D-A
\\Il\l\“l\l‘\I\\l\l“\\.\\\II\\l\lll\\\\\ll‘

DTIC

‘ @M ELECTE pw
ATIT/GCS/ENG/91D-09 Q. DEC27 19914 B

243 743 C

C o emwa ae a

AN OBJECT-ORIENTED DATABASE
IMPLEMENTATION OF THE
MAGIC VLSI LAYOUT
DESIGN SYSTEM

THESIS

Timothy Martin- Jacobs
Captain, USAF

AFIT/GCS/ENG/91D-09

9 _
I I/I/III///II!/IIIIII/////II/

Approved for public release; distribution unlimited

91 1224 059

Form Approved
OMB -No. 07,04-‘01887

) Pybiic reoorting Surden *Cr (RIS LCHETMON OT 1NISIEralon 1 sstimated t0 average 1 hour cer response. inciuding the time f0f £2v12wing instructions, searcning axisting aata sources;
gathening 3na MAILLaINING the Jata needed, anc «omoleting and raviewing the (cliection of information. Send comments regaraing this burcen asumate of any sther asoect of this
‘1 cotiection of intormation, AoLEINg sLggestions ‘Cf racuding this burcen, to Washington Headquarters Setvices, Jirectorate for intormation Oderattons and Reports, 1216 Letferson
Davis Highway, uite 1208 -rungton, 1A 22202-3302, and to the Office of Management and Sudget, Papernork Reduction Project (0704-0188); Nashingten, OC 20503,

1. AGENCY USE ONLY (Leave blank) -|-2. REPQRT DATE =~ - 13. REPORT TYPE AND DATES COVERED
. " December 1991 ' Master’s- Thesis
{4, TITLE AND_SUBTITLE ~ i T T T T
AN-OBJECT-ORIENTED-DATABASE IMPLEMENTATION

OF THE MAGIC VLSI LAYOUT DESIGN SYSTEM

5. FUNDING NUMBERS-

5. AUTHCR(S) = ——
Timothy M. Jacobs, Capt, USAF z

8. PERFCRMING ORGAMIZATION '
REPORT NUMBER

AFIT/GCS/ENG/91D-09:

7. Réf—!FORMING CRGANIZATION-NAME(S) AND ADD;‘E‘SS(ES)
Air Force Institute of Techrology, WPAFB OH 45433-6583

f i

+9, SPCANSCRING/ MONITCRING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING- T

A) AGENCY REPCRT NUMBER ;

: -RL/OCTS ;
Rome Labs

Griffis AFB, NY 13441

£ S —— i

11, SUPPLEMENTARY NOTES

f
z
s
|

123, DISTRIBUTICN/ AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b, DISTRIBUTION CODE i

-

P R

3. ABSTRACT (Maximum 200 words)

This thesis attempts to prove that-the commercially available ObjectStore data management system provides the
performance and functionality necessary to-support a complex engineering design system. This is accomplished
by modifying the Magic VLSI-circuit layout design system:to eliminate its cuirent-Unix file-data management
system and replace it with ObjectStore. The -approach to:this research effort-includes a design recovery-of the
Magic system and identification of its key data management functions. These functions-are then modified to
take advantage of the database management facilities of ObjectStore. Additional code is-added to instrument
performance measurement of both-the original and-the ObjectStore versions:of the Magic system. Testing is
accomplished using existing-Magic commands to test key database performance critetia. The ObjectStore version
of Magic performed better than the original version-for some performance criteria and significantly slower than the
original version for other criteria. The conversion effort was difficult and time consuming due to the complexity of
the original Magic software and-the ObjectStore database management system. A miore specific implementation
of ObjectStorc capabilities-is-necessary for conclusive results. ?\1

\

{74 suslecT TERMS

Objectl%giented, Database Management System, Computeré&@ Design,
X\'Vegy ‘Large Scale Integration R)

15. NUMBER OF PAGES

12 -
16. PRICE CODE

17. gECUR![Y CLASSIFICATION
OF REPORT

‘UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE i

9. SECURITY CLASSIFICATION
OF ABSTRACT

éO. LIMEI’AT!ON OF ABSTRACi'

UL __

NSN 7540-01-280-5500

UNCLASSIFIED

| UNCLASSIFIED

Standard Form 298 (Rev. 2-89)
;rgessclréged by ANSI Std. Z239-18

AFIT/GCS/ENG/91D-09

AN OBJECT-ORIENTED DATABASE IMPLEMENTATION
OF THE MAGIC VLSI LAYOUT DESIGN SYSTEM

THESIS

Presented to-the Faculty of the School of Engineering
of the Air Force Institute of Technology.

Air University

In Partial Fulfillment of the

Requirements for the Degree of

|
i . A sioa Ter ;
Master of Science (Computer Systems) codsgion Ter I
NTIS GRiAL N
PTIC TiB 0
‘Ungnaounaeed 0

Just {fiecatt m....._.___._____.‘

i
i

i
l

. . o lY
Timothy Martin Jacobs, B.S., M:S.B.A. '+ Distﬂbuuon/
Captain, USAF Avallability Codes

Avail amd/or
Dist gpscial

A\

-

December 1991

Approved for public release;-distribution unlimited

Table of Contents

Page

Table-of Contents: oo v e e e e e ii
List of Figures v v i i v it ittt it i e e e e v
List of Tables e e e e e e e s e e e e e e e e vi-
Abstract vt e e e e e e e e vii
I Introduction v v i i i i e e e e e e e e e e 1
1.1 Overview e e e e et e e e e e 1

1.2 Background0 e e e e 2

1.3 Problem Statement e 3

1.4 Research Objectives e e e e e 3

1.5 Assumptionso o v v vttt e e e e e 5

1.6 Scope and Limitations e e e e e e e 5

1.7 Methodology it ineenenns -6

1.8 Materials and Equipment 8

1.9 Document Summary e e e e e 8

IL Databases-and Design Systems: Relevant Issues 9
2.1 OVeIVIEW . . i e e e e e e e e e e e e 9

2.2 Eaugineering Design and Database Management Systems 9

2.3 ‘Database Performance:..... A 11

2.3.1 Performance.Evaluation. 11

2.3.2 Design Issues Impacting Performance. 12

2.4 The ObjectStore Database Management System 12

2.5 The Magic VLSI Layout Design System 14

2.6 SUMMATY + v v v v v v ettt e e e e et e e 15

i

III. Design and Implementation of Magic Using ObjectStore B K
31 Overview e e e I
3.2 Magic Design Recovery R 14

3.3 Restructuring of Magic Software-to Work with Ob jectStore . . . 23

3.4 Code Instrumentation for Performance Measurement : 28

35 Testing . .. oot it e e e e e 28

3.5.1 Testing Magic Functionality. 28

3.5.2 Performance Testing.. 29

3.6 Summary e e e 31

IV, Results Analysis 32
4.1 Overviewcovuu.n.. B 32

4.2 Performance Comparison of ObjectStore and Flat Data iiles .. 32

4.3 -Conversion to ObjectStore.. 40-
4.3:1 Probleins Encountered. 40

4.3:2 Effort Requited. T 43

44 Summary e e e e e e e e e e e e e e e e 44
V. Conclusions and Recommendations 45.
5.1 Overview e e e e e e e e e e 45
5.2 Summaryof Research 45
5.3 Conclusions v v v v it e e e e e e e e e e 45
5.3.1 Database Functionality. 46

5.3:2 Database Petformance.:...... 46

6.3.3- Conversion Cost Effectiveness. 48

5.4 Recommendations for Further Research 49
5.5 Summary e e e e e 51

Appendix A. Raw Performance Test Results 52

iv

Figure

List of Figures

Page
Corner stitching of-tilesinaplane 15-
High-level Magic directory organization19
Data structure forMagiccells 20
Relationship between cell definitions and celluses e 22
Code modifications to function magicMain, 25
Sample header file modifications from tile.h, ... 26
Magic display of cell defmchip. 33
Magic display of cell tutda. 34

List of Tables

Table

1. DBMS Support of Engineering Design Tool Characteristics 4

2. Benchmark performance results for drfm database. 36
Benchmark performance results for tutorial database P 1

4. ObjectStore performance at two different levels of subcell nesting 38

- 5. ObjectStore performance comparison with_two different cache sizes.. 39:
6. Comparison of ObjectStore and Unix flat file disk usage ~. 40

7. Man days spent converting Magic'to work with-ObjectStore 44

vi -

AFIT/GCS/ENG/91D-09

Abstract

Despite the many advantages provided by-database management systems, many com-
plex applications spurn-their use in favor of application unique-file management systems.
This is primarily due to-the inadequate performance of conventional database systems.
Recent research, however, has indicated the potential:for object-oriented databasesystems

to-fulfill:the performance-requirements which these complex applications demand.

Among these-complex applications are engineering design systems. This thesis at-
tempts to prove that the commercially available ObjectStore data management system
provides -the performance and functionality necessary to support a complex engineering
design-system. The Magic circuit layout design system-is modified to eliminate.its current

Unix file data management system and-replace it with ObjectStore.

The approach- to-this research-effort-includes a design: recovery of -the Magic:system
and identification of its key data management functions. These functions-are then modified
‘to-take advantage of the.database management-facilities of-ObjectStore. Additional code
is-added:to instrument performance measurement of both the original and the ObjectStore
versions of the Magic system. Testing is accomplished-using existing Magic commands-to

test key-database performance-criteria.

The ObjectStore version of Magic performed betier than the original version for some
performance criteria and- significantly slower than the original version for other criteria.
The conversion effort was difficult- and time consuming due to the complexity of the orig-
inal Magic software and the ObjectStore database management system. A more specific

implementation of ObjectStore facilities is necessary for conclusive results.

vii

AN OBJECT-ORIENTED DATABASE IMPLEMENTATION
OF THE.MAGIC VLS1'LAYOUT DESIGN SYSTEM

L Introduction

1.1 OQwverview

Database management systems (DBMS) have-proven themselves in a large variety of
computer applications. Today’s commercial DBMSs-provide an effective tool for managing
large repositories of data while providing access to-multiple users and applications. All
users have access to the same data-since-it is.stored in a single location. -Concurrency
control and recovery-methods ensure data consistency despite multiple users-and-hardware
or software failures. Applications can-be easily-added without knowledge of the-physical
layout of the data. Overall, modern DBMSs-provide numerous advantages over alternate

dat2 management facilities.

Despite these many advantages, there are numerous computer applications which

continue to spurn.the use of a- DBMS:in favor of their own unique application file system.
Among these are engineering-design systems-which-are heavily dependent on large-amounts
of computer data. Few applications systems which support these design -processes are-

integrated with a DBMS.

Although conventional databases are unable to adequately support these -applica-
tions, the need for some sort of database support becomes evident as the systems proliferate
among more powerful workstations and in increasingly complex engineering environments.
Object-oriented database management -systems (OODBMS), while:still not -widely avail-
able, have shown the potential for providing the necessary database support for these

complex,-data intensive applications.

This thesis examines the potential of object-oriented databases to support .complex
design applications. A very large scale integrated (VLSI) circuit design tool is:implemented

on a newly released commercially available OODBMS. The performance of this tool as

implemented on the OODBMS:is compared to.its performance as.currently implemented
with a flat-file system. Conclusions are drawn about-whether an-OODBMS can:adequately

support a complex, data intensive, automated design-system.

1.2 Background

Computer-aided-engineering design tools-have been developed for a number of ap-
plications such as integrated circuit design, software engineering, and machinery design.
Typically, such-tools-assist the-designer by providing graphical representations-of the de-

sired object along with a narrative-or symbolic description. A repository of previously

defined objects exists from which the designer may choose an-object to incorporate into
the new design. A designer can-start-with-a high level view.of the desired object and-grad-
ually refine the.design down to-the tiniest detail. This process may occur over a period

ranging from hours to months.

The data-associated with.a typical -design.contains many complicated relationships
among various -data items. A complete design. object, such as a VLSI circuit or an au-
tomobile, may have thousands- of individual data components. Additionally, computer
representation of graphical:and-textual data requires vast amcunts of storage and is often

unique to a-specific hardware or software system.

The relational-database management systems which. are-currently ‘widely available
were originally designed to support business applications. As such, these DBMSs are
oriented toward-individual -data records and simple-data:objects such as bank accounts.
The-relationships among various objects are limited-and-rather well defined. Data types
are typically numbers.or short textual descriptions. Individual transactions usually involve
only a few operations-on a small number of records-and relations. Such transactions are

completed in fractions of a second.

The difference between the data requirements of engineering design tools and those
of business-applications for which currently available database systems were developed is

significant. Attempts at implementing design tools on these conventional DBMSs have

produced results ranging from excessive processing time to outright failure. To overcome

these problems, considerable research-has been undertaken to develop a DBMS suitable for
the-data representations and time constraints of complex applications such as engineering
design tools. -Considerable promise in this area has been shown- using object-oriented

database-management systems.

The {heory behind object-oriented database management systems:is to incorporate-
the object-oriented programming paradigm-into a datzbase system which-provides concur-
rency control, failure recovery, relationship-modeling, and data persistency. Key elements
of the object-oriented paradigm, which simplify representation of complex applications,
include object-identity, data encapsulation, complex state, and inheritance. Many experi-
mental OODBMSs, and the few-commercially available.OODBMSs, also support complex

data types, multiple-versions, and long transactions.

Table 1 presents the characteristics of an engineering design tool along with a-com-
parison of support provided by currently available relational-DBMSs and-object-oriented
DBMSs. From this table-it is evident that a. gocd OODBMS can potentially provide the

-database support necessary for a complex application such as-an engineering design tool.

1.3 Problem Stalement

Traditional database-management systems (typically relational models) perform too
slowly for complex, data intensive applications such-as computer-aided engincering design.
As a consequence of this slow performance, most-design tools-have their.own file system.
Such-file systems require data management to be accomplished manually,often by various
individuals in the design organization. Manual data management;-in turn, increases the
potential for errors such as deleting or modifying the wrong version of a design. Ia addition,
a change to the structure of any of the files requires changes to all programs which reference

the modified structure. This increases-the maintenance effort required for the system.

1.4 Rescarch Objeclives

The primary purpose of this thesis is to determine-whether or not an object-oriented

database ‘management system provides the performance and functionality necessary to

[

- Characteristic :

~Design Tool
_ Example

Traditional
-DBMS

“Ob jegt-Orignted‘
‘DBMS

-Complex State -

Reférences to ™~
subcomponents
within circuit.

A-key is-required for
each sub-component.
Joins are required-to

‘| merge into a single
-| object.

" | Fundamental-to the
| object-oriented:
| paradigm.

- Inheritance

New adder inherits -
attributes of a
typical adder and
modifies-them to fit
a particular circuit.

Complete sp,ecjﬁcatién
of the schema must .be
defined- a priori.

Funiianie,rital t;) the

| object-oriented-
| paradigm:

Types

Comiplex"Da.ta -

Graphical rep£esen- .
tation of-a circuit.

0. 5uppottisébasic’r
data types such as
integer -and character.

. -Suﬁﬁortér—*graphica.l and -
-textual data and allows |
-| user to défine data

: types.

Multiple »\liew;:
' -|l-design of more.

To_p levei view‘; of

detailed-look at a
sub-component.

T Must be-defined in the

application. Limited by

record oriented retrieval. -

B Can be specjﬁ;’;j as-a-

method for the object.

- Data-is more easily

| retrieved using

;| object-oriented-storage
| techniques.)

Multiple -
Versions

Currentand -
historical versions.

May support ,multipie
versions of individual:

-records.

" | Generally-built-in as-a
| tree structure with root
-| node representing a

’| version. Tree includes
’|-all-objects which make
}| vp the version.

) Phasvedr

1 Development

[Top down design.

thn suppo::teci. Entire

a priors.

I *| Refined:schema can':
schema must be defined -

inherit characteristics of

| a higher level and-
| modify for.next phase.

“Large Dat}a.r
Volume

El Thg;usan"ds of: '

sub-componentsix
& circuit.

~| Timited only by physical |

slorage;-however,
record-oriented:storage
may-limit- the.size of
record, causing multiple

record retrievals fora
|- single-object.

Clustering by-object

|- rediices the number of
‘| disk accesses. Complex
]| data.types remove

’|-object size-restrictions.

Long.
Transaction
Duration

" design.

De_signer‘.;take&t\&o ’

weeks-to modify a
spécific circuit

Built around short

business transactions.
Inefficiency-and failure

1-occur wi}g}{tlong

transactions.

| More-appropriate

{| concurrency-control and .
. failure-recovery-methods |,
§| -used-to support_long
| transactions. ’

Fast
Performance

’I‘}i_;)l;s;ari‘ésof 7sub- =

- components are
||--retrieved- and:dis-
~played in seconds.

A- single -view requires

_multiple ;joing-and many
- individual- accesses.

;| Designed=to rétjrieve"
;| large amounts.of data at :
-| once. i

Table 1. DBMS. Support of Engineering Design Tool Characteristics

support a typical-computer-aided-design-tool. To fulfill this objective, the design tool must
maintain all-functionality provided by the existing.file management system. Performance
of the design tool must remain acceptable to-the tool users. Thisis specified-as no-more

than a-ten per cent increase in response time:-over the current implementation.

This thesis should: also demonstrate that conversion of a design tool-application from
a-unique flat file management system to an ©ODBMS is not a difficult-or time intensive
task. To meet this goal, the-time-and effort:spent converting to the OODBMS must be
cost effective with respect to-the increased utility of a ¢ + abase management.system and

the reduction in future-software maintenance-costs:

1.6 Assumptions

If the results-of this thesis are-to be applied to other engineering design tools, the tool
implemented (i.e. the Magic VLSI circuit design tool) must be typical cf cli-engineering

design tools.

Due to-the inexactness of the available techniques for measuring results, assumptions
are made about disk access-times and actual processirg times. These assumptions are

described and. justified along with:the résults-obtained.

A similar lack of preciseness and a large amount of subjectivity occur when calculating
the added value-of-a DBMS -and when estimating future maintenance costs. Assumptions-

regarding these values will also be-described and justified along with-the results.

1.6 Scope and Limitations

This thesis implements:a direct conversion of-code:for the Magic VLSI circuit design
tool from the existing file system to the:ObjectStore object-oriented database management
system. This includes conversion of C -code-for compatibility with-the ObjectStore C++
compiler. Software redesign is accomplished-only as necessary to make Magic work with-

ObjectStore.

No-attempt is made to-improvetheperformance of Magic-by modifying the-existing
software structure. All algorithms and data structures remain unchanged. Data structures

are added only toreplace current code which-directly accesses physical data files.

1.7 Methodology

Magic is a VLSI circuit-layout design tool which is commonly -used at the Air Force
Institute of Technology -(AFIT) and: other U.S.:institutions. A number of people:at AFIT
are familiar with the functionality and performance of this:tool. It- contains-the character-
istics of a typical computer-aided engineering design system as-described in Section 1.2.
Magic manages data with its own-unique flat file-system. Because of its familiarity among
AFIT personnel, its-typical design tool characteristics, and’its current-lat file management
system, Magic is selected-to test the potential of an object-oriented database management

system.

Few commercially available OODBMSs currently exist. Among:these:is the Object-
Store database management system developed by Object Design Incorporated of Burling-
ton, Massachusetts. This OODBMS has been made available to.AFIT ands-used for-this
thesis to implement the Magic VLSI circuit design tool.

The first part of this thesis requires implementation-of Magic with the ObjectStore
DBMS. This:implementation- follows-the steps.described below.

1. Accomplish-a design recovery-on the Magic system. This-provides an-understanding
of the software structure and functionality and is necessary since a limited amount

of design-documentation currently exists:

2. Replace existing file input and. output with persistentﬂata,base structures. This
involves -eliminating all file input and output and making. program data-structires
persistent. Ifno data structure exists because data is:directly extracted or replaced-in

afile, then a-persistent data structufe is-created which is similar-to the file structure.

3. I necessary, redesign software which can not be implemented with ObjectStore.

Redesign: is accomplished in a manner similar to existing Magic code-with emphasis

on generally accepted-object-oriented design procedures.

Performance:comparison of the existing:implementation-of Magic to:its implementa-
tion using ObjectStore requires computation of performance characteristics. These-calcu-

lations involve the-tasks described here.

1. Instrument code in critical regions-of the software to measure:processing time. This i
code must occur in-the same-place for both the existing implementation of Magic and
the ObjectStore implementation. In general, those sections of software most likely
affected by the database management system are instrumented for-processing-time

measurement.

2. Instrument code in the-existing software to measure disk accesses. Accomplish: this

for those segments of code involving file-input-and-output.

3. Extract disk access information from the ObjectStore DBMS. This.extracted infor-

mation involves thie-same data as-the file access-data in item 2 above.

The second objective of this thesis is to show that the conversion effort is cost effective
with respect-to reduced future:maintenance and increased utility of aDBMS. Measurements.

for-these comparisons are reached -with the foﬂowing,steps.

1. Identify time spent converting the:existing Magic system:=to an-OODBMS.

2. Subjectively evaluate the difficulty-of the conversion based on the learning curve for
ObjectStore-and- the actual code modifications which were accomplished.
3. Subjectively estimate the benefits of having Magic implemented: with-a DBMS. This is

accomplished by interviewing users:of Magic and by researching other organizations”

uses of-design tools. The results of: the interviews and research are interpreted.asto-

their compatibility or incompatibility with 1+ DBMS.

4. Subjectively estimate the reduction of future maintenarnce costs based on existing
studies- of the cost of maintenance- and-consultations with softwaré personnel:-who-

have experience in software maintenance.

1.8 Materials and Equipment

This research effort utilizes the ObjectStore (version 1.1) database and-development
facilities:on a-Sun-Spare II - workstation. Ob jectStore provides:all-tools necessary-to convert
the-Magic system. The Magic software is-also available on a Sun Sparc II workstation for

modification-and testing.

1.9 Document Summary

Chapter 2 describes previous research on object-oriented databases -in support of
computer-aided design-applications. This-chapter-also describes the functional aspects of
the Magic VLSI layout system and the ObjectStore DBMS. ‘Chapter 3 presents a design-
recovery of Magic and: discusses the-methodology employed-in implementing Magic-with:
the-ObjectStore database. A comparison of Magic -performance-and :the éffort involved
in conversion to ObjectStore is -contained in Chapter 4. Chaptef 5 includes conclusions:

reached regarding the objectives of this thesis-and recommendations for-further-research.

IE Detabases and Design Systems: Relevant Issués

2.1 Overview

The field-of nbject-oriented databases is relatively new:and few implementations have
actually been put-into practical use. This chapter reviews existing research on.-object-
oriented: databases with engineering design systems-and discusses the:potential benefits.
Additional database design issues are:discussed-along-with-their-impact-on performance. A
‘brief overview-is presented of the Magic layout design system-and-the ObjectStore database

management-system.

2:2 Engineering-Design-and-Database Management Systems

Developers of:automated:design.systems have-loiig been searching:for database-man-
agement systems which meet the performance requitements necessary for manipulating
complex engineering entities. Thomas Sidle identified- Weaknesses of :Cominercial -Data
Base Management Systems in Engineering Applications (17) as. early as 1980, These
weaknesses include -slow :response, eXcessive discipliné: imposed on the-software develop-
ment activity, difficulty- of satisfying engineering requiremeénts, and-orgenizational prob-
lems associated with -database:support. The primary:reason for these inadequacies- is-the

orientation of:existing DBMSs:towaid business-applications,

Astypical business- database consists of aIa,jge—numbersof,st’r‘i'lrcturéjly simple records.
Most transactions -involve simple réquests to-locate and perform simple operations on
a-small mumber of tecords. The record—stfuctu;tes,,opera.ti()ns, concurrency -control tech‘-
niques, and failure recovery methods.of conventional DBMSs-are.designed-to suppoit these
business databases. Inefficiencies-and*failuré resilt when these DBMSs-are used to-support

-engineering-design -applications. (r7)

Instead of conventional DBMSs, many -database exparts. have proposed Object-
Oriented-Database- Management Systems -as more appropriate for engineering-design sys-
‘tems. According to.Sandra Heiler et al (4), an object-oriented approach to-data manage-
ment supports engiﬁeerii;grde’sign— requirements by allowing users to define -relationships

among engineering objects and by providing facilities for -defining complex objects and

-version configurations. -Changes to-data.items-are controlled by limiting the-operations
‘that-can be-applied:to an-object to those which are specified:in the objeci-type-description.
By allowing the user tozspecify the behavior of an-ob ject,,&OQDBMSsfsuprrt‘itriggeringr
-of changes to-derived objects. Operations .can also be specified for logging changes to
-an object-and“for defining policies. for relationships between objects. T he:object-oriented
:puaradigm-provides-a better model:for-mapping to the:mental model-of‘the users. System
‘maintenance is simplified since “changes to the-implementation of one object or object

type-will-not require changes to others (4:339):” Using ‘the inheritance-characteristic of

:object-oriented DBMSs, new-objects can be-added or-old objects modified as requirements
are vefined. Different implementations-of an operation or-data.structure can-be defined

without-affecting the interface of-the object:to-otiier objects.

Rajiv Gupta -et al:(3) -point out similar sdvantages-of an OODBMS. The object-
oriested -paradigm mimics real-world-Gbjects, eficourages gradual evolution- of a design,
and-éncourages code reusability. By storing=powerful-datasstructures-persistently on-disk
the nieed-for local memory-resident structures is eli:ninated éng];fetrie}/al— can be:optimized
by caching entire objects:in memory. Aggregation-allows representation of complex objects
which reference a riumber of-constitueit ob‘,jects, An:object wffich:iS a specialization- of
another object can‘be modeled such that it.inherits-the characteristics of:the-highes-level -
-object. A group-of-objécts can be represented: asa class such-that-each=instance:of the
class:has-the same attributes:and-operations. Gupta et ¢/-also point-out a few:drawbacks
:of OODBMSs. These include increased use:of-disk space, slower response thaii-file:basad

‘CAD systems,.and difficulty in-finding errorsshiclen fin;gpl-,-;b:'-traj:ted?implgmentationilayei

-of-an object.

2.8 Database Performance

If database management sysiems:are to replace:the unique:file management-systeras
fwhich,a,réfcommon‘=in——enginéérini;z.design applications; the-performance of these DBMSs.
must be-¢omparable to:the-existing systems. The {following sections discuss methods:of
evaluating database performance and some design-issues which may- affect-the pérformance

-of object-oriented database systems.

10

2:3.1 Performance Evaluation. Much -of the literature on.databace performance
evaluation addresses the results-of standard -benchmarks as-applied to various. DBMSs.
While most-of these benchmarks:reflect tv+. Z*spplications for relational ’DBMSS, R:G.G.
Cattel has developed an approach for-r4”«.s.. 4 ;"th’é ‘performa‘nce:of -object-oriented-data-
‘base-systems-(2). Before discussing i 3™ » ¢}, however, Cattel points out that “The
‘most accurate measure-of performance-for:. igineering applications would be-to run an ac-
tua,lf—appiica.tipn, representing the data in (2~ -anner best suited to each potential DBMS:
(2:364).”

Cattel proposes a database of parts on a circuit ‘hoard with -connections between
them. He summarizes the three st importsnt measires-of performance in an object-

-oriented :DBMS-as:

Lookup and:Retrieval. Took -ap -and retrieve-an:object given its-identifier.
Traversal. ‘Find-all-objects-in the hierarchy-of-a-selected object.

Insert. JInsert ob jectS%and: 'theiﬁrir‘ela.tignsi_ﬁps to other objects.

To<meet theperformance requitements of- engineering applications, Cattel suggests-
that a DBMS must be-able to perform:1000 random operations-per second. ‘He-fioted:that
none-of the -QODBMS: implemeitations -in resep,rch:.or’iprodilctioit environments-met his
criteria when:his paper-was-written in 1987.

Berre and. Anderson’s-HyperModel benchiark:(1) presents a-similar approach to:per-
formance measurement. In addition to-the-operations proposed by-Cattel, the HyperModel:

‘benchmark includes:

Sequential Scan. Visit each object:in the database sequentially.

Closure-Operations. Perform:operations on-all objects-reachable by a certain-relatjon-

ship from-a specified-object.

Open-and-Close. Tiine to open and-close the:database.

11

2:3.2 Design-Issues Impacting Performance. One-of thz ke}lf-def;igh.issues-aff'ectihg
OODBMS performance:is whether-or not to-cluster subobjects and-their refe}encmg ob:
jects-in-physical storage. Jhingran-and Stonebraker-(6)-address this:issuc-andzthe effect of
caching. They run-a series-of:experiments.using a rélational DBMSAand:@%hie;@rchic@Itdafcg
structure in- which -the-number of:shared superobjects-and -subobjécts is-varicd. Jhingraﬁi
and Stonebraker show -clustering to be advantageous only ‘when ,s‘haring} of —sﬁbob jects-is
relat..ely Jow. When retrieving -objectssin a-homogeneous collection, clustering decreases-
performance:sincezthe objects are storedswith:their-superobjects an,’ are-no-longer contigu=
ous on:disk. -Caching,-on the-other hand, is-generally viable-excep. whei. a-1arge number

of- updates is made.

Another design iissue- affecting, performance-is the -use-of indexing. Kim et-al GAL

-evaluate-two-different iidexing techniques. The first-of these-is-an index maintainedton-an.

attribute of &-single-class. Kim- et:al-identify-this-asa single-class indez.. A class-hierarchy-

indez-is:-maintainéd:on:an-attribute Ofsaﬂ:clmses:inéa,*cla;isfhiefarqhifrootjgédfatza:particulzg,
class. Two-differentcases were studied with=the same set of:range-values. vatied for each:
case. In-one:case:all of-the-rang ‘key-values-are-assuméd to’be in-any-one-of-the:classes
in-the hierarchy. The second:case:scatters-the-range valies evenly ‘in-two-classes. Jn- both.
cases- class-hicrerchy indezing-generally. results ir fewer-index pages bejngfffétcl[égji for 3

given query-if-there arecat least two classes in.a.class ‘hierarchy.

2:4 The ObjectStore -Database Management:System.

Decausn-of the complexity -6f object-oriented- databases: and ithe immaturity-of the

field, few comnuercially -availabie-ob jorf-oriented-databases exist. -Of those that dosexist;,

many-are merely-object-oriented interfaces to a relational:database. ‘Only-tecently have any
-databases been commercially released with memory management -techniguesssuitable for

‘object-oriented datzbase management. ‘One-such database management systeriv is Object-

Store,.an ob ject-oiiente‘(! database:management system:released-in-1990;with:an-upgrade

réleasesin- 1991, by ‘Object Design,Incorporated.

ObjectStore-supports most-of the:object-oriéntedtdatabase: characteristics listed: in:

Table 1. The database design language:is- C++ which provides:support for complexzstate,

inheritance,-and user defined:data-types:(18). Specific views fof-an object-can be-expressed:
in:zthe-C++functions-associated with that-object. ‘ObjectStore-alsozprovides- a-versioning.
mecharism to support long transactions:and-multiple versions: To-handle-large amounts.
of-data, ObjectStore uses a memory mapping and page-swapping mechanism which:-can be
customized by the:database designer..713) ObjectStore does not-support schemasevolution.
Any changeéi?o a-schema makes data-créaced-with-the old: schema unreadable by the:new

-

program. (16)

In-addition-to its-uniquely- object-oriented: characteristics, ObjectStore also has tra-
ditional: database:management facilities. Allaccess to-the database-must occur-within a
transaction. All data manipulation which occurs within: a transaction. is<not visible-out-
side of:the transaction-until the trans«ction:is complete: This avoids the potential:data
rintegrity"prquemsz which: can-oc :ui-if two-separate: appﬁgatioils-'médifyzér usé the:same-
,pijecesg:fz data:similtaneously. ‘Datazintegrity-is :a]so:fensufed’:th_fbugharelati@ns;ail‘d inverse
relations which: synchronize related-objects ‘when one-of-theii is-modified. ObjectStore
pfbvidgsttoqls:fo’r‘-fpa{naging,cglle,ctigns (“groups of'i}jj_f)m@f;é‘ueqqsfdat@)'andi;suppmts query

processing over these collections. :(13)

ObjectStore’s Virtual Memory Mapping: Arckitectire- (VMMAY)-is key to:its perfor-
‘mance. This-architectute allows -persistent data stoted in -ObjectStore-to-be handled: in
thie sayne-way-as non-persistent -(transient).data. Large-amouiits-of:data-can: be-retrieved:
and manipulated -with minimal overhead through:wirtual memory :management. When
réferenced-data is,ﬁotzinsmairjzgmempry,—;a;pagé%ifaultzaccuf§iwid§h is intercéptediby Object-
Store s0 that it can retfieve the dzta from-the.databasesinto:memory. The ovérall:éffect
ofithe memory mapping-architecture-is-to-provide-the-developer-a single-view-of memory.

—e:basii}‘qllyf—éxpanﬂjng‘%hwp;bgra@melijoryft_b thessize-of the:database. (13)

For-an-application:to-work with ObjectStore-vhree-auxili~ry processes-are reqiired:
Dandles -all storage and: retriéval .of persistent data. The Difectory Manager manages.
‘ObjectStore-directories much-as-Unix managesiits ditectories. The Cache Managercontrols
swappiijg,of:idata between the:cache:memory-associated: with-an:applicationi-and:the virtual

-database memory. :(13).

‘Ob jectStorefzproviaes interfaces to:both-€ and:C++. It also has:its:own Data Defini-

tion and Maﬁipula.tion:j’;ang’u@ge,GDME);:Whi(;h is a-superset of{C-+-+: Thé%DME;simpl_iﬁes,

‘C#+-library-routines, such as setting:the-database-root-and-controlling {ransactions, by

'replaci'ng a sequence of ‘C++-commands-with=a single DML command.

2:5 The Magic VLSI-Layout Design System:

Due to:the complexity-and cost associatéd with the:design and:creation-of VLSI: cir-

cuits, computer-assisteditools:are essential. One of the key-steps-in the circuit-development

a:chip. Tools-for-manipulating- and:verifying this design-are necessary tokeep-track:-of the

numersus components-and- connections-and-t6-minimize ‘the risk ofithe: g:}_lip failing -after

it thas ‘been manufactured. :One siich tool-is.ithe Magic VLSIayoit -system -which: was

Qr;glnaljlyi developed at the 'Uﬁjversityr:ofé(ialifdmia.-ijlz:Befkeley-‘Svith;theil@téstfréléaseiftom-

Digital:Equipment‘Corporation’s Westeifi Research-Laboratory:in-1990.

The purpose-of Ma'gic 4is-toxincrease the power and: fléxibility of::previous layout

editors-so that designs-can be:entered quickly-and modified easily. (15) Tosaccomplish:this-

e

,cq’mp0ﬁentsz'§x_longa@jth;é@pa{ljijitiéséfor,aiiitomé;tedi,éifclﬁt ;foiltiﬁg,a.nijizconﬁi;uoii_?;:chec}kihg}

-of=design rules. Circuits.canibe createdicompletely from-scratch-or: through-hierarchical

inclusion -of any nimbersof sub-components. Eile extraction tools-have-also-been-included:

as-part-of Magic for corf_lp@tiljﬂity with-¢ircuit testiﬁgfani;i:ma.ﬁufactiiringsi§ystéfns, (10)-
To-imptove:performance-andisimplify the- designer’s view-of-ascircuit, Magic itple-
ments-some uniqué-featiires. The geometrical-conteiits-ofza circuit-afe representéd: using-a

technique called corner-stitching. In thisstechnique;.a-circuit: contains-a.numberzof corner-

stitched: planes, each-of¢which consists.6f a number-of -rectangular itiles fepresenting the

physical-matérial-to-be included-insthe-actual ¢ircuit, These:tiles are:the fundamental:data

units-represented-iii the-database. Each-tileis-linked:in.itslowerleft-¢ornerito thgse tiles to-

its:left-and bottom: Anotherilink.in ,thézuppei;'right—comjer’coﬁnectééthe;{;iles ‘to-the-ight

and-top. Figure 1-demonstrates-how-three filled'in tiles: (enclosed with-solid:lines) would-be-

stitched-together-with-blank-tiles:(dashed-lines)in-a:single-plane. ‘Corner stitching: pefmits

14

Figure 1, Corher-stitching of-tiles-in-a plane (15)

séarch:operations:to-besperformed:more:efficiently:(15); owever, itefating:through-all tiles

inea-cell:maysiequire-traversing a:iumber-of subcell-hierarchies-in-the:database:

Tii- thexianufactife-ofsa -chip, the-various Materials which fake-upthe-electrical
'c(;x_npoﬁentsgbf;ithgz:clﬁp;égrez@'ppliqdf%inélgyérs:;Vyith.—;ijia.sksésivljicj_iizspgﬁfysggagtlg%whefé:éac_lj;
material will'be placed: Maiiy-circuit design:systeins presentithesesmasks-to-the-designe-
exactlyzas-they-will-appear oni:the-chip. This-gives-the designerilittlerinformation-about:the
actual’électrical fiinctiof of the-design. Magic; however,:abstracts-these fask-layersinto &
style referred-to-as:logs. These:logs:are similafsto a symbolic circuit-layout:which-a designe®
tses-tosundefstand:the-électrical functichalityzof-the-circuit. The-prifary:difference:is that

-each-component-is:seensin-its:actual-size-andtlocation. -(i5):

2:6 Suminary

Based on- the-chafacteristics:of engineefing-designzsystéms-and- thezkey-components.
ofithe 6bject=oriented-computing paradigm, object-oriented-database management systems:
appear-well-suited:for-supporting ‘thesesdesigh-systems. ‘Some-attémpts:havesbeeri-madé-
to:demonstrate the-improved:performance-off00DBMSs; but:none:of ‘these-attempts-has.
stccessfully-iodeled-astypical design-application-t6.measure this peiformance:. ThesMagi¢

fl@youtidesigijfsyst_‘g‘;m—:u’sjésa;éifcuiEdesig'gl::xep’fescnt@tiqnawhiéij::iglwéltsuiﬁéd—;fdfi‘-éan;(jbject;

oriented databasesyste. The ObjectStore database management:systemiis one of the few-

-commercially available-OODBMSs-available. It supports: most:of the utilitiessexpected-of
an-object-oriented:database-system andsis suitable:for rimpleniféntatién, ofithe Magic:layout
system: Using Magic-and ObjectStore;:this-thesis:provides aétypicalédesign application-fof

measuring object-oriented- database performance.

16

III. Design and Implementation of Magic Using ObjectStore

3.1 Overvicw

The implementation of Magic with ObjectStore requires application of recognized
software engineering principles. The first step is to determine the design of the Magic
system and which components require modification. This design is then modified so that
it can be implemented with ObjectStore. For performance measurement, the code is in-
strumented with timing commands where appropriate. Testing is then accomplished to

verify functionality and to compare performance with the original Magic system.

3.2 Magic Design Recovery

Magic is a large software system consisting of over 250,000 lines of C source code in
over 40 separate Unix directories. To maximize code efficiency, many of the data structures
and algorithms are extremely complex, often using obscure C language characteristics.
The design documentation consists of a maintainer’s manual with a brief description of
the directory layout and functionality along with in-line comments in the source code. As

such, understanding the system organization and design is a difficult undertaking.

In approaching a design recovery of the Magic software system, the first step is to
review the existing documentation. This review reveals a combination of fuactional and
object oriented problem decomposition. The object-oriented modules, such as the window
manager and databusc manager, encompass all data structures and services for an object
completely within the module. Other modules kike plot, plow, and wiring include all

procedures necessary for accomplishing the designated function.

Each module has its own subdirectory except for some utility and other miscella-
neous functions which are grouped together into combined subdirectories. To simplify
understanding of the overall Magic system, these modules have been grouped into “super-
modules™ which represent the main services provided by Magic. Of greatest importance
to this thesis is the database management super-module. Most interfaces to the Object-
Store database management system will take place within this module. Figure 2 shows

cach of these super modules and indicates whether a module interfaces with the database

17

management module. In this figure, the label at the top of the box represents the super-
module name and the lower portion of the box lists the individual modules within that
super-module. Lines to each ir lividual module indicate interaction with the database

manager.

While most modules interface with the datebase manager, implementation with Ob-
jectStore affects only a few of these interfaces. Most of the ObjectStore administration
(such as opening and closing the database) L.ust occur within the main module. Since the
window manager does all window manipulation associated with displaying a circuit that
has been retrieved from the database, its performance is closely linked with the database
manager. To determine the effect a command will have on the database, and to ensure
this command con‘inues to have the same effect with ObjectStore, understanding of the
command interpreter is also important. I'inally, the utilities module is of concern since it

includes functions for abstract data types such as hash tables and lists.

Analysis of the C header files for the database manager reveals the primary data
structure shown in Figure 3. Here an object is represented by a box with the object
name in the top section of the box and its attributes in the lower section. Diamonds
represent relationships between objects. The key component of a Magic circuit is the cell
definition (CellDef). This includes descriptive fields such as the cell name, associated hip
technology, and time of last update. It also includes pointers to the p’.1es which contain
the geometrical representations in the cell; a pointer to a list of labels associated with the
cell; a pointer to a list of cell instances (referred to in Magic as cell uses); and a pointer
to a hash table of all instances of other cells which reference the cell. Each plane also
has pointers to a corner-stitched list of tiles which are contained in the plane. Normally
ti.body specifies the paint in the tile; however, tiles in the subcell plane include a list
of pointers to the subcell uses which overlap the tile (CellTileBody). All cell definitions
currently active in Magic are contained in dbCellDefTable, a hash table which is visible

only to the database manager.

To better understand the relationship between cell definitions and cell uses, Figure 4
provides a simplified example. Cells A and B each represent cells that have cells X and

Y as subcells. The cell definition of X is named CdX. It references cell use CuX3 with its

18

file window command interrupt
porting manager interpreter handler
calma dbwind —— commands ol
le 2 . meind parser Slgna S
extsim windows textio
ext2spice
extflat
extract
resis
driver utilities
main T ut'il
misc
graphics
database
management
database
tiles
design rule command
checker processors
plot
drc plow
select
i undo
I—-. wiring
mMacros
technol routing separate
echnolo ; .
8y netlist routines
. . garouter L debug
tech net2ir T W ger fsleeper
netlist -1 ¢ .
netmonu —— L grouter magicusage
H- irouter mpack
H- mzrouter prleak
“- router . sim

Figure 2. High-level Magic directory organization

19

CellDef

CellUse
cd flags cu.expandMask
cd.bbox cu.flags
cdfile cu.transform
cd.name cudd
cdclient cu.array
cd_timestamp cu_bbox
cd_technology cuclient
cd.props cudelta
cd.filler
cd_types

\ Ulabel cu_nextuse
cd.Jabels
cd_lastLabel
Label
lab_type
lab.rect
Plane lab_pos
lab_text
HashTable / \
cu.ds

pl-bottom
pl-hint

ticlient

©

ctb_use

CellTileBody

Figure 3. Data structure for Magic cells

20

cd_parents pointer. It also points to a hash table which only includes cell use CuX1. This
indicates that CdX is not referenced by any cells other than itself. Cell use CuX3 is the
cell use associated with cell B. The cu_parent pointer to cell definition CdB shows this
relationship. The cu-def pointer in CuX3 points to cell definition CdX, of which CuX3 is a
specific instance. Each cell use also has a cunextuse pointer which points to the next cell
use associated with a particular cell definition. In this case, CuX3 points to CuX2 which
points to CuX1 where the list terminates with a null pointer. CuX2 represents the instance
of CdX in cell A and CuX1 represents the instance of CdX associated with cell X. Each cell
definition always has an instance associated with itself. Cell definition CdA provides a
better example of the cd_idHash pointer. In CdA this points to a hash table of all cell uses
that are included in cell A. This includes an instance of the cell itself (CuA1) as well as each

of its subcells (CuX1 and CuY1).

While the basic functionality of the database module can be determined from the
limited documentation in existence and its data structures can be determined from. the
header files, actual understanding of the call hierarchy and effect of commands can only
be accomplished by tracing the path of input commands through the Magic system. Some
additional information is also obtained through frequent use of the Unix grep and calls
commands. The functions of the database module most likely to be affected by implemen-
tation with ObjectStore are described below. The source code files associated with these

functions are listed in parentheses.

o Create and delete cell definitions and cell uses (DBcellname.c).
e Create and maintain the cell definition table (DBcellname.c).
e Write and read cells to and from disk (DBio.c).

o Create, split, join, and delete cell planes and tiles (tile.c).

If the database module was truly object-oriented, design recovery would end here.
Unfortunately, many modules throughout Magic directly access the data structures of
the database module, thereby making the interface less well defined. For instance, the

initialization routines in many modules directly access planes within a cell. Similarly, each

21

CellUse

cudd cu.def cu.nextuse cu-parent

CellDef

cd.name cd-parents cd.idHash

Example:

CuAl

X Y CuX1
X Y CuY1

\J

CuX1

CdX CdA

>l CuAl null

CuXl1 null

CuX2 CdB

CuX3

Figure 4. Relationship between cell definitions and cell uses

window has a cell instance associated with it which the window manager modifies without

going through the database module.

To test and debug the database module, one must understand the data flows between
the window manager, command processors, and database manager. The database window
manager command interpreter (DBWcommands function in program DBWprocs.c) it Jhe key
procedure in this process. If a button is pressed, the current button handler is activated
from within the database window manager to interpret the button, perform the desired
processing, and update the window as appropriate. If a text command is entered, it is
first parsed by the text processor (textio module). The database window manager then
activates the selected command processor to accomplish the requested processing. Any

updates to the window are then initiated from the command processor.

3.3 Restructuring of Magic Software to Work with ObjectStore

For this thesis, the only modifications made to the Magic software are those neces-
sary for Magic to work with the ObjectStore database management system. This requires
persistently allocating all transient database structures and providing an entry point into
the ObjectStore database. In addition, the ObjectStore database file must be opened and
closed and transactions must be specified such that all database accesses occur within a
transaction. This first phase of impiementing Magic with ObjectStore requires the follow-
ing changes. (A complete summary of all modifications to the Magic software is contained

in the OSmagic Programmers’ Menual (5)).

s Where a database element such as these in Figure 3 has been allocated with the
procedure MALLOC, remove the MALLOC and replace it with the ObjectStore Data
Definition and Manipulation Language (DML) persistent new command.

/* replace MALLOC with ObjectStore DML new
*

* MALLOC(CellDef *, cellDef, sizeof (CellDef));
*/

cellDef = new(magicdbl, cellConfig) CellDef;

23

Similarly, where a database element is deallocated with FREE, remove the FREE com-
mand and replace it with a DML persistent delets command.

/* replace old memory deallocation with DML delete
*

* FREE (cellUse->cu_id);
x/

delete cellUse->cu_id;

o Make the cell definition symbol tabie (dbCellDefTable) the entry point into the

database. This is accomplished by declaring it as a persistent variable.
persistent<magicdbi> osHashTable *dbCellDefTable = NULL;

e Declare and initialize (open) the database in the program main.c and include the
main procedure within an ObjectStore transaction. The original attempt at accom-
plishing this was to enclose the contents of magicMain (the main Magic procedure)
within a DML do_transaction statement; however the main Magic procedure is
terminated from within another module, thus preventing the entire main procedure
from executing. As a result, the do_transaction statement never ends and no datais
written to the database. Resolution requires separate transactions to initialize Magic
and another transaction (main_tx) for the main Magic process. Note that a different
format is used for the main transaction. ObjectStore allows a transaction to be en-
closed within the do_transaction statement or started with transaction::begin
and ended with transaction::commit (to save the results of the transaction) or

transaction::abort (to restore the database to its state prior to the transaction).

Code modifications to open the database and implement ObjectStore transactions

are shown in Figure 5.

o Close the database and commit the main transaction in the procedure MainLuzit.

transaction::commit(main_tx);
magicdbi->close();

In an object-oriented C'++ program, implementation of these changes may have been

rather straightforward and uncomplicated. Unfortunately, Magic is not such a program.

24

/* Open database "/osmagic/magicdbi® */
magicdbl = database::open("/osmagic/nagicdbi",0,0664);

do_transaction() {
workspace: :set_current(user_ws);
} /* end of tramsaction %/

/* begin initialization tramsaction */
do_transaction() {

mainInitBeforeArgs(argc, argv);
mainDoArgs(argec, argv);
mainInitAfterArgs();

} /* end of initialization transaction */

/* begin main transaction called "main_tx" */
main_tx = transaction::begin(transaction::update);

TxDispatch((FILE *) NULL);

mainFinished();
IMigure 5. Code modifications to function magicMain

The first difficulty is that Magic is written in C rather than C++. C++ was designed
to be compatible with C' (18); however, this compatibility is not complete. ObjectStore
has a C' library interface, but this does not allow one to take full advantage of object-
oriented programming techniques. Any program which contains ObjectStore DML must be
compiled with the DML compiler. This compiler is a slightly modified C++ compiler. Thus
all procedures in a program containing ObjectStore DML, whether affected by ObjectStore
or not, must be modified for compatibility with C++. This requires type specification of
all function parameters. In many cases, Magic passes function pointers as parameters,
which complicates type specification. Also, for a C++ procedure to be linked with a C
program, the linkage must be specifically defined with an extern "C" type specification for
the function declaration. Thus, all of the forty plus header files containing C++ function
declarations must be modified to include the extern "C" qualifier. This is accomplished by
defining a preprocessor constant of _OSMAGIC in a header file (osmagic.h for the programs

using ObjectStore DML). Other header files are then modifie ! to include the extern "c*

#ifndef _OSMAGIC
/* if using old magic code, use "C" function declarations */
/* Jacobs 02/08/91 */

extern Plane *TiNewPlane();
extern void TiFreePlane();
extern Tile *TiSplitX();
extern Tile *TiSplitY();

#else
/* use function declarations modified for compatibility with C++ */
/* Jacobs 02/08/91 */

extern "C" Plane *TiNewPlane(Tilex, CellConfigk);
extern "C" void TiFreePlane(Plane*);

oxtern "C" Tile *TiSplitXk(Tile#*, int);

extern "C* Tile *TiSplitY{Tile*, int);

#endif
Figure 6. Sample header file modifications from tile.h

qualifier for DML programs if _0SMAGIC is defined or just the qualifier extern if .0SMAGIC

is not defined. Figure 6 shows modified code from tile.h which demonstrates the changes

required for each header file.

Other proceduves outside of the database module also must be modified due to de-
ficiencies in Magic’s cbject-oriented implementation. Additional storage is allocated for
a cell in the string duplication (strdup.c) program of the utilities module. A persistent
version of this program (osstrdup.cc)is required for any string duplication withis. the cell
structure. The cell labeling (DBlabel.c), cell painting (DBpaint.c, DBtiles.c), and cell

subroutine (DBcellsubr.c) programs also allocate cell storage which must be persistent.

Since the cell symbol table is used as a database entry point, it must also be per-
sistently allocated. The hash table abstract data type (ADT) (hash.c), of which the cell
symbol table is an instance, is also used for non-database functions, so a separate, per-
sistent hash table ADT (oshash.cc) must be created and used for the cell symbol table.
This symbol table only uses strings as keys, so the C union in the original hash table

ADT can be replaced with a string. This simplifies DML implementation by eliminating

the need for union discriminant functions.

The maze router (mzrouter) (njtialization procedure attempts to directly access
planes within a cell. The first timne the initialization procedure is run on the database,
the cell and planes become persistently allocated. The mzrouter initialization procedure

must then be modified to access the persistent planes by traversing the cell hierarchy.

Modifications up to this point have been necessary for Magic to work with persis-
tently allocated structures in an ObjectStore database. Previously these structures were
transiently allocaied and could be cleared by quitting Magic or by reading the cell again.
Persistent allocation eliniinates the possibility of deleting a cell or removing changes that
are unwanted. To provide these functions and other input/output functions in a manner

similar to the original Magic system, ObjectStore’s versioning capabilities are required.

Versioning requires definition of a configuration to be versioned and persistent
allocation of workspaces to control the versions. For this implementation of Magic, the
global workspace contains the latest frozen version of a cell, much as th. flat disk file does
in the original version of Magic. New cells are created and modified iz the user workspace.

The user woikspace is set as the current workspace for the duration of the Magi.. program.

The obvious choice for a version configuration is a cell definitica znd all of its sub-
components and subcells. A s, xbo! table must be created for the ¢.1l configurations so
that each cell definition can be associated with its configuration. Whenever a cell is read,
it is checked out of the gl..:.2. vorkspace into the current user workspace. Writing a cell
requires checking the cell i..ck into the global workspace. To ilush & cell, the version in
the current user workspace is destroyed and the old version is shecked out of the global
workspace to replace the destroyed version in the user workspace. New procedures which
search the configuration symbol table «:nd check the appropriate configuration in or out of

the current workspace are needed.

Even with versioning, some commands can not be made to work exactly like the
original Magic system. Both the write and save command write a cell to disk. The save
command allows the cell to be saved under another name. Both of these commands allow
further modification of the cell after writing. These commands must be modified to work

with ObjectStore. Suve will check the cell back into the global workspace, but will allow

continued editing of the cell by checking it back out. Write will check the cell into the
global workspace and prohibit further editing.

In the original Magic, cells are deleted by using the Unix rm command external to
Magic. This is not possible using ObjectStore so the new command remove cellname must

be added. This command will only delete a cell definition if it is not used by any other

cells.

3.4 Code Instrumentation for Performance Measurement

To compare the performance of Magic with and without ObjectStore, a method must
be provided for measuring this performance. The Sun operating system provides profiling
options which are implemented by the compiler. This profiling provides detailed timing
and usage statistics on every function in Magic. Unfortunately, due to the size of Magic,
interpretation of this information is time intensive and complicated. Since such detailed
information is not necessary, the code itself is instrumented at critical points to measure
only that information which is essential for comparing performance of the two versions of

Magic.

All commands and button input are processed through the command interpreter
module. The TxDispatch function in the program txCommands.c dispatches all Magic
text and button commands. This allows timing statistics to be initiated prior to calling
the command processor or button handler and terminated immediately following the call.
Similarly, initialization statistics are measured by surrounding Magic’s initialization pro-
cedures with statistical commands. A program (CommandStats.c)is written for gathering
statistics. CommandStats makes calls to the Unix functions gelrusage and gettimeofday
and calculates processing time and wall clock time. This information is printed to a file

along with the command being processed or the button handler in use.

3.5 Tesling

3.5.1 Tesling Magic Functionality. If ObjectStore is to replace the existing data-

base management system of Magic, it must maintain complete functionality of the original

system. To exhaustively test the functionality of a system the size of Magic would require
an inordinate amount of time. Fortunately, since the purpose of this thesis is only to
demonstrate the feasibility of ObjectStore, such exhaustive testing is not necessary. In-
stead, a simple, sound test of the database functions along with limited testing of the other

Magic functions should be adequate.

Part of the limited documentation of Magic is a tutorial which walks the new user
through all of the basic commands that are available. This tutorial is the basis of the
functionality testing for Magic. Where database commands are used such as save, flush,
and load, an attempt is made to test all classes of input parameters (e.g. save is tested
with no parameters, with the same cell name as a parameter, and with a new cell name as
a parameter). Since few new functions have been added and most of the Magic modifica-
tions are simply conversions from C' to ObjectStore DML, little should change in Magic’s
functionality. Any errors introduced as a result of the changes should be significant enough
to be caught by the above tests. In addition, since performance testing concentrates on the

database (see the following section), these tests serve to further validate the functionality.

3.5.2 Performance Testing. Performance testing compares the differences in access
time between Magic implementation using ObjectStore and the original implementation
using flat Unix files. This testing must measure Magic performance during a typical user
session along with concentrated testing of the database functions of Magic. A typical user
session (as used at the Air Force Institute of Technology) does not require many database
accesses. This is likely due to the difficulty of accomplishing common database functions
(such as searching for an existing cell) and the experimental nature of educational research
which leads to circuits built entirely from scratch. Since a typical user session does not ad-
equately test the database capabilities, performance comparisons are also conducted using
the IlyperModel Benchmark (see Section 2.3.1) guidelines. The HyperModel Benchmark
lists six arcas which are important for measuring database performance - lookup and

retrieval, traversal, insertion, sequential scan, closure operations, and opening and closing

of the database.

All performance testing is accomplished with existing Magic commands. As such,
some of the six areas above may be only partially tested. Use of existing commands is
necessary sc ObjectStore performance can be directly compared to the existing flat file
structure. "he ObjectStore database is loaded in advance with all Magic cells in a specific

search path, so that the search space is roughly equivalent with that of the Unix directories.

Performance testing is accomplished on two existing cells. Onc cell contains 87
subcells with eight levels of nesting and the other cell contains two subcells with one
level of nesting. The various Magic commands for measuring the benchmark criteria are

discussed below.

o Look up and reirieve an object from the database. The load cellname command
searches the database until it finds the specified cell and then displays it in the

selected window. If the cell has any subcells, these are not initially displayed.

o Traverse pointer hierarchy. The ezpand command loads and displays all of the sub-
cells in a selected area of the root cell. When the entire cell is selected, all of the

subcell pointers are dereferenced and the subcells displayed.

¢ Insert an item into the database. The gelcell cellname command loads a subcell
from the database and creates a new instance of that cell in the root cell. The load
command without a specified cell creates a new cell definition in the database. With
the non-persistent version of the database, the new cell definition or instance is not
actually created until the cell is saved; therefore, the time to write modified rells to

disk must be included in the comparison with the ObjectStore version.

¢ Closure operations. In normal operation, the Magic design rule checker runs in the
background. To test closure, however, the design rule checker is turned off, 1 subcell
is added on top of the existing cell, and the design rule checker is run on the entire

cell.

e Sequential Scan. Since no use is made of ObjectStore collections, this aspect of the

database benchmark is not tested.

e Database initialization. Since the existing Magic system has no database, this ¥ :nch-
mark can not be directly compared; however, the tests are still run and compared

based on the overall time to initialize Magic.

3.6 Summary

The size and complexity of Magic presents a difficult system to understand and mod-
ifs. Since ObjectStore is written to take advantage of the object-oriented characteristics
of C'++, Magic’s imperfect object-oriented programming structures and its use of obscure
C programming routines increase the difficulty of converting it to ObjectStore. Since t.e
original Magic has no database management system whatsoever, performance testing is
complicated by the inability, in many cases, to directly compare the ObjectStore version of
Magic with the original Magic version. Many of these difficulties are overcome with careful

implementation of ObjectStore utilities and with selective testing using Magic commands

in a well prepared test environment.

IV. Results Analysis

4.1 Overview

The primary objective of this thesis is to show that an object-oriented database
can provide the performance and functionality necessary to support a computer-aided
design tool. By careful application of ObjectStore utilities, complete functionality of the
Magic VLSI circuit layout system has nearly been obtained. This chapter compares the
relative performance of Magic as implemented with ObjectStore to the original flat file
data management system. The chapter also points out the difficulties encountered while
converting the complex C code of Magic to work with the complicated, object-oriented

data management facilities of Object€tore.

4.2 Performance Comparison of ObjectStore and Flat Data Files

The performance requirements of a complex engineering design system such as Magic
are immense. To satisfy these requirements, a database management sysiem must perform
nearly as well or better than a flat file data management system. To compare the per-
formance of Magic using ObjectStore to Magic’s performance using its original flat file
system, the performance tests described in Section 3.5.2 were accomplished using two

different Magic databases.

drfm This database consists of 110 objects (i.e., cell definitions) and 1861 different in-
stances (i.e., cell uses) of these objects. There are over 78,000 fundamental data
items (i.e., tues) at the lowest level of the object hierarchy. This database was tested
using cell drfmchip with 87 subcells and eight levels of nesting. The Magic display

of this cell, with all subcells completely expanded, appears in Figure 7.

tutorial This database contains 70 objects and 103 different instances. There are nearly
9300 fundamental data items at the lowest level of the object hierarchy. Testing was
accomplished using cell tut4a which contains two subcells and one level of nesting.

Figure 8 shows the Magic display of the tiles and subcell structure of this cell.

32

&

i
Sy

oo

%
:

G

SO

i3

PE SR S

os
e

7

20
iz

W

2

i

AT AR AARARAIATAY

N)
-

SRR

£2.a3
S5t

borvry

b e

aeianhandecdolds

i
0 AR

3

REr RN

Sontnerdd .ww

i

R

b
AUERS

R

£ A S oy
sirebnainbronsiauniniaaingg
B A AR I T A AR AN AR
B g

%ym@%
S

'

ANSARARRL:

§ e

£

R R 3 N 3
ANSNEN u%ﬁféﬁgﬁ%gﬁ,ﬁ%ﬁ%

R Y S T e » B
P CROIINNIN NI S

R T S A A NN

AR < o R
BN

QN

~

L
W

3

i

it
o

AT AR

e

Figure 7. Magic display of cell drfmchip

T T R TR

K

£ PAAWRAA AN o N

33

Figure 8. Magic display of cell tut4a

The results of the performance tests are shown in Tables 2 and 3. Raw performance
test results are contained in Appendix A. The results shown in Tables 2 and 3 represent
averages of all valid results obtained for each command. For more accurate comparison
with ObjectStore, the resources necessary for writing all modified cells to disk are added

to the performance results for the insertion and closure tests.

For the drfmchip cell, instance insertion and closure are tested on a subcell nested
four levels deep in the hierarchy (big-nandmux) and on a subcell nested eight levels deep
(mcell10). There are 16 instances of the big nandmux subcell and 6144 instances of the
mcell10 subcell. Between these two levels of nesting, the time difference to accomplish
instance insertion and closure was considerable (See Table 4). The average of these two
different levels is used for comparison in Table 2. Instance insertion and closure are tested
on a subcell nested only one level deep in the tutda cell. There are only eight instances of

this subcell.

Testing of the drfm database was accomplished with ObjectStore cache sizes of both
640 and 2048 sectors. The 640 sector cache worked mere quickly for look up and retrieval,
traversal, initialization, and object insertion. These are the results shown in Table 2.
Similarly, the results for the 2048 sector cache are used for instance insertion and closure.
All ObjectStore results for the tutorial database were obtained with a cache size of 2048

sectors.

The results for the different cache sizes are summarized in Table 5. Instance and
closure results in this table are based on the subcell big.nandmux which is nested four
levels deep. Neither size of cache performs better for all test cases. Optimal cache size will

depend on which database utilities are more commonly used.

The commands used for performance testing fall into three different categories. Those
used for look up and retricval and hierarchy traversal require reading from the database. In
the original version of Magic, Insert and closure commands are performed entirely within
memory. For this reason, the resources necessary to write to disk all cells modified by
these commands are added to the results in Tables 2 and 3. Initialization is a combination

of reading and writing from the database and initializing memory. In general, Object-

35

Criteria Tested Resource Data Management System | Percent
Command Used Measured Flat File | ObjectStore | Change
Look up/retrieve CPU time (seconds) 0.06 0.05 -17
load drfmchip Elapsed time (seconds) 0.12 0.33 +175
Page Faults with I/0 2 0 -00

Page Faults without I/O 4 36 +800

Disk Blocks In 1 0 -00

Disk Blocks Out 0 0 0

Hierarchy Traversal | CPU time (seconds) 6.62 1.54 -76
expand Elapsed time (seconds) 9.32 4.37 -53
Page Faults with I/0 89 0 -00

Page Faults without I/O 733 380 -48

Disk Blocks In 91 0 -00

Disk Blocks Out 3 0 -0

Insert (object) CPU time (seconds) 0.03 0.02 -50
load test Elapsed time (seconds) 0.124 0.040 -68
Page Faults with I/O 0 0 0

Page Faults without I/O 13 23 +77

Disk Blocks In 0 0 0

) Disk Blocks Out 6 0 -0
Insert (instance) CPU time (seconds) 1.36 0.22 -84
getcell test Elapsed time (seconds) 2.63 0.24 -91.
Page Faults with I/O 1 0 -00

Page Faults without 1/O 112 15 -87

Disk Blocks In 1 0 -0

Disk Blocks Out 70 0 -co

Closure CPU time (seconds) 52.19 19342 | 4271
drc catchup Elapsed time (seconds) 53.98 197.66 | 4266
Page Faults with I/0 7 2 -71

Page Faults without I/O 136 151 +11

Disk Blocks In 1 0 -00

Disk Blocks Out 70 0 -0

Initialization CPU time (seconds) 5.74 5.86 +2
Elapsed time (seconds) 10.71 15.21 +42

Page Faults with I/O 82 28 -66

Page Faults without I/O 203 493 +143

Disk Blocks In 13 8 -38

Disk Blocks Out 1 2 4100

36

Table 2. Benchmark performance results for drfm database

Criteria Tested Resource Data Management System | Percent
Command Used Measured Flat File | ObjectStore | Change
Look up and retrieve | CPU time (seconds) 0.01 0.03 +200
load tutfa Elapsed time (seconds) 0.047 0.037 -21
Page Faults with I/0 1 0 -00
Page Faults without I/0 6 30 +400
Disk Blocks In 0 0 0
Disk Blocks Out 0 0 0
Hierarchy Traversal | CPU time (seconds) 0.04 0.02 -50
expand Elapsed time (seconds) 0.0788 0.0252 -68
Page Faults with I/O 1 0 -00
Page Faults without I/O 3 6 +100
Disk Blocks In 0 0 0
Disk Blocks Out 0 0 0
Insert (object) CPU time (seconds) 0.020 0.017 -15
load test Elapsed time (seconds) 0.158 0.026 -84
Page Faults with I/O 0 0 0
Page Faults without I/O 13 16 +23
Disk Blocks In 0 0 0
Disk Blocks Out 7 0 -0
Insert (instance) CPU time (seconds) 0.060 0.013 -78
getcell test Elapsed time (seconds) 0.532 0.029 -95
Page Faults with I/O 0 0 0
Page Faults without I/O 14 1 -93
Disk Blocks In 0 0 0
Disk Blocks Out 22 0 -00
Closure CPU time (seconds) 0.58 2.00 +245
dre catchup Elapsed time (scconds) 1.05 2.03 +93
Page Faults with I/O 0 0 0
Page Faults withcut I/0 24 6 -75
Disk Blocks In 0 0 0
Disk Blocks Out 22 0 0
Initialization CPU time (seconds) 5.66 5.82 +3
Elapsed time (seconds) 8.53 9.91 +16
Page Faults with I/0 14 4 -71
Page Faults without I/0 299 514 +72
Disk Blocks In 2 4 +100
Disk Blocks Out 1 1 0

Table 3. Benchmark performance results for tutorial database

Criteria Tested | Resource Level of Nesting Percent
Command Used | Measured 8 (mcell10)] 4 (bigmandmux) | Change
Insert (instance) | CPU time (seconds) 0.41 0.022 -95
geteell test Elapsed time (seconds) 0.45 0.027 -94
Page Faults with I/O 1 0 -00
Page Faults without I/0 29 1 -97
Closure CPU time (seconds) 368.61 18.23 -95
dre catchup Elapsed time (seconds) 376.75 18.56 -95
Page Faults with I/O 3 2 -33
Page Faults without I/0 251 51 -80

Table 4. ObjectStore performance at two different levels of subcell nesting

Store had better response time than Magic’s original data management system for those

commands with frequent database access relative to total processing time.

ObjectStore’s performance varies most significantly with the closure command (i.e.,
drc catchup). To understand why, more insight into the design rule checker (drc) is required.
The design review checker applies rules from a file of over 500 lines to each tile in the
cell. Hierarchical designs are checked by ensuring the cell alone is consistent, and that
the combination of the cell and all of its subcells is consistent (14). This may require
traversing the cell hierarchy a number of times to complete the design rule checking; thus,
small discrepancies in response time are multiplied into large differences such as those

shown in Tables 2 and 3.

The design rule checker usually runs in the background because of the large amount of
processing it requires (14). It limits its checks to those cells which are currently in memory;
other cells are checked the next time they are read into memory. This allows incremental
application of design rules to the cell and eliminates the need to process the entire cell at
once. Since the ObjectStore version of Magic extends memory to include database items
which are on the disk, it always appears as if the entire database is in memory; thus, the
design rule checker checks all cells in the database. Because of these variations in virtual

memory, valid comparisons can only be made with the entire cell resident in main memory.

The Objec tStore database required considerably more disk space than Unix flat files

(see Table G). Both ObjectStore and Magic add overhead to the ObjectStore database

38

Criteria Tested Resource Cache Size (sectors) | Percent
Command Used Measured 640 | 2048 | Change |
Look up/retrieve CPU time (seconds) 0.05 0.07 +40 |

load drfmchip Elapsed time (seconds) 0.33 0.35 +6

Page Faults with I/0O 0 0 0

Page Faults without I/O 36 43 +19

Disk Blocks In 0 0 0

Disk Blocks Out 0 0 0

Hierarchy Traversal | CPU time (seconds) 1.54 1.61 +4

expand Elapsed time (seconds) 4.37 5.91 +35

Page Faults with I/0O 0 0 0

Page Faults without I/O | 380 467 +23

Disk Blocks In 0 0 0

Disk Blocks Out 0 0 0

Insert (object) CPU time (seconds) 6.022 0.021 -4

load test Elapsed time (seconds) | 0.040 0.053 +32

Page Faults with I/0 0 0 0

Page Faults without I/O 23 20 -13

Disk Blocks In 0 0 0

Disk Blocks Out 0 0 0

Insert (instance) CPU time (seconds) 0.05 0.02 -60

geteell test Elapsed time (seconds) | 0.077 0.027 -65

Page Faults with I/O 1 0 -00

Page Faults without I/O 10 1 -90

Disk Blocks In 0 0 0

Disk Blocks Out 0 0 0

Closure CPU time (seconds) 23.48 18.23 -22

dre catchup Elapsed time (seconds) | 23.87 18.56 -22

Page Faults with I/O 2 2 0

Page Faults without I/O 20 51 +155

Disk Blocks In 0 0 0

Disk Blocks Out 0 0 0

Initialization CPU time (seconds) 5.86 6.02 +3

Elapsed time (seconds) | 15.21 15.47 +2

Page Faults with I/0 28 54 4100

Page Faults without I/O | 493 481 -2

Disk Blocks In 8 13 +62

Disk Blocks Out 1 2 4100
| Disk Usage (kbytes) 724 | 4882 | 4574 |

Table 5. ObjectStore performance comparison with two different cache sizes

39

Size in Kbytes Percent

Data Item Flat File | ObjectStore | Change
tutorial database 58 713 | +1129
drfmchip database 724 4882 +574
initialized database (empty) 0 147 +00
test object & instance 0.081 2.3 42740

Table 6. Comparison of ObjectStore and Unix flat file disk usage

which is not saved in the Unix file representation. For Magic this overhead is approximately
50 kilobytes. The ObjectStore overhead varies with the total size of the database. With no
data other than the Magic and ObjectStore overhead in the database, the total database
size is nearly 150 kilobytes. In addition, ObjectStore holds the entire data structure for
each cell in memory. This includes pointers and empty hash table buckets. The Unix
files only contain the contents of the cell data structure. Because of the large amount of
overhead associated with ObjectStore, the difference is disk usage is more significant for

smaller data items.

4.8 Conversion to ObjectStore

One of the objectives of this thesis was to show that conversion of a design system to
an object-oriented database is a cost-effective venture. If this new technology is to replace
existing design systems, system managers must be convinced that the benefits of using
a database will outweigh the costs of conversion. While performance is one of the key
issues in this decision, there are a number of benefits (as discussed in Chapter 1) and costs

associated with converting to a database management system.

4-8.1 Problems Encountered. Due to the size and complexity of Magic, and the
intricacies of ObjectStore, a number cf difficulties were encountered during the conversion
process. These difficulties were further aggravated by the immaturity of the ObjectStore

database system and the lack of documentation for Magic.

Implementation of ObjectStore’s versioning capability presented the only problem

which could not be resolved. The configuration::of(object) command is designed to

40

return a pointer to the configuration of the object specified. In a number of places this
pointer is then used to allocate a subobject in the same configuration as the cbject. The

sequence of command is as follows:

cellConfig = configuration::of(cellDef);

cellUse = new(magicdbl, cellConfig) CellUse;
ObjectStore fails when attempting to allocate the subobject. No fix is currently available
for this problem, so versioning does not work with the current ObjectStore implementation
of Magic. This prevents a circuit designer from backing out of cell modifications — once

a cell is changeu, the change is reflected permanently in the ObjectStore database.

Another problem area stems from the incompatibility of C and C++. In theory, C-++
is designed to be a superset of C (18). While this may be true in a C program that is very
well designed and coded, in reality C' allows many structures that are not compatible with
C++. While Magic is a rather well designed system, its size and the complex programming
structures which it uses to maximize efficiency have led to code which is unstructured and
difficult to trace. Some common problems include functions used without being previously
declared, data types used in header files that are declared in a separately included header
file, and functions with different types of parameters being passed as parameters to another
function. Since C'++ has much stricter type checking, these problems had to be resolved if

the program included any ObjectStore DML commands which required the C++ compiler.

While not directly related to compatibility between C and C++, the ability to cast
types in C presents significant problems. Magic uses this capability extensively. In one
particular instance, ti_-body is declared as a char; however, to handle subcells within a
plane, a list of pointers to CellUse is cast to this variable. Initially, Magic sets the ti_body
field to a char. If ObjectStore encounters a char value when it is expecting a persistent
pointer, it is unable to dereference the pointer and the program aborts. Such errors are

very difficult to trace due to the use of type casting.

Many difficulties were encountered due to peculiarities of the ObjectStore DML.

Those which were hardest to resolve are listed below.

41

e Inconsistency of schemas. If the database schema is modified, the old database is no
longer valid for that application (16). A procedure must be made for converting the

old data to match the new schema, or the data is lost.

o Incompatibility of persistent types with C. Persistent types have an extra level of
indirection which must be accounted for if using them in a C program (16). Ob-
jectStore also uses a persistent dereferencing type which is not compatible with the
C' compiler. This requires all C programs to access persistent data types through a

C+--+ interface.

e Databases and persistent database entry points must be declared at a global level.
Since Magic is broken into a number of subdirectories, it is unclear at exactly what
level these declarations should occur. This was resolved by declaring them at file

level in any directory and including an extern declaration in a header file.

e When using versioning, the effects of configuration::forget are unclear. This
command should remove the specified version from the current workspace (12); how-
ever, this does not happen when the versioned object has just been created and exists
in no other workspace. The configuration::destroy_version command was used
instead. To be able to destroy a version, however, the configuration must have been
previously frozen in some workspace. This is accomplished by first checking any

new configuration into the global workspace before checking it back out to make

modifications.

e A discriminant function is required when using a union (12). No explanation is
given on what this function should do and when it should be called. To eliminate
the associated complexities, the union was removed as it was no longer necessary for

the updated Magic program.

¢ When more data is read into memory than ObjectStore can manage, it attempts to
evict a page from memory causing an exception which crashes Magic. To overcome

this problem when testing drfmchip, the cache size had to be manually increased to

2048 sectors.

Most of the facilities discussed above are included in the ObjectStore documentation,
but inadequate explanation of their purpose and implementation is given. The documen-
tation often tells how to implement an ObjectStore function with no explanation as to why
it is done that way. As a consequence, when something must be done different for a specific
application, it is difficult to make the adaptation. An example is the Makefile structure
for Magic. Magic has a separate Makefile for each subdirectory. This Makefile compiles
each program in the subdirectory and links the object files into a composite object file for
the entire subdirectory. Each subdirectory object file is then linked together for the Magic
executable. The description of ObjectStore Makefiles assumes all object and source code
is in one directory (11). The solution was simple — to only use the ObjectStore linker
for the executable and not for each individual subdirectory — but many hours of analysis,
trial and error, and consultation with the ObjectStore programmers were required before

the problem was resolved.

Another significant difficulty with the documentation occurs when using the Object-
Store DML. Even though this is the primary language for ObjectStore, the ObjectStore
User Guide deals primarily with the ObjectStore C++ interface library. In many cases
the DML replaces multiple library calls, thus simplifying the programming and subsequent
maintenance. Only brief descriptions of these DML commands are given, however, with

few examples and little correlation to the functions performed by the library interface.

4.3.2 Effort Required. This thesis implements a minimal database version of Magic.
Changes were made to replace the original flat file structure with an ObjectStore database
while maintaining the same functionality. No attempt was made to take full advantage of
ObjectStore’s other features. The time spent on this conversion is broken down in Table 7.
The estimates in this chart are based on the perceived difficulty of each process and the

total time available for the conversion.

As reflected in this table, the conversion to ObjectStore took longer than expected.
Since C constructs are supposed to be compatible with C+-+, the only code conversions
expected were those necessary for the ObjectStore DML. The many other conversions

which were actually required had a significant impact on the time required to make Magic

| | Estimated | Actual |

Magic design recovery 10 11
ObjectStore Familiarity 10 11
C++ Conversion 0 13
ObjectStore Persistence 15 17
ObjectStore Versions 10 20

| Total l 45 | 72 |

Table 7. Man days spent converting Magic to work with ObjectStore

work with ObjectStore and its C++ compiler. The other major deviation in time is
that required for implementing ObjectStore versions. This is an extremely challenging
ObjectStore utility and the documentation is somewhat limited. In some cases, such as
configuration: :forget, the versioning commands do not work exactly as the documen-
tation describes them. In other instances, for example, when Magic creates an instance of
a cell for a window or initializes a plane for a tool like the circuit router, it was difficult to

determine what version the new plane or cell instance should be in.

4-4 Summary

Performance tests were accomplished for six benchmark areas using the Objectstore
version and the original version of Magic. While problems were encountered during the
implementation of Magic with ObjectStore, the implementation was complete erough to
compare performance of the two data management systems. The problems encountered
range from failures of ObjectStore procedures to difficulties in making C code compatible
with the ObjectStore DML compiler. Some problems were further complicated by inade-
quacies in ObjectStore documentation. These difficulties are reflected in the effort which

was required to convert Magic to use the ObjectStore database management system.

V. Conclusions and Recommendaiions

5.1 Overview

This chapter summarizes the activities necessary for implementing and testing Magic
with the ObjectStore database management system. The results presented in Chapter 4
are analyzed and conclusions reached regarding how well the objectives of Chapter 1 have
been satisfied. Finally, recommendations for further research are presented which may help

answer some of the questions raised by this thesis.

5.2 Summary of Research

This thesis directly converted the Magic layout design system to take advantage of
the database facilities of ObjectStore. A design recovery of Magic revealed the database
manager module to be the critical component of this conversion. The data structure used
by the database manager consists of a cell definition for each VLSI circuit and a Lst of cell

uses for each particular instance of the cell definition.

Conversion of Magic required the cell definition and cell use data structures to be
persistently allocated using the persistent new command of ObjectStore. File input and
output was eliminated since the data structures are no longer destroyed when Magic is
shutdown. Some Magic commands were modified slightly to account for invalid data re-

maining in the database along with data which the designer intends to keep.

To compare the performance of the original Magic to the version modified to work
with ObjectStore, timing routines were instrumented in the code to measure the time
required to complete a Magic command. Routines were also added to measure disk a.cess.
Performance testing was accomplished using Magic commands which require extensive
database access. Emphasis in performance testing was placed on those database attributes

specified in the HyperModel Benchmark.

5.3 Conclusions

The objectives of this thesis require that the ObjectStore version of Magic provide

the full functionality of the original version. Response time must not increase by more

-

45

than ten percent over the original version. This thesis also attempts to demonstrate that

conversion of Magic from its flat file data management system to ObjectStore is a cost
effective undertaking. The results of Chapter 4 are analyzed in the follo. z subsections

to determine whether these thesis objectives were met.

5.3.1 Database Functionality. As described in its documentation, ObjectStore pro-
vides support for complete functionality of Magic in a manner similar to the original ver-
sion. While some commands may perform in a slightly different manner, the same functions
are supported. Unfortunately, however, ObjectStore does not work entirely as described
in its documentation. The primary difference is implementation of ObjectStore’s version-
ing facilities. These are necessary to allow Magic to roll back to a previously baselined
design. The versioning facilities do not work correc:ly with ObjectStore version 1.1, so the

implementation of Magic for this thesis does not support design roll back.

5.3.2 Database Performance. The results presented in Chapter 4 show Magic to
meet performance goals for only three of the six areas of performance benchmark testing:
hierarchy traversal and object and instance insertion. Because of this, one may tend to
conclude that ObjectStore’s performance is inadequate for supporting complex engineering
design systems such as Magic. R.G.G. Cattel suggests, however, that benchmark perfor-
mance tests may not be an accurate measure of performance; rather “The most accurate

measure of performance for engineering applications would be to run an actual application

oov (2:364)"

When actually using Magic, the difference in performance was not readily apparent.
For look up and retrieval, the difference in response time, while representing an increase of
nearly 200 percent, was still only measured in fractions of a second — barely perceptible to
a human user. Database initialization, while taking 42 percent more time with ObjectStore,
is only performed once per user session. Five seconds in a session that may be hours long
does not seriously detract from overall performance. Closure operations, as tested with the
dre catchup command, took cuisiderably longer with ObjectStore. Even with the original
version of Magic, however, this command took a long time to accomplish. It is for this

reason that the designers of Magic expect users to generally run the design rule checker

46

in the background. This background checking can be turned off when a large number of
changes are made o a circuit design. When the changes are completed, drc catchup will
run the design rule checker on all changes made during the session. Again, this represents

a few minutes of trade-off in performance during what typically is an hours long session.

ObjectStore required a considerable amount of space to store the Magic databases.
In the original environment which the performance tests were accomplished, this amount
of space had a significant impact. With the current implementation of Magic using a single
t:ansaclion, no segment of the database could be found to remove from memory once the
entire circuit was swapped into memory. The single transaction implementation coupled
with the large database size led to memory quickly being used up and the Magic sys-
tem failing. These problems do not necessary reflect poorly on object-oriented databases,
however, since proper transaction implementation would easily overcome the problems.
In addition, newer releases of ObjectStore are projected to better handle such 1iemory

swapping problems (16).

When considering the performance of the ObjectStore version of Magic, one must
realize that Magic was not designed using object-oriented programming techniques. Any
optimization built into the Magic code is designed to improve efficiency of the Unix flat
file storage system, not a database management system. The fact that the original Magic
design does not take advantage of these fundamental concepts of the ObjectStore database
management system may account for the faiiure Jf Magic to perform as well with Object-
Store as it does with its current Unix flat file management system. That the ObjectStore
version of Magic performs best for hierarchy traversal demonstrates what Object Design

considers to be the primary benefit of ObjectStore’s architecture (9:61).

Overall, the performance results obtained from implementing Magic with ObjectStore
are inconclusive. Benchmark tests indicate that ObjectStore performance falls within the
ten percent increase criteria for cnly three of six areas. Actual usage of Magic, however,
showed that the areas not meeting the performance criteria are unlikely to noticeably
impact the overall performance of Magic. Modification of Magic’s design to better take
advantage of ObjectStore’s database features would likely improve performance. Similarly,

memory limitations of the existing implementation provided for a very unstable environ-

47

ment; however, proper implementation of transactions along with projected upgrades to

the ObjectStore database system would likely eliminate this problem.

5.3.8 Conversion Cost Effectiveness. One of the primary costs of any software sys-
tem is that necessary for software maintenance. These costs can be minimized if software
changes affect only small, localized segments of code and if maintainers can easily un-
derstand the organization and functionality of existing code. Object-oriented computing
allempts to minimize the impact of changes through data encapsulation, in which the
underlying data is accessible only through a well-defined interface (19). Increased under-
standing is attained through abstraction, a concept in which the programmer’s model of
an object more closely approximates the user’s conceptual model of the object (4). A data-
base management system also supports data encapsulation and abstraction by providing

mechanisms for defining storage structures and manipulating information (8).

ObjectStore supports both object-oriented computing and database management.
With its persistent data structures and procedures for managing data, all input and output
procedures can be eliminated from the program. This eliminates the complexity involved
with transforming data fr. n its flat file representation to the appropriate data structure
in memory. Unfortunately, the implementation of Magic for this thesis does not take
full advantage of ObjectStore’s object-oriented computing facilities. Because the interface
to the database is not well-defined, a change in the database structure may affect many
segments of the system. By not converting Magic’s existing C' code to C++ which is used
by ObjectStore, additional complexity was added since both a C and a C++ interface

must be specified for each module.

ObjectStore provides the capability to greatly enhance the maintainability of Magic.
Unfortunately, by failure to take full advantage of ObjectStore’s object-oriented facilities,
and through offsetting the maintenance advantages of a database management system with
an extra interface for C++, the overall maintainability of Magic remains about the same.

No maintenance cost savings are realized with the version of Magic implemented for this

thesis.

48

On the other hand, the costs associated with converting to ObjectStore were rela-
tively high. In four months of intense study and programming with ObjectStore, it was
not possible to learn and understand every aspect of ObjectStore or to even completely
understand any single aspect. No programming at all was accomplished using Object-
Store’s collection and relation facilities. Versioning was not completely implemented due
to faults in the ObjectStore system. In some instances, the documentation inadequately
or improperly described ObjectStore functionality, thus requiring technical support from

the designers of ObjectStore to resolve programming issues.

Another significant cost associated with conversion to ObjectStore was modifying
C programs for compatibility with C++. This task could have been avoided by using
ObjectStore’s C library interface; however, this would increase the effort required to take

advantage of the object-oriented programming facilities of C-++ at a later time.

The ObjectStore implementation of Magic for this thesis was not cost effective. The
costs associated with learning the ObjectStore system and making C' programs compatible
with C'++ were not offset by any significant improvement in maintainability. A complete
redesign using object-oriented techniques which take advantage of ObjectStore’s data defi-
nition and manipulation language (DML) would significantly increase the understandabil-
ity of the Magic code and likely reduce future maintenance costs. Such a redesign would
also likely improve Magic’s performance. The costs of a complete redesign would be high,
however, suggesting that ObjectStore may be better suited for developing new systems
or converting systems that are already object-oriented rather than converting a complex

system design such as Magic’s.

5.4 Recommendations for Further Research

This thesis did not take advantage of the object-oriented facilities of the ObjectStore
DML, nor did it take full advantage of all the features of ObjectStore. While one of
the goals of this thesis was to show a reduction in future maintenance costs, little was
done toward attaining this goal. Object-oriented programming was expected to reduce
maintenance costs; however, no such modifications were made to the Magic code. If the

database manager module of Magic were truly object-oriented, the changes to implement

49

Magic with ObjectStore would have been limited to this module. To show that this is
the case, future research should be directed toward implementing the database manager
module of Magic using good object-oriented C++ features. Creating a C++ class for
the cell definition and each of its subordinate objects would significantly increase the

understandability and maintainability of Magic’s database manager.

As currently implemented with a single ObjectStore transaction, the ObjectStore
version of Magic has even more severe memory limitations than the original version of
Magic. The drfmchip circuit design is the largest circuit which can be loaded into memory.
If transactions were limited to the smallest set of instructions necessary for maintaining
database consistency, memory would only be lisuited by the amount of available disk space.
Minimizing processing within a transaction would also improve the ability for concurrent
access of the database by more than one user. Smaller transactions lock each database

segment for less time, thereby giving other users quicker access to the same segment.

Two major features of ObjectStore were not used in this implementation of Magic:
relationships and collections. Both have the potential to reduce the complexity of the
Magic code. The cell definition structure includes relations to hash tables, cell labels, tiles,
planes, and cell uses. Use of ObjectStore’s relationship and inverse relationship features
along with ObjectStore collections would potentially eliminate the complex list structures
currently used for labels and cell uses. ObjectStore’s facilities for traversing lists could be
used instead, thus reducing the amount and complexity of Magic code. Magic’s collection
facilities could also directly replace the symbol tables used for cell definitions and cell

configurations.

The versioning facility of ObjectStore was not completely implemented due to dis-
crepancies with the ObjectStore system. When these discrepancies are fixed, versioning
implementation should be completed to allow full functionality of the Magic system. In
addition, versioning provides the capability for cooperative work on a circuit design in
which two designers may work on the same circuit at the same time. If this is to be done,
however, Magic must ensure that the two users do not make conflicting changes unless

facilities are provided for managing these changes.

50

5.5 Summary

Overall performance of Magic as implemented for this thesis does not justify con-
version of existing applications to use object-oriented databases. Many questions are left
unanswered, however, due to the difficulties encountered while implementing Magic with
ObjectStore. To answer these questions and take better advantage of ObjectStore’s facili-
ties, a number of proposals for additional research are presented. It is quite possible that
complete implementation of these proposals would lead to a Magic system with signifi-
cantly improved maintainability and performance. Object-oriented database management
systems, while not fully proved in this thesis, still present the potential for greatly simplify-

ing the development and maintenance of complex, data intensive, engineering applications.

Appendix A. Raw Performance Test Results

Original version of Magic using drfmchip

CPU | Elapsed Page Faults Disk Blocks
Command ” Time Time | with /O | w/oI/O | In| Out
load drfmchip || 0.06 0.180 4 7 2 0
0.06 0.085 1 0 1 0
0.06 0.078 1 1 1 1
0.06 0.170 5 2 0 0
0.08 0.120 2 2 1 0
0.06 0.068 0 10 0 0
expand 6.71 10.18 124 833 | 115 3
6.37 7.84 19 5101 20 4
6.76 9.83 121 745 | 123 3
6.80 10.71 132 797 | 139 4
6.67 9.88 122 850 { 129 3
6.44 7.49 17 661] 19 3
load test 0.01 0.012 0 16 0 0
0.01 0.013 0 17 0 0
0.01 0.012 0 16 0 0
0.01 0.012 0 18 0 0
0.01 0.012 0 16 0 0
0.01 0.016 0 23 0 0
write test 0.01 0.147 0 17 1 7
0.00 0.123 0 12 0 7
0.04 0.093 0 12 0 6
0.04 0.131 0 12 0 7
0.02 0.091 0 12 0 6
0.00 0.080 0 12 0 6
initialize 5.74 11.87 111 159 [23 1
5.58 10.90 85 202 5 2
5.55 10.40 87 200 9 2
5.58 11.16 95 196 | 16 1
6.12 11.74 107 219 19 1
5.45 8.18 7 245 8 1

52

Original version of Magic using drfmchip
getcell test nested 8 deep in subcell mcell10

CPU | Elapsed Page Faults Disk Blocks

Command Time | Time | with I/O | w/oI/O |In| Out
writeall force || 2.54 4.81 9 618 | 8 103
1.61 3.28 2 81 0 90

1.58 3.12 0 81 0 99

2.38 3.93 0 88| 3 94

2.42 3.96 0 881 0 95

1.61 3.26 0 8| 5 90

getcell test 0.03 0.076 3 110 0
0.02 0.013 0 070 0

0.01 0.013 0 010 0

0.02 0.085 2 0] 0 0

0.01 0.012 0 0] 0 0

0.01 0.010 0 110 0

drc catchup || 96.24 97.59 26 931 0 0
94.72 96.26 34 81 0 0

94.73 95.70 13 131 0 0

96.44 97.14 2 1731 0 0

94.88 95.55 0 210 0

95.97 96.77 1 0] 0 0

53

Original version of Magic using drfmchip
getcell test nested 4 deep in subcell big nandmux

CPU | Elapsed Page Faults Disk Blocks
Command “ Time | Time | withI/O | w/oI/O |[In| Out
writeall force || 0.70 147 0 481 0 45
0.72 1.50 0 481 0 48
0.68 1.48 0 481 0 45
0.68 1.52 0 481 0 43
0.66 1.51 0 481 0 50
0.69 1.48 0 48 0 43
getcell test 0.01| 0.0110 0 110 0
0.00 | 0.0085 0 010 0
0.00 | 0.0073 0 0| O 0
0.00 | 0.0075 0 01 0 0
0.00 | 0.0090 0 0j 0 0
drc catchup 6.15 6.26 0 0j 0 0
6.20 6.23 0 0o o 0
6.17 6.20 0 0] 0 0
6.18 6.22 0 0| 0 0
6.18 6.32 0 0] 0 0
6.22 6.27 0 0] 0 0

54

ObjectStore (Cache Size 2048 sectors) version of Magic using drfmchip

CPU | Elapsed Page Faults Disk Blocks
Command ” Time Time | withI/O | w/oI/O | In | Out
load drfmchip || 0.07 0.34 0 401 0 0
0.04 0.36 0 391 0 0
0.08 0.38 0 411 0 0
0.09 0.41 0 451 0 0
0.06 0.25 0 46| 0 0
0.07 0.38 0 451 0 0
expand 0.96 4.35 0 3411 0 0
1.09 5.52 0 363{ 0 0
1.92 7.96 2 5251 0 0
1.95 6.47 1 525 0 0
1.86 5.38 0 5251 O 0
1.86 5.78 0 5251 0 0
load test 0.03 0.068 0 201 0 0
0.02 0.107 0 211 0 0
0.02 0.075 0 201 0 0
0.02 0.022 0 200 0 0
0.02 0.023 0 201 0 0
0.02 0.025 0 201 0 0
initialize 5.69 12.77 36 4751 9 1
6.02 14.61 69 467 | 19 2
5.92 16.23 94 45¢ | 17 2
5.82 16.55 40 485 | 14 1
6.00 18.23 36 5151 9 2
6.70 14.29 51 486 | 13 2

ObjectStore version of Magic using drfmchip
getcell test nested 8 deep in subcell mcell10

CPU | Elapsed Page Faults Disk Blocks

Command Time | Time | withI/O [w/oI/O |In| Out
getcell test 0.44 0.54 2 151 0 0
0.37 0.44 2 0] 0 0

0.49 0.49 0 160 O 0

0.43 0.44 0 6] 0 0

0.38 0.38 0 110 0

0.37 0.42 0 0] 1 1

drc catchup |[403.77 | 434.24 16 491 0 0
366.54 | 369.31 0 713| 0 0

370.38 | 373.34 0 7281 0O 0

360.74 | 363.55 0 141 0 0

361.15 | 368.24 0 210 0

349.10 | 351.85 0 1 0 0

ObjectStore version of Magic using drfmchip
getcell test nested 4 deep in subcell big nandmux

CPU | Elapsed Page Faults Disk Blocks

Command || Time | Time | withI/O [w/oI/O |In| Out
getcell test 0.03 0.057 0 410 0
0.02 0.024 0 01 0 0

0.02 0.035 0 0] 0 0

0.02 0.015 0 0] 0 0

0.02 0.015 0 0] 0 0

0.02 0.015 0 0] 0 0

drc catchup || 18.43 19.58 11 307 | O 0
17.73 17.84 0 0} 0 0

18.34 18.45 0 210 0

17.83 17.93 0 0] 0 0

18.53 18.72 0 0] 0 0

18.55 18.87 0 01 0 0

ObjectStore (Cache Size 640 sectors) version of Magic using drfmchip
getcell test nested 4 deep in subcell bignandmux

CPU | Elapsed Page Faults Disk Blocks

Command " Time Time | with /O | w/oI/O | In | Out
load drfmchip || 0.05 0.31 0 401] 0 0
0.03 0.38 0 51| O 0

0.08 0.32 0 311 0 0

0.04 0.29 0 29| O 0

0.04 0.21 0 331 0 0

0.04 0.48 0 331 0 0

expand 0.99 4.55 1 358 0O 0
1.06 1.06 0 0] O 0

2.31 5.39 0 5291 0O 0

2.15 5.79 0 5281 0 0

1.82 4.87 2 5211 0 0

0.94 4.59 0 3451 0 0

load test 0.03 0.045 1 23| 0 0
0.02 0.050 0 231 0 0

0.02 0.083 0 251 0 0

0.02 0.023 0 231 0 0

0.02 0.021 0 221 0 0

0.02 0.021 0 221 0 0

initialize 5.81 13.83 5 527 4 1
6.00 10.53 6 493 | 6 1

6.01 15.19 81 434 111 2

5.87 12.54 26 520 | 10 2

5.72 2145 3 4911 4 1

5.714 17.75 47 494 | 13 2

getcell test 0.09 0.400 4 31] 0 0
0.03 0.031 0 01 0 0

0.03 0.030 0 0] 0 0

drc catchup 23.97 24.86 13 118 © 0
23.72 23.79 0 0} 0 0

23.34 23.58 0 0] 0 0

23.20 23.53 0 210 0

23.41 23.80 0 110 0

23.34 23.67 0 0] 0 0

Original version of Magic using tutda

CPU | Elapsed Page Faults Disk Blocks
Command || Time Time | withI/O | w/ol/O [In| Out
load tutda || 0.00 0.210 4 0} 1 0
0.01 0.013 0 710 0
0.01 0.013 0 71 0 0
0.02 0.018 0 S1 0 0
0.01 0.013 0 71 0 o
0.01 0.013 0 71 0 0
expand 0.05 0.190 5 0f 2 0
0.04 0.042 0 41 0 0
0.03 C.034 0 210 0
0.04 0.041 0 41 0 0
0.06 0.100 0 41 0 0
0.03 0.066 0 41 0 0
load test 0.01 | 0.0088 0 61 0 0
0.01| 0.0085 0 610 0
0.01 | 0.0077 0 71 0 0
0.00 | 0.0074 0 710 0
0.00 | 0.0076 0 71 0 0
0.01§ 0.0530 0 710 0
write test 0.00 0.149 0 171 1 7
0.02 0.160 0 121 0 T
0.01 0.157 0 121 0 7
0.02 0.137 0 121 0 6
0.01 0.128 0 121 0 6
0.02 0.127 0 121 0 T
initialize 5.47 9.34 76 207 | 4 1
547 8.10 4 314 | 4 2
5.78 8.14 0 3191 O 2
5.94 8.52 0 3191 0 0
5.80 8.27 4 314 | 4 1
5.50 8.85 0 3191 0 1

Original version of Magic using tutda

CPU | Elapsed Page Faults Disk Blocks
Command Time | Time | withI/O [w/oI/O[In| Out
writeall force || 0.07 0.553 1 26| 0 23
0.05 0.498 0 241 0 21
0.05 0.479 0 241 0 21
0.04 0.533 0 241 0 23
0.10 0.507 0 241 0 21
0.04 0.554 0 241 0 21
getcell test 0.00 | 0.0370 1 of o 0
0.00 0.0061 0 01 0 0
0.01 0.0065 0 01 0 0
0.00 0.0064 0 gl 0 0
0.00 0.0066 0 01 0 0
0.00 0.0061 0 01 0 0
drc catchup 0.52 0.55 0 0] 0 0
0.55 0.56 0 01 0 0
0.47 0.48 0 0] 0O 0
0.55 0.55 0 01 0 0
0.48 0.48 0 01 0 0
0.55 0.56 0 01 0 0

60

ObjectStore (Cache Size 2048 sectors) version of Magic using tutda

CPU | Elapsed Page Faults Disk Blocks
Command || Time Time | withI/O [w/o I/O [In | Out
load tutda 0.03 0.032 0 171 0 0
0.02 0.036 0 221 0 0
0.03 0.030 0 281 0 0
0.03 0.034 0 32(0 0
0.04 0.050 0 4| 0 0
0.03 0.038 0 391 0 0
expand 0.02 0.019 0 41 0 0
0.02 0.021 0 6] 0 0
0.02 0.027 0 6] 0 0
0.02 0.028 0 71 0 0
0.02 0.031 0 6 0 0
load test 0.01 0.015 0 141 0 0
0.03 0.031 0 241 0 0
0.01 0.015 0 131 0 0
0.03 0.065 0 171 1 2
0.01 0.016 0 141 0 0
0.01 0.016 0 141 0 0
getcell test 0.03 0.099 2 41 0 0
0.01 0.015 0 0] 0 0
0.01 0.015 0 0] 0 0
0.01 0.013 0 0] 0 0
0.01 0.013 0 0] O 0
0.01 0.019 0 0} 0 0
drc catchup || 2.18 2.25 1 4| 0 2
1.83 1.86 0 0] 0 0
2.14 2.16 0 0] 0 1
1.87 1.89 0 0] 0 0
2.12 2.13 0 1 0 0
1.88 1.89 0 0| O 0
initialize 5.64 9.71 4 507 | 6 3
5.82 10.38 6 529 | 5 2
5.73 9.99 4 510 | 4 1
6.27 9.68 4 5131 4 1
5.74 10.00 5 512 | 4 1
5.74 9.73 4 517 | 4 1

61

10.
11.

12.

13.
14.

15.

16.

Bibliography

. Berre, Arne J. and T. Lougenia Anderson. “The HyperModel Benchmark for Eval-

uating Object-Oriented Databases.” In Object-Oriented Databases with Applications
to CASE, Networks, and VLSI CAD, chapter 5, pages 75-91, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1991.

. Cattel, R.G.G. “Object-Oriented DBMS Performance Measurement.” In Proceedings

of the 2nd Workshop on OODBS, pages 364-367, 1988.

. Gupta, Rajiv and others. “An Object-Oriented VLSI CAD Framework,” Compuler,

22:28-37 (May 1989).

. Heiler, Sandra and others. “An Object-Oriented Approach to Data Management:

Why Design Databases Need It.” In 24th Design Automation Conference Proceedings,
pages 335-340, 1987.

. Jacobs, Captain Timothy M. OSmagic Programmers’ Manual. Air Force Institute of

Technology, December 1991.

. Jhingran, Anant and Michael Stonebraker. “Alternatives in Complex Object Rep-

resentation: A Performance Perspective.” In Proceedings of the Sizth International
Conference on Data Engineering, pages 94-102, February 1990.

. Kim, Won and others. “Indexing Techniques for Object-Oriented Databases.” In

Object-Oriented Concepts, Databases, and Applications, chapter 15, pages 371-394,
New York: ACM Press, 1989.

Korth, H.F. and A. Silberschatz. Database System Concepts. New York: McGraw-Hill
Book Company, 1986.

Lamb, Charles and others. “The ObjectStore Database System,” Communications of
the ACM, 34:50-63 (October 1991).

Mayo, Robert N. and others. 1990 DECWRL /Livermore Magic Release, 1990.

Object Design, Inc., Burlington, Massachusetts. ObjeciStore Administration and De-
velopment Tools, March 1991.

Object Design, Inc., Burlington, Massachusetts. ObjectStore Reference Manual,
March 1991.

Object Design, Inc., Burlington, Massachusetts. ObjectStore User Guide, March 1991.

Ousterhout, John X. Magic Tutorial #6: Design-Rule Checking. University of Cali-
fornia, Berkeley, CA, 1990.

Ousterhout, John K. and others. “Magic: A VLSI Layout System.” In 21st Design
Automation Conference Proceedings, pages 152-159, 1984.

Sawyer, Charlie and 5teve Turner. Object Design, Inc. Technical Support, June -
October 1991. Multiple telephone conversations.

62

17. Sidle, Thomas W. “Weaknesses of Commercial Data Base Management Systems in
Engineering Applications.” In 17th Design Automation Conference Proceedings, pages
57-61, June 1980.

18. Stroustrup, Bjarne. The C++ Programming Language. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1987.

19. Zdonik, Stanley B. and David Maier, editors. Readings in Object-Oriented Database
Systems. San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1990.

63

