the stop band region consistently

worsens as the number of bits is decreased.

Also presented are the phase .lots (Figure 5.15 through Figure 5.19) for all cases except

the 6-bit version. This shows that the filter will maintain linear phase. The is due to the

symmetry of the locations of all the zeros in the z-plane. This is one area that maintains its

benefits even under the effects of coefficient quantization.
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Figure 5.1. Unquantized Magnitude Plot, Full Single Precision, representation of coeffi-
cients in Table 5.3.

20

0 .. ..........................................

-20

-40

-60

-80

-100

-120
0 0.5 1 1.5 2 2.5 3 3.5

Radian frequency (w)

Figure 5.2. Quantized Magnitude Plot, 16-Bits Precision, representation of coefficients in
Table 5.3.
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Figure 5.3. Quantized Magnitude Plot, 14-Bits Precision, representation of coefficients in
Table 5.3.

20

0 .......

-20

-40
V

-60

-80

-100

-120
0 C.5 1 1.5 2 2.5 3 3.5

Radian frequency (w)

Figure 5.4. Quantized Magnitude Plot, 13-Bits Precision, representation of coefficients in
Table 5.3.
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Figure 5.5. Quantized Magnitude Plot, 12-Bits Precision, representation of coefficients in
Table 5.3.
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Figure 5.6. Quantized Magnitude Plot, 10-Bits Precision, representation of coefficients in
Table 5.3.
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Figure 5.7. Quantized Magnitude Plot, 8-Bits Precision, representation of coefficients in
Table 5.3.
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Figure 5.8. Quantized Magnitude Plot, 6-Bits Precision, representation of coefficients in
Table 5.3.
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Figure 5.9. Linear error (difference from the single precision version), 16-Bits precision,
representation of coefficients in Table 5.3.
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Figure 5.10. Linear error (difference from the design criteria) 16-Bits precision, pass band
and stop band shown, representation of coefficie ; in Table 5.3.
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Figure 5.11. Linear error (difference from the single precision version), 12-Bits precision,
representation of coefficients in Table 5.3.
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Figure 5.12. Linear error (difference from the design criteria), 12-Bits accuracy, pass band
and stop band shown,representation of coefflcient3 in Fable 5.3.
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Figure 5.13. Linear error (difference from the single precision version), 8-Bits accuracy,
representation of coefficients in Table 5.3.
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Figure 5.14. Linear error (difference from the design criteria), S-Bits accuracy, representa-
tion of coefficients in Table 5.3.
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Figure 5.15. Phase Response 16-Bits accuracy, representation of coefficients in Table 5.3.
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Figure 5. 16. Phase Response, 14-Bits precision, reprecsentation of coefficients in Table 5.3.
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Figure 5.17. Phase Response, 12-Bits precision, representation of coefficients in Table 5.3.
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Figure 5.18. Phase Response, 10- Bits prein representation of coefficients in Table .5.3.

5-13



4

3

2

-3

-4
0 0.5 1 1.5 2 2.5 3 3.5

Radian frequency (w)

Figire '53. 19. I'llase Response, S-B3its precision, representation of coefficients in Table 5.3.
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5.4 FIR Example Implemented in Direct and Cascade Form

Consider the effects of changing the structure for implementation of a digital filter.

Consider the following difference equation.

y[n] = 1.Ox[nj+2.578793x[n-1]+3.497540x[n-2]+2.507401x[n-3]+ 1.265625x[n-4]. (5.3)

Table 5.4 shows the coefficients and the corresponding position in the filter.

Table 5.4. Coefficients to Begin the Investigation of an FIR Filter.

Coefficient Position Coefficient
bi 1.0
b2 2.578793
b3 3.497540
b4  2.507401
b5 1.265625

a, 1.0

This example shows that the digital filter simulator tool provides accurate results when

each structure is used and the conversion utility is exercised. Direct and cascade structures

are used to compute output files. Furthermore, the conversion utility is exercised to see the

identical magnitude plots. The files that hold the filter coefficients are the following:

* direct form coefficients not normalized

* direct form coefficients normalized

" cascadc form coefficients not normalized

" cascade form coefficients normalized

" conversion from cascade to direct form, normalized.

The coefficients shown in Table 5.4 are proviled to digital filter analyzer tool. These

coefficients are in the direct form. The coefficients required to implement the filter in cascade

form are also computed for the simulator. The simulator computed the rest of the filter files

using the normalization routine. The conversion utility found the coeflicients in direct form

from using the cascade coefficients. Comparisons are inade to validate the conversion utilitv.

The list of output plots uses the filter coefficients in the forim stated and the ununler

of bits for coefficient representation. lhe plots are as follows:
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1. 24-bit Magnitude Plot, conversion from cascade structure to direct structure, low pass

FIR.

2. Quantized Magnitude Plot, direct structure 16-Bits.

3. Quantized Magnitude Plot, direct structure 8-Bits.

4. Quantized Magnitude Plot, cascade structure 16-Bits.

5. Quantized Magnitude Plot, cascade structure 8-Bits.

6. Magnitiide Plot, conversion from cascade structure to direct structure using 16-bits.

The digital filter simulator tool was used to create the normalized files. Table 5.5
shows the coefficients used to start this design example and the results of the normalization

process.

Table 5.5. Coefficients in Non-normalized and Normalized States for the FIR Filter In
Direct Form I.

Coefficient Position Coefficient Normalized Coefficient
bi 1.0 0.2859152555
b2  2.578793 0.7373162508
b3 3.497540 1.0000000000
b4 2.507401 0.7169041634
b5  1.265625 0.3618614674
a, 1.0 0.2859152555

The original design produced coefficients in the direct form. In order to implement

the same filter in cascade form, the poles and zeros are needed. The coefficients were found

for second-order sections to implement the cascade structure. Since some of the resultant

coefficients for the cascade sections were greater than one, the normalization routine was used

to create the normalized coefficients shown in Table 5.6. Then the conversion process was

used to convert the cascade structure into a direct structure. The result of this conversion

process is shown in Table 5.7. The simulator was run using cascaded second-order filter

sections. The question to find out is if the coefficients in Table 5., will generate the same

magnitude plot as the coefficients generated by the conversion process. Note the success of

the digital filter simulator tool by viewing Figure 5.20 through Figure 5.28.

Figure 5.20 shows the result of the conversion process. Compare this with Figure 5.21

and with Figure 5.23. Note the magnitude plots appear exactly alike. This shows the digital
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filter simulator tool provides consistent results with each of the filter structures and with the

conversion process.

By careful examination of Figure 5.22, the use of 8-bits seems to drop the stop band

by 2dB when compared to the 24-bit plot. That would mean to a designer that the use

of 8-bits does enhance the response of the filter over the use of more accurate coefficient

representations. The error plots show the degradation in the filter's performance when fewer

bits are chosen.

The transfer function of the direct form coefficients from Table 5.5 implemented in

second-order sections is

Hl(z) = (1.0 + .556231z - ' + .81z- 2 )(1.0 + 2.02254z - 1 + 1.5625, - 2 )  (5.4)
(1.0 - 0.0z- ' - 0.0z- 2 )(1.0 - 0.0z- 1 - 0.0z- 2 )

This transfer function has the coefficients in a non-normalized form. When the coefficients

are normalized, the program produces the filter coefficients as shown in Table 5.6.

Table 5.6. Coefficients for the cascade second-order sections before and after normalization.

Coefficient Position Coefficient Value Normalized
Section Number One

b, 1.0 0.4944277704
b2  .556231 0.2750160694
b3  .81 0.4004864991
a, 1.0 0.4944277704

a2 0.0 0.0000000000
a3 0.0 0.0000000000

Section Number Two
bi 1.0 0.4944277704

b2 2.02254 1.0000000000
b3  1.5625 0.7725433707
a, 1.0 0.4944277704
a2  0.0 0.0000000000
a 3  0.0 0.0000000000

The digital filter analyzer is then used to convert the set of cascade second order

coefficients into a direct form. Table 5.7 shows the results of that conversion process.

It is shown from Table 5.7 that the results differ by a gain factor. The magnitude

plots also show the similariLy in each set of coefficients used for a filter. This validates the
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Table 5.7. Coefficients in direct form before and after the conversion process for an FIR
Filter.

Coefficient Position Starting Coefficient Values Conversion Results
bi 1.0 0.2444588244
b2 2.578793 0.6304033399
b3  3.497540 0.8549945951
b4 2.507401 0.6129483581
bs 1.265625 0.3093931973
a, 1.0 0.2444588244
a2  no coefficient 0.0000000000
a3  no coefficient 0.0000000000
a4  no coefficient 0.0000000000
a5  no coefficient 0.0000000000

conversion process to see the results of a second-order cascade filter implemented in direct

form.

For brevity, the phase plots are not shown. This FIR filter and the cascade filter will

not exhibit linear phase characteristics. The emphasis of the output is in the magnitude
plots. The issues to find out from the plots are how well the digital filter simulator tool
performed in all these cases. The magnitude output plots do show the consistency of the

softwar, t ool in handling the direct, cascade, and conversion processes. The outputs for the
direct form, cascade form, and conversion process are all equivalent. Comparing these plots

show the magnitude responses to be the same. This filter validates the software tool.
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Figure 5.20. Single precision Magnitude Plot, conversion from cascade structure to direct
structure, representation of coefficients in Table 5.7.
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Figure 5.21. Quantized Magnitude Plot, direct structure 16-Bits precision, representation
of coefficients in Table 5.5.
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Figure 5.22. Quantized Magnitude Plot, direct structure 8-Bits precision, representation of
coefficients in Table 5.5.

5-20



25

20

15

10

05

-5

-10

-15
0 0.5 1 1.5 2 2.5 3 3.5

Radian frequency (w)

Figure 5.23. Quantized Magnitude Plot, cascade structure 16-Bits precision, representation
of coefficients in Table 5.6.

25

20

15

10

m5

'00

-5

-10

-15
0 0.5 1 1.5 2 2.5 3 3.5

Radian frequency (w)

Figure 5.24. Quantized Magnitude Plot, cascade structure 8-Bits precision, representation
of coefficients in Table 5.6.
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Figure 5.25. Magnitude Plot, conversion from cascade structure to direct structure using
16-bits precision, representation of coefficients in Table 5.7.
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Figure 5.26. Linear Magnitude Error with direct structure, 16-Bits precision, representation

of coefficients in Table 5.5.
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Figure 5.27. Linear Magnitude Error with direct structure, S-Bits precision, representation

of coefficients in Table 5.5.
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Figure 5.28. Linear Magnitude Error with cascade structure, 16-Bits precision, representa-

tion of coefficients in Table 5.6.
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Figure 5.29. Linear Magnitude Error with cascade structure 8-Bits precision, representation

of coefficients in Table 5.6.
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Figure 5.30. Linear Magnitude Error Plot, coaversion process from cascade to direct, 16-
bits precision, representation of coefficients in Table 5.7.
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5.5 IIR Bandpass Example Implemented in Direct Form to Show Robustness in IIR Filter

The following filter is a band pass 11R filter that uses the direct structure. This example

shows how some designs will maintain their form even when the precision to represent the

numbers is reduced to only five bits to the right of the binary point.

The plots shown are using the 24-bit unquantized version, 16-bits, 12-bits, 8-bits, and

6-bits to represent the coefficients. The error plots show how much deviation from the 24-bit

version is generated.

Since the phase for this filter is nearly linear in the pass band region, the phase plots are

included. The phase plots will show that phase maintains linearity under the quantization

process. Consider the following difference equation.

1.0y[n] + 0.Oy[n - 11 + 1.3805618y[n - 2] + O.Oy[n - 3] + 0.53138722y[n - 4]

0.03771x[n] + 0.Ox[n - 1] + (-0.07542 x[n - 2]) + 0.Ox[n - 3] + 0.03771x[n - 4X5.5)

The coefficients used to generate the results is shown in Table 5.8 in both non-

normalized and normalized representations.

Table 5.8. Coefficients for 11R Bandpass Example.

Coefficient Position Coefficient Normalized Coefficient
b, 0.03771 0,0273149665
b2  0.0 0.0000000000
b3 -0.07542 -0.0546299331
b4 0.0 0.0000000000

b5 0.03771 0.0273149665

a, 1.0 0.7243427634
a2  0.0 0.0000000000
a 3  1.3805618 1.0000000000

a 4  0.0 0.0000000000

a5  0.53138722 0.3849065006

The magnitude plots show that the response compared to the 24-bit version will stay

within three percent, of the frequency response even in Figure 5.39 using 6-bits to represent

the coefficients. The error drops to 0.01% when 16-bits are used to represent the coefficients.

This example shows how some filter designs can maintain similar frequency response with

decreased acciiracy for coefficient representation.
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Figure 5.31. 24-bit Magnitude PlIot, representation of coefficients inl Table 5.8.
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F-igure 5.32. Quantized Magnitude Plot, 16-Bits precision, representation of coefficients inl
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Figure 5.33. Quantized Magnitude Plot, 12-Bits resolution, representation of coefficients in
Table 5.8.
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Figure 5.34. Quantized Magnitude Plot, 8-Bits resolution, representation of coefficients in
Table 5.8.
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Figure 5.35. Quantized Magnitude Plot, 6-Bits resolution, representation of coefficients in
Table 5.8.
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Figure 5.36. Linear Magnitude Error, 16-Bits resolution, representation of coefficients in
Table 5.8.
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Figure 5.37. Linear Magnitude Error, 12-Bits resolution, representation of coefficients in
Table 5.8.
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Figure 5.38. Linear Magnitude Error, 8-Bits resolution, representation of coefficients in
Table 5.8.
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Figure 5.39. Linear Magnitude Error, 6-Bits resolution, representation of coefficients in
Table 5.8.
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Figure 5.40. Phase Response, 16-Bits resolution, representation of coefficients in Table 5.8.
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Figure 5.41. Phase Response, 12-Bits resolution,, representation of coefficients in Table 5.8.
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Figre 5.42. Phas Response, 8-Bits resolutiou, representation of coefficients in Table 5.8.
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Figure 5.43. Phase Response, 6-Bits resolution, representation of coefficients in Table 5.8.
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5.6 Cascade Bandpass Filter, Eighth-Order, Four Sections

This filter was taken from [2:454-5571 and shows the pass band region changes shape

during the quantization process. This example provides additional insight into the general

shape of the magnitude plots when the number of bits used to represent the coefficients are

reduced. The magnitude plots use 24-bits for full precision, 16-bits, 12-bits, and 8-bits.

The error plots show that the filter is very resilient to the quantization effects in the

stop band regions. The errors in the magnitude response occur in the pass band region.

Even when the use of eight bits for the coefficients is used, the difference in the magnitude

plot occurs in the pass band region. With eight bits, there is a difference of 7dB in the pass

band region.

One common characteristic of the cascade filter is their insensitivity to the effects of

coefficient quantization. This is due to the limit of the power of z in the frequency equation.

The phase for this IIR cascade structure filter is non-linear. Therefore, the phase plots

are omitted. The error plots show how much the magnitude plot is different from the 24-bit

unquantized magnitude plot. Consider the following transfer function,

H(z) =(1.0 + 1.0z' + .0z 2I '(1.0 + (-.593-1500)z-' + 1.0z-2

1.0 - (--1.609375)z - 1 - 1.0z-2 ) 1.0 - (-1.328125)z-1 - 1.00Z-2

(1.0+ .890625z- + (-0.921875)z-2)( 1.0 + 0.8125z- + (-0.96875)z- 2 *(56)
1.0 - 1.046875z - 1 - (-0.9375)z - 2 1.0 - 1.15625z - 1 - (-0.984375)Z2

The coefficients for this filter are shown in Table 5.9. This cascade filter has four second

order sections. When the sections are multiplied, an eighth-order filter results.
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Table 5.9. Unquantized (single precision) and quantized coefficients for an IIR Cascade
filter.

Coefficient Position ICoefficient Value
Section Number One
a, 1.0
a2  +.890625
a3  -0.921875

__ __ _ __ _ __ _ 1.0

__ _ __ _ _ __ _ _ 0.0

b3 1.0
Section Number Two
a, 1.0
a2  1.046875
a3  -0.9375

b, 1.0
b-2 -1.609375

___ __ _ 3__ __ __ 1.0

Section Number Three
a, 1.0
a2  0.8125
a3  -0.96875

__ __ b,_ _ __ _ 1.0

b2 -.5937500
__ __ b3_ _ __ _ 1.0

Section Number Four
a, 1.0
a2  1.15625
a3  -0.984375

b, 1.0
b2 -1.328125

b3  1.00
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Figure 5.44 shows the filter magnitude response when no quantization effects are in-

jected into the simulation. Figures 5.45 through 5.47 show the effects of reducing the number

of bits to represent the coefficients from 16-bits to 8-bits. These plots show how the filter

magnitude response degrades as the precision deceases. More importantly, the cascade fil-

ter shown in Table 5.9 withstands the degraded accuracy for the coefficients more so than

compared to the filter in Section 5.4.

60

40

20

0 - .............

-20

-40

-60

-80

-100

-120
0 0.5 1 1.5 2 2.5 3 3.5

Radian frequency (w)

Figure 5.44. 24-bit single precision Magnitude Plot, cascade structure, representation of

coefficients in Table 5.9.
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Figure 5.45. Quantized Magnitude Plot, 16-Bits precision, cascade structure, representa-
tion of coefficients in Table 5.9.
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Figure 5.46. Quantized Magnitude Plot, 12-Bits precision, cascade structure, representa-
tion of coefficients in Table 5.9.
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Figure 5.47. Quantized Magnitude Plot, 8-Bits precision, cascade structure, representation
of coefficients in Table 5.9.
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Figure 5.48. Linear Magnitude Error with 16-Bits for Coefficients, cascade structure, rep-
resentation of coe 7 icients in Table 5.9.
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Figure 5.49. Linear Magnitude Error with 12-Bits for Coefficients, cascade structure, rep-
resentation of coefficients in Table 5.9.
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Figure 5.50. Linear Magnitude Error with 8-Bits for Coefficients, Cascade structure, rep-
resentation of coefficients in Table 5.9.
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5.7 Cascade Filter, Twelfth-Order

The advantages of the cascade design becomes most obvious when the performance

requires a large difference between the pass band and the stop band. The filter shown in

this section is a band pass IIR elliptic filter [15:338-341]. The filter was designed with the

following performance specifications:

0.99 <1 H(elw) 1< 1.01, 0.37r < w < 0.4ir,

I H(el") 1< 1.01(-40dB), w < 0.297r,

I H(el) 1< 1.01(-40dB), 0.41r < w < 7r.

The coefficients in Table 5.10 show the need for the normalization procedure. Table 5.10

shows the coefficients from the design process in column two in single precision (unquantized).

Column three quantizes the coefficients to 16-bits of precision with the decimal point to the

left of the left most bit. Three coefficients are truncated in this case because they are greater
then the magnitude of unity. When a coefficient value is greater than the magnitude of unity,

the quantized value will have additional quantization error than just from the constraint of

the word register length. These coefficients are out of range for the quantizer routine. For

example, in column three, section four, coefficient position a2 the coefficient value meets

the out of range condition. Column four normalizes the coefficients from column one first.

Then, after normalization, the coefficients are represented using two's complement with 16-

bits precision.

After the normalization routine is run, the values of the coefficients are all changed.

This will not effect the filter's performance, since the normalization applies a gain universally

to all the coefficients. The gain factor can easily be found by finding the gain applied to the

coefficient that was normalized to unity.

When a user starts with a set of coefficients for the cascade structure, many possible

states can exist for the coefficient file. This example shows all possibilities that can be

generated by the digital filter software tool.

Only one coefficient file is entered into the digital filter simulator tool. The rest of

the coefficient files are computed by the digital filter simulator tool. Each coefficient file

generated can be out of range for the quantizer, so the normalization routine will be needed

to cceate another coefficient file. It may seem that there are more files to keep track of, but

only the normalized coefficient files are needed to see the performance results.
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Table 5.10. Unquantized and quantized coefficients for an IIR Cascade filter.
Coefficient Position Coefficient Value Quantized To 16-bits Normalized And Quantized To 16-bits

Section Number One
a, 1. 1.000000 0.852447
a 2  0.738409 .738403 0.629455
a 3  -0.850835 -0.850830 -0.725311
bi 0.135843 0.135833 0.115814
b2 0.026265 0.026275 0.022399
b3 0.135843 0.135833 0.115814

Section Number Two
a, 1. 1.000000 0.852447
a2  0.960374 0.960388 0.818664
a3 -0.860000 -0.859985 -0.733123
bi 0.278901 0.278900 0.237762
b2 -0.444500 -0.444488 -0.378906
b3 0.278901 0.278900 0.237762

Section Number Three
a, 1. 1.000000 0.852447
a2  0.629449 0.629455 0.536590
a3  -0.931460 -0.931457 -0.794036
bi 0.535773 0.535766 0.456726
b2 -0.249249 -0.249237 -0.212463
b3  0.535773 0.535766 0.456726

Section Number Four
a, 1. 1.000000 0.852447
a2  1.116458 1.000000 0.951721
a3 -0.940429 -0.940429 -0.801666
b, 0.697447 0.697448 0.594543
b2  -0.891543 -0.891540 -0.760009
b3 0.697447 0.697448 0.594543

Section Number Five
a, 1. 1.000000 0.852447
a2  0.605182 0.605194 0.515899
a3  -0.983693 -0.983703 -0.838562
b, 0.773093 0.773101 0.6590270
b2 -0.425920 -0.425933 -0.363067
b3 0.773093 0.773101 .659027

Section Number Six
al 1. 1.000 0.852447
a2  1.173078 1.000 1.000000
a3 -0.986166 -0.986175 -0.840667
b, 0.917937 0.917938 0.782501
b2 -1.122226 -1.000 -0.956665
b3  0.917937 0.917938 0.782501
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A user can choose the conversion utility to change the structure of the filter into a direct

form. The question that arises is what coefficient file to use as input for the conversion

utility. The user is faced with using the non-normalized coefficient file or with using the

normalized coefficient file. The conversion utility, however, takes the current coefficient file

(coefficients for cascade structure) shown on screen and computes a new set of coefficients for

implementation using direct structure. The results from using non-normalized coefficients

or normalized coefficients for the conversion process is found in Table 5.12. Either path to

generate the direct structure will result in the same set of coefficients as shown in Table 5.12.

The magnitude of the coefficients will affect the resulting quantized values. When a

coefficient is smaller than the smallest increment of the quantizer, a value of zero results for

the output. Even with using only six bits, the quantizer translates a filter coefficient into

the number zero when the magnitude is less than 1/2'.

Once the conversion utility is run, two cases will result. The first case is where the

magnitude of a converted coefficient exceeds unity. The second case is where the magnitude

of all converted coefficients are less than unity.

There is, however, a secondary section in the normalization routine. The user will have

the option, when running the normalization routine, to normalize the coefficients even when

the magnitude of the coefficients are less than one. This process will maximize the dynamic

range by setting the largest coefficient to a magnitude of 1.0.

Table 5.11 shows the results found by taking the coefficients from the cascade structure

and applying the normalization routine to the coefficients. The normalized coefficients are

used to build the output plots for the cascade structure.

Table 5.12 shows the resulting coefficient file after the conversion and normalization

utilities are run. These coefficients now refer to a direct structure (the results of the con-

version utility is the direct structure). It's easily seen that the order of the filter is still a

12th order filter. The poles and the zeros are still in the same location, but the structure

has changed to implement the poles and zeros.

The coefficients from Table 5.11 column two (the cascade structure, normalized coeffi-

ciepts) are used for the following set of graphs. Plots are provided to show how the cascade

structure resists the effects of the quantization process. The magnitude plots and the phase

plots are shown. The cascade filter does exhibit linear phase characteristics within the pass

band region. In each case using the cascade filter, the design specifications were met.

Plots included in this example are in the following order:
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Table 5.11. Coefficients for the Cascade structure and the results of the normalization.
Coefficient I Coefficient Normalized (Unquantized)

Section Number One
1. 0.8524582

0.738409 0.6294628
-0.850835 -0.7253013
0.135843 0.1158004
0.026265 0.0223898
0.135843 0.1158004

Section Number Two
1. 0.8524582

0.960374 0.8186787
-0.860000 -0.7331141
0.278901 0.2377514
-0.444500 -0.3789176
0.278901 0.2377514

Section Number Three
1. 0.8524582

0.629449 0.5365790
-0.931460 -0.7940307
0.535773 0.4567241
-0.249249 -0.2124743
0.535773 0.4567241

Section Number Four
1. 0.8524582

1.116458 0.9517338
-0.940429 -0.8016764
0.697447 0.5945444
-0.891543 -0.7600032
0.697447 0.5945444

Section Number Five

1. 0.8524582
0.605182 0.5158923
-0.983693 -0.8385572
0.773093 0.6590295
-0.425920 -0.3630790
0.773093 0.6590295

Section Number Six

1. 0.8524582
1.173078 1.0000000

-0.986166 -0.8406653
0.917937 0.7825029
-1.122226 -0.9566508
0.917937 0.7825029
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Table 5.12. Results of the Conversion process from Non-Normalized coefficients and
Normalized coefficients; the resulting direct structure's coefficients are then
normalized.

Coefficients From the Conversion Process for Direct Structure
Coefficient Conversion From Non-Normalized Coefficients Conversion From Normalized Coefficients

al 0.0113164 0.0113164
a 2  -0.0591053 -0.0591053
a 3  0.1897304 0.1897305
a4  -0.4166786 -0.4166786
a 5  0.7045002 0.7045002
a6  -0.9326622 -0.9326623
a7 1.0000000 1.0000000
as -0.8618795 -0.8618796
a9  0.6015846 0.6015846
al0  -0.3287177 -0.3287176
all 0.1382653 0.1382653
a12 -0.0397719 -0.0397719
a 13  0.0070364 0.0070364
b, 0.0001136 0.0001136
b2  -0.0005590 -0.0005590
b3 0.0017028 0.0017028
b4 -0.0036198 -0.0036198

b5 0.0060357 0.0060357
b6  -0.0080497 -0.0080497
b7 0.0088791 0.0088791
b,3 -0.0080497 -0.0080497
b9 0.0060357 0.0060357
bl0 -0.0036198 -0.0036198
bl 0.0017028 0.0017028
b12 -0.0005590 -0.0005590
b13  0.0001136 0.0001136
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1. Figure 5.51, 24-bit single precision Magnitude Plot, Cascade Structure.

2. Figure 5.52, 24-bit single precision Magnitude Plot, Highlighting the Passband.

3. Figure 5.53, Magnitude Plot, 16-bit Coefficients.

4. Figure 5.54, Magnitude Plot, 16-bits, Highlighting the Passband.

5. Figure 5.55, Magnitude Plot, 8-bit Coefficients.

6. Figure 5.56, Magnitude Plot, 8-bit Coefficients, Highlighting the Passband.

7. Figure 5.57, 24-bit Phase Plot, Normalized Coefficients.

8. Figure 5.58, 24-bit Phase Plot, Highlighting the Passband.

9. Figure 5.59, Phase Plot with 16-bit Coefficients.

10. Figure 5.60, Phase Plot with 16-bit Coefficients, Highlighting the Passband.

11. Figure 5.61, Phase Plot with 8-bit Coefficients.

12. Figure 5.62, Phase Plot with 8-bit Coefficients, Highlighting the Passband.
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Figure 5.51. 24-bit Magnitude Plot, cascade structure representing coeffiuients in Ta-
ble 5.11, column two.
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Figure 5.52. 24-bit Magnitude Plot, cascade structure representing coefficients in Ta-
ble 5.11, column two.
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Figure 5.53. Magnitude Plot, 16-Bits normalized cascade representing coefficients in Ta-
ble 5.10
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Figure 5.54. Magnitude Plot, 1G-Bits normalized cascade representing coefficients in Ta-
ble 5.10.
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Figure 5.55. Magnitude Plot, 8-Bits normalized cascade representing coefficients in Ta-

ble 5.11.
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Figure 5.56. Magnitude Plot, 8-Bits normalized cascade representing coefficients in Ta-
ble 5.11.
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Figure 5.57. Phase Response 24-bit Coefficients, cascade structure representing coefficients

in Table 5.11.
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Figure 5.58. Phase Response 24-bit Coefficients, cascade structure representing coefficients
in Table 5.11.
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Figure 5.59. Phase Response with 16-Bits for Coefficients, cascade structure representing
coefficients in Table 5.10.
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Figure 5.60. Phase Response with 16-Bits for Coefficients, cascade structure representing

coefficients in Table 5.10.
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Figure 5.61. Phase Response with 8-Bits for Coefficients, cascade structure representing

coefficients in Table 5.11.
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Figure 5.62. Phase Response with 8-Bits for Coefficients, cascade structure representing
coefficients in Table 5.11.

In order to show the robustness of the cascade design, the plots for the conversion

process are shown. The sensitivity of the filter to the effects of the quantization increases as

the order of the filtc. increases. This is dramatically shown in this example. The quantization

causes a shift in the locations of the poles and zeros. When this shift is subjected to the higher

power multiplies in frequency, the change in frequency response correspondingly increased.

That's why normally, the direct form is used for filters of second order or less. Wheai higher

order filters are needed, the cascade structure is chosen to maintain robustness in design.

The magnitude response with 8-bits is severely distorted. The basic idea is for the

designer is to continue to add more and more bits to the word length until the design speci-

fications can be met. When the design specifications are met, then the designer has attained

an acceptable word length for the coctIcients. The magnitude responses will continue to

improve as more bits are added to increase the precision.

To emphasize the advantage of cascade structure over the use of the direct form, the

filter was simulated with double precision 48-bit coefficients. The 48-bit magnitude plot

uses double precision representation. Notice that the 48-bit magnitude response continues

to approach the magnitude plots produced by the cascade structure. The dircct structure

can only approach the desired response even with the use of 48-bit coefficients.
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The list of plots that follows are:

1. Magnitude Plot, 8-bits, normalized conversion from the cascade structure, direct form

I.

2. Magnitude Plot, 16-bits, normalized conversion from the cascade structure, direct form

I.

3. Magnitude Plot, 24-bits, normalized convers'. n from the cascade structure, direct form

I.

4. Magnitude Plot, Un-quantized double precision, normalized conversion from the cas-

cade structure, direct form I.
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Figure 5.63. Magnitude Plot, 8-bits to represent coefficients in Table 5.12, normalized con-
version from the cascade structure, direct form I.
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Figure '.64. Magnitude Plot, 16-bits to represent coefficients in Table 5.12, normalized
conversion from the cascade structure, direct form I.
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Figure 5.65. Magnitude Plot, 24-bit Single Precision coefficients in Table 5.12, normalized
conversion from the cascade structure, direct form I.
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Figure 5.66. Magnitude Plot, 48-bit Double Precision for coefficients in Table 5.12, nor-
malized conversion from the cascade structure, direct form I.
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5.8 Summary

The results of the digital filter simulator tool was presented. Examples of FIR, IIR,

digital filters implemented in both the direct and second order cascade structures were shown.

Output plots in magnitude, phase, and error were given using various resolutions to represent

the coefficients. It was shown that the use of the second order cascade filter structure is more

resilent to the effects of coefficient quantization when the order of the filter is above five.

Each filter design needs to be simulated in order to find the best performance. It was found

that sometimes less bits could be used to improve the transfer characteristics. Such odd

results can be found by the use of the simulator. Linear phase characteristics of filters were

maintained with coefficient quantization. Simulation can bring out the execptions and the

problems in realizations.
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VI. Conclusions and Recommendations For Further Study

This chapter summarizes and discusses the results obtained from the digital filter sim-

ulation tool designed for this thesis. The coefficient quantization effects on the frequency

response of a digital filter have been described. This was accomplished by changing the

coefficient values for implementation using the restraint of (B+I) bits to represent the coef-

ficients. The roundoff noise generated within a digitdl filter was found by using the impulse

response. Simulating the effects of roundoff provided a means to compute roundoff power.

The direct and second-order cascade structures were used for the simulation of finite preci-

sion effects. The software tool is user friendly, menu driven, and provides help screens with

minimal keystrokes required by a user. Results of Chapter 5 are presented and compared to

other works. Conclusions are made to formulate a strategy in the implementation of digital

filters.

6.1 Conclusions

The digital analyzer software tool provides the designer with a means to exemplify the

restraining conditions imposed by the quantization of the coefficients and subsequent round-

off errors generated by the realization. The designer will constantly desire to reduce the

complexity and cost of the digital filter. This software tool provides a means to experimen-

tally determine the number of bits for number representations to meet design specifications.

6.1.1 Coefficient Represeniation The examples of Chapter 5 show the effects on a

system transfer function when finite-precision effects are accounted for. The examples show

that the use of 16-bits to represent the coefficients will generally provide the desired system

response. The system transfer response can change dramatically when 8-bits or less is used.

This simulation tool allows a designer to see and measure the transfer function when imple-

mented with finite-precision effects. Anomilies of the system transfer function can also occur.

With some filter implementations, using cascade over direct will not improve performance.

Other filter examples show the use of fewer bits can improve the pass band characteristics.

6.1.2 Analysis of Results The order of the difference equation can affect the transfer

function. The use of high-order equations (generally those greater than second-order) to

specify a frequency response for a digital filter are implemented in second-order sections.
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When the difference equation in z-domain is solved using higher-order powers, the amount
of the error (quantization) from the unquantized number to the restricted quantized position
in the z-plane is also raised to the higher order. This will tend to further degrade the
performance. This effect is shown by comparing the system transfer function from different

implementation structures.

The placement of the poles and zeros in the z-plane also has a direct relation to the
amount of quantization error produced. When poles or zeros with some non-zero magnitude

are located close to the real axis in the z-plane, the amount of quantization will be greater
than if the position of the poles or zeros is further away from the real axis. The number of
allowed quantized positions in the z-plane is less dense when close to the real axis. Likewise,
the number of allowed positions is more dense away from the real axis with increasing

magnitude.

In FIR filter designs, the zeros are more uniformly placed in the z-plane than in IIR

filter designs [15:345-351]. If the zeros are tightly clustered in one area in the z-plane, then

the sensitivity will increase from the effects of coefficient quantization. Small movements in
the zeros will cause larger changes in the relative distance between them than if the zeros
were uniformly distributed. FIR designs then, due to the uniformity of zeros in the z-plane,
will have less sensitivity to coefficient quantization than other designs with clustered poles

and zeros.

Choosing the cascade structure over the use of the direct structure is a best choice
when using filters with more than three or four delays. The benefits are two fold. First,

the structure is simpler. The number of computations needed to compute an IIR filter with

two delays in the feed forward direction and two delays in the feed back direction are five
multiplies, one add, and four delays. A comparable cascade implemented filter will have five

multiplies, two adds, and only two delays. When the order of the difference equation for
the transfer function increases, the difference in the number of delay elements will increase

as well. Second, the amount of degradation will be less. The use of only second-order

sections will withstand quantization errors better than higher order polynomials as shown

in Section 5.7.

6.2 Recommendations For Further Study

Any time a software tool is developed, the areas for further enhancement will include

refinements and additional capability. This case is no different. The digital filter software
analyzer could have some enhancements made to it. Logical extensions for future work are:
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1. Investigate the estimation of roundoff power using other forms of input besides an

impulse. Changing the length of the impulse response to attain a minimum value

instead of taking 100 output samples can be done.

2. Enhance the use of information hints when an error occurs with input and output.

Currently, the software will move around problems such as a file doesn't exist and

re-display the main menu or just give a simple 'be careful' message to the user.

3. Remove the constraint for equal number of cascade sections in the numerator and

denominator of the transfer function. This constraint imposes that the user put in a

few coefficients with zero magnitude.

4. Use graphics to show the pole/zero placement when implementing cascade structures

to provide insight to the filter design.

5. Develop an interactive software tool with graphics to move the poles and zeros about

in the z-plane and see the resulting transfer function. The conversion of this software

to Quick Basic could accomplish these tasks and run on a PC/AT.

6. Add a complete smart filter designer to compute coefficients for a filter. This would

allow the user to specify the tvpe of frequency response needed, the tool would generate

the coefficients and then show the resulting transfer function.

7. Implement an adaptive filter to forward model a desired frequency response. Then a

smart design tool could also generate filter coefficients. The questions to ask would

be how well can the adaptive filter perform and what types of adjustments improve

performance?
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Appendix A. Program Listing for Digital Software Analyzer Tool

PROGRAM PC7

C--- FILE PC7

C--- WRITTEN BY CAPT PERRY L. CHOATE, SUMMER 1991

C---

C--- WORD REPRESENTATION IS TWO'S COMPLEMENT.
C--- WORD LENGTH IS (B + 1) BITS WHERE B IS BITS FOR NUMBER, PLUS SIGN BIT.

C---

C--- THIS PROGRAM ACCEPTS COEFFICIENTS OF A LINEAR CONSTANT COEFFICIENT DIFF

C--- ERENCE EQUATION AND CALCULATES MAGNITUDE, PHASE, AND GROUP DELAY RE-

C--- SPONSES.

C----

C--- ***** ***** ***** DIRECT FORM ***** ***** *****

C--- THE FORM FOR ENTERING THE DIFFERENCE EQUATION IS THAT THE COEFFICIENTS

C--- FOR THE OUTPUT SAMPLES ARE ON ONE SIDE OF THE EQUAL SIGN AND THE

C--- COEFFICIENTS FOR THE INPUT SAMPLES ARE ON THE OTHER SIDE OF THE

C--- EQUAL SIGN. THIS SHOULD RESOLVE THE SIGNS OF THE COEFFICIENTS.
C- --

C THE X COEFFICIENTS ARE ON THE RIGHT SIDE OF DIFFERENCE EQUATION'
C THE Y COEFFICIENTS ARE ON THE LEFT SIDE OF DIFFERENCE EQUATION'

C FROM OPPENHEIM AND SCHAFER ..................

C

C ************** EXAMPLE ***************

C EACH FILTER LOOKS LIKE THIS

C

C Y(Z)*AO + Y(Z'-I)*AI + Y(Z--2)*A_2 + ... =

C

C X(Z)*BO + X(Z--I)*BI + X(Z--2)*B_2 + ...

C

C

C--- ***** ***** ***** CASCADE FORM ***** ***** *****

C--- ENTER CASCADE SECTIONS WITH THREE COEFFICIENTS IN THE NUMERATOR AND

C--- THREE COEFFICIENTS IN THE DENOMINATOR. MAKE SURE THE DENOMINATOR
C TERM AO * Z-0 HAS AO=1.O!

C BE SURE TO INPUT COEFFICIENTS LIKE IN EQ. 6.23

C FROM OPPENHEIM AND SCHAFER ..................

C BUT INCLUDE THE '1.0' IN THE DENOMINATOR AS A COEFFICIENT

C EACH SECTION WILL HAVE SIX COEFFICIENTS ..................

C ************** EXAMPLE ***************

C EACH SECTION IS LOOKS LIKE THIS
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C
C (B-0 + B_1*Z--1 + B_2*Z--2) (...)
C H(Z) - * *-- - -

C (A-0 - AI*Z--1 - A_2*Z--2) (...)
C

C note: A-O -1.0 always
C

C---

C--- INPUT: THE X COEFFICIENTS
C --- THE Y COEFFICIENTS

C--- NUMBER OF TERMS OF X(N-K)
C--- NUMBER OF TERMS OF Y(N-K)

C--- DIFFERENCE EQUATION FROM FILE (OPTIONAL)

C--- NUMBER OF BITS TO REPRESENT THE NUMBER

C--- FILE NUMBER TO ASSOCIATE WITH ALL OUTPOUT FILES

C ---

C --

C--- OUTPUT: MAGNITUDE RESPONSE FILE 'MAG#.DAT'
C--- PHASE RESPONSE FILE 'PHASE#.DAT)

C--- GROUP DELAY RESPONSE FILE 'GPDELAY.DAT'(OUTPUT NOT GENERATED)

C--- OUTPUT: QUANTIZED MAGNITUDE RESPONSE FILE 'MAGQ#.DAT'

C--- QUANTIZED PHASE RESPONSE FILE 'PHASEQ#.DAT

C--- GROUP DELAY RESPONSE FILE 'GPDELAYQ#.DAT'(OUTPUT NOT GENERATED)
C--- MEAN SQUARE ERROR FILE 'ERROR#.DAT'

C--- ROUND-OFF POWER IN FILTER (SCREEN OUTPUT ONLY)

C--- THE MOTIVATION FOR THE APPROACH TO CALCULATING THESE RESPONSES IS FROM
C--- EQUATIONS 5.18 AND 5.46, PAGES 206 AND 213, OF OPPENHEIM AND SCHAFER

C- --

C HERE I DECLARE THE VARIABLES USED WITHIN THE MAIN PROGRAM.

C
REAL ERROR(2048),XAXISTEP(2048),UNQUANTMAG(2048),QUANTMAG(2048)

REAL PI,MAGH(2048),PHAH(2048),MAGQH(2048),PHAQH(2048)

REAL A(512) ,B(512),AQ(1028) ,BQ(1028) ,GPDELAY(2048) ,GPDELAYQ(2048)

REAL LOWER, STEP, RANGE, W

INTEGER NUMBITS,NPOINTSFILTERTYPECONTROL

COMPLEX NUM,DEN,H

BYTE ANS,CFLAG

DOUBLE PRECISION DATA(2048)

CHARACTER*15 FNAME, FILENAME, FILTERNAME

CHARACTER*2 C2,FNUMBER, UNQFNAME
CHARACTER*12 C4

CHARACTER*3 C1

CHARACTER*4 C3,C7
CHARACTER*5 CS
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CHARACTER*6 C6

C
C INITIALIZATION OF VARIABLES IS DONE UPON ENTRY INTO THE MAIN ROUTINE.

C

UNQFNAME = '01'
CONTROL = 0

FNUMBER = '99'

FNAME - '???????'

PI = 3.14159265358

STEP = 0.00628318
FILTERTYPE -1

FILTERNAME = 'DIRECT FORM'

NPOINTS = 500

NUMBITS = 16

RANGE - PI

LOWER = 0.0

C

C.............................................................................
C THE DO WHILE IS A MEANS TO CONTINUE TO GET BACK TO THE MAIN MENU.

C THE MAIN MENU IS WHERE A USER WILL MAKE ALL THE ACTION HAPPEN.
C THE DO WHILE RUNS THE LENGTH OF THE MAIN PROGRAM.

C

DO WHILE ( CONTROL .GE. 0)

40 CONTINUE

WRITE(6,4)
WRITE(6,1) '*DISCRETE SIGNAL PROCESSING, FILTER DESIGN, Capt P. Choate*'

WRITE(6,4)

WRITE(6,5) '(l) ENTER TYPE OF FILTER, OR CONVERSION PROCESS

WRITE(6,30) ' TYPE OF FILTER DESIRED IS ............... ',FILTERNAME

WRITE(6,5) '(2) ENTER NUMBER OF BITS FOR COEFFICIENTS QUANTIZATION: ...,
WRITE(6,31) ' NUMBER BITS FOR COEFFICIENT QUANTIZATION IS ........... ',NUMBITS

WRITE(6,5) '(3) ENTER NUMBER TO ASSOCIATE WITH THE OUTPUT FILES : ... I
WRITE(6,32)' TWO DIGIT NUMBER TO TAG WITH OUTPUT FILES IS ......... ',FNUMBER
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WRITE(6,5) '(4) ENTER NUMBER FOR UNQUANTIZED MAG/PHASE OUTPUT FILES ...

WRITE(6,32) ' TWO DIGIT NUMBER FOR UNQUANTIEZED MAG/PHASE

& FILES IS.. ',UNQFNAME

WRITE(6,5) '(5) ENTER COEFFICIENTS TO USE FROM FILE OR KEYBOARD : ...'

WRITE(6,33) ' COEFFICIENTS' FILE NAME IS .................. .',FNAME

WRITE(6,5) '(6) ENTER NUMBER OF SPECTRAL POINTS FOR CALCULATIONS : ...I

WRITE(6,34) ' NUMBER OF SPECTRAL POINTS FOR CALCULATIONS IS: .. .',NPOINTS

WRITE(6,S) '(7) ENTER THE NYQUIST BANDWIDTH TO VIEW FOR PLOTTING ... '

WRITE(6,35) ' THE BANDWIDTH TO VIEW FOR PLOTS IS ..... ',RANGE

WRITE(6,5)'(8) CHECK COEFFICIENT FILE AND NORMALIZE IF NECESSARY: .

WRITE(6,36) ' WILL ALSO RENAME THE COEFFICIENT FILE.'

WRITE(6,5) '(9) SAVE MY COEFFICIENTS TO A FILE IN THIS DIRECTORY :...'

WRITE(6,37) ' FOR KEYBOARD ENTERED COEFFICIENTS.'

WRITE(6,5) '(10) FIND THE ROUND-OFF POWER ERROR FOR CASCADE .... .

WRITE(6,37) ' AND DIRECT DESIGNS; SWAP CASCADE SECTIONS ....

WRITE(6,37)'(i1) HELP ON HOW TO FORMAT INPUT COEFFICIENT FILES.

WRITE(6,5) '(55) ------------ ALL DONE -

WRITE(6,1)'***** PLEASE ENTER NUMBER OR [RET] TO RUN PRGRAM *****'

WRITE(6,1)' ENTER NUMBER [#]:'

READ(5,38,END=99,ERR=40)CONTROL

C ***********************************************************************
C THE CONTROL PICKS OUT THE SUB-ROUTINE TO RUN. ONCE THE SUBROUTINE
C HAS RETURNED, THE USER CAN SELECT FROM THE MENU AGAIN.

IF ( CONTROL .EQ. I ) THEN

CALL TYPEOFFILTER(FILTERTYPE,FILTERNAME,FNAME,NX,NY,A,B)

ENDIF

IF ( CONTROL .EQ. 2 ) THEN
CALL BITSAVAILABLE(NUMBITS)

ENDIF

IF ( CONTROL .EQ. 3 ) THEN

CALL FILENUMBER(FNUMBER)

ENDIF
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IF ( CONTROL .EQ. 4 ) THEN

CALL UNQNUMFILE(UNQFNAME)

ENDIF

IF ( CONTROL .EQ. 5 ) THEN

CALL READCOEFF(NX,NY,A,B,FNAME,ANS,FILTERTYPE)

CFLAG - 'Y
ENDIF

IF ( CONTROL .EQ. 6 ) THEN
CALL ITERATIONS(STEP,NPOINTSRANGE)

ENDIF

IF ( CONTROL .EQ. 7 ) THEN
CALL SETRANGE(STEPNPOINTS,RANGELOWER)

ENDIF

IF ( CONTROL .EQ. 8 ) THEN

CALL NORMALIZATION(FNAME,NX,NY,A,B)

ENDIF

IF ( CONTROL .EQ. 9 ) THEN

CALL SAVECOEF(FNAME,NX,NY,A,B)

ENDIF
IF ( CONTROL .EQ. 10 ) THEN

CALL ROUNDOFF(A,B,NX,NY,FILTERTYPE,NUMBITS)

ENDIF

IF ( CONTROL .EQ. 11 ) THEN
CALL HELPONINPUT

END IF

IF ( CONTROL .EQ. 55 ) THEN
GO TO 99

ENDIF

C-------------------- ---------------
C-------------------- ---------------

C THIS IF STATEMENT RUNS THE ENTIRE LENGTH OF THE MAIN ROUTINE.
C IF A USER HITS 'RETURN' "CONTROL = 0" THEN THE PROGRAM WILL

C CALCULATE WITH DATA VALUES THE RESPONSE OF THE FILTERS
C (UN-QUANTIZED AND QUANTIZED).

C

IF ( CONTROL .EQ. 0 ) THEN

C
C CFLAG TELLS ME IF THE USER HAS INPUT A COEFFICIENT FILE OR NOT.

C THE PROGRAM IS NOT RUN UNLESS A COEFFICENT FILE IS BUILT.

C

IF ( CFLAG .EQ. 'Y' ) THEN

CONTINUE

A-5



ELSE
WRITE(6,1)'USER OF THE PROGRAM, INPUT COEFFICIENTS!'

GO TO 40

END IF

c--- I use up to pi radians to avoid the repitition in output.
C--- THE OUTPUT IS DESIGNED TO SHOW THE NYQUIST DYNAMIC RANGE ONLY.
C--- HENCE, THE MOST ACCURATE PICTURES OF THE PASS BAND CAN BE SHOWN.

C---

C--- THE VALUES OF THE NUMERATOR AND DENOMINATOR ARE CALCULATED
C--- THESE ARE COMPLEX VALUES.

C

C--- LOWER IS THE STARTING POINT FOR THE RANGE OF RADIAN VALUES.
C--- W IS THE POINT IN RADIAN FREQUENCY TO EVALUATE.

C--- STEP IS AMOUNT OF RADIAN FREQUENCY CHANGE (FOR NEXT CYCLE).
C--- XAXISTEP(*) IS ARRAY FOR RADIAN FREQUENCY USED FOR OUTPUTING.

C ------------------------------------------------------------------------
C THIS BEGINS THE LOOPING TO EVALUATE THE FREQUENCY POINTS

C FOR THE FILTER. THE PROCESS EVALUATES ONE POINT AT A TIME AND
C THEN FROM THE ARRARY'S BUILT, THE PROGRAM WILL STORE THE RESULTS.

C

C PROCESS ONE
C
C
C

77 DO J - 1,NPOINTS

W = STEP * (0-1) + LOWER

C--- THE XAXISTEP(J) IS TO PLOT ON GNUPLOT WITH THE X-AXIS IN RADIANS.

XAXISTEP(J) = W

C THIS SECTION PERFORMS CALCULATIONS ON THE UN-QUANTIZED COEFFIECIENTS.
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C A FILTER CAN BE EITHER IN DIRECT FORM OR IT CAN BE IN CASCADE FORM.

C FILTERTYPE DETERMINES THE FILTER STRUCTURE.

IF ( FILTERTYPE .EQ. I ) THEN

CALL DIRECTDEN(W.NY,A,DEN)

CALL DIRECTNUM = DIRECTNUM(W,NX,BNUM)

ELSE

CALL CASCADEDEN(W.NY,A.DENNUMBITS)

CALL CASCADENUM(W,NX,B,NUM,NUMBITS)

ENDIF

C--- CALCULATE THE MAGNITUDE RESPONSE

IF ( (ABS(DEN)) .EQ. (0.0) ) THEN
WRITE(6,1)'THE DENOMINATOR IS ZERO!!!!!!!!!!!!!!!!!'

ENDIF

IF ( DEN .NE. (0.0,0.0) ) THEN

H - NUM/DEN

MAGH(J) - ABS(H)

ELSE

MAGH(J) - 1.1

PHAH(J) - PI/2

ENDIF

C--- INTERMEDIATE STORAGE IS NEEDED TO CALCULATE THE LINEAR ERROR.
C--- THE MAGNITUDE IS FOUND IN DB NEXT, BUT LINEAR ERROR IS NEEDED.

UNQUANTMAG(J) - MAGH(J)
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C--- CALCULATE PHASE WITH ARC TANGENT FUNCTION

C--- THIS FUNCTION WAS TESTED AND FOUND TO YEILD THE CORRECT RESULTS

C--- FOR THE INPUTS GIVEN IN ALL QUADRANTS.

C---

C--- THE REAL AND IMAGINARY PARTS ARE EXTRACTED FROM THE COMPLEX NUMBER.

C_ --

C--- PHASE ANGLE CALCULATION FOR THIS STEPPED FREQUENCY.

Y = AIMAG(H)

X = REAL(H)

PHAH(J) = ATAN2(Y,X)

END DO
C**##*####### ##############################################tt# *##

C ------------------------------------------------------------------------
C ALL THE ARRAYS ARE BUILT FOR STORAGE AS A FILE.

C THE UNQUANTIZED VALUES ARE USED TO COMPARE TO THE QUANTIZED

C COMPUTATIONS DONE NEXT.

C--- NOW USE THE RESULTS OF PHASE RESPONSE TO CALCULATE THE GROUP DELAY

C--- APPROXIMATE THE DERIVATIVE WITH A DIFFERENCE

C--- THE GROUP DELAY IS FOUND BUT NOT SAVED AT THIS POINT.

DO J = 1,NPOINTS-1
GPDELAY(J)=-1.O*(PHAH(J+)-PHAH(J))/(2.0*PI/NPOINTS)

END DO

C--- WRITE OUTPUT DATA FILE FOR MAGNITUDE RESPONSE

C--- THE NAME OF THIS FILE WILL BE MAG.DAT. SINCE THIS IS THE

C--- UNQUANTIZED MAGNITUDE PLOT. THE NUMBER WILL HELP

Cl = 'mag'
C2 = UNQFNAME

C3 = '.dat'

C4 = Cl//C2//C3

FILENAME = C4
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OPEN(13 ,NAME=FILENAME,STATUS= 'UNKNOWN' ,ERR=40)

DO J - iNPOINTS

C--- BOUNDS ARE SET SO GNUPLOT WILL NOT BE OUT OF RANGE FOR PLOTTING

IF ( MAG-.H(J) .LT. (1.OE-10) ) THEN
MAG-.H(J) = C1.OE-10)

ENDIF

C--- THE MAGNITUDE IS PUT INTO LOGRITHMIC FORM.

IF ( NAG-.H(J) .EQ. (0.0) )THEN

I4AG-.H(J) = -1*12.*10.

ELSE

MAG-.H(J) = 20.0 * ALOG1O(kfAG..H(J))

ENDIF
write(13,15,ERR=40)XAXISTEP(J) ,MAG.H(J)

END DO

CLOSE (13)
C************************************

C************************************

C--- PUT PHASE INFO TO FILE FOR PLOTS

CS = 'Phase'

C2 = UNQFNAME

C3 = '.dat'

C4 = C5//C2//C3

FILENAME = C4

OPEN( 14 ,NAME=FILENAME ,STATUS 'UNKNOWN' ,ERR=40)

DO J - 1,NPOINTS

C--- BOUNDS ARE SET SO GNUPLOT WILL NOT BE OUT OF RANGE FOR PLOTTING

IF ( ABS(PHA-H(J)) .LT. (1.OE-10) ) THEN
PHA..H(J) z 0.0

ENDIF

DATA(J m PHA..H(J)
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write(14,15,ERR=40)XAXISTEP(J),PHA_H(J)

END DO

CLOSE(14)
C *********************************************************************

C ***********************************************************************

C *****s************ QUANTIZATION STARTS
C **********************************************************************

C ***********************************************************************

C--- THE QUANTIZATION IS APPLIED STARTING HERE ---

C--- THIS SECTION CALLS A FUNCTION CALLED QUANT.

C--- QUANT TRUNCATES THE NUMBER GIVEN TO A FORM EQUAL TO THE NUMBER OF BIT
C--- REPRESENTATION AVAILABLE. QUANT THEN RETURNS THE NEW QUANTIZED NUMBER.

C ---C~m

C

C THE COEFFICIENTS ARE QUANTIZED HERE!!!!

C

DO J = 1, NY

AQ(J) = QUANT(A(J),NUMBITS)

END DO

DO J = 1, NX

BQ(J) = QUANT(B(J),NUMBITS)

END DO

C --------------------------------------------------------------------------
C THIS STARTS THE LOOPING FOR EVALUATION EACH POINT ALONG THE

C FREQUENCY AXIS. THIS WILL EVALUATE THE NUMBER OF POINTS THAT

C THE USER REQUESTED AND THE RANGE OF VALUES THAT THE USER

C INPUT TO THE PROGRAM.

87 DO J = 1,NPOINTS

W = STEP * (J-1) + LOWER

C--- THE XAXISTEP(J) IS TO PLOT ON GNUPLOT WITH THE X-AXIS IN RADIANS.
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XAXISTEP(J = W

C************************************

C --- THE QFLAG SIGNALS THE CASCADE ROUTINES TO PERFORM QUANTIZATION OR NOT
C --- TO PERFORM QUANTIZATION. THE QUANTIZATION IS APPLIED AFTER EACH SECTION

C- --- OF THE CASCADE FILTER IS CALCULATED BEFORE THE RESULT ENTERS THE NEXT
C --- SECTION. QFLAG = IN' NO, QFLAG = 'Y' FOR YES.

IF CFILTERTYPE .EQ. 1 ) THEN

CALL DIRECTDEN(W,NY,AQ ,DEN)
CALL DIRECTNUM = DIRECTNUM(W,NX,BQ,NUM)

ELSE

C --- I DO CALL THE QUANTIZER ROUTINE IN THIS SECTION.
C --- RESULTS FROM EACH SECTION ARE QUANTIZED BEFORE ENTERING THE
C --- NEXT SECTION IN THE DIGITAL FILTER.

CALL CASCADEDEN(W ,NY ,AQ ,DEN INUMBITS)

CALL CASCADENUM(W ,NX ,BQ ,NUM,NUMBITS)

ENDIF

C- -- CALCULATE THE MAGNITUDE RESPONSE
C ************************************

IF ( (ABS(DEN)) .EQ. (0.0) ) THEN
WRITE(6,1)'THE DENOMINATOR IS ZERO IN QUANTIZE PART!!'

ENDIF

C************************************

IF ( DEN .NE. (0.0,0.0) ) THEN

H - NUM/DEN

MAGQ-HCJ) = ABS(H)

ELSE
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MAGQH(J) = 1.1
PHAQH(J) = PI/2

ENDIF

C--- INTERMEDIATE STORAGE IS NEEDED TO CALCULATE THE LINEAR ERROR.

C--- THE MAGNITUDE IS FOUND IN DB NEXT, BUT LINEAR ERROR IS NEEDED.

QUANTMAG(J) = MAGQH(J)

C--- CALCULATE PHASE WITH ARC TANGENT FUNCTION

C--- THIS FUNCTION WAS TESTED AND FOUND TO YEILD THE CORRECT RESULTS

C--- FOR THE INPUTS GIVEN IN ALL QUADRANTS.

C- --

C--- THE REAL AND IMAGINARY PARTS ARE EXTRACTED FROM THE COMPLEX NUMBER.
C -

C--- PHASE ANGLE CALCULATION FOR THIS STEPPED FREQUENCY.

Y = AIMAG(H)
X = REAL(H)

PHAQH(J) a ATAN2(Y,X)

END DO

C#############################################IIIIIIIIIII###########

C --------------------------------------------------------------------------
C THIS ENDS THE LOOPING FOR EVALUATION EACH POINT ALONG THE

C FREQUENCY AXIS.

C

C ***********************************************************************

C **********************************************************************

C--- NOW USE THE RESULTS OF PHASE RESPONSE TO CALCULATE THE GROUP DELAY
C--- APPROXIMATE THE DERIVATIVE WITH A DIFFERENCE

C--- THE GROUP DELAY IS FOUND BUT NOT SAVED AT THIS POINT.
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DO J - 1,NPOINTS-1

GPDELAYQ(J)=-1 .0*(PHAQ..H(J+i)-Pik-AQ-.H(J))/(2.0*PI/NPOINTS)

END DO

C

C--- WRITE OUTPUT DATA FILE FOR MAGNITUDE RESPONSE

C7 = 'magq'

C2 = FNUMBER

C3 = '.dat'
C4 = C7//C2//C3

FILENAME = C4

OPEN(iS ,NAME=FILENAME,STATUS= 'UNKNOWN' ,ERR=4O)

DO J = 1,NPOINTS

C --- BOUNDS ARE SET SO GNUPLOT WILL NOT BE OUT OF RANGE FOR PLOTTING
C --- THE MAGNITUDE IS PUT INTO LOGRITHMIC FORM.

IF ( MAGQ-.H(J) .LT. (1-OE-1O) ) THEN
MAGQ-.H(J) - (i.OE-1O)

ENDIF

IF ( MAGQ..H(J) .EQ. (0.0) ) THEN
MAGQ..H(J) - -1*12.*10.

ELSE

MAGQ-H(J) = 20.0 * ALOGIO(MAGQ-H(J))

ENDIF

write(15,15,ERR=99)XAXISTEP(J) ,MAGQ-.H(J)

END DO

closoC 15)

C************************************

C************************************

C--- PUT PHASE INFO TO FILE FOR PLOTS

C6 = 'phaseq'
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C2 - FNUMBER

C3 = '.dat'
C4 = C6//C2//C3

FILENAME - C4

OPEN(16,NAME=FILENAME,STATUS='UNKNOWN',ERR=40)

DO J = 1,NPOINTS

C--- BOUNDS ARE SET SO GNUPLOT WILL NOT BE OUT OF RANGE FOR PLOTTING
IF ( ABS(PHAH(J)) .LT. (1.OE-10) ) THEN
PHAQH(J) = 0.0

ENDIF

write(16,t5,ERR=40)XAXISTEP(J),PHAQH(J)

END DO

CLOSE(16)

C * * * * * * * * * * *

C--- ERROR IS FOUND AS A LINEAR ERROR. RESULTS FROM THE MAGNITUDE SECTION

C--- ARE USED FOR THIS CALCULATION.
C--- THE ERROR IS FOUND BETWEEN THE UNQUANTIZED VERSION AND THE QUANTIZED.

DO J = 1,NPOINTS

ERROR(J) = (UNQUANTMAG(J) - QUANTMAG(J))

END DO

C * * * * * * * * * * *

C--- WRITE OUTPUT DATA FILE FOR LINEAR ERROR

CS = 'error'
C2 = FNUMBER

C3 = '.dat'
C4 = CS//C2//C3

FILENAME a C4

OPEN(17,NAME=FILENAME,STATUS='UNKNOWN',ERR=40)
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DO J = 1,NPOINTS
IF (ABS(ERROR(J)) .LT. (1.OE-10) ) THEN

ERROR(J) a 0.0
ENDIF

write(17,15,ERR=40)XAXISTEP(J),ERROR(J)

END DO

CLOSE(17)

C-

C THE "ELSE GOTO 40 ENDIF" STATEMENTS ENDS THE MAIN ROUTINE.

C IF A USER HITS 'RETURN' "CONTROL = 0" THEN THE PROGRAM WILL
C CALCULATE WITH DATA VALUES THE RESPONSE OF THE FILTERS

C (UN-QUANTIZED AND QUANTIZED). OTHERWISE THE USER CAN RUN ANY
C OF THE SUBROUTINES LISTED IN THE MENU.

C

ELSE

GOTO 40

ENDIF

C

C THE DO ENDS THE DO WHILE. ALL THIS DOES IS CONTINUE TO CYCLE BACK
C TO THE MAIN MENU SO THE USER CAN MAKE FURTHER CHOICES FOR ACTION.

END DO

1 FORMAT(/IA,$)
2 FORMAT(I)
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3 FORMAT(E17.10)

4 FORMAT(/
S FORMAT(A)

7 FORNAT(I,2X,I)

8 FORMAT(I,2X,G,2XG)
9 FORMAT(I2,2X,E15.1O,2X,E15.10)

10 FORMATC2X,'A(Q,I1,')= '$

11 FORMATC2X,'B(',I1,')='$

12 FORI4ATC'The number of BITS USED is ='.,13)

15 FORMAT(F5.3,4X,E17.9)

16 FORMAT('THE VALUE NP0INTS IS =',I5)
17 FORMAT(/,'THE NAME OF THE COEFFICIENT FILE IS CALLED "),A,"))

20 FORMAT(2X.'A(',I3,') = 1,F21.10)

21 FORNAT(2X.'B(',I3,') = I.F21.10)

22 FORMATC2X,lA(',I3,') = ',G)

23 FORMAT(2X,lB(',I3,') = ',G)

24 FORMAT('IMG-',F15.10,2X,'REAL=',F1S.10,2X,'ATAN=',E17.9)

25 FORMAT('BITS-',I3,2X,'QUANT=,E7.10,2X,'VALUE=I,E7.1O)

26 FORMAT(QBITS=',I3,2X,'QUANT=',G,2X,'VALUE=',G)

27 FORMAT(2X,/,IPHASE IS =(,G',/

28 FORMAT('IMAGINARY =l,F12.8,1X,'REAL =',Fl2.8,lX,'ATAN =',Fl4.9)

29 FQRMAT(/,'VALUE IS' ,F20.10)

30 FORMAT(AA,/)

31 FORMAT(A,I3,/)
32 FORNAT(A,A,/)

33 FORMAT(A,A,/)

34 FORMATCA1I4,/)

35 FORMATCA,F7.4,lX'lRAD/SEC',/)

36 FORMAT(A,/)

37 FORMAT(A,/)

38 FORNAT(I,$)

39 FORMAT(I3,2X,E12.S,2XE12.5,2x,FS.2)

99 STOP

END

C ***********************************

C ***********************************

C THIS FUNCTION IS USED TO FIND THE DECIMAL VALUE TO THE ACCURACY OF
C THE KUMBER OF BITS AVAILBLE.

C QVALUE IS THE INPUT NUMBER IN 23-BITS ACCURACY.

C QUANT IS THE VALUE RETURNED - A NUMBER WITH NUMBITS ACCURACY.
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C

C
FUNCTION QUANT(QVALUE,NU4BITS)

REAL MAXVALUE, MINVALUE,HIGHNUM,QVALUE, VALUE

INTEGER TRUNCATED

MAXVALUE = 1.0
MINVALUE a -1.0

IF ( QVALUE .GT. MAXVALUE ) THEN
QUANT - MAXVALUE

WRITEC6,4)
WRITE(6,1) 'WARNING::::: :USE NORMALIZATION ROUTINE

WRITE(6 .5) QUANT,MAXVALUE

WRITE(6,4)

END IF

IF ( QVALUE .LT. MINVALUE ) THEN
QUANT = MINVALUE

WRITE(6.4)

WRITE(6.*1) 'WARNING:::: ::USE NORMALIZATION ROUTINE .....
WRITE(6,7) QVALUE ,MINVALUE

WRITE(6 .4)

END IF

IF ( QVALUE .GE. 0.0 ) THEN

HIGHNUN - (2** (NUMBITS - 1))

VALUE - ((HIGHNUM*QVALUE)+0.S)

TRUNCATED = IFIX(VALUE)

QUANT a (TRUNCATED/HIGHNUM)

IF ( QUANT .EQ. (0.0) ) THEN
WRITE(6 ,8)

END IF

ELSE

HIGHNUM = (2** (NUMBITS - 1))

VALUE - ((HIGHNUM*QVALUE)-0.S)

TRUNCATED - IFIX(VALUE)

QUANT - (TRUNCATED/HIGHNUM)

IF ( QUANT .EQ. (0.0) ) THEN
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WRITE(6,8)

END IF

ENDIF

c WRITE(6,1) 'The function:'

c write(6,20)numbits,QUANT,QVALUE

1 FORMAT(A,$)
4 FORMAT(/)
5 FORMAT(/,'THE VALUE TO QUANTIZED IS =',E12.6,' THE MAXVALUE =',F7.3)

7 FORMAT(/,'THE VALUE TO QUANTIZED IS ='.E12.6,' THE MINVALUE =',F7.3)

8 FORMAT(/,'COEFFICIENT WAS JUST QUANTIZED TO A VALUE OF ZERO.')

RETURN

END

C THIS FUNCTION OPERATES VERY CLOSELY TO QUANT. BUT IT IS CALLED BY
C TWO OTHER SUBROUTINES (ROUNDCASCADE AND ROUNDDIRECT).

C THESE SUBROUTINES DON'T REQUIRE THE CHECKS FOR NORMALIZATION,

C THE CHECKS FOR OUT OF RANGE VALUES, OR OTHER I/O HANDLING.
C THIS FUNCTION JUST RETURNS THE DECIMAL QUANTIZED VALUE OF THE NUMBER

C GIVEN TO IT.

C
FUNCTION ROUNDQ (QVALUE,NUMBITS)

REAL HIGHNUM,QVALUE,VALUE

INTEGER TRUNCATED

IF ( QVALUE .GT. MAXVALUE ) THEN
QUANT - MAXVALUE

END IF

IF ( QVALUE .LT. MINVALUE ) THEN
QUANT - MINVALUE

END IF

IF ( QVALUE .GE. 0.0 ) THEN
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HIGHNUM - (2** (NUMBITS - 1) )
VALUE - ((HIGHNUM*QVALUE)+O.5)

TRUNCATED - IFIX(VALUE)

ROUNDQ - (TRUNCATED/HIGHNUM)

ELSE

HIGHNUM a (2** (NUMBITS - 1) )
VALUE = ((HIGHNUM*QVALUE)-O.S)

TRUNCATED - IFIX(VALUE)
ROUNDQ - (TRUNCATED/HIGHNUM)

ENDIF

RETURN

END

C
C

C
C THIS SUBROUTINE IS CALLED BY THE MAIN MENU.

C ROUNDOFF IS HANDLED BY THESE NEXT THREE ROUINES. IT'S A LITTLE BIT

C COMPLICATED, BUT NOT TOO BAD IF YOU TAKE THINGS ONE STEP AT A TIME.

C THE PURPOSE IS TO FIND THE ROUND OFF NOISE ERROR TERM FOR A CASCADE

C DESIGNED FILTER. THIS ROUTINE FINDS THE IMPULSE RESPONSE FOR THE

C FILTER. THEN THIS ROUTINE FINDS THE IMPULSE RESPONSE WHILE ACCONTING
C FOR ROUND-OFF ERROR. THIS INFORMATION IS USED TO FIND THE NOISE

C POWER IN THE CASCADE FILTER AS IMPLEMENTED.
C ALSO, THE ROUND OFF ERROR CAN BE FOUND FOR A DIRECT FORM. BUT THE

C DIRECT FORM ROUND OFF ERROR IS SIMPLER SINCE THE FORM OF IMPLEMENTATION

C IS SET OR NON-CHANGEABLE.
C
C THIS SUBROUTINE TAKES THE COEFFICIENTS, THE FILTER TYPE (CASCADE OR

C DIRECT) AND THE NUMBER OF BITS TO FIND THE ROUNDOFF ERROR.

SUPROUTINE ROUNDOFF(A,B,NX,NY,FILTERTYPE,NUMBITS)

REAL A(512), B(512)

BYTE ANS
INTEGER NX, NY, FILTERTYPE

C--------------------------------------------------------------------
C CHECKS FOR DIRECT DESIGN.

IF (FILTERTYPE .EQ. 1) THEN
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CALL ROUNDDIRECT(A,B,NXNY,NUIBITS)

RETURN

END IF

C---------------------------------------------------------------------

C CHECKS FOR CASCADE DESIGN.

IF (FILTERTYPE .EQ. 2) THEN

CALL ROUNDCASCADE(A ,B,NX ,NY,NUMBITS)

END IF
C

C A USER MAY CHOOSE TO TRY A DIFFERENT ORDER IN THE CASCADE DESIGN.

C THE LOWEST ROUNDOFF POWER WILL OCCUR WHEN THE SECTION WITH THE HIGHEST

C GAIN IS PUT FIRST.

C

WRITEC6,I) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

WRITE(64)' ....... CHANGE THE CASCADE ORDER FOR COMPUTATIONS? ...

WRITE(6,1'.......(Y)ES CHANGE THE CASCADE ORDER ..................
WRITE(6,1....... [ANY OTHER KEY] TO CONTINUE .....................

READ(5IS)ANS

IF ( CANS .EQ. 'y') DOR. CANS .EQ. 'Y') )THEN

CALL CHANGECASCADEORDERCA ,B,NX,NY,NUMBITS)

END IF
C------------------------------------------------------------------------

1 FORMAT(/,A,$)

5 FORNAT(A,$)

98 RETURN

99 END

C--- END OF ROUND-OFF ROUTINE.

C************************************

C ***********************************

C THIS SUBROUTINE IS CALLED BY ROUNDOFF.

C THIS SUBROUTINE FINDS THE OUTPUT FOR THE CASCADE STRUCTURE IN BOTH
C UNQUANTIZED AND QUANTIZED STRUCTURES. THE DIFFERENCE BETWEEN THE TWO

C IS USED TO FIND THE POWER IN THE ROUNDOFF NOISE.

C
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C NOTE: THIS ROUTINE USED THE CASCADE STRUCTURE (2D FORM), IN CASE
C YOU WANT TO FIGURE OUT HOW THIS WORKS. THE INTERMEDIATE POINTS IN
C THE STRUCTURE ARE CALLED PC), P1(),P2(). THE BEST WAY TO SEE THIS IS
C TO LOOK IN THE THESIS AND SEE THE DIRECT FORM II STRUCTURE.
C I HAVE A SECTION ON HOW THE COMPUTATION IS DONE. EACH NODE MUST BE
C CALCULATED AND THEN THE OUTPUT IS FOUND. CYCLING TO THE NEXT STATE IS
C TRICKY SINCE NODES MUST COMPUATIONALLY RIPPLE UPWARDS SO AS NOT TO
C DESTROY THE NEXT STATE'S VALUE.

C

C THE P*(*) ARRAYS ALL CORRESPOND TO THE NODES IN THE STRUCTURE.
C THE PQ*(*) ARRAYS CORRESPOND TO THE QUANTIZED CALCULATED CASCADE FILTER.
C NY AND NX ARE THE NUMBER OF COEFFICIENTS.
C DISPLAY ROUTINES MAKE THE SCREEN OUTPUT NICE TO READ.

C

SUBROUTINE ROUNDCASCADE(A,B,NX,NY,NUMBITS)

REAL P(100), P1(101), P2(001), Y(-2:100, 12), X(-2:100)
REAL A(512), B(512), MEAN(0:100), MEANSE

REAL PQ(100), PIQ(100), P2Q(10), YQ(-2:100, 12), ERROR(iO0), MEAN(iO0)
REAL SUMOFERRORSQ, NOISEPOWER
INTEGER NX, NY, NUMBITS, SECTIONS, POSI, POS2, POS3

INTEGER POINTS

POINTS = 100

C IF THIS SECTION IS ENTERIED A SECOND TIME, THIS WILL ZERO OUT ARRAYS

C THAT ARE USED WHEN VALUES ARE LEFT IN THEM.

DO I = 1, POINTS

X(I) = 0.0

P(I) = 0.0

P1(I) = 0.0
P2(I) = 0.0

END DO

X(1) = 1.0

MEAN(i) = 0.0

SUMOFERRORSQ = 0.0

P2(101) = 0.0

P1(101) = 0.0

SECTIONS = NX/3

JJ = I

POS1 = ( (JJ * 3) - 2 )
POS2 - ( (JJ * 3) - 1 )
POS3 = C (JJ * 3) - 0 )
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C THIS IS SECTION ONE. 100 POINTS ARE COMPUTED. THEN ON TO MORE SECTIONS.

DO N = 1, POINTS
P(N) = X(N) + (P1(N) * (A(P052))) + (P2(N) * (A(POS3)))

Y(NII1) P(N)* (B(POS1)) + P1(N) * (B(P052)) + P2(N) * (B(POS3))

P2(N+1) =PI(N)

Pl(N.1) =P(N)

END DO

C THIS HANDLE SECTION TWO AND AS MANY MORE SECTIONS ARE IN THE FILTER.

IF ( SECTIONS .GE. 2 )THEN

DO JJ -2, SECTIONS

POSi = C(3J * 3) - 2)

POS2 = C(33 * 3) - 1)

POS3 = C(33 * 3) - 0)

P1(1) - 0.0

P2(1) = 0.0

DO N - 1, POINTS

P(N) - Y(N,(33-1)) + (P1(N) * (A(P052))) + (P2(N) * (A(P053)))

Y(N,JJ) = P(N)* (B(POs1)) + P1(N)* (B(P052)) + P2(N) * (B(POS3))

P2(N~l) = P1(N)
P1(N+1) - P(N)

END DO

END DO

END IF

C

C THE ROUND-OFF ERROR IS ACCOUNTED FOR IN THIS NEXT SECTION.

C THE SAME STUCTURE IS USED, BUT I ROUNDOFF ALL CALCULATIONS

C IN THIS IMPULSE RESPONSE.

33 = 1

POSI - ( (33 * 3) - 2 )
POS2 - ( (33 * 3) - I )
POS3 = ( (33 * 3) - 0 )

DO N = 1, POINTS
PQ(N) a X(N) + ROUNDQ( (P1Q(N) * A(P052) ), NUMBITS )+

k ROUNDQ( (P2Q(N) * A(P1J53) ), NUMBITS)
YQ(N,1) m ROUNDQ( ( PQ(N) * B(POS1) ), NUMBITS ) +

I ROUNDQ( CP1Q(N) *B(P052) ),NUMBITS )+
& ROUNDQ( (P2Q(N) B(P053) ),NUNBITS)

P2QCN.1) - P1Q(N)
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PIQ(N+I) - PQ(N)

END DO

IF ( SECTIONS .GE. 2 ) THEN

DO JJ = 2, SECTIONS

POSI = ( (JJ * 3) - 2 )
POS2 = ( (JJ * 3) - 1 )
POS3 = C (JJ * 3) - 0 )

P1(1) = 0.0

P2(1) = 0.0

DO N = 1, POINTS

PQ(N) = YQ(N,(JJ-1)) + ROUNDQ( (PIQ(N) * A(POS2)), NUMBITS ) +

& ROUNDQ( ( P2Q(N) * A(POS3) ), NUMBITS )
YQ(N,JJ) = ROUNDQ( ( PQ(N) * B(POS1) ), NUMBITS ) +

& ROUNDQ( ( PIQ(N) * B(POS2) ), NUMBITS ) +
& ROUNDQ( ( P2Q(N) * B(POS3) ), NUMBITS )

P2Q(N+I) - PIQ(N)

PIQ(N+I) = PQ(N)

END DO

END DO

END IF

C THIS IS A RECURSIVE MEAN ESTIMATOR. THE ARRAY SHOULD CONVERGE TO THE

C MEAN OF THE ERROR. A NEAT WAY TO ITERATIVELY ESTIMATE THE MEAN.
C THE OTHER WAY TO PROGRAM THIS IN IS TO ADD UP THE ERROR ARRAY AND THEN
C DIVIDE BY THE NUMBER OF POINTS, USED FOR AN ARRAY THAT'S ALREADY COM-

C PLETE. I GOT THE RECURSIVE ESTIMATOR FROM AN ADAPTIVE FILTERS CLASS.

C NEAT UH!

C
MEAN(O) a 0.0

DO N = 1, POINTS

ERROR(N) = Y(N,SECTIONS) - YQ(N,SECTIONS)

MEAN(N) = MEAN(N-1) + (1.0/N) * (ERROR(N) - MEAN(N-1) )
END DO
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NEANSE - ( CMEAN(POINTS)) ** 2 )
WRITE(6,3)'THE MEAN SQUARE ERROR IS =',MEANSE

DO N - 1, POINTS

SUMOFERRORSQ =SUMOFERRORSQ + ( (ERRORCN) - MEAN(POINTS))**2)

END DO

NOISEPOWER -C1.O/(POINTS - 1.0) )*(SUMOFERRORSQ)

WRITEC6,1)'THE POWER FROM THE ROUND-OFF NOISE IS THE FOLLOWING:'

WRITE(6 ,4)

WRITEC6,3)'-- POWER IN ROUND OFF NOISE IS =',NOISEPOWER

C---------------------------------------------- r--------------------------

1 FORMATC/,A,$)
3 FORMATCA,E12.4)

4 FORZ4AT(/

5 FORMAT(A,$)
10 FORMAT(A,2X,3F10.5)

98 RETURN

99 END

C--- END OF ROUND-OFF ROUTINE.

C************************************

C

C

C THIS SUBROUTINE IS 7ALLED BY SUBROUTINE ROUNDOFF.
C THE PURPOSE OF THIS ROUTINE IS TO FIND THE IMPULSE RESPONSE OF A

C DIRECT FORM DIGITAL FILTER TO 100 SAMPLE POINTS. THEN THE ROUNDED
C IMPULSE RESPONSE IS FOUND. THIS INFORMATION WILL THEN FIND THE

C POWER IN ROUND-OFF AS APPLIED TO THE FILTER.

C

C

SUBROUTINE ROUNDDIRECTCA,B,NX,NY,NUMBITS)

REAL Y(-200:200), V(-200:200)

REAL A(512), B(512), MEAN(0:100), MEANSE

REAL YQC-200:200), ERROR(100), MEAN(100)

REAL SUMOFERRORQS, NOISEPOWER, XSUM, XQSUM, YSUM, YQSUM

BYTE ANS
INTEGER NX, NY, POINTS
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C
C I DO USE 100 POINTS. HOWEVER, IF THE FILTER STRUCTURE IS JUST AN FIR,
C THEN ONLY THE NUMBER OF COEFFICIENTS ARE NECESSARY SINCE THE IMPULSE
C RESPONSE LASTS THAT LONG.
C HOWEVER, IF THE FILTER IS AN IIR STRUCTURE, THAN THE 100 POINTS IS

C REASONALBE TO VIEW THE IMPULSE RESPONSE.

C
C
C THE VALUES USED ARE ZEROED OUT. THAT'S IN CASE A USER IS GOING THROUG
C THIS SECTION OF CODE FOR MULTIPLE RUNS. I CAN'T HAVE VALUES LINGERING

C AROUND UPON ENTRANCE TO THIS CODE.

C
POINTS = 100

DO I = -200, POINTS

X(I) = 0.0

Y(I) = 0.0

YQ(I) = 0.0
END DO

X(1) = 1.0
XSUM = 0.0

YSUM = 0.0
XQSUM = 0.0

YQSUM = 0.0
MEAN(1) = 0.0

SUMOFERRORQS = 0.0

C------------------------------------------------------------------

C
C A DIRECT FORM IS STRAIGHT FOWARD. THE IMPULSE COMES IN AND THE OUTPOUT

C IS ADDED UP FROM EACH OF THE DELAY ELEMENTS.

C
DO N = 1, POINTS

DO J = 1, NX

XSUM = X(N-(J-1)) * B(J) + XSUM
END DO

DO J = 2, NY
YSTJM = Y(N-(J-1)) * A() + YSUM
END DO

Y(N) = XSUM + YSUM
END DO
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DO N = 1, POINTS
DO J = 1, NX

XQSUM - ROUNDQ( CX(N-(3-1)) *B(J + XQSUM ),NUMBITS)
END DO

DO J - 2, NY

YQSUM - ROUNDQ( CYQ(N-(J-1)) *ACJ) + YQSUM ),NUMBITS)
END DO

YQ(N) - XQSUM + YQSUM

END DO

C THIS IS A RECURSISE MEAN ESTIMATOR. THE ARRAY SHOULD CONVERGE TO THE
C MEAN OF THE ERROR. A NEAT WAY TO ITERATIVELY ESTIMATE THE MEAN.

MEAN(0) - 0.0

DO N = 1, POINTS

ERROR(NM YCN) - YQ(N)

MEANCN) =MEANCN-1) + (1.0/N) *CERROR(N - MEAN(N-i))

END DO

MEANSE ( MEAN(POINTS)) ** 2)
WRITE(6,3)'THE MEAN SQUARE ERROR IS =',MEANSE

DO N a 1, POINTS
SUMOFERRORSQ =SUMOFERRORSQ + ( (ERROR(N) - MEAN(POINTS))**2)

END DO

NOISEPOWER CI.O0/POINTS - 1.0) )*(SUMOFERRORSQ)

WRITE(6,1THE POWER FROM THE ROUND-OFF NOISE IS THE FOLLOWING.'

WRITE(6 ,4)

WRITEC6,3)0 ------------POWER IN ROUND OFF NOISE IS =',NOISEPOWER

WRITE(6,1'............. HIT RETURN KEY ..........
READ(5,5)ANS

I FORMATCI,A,S)
2 FORNAT(A,E1O.3,2X,A,E1O.3,A,E1O.2,2X,A,EIO.2)
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3 FORMAT(A,EI2.4)

4 FORMAT(/)
5 FORMAT(A,$)

98 RETURN

99 END
C--- END OF ROUND-OFF ROUTINE.

C

C
C THIS ROUTINE WILL CHANGE THE ORDER OF THE CASCADE SECTIONS.

C THE USER WILL ENTER TO NEW ORDER TO FOLLOW. THE METHOD TO ENTER
C THE NEW COEFFICIENTS IS A SOURCE AND DESTINATION CASCADE SECTION
C NUMBER. THE ROOTS OF EACH SECTION BOTH NUMERATOR AND THE DENOMENATOR

C IS FOUND AND SENT TO THE SCREEN AS WELL AS THE CASCADE SECTION'S
C COEFFICIENTS. THIS WAY A USER CAN SEE THE POLE/ZERO LOCATIONS AND TELL

C IF THE MATCHING IS GOOD. REMEMBER TO TRY TO MATCH THE CLOSEST POLE/ZERO

C PAIRS TOGETHER FOR THE OPTIMAL NOISE GENERATION. (MINI-MAX PRINCIPLE)

C

C COPY THE COEFFICIENTS INTO A TEMPORARY ARRARY FOR NON-DESTRUCTIVE

C TESTING.
C CHANGE SIGN ON POLES TO HAVE ALL PLUS SIGNS IN POLE SECTIONS.

C PRINTOUT THE COEFFICIENTS.

C FIND THE ROOTS TO THE POLYNOMIALS IN BOTH ZEROS AND POLES.
C (THAT MUST FIND THE ROOTS THAT ARE COMPLEX!)

C PRINT OUT THE COMPLEX ROOTS TO ALL THE CASCADE SECTIONS.

C BEGIN THE MANIPULATION OF THE SECTIONS BY MOVING SECOND ORDER SECTIONS
C IN THE NUMERATOR OR BY MOVING SECOND ORDER SECTIONS IN THE DENOMENATOR.

C RECALCULATE THE ROUNDOFF POWER ERROR IN THE NEW FILTER LAYOUT.

C CONTINUE ROUTINE IF USER DESIRES TO CONTINUE.

C

SUBROUTINE CHANGECASCADEORDER(A,B,NX,NYNUMBITS)

COMPLEX DENY, ROOTY(60), NUMX, ROOTX(60)

REAL A(512), B(512), AHOLD(512), BHOLD(512), THOLD1, THOLD2, THOLD3
REAL RADICAL, TESTIMAGINARY

BYTE ANS

INTEGER NX, NY, NUMBITS, COUNT, ICONTINUEFLAG
INTEGER XSECTION, YSECTION, POS, SOURCEFROM, SOURCETO

C
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C SAVE THE ORIGINAL DATA VALUES; NON-DESTRUCTIVE TESTING.

C

DO I - 1, NX

BHOLD(I) - B(I)
END DO

DO I - 1, NY

AHOLD(I) - AI)
END DO

XSECTION - NX/3

YSECTION - NY/3

WRITE(6,1)'-.-.-.-.-.-.-.-.-TO ABORT ROUTINE, HIT RETURN-.-.-.-.-.-. -'
WRITE(6,1)'THIS ROUTINE WILL CHANGE THE ORDER OF THE CASCADE SECTIONS.'
WRITE(6,1)'YOU'LL BE ABLE TO MOVE A SINGLE CASCADE SECTION TO THE'

WRITE(6,1)'POSTION OF ANOTHER SINGLE CASCADE SECTION (SOURCE - TARGET).'

C BEGIN THE DO WHILE SECTION

ICONTINUEFLAG = 1
DO WHILE (ICONTINUEFLAG .EQ. 1)

C

C I DO CHANGE THE SIGN SINCE THIS ROUTINE WILL PRINT OUT THE COEFFICIENTS
C TO THE SCREEN. REMEMBER THE DEFINITION REQUIRES THAT THE COEFFICIENTS

C FOR THE POLE ARE INPUTED AS A NEGATIVE VALUE. NOW THEY'LL BE PRINTED

C AS ALL PLUS SIGNS IN THE ZERO SECTIONS. SEE THE HELP UTILITY FOR

C FURTHER EXPLAINATIONS.

C

C CHANGE THE NEGATIVE SIGN FOR THE DENOMENATOR TERM SO THE COEFFICIENTS

C ARE ALL POSITIVE COEFFICIENTS ( FROM THE DEFINITION OF CASCADE).

C RESTORE SIGN AT THE END OF THE ROUTINE.

C
C THIS IS A LONG ROUTINE. IT COULD BE SPLIT UP INTO MUCH SMALL UNITS.

C

DO I = 0, (XSECTION - 1)

AHOLD(I*341) = 1.0 * AHOLD(I*3 1)
AHOLD(I*3+2) - -1.0 * AHOLD(I*3 2)

AHOLD(I*3+3) = -1.0 * AHOLD(I*3+3)

A-28



END DO

C
C PRINT OUT THE EXISTING COEFFICIENT FILE.
C

C.........................................................................
C THIS SECTION WRITES OUT THE EXISTING INFORMATION TO THE SCREEN.

C
WRITE(6 .4)

WRITE(6,11THE NUMBER OF SECTIONS IN THE NUMERATOR =',XSECTION
WRITE(6,11)'THE NUMBER OF SECTIONS IN TH~E DENOMINATOR =',YSECTION

IF ( XSECTION .NE. YSECTION ) THEN
WRITEC6,1)'MAKE EQUAL SECTIONS IN THE NUMERATOR AND DENOMINATOR.'
WRITE(6.1)'USE ZERO'S AND A ONE "(1 - O*Z-- - O*V--2)" LIKE EXAMPLE.'
READ(5,5)ANS

GOTO 50

END IF

COUNT - I

DO J3 = O,( XSECTION - 1)

WRITE(6 ,7)COUNT ,COUNT

DO I = 1, 3

WRITEC6,25)( (3*3)41 ),BHOLD( (J*3)41 ),( (J*3)+I )
a AHOLD( (J*3)+I)

END DO

COUNT a COUNT + 1
END DO

C -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C THIS SECTION STARTS THE CASCADE SECTION MOVING.

C THE SECTIONS ARE SOURCE AND TARGET LOCATIONS FOR THE SECTION.
C

WRITE(6,1NOW WE'RE GOING TO LOOK AT THE ROOTS OF THE POLYNOMIALS.'

DO I - 0, (XSECTION - 1)
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P05 = (I * 3) +. 1
C FIND OUT IF THE RADICAL IS GOING TO BE AN IMAGININARY NUMBER.
C FIND ROOTS FOR THE NUMERATOR SECTIONS
TESTIMAGINARY - (BHOLD(POS+l) )**2 -(4.0 *BHOLD(POS)*BHOLD(POS+2))

IF C TESTIMAGINARY .LT. 0.0 ) THEN
RADICAL - SQRT( ABS(TESTIMAGINARY))

C THESE ROOTS ARE IMAGINARY VALUED ROOTS
NUMX = CMPLXC-BHOLDCPOS+1), RADICAL)
ROOTXCI*2+1) a NUMX/( 2.0 * BHOLDCPOS) )

NUMX a CMPLXC-BHOLDCPOS+1), -RADICAL)
ROOTXCI*2+2) - NUMX/C 2.0 * BHOLDCPOS) )

ELSE

C THESE ROOTS ARE REAL VALUED ROOTS
NUMX = CMPLX(-BHOLD(POS+l) + RADICAL, 0.0)
ROOTXCI*2s1) a NUMX/C 2.0 * BHOLD(POS) )

NUMX a CMPLX(-BHOLDCPOS+1) - RADICAL, 0.0)
ROOTXCI*2+2) = NUMX/C 2.0 * BHOLD(POS))

END IF

TESTIMAGINARY - (A(POS+l) )**2 - (4.0 A(iOS>*A(POS+2))

C FIND ROOTS FOR THE DENOMENATOR SECTION
IF ( TESTIMAGINAY .LT. 0.0 ) THEN
RADICAL - SQRT( ABS (TESTIMAGINARY))

DENY - CHPLX(-AHOLD(POS.1), RADICAL)
ROOTY(I*2e1) = DENY/C 2.0 * AHOLDCPOS) )

DENY - CMPLXC-AHOLD(POS+1), -RADICAL)
ROOTY(I*2+2) - DENY/( 2.0 * AHOLDCPOS) )

ELSE

DENY a CMPLXC-AHOLD(POS+1) + RADICAL, 0.0)
ROOTY(I*2.1) m DENY/( 2.0 * AHOLDCPOS) )
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DENY a CMPLX(-AHOLD(POS+1) -RADICAL, 0.0)
ROOTYCI*2+2) a DENY/C 2.0 *AHOLD(POS))

END IF

END DO

C PRINT OUT THE ROOTS TO THE CASCADE SECTIONS.

COUNT -I

DO J =0,( XSECTION - 1I

WRITE(6,7)COUNT,COUNT

WRITEC6 ,8)

WRITE(6,26) (3*2+1) .REAL(ROOTX(.J*2+1)) ,AIMAG(ROOTX(J*2*1)),
k REALCROOTY(J*241)) ,AIMAG(ROOTYCJ*2+1))

WRITE(6,26) (3*2+2) ,REAL(ROOTX(J*2+2)) ,AIMAG(ROOTX(J*2+2)),
& REAL(ROOTY(J*2+2)) ,AIMAG(ROOTY(J*2+2))

COUNT = COUNT + 1

END DO

C

C READY TO START THE MANIPULATIONS OF THE ROOTS FROM THE SECOND
C ORDER CASCADE SECTIONS.

C

WRITE(6,1)'DO YOU WANT TO MOVE SECTIONS IN THE NUMERATOR? [n]..:

WRITE(6111)'DO YOU WANT TO MOVE SECTIONS IN THE DENOMINATOR~d] ...:

READ(5,5)ANS

IF ( AlES .EQ. ' )THEN
GOTO 50

END IF
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C
C DENOMINATOR SECTION

C

IF ( (ANS .EQ. 'D') .OR. (ANS .EQ. 'd') ) THEN

30 WRITE(6,1)'ENTER NUMBER OF THE DENOMINATOR SECTION TO MOVE FROM ...:'

READC5,10,END=50,ERR=30)SOURCEFROM
IF ( SOURCEFROM .EQ. 0 ) THEN

GOTO 50

END IF

IF ( (SOURCEFROM .LT. 1) .OR. (SOURCEFROM .GT. YSECTION) ) THEN
WRITE(6,1)'TRY AGAIN, BE CAREFUL!!!!!!!!!!'

GO TO 30

END IF

31 WRITE(6,1)'ENTER NUMBER OF THE DENOMINATOR SECTION TO MOVE TO ... '

READ(S,10,END=50,ERR=31)SOURCETO
IF ( SOURCETO .EQ. 0 ) THEN

GOTO 50

END IF

IF ( (SOURCETO .LT. 1) .OR. (SOURCETO .GT. YSECTION) ) THEN
WRITE(6,1)'TRY AGAIN, BE CAREFUL!!!!!!!!!!!P

GO TO 31

END IF

THOLDI = AHOLD( (SOURCETO * 3) - 2)

THOLD2 = AHOLD( (SOURCETO * 3) - 1)
THOLD3 = AHOLD( (SOURCETO * 3) - 0)

AHOLD( (SOURCETO * 3) - 2) = AHOLD( (SOURCEFROM * 3) -2)

AHOLD( (SOURCETO * 3) - 1) = AHOLD( (SOURCEFROM * 3) -1)

AHOLD( (SOURCETO * 3) - 0) = AHOLD( (SOURCEFROM * 3) -0)

AHOLD( (SOURCEFROM * 3) -2) = THOLD1
AHOLD( (SOURCEFROM * 3) -1) = THOLD2

AHOLD( (SOURCEFROM * 3) -0) = THOLD3

END IF

C
C -------- NUMERATOR SECTION
C

IF ( (ANS .EQ. 'N') .OR. (ANS .EQ. n') ) THEN

32 WRITE(6,1)'ENTER THE NUMBER OF THE NUMERATOR SECTION TO MOVE FROM
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READ (5,10, EN, 50ERR-32) SOURCEFROM

IF ( (SOURCEFROM .LT. 1) DOR. (SOURCEFROM .GT. XSECTION) ) THEN
WRITEC6,1)'TRY AGAIN, BE CAREFUL!!!!!!!!'
GO TO 32
END IF

33 WRITE(6,1))ENTER THE NUMBER OF THE NUMERATOR SECTION TO MOVE TO
READC5, iO,END-5O,ERR=33)SOURCETO

IF ( (SOURCETO .LT. 1) .OR. (SOURCETO .GT. XSECTION) ) THEN
WRITE(6,1)'TRY AGAIN, BE CAREFUL!!!!!!!!!!!!'
GO TO 33
END IF

THOLDI BHOLDC (SOURCETO * 3) - 2)
THOLD2 wBHOLDC (SOURCETO * 3) - 1)
THOLD3 = BHOLD( (SOURCETO * 3) - 0)

BHOLD( (SOURCETO * 3) - 2) = BHOLD( (SOURCEFROM * 3) -2)
BHOLD( (SOURCETO * 3) - 1) = BHOLD( (SOURCEFROM * 3) -1)
BHOLD( (SOURCETO * 3) - 0) - BHOLD( (SOURCEFROM * 3) -0)

BHOLDC (SOURCEFROM * 3) -2) = THOLD1
BHOLD( (SOURCEFROM * 3) -1) = THOLD2
BHOLD( (SOURCEFROM * 3) -0) = THOLD3

END IF
C

C---------------------------------------------------------------------

C..............................................................---
C
C NOW RUN THE ROUNDOFF POWER ERROR ROUTINE WITH THESE COEFFICIENTS
C

CALL ROUNDCASCADE(A ,B ,NX ,NY INUMBITS)

WRITE(6,1)'I WANT TO CONTINUE TO MANUVER CASCADE SECTIONS? LYles
READ(5 ,5)ANS

IF ( (ANS .EQ. 'Y') .OR. (ANS .EQ. 'y') ) THEN
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ICONTINUEFLAG a I

ELSE

ICONTINUEFLAG - 0

END IF

END DO

C END THE DO WHILE SECTION

C ON ERRORS, GO TO THE END OF THE ROUTINE.

C THE COEFFICIENTS ARE NOT SAVED SINCE THIS IS A NON-DESTRUCTIVE
C ROUND-OFF POWER CALCULATION ROUTINE.

50 CONTINUE

1 FORMATC/,A,$)
2 FORMAT(A,12,3X,A,12)

3 FORMAT(AE12.4)

4 FORMAT(/)

5 FORMAT(, I$)
7 FORMAT(/,/,' FROM NUMERATOR SECTION (',12,') AND ',

& 'DENOMINATOR SECTION (',12,')')

8 FORMAT(/,' REAL-PART IMAGINARY-PART

&REAL-PART IMAGINARY-PART')

10 FORMAT(I,$)

11 FORMAT(A,13)

12 format(f12.7)

15 FORMAT(A,I3,SX,A,I3)

20 FORMAT(2X,'A(',I3,') = ',F11.7)

21 FORMAT(2X,'B(',I3,') = ',F11.7)

25 FORMAT(2X,'B(',I3,') = ',F11.7,4X,'A(',I3,') = ',Fll.7)

26 FORAT('*ROOT(',I12,')',E12.5,2X,E12.5,2X,E12.5,2X,E12.5)

98 RETURN
99 END

C--- END OF ROUND-OFF ROUTINE.
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C **********************************************************************

c THIS SUBROUTINE WILL READ IN THE COEFFICIENTS FOR THE FILTER DESIRED

C FROM THE DISK FILE SYSTEM OR A USER CAN USE THE KEYBOARD TO INPUT

C COEFFICIENTS.

C
SUBROUTINE READCOEFF(NXNY,A,B,FNAME,ANS,FILTERTYPE)

CHARACTER*15 FNAME,TNAME

BYTE ANS,HFLAG

REAL A(512),B(512)

INTEGER NX,NY, XSECTION, YSECTION, FILTERTYPECOUNT

41 HFLAG a 'F'

TNAME - FNAME

WRITE(6,1) 'DIFFERENCE EQUATION COEFFICIENTS FROM FILE? [RET] "'

WRI:E0(6,1) 'DIFFERENCE EQUATION COEFFICIENTS FROM KEYBOARD [Y] :'

READ(5,S,END-99,ERR=41)ANS

C ****************************************** -*

IF ( ANS .EQ. 'y' ) THEN
ANS IY-

ENDIF

C ************************* *****************************

IF ( ANS .EQ. ' ' ) THEN

C ------ READ THE COEFFICIENTS FROM THE HOME DISK DIRECTORY---

WRITE(6,1)' *** BE SURE COEFFICIENTS ARE <=+-I.O AND INCLUDE DECIMAL. ***'

WRITE(6,1)' *** THERE IS A NORMALIZATION ROUTINE IF YOU NEED IT

WRITE(6,4)

WRITE(6,17)FNAME

WRITE(6,1)'*ENTER NAME OF COEFFICIENT FILE*: [NAME] -'

WRITE(6,1)'*ENTER RETURN FOR NOCHANGE*: [RET]
READ(5,S,END=99,ERR=41) FNAME

IF ( FNAME .EQ. ' ' ) THEN
FNAME - TNAME

ENDIF

WRITE(6,4)

WRITE(6,1)'THE INPUT FILE WITH THE COEFFICIENTS IS BEING READ IN'
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WRITE(6,17)FNAME

OPEN(4,NAME=FNAME,STATUS='OLD',ERR=41)

READ(4,2,END=99,ERR=98)NX

READ(4,2,END=99,ERR=98)NY

DO J a 1,NX
READ(4,3,END-99,ERR=98)B(J)

IF ( ABS(B(J)) .GT. 1.0 ) THEN
HFLAG a I'

END IF

END DO

DO J = 1,NY

READ(4,3,END=99,ERR=98)A(J)

IF (ABS(A(J)) .GT. 1.0 ) THEN
HFLAG =T'

END IF

END DO

CLOSE(4)

C NOW PRINT OUT THE COEFFICIENTS TO T-iE SCREEN.

C FILTERTYPE 2 IS THE CASCASDE FORM.

C THE TYPE IS DIRECT FORM IS PRINTED.

IF ( FILTERTYPE .EQ. 1 ) THEN

DO J a 1, NX

WRITE(6,21)J-1,B(J)

END DO

DO J - 1, NY

WRITE(6,20)J-1 ,A(J)

END DO

ELSE
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CONTINUE

END IF

C

C NOW THE CASCADE FORM IS PRINTED OUT TO THE SCREEN.

C - - - - - - - - - - - - - - - - - - - - - - - - - - -

IF ( FILTERTYPE .EQ. (2) ) THEN

XSECTION = NX/3
YSECTION = NY/3

C THIS SECTION WRITES OUT THE EXISTING INFORMATION TO THE SCREEN.

WRITE(6 ,4)

WRITE(6,8)'THE NUMBER OF SECTIONS IN THE NUMERATOR =',XSECTION
WRITE(61 18)'THE NUMBER OF SECTIONS IN THE DENOMINATOR =',YSECTION

IF ( XSECTION .NE. YSECTION ) THEN
WRITE(6,1)'MAKE EQ~UAL SECTIONS IN THE NUMERATOR AND DENOMINATOR.,

WRITE(6,1)'USE ZERO'S AND A ONE "(1 - O*Z--1 - O*Z--2)" LIKE EXAMPLE.'

READ (5 ,5)ANS

RETURN

ELSE

CONTINUE

END IF

COUNI =1

DO J 0 ,( XSECTION - 1I

WRITE(6 ,7)COUNT,COUNT

DO I = 1, 3

WRITE(6,25)( (J*3)+I ),B( (J*3)+I )((J*3)+I ),A( (J*3)+I)
END DO

COUNT = COUNT + 1

END DO

END IF

C - - - - - - - - - - - - - - - - - - - - - - - - - - -
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END IF

WRITE(6,4)

C
C THE USER WILL ENTER THE COEFFICIENTS FROM THE KEYBOARD.

C

IF ( ANS .EQ. 'Y' ) THEN

C ------ READ THE COEFFICIENTS FROM KEYBOARD---

43 WRITE(6,1) ' ENTER NUMBER OF TERMS IN X(n):

READ(5,2,END=99,ERR=43) NX

DO J = 1,NX
37 WRITE(6,11)J-1

READ(5,3,END=99,ERR=43)B(J)

IF (B(J) .GT. 1.0 ) THEN

HFLAG =T'

END IF

END DO

44 WRITE(6,4)

WRITE(6,1) I ENTER NUMBER OF TERMS IN Y(n):

READ(5,2,END=99,ERR=44) NY

DO J = 1,NY
WRITE(6,10)J-1

READ(5,3,END=99,ERR=44)A(J)

IF ( A(J) .GT. 1.0 ) THEN

HFLAG = IT'

END IF

END DO

C SINCE THE CnEFFICIENTS WERE ENTERED IN FROM THE KEYBOARD, THEY NEED
C TO BE SAVED TO THE DISK DRIVE.

CALL SAVECOEF(FNAME,NX,NY,A,B)
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ENDIF

C--- THIS IS A TEST FOR COEFFICIENTS THAT ARE GREATER THAN ONE.

IF ( HFLAG .EQ. 'T' ) THEN

WRITE(6,1)'** MAGNITUDE OF COEFFICIENTS GREATER THAN ONE **!!!'

WRITE(6,1)'YOU MUST USE THE NORMALIZATION ROUTINE!!!!!!!!!!!!'

WRITE(6,1)'************** SELECTION #8

END IF

WRITE(6,1)'HIT RETURN KEY TO CONTINUE [RETURN KEY]:

READ(5,2,END=99,ERR=98)ANS

WRITE(6,4)

I FORMAT(/,A,$)
2 FORMAT(I3)
3 FORMAT(E14.7)

4 FORMAT(/)
5 FORMAT(A,$)

7 FORMAT(/,'NUMERATOR SECTION (',12,')',3X,'DENOMINATOR SECTION (',12,')')

8 FORMAT(A,13)
10 FORMAT(2X,'A(',II,')= ',$)
11 FORMAT(2X,'B(',I1,')= ',$)
17 FORMAT(/,'CURRENT NAME OF THE COEFFICIENT FILE IS "',A,"",/)

20 FORMAT(2X,'A(',I3,') = ',E16.8)
21 FORMAT(2X,'B(',I3,') = ',E16.8)

25 FORMAT(2X,'B(',I3,') = ',FII.7,4X,'A(',I3,') = ',F11.7)

98 RETURN

99 END

C--- END OF INPUT ROUTINE, THE COEFFICIENTS HAVE BEEN READ IN.
C

C

C ***********************************************************************

C THIS SUBROUTINE ALLOWS THE USER TO DETERMINE THE NUMBER OF BITS

C TO USE FOR THE SIMULATION CALCULATIONS.

C
SUBROUTINE BITSAVAILABLE(NUMBITS)
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INTEGER NUMBITS,TNUMBITS

TNUMBITS = NUMBITS

41 WRITE(6,4)
write(6,1) ' Enter the NUMBER of Bits for Quantizing:

WRITE(6,1) ' ENTER [RET) FOR NO CHANGE
READ(5,2,END-99,ERR=41) NUMBITS

IF ( NUMBITS .EQ. (0)) THEN

NUMBITS - TNUMBITS

END IF

IF ( NUMBITS .GT. (32)) THEN

WRITE(6,1) '** OUT ** OF ** BOUNDS **'

NUMBITS = TNUMBITS

END IF

IF ( NUMBITS .LT. (1) ) THEN
WRITE(6,1) '** OUT ** OF ** BOUNDS **'
NUMBITS a TNUMBITS

END IF

WRITE(6,5)NUMBITS

1 FORMAT(/,A,$)

2 FORMAT(I)
4 FORMAT(//)

5 FORMAT(/,'THE NUMBER OF BITS IS =',13)

RETURN
99 END

C FILENUMBER IS A TWO DIGIT NUMBER FOR THE USER TO ASSCOCIATE WITH THE
C OUTPUT FILES. THE OUTPUT FILES INCLUDE THE QUANTIZED MAG/PHASE AND THE
C ERROR DATA FILE. THE UNQUANTIZED PLOTS ARE DONE IN THE NEXT SUBROUTINE.

SUBROUTINE FILENUMBER(FNUMBER)

CHARACTER*2 FNUMBER,TFNUMBER

71 WRITE(6,4)

TFNUMBER - FNUMBER
WRITE(6,1)'ENTER THE NUMBER TO ASSOCIATE WITH THE OUTPUT FILES:'

WRITE(6,1) ' ENTER THE NUMBER AS A **TWO** DIGIT NUMBER [##] '

WRITE(6,1) ' ENTER [RET] FOR NO CHANGE [RET]:'
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READ(5,5,END=99,ERR=71) FNUMBER

IF ( FNUMBER .EQ. ' ) THEN
FNUMBER = TFNUMBER

END IF

WRITE(6,4)
WRITE(6,6)' ***** THE FILE NUMBER YOU HAVE CHOSEN IS:',FNUMBER

WRITE(6,4)

1 FORMAT(/,A,$)
4 FORMAT(/,/)
S FORMAT(A)
6 FORMAT(A,A,/,/,/)

98 RETURN

99 END
C

C THE UNQNUMFILE IS A TWO DIGIT NUMBER (COULD BE ASCII) THAT A USER INPUTS
C FOR THE SOFTWARE TO TAG ON THE UNQUANTIZED MAGNITUDE AND PHASE PLOTS.

C
SUBROUTINE UNQNUMFILE(UNQFNAME)

CHARACTER*2 UNQFNAME,TNAME

WRITE(6,4)

TNAME = UNQFNAME
31 WRITE(6,1)'ENTER NUMBER FOR THE UNQUANTIZED MAG/PHASE FILES:'

WRITE(6,1) ' ENTER THE NUMBER AS A **TWO** DIGIT NUMBER [##] '

WRITE(6,1) ' ENTER [RET] FOR NO CHANGE [RET]:'

READ(5,5,END=99,ERR=31) UNQFNAME

IF ( UNQFNAME .EQ. ' ' ) THEN
UNQFNAME = TNAME

END IF

WRITE(6,4)

WRITE(6,6)'THE NUMBER YOU HAVE CHOSEN FOR UNQUANTIZED FILES IS:',UNQFNAME

WRITE(6,4)

1 FORMAT(/,A,$)

4 FORMAT(/,/)

5 FORMAT(A)
6 FORMAT(AA,/,/,/)

RETURN

99 END
C **4**************

A-41



C THIS SUBROUTINE SETS UP THE FILTERTYPE WITH A NUMBER THAT TELLS ME

C WHAT TYPE OF FILTER IS BEING EVALUATED. TWO TYPES OF FILTERS CAN BE

C SIMULATED, A DIRECT FORM OR A CASCADE FORM FILTER.

C
C ALSO,
C THIS ROUTINE DOES A CONVERSION PROCESS.

C A USER CAN CONVERT FROM A CASCADE ORGANIZATION TO A DIRECT FORM FILTER.

C THIS PROCESS OF CONVERSION MULITPLIES OUT THE POLYNONIALS (SECOND ORDER

C SECTIONS) INTO ONE POLYNOMIAL FOR THE POLES AN ZEROS.

C
C
SUBROUTINE TYPEOFFILTER(FILTERTYPE,FILTERNAME,FNAME,NX,NY,A,B)

INTEGER FILTERTYPE, THOLD, NX, NY, IANS

REAL A(512).B(512)
CHARACTER*15 FILTERNAMEFNAME

THOLD = FILTERTYPE

32 WRITE(6,1)' ***** DO YOU WANT TO *****

WRITE(6,)'(1) ANALYZE --CASCADE-- FORM, OR [13 -'
WRITE(6,1)'(2) ANALYZE --DIRECT-- FORM [RET] or [2] :"

WRITE(6,1)'(3) ENTER CONVERSION PROCESS FROM CASCADE TO DIRECT [3] :'

WRITE(6,1)' ........
READ(5,5,END=99,ERR=32)IANS

IF ( IANS .EQ. '0' ) THEN
IANS = '2'
ENDIF

IF ( IANS .EQ. 'I' ) THEN

FILTERTYPE = 2

FILTERNAME = 'CASCADE'
WRITE(6,I)' BE SURE TO INPUT COEFFICIENTS LIKE IN EQ. 6.23

WRITE(6,I)' FROM OPPENHEIM AND SCHAFER .................. .
WRITE(6,1)' BUT INCLUDE THE '1.0' IN THE DEIKOMINATOR AS A COEFFICIENT'

WRITE(6,1)' EACH SECTION WILL HAVE SIX COEFFICIENTS ..................

WRITE(6,1)' ************* EXAMPLE ***************
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WRITE(6.1)' EACH SECTION IS LOOKS LIKE THIS

WRITE(6.1)'

WRITE(6,1)' (B-.0 + B-1*Z-il + B-.2*Z--2) C.)
WRITEC6.1)' H(Z) ------------------------------------------ *..

WRITEC6,1)' (A-.0 - A-A*Z-1l - A-.2*Z--2) C.)
WRITEC6,1)'

WRITEC6. 1)' note: postion A-.0 =1.0 always'

ELSE

IF ( IANS .EQ. '2' ) THEN

FILTERTYPE - 1

FILTERNAME - 'DIRECT FORM'
WRITE(6,1)'THE X COEFFICIENTS ARE ON THE RIGHT SIDE OF DIFFERENCE EQUATION'

WRITEC6,1)' THE Y COEFFICIENTS ARE ON THE LEFT SIDE OF DIFFERENCE EQUATION'

WRITEC6,1)' BE SURE TO INPUT COEFFICIENTS LIKE IN EQ. 5.16

WRITEC6,1 FROM OPPENHEIM AND SCHAFER ..................

WRITEC6,1)':

W1RITE(6,I)'******* EXAMPLE***s****

WRITE(6,1 EACH FILTER LOOKS LIKE THIS

WRITE(6,1)'
WRITE(6,1 Y(Z)*A-.. + Y(Z-1)*A-l. + YCZ--2)*A-.2 +

WRITE(6,1)'

WRITE(6,1)' X(Z)*B..0 + X(Z-1)*B.1 + X(Z--2)*B-2 +

WRITE(6,I)'

WRITE(6, 1)'

ELSE

CONTINUE

END IF

ENDIF

C

C THE CONVERSION PROCESS IS A SUBROUTINE SINCE IT DOES A BIT OF

C CALCULATIONS.
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C

IF ( IANS .EQ. '3' ) THEN

CALL CONVERSION(FILTERTYPE,FILTERNAME,FNAMENX,NY,AB)
ENDIF

WRITE(6,4)
WRITE(6,1)'ENTER ANY KEY TO CONTINUE [RETURN KEY] ...

READ(5,5,END=99,ERR=98)ANS

WRITE(6.4)

1 FORMAT(I,A,$)
4 FORMAT(/,/,/)

5 FORMAT(A)
98 RETURN
99 END

C

C ***********************************************************************

C THIS SUBROUTINE IS CALLED BY SUBROUTINE TYPEOFFILTER.

C
C THIS ROUTINE DOES A CONVERSION PROCESS.

C A USER CAN CONVERT FROM A CASCADE ORGANIZATION TO A DIRECT FORM FILTER.

C THIS PROCESS OF CONVERSION MULITPLIES OUT THE POLYNONIALS (SECOND ORDER

C SECTIONS) INTO ONE POLYNOMIAL FOR THE POLES AN ZEROS.

C

C

SUBROUTINE CONVERSION(FILTERTYPE,FILTERNAME,FNAME,NX,NY,A,B)

INTEGER SECTIONS, COUNT, NX, NY, FILTERTYPE

REAL A(512), B(512), PX(-1:200), PY(-1:200), PXT(-1:200), PYT(-1:200)

CHARACTER*15 FNAME, FILTERNAME

BYTE ANS,HFLAG

IF ( (NX .EQ. 0) ) THEN

WRITE(6,1)'YOU MUST FIRST READ OR CREATE A COEFFICIENT FILE TO USE!!!'

WRITE(6,1)'IT UST FOLLOW THE CASCADE DESIGN OPPENHEIM/SHAFFER EQ.6.23'

WRITE(6,1)' RUN THE COEFFICIENT INPUT ROUTINE FOR FURTHER DETAILS'

RETURN

END IF
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SECTIONS = NX/3

COUNT a 0

C--- IF A USER STARTS WITH A LARGER FILE AND THEN TRIES A SMALLER FILE,

C--- SOME VALUES WILL BE LEFT OVER THAT NEED TO BE ZERO FOR THE ALGORITHM
C--- TO WORK. THIS ROUTINE WILL REACH OUT INTO THE ARRAYS PX),PY(.

DO I = -1, ( NX )
PX( I)= 0.0

END DO

DO I -1, ( NY )
PY( I ) = 0.0
END DO

C--- THE FIRST LEVEL FOR CONVERSION IS DONE EXPLICITLY.

C--- WE ARE MULTIPLYING TWO SECOND ORDER SECTIONS
C--- LEVEL ONE

PXT(1) = B(1) * B(4) + B(2) * 0 + B(3) * 0

PXT(2) = B(1) * B(S) + B(2) * B(4) + B(3) * 0

PXT(3) = B(1) * B(6) + B(2) * B(5) + B(3) * B(4)

PXT(4) = B(1) * 0 + B(2) * B(6) + B(3) * B(5)

PXT(5) = B(1) * 0 + B(2) * 0 + B(3) * B(6)

DO I =1, 5

PX(I) - PXT(I)

END DO

write(6,2)sections

C------------------------------------------------

IF ( SECTIONS .EQ. 2 ) THEN

CONTINUE

ELSE

DO K=I,(SECTIONS - 2)

write(6,2)count

write(6,1)'this is the start of the do loops'
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C--- THIS IS THE NEXT LEVEL COMPUTATION. RESULTS FROM PREVIOUS LEVEL ARE

C--- NEEDED. AFTER EACH LEVEL IS COMPUTED, THE RESULTS MUST BE FEED BACK
C--- INTO THE INPUT TERMS FOR THE NEXT LEVEL TO USE.

NUM * ( 3 * COUNT )

DO J=1,(7+(2*COUNT))

write(6,2)j
write(6,22)px(j) ,px(j-1) ,px(j-2)

write(6,23)b(7+num) ,b(8+num) ,b(9+num)

PXT(J)=B(7+NUM) * PX(J) + B(8+NUM)*PX(J-1) + B(9+NUM)*PX(J-2)

END DO

C--- THIS RESTORES VALUES FOR NEXT LEVEL COMPUTATION.
c--- AND CLEARS THE ARRAY BEFORE A USER CAN REENTER THIS CODE.

DO N = 1, ( 7 + (2 * COUNT) )
PX(N) - PXT(N)

END DO

COUNT - COUNT + 1

END DO

END IF

C ---------------------------------------------

c--- UPDATE THE VALUE OF NX HOW MANY TERMS ON RIGHT SIDE OF DIFF. EQ.

NX = ( SECTIONS * 2 + 1 )

C---

C--- NOW RESTORE THE "X" COEFFICIENTS SO THE PROGRAM CAN USE THESE VALUES!

DO J a 1, NX
B(J) a PX(J)
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END DO

C--- *******************************************************************

IF ( (NY .EQ. 0) ) THEN

WRITE(6,1)'YOU MUST FIRST READ OR CREATE A COEFFICIENT FILE TO USE!!'
WRITE(6,1)'IT MUST FOLLOW THE CASCADE DESIGN OPPENHEIM/SHAFFER EQ.6.23'

WRITE(6,1)' RUN THE COEFFICIENT INPUT ROUTINE FOR FURTHER DETAILS
RETURN

END IF

SECTIONS = NY/3

COUNT = 0

C--- THE FIRST LEVEL FOR CONVERSION IS DONE EXPLICITLY.
C--- WE ARE MULTIPLYING TWO SECOND ORDER SECTIONS.

C--- Y COEFFICIENTS ARE ( 1 - (A_1,K * Z-I) - (A_2,K * Z--2) ) IN

C--- THE DENOMINATOR AS IN OPPENHEIM/SHAFFER EQ. 6.23.
C--- THESE SECOND ORDER SECTIONS ARE CASCADED. T ONVERT SIGN FIRST, SO I
C--- DON'T HAVE TO TRACK THE UNIQUE SIGN CHANGES -THIN THE ALGORITHM.

DO I = 0, (SECTIONS - 1)

A(I * 3 + 1) = +A(I * 3 + 1)
A(I * 3 + 2) = -A(I * 3 + 2)

A(I * 3 + 3) = -A(I * 3 + 3)

END DO

C--- LEVEL ONE

PYT(1) = A(1) * A(4) + A(2) * 0 + A(3) * 0

PYT(2) A() * A(S) + A(2) * A(4) + A(3) * 0

PYT(3) = A() * A(6) + A(2) * A(5) + A(3) * A(4)

PYT(4) = A(i) * 0 + A(2) * A(6) + A(3) * A(5)

PYT(5) = A(1) * 0 + A(2) * 0 + A(3) * A(6)

DO I = 1, 5
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PY(I) = PYT(I)

END DO

C-

IF ( SECTIONS .EQ. 2 ) THEN
CONTINUE

ELSE

DO K=1,(SECTIONS - 2)

C--- THIS IS THE NEXT LEVEL COMPUTATION. RESULTS FROM PREVIOUS LEVEL ARE
C--- NEEDED. AFTER EACH LEVEL IS COMPUTED, THE RESULTS MUST BE FEED BACK
C--- INTO THE INPUT TERMS FOR THE NEXT LEVEL TO USE.

NUM = (3*COUNT)

DO J=I,(7+(2*COUNT))

PYT(J)=A(7+NUM) * PY(J) + A(8+NUM)*PY(J-1) + A(9+NUM)*PY(J-2)

END DO

C--- THIS RESTORES VALUES FOR NEXT LEVEL COMPUTATION

C--- AND CLEARS THE ARRAY BEFORE A USER RE-ENTERS THIS CODE.

DO N = 1, ( 7 + (2 * COUNT) )
PY(N) PYT(N)

END DO

COUNT = COUNT + 1

END DO

END IF

C--------------------------------------------------------

c--- UPDATE THE VALUE OF NX HOW MANY TERMS ON RIGHT SIDE OF DIFF. EQ.

NY = ( SECTIONS * 2 + 1 )

C- ---

C--- NOW RESTORE THE "Y" COEFFICIENTS SO THE PROGRAM CAN USE THESE VALUES!
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DO J - 1, NY
A (J) - PY (J)
END DO

WRITEC6 ,4)
41 WRITE(6,1) '*******CONVERSION UTILITY: CASCADE TO DIRECT FORM*******'

WRITE(6,1) '** THIS ROUTINE WILL STORE YOUR COEFFICIENTS
WRITE(6,1) 'TO THE FILE THAT YOU ENTER.

WRIT".(6,1) '** YOU WILL HAVE COEFFICIENTS IN DIRECT FORM! **

WRITE(6i1) ........ ENTER FILE NAME TO STORE COEFFICIENTS .....

READ (5,5, END=99 ,ERR=41) FNAME

WRITE(6,6)'THE FILE NAME IS CALLED:',FNAME
WRITE(6,1)'SHALL I PROCEED TO CONVERT AND SAVE COEFFICIENTS? ENTER[Y]:'
WRITE(6,1)'WAIT, START THIS ROUTINE AGAIN? [RETURN KEY]:'
READ(5 ,5 ,END=99,ERR=41)ANS

IF C CANS .EQ. 'Y') .OR. CANS .EQ. 'y') ) THEN
CONTINUE

ELSE

GOTO 41

ENDIF

FILTERTYPE -1

FILTERNAME = 'DIRECT FORM'

WRITEC6,1)' THE X COEFFICIENTS ARE ON THE RIGHT SIDE OF DIFFERENCE EQUATION'
WRITE(6.,1)' THE Y COEFFICIENTS ARE ON THE LEFT SIDE OF DIFFERENCE EQUATION'

C THE HFLAO3 TELLS ME IF THE COEFFICIENTS NEED NORMALIZATION.

HFLAG = 'F'

OPEN( 10 ,NAME=FNAME ,STATUS='UNKNOWN' ,ERR=98)
WRITE(10,8)NX

WRITE(10,8)NY

WRITE(6,4)

DO I = 1,NX
WRITEC10,3)B(I)

WRITE(6,21)I-1 ,B(I)

IF ( B(I) .GT. (1.0) )THEN
HFLAG =IT

END IF

END DO
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WRITE(6,7)

DO I a iNY
WRITE(6,20)I-1,A(I)
WRITE(10,3)A(I)

IF (A(I) .GT. (1.0)) THEN
HFLAG a I'

END IF

END DO

CLOSE(10)

IF ( HFLAG .EQ. 'T' ) THEN

WRITE(6,1)'** MAGNITUDE OF COEFFICIENTS GREATER THAN ONE **'!!'
WRITE(6,1)'YOU MUST USE THE NORMALIZATION ROUTINE!!!!!!!!!!!'

WRITE(6,1)'************** SELECTION #8
END IF

WRITE(6,1)'HIT RETURN KEY TO CONTINUE [RETURN KEY]:
READ(5,2,END=99,ERR=98)ANS

WRITE(6,4)

WRITE(6,7)

WRITE(6,1) 'SAVING COEFFICIENTS COMPLETE; COEFFICIENTS WRITTEN.'
WRITE(6,7)
WRITE(6,6) 'THE NAME OF YOUR COEFFICIENT FILE IS :',FNAME

WRITE(6,4)

I FORMAT(/,A,$)

2 FORMAT(I)

3 FORMAT(F15.10)
4 FOitMAT(/,/,/)

5 FORMAT(A,$)

6 FORMAT(/,A,A)
7 FORMAT(/)

8 FORMAT(I3)

10 FORMAT('THE NX IS=',I)

11 FORMAT('THE NY IS=',I'
12 FORMAT('THE VALUE IS',.15.r)

20 FORMAT(2X,'A(',13,') = ',F21 10)
21 FORMAT(2X,'B(',I3,') = ',F21.10)
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22 FORMAT(/,' PX(J) = ',F7.1,' PX(J-1) = ',F7.1,' PX(J-2) = ',F7.1)

23 FORMAT(/,' B(7+NUM) =',F7.1,' B(8+NUM) =',F7.1,' B(9+NUM) =',F7.1)

98 RETURN

99 END

C

C * * * * * * * * * * *

C THIS SUBROUTINE GETS THE NUMBER OF SPECTRAL POINTS TO EVALUATE.
C THE OUTPUT FILES WILL ALSO HAVE THIS MANY DATA POINTS IN EACH OF THEM.

C
SUBROUTINE ITERATIONS(STEP,NPOINTS,RANGE)

INTEGER NPOINTS,TNPOINTS

REAL STEP, RANGE
BYTE DUMMY

TNPOINTS = NPOINTS

39 WRITE(6,1) ' ENTER NUMBER OF SPECTRAL POINTS TO EVALUATE:
WRITE(6,1) ' ENTER LRET] FOR NOCHANGE

READ(5,2,END=99,ERR=39) NPOINTS

WRITE(6,4)

IF ( NPOINTS .EQ. (0) THEN

NPOINTS = TNPOINTS

END IF

IF ( NPOINTS .GT. 2950 ) THEN

WRITE(6,1)'**** TOO LARGE FOR SYSTEM TO HANDLE ***(GET BIGGER MACHINE)'

WRITE(6,1)' ------------ HIT RETURN KEY TO CONTINUE ---------
READ(5,7,END=99,ERR=39)DUMMY

NPOINTS = TNPOINTS

END IF

IF ( NPOINTS .LT. 1) THEN

WRITE(6,1)'TRY AGAIN!!!!!!!!'

NPOINTS = TNPOINTS

WRITE(6,1) ------------- HIT RETURN KEY TO CONTINUE---------
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READ(5,7,END=99,ERR=39)DUMMY

END IF

STEP = RANGE / NPOINTS

WRITE(6,3)NPOINTS
WRITE(6,4)

1 FORMAT(/,A,$)
2 FORMAT(I)

3 FORMAT(/,'THE NUMBER OF SPECTRAL POINTS IS SET AT "',14,)"')

4 FORMAT(/)

5 FORMAT(/)
7 FORMAT(A)

RETURN

99 END

C

C

C THIS ROUTINE WILL ALLOW A USER TO FOCUS IN ON A SPECIFIC RANGE OF POINTS
C IN THE SPECTRAL RANGE. THE RANGE IS ENTERED AS A NUMBER BETWEEN THE

C LIMITS OF 0 TO 3.14. THAT'S PI.
C

C THE NEW STEP IS FOUND, AND THE LOWER IS THE STARTING POINT TO EVALUATE
C THE MAGNITUDE AND PHASE, ERROR ETC.

C

SUBROUTINE SETRANGE(STEP,NPOINTS,RANGE,LOWER)

REAL STEP,UPPER,LOWER,RANGE,PI,RANGE

INTEGER NPOINTS

BYTE ANS

PI = 3.1415926537

IF ( NPOINTS .LE. 0 ) THEN

WRITE(6,1)'MUST HAVE A VALUE FOR THE NUMBER OF POINTS:'

RETURN

ENDIF

41 WRITE(6,1)'DO YOU WANT TO USE 0.0 - 3.14; NYQUIST RANGE: [RET]:'

WRITE(6,1)'DO YOU WANT TO USE A NARROW BAND IN NYQUIST RANGE: [Y]:'
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READ(5 ,2,END-99 ,ERR=41)ANS

IF ( ANS .EQ. I' ) THEN
STEP SPI/NPOINTS

RANGE -PI

LOWER -0.0

END IF

IF (ANS .EQ. 'y' )THEN

ANS =Y

END IF

IF CANS .EQ. 'Y' ) THEN

42 WRITE(6,1)'THE RANGE MUST BE WITHIN ZERO - PI: (0. TO 3.14159265)'
WRITE(6,1)'ENTER THE LOWER BOUND WITH DECIMAL :

READ(5,5 ,END=99 ,ERR=42)LOWER

IF ( (LOWER .GT. (0.0)) .AND. (LOWER .LE. PI)) THEN
CONTINUE

ELSE
WRITE(6,1BE CAREFUL. TRY AGAIN. AND READ THE MESSAGES...

WRITE(6,1 HIT RETURN KEY TO CONTINUE ... :'

READC5,2 ,END=99,ERR=41)ANS

LOWER = 0.0
UPPER = PI

GOTO 45

END IF

WRITE (6,6) LOWER

WRITE(6,1)'ENTER THE UPPER BOUND WITH DECIMAL :

READ(5 ,5 ,END=99 ,ERR=42)UPPER

IF ( (UPPER .GT. (0.0)) .AND. (UPPER .LE. PI)

& AND (UPPER .GT. LOWER) )THEN

CONTINUE

ELSE
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WRITE(6.1)'BE CAREFUL. TRY AGAIN. AND READ THE MESSAGES ......

WRITE(6,1)' HIT RETURN KEY TO CONTINUE...:'
READ(S,2,END=99,ERR=41)ANS

LOWER = 0.0

UPPER = PI

END IF

WRITE(6,7)UPPER

WRITE(6,4)

45 RANGE = UPPER - LOWER

STEP = RANGE / NPOINTS

ENDIF

WRITE(6,4)

1 FORMAT(/,A,$)
2 FORMAT(A)
3 FORMAT('THE NUMBER OF SPECTRAL POINTS IS SET AT "',I4,"',/)

4 FORMAT(/,/)

5 FORMAT(F15.9)

6 FORMAT('THE LOWER BOUND IS GOING TO BE =',F12.8)

7 FORMAT('THE UPPER BOUND IS GOING TO BE =',F12.8)

98 RETURN

99 END

C

C THIS IS CALLED FROM THE MAIN ROUTINE. IT DOES A DIRECT FORM CALCULATION

C ON THE POLES. THE DIRECT FORM FILTER IS MUCH SIMPLIER THAN CASCADE.

C DEN IS THE VALUE IN THE DENOMENATOR FOR THE SPECIFIC SPECTRAL POINT
C THAT IS EVALUATED. THE SPECTRAL POINT IS W (BETWEEN 0 - PI).

C

SUBROUTINE DIRECTDEN(W,NY,A,DEN)

COMPLEX DEN
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REAL A(*),W

DEN - (0.,o0.)

DO JJ - 1,NY

DEN - DEN + A(JJ) * CMPLX(COS(W*(JJ-1)),-SIN(W*(JJ-1)))

END DO

RETURN

END

C---

C THIS IS CALLED FROM THE MAIN ROUTINE. IT DOES A DIRECT FORM CALCULATION

C ON THE ZEROS. THE DIRECT FORM FILTER IS MUCH SIMPLIER THAN CASCADE.

C NUM IS THE VALUE IN THE NUMERATOR FOR THE SPECIFIC SPECTRAL POINT

C THAT IS EVALUATED. THE SPECTRAL POINT IS W (BETWEEN 0 - PI).

C

SUBROUTINE DIRECTNUM(W,NX,B,NUM)

COMPLEX NUM

REAL B(*),W

NUM = (o.,o.)

DO JJ a 1,NX

NUM = NUM + B(JJ) * CMPLX(COS(W*(JJ-1)),-SIN(W*(JJ-1)))

END DO

RETURN

END

C---

C THIS IS CALLED BY THE MAIN ROUTINE. IT DOES CASCADE FORM CALCULATIONS

C AS YOU CAN SEE IT IS MORE INVOLVED THAN THE DIRECT FORM.

C THE SPECIFIC SPECTRAL POINT IS EVALUATED FOR THE CASCADE FILTER.

C THE SPECTRAL POINT IS W AND IS BETWEEN ( 0 - PI ). THE VALUSE IS

C RETURNED IN NUM. THIS ROUTINE TAKES THE COEFFICIENT ARRAY GIVEN TO IT.

C THE COEFFICIENT ARRAY IS ONE OF TWO ARRAYS: THE UNQUANTIZED ARRAY B(*)

C OR THE QUANTIZED ARRAY THAT'S PASSED TO THIS SUBROUTINE AS BQ(*).

C

SUBROUTINE CASCADENUM(W,NX,B,NUNUMBITS)

COMPLEX NUM,NCAS,T1,T2,T3

REAL B(*),W

INTEGER NX,SECTIONSZEROONE,TWO,NUBITS
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ZERO = 0
ONE = 1

TWO - 2
SECTIONS - NX/3

NCAS a (1.0,1.0)

j=1

Ni (3 * 3) - 2

N2 -(J * 3) - I.

N3 -(J * 3) - 0

Ti BCNi) * CMPLX(COS(W * ZERO),-SIN(W *ZERO))

T2 - BCN2) * CHPLX(COS(W * ONE),-SIN(W *ONE))
T3 - B(N3) * CMPLX(COS(W * TWO),-SIN(W *TWO))

NCAS - (TI + T2 + T3)

IF ( SECTIONS .GE. 2 ) THEN

DO 3 = 2, SECTIONS

Ni = (3 * 3) - 2

N2 - (3 * 3) - 1

N3 - (J * 3) - 0

Ti - B(Ni) * CMPLX(COS(W * ZERO),-SIN(W *ZERO))

T2 = B(N2) * CMPLX(COS(W * ONE) ,-SIN(W *ONE))
T3 = BCN3) * CMPLX(CO')*(W * TWO),-SIN(W *TWO))

NCAS = NCAS * (Ti + :2o + T3)

END DO

END IF

NUN - NCAS

I FORNAT(/,A,$)

2 FORM'AT(/,'THE NUM IS ',Fi5.5,FiS.S)

RETURN

END

C-- -

C************************************

C THIS IS CALLED BY THE MAIN ROUTINE. IT DOES CASCADE FORM CALCULATIONS
C AS YOU CAN SEE IT IS MORE INVOLVED THAN THE DIRECT FORM.

A-56



C THE SPECIFIC SPECTRAL POINT IS EVALUATED FOR THE CASCADE FILTER.

C THE SPECTRAL POINT IS W AND IS BETWEEN ( 0 - PI ). THE VALUSE IS

C RETURNED IN DEN. THIS ROUTINE TAKES THE COEFFICIENT ARRAY GIVEN TO IT.
C THE COEFFICIENT ARRAY IS ONE OF TWO ARRAYS: THE UNQUANTIZED ARRAY A(*)
C OR THE QUANTIZED ARRAY THAT'S PASSED TO THIS SUBROUTINE AS AQ(*).

C

SUBROUTINE CASCADEDEN(W,NY,A,DEN,NUMBITS)

COMPLEX DENDCAS,T,T2,T3

REAL A(*),W

INTEGER NY,SECTIONS,ZEROONETWO,NUMBITS

SECTIONS = NY/3
ZERO = 0

ONE = 1

TWO = 2
DCAS = (1.0,1.0)
J=1
N1 = (J * 3) - 2

N2 = (J * 3) - 1

N3 = (J * 3) - 0

Ti = A(Ni) * CMPLX(COS(W * ZERO),-SIN(W * ZERO))

T2 = A(N2) * CMPLX(COS(W * ONE),-SIN(W * ONE))

T3 = A(N3) * CMPLX(COS(W * TWO),-SIN(W * TWO))

DCAS = (TI - T2 - T3)

IF ( SECTIONS .GE. 2 ) THEN

DO J = 2, SECTIONS

Ni = (J * 3) - 2

N2 = (J * 3) - 1

N3 = (J * 3) - 0

Ti = A(Ni) * CMPLX(COS(W * ZERO),-SIN(W * ZERO))

T2 = A(N2) * CMPLX(COS(W * ONE),-SIN(W * ONE))

T3 a A(N3) * CMPLX(COS(W * TWO),-SIN(W * TWO))

DCAS = DCAS * (TI - T2 - T3)

END DO

ENDIF
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DEN = DCAS

c WRITE(6,2)DEN

1 FORNATC/,A,$)

2 FORMAT(/,'THE DEN IS ',F15.5,flS.S)

3 FORMAT('THE SECTIONS IS ',I)

RETURN

END

C-- -

C ***********************************

C IT'S MUCH EASIER TO HAVE COEFFICIENTS SAVED IN A FILE. THEN YOU CAN

C ALWAYS HAVE THEM, AND BE ABLE TO MESS WITH THEM.

C
SUBROUTINE SAVECOEF (FNAME ,NX ,NY, A, B)

CHARACTER*15 FNAME

INTEGER NX, NY
REAL B(512),A(512)

BYTE ANS

52 WRITEC6,4)
41 WRITE(6,1) '**THIS ROUTINE WILL STORE YOUR COEFFICIENTS **

WRITE(6,1) '**TO THE FILE SHOWN OR YOU MAY ENTER A NEW **

WRITE(6,1) '*sFILE NAME TO STORE YOUR COEFFICIENTS IN. **

WRITE(6,6) 'THE NAME OF THE FILE TO STORE YOUR COEFFICIENTS IS :',FNAME

WRITE(6,1) I'---- IS THIS A CORRECT FILENAME TO USE --

WRITE(6 ,4)

WRITE(6,1) 'THIS FILENAME IS CORRECT; PROCEED TO STORE: [RETURN KEY]:'

WRITE(6,I) 'THIS IS NOT RIGHT, I WANT TO ENTER NEW FILE:[(W)rong]:'

READ(5,5,END-99,ERR=41)ANS

IF C CANS .EQ. lw') .OR. CANS .EQ. 'W') ) THEN

WRITEC6,1)'ENTER THE NEW FILE NAME:'

READCS ,5,END-99 ,ERR-41)FNAME

WRITEC6,6)THE FILE NAME IS CALLED:',FNAME

WRITEC6,1)'SHALL I PROCEED TO SAVE COEFFICIENTS? [Y]:'

WRITEC6,1'SHALL I START THIS ROUTINE AGAIN? [RETURN KEY]:'

READCS5 5,END-99 ,ERR=41)ANS
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IF ( (ANS .EQ. 'Y') .OR. (ANS .EQ. 'y') ) THEN
CONTINUE

ELSE

GOTO 41

ENDIF

ELSE

CONTINUE

ENDIF

OPEN(10,NAME=FNAME,STATUS='UNKNOWN ,ERR=52)

WRITE(lO,2)NX

WRITE(lO,2)NY

DO I = 1,NX

WRITE(IO,3)B(I)

END DO

DO I = 1,NY

WRITE(iO,3)A(I)

END DO

CLOSE C0)

WRITE(6,1) 'SAVING COEFFICIENTS COMPLETE; COEFFICIENTS WRITTEN.'
WRITE(6,6) 'THE NAME OF YOUR COEFFICIENT FILE IS :',FNAME

WRITE(6,4)

WRITE(6,4)
C--- END OF INPUT ROUTINE, THE COEFFICIENTS HAVE BEEN READ IN.

1 FORMAT(/,A,$)

2 FORMAT(I3)
3 FORMAT(F14.7)

4 FORMAT(/,/)
5 FORNAT(A,$)

6 FORMAT(/,A,A,/)
20 FORMAT(2X,'A(',I3,') = ',F14.8)
21 FORMAT(2X,'B(',I3,') = ',F14.8)

99 RETURN
END
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C-- -

C THIS ROUTINE WILL MAKE SURE THE COEFFICIENTS ARE NEVER GREATER THAN'
C THE VALUE ONE. TO IMPLEMENT COEFFICIENTS IN A FILTER, USING TWO'S
C COMPLEMENT, THE COEFFICIENTS ARE ALL LESS THAN ONE. THIS CREATES THE
C NORMALIZED COEFFICIENT FILE. IT ALSO CAN INCREASE THE SIZE OF THE

C COEFFICIENTS IF THEY ARE ALL LESS THAN ONE, SO AT LEAST ONE COEFFICIENT

C WILL BE THE VALUE OF ONE. THIS MAXIMIZES THE DYNAMIC RANGE OF THE
C NUMBERS USED IN THE COEFFICIENT FILE.

C
C THE USER WILL BE ABLE TO SAVE THE MODIFIED COEFFICIENTS INTO A NEW FILE.

C THIS WAY, A USER CAN HAVE A NON-NORMALIZED COEFFICIENT FILE.
C AND A USER CAN HAVE A NORMALIZED COEFFICIENT FILE.

C

C NOTE::::::
C THE USE OF TWO'S COMPLEMENT ABSOLUTELY REQUIRES NUMBERS LESS

C THAN THE VALUE OF ONE .............
C

SUBROUTINE NORMALIZATION(FNAME,NX,NY,A,B)

BYTE ANS

CHARACTER*15 FNAME,FNAMET

INTEGER NX, NY, IHIGH
REAL B(512),A(512),BIGB,BIGA,TOP

53 IHIGH - 1

WRITE(6,4)

WRITE(6,1) 'THIS ROUTINE WILL NORMALIZE THE FILTER COEFFICIENT FILE.'

WRITE(6,1) ' ---------- IF NECESSARY ---------------

WRITE(6,1)'******* COEFFICIENTS MUST INCLUDE DECIMAL POINTS *******'

WRITE(6,1)'THE INPUT FILE WITH THE COEFFICIENTS WILL BE READ IN.'

WRITE(6,7)

WRITE(6,6) 'THE NAME OF THE FILE WITH THE COEFFICIENTS IS: ',FNAME

WRITE(6,7)

OPEN(4,NAME=FNAME,STATUS='OLD',ERR=53)

READ(4,2,END=99,ERR=53)NX

READ(4,2,END=99,ERR=53)NY

DO J a 1,NX

READ(4,3,END=99,ERR=53)B(J)
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WRITE(6,21)J-1 ,B(J)

IF ( BCJ) .GT. 1.0 ) THEN
IHIGH = 2
END IF

END DO

DO J = 1,NY

READ(4,3 ,END=99 ,ERR=53)A(J)

WRITEC6,20)J-1,A(J)

IF ( AMJ .GT. 1.0 ) THEN
IHIGH - 2

END IF

END DO

CLOSE(4

IF ( IHIGH .EQ. 1 ) THEN

42 WRITE(6,1)'NORMALIZATION ROUTINE NOT NEEDED; COEFFICIENTS

$ BETWEEN -1.0 AND 1.0 .

WRITEC6,I)' ........ YOUR COEFFICIENT FILE IS NOT OUT-OF-RANGE .....
W RITE(6,I)' - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
WRITE(6,4)
WRITE(6,1)'DO YOU WANT TO ADJUST COEFFICIENTS TO MAXIMIZE THE RANGE?'
WRITE(6,1)'COEFFICIENTS WILL HAVE A MAXIMUM VALUE OF "1.0"

WRITEC8,1) ------ MAXIMUM VALUE OF "1.0" DESIRED ---- : ENTER [Y]'
WRITE(6,1)'------ LEAVE COEFFICIENTS ALONE ---- :ENTEREANYKEY]'

READ(5 ,8,END=99 ,ERR=42)ANS

IF C (ANS .EQ. 'Y') .OR. (ANS .EQ. 'y') ) THEN

CONTINUE

ELSE

WRITE(6 ,4)

WRITEC6 ,4)

RETURN

END IF

A-61



END IF

43 WRITE(6,1)' THE -TARGET- FILE IS READ IN NEXT .........

WRITE(6,1) 'ENTER NAME OF TARGET FILE FOR NORMALIZED COEFFICIENTS...:'

READ(S,5,END=99,ERR=43) FNAMET

WRITE(6,7)

WRITE(6,6) 'TARGET FILE FOR THE COEFFICIENTS IS: ',FNAMET

WRITE(6,5) '----- SHALL I PROCEED [Y] YES...:'

WRITE(6,8) ' [ANY OTHER KEY] NO ...:'

READ(5,8,END=99,ERR=53) ANS

IF ( CANS .EQ. 'Y') .OR. (ANS .EQ. 'y') ) THEN

IF C FNAMET .EQ. ' ' ) THEN

FNAMET = 'filter?'

RETURN

ENDIF

BIGB = ABS(B(1))

BIGA = ABSCAC1))

DO I = i,(NX-1)
IF CABS(B(I+I)) .GE. ABS(BIGB) ) THEN

BIGB = B(I+1)

ENDIF

END DO

DO I = 1,(NY-1)

IF (ABS(A(I+1)) .GE. ABS(BIGA) ) THEN

BIGA = A(I I)
ENDIF
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END DO

BIGB - ABS(BIGB)

BIGA = ABS(BIGA)

IF CBIGA .GE. B1GB )THEN

TaP BIGA

ELSE

TOP =BIGB

END IF

DO I a1,NX

B(I) = 8(I)/TOP

END DO

DO I = 1,NY

A(I) - A(I)/TOP

END DO

OPEN( 10 ,NAME=FNAMET,STATUS= 'UNKNOWN' ,ERR=98)

WRITE(1O,2)NX

WRITEC1O,2)NY

DO I - 1,NX

WRTTE(1O,3)B(I)

END DO

DO I - 1,NY

WRITE(10,3)A(I)

END DO
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CLOSE(10)

WRITE(6,1) 'NORMALIZATION ROUTINE NOW COMPLETE; TARGET FILE WRITTEN.'

WRITE(6,7)

WRITE(6,6) 'THE NAME OF YOUR NORMALIZED COEFFICIENT FILE IS :',FNAMET
WRITE(6,1)'*** MENU OPTION #5 UPDATED WITH TARGET COEFFICIENT FILE.***'

WRITE(6,1) ' ............ [ANY KEY TO CONTINUE]'

FNAME = FNAMET

READ(S,5,END=99,ERR=98)ANS

WRITE(6,4)
WRITE(6,4)

ELSE

RETURN

ENDIF

C--- END OF INPUT ROUTINE, THE COEFFICIENTS HAVE BEEN READ IN.

I FORMAT(/,A,$)

2 FORMAT(I3)

3 FORMAT(F15.10)

4 FORMAT(/,/)

5 FORMAT(A)
6 FORMAT(A,A,/)

7 FORMAT(/)

8 FORMAT(A,$)

9 FORMAT(A,I)

20 FORMAT(2X,'A(',3,') = ',F14.8)

21 FORMAT(2X,'B(',I3,') = ',F14.8)

98 RETURN

99 END

C

C

C AM I TO COMMENT ON THE COMMENTS SECTION?

C WELL I GUESS I SHOUD. THIS IS A NICE COMMENT SECTION THAT WILL PRINT

C OUT TO THE SCREEN FOR A USER TO GET A PICTURE OF THIS PROGRAM'S I/O

C REQUIREMENTS. I'VE WRITTEN ERROR CHECK ROUTINES, SO IF A USER TRIES TO
C VIOLATE SOMETHING, THIS SOFTWARE WILL CATCH IT TO FORCE PROPER USEAGE.

C

SUBROUTINE HELPONINPUT
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WRITE(6,1) ----- FOR A CASCADE FILTER ------
WRITE(6,1)'BE SURE TO ENTER AN EQUAL NUMBER OF NUMERATOR AND
WRITE(6,1)'DENOMINATOR SECTIONS FOR YOUR FILTER.'

WRITE(6,1)I
WRITE(6,1) , BE SURE Tfl INPUT COEFFICIENTS LIKE IN EQ. 6.23
WRITE(6,1)' FROM OPPENHEIM AND SCHAFER.

WRITE(6,1)' BUT INCLUDE THE '1.0' IN THE DENOMINATOR AS A COEFFICIENT'

WRITE(6,1)' EACH SECTION WILL HAVE SIX COEFFICIENTS ..................

WRITE(6,1)' ********EXAMPLE********

WRITE(5,1)' EACH SECTION IS LOOKS LIKE THIS

WRITE(6,1)'
WRITE(6,1)' (B-0Q + B-1*Z--1 + B-.2*Z--2) (.)

WRITE(6,1)' H(Z) =-------------------------------------

WRITE(6,1)' (A-.0 - A-A*Z--1 - A-.2*Z--2) C.)

WRITE(6,1)'
WRITE(6,1)' note: position A-0 =1.0 always'
WRITEC6,1)'

WRITE(6,4)

WRITE(6,1)' -------------- FOR A DIRECT FORM FILTER --------
WRITE(6,1)' THE X COEFFICIENTS ARE ON THE RIGHT SIDE OF DIFFERENCE EQUATION'

WRITE(6,1)' THE Y COEFFICIENTS ARE ON THE LEFT SIDE OF DIFFERENCE EQUATION'

WRITEC6,I)' BE SURE TO INPUT COEFFICIENTS LIKE IN EQ. 5.16
WRITE6,1 FROM OPPENHEIM AND SCHAFER ..................

WRITE(6,I)'
WRITE(6,1)' ******* EXAMPLE********

WRITE(6,1)' EACH FILTER LOOKS LIKE THIS

WRITEC6,1)'

WRITE(6,1)' Y(Z)*A0O + Y(Z-1I)*Al1 + Y(Z--2)*A-2 +.. =

WRITE(6,1)'
WRITE(6,I)' X(Z)*B-.. + X(Z-1I)*B-l + X(Z--2)*B-.2 +

WRITE(6,1)'

WRITE(6,I)'

WRITE(6,1)' HIT RETURN TO CONTINUE ... :'

READ(5,5)

WRITE(6 ,4)

WRITE(6,1)' -------------- INPUT FILE FOR CASCADE COEFFICIENTS --------

WRITEC6,1)' A SAMPLE FOURTH ORDER FILTER FILE IS THE FOLLOWING:

WRITE(6,I)' ******* EXAMPLE FILE********

WRITE(6,1)'
WRITE(6,1)'6 notemnumber of "X"I coefficients'
WRITE(6,1)'6 notemnumber of "'Y" coefficients'
WRITE(6,1)'0.135843 note:b.0'
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WRITE(6,1)'0.026265 note:b-l'

WRITE(6,1) '0.135843 note:b-.2'
WRITE(6.1)'O.278901 note:b-.3'
WRITE(6,1) '-0.444500 note:b-.4'

URITE(6,1) '0.278901 note:b-.5'

WRITE(6,1)'1.0 note:a-..0
WRITE(6,1) '0.738409 note:a-l.1

WRITEC6,1)'-0.850835 note:a-.2'

WRITEC6,1)'1.O note:a-.3'

WRITE(6.1)'0.960374 note:a-.4'

WRITE(6,1) '-0.860000 note:a-5.'
write(6,4)

WRITE(6,1)'--------------INPUT FILE FOR DIRECT COEFFICIENTS--FIR----
WRITE(6,1)' A SAMPLE DIRECT FORM FIR FILTER FILE IS THE FOLLOWING:

WRITE(6,I)' ******* EXAMPLE FILE********
WRITE(6,1)'

WRITE(6,1)'5 notemnumber of "X" coefficients'

WRITEC6,1)'1 notemnumber of "X" coefficients'

WRITE(6,1) '1 .359657E-3 note:b-..'

WRITE(6,1)'-1.616993E-3 note:b-l.'

WRITE(6,1) '-7.738032E-3 note:b-.2'

WRITE(6,1) '-2.686841E-3 note:b-.3'

WRITE(6,i1 1.255246E-2 note:b-4'

WRITE(6,1)'1.0 note:a-..0

WRITE(6 ,4)
WRITE(6,1)' HIT RETURN TO CONTINUE ...:
READ (5,5)

WRITEC6 ,4)

WRITE(6,1)' -------------- INPUT FILE FOR DIRECT COEFFICIENTS ---- IIR---
WRITE(6,1)' A SAMPLE DIRECT FORM IIR FILTER FILE IS THE FOLLOWING:

WRITE(6,1'****** EXAMPLE FILE********

WRITE(6,1)'
WRITE(6,1)5 notemnumber of "X" coefficients'

WRITE(6,1)'3 notemnumber of "X" coefficients'

WRITE(6, 1)' 1.3596S7E-3 note:b.0'

WRITE(6,1)'-1.616993E-3 note:b-..'

WRITE(6,1) '-7.738032E-3 note:b.2'

WRITE(6,1) '-2.686841E-3 note:b.3'

WRITE(6,1) '1.255246E-2 note:b.4'

WRITE(6,1) '0.265234 note:a-.0'

WRITE(6,1)'-0.850835 note:a-l'
WRITE(6,1)'0.0262341 note:a.2'

WRITE(6 ,4)
WRITE(6,1)' HIT RETURN TO CONTINUE...:
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READ (5, 5)

WRITE(6,1)'

WRITE(6,1 1

WRITE(6,1)'

1 FORMAT(/,A,$)

4 FORMAT(/,/)
5 FORMAT(A)

RETURN

ENID

C -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C THANK GOD THAT I'M DONE. THIS IS A REAL NICE PROGRAM TOO.
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Appendix B. User's Manual To Use The Digital Software Analyzer Tool

The Digital Software Analyzer Tool performs two functions. The first is the compu-

tation of the filter's response when the coefficients are represented by a limited number of

bits. The second computation finds the roundoff power in the generated by the structuic Cf

the digital filter.

The user of the Digital Software Analyzer Tool will find the program to be some what

self teaching. The program when run will display a main menu. The main menu will continue

to redisplay after the user makes the selections desired. Each of the options for the tool are

clear in their operation. The user will need to read the main menu options to get an idea

of the capabilities of the analyzer tool. The main menu also has a selection to choose from

that will provide a set of help screens. These help screens will show the user by example

the structure of the filter's coefficients that the program will expect in terms of position and

sign.

B.1 The Input Needed And The Output Generated

The input to the digital filter analysis tool is a few numbers that represent the filter

coefficients. These coefficients can be input using up to seven significant digits. That allows

24-bits to represent the accuracy of the number with a very large range (single precision).

The output from the digital filter analysis tool are simply data files. These output files

contain the results of a filter simulation. Three basic types of files are produced. The

magnitude file shows the response of the filter to different frequencies. The phase file shows

the phase relationship to frequencies. This is a way to verify linear phase characteristics.

The error file shows the user the extent of difference between the best accuracy available

from the input coefficients to the accuracy available from the number of "what if I had so

many bits available" to use in the filter implementation. The error file is a linear (tifference

between the unquantized and the quantized versions of the magnitude responses.
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The output file that has the magnitude response is listed as two types. The two types

correspond to the unquantized and the quantized versions. When the digital filter analysis

tool is used, the opening menu displays all the options for the user to select from. Two

options allow the user to associate a two digit number with the output files. One of these

two options appends a two digit number with the uiiquantized simulation results and the

other option does the same for the quantized simulation results. The resulting file structure

is quite clean. A user can immediately tell if a file is the unquantized or the quantized

simulation results.

B.2 How The Digital Filter Analysis Tool is Organized

This software is organized into three major blocks. The first block is the opening

section where the screen is written to with the options for the user to choose from. The

first block also includes the controlling section. The controlling section calls the appropriate

subroutines specified by the option selection. The second major block is the main section of

the program. The main section of the program is where the simulation is actually performed.

The main section does the computation of the magnitude, phase, and error. The last major

block of the program is where all the subroutines are found. With a program of this size,

subroutines were used to keep the tasks in a smaller, understandable section of code. There

could be more subroutines to split out the tasks even further.

Throughout the program are error catching routines. Error catching routines check for

all input and output interfacing. These will include limits, type, and physical correctness in

the structure of the input keystrokes. Other error checks look for other more subtle areas

that may or may not cause immediate problems. One such area is the requirement for the

same number of cascaded second-order sections.

B.2.1 The Controlling Section This major block is called the controlling section.

In the ASCII code written in fortran, a long section of comments explain the interface

requirements. The comments also include the general format used for the coefficients. Data
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files can be used with the digital filter analysis tool and are recommended. The use of files

to keep the coefficients for the filter is a handy way to keep many filters available. The

comments also include the general format used for the coefficients.

There are two basic digital filter structures. The first is the Direct structure and

the second is the Cascade structure. It's important to understand the format of these two

structures. Not only are the format of these two structures found in the the Major Block,

but I also have them in two other areas of the program. Each of the areas send to the screen

both information about the structure and the transfer function or difference equation.

When a user selects the type of filter structure to use, the program writes the format

of that particular structure to the screen. The program also sends information about the

format, an example of the format, and where to look for furtier information. Since the

format of the input files is so important, their structure is shown to the user on the screen

device.

B.2.2 Direct Structure Required to Build Coefficient Files There are many ways to

organize a file that contains the coefficients for a direct form. Only one form is allowed. The

different forms can be in terms of what domain the system is to be characterized in or the

forms can be involved with the sign of the coefficients to the terms in the equation.

The difference equation as used by this digital filter analysis tool is written down

with the coefficients for the "y" terms on the left side of the difference equation and the

coefficients for the "x" terms on the right side of the difference equation. The following

difference equation shows the form as

aoy[n] + aly[n - 1] + a2 y[n - 2] + •. = box[n] + bix[n - 1] + b2x[n - 2] +

The data file containing these coefficients must have their coefficients with the appro-

priate sign shown by this equation. The data file is organized in a straight forward manner.

The data file will always have four parts to it.
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1. The first number in a data file is the number of X coefficients.

2. The second number in a data file is the number of Y coefficients.

3. The next set of numbers are the X coefficients.

4. The last set of numbers are the Y coefficients.

The following example shows the structure of the direct form. This example has five

"x" coefficients and three "y" coefficients.

5
3
0.235
0.412
-0.15
0.023
0.623
1.000
0.375
-0.264

The difference equation written using the coefficients shown above would take on this

form:

1.Oy[n] + 0.375y[n - 1] + -0.264y[n - 2] =

0.235x[n] + 0.412x[n - 11 + -0.15x[n - 21 + 0.023x[n - 3] + 0.623x[n - 4].

The coefficient for the y[n] term is shown to be the value 1.0. This term is a gain

factor for the filter. The software does have utilities to change this coefficient. The user will

know that a normalization procedure has taken place. It's up to the user to track the gain.

The reason for this is that the gain is placed after the filtering operation. The gain factor

will not affect the performance of the filter except for saturation problems (that's a different

issue). As a general rule of thumb, filters are designed with this term equal to one and
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the other coefficients are built from this normalization basis. This issue becomes important

when entering the coefficients for the cascade designed filter.

B.2.3 Cascade Structure Required to Build Coefficient Files The Cascade sections

consist of second order sections. Each section in the numerator and each section in the

denominator must be a second order polynomial. The number of ways to organize a data

file for the coefficients pertaining to the cascade sections are varied. Since the form of a

cascade section is built into fractions, one part of the difference equation must be divided

by the other part of the difference equation. The form of the direct difference equation is

used to build the cascade sections. The Y terms are first subtracted from the left side of the

difference equation. Then both the numerator and the denominator are divided by the Y

terms. The result is a form that can be a standard for input.

The form of a second order cascade section is:

b, + b2 z- I + b3 z - 2

H(z) = 1 - a2 z - 1 - a3z - 2

This is only a single cascade section. Additional cascade sections will be multiplied to

the other cascade sections. The coefficients for the X terms are associated with the"b"

coefficient terms. The coefficients for the Y terms are associated with the "a" coefficient

terms. Cascading two second order sections results in

( bo + b1z-' + b2z -2 (b 3 + b4 z-' + b5z\-2H(z) = 1 -I -

( 1- alz-1 - a2 z-2J )k(I - a4-1- a 5 Z- 2)

If there are an odd number of poles or zeros in the filter design, the coefficients can

be zero to maintain this structure. The program requires that there be an equal number

of numerator sections and denominator sections. Setting the coefficients to the additional

sections needed to be a value of zero, the requirement of equal number of cascade sections

will be met. This requirement stems from the subroutines used in the program.
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Another requirement is the necessity of three coefficients for each part of the cascade

section. The numerator must have three coefficients associated with it, and the denominator

must have three coefficients associated with it as will. Also the user must notice the sign in

the denominator for the cascade section. If the design yields these sign conventions then no

adjustment is necessary. However, if the design implements the cascade section with all plus

signs, then the coefficients must be of different sign when input to a data file.

The following is an example of a cascade designed filter. The cascade format is well

suited for implementation using the canonic structure. This filter consists of two sections.

The first number tells the number of the X terms. The second number tells the number of

the Y terms. The next X numbers are the coefficients for the numerator sections, arid the

next Y numbers are the coefficients for the denominator sections.

6
6

0. 1358430
0.0262650
0. 1358430
0.2789010
-0.4445000
0.2789010
1. 0000000
0.7384090
-0.8508350
1.0000000
0. 9603740
-0.8600000

It should be some what obvious of the value of the y[n] coefficient terms in each section,

since they are all equal to one. The format of the data files for this cascade form is exactly

like the format for the direct form. These files can be written with any ASCII editor. The

digital filter analysis tool will read these files in or it can write the coefficient data to a file.
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B.3 Controlling Section, Main Menu Options To Run The Digital Analyzer

The user will be presented with a menu screen. The options are available to help

conform the type of analysis to be exactly what the user desires.

Some variables are not computed within the program when first used. These variables

are initialized to values needed to start the simulation with appropriate default variables. A

do while loop surrounds the Major Block of code to control the flow of the program. The do

while loop is the means to keep the programs revolving around the main menu for the user

to pick the item of choice.

The main menu is the means for the user of the digital analyzer tool to make the

sections appropriate for the simulation desired. The following is a picture of the screen

that shows how the main menu is constructed. The main menu has the present values of

the choices shown. Often, there exits a sub-menu below the main menu choice options for

the user to continue to make desired selections adding flexibility to the simulation process.

What is shown is the default menu. The choices presented under each main menu choice are

explained in the next sections.

B.3.0.1 Enter The Type Of Filter, Or The Conversion Process; Main 11enu

Option 1. The user can select from two types of filter structures. The first structure is the

cascade structure. The second structure is the direct structure. Both of thesc options la,,

an example of the format printed to the screen.

There is a sub-option menu that performs a conversion process on a filter structure.

The conversion process takes a cascade structure and converts it into the direct structure.

This conversion process is important to see the effects of implementation with both types

of structures. The conversion process is explained with details in Section C.I.I.1. The

conversion process takes the second order cascade sections and multiplies them together

to form one higher order polynomial. The type of filter is updated, the coefficient file is

re-written, and control returns to main menu.
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*DISCRETE SIGNAL PROCESSING, FILTER DESIGN, Capt P. Choate*

(1) ENTER TYPE OF FILTER, OR CONVERSION PROCESS:...
TYPE OF FILTER DESIRED IS ............... DIRECT FORM

(2) ENTER NUMBER OF BITS FOR COEFFICIENTS QUANTIZATION: ...
NUMBER BITS FOR COEFFICIENT QUANTIZATION IS ........... 16

(3) ENTER NUMBER TO ASSOCIATE WITH THE OUTPUT FILES:
TWO DIGIT NUMBER TO TAG WITH OUTPUT FILES IS ......... 99

(4) ENTER NUMBER FOR UNQUANTIZED MAG/PIASE OUTPUT FILES
TWO DIGIT NUMBER FOR UNQUANTIZED MAG/PHASE FILES IS.. 01

(5) ENTER COEFFICIENTS TO USE FROM FILE OR KEYBOARD:
COEFFICIENTS' FILE NAME IS .................. ???????

(6) ENTER NUMBER OF SPECTRAL POINTS FOR CALCULATIONS
NUMBER OF SPECTRAL POINTS FOR CALCULATIONS IS: ... 500

(7) ENTER TIlE NYQUIST BANDWIDTH TO VIEW FOR PILOTTING
THE BANDWIDTH TO VIEW FOR PLOTS IS ..... 3.1416 RAD/SEC

(8) CHECK COEFFICIENT FILE AND NORMALIZE IF NECESSARY: ...
WILL ALSO RENAME TIlE COEFFICIENT FILE.

(9) SAVE MY COEFFICIENTS TO A FILE IN TIllS )IRECTORY
FOR KEYBOARD ENTERED COEFFICIENTS.

(10) FIND TIlE ROUND-OFF POWER ERROR FOR CASCADE ....
AND DIRECT DESIGNS; SWAP CASCADE SECTIONS ....

(11) HELP ON 11OW TO FORMAT INPUT COEFFICIENT FILES.

(55) ALL DONE

**** PLEASE ENTER NUMBER OR [RET] TO RUN PROGRAM *
ENTER NUMBER [#]:

Figure B.1. Main Menu Options Screen for the Digital Filter Simulator
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The conversion process is where the user can perform research on the implementation

structure of a digital filter. This conversion utility will take the coefficients from the cascade

structure and build a filter that uses the direct structure. The conversion process re-builds

a new set of coefficients. The new coefficients computed during the conversion will not be

saved to disk. Iowever, the user will be prompted to save the newly created coefficients to

the disk system under a new data file name.

B.3.0.2 Enter Number of Bits For Coefficient Quantization; Alain Menu Opion

2. The user can select any number of bits to use in the representation of the coefficients

to use in the multipliers. Of course the number of bits is limited to the format used by

the computer system. The format used by the software is single precision. Since it is IEI:E

format, the 24-bits used in the mantissa also include the sign bit. However, since the nuuiler

is normalized in base two, the position to the left of the decimal is always assumed. Therefore

a total of 24-bits are available for number representation. Typical values to try for a filter

are 16-bits for high accuracy and down to four or five bits for the what if cases.

This option should be used with the option 3. A user can change the number of bits

to use for the simulation and then also change the two digit number that tags on the output

files. That way a user can have lots of output files different names corresponding to each of

the simulation runs. For example, a user wants to run five simulations of 16-bits, 14-bits,

12-bits, 10-bits, and 8-bits. The user can simply use the main menu option 3 to tag with

each run a different two digit number, like 01 through 05. This allows efficient analysis of

the data.

B.3.0.3 Enter Number To Associate With The Output Files; Main Alenu Option

3. The user can select any two digit number to associate with the output files. These output

files all correspond to the quantized output files. They will include the magnitude response

of the filter, the phase response of the filter, and the linear error measurement of the filter.

These files will have a "q" attached as well as the two digit number. As a finer point, a user

can input any ASCII character into this variable.
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The use of this selection will help to keep the simulation runs organized. If a user

wanted to run the simulation 50 times, the user could simply number the output files 01

through 50. See the note on the number to associate with unquantized magnitude and phase

output files in Section B.3.0.4 since that is a different number and different output files.

B.3.O.4 Enter Number For Unquantized Mag/Phase Output Files; Main Menu

Option 4. The user can select any two digit number to associate with the full single precision

(unquantized) output files. There are two unquantized output files: the magnitude file and

the phase file. Each of these files will always be written out to the disk during simulation.

Even though a user will change the number of bits to be used for each simulation, these two

output files will not change in value. The reason is that they are built from the use of a

constant number of bits to represent the data using single precision numbers. So, when a

user is looking at one type of filter (the same set of coefficients used for the simulations) these

two unquantized data files will always be the same. When a user changes the coefficients,

then the output to these two files will change.

A user can select a new two digit number to use with each different set of coefficients

for the filter simulation. This two digit number will tag on files that do not have a "q"

associated with them.

B.3.0.5 Enter Coefficients To Use From File Or Keyboard: Main Menu Option

5. The user can select the method to enter coefficients for the filter simulation. Two means

are available to allow a user to enter the coefficient numbers. The first is from the keyboard

and the second is from the disk file system.

If the user desires to enter the coefficients from the keyboard, prompts will direct the

user on what to enter. The user is forewarned that real numbers must include a decimal

point. Coefficients are all real numbers. The user must follow the sign conventions given in

this software tool in order to see the results expected. The user can select the help option

to see what filter coefficients look like and hints on where in the difference equation the

coefficients are located to avoid sign problems.
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If the user desires to have the program read in the coefficients from a disk file, then

the user will simply enter the file name. The normalization routine will correct all out of

bound conditions.

For the benefit of the user, the coefficients will be displayed to the screen whether they

are entered from the keyboard or read in from the file. The format that the coefficients take

will directly depend on the type of filter structure chosen. Option one gives more information

on this. If a user has the direct form chosen (also the default setting) then the coefficients will

be displayed to the screen in a list format. However, if the type of filter chosen is the cascade

filter, then the coefficients will be displayed in a form suited directly for that structure. In

particular, each section will be displayed as a unique cascade unit and be labeled by section

number.

B.3.0.6 Enter Number Of Spectral Points For Calculations; Main Menu Option

6. All of the output files must have a certain length. The length is the number of spectral

points input to the program. The default length is 500 spectral points. The plots are done

in a normalized fashion ranging from zero to the value 7r. The program will not compute the

values from ir to 27r since that range is an image of the first half of the spectral information.

To interpret the normalized frequency space, a user must have the value of the proposed

sampling rate to be used with the digital filter. The sampling rate is the key for the frequency

space, since 7r is half the sampling rate. A designer could change the sampling rate and

effectively move about the magnitude plot to optimize the desired frequencies of interest.

The number of spectral points will determine the how many spectral points will be

evaluated. Increasing the number of spectral points will show more detail in the magnitude

response. However, the more spectral points desired will result in larger output files. The

range can allow a user to focus in on certain areas of frequency to see the details in the

filter's response.
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B.3.0.7 Enter The Nyquist Bandwidth To View For Plotting; Main Menu Op-

tion 7. The digital filter analyzer produces output in a normalized frequency setting. That

means the range of values for the plots are designed to be no larger that the range of 7r.

This range covers the entire spectral range of possible spectral points for the simulation and

the realization. By using the bandwidth adjustment, a user is able to focus on a region of

interest in the magnitude response, the phase response, or the error plot.

The use of this option may include running the filter once to see the transition regions

within the filter. Then, the user may focus the plots away from the stop regions and into

the transition or pass band regions. The input to this option is a range between zero and 7r.

B.3.0.8 Check Coefficient File And Normalize If Necessary; Main Menu Option

8. This option will read in from a disk file the coefficient file named. As a warning to the

users, the coefficients are real values in the software. Thus, they must include a decimal point.

The use of two's complement to represent the numerics requires that they be of magnitude

less than or equal to one. The routine will create a new data file for the coefficients when

needed that will have a maximum value of one.

This routine will check the coefficients for the magnitude of the numbers. If the coeffi-

cients are a value greater than one, the normalization routine is initiated. If normalization is

not needed, the option of normalizing the coefficients for maximum dynamic range is possi-

ble. This is needed especially when the coefficients from the design process are all less than

11.01.

The user is presented with the option to save the coefficients to a data file with a new

name whenever there is a change to the coefficient file. If the target file already exists with

values that the user desires to keep and this routine is run, the write will destructively write

over the 'old' values. Only in a few places does the program place restrictions on read/write

operations. These will occur when the file is to exist and be read in. If the user incorrectly

typed the name of the file, then the reading routine will catch this error and prompt the

user.
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B.3.0.9 Save My Coefficients To A File In This Directory; Main Menu Option

9. This routine will store the coefficients either into a file shown (default file name) or into

a file named by the user. The write process is a destructive write process in that it will clear

a previous file with the same file name.

This routine is useful when a user has some numbers for a filter and desires to use this

program. The user can enter the coefficients to the program by using Main Menu Option

5. Then, in order to preclude entering the coefficients again, the coefficients can be saved to

the disk. There's a limit of 15 characters for a file name.

B.3.0.10 Find The Round-off Power Error For Cascade And Direct Designs;

Swap Cascade Sections; Main Menu Option 10. This routine will perform non-destructive

manipulations to the coefficient file. When changes are made to the order of the coefficients,

the original order will not be lost. Upon leaving from this routine, the original order of the

coefficients is restored.

The roundoff power measurement can be found for both the direct and the cascade

structure. The direct structure calculation can be done through the application of the theory

(see Chapter III, roundoff power measurements). However, the calculations of the cascade

roundoff power measurements are involved. This routine finds the roundoff measurement.

The number produced is a measure of the goodness in the design. The user will see numbers

in the range 108 watts. This routine finds the power figure by actually calculating the

roundoff error in the filter.

The use of multiplications are the major cause of roundoff errors. The single preci-

sion number representation allows for 24-bits of accuracy. When another single precision

number is multiplied by it, then the resultant will take 48-bits to hold. This case supposes

the exponent is within bounds. The newly formed resultant must be stored back into single

precision number representation. The process to accomplish this task of reducing the size

of the resultant multiplication is called truncation and rounding. Effectively, the least sig-
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nificant 24-bits are truncated to bring the result into a length compatible with the format.

This rounding or truncating process is the cause of roundoff errors.

This routine will output to the screen a roundoff power measurement. The user can

interpret the number as the amount of accuracy available for the filter design. So, if the

roundoff power measurement is a number of magnitude 0.5 watts, the filter design would

have at best only one bit of accuracy even though the length of the registers used are mucn

higher.

The filter analysis used allows a user to see the effects of coefficient quantization sep-

arately from roundoff errors. Coefficient quantization is viewed and analyzed as a separate

mechanism from roundoff errors. Likewise, the effects of roundoff error measurements are

viewed and analyzed as a separate mechanism from the effects of coefficient quantization. By

seeing the effects of each of these two problems, the designer will have a precise knowledge

of the realized performance.

The user has the option to move cascade sections within the filter design. The concept

is much like that of communications systems where the use of very small signal powers is

required. The best performance of the entire system is to place the highest gain amplifier

in the first position whether in the receiver. This process will produce the least amount of

noise generated within the system design. The same is true in the process of the ordering of

the cascade sections of the designed digital filter.

The design must find the best order for the filter for optimum performance. This will

occur when the section with the higher gain factors are placed in the beginning of the filter.

The lowest gain factor for the cascade filter is then to be placed at the end of the filter

sections. The best process to use is to find the roots of the cascade sections and find those

roots closest to the unit circle. The roots with poles and zeros closest to the unit circle will

be correspond to the sections with the highest gain. These roots ought to be placed early

in the cascade filter. The user can move the cascade sections in the order desired. After
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each move of a cascade section, the roundoff power is found and presented to the user on

the screen.

B.3.0.11 Help On How To Format Input Coefficient Files; Main Menu Option

11. This routine is built for first-time users of the system. This routine will allow the

user to see the formats used in the direct form filter structures. This will show where the

coefficients are located within the difference equation to avoid sign problems. This routine

will also display to the user the formats used in the cascade form filters. Specifics are given

so the user knows how to enter the coefficients and what to include with the cascade sections.

Also shown as screen outputs are examples of coefficient files for both the direct and

the cascade sections. These examples will provide the user a means to immediately see the

structure of the coefficient files. The examples will also give the user a means to avoid the

pitfalls of wondering where the coefficients are located within the difference equation as well

as the unique requirements on the cascade sections.

B.3.0.12 Running The Digital Filter Analyzer Software Tool; Main Menu Op-

tion "Return". This section is the main programming section where the computations are

performed. The computations find the quantization effects on the filter in terms of magni-

tude, phase, and error. This part of the software is run by a user hitting the return key.

The code will take the information provided by the menu choices and perform the

analysis accordingly. The user needs only to have a coefficient file in order to run this

section. The result of running this section (referred to as running the program) is a set of

five output data files. Two of these output files hold information about the filter done with

single precision (unquantized) numbers. The other three output data files are pertinent to

the quantized versions of the digital filter being analyzed.

Two files generated depict what would happen if single precision (unquantized) num-

bers are used for the filter simulation. Normally, 24-bits is adequate to maintain sufficient

accuracy in the results. The two files are the magnitude and the phase of the filter. These
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outputs are found under the file names mag##.dat and phase##.dat. The unknown num-

bers in the output file name is the user's choice of a two digit number to associate with the

unquantized output files.

The second set of output files are pertinent to the quantized versions of the filter. The

user will select the number of bits for the coefficients. Based on this information, the software

tool generates three files. The first is the magnitude file. This file is the transfer function

of the system if only B-bits are available. The file will have a name like magq##.dat. The

unknown number is the user's choice of a two digit number to associate with the quantized

files. The second file generated is the phase file. This file will show the effects quantizing

the coefficients to a B-bit length word. The file will have a name like phaseq##.dat. This

becomes important when linear phase is an issue in the design. Quantization will have an

effect on the linear phase characteristics; how much effect can be seen by this output file.

The third file generated is the error file. The error file will have a name with the format of

error##.dat. The unknown number is the user's choice of a two digit number to associate

with the quantized output files. The error is a linear error or a difference between the two

files, unquantized magnitude and the quantized magnitude files.

After a user selects to run the software analyzer tool, the main menu is written back

to the screen and the user is again allowed to make changes to the options.

B.3.0.13 Variables used in the Controlling Section. The following is a list of

the variables in the main section of the program. They are listed here for anyone desiring

to modify the code. By reviewing these variables, the code can be followed in terms of the

operations that need to be done. The algorithms that I wrote can be a bit more troublesome

to figure out unless the operation being performed is well understood and written out in

detail. The code is well modularized, therefore, one can modify without too much difficulty.

After the comment section in the major block, declaration of variables is done. For

clarity I include the variables used and what they mean.
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" ERROR(2048) -this array holds the amount of linear error from the quantized and

unquantized versions.

" XAXISSTEP(2048) -radian frequency used for the computation. This number is used

to write out to data files.

" UNQUANTMAG(2048) -array to hold the unquantized magnitude, used to find the

linear error.

" QUANTMAG(2048) -array to hold the quantized magnitude, used to find the linear

error.

" PI -this is pi, 3.14159.

" MAGH(2048) -array to hold the unquantized magnitude in dB.

" MAGQH(2048) -array to hold the quantized magnitude in dB.

" PHAAH(2048) -array to hold the unquantized phase response.

" PHAQH(2048) -array to hold the quantized phase response.

" A(512) -array to hold the y coefficients.

" B(512) -array to hold the x coefficients.

" AQ(512) -array to hold the y quantized coefficients.

" BQ(512) -array to hold the x quantized coefficients.

" GPDLAY(2048) -group delay at the radian frequency.

" GPDLAYQ(2048) -group delay from the quantized coefficients at the radian frequency.

" LOWER -this number is the starting point for the radian frequency.

" STEP -amount of increase in radian frequency for computations.

" RANGE -amount of radian frequency space to cover in the simulation.
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* W -computed present radian frequency point to use in the simulation, increased by

step.

* NUMBITS -number of bits available to represent the coefficients used in the digital

filtc;.

" NPOINTS -number of spectral points to calculate across the bandwidth of the sigmal.

" FILTERTYPE -signal to tell program what type of filter is to be used in the simulation.

" CONTROL -controls the major flow of the program, takes on values that send the

program flow into the subroutines to complete the simulation.

* NUM -complex number to represent the amount of spectral magnitude in the numerator

at a specific spectral point.

" DEN -complex number to represent the amount of spectral magnitude in the denomi-

nator at a specific spectral point.

" H -complex number to hold the value for the transfer function at a specific spectral

point. The complex values are used to compute the magnitude, phase and error values

that are real numbers.

" ANS -byte value used to input a [Yjes or [N].

" CFLAG -flag to prevent the program from performing a simulation without first having

an input data file for the coefficients.

* DATA(2048) -array to buffer the unquantized phase -values.

" FNAME -name of file that holds or will hold the coefficient values.

" FILENAME -concatenates the ASCII variables into a name for the file used with the

output procedures.

" FILTERNAMF -will take on one of two values, direct form or cascade form.
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* C2 -takes on the value of UNQFNAME the unquantized file number.

" FNUMBER -holds a two ASCII value to concatenate with the quantized output files

of magnitude and phase.

* UNQFNAME -holds a two ASCII value to concatenate with the unquantized output

files of magnitude, phase, and error.

" C4 -concatenates C1 with C2 with C4 and forms the filename.

" C1 -holds the ASCII value of 'mag' used with forming output file names.

" C3 -holds the ASCII value of '.dat' used with forming output file names.

" C7 -holds the ASCII value of 'magq' used with forming output file names.

" C5 -holds the ASCII value of 'phase' used with forming output file names.

" C6 -holds the ASCII value of 'phaseq' used with forming output file names.

B.3.0.14 Summary. The user's manual is presented to provide the approach in

the choices available when using the digital filter analyzer tool. The program is split up into

three major block. The first block covers the Main Option Menu that will serve as the central

means for the user to input commands. The Main Computation Section For Computations

is block two and Subroutines Called By The Main Option Menu And Main Computation

Section is block three. Chapter IV has discussions on these last two blocks.

The software tool is self-teaching and menu driven. There's a help menu to choose

from and helpful hints are given throughout the simulation process. As designers, we don't

think of the problems of limited accuracy for representation of numbers. Our designs are

built on infinite precision numbers. This tool will show the designer the expected output

of the implemented filter as dictated by the restrictions from the hardware implementation.

The designer can find the least amount of hardware required to maintain acceptable results.
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Appendix C. Additional Subroutines for the Digital Filter Analysis

Software Tool

C. 1 Inputs to the Digital Filter Analysis Software Tool

The following input routines will be used most often. They serve to specify the precision

and maintain organization in the output files.

C.1.0.15 Subroutine Readcoeff; Reads in the Coefficients From the Keyboard or

From the Disk File System. The digital software analyzer must have some coefficients to

implement a filter. There exists two distinct mechanisms to input to the software tool the

coefficients: the keyboard or reading a data file. Help screens are provided that explicitly

show where the coefficients are located in the transfer function to build a data file. Refer

to B.2.2 for details.

C.1.0.16 Subroutine Bitsavailable; Pick the Length of the Register Words to

Represent Coefficients and Intermediate Results. This simple routine receives from the user

the number of bits that will be available to the digital software analyzer tool to represent

the numbers within the digital filter realization simulation. The number of bits does include

the sign bit. Therefore, the actual number of bits B is found by (B + 1) bits entered to the

software tool. All two's complement representations do include the sign bit.

Most designs will not require more than 16-bits to represent the transfer function. To

find the least number of bits and still maintain the performance goals is unknown. By actual

simulation, the answer to this question be found.

C.1.0.17 Subroutine Filenumber; Two Digit Number Appended to All Quantized

Output Files. The user of the digital software analyzer tool can easily run five or more test

cases against one set of coefficients. For example, a designer wants to see output for 16-biks,
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14-bits, 12-bits, 10-bits, and 8-bits to represent the register word lengths. Even ten or more

trial runs might typify a design process.

In order to keep the output files organized, a two digit number is appended to the fol-

lowing files when written to the disk drive: magq##.dat, phaseq##.dat, and error##.dat.

These files show the results of the transfer function, the phase response, and the linear er-

ror between the single-precision (unquantized) transfer function and the quantized transfer

function.

The user can assign any two digit number to each run corresponding to a different

number of bits available for the register length. The two digit number can actually be any

two ASCII characters. This way a designer can organize all of the output into their owvi

separate files. When a designer has even seven transfer functions to test, the number of

output files grow. For this example, say ten runs are done for each filter for bit values of

16 down to seven bits. That wil. result in seventy files generated by the program. Seventy

files can easily become unmanageable unless some scheme is used. Therefore, a user can

simply number each run will a separate two digit number. Each new multiple of ten can

correspond to the next transfer function. So now the designer can easily recognize any file

and the meaning of each file.

C.1.0.18 Subroutine Unquantfile; Two Digit Number Appended to All Single

Precision Output Files. One other set of output files generated by this software tool concerns

the transfer function and the phase response of the filter. Since the use of single-precision is

applied to all variables, the software has 24-bits of accuracy to represent all numerics. The

software tool will find the results of the filter if all 24-bits are used in the computations.

This corresponds to the unquantized versions or single-precision.

The user will want to label each set of output files with a two digit number. This way

with each new filter, the user can change this number and retain unique files describing each

transfer function. Using the example of seven different transfer functions, a user could append

multiplies of 10 (10, 20, 30, 40, 50, 60, and 70) to each of the filter's transfer function's set of
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output. That way, the user will be able to immediately differentiate between the unquantized

data files.

C.1.0.19 Subroutine Typeoffilter; Allows the User to Enter the Type of Filter,

Either Cascade or Direct. This subroutine is called by the main menu. This subroutine also

make subroutine calls to handle the conversion process.

There are two types of tasks performed by this subroutine. The first task prompts

the user for the type of structure (direct and cascade) that will be analyzed by the digital

software analyzer tool. The second task is not a straight forward process but rather a

heuristic research tool that is designed for fine tuning the cascade structure.

The user of the software tool will have the choice between using the direct or the

cascade structure as shown in Fig. C.1. When the user makes a selection between using one

of the two structures, an example of the structure is sent to the screen along with other

helpful information to keep the sign convention.

The second task is called conversion. Conversion involves taking the cascade structure

of any order and converting (the process of conversion) the structure into a direct form

structure. The result of the conversion process is the creation of a filter in a direct form.

The conversion process does not change the position of the poles or zeros. It only changes

the structure to implement the poles and zeros. The option to enter the conversion process

is a separate subroutine. The conversion process re-builds a new filter structure and does

allow the user to save the new set of coefficients for the direct design.

C.1.0.20 Su:,routine Iterations; Enters the Number of Spectral Points to Eval-

uate. Resolution can be changed by entering the number of spectral points for the digital

software analyzer tool to evaluate. The range in frequency is the normalized frequency band

of 0.0 --* r. This range in frequency is all the allowable frequencies without the effects of

aliasing. Five hundred spectral points is the default value for the tool.
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Implementation of the difference equation
y~n] = bix[n] +b 2X[n - 1]±+b3X[n -2] -a 2 y[n - 1I-a 3 y[n- 2]

X[R)b, Iy [n]

Form will always be
equal to one.

Implementat'on of the difference equation
yn=bjxn] + b2X[n - 1] + b3X[n - 2] - a2y[n - 1] - aay[n - 2]

a2~~ [n]j b

Form 2D 

-

Implementation
for Cascade a3  P[j b
Design

Figure C.1. Two types of structures analyzed by the digital software analyzer tool.
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The output files are all based on the number of spectral points that are evaluated.

A user can dramatically change the size of the needed disk space by changing the spectral

points to 2500 points. Each file will take about 70,000 bytes for 2500 spectral points. The

first run of the research tool will generate five files and each additional run will generate

another three files. For example, if a user makes ten runs against one transfer function at

2500 spectral points, then the user must have 2,400,000 bytes available just to store the

output generated. Typically, other files will be generated by the use of the data files for the

generation of graphical data. Large amounts of disk space can be used by the implementation

of this tool.

In order to cut down on the disk space, a user can change the number of spectral points.

Even using the default value of 500 will more often than not provide adequate results and

require only 15,000 bytes. In order to further reduce the needed space, a user can change the

range of normalized frequencies to evaluate the transfer function as shown in Section B.3.0.7.

The user can experiment with these two adjustment values and use the number of

spectral points in conjunction with the normalized bandwidth to view the pass band regions.

This will often provide the needed detail in the critical areas of interest to the designer.

C.1.0.21 Subroutine Setrange; Enters the Normalized Bandwidth to Use for

Output Files. The digital software analyzer tool uses a default range of 0.0 --* r. A user

can change this full available bandwidth by selection of main menu option seven. Nyquist

limits the available frequency range to 1/2(sample rate). This limit is normalized to a range

of values using ir as the upper limit. The convention makes it convenient to take the transfer

function's impulse response and translate it into any realization with its particular sample

rate. Only then can the actual frequencies be known.

The user can inr it to the tool the lower and upper bounds for the normalized frequency

bandwidth. The numbers entered are real values and in the range of 0.0 --* r. The new

range will be used by the tool in the evaluation of all the output files.
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This option can provide detail for the user in the more critical regions. This will be in

the areas where the passband is defined. Often, the user will find that by looking into the

passband regions, the magnitude will not appear flat but contain oscillations. The data files

generated will contain the spectral point where the item of interest was evaluated.

C.1.0.22 Subroutine Savecoef; Saves the Coefficients to a Disk File. The user

will have opportunity to save coefficients to the hard disk file system to preclude from entering

a set of coefficients time after time. The actual location of the output files will be where the

user is running the application. The routine will initially use question marks to specify the

file name. The length of the file name is limited to 15 ASCII characters.

All the routines that change the coefficients will use this subroutine. That way a user

can re-write the coefficients to a file in the form that seems most suitable. When the structure

changes as in the conversion piocess, then the user can have both sets of coefficients written

to the disk, one in the cascade form and the other in the direct form. The form that this

routine will save the coefficients in follows the convention that is required by the tool to read

in from the disk system a coefficient file.

C.1.1 Subroutines for Structual Evaluation

C.1.1.1 Subroutine Conversion; Converts a Design Using the Cascade Struc-

ture Into a Design Using the Direct Structure. The conversion process is where the user

can perform research on the implementation structure of a digital filter. This conversion

utility will take the coefficients from the cascade structure and build a filter that uses the

direct structure. The user can enter the conversion process by using main menu option 1.

The conversion process will re-build a new set of coefficients. This re-building process is a

destructive process. The new coefficients computed during the conversion will not be saved

to disk. However, the user will be prompted to save the newly created coefficients to the

disk system under a new data file name.
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Table C.1. Forms of the difference equation in time, z-transform, and frequency.
Linear Constant Coefficient Difference Equation

Signal Position] Coefficient z-transform I Frequency Response

y[n] 1.0 y(z) y(eOjW)
y[n - 1] a 2  y(z- 1 ) y(e -l j )

y[n - 2] a3  y(z -2 ) y(e-3)

y[n - 31 a4  y(z - ) y(-)
y[n - 4] a y(z - ) y(-)

x[n] _______ x(z) x(COJwO)
x[n - 11 b2  x(z - 1 ) x(e - lI jw)

x[n - 2] b3 x(z - 2 ) X(e - 2j w)
x[n - 3] b4 X(Z- 3 ) x(e-3 w)
x[n - 4] b5  X(Z - 4 ) x(e - 4j w)

where w = 27rfT

The algorithm is a two step process. The first step is the multiplication of two second-

order polynomials. This step results in a fourth order polynomial. The second step is to

take the second-order sections and continue to multiply them into the polynomial from the

previous multiplication. This process keeps increasing the order of the polynomial by two

with each additional multiplication process. The number of coefficients will increase by

two as well for each additional multiplication step. The process to additionally multiply

second-order sections is done by two inner do loops and one equation. The inner do loop

runs through the second-order polynomial's coefficients. The outer do loop runs through the

polynomial generated by the previous multiplication process.

C.1.1.2 Transfer Function Evaluation The method used to find the frequency

response of the transfer function is to make the substitutions found in Table C.1. Euler's

identity is used for the computation. The complex value is found at each spectral point

according to the transfer function. The structure of the digital filter will change the method

to compute the output of the transfer function. Hence, different structures of the same poles

and zeros, produce different power spectral density functions.
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C.1.1.3 Subroutine Directden and Subroutine Directnum; Evaluates the Trans-

fer Function for a Direct Structure. The direct form structure's denominator and numerator

is used to evaluate the complex value in frequency. This value is then used to find the mag-

nitude and phase.

C.1.1.4 Subroutine Cascadenum; Evaluates the Numerator of the Transfer Func-

tion for a Cascade Structure. This subroutine takes the cascade form structure as a means

to evaluate the transfer function. The coefficients for the numerator are passed into this

subroutine. The complex value for the specific spectral point is found in the numerator.

The routine will find the value of the transfer function for only one second-order numerator

section. Then, depending on how many sections need to be evaluated, the next cascade

second-order section's complex value is found. This value is then multiplied to the previous

complex value found from the transfer function. This process continues until all second-order

sections are computed.

This idea uses the principle that transfer functions in serial are simply equivalent to

the transfer functions multiplied together. That means the system can be represented by

transfer functions in series that hold only one second-order cascade section. These second-

order cascade sections are multiplied together in the frequency domain to give a new transfer

function. The value found from this routine is a complex value. This resultant value is used

to find the magnitude and phase.

C.1.1.5 Subroutine Cascadeden; Evaluates the Denominator of the Transfer

Function for a Cascade Structure. This subroutine uses the coefficients in the denominator

of the cascade structure to evaluate the complex value for the specific spectral point. This

routine is the same as in Section C.1.1.4.

C.1.1.6 Normalization; Normalizes the Coefficient File to a Magnitude of One.

The user of the digital filter analyzer tool is encouraged to type in the coefficients as de-

veloped. These coefficients will often be of magnitudes greater than one. Whenever this
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out of bound condition occurs during the running of the research tool, a flag is set and the

user is presented with warning messages. The user will then have the option to run the

normalization routine.

The normalization routine can be run on a set of coefficients that do not have a

magnitude greater than one. When this is done, the user will be presented with the option

to normalize the coefficients. Normalizing the coefficients in this case, expands the dynamic

range of the digital filter. In terms of signal to noise ratio, the user effectively enhances this

term. Analysis assumes the use of all bandwidth, but when only half of the range is in reality

used within a digital filter then only half the signal to noise ratio really exists.

C.1.2 Sign Convention for Specification of Coefficients. Different books present the

difference equations in various ways. Some may have the coefficients for the output terms on

the left side as positive values while others may have the coefficients for the output terms on

the left side as negative values. What convention is followed? The answers to sign convention

can be easily found by reviewing the help routine found in the main menu. The conventions

are repeated in two other areas of the program.

The method of sign convention is important since a sign error will certainly have

dramatic effects on the shape of the magnitude plot. The user will find this convention

stems from the difference equation that has the form of

y[n] = bix[n] + b2 x[n - 11 + b3x[n - 2] + b4 x[n - 3] ... (C.1)

-a 2y[n - 11 - a3y[n - 2] - a4y[n - 3] -

where the coefficient a, 1.0.

When cascade second-order sections are part of the design criteria, a different form

applies in the difference equation as shown in Eq. C.2. Since the use of second-order sections

implies that the polynomials are limited to second-order, the difference equation takes on
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the form

y[n] = bix[nI + b2 x[n - 11 + b3x[n - 21 + a 2y[n - 11 + a3y[n - 21 (C.2)

where each cascade section is built from the difference equation.

Higher order cascade filters are designed by putting together more of the second-order

sections. The filter is simply a process of cascading second-order sections. The transfer

function for the system would have the following form

U(z) = g1(z) * H 2(z) * H3(z) *... (C.3)

where each H(z) takes on the form found in Eq. C.2. The order of the filter will depend on

how many of the second-order sections are cascaded.

This appendix includes the subroutines that are needed to for the digital filter simulator

tool. These routines are considered easier to implement. The program code can be better

understood by reading the explainations given here.

C-10



Bibliography

1. Cooley, J. W. and J. W. Tukey. "'An Algorithm for the Machine Calculation of Complex
Fourier Series," Mathematics of Computing, 297-301 (1) (1965).

2. DeFatta, David J. and others. Digital Signal Processing. Englewood Cliffs, NJ: Prentice
Hall, 1989.

3. Gabel, Robert A. Signals and Linear Systems (Second Edition). New York: John Wiley
& Sons Inc., 1980.

4. Gold, B. and C. M. Rader. Digital Processing of Signals. New York: McGraw-Hill Book
Company, 1969.

5. Jackson, L. B. "On the Interaction of Roundoff Noise and Dynamic Range in Digital
Filters," Bell Systems Technical Journal, 49:159-184 (February 1970).

6. Jackson, L. B. "Roundoff Noise Analysis for Fixed-Point Digital filters Realized in
Cascade or Parallel Form." I.E.E.E. Trans. Audio Electroacoust.AU-18. 107-122. New
York: IEEE Press, June 1970.

7. Jackson, Leland B. An Analysis of Roundoff Noise in Digital Filters. PhD dissertation,
Stevens Institute of Technology, Hoboken, N.J., 1969.

8. Jackson, Leland B. Digital Filters and Signal Processing (Second Edition). Boston,
MA.: Kluwer Academic Publishers, 1986.

9. Kaiser, J. F. "Design Methods for Digital Filters." Proceedings of the First Allerton
Conference on Circuit and System Theory. 221-236. 1963.

10. Kaiser, J. F. Digital Filters Systems Analysis by Digital Computer. New York: Wiley,
1966.

11. Kuc, Roman. Introduction To Digital Signal Processing. McGraw-Hill Book Company,
New York: McGraw-Hill Book Company, 1988.

12. Lee, William N. Minimization of Roundoff Noise in Digital Filters. PhD dissertation,
Standford University, Stanford, California, August 1971 (AD-730505).

13. Lee, William S. "Optimization of Digital Filters for Low Roundoff Noise." Transactions
on Circuits and 'Aystems3: CAS-21. New York: IEEE Press, May 1974.

14. Mendenhall and others. Mathematical Statistics with Applications (Second Edition).
Boston: PWS Publishers, 1981.

15. Oppenheim, Alan V. and Ronald W. Schafer. Discrete-time Signal Processing. Engle-
wood Cliffs, NJ: Prentice Hall, 1989.

BIB-1



16. S., Chan David and Lawrence R. Rabiner. "Analysis of Quantization Errors in the
Direct Form for Finite Impulse Response Digital Filters." Transactions on Audio and
Electroacoustics4: A U-21. 255-265. New York: IEEE Press, August 1973.

17. Shanmugan, K. Sam and Arthur M. Breipohl. Random Signals: Detection, Estimation,
and Data Analysis. New York: John Wiley and Sons, 1988.

18. Widrow, B. "Statistical Analysis of Amplitude-Quantized Sampled-Data Systems."
AIEE Transactions Applications and Industry81. 555-568. New York: IEEE Press,
January 1961.

19. Widrow, B and Samuel Stearns. Adaptive Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 1985.

20. Williams, Rob. Class Lecture. EENG791, Adaptive Signal Processing, AFIT, Wright
Patterson AFB, OH, 15May 1991.

BIB-2


