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—9 To quantify the performance abilities of existing or proposed navigation systems, the U.S. Air Force has, for
the last several years, compared the performance of the system under test to the performance of a: baseline
navigation system known as the Completely Integrated Reference Instrumentation System (CIRIS). CIRIS
obtains & highly accurate navigation solution by'combining iaformation from three major subsystems: inertial
oavigation system (INS) information, batometric aititude information, and range and range-rate information
from ground tramnsponders which have been' precisely surveyed. Although the navigation solution produced by
CIRIS is highly accurate, it will soon be inadequate as the standard against which future navigation systems can
be tested. This reseazch proposes an alternative to CIRIS - & hybrid Enhanced Navigation Reference System’

- (ENRS) which is designed to take advantage of a newer INS (the LN-93), certain features of the curtent CIRIS,
and certain features of differential corrections to Global Positioning System (DGPS) messurements. Analysis is
conducted using a Kalman filter develupment package known as the Multimode Simulation for Optimal Filter
Evaluation (MSOFE). Both a large order truth model for the ENRS (in which a full 24 satellite constellation is
modeled) and full- and reduced-order Kalman filters are developed. Results suggest that the proposed ENRS

» (with DGPS aiding) provides a navigstion solution one orde; of magnitude better than CIRIS.
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Pr‘e face

This thesis is the fourth in a series deybted to increasing the accuracy of the
Completely fntegrated Reference Ins.trumentati‘on System (CIRIS) used by the Cen-
tral Inertia,lvGuidance Test Facility (CIGTF), Holloman AFB, NM to validate the
accuracy of inertial navigation'systems (INSs). However, the material contained
~ within these pages is not limitéd only to fhis application. The incorporation of

Global Positioning System (GPS) and Differential GPS (DGPS) measurements ex-
“tends to any INS in production or development through the use of Kalman‘ filtering.
As GPS uSaée expands thfoughout the military and civilian communities, I hope

this thesis provides a s:nall contribution in this area.

As the fourth in a series cf theses, I would be delinquent if I did not mentibn
. the people responsible for the excellent work which proceeded this thesis. Captains
Solomon, Snodgrass, and Stacey all deserve more thanks than I can give them in this
format, so I will just say “well done”. Their previous theses provided the béckbone
from which my‘ DGPS work grew, and I would not have comnpleted one-folur'th' of the

. work I accomplished were it not for their legacy.

I would‘lalsd like to thank Mr Dafwin Abbey and Mr Scott Dance of fntgrmetrics
for takiqg time out of their busy schedule to ex'plain DGPS to an apprentice. The
| DGPS filters within this thesis can largely be attributed to their recommendations,
and [ hope performance is up fo their expectatidns. I can honestly say I am looking
forward to workin'g‘with these gentlemen when I get to CIGTF to further refine the
basic filters contained in this thesis. : | |
Nexi, a feﬁ kind words to th'e gentlemen on my.thesis committee are in order.
Captain Randall Paschall, my advisor, kept me ,“on'coﬁrse” thrdﬁghout this work

and his guidance allowed me to complcté as much work as I did. Thanks, Randy,

for phow)ing me the light at the end of the tunnel: Dr Peter Maybeck, a visionary in - |
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the field of stochastic estimation, gave me the clear insights on filter order reduction
and tuning used throughout this thesis. Without his advice, this thesis would not
be worth the paper it is printed on. Lt Col David Meer and D/Iaj Robert Riggins
" provided their time and enthusiasm over my work when it was needed, and I thank

them for their efforts.

" A special word of thanks must go to Mr Dan Zambon, a man greatly responsible
for my success in completing this thesis. Dan gave me the opportunity to utilize six
different computer s‘ystems and over 300 mega-bytes of storage space for all my
simulations and results. Were it not for his dedicated efforts keeping the computer
systems working at high efficiency, I would never have completed the first Monte
Carlo simulation or tuned the first filter let alone the three thousana Monte Carlo

runs this thesis encompasses.

Also, my parents must also be recognized for instilling in me the need for higher
education. Their support throughout the years made it possible for me to complete
this thesis and earn yet another degree. I am .only‘now beginning to realize how

much their guidance throughout my life has contributed to my current success.

Finally, a word to my wonderful wife Annette. I will never be able to repay
you for the many months you were neglected so that I could complete this thesis.
Your endless encouragement is the driving force making all my successes possible. I
thank God .for giving me someone as special as you to spend the rest of my life with.

Will:am Joseph Negast
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Abstract

To quantify the performance abilities of existing or proposed navigation sys-
tems, the U.S. Air Force has, for the last several years, compared the performanée

of the system under test to the performance of a baseline navigation system known

as fhé Completely Integrated Reference Instrumentation System (CIRIS). CIRIS

obtains a highly accurate .avigation solution by combining information from three

' major subsystems: inertial navigation system (INS) information, barometric altitude

_ information, and range and range-rate informatior from ground transponders which

have been precisely surveyed. Although the navigation solution produced by CIRIS

is highly accurate, it will soon be inadequate as the standard against which future

. navigation systems can be tested. This research proposes an alternative to CIRIS

- a b, %rid Enhanced Navigation Reference System (ENRS) which.is designed to
take advantage of a newer INS (the LN-93), certain features of the current CIRIS,

‘and certain features of differential corrections to Global Positioning System (DGPS)

. .measurements. Analysis is conducted using a Kalman filter development package

- known ‘as the Multimode Simulation for Optimal Filter Evaluation (MSOFE). Both.

"a large order truth model for the ENRS (in which a full 24 satellite constellation is

. modeled) and full- and reduced-order Kalman filters arée developed. Results suggest

that t-h‘e‘proposed ENRS (with DGPS aiding) provides a navigation solution one
order of magnitude better than CIRIS. |
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INCORPORATION OF DIFFERENTIAL GLOBAL
POSITIONING SYSTEM MEASUREMENTS
USING AN EXTENDED KALMAN FILTER

FOR IMPROVED REFERENCE
SYSTEM PERFORMANCE

L Introduction

The Completely Integrated Reference Instruﬁentation System (CIRIS) is a
transponder aided Inertial Navigation System (INS) test reference currently used by
the Air Force for the deyelopment and t(lasti'ng of new aircraft navigation systems
(20:1-1). The Office of Primary Responsibility (OPR) for the CIRIS sylstem is the
Central Inertial Guidance Test Facility (CIGTF), .6585th Test Group, Air Force
Systems Command (AFSC), Holloman AFB, NM. The operation of CIRIS involves
flying the INS to be tested, referred to as the test article, and’ CIRIS through an
aircraft trajectory of interest across a CIRIS transponder range. The data from:
-each system. i's‘ recorded auring the flight and ,corﬁpa'red Yto analyze how well the test
~ article performed. Up to this point in time, CIRIS was considered more accurate
‘thafn the test articles and formed the baseline for determining thg performance of

aircraft INSs.

1.1 Background

CIRIS determines the aircraft’s latitude and longitude with a 1o accuracy of
13 feet(ft) horizontal and 40 ft vertical; the north and west velocity to 0.1 ft/sec
(fps) 1o; and the vertical veloc.ity t'ol 0.4 fps lo (20:1;1:). This accurlacy is due to the

T




Range/Range-Rate System (RRS) transponder aidihg (8, 9). Recently, there have

been a few state-of-the-art aircraft INSs developed (and many more in the design
stage) approaching the accuracy of CIRIS. Interestingly, many of thzse new INSs
use the Global Positioning System (GPS) to increase their accuracy. In order to use
CIRIS as a baseline against these new INSs, CIRIS must be enhanced to provide an

order of magnitude more accurate navigation soiution.

1.2 Problem Definition

By using Differential Global Positioning System (DGPS) measurements to aug-
ment the navigation solution of CIRIS, it should be possible to increase the accuracy
of CIRIS to produce an order of magnitude better estimate of the navigation solu-
tion. Specifically, this thesis concentrates on developing a post-processing FErtended
Kalman Filter (EKF) of 70 states or less to cugment the CIRIS navigetion solution
with DGPS pseudorange and delta-range measurement‘s.‘ An EKF is develbped in-
steé,d of a smoother due to the limited computer storage capacity available. The EKF
is limited to 70 states or less to ensure 24 hour turn-around time for post-processing
real measurements during INS testing at CIGTF. Pseudorange and delta-range mea-

surements are explained in detail in the DGPS sections of Chapter IV,

1}2.1 Summary of ’E’ﬂ'brt.‘ The Navigation Reference System (NRS) filter
Stacey designed (22) is tuned by Monte Carlo analysis and its performaﬁce relative
to CIRIS is analyzed. A 41 error-state reduced-order INS filter model is developed
based o%n the recommendations of Lewantowicz and Keen (10). 97- and 69-state NRS
“lter mpdels are evaluated and compared to Stacey s NRS filter and CIRIS. A DGPS
error model is developed and augmented to the INS ana RRS error mod»ls to form
thé 89-state Enhanced Navigation Reference System (ENRS) truth and filter mod-
els. Finally, a reduced-order ENRS filter of 48 erroi-states incorporating delta-range

and range-rate measurements is designed, developed, and compared to the NRS and
CIRIS. |




1.3 Summary of Previous Research

Previous reséarch at AFIT by Captains Joe Solomon (GE-89M), Britt Snod-
grass (GE-90M), and Richard Stace.y >(GE-91 ) focused on vimproving CIRIS per-
' forrﬁange (20, 21, 19, 22). Solomon modified the CIR!S error model, produced an
extenled Kalman filter designed to enhance CIRIS performance (205, and performed
.preliminary work o the GPS error-state medel (21). Snodgrass evaluated and modi-
fied Solomon’s filter design (19). Stacey augmented the LN-93 bard—altimeter model,
implemented a reduced-order INS error modei, designed high order CIRIS/GPS truth
and filter ﬁxodelé; aTnd developed a Kalman filter to integrate GPS pseudcrange mea-

suremerjts into CIRIS (22).

Capt Solomon concentrated his effort on designing an improved Kalman filter
for CIRIS (20). He used an 85-state truth modei for the L'N-39 iNS and 42 states to
| model'._l_‘() RRS transpoﬁders for a total of 127 states in his full-state truth model. He
designed a 127-state Kalman filter using this design and verified its perfqrmancé using
actual CIRIS flight data. He then developed a reducéd-order 70-state Kalman filter
which pefformed as well as the full-order filter but required much less computational
timé to imblement. In a special study, Solomon designed a 28-state error model for
the GPS syétem assuming stationary satellites (21). Solomon never developed an
integrated CIRIS/GPS filter. |
: Capt Snbdgrass continued the development of Solomon’s 70-state reduced-
‘order'ﬁ!ter (19). - He improved the filter software by modifying the structure of |
the source code, making it easier to change filter barametcrs, thus in~-~asing its
efficiency and capa.bi!it’ies. He _then'tuned various fiter parameters‘\;vi\ipn improved
filter performance. Finally, he designed a fixed-interval smoothing alrorithm to use
as a post-processor to generate the optimal reference ttb.jectory. Snodgrass was never

able to evaluate his smoother due to limitations in time and computer memory.

Cépt Stacey returned to a 93-state truth model for the INS in his thesis when
he incorporated the error-model for a Litton LN-93 INS (11) instead of the LN-39
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INS used by Solomon and Snodgrass (20, 19, 22). He increased this to a 56-stace

model through improvement of the baro-altimeter model by using a four-state model
instead of a one-state model. He then designed a 72-state reduced-order INS model
‘and ﬁltex.' to reduce computational times. He augmented this reduced-order model
with 26 RRS transponder error-states and 30 GPS error-states for a 128-state truth
and filter model. He completed one simulation run with this model, referred to as
the Navigation Reference System. It is important to note Stacey never implemented

GPS delta-range or RRS range-rate measurement equations in his research.

1.4 Research Objectives

This research finishes developing the NRS filter started by Stacey. The full-
order Kalman filter is analyzed and the performance increase over CIRIS is charac- -
terized. Then both the truth and filter models are reduced by decreasing the 72-state
~ INS model to 41 states, thus decreasing the full-order truth and filter models to 7
stla,tes from Stacey’s 128 states. This decrease is necessary for a timely completion
~of this thesis arnd matches the results of the higher order truth and filter models

developed by St.acley (22).

An Enhancgd Navigation IReferenc: S;."stem (ENRS) is then developed. The
ENRS augments sta.nda?d CIRIS wit’ PGPS ;:seu(iomnge and delta-range measure-
ments. The ENRS is' evaluated again'st the NRS as well as CIRIS to show the
performance increase available from augmenting CIRIS with DGPS measurerﬁents.
By-inci‘easing accuracy using the ENRS, the polsitio'n and velocity estimates are more

accurate than the current CIRIS’s navigation solution.

The following objectives are based on the statement of the problem as pre-

sented in the previous sections.

1. Perform 10-rur Monte Carlo analysis on the 128-state NRS filter designed by
Stacey (22). Compare these results to CIRIS performance and show the increment in

N
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performance possible with the NRS. This analysis complétes the work Stacy started

on this full-order filter and completes all of the stated objectives in his thesis.

2. Decrease both the truth and filter models of the INS down to 41 states from
the 72 states Stacey implemented. Show this reduced state truth model calculates
position, velocity, and attitude error-states with no discernible diffcrence from the

93 error-state INS model (one baro-state) but reduces computational times greatly.

3. Develop a new full-order NRS EKF incorporating the above reduced-state INS
- truth model.‘l This 97-error-state filter’s performance is compared to CIRIS as well as
. Stacey’s 128-erfor-state NRS filter. This proves that the navigation solution accuracy
of CIRIS can be irhproved,with the incorporation of GPS pseudorange measurements.
A 69-error-state reduced-order NRS ﬁltler is implemented and its performance com-

pared to CIRIS, Stacey’s NRS filter, and the 97-state full-order NRS filter.

4. Develop a DGPS error-state truth model. This model is similar to the GPS
truth model but produces less variance in the position estimates due to removal of
most of the atmospheric and ephemeris errors and ('liminatioﬁ of the space vehicle
(SV) clock errors (1, 5, 18).

5. Design and irﬁplement an ENRS ERF using the above DGPS truth model and *
' -the CIRIS truth model which has been prt‘vmuqu developed (20 19, 22). I‘Ins 89-

state.full-order filter differs from the 97-state NRS filter only by a change in the CPS
states due to implementation of a DG Ps model. The performance of the ENRS ﬁlu-

is compared to CIRIS and to the NRS filters to show the position accuracy improve-
ment posslble with the incorporation of DGPS pseudorange measurements, Then a

48-error-state reduced- ordor ENRS filter is dc-w loped to reduce computational times




while maintaining accuracy. Its performance is compared to CIRIS, Stacey’s

NRS filter, and the 97- and 69-error-state NRS filters described above.

6. Design and implement DGPS delta-range and RRS range-rate measurements into
the 89-state ENRS truth model and the 48-state ENRS filter to improve the velocity
error estimation. Show the velocity estimates with this filter are more accurate than

CIRIS and the 48-state filter above having no velocity measurements.

7. Compare the accuracy of the 48-state ENRS filter to all previous filters. This
comparison shows the reduced-order ENRS filter with delta-range and range-rate
measurements outperfonﬁs all the NRS filters and has an order oi magnitude in-
crease in position-error accuracy and an increase in velocity-error accuracy over the

CIRIS névigation solution.

1.5 Research Approach

Before any filter analysis can be accomplished, the Multimode Simulation for
Optimal Filter Evaluation (MSOFE) software package must be thoroughly under-
stood (3). MSOFE, as used in this thesis, propagates and updates the 'EKF and
also ;')ropagates the truth model of the system. As in Stacey's thesis, a two-hour .
fighter flight profile is. used to generate the tvruth modolifor cach analysis (22). Once
MSOFE is mastered, filter evaluatién and tunir;g is accomplished. Chapter il con-
tains an overview of the EKF and also describes filter order reduction and tuning..

. The remainder of this section. gives a brief overview of the approach to completing

each of the research objectives outlined in the previous section.

1. Stacey's truth and filter model is‘-.f\'alunatvd using 10-run Monte-Carlo analy.

sis and the NRS filter performance is compared to CIRIS to show the increase in
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navigation solution accuracy possible by incorporating GPS pseudorange measure-
ments into CIRIS. Stacey’s NRS truth and filter models are described in Chapter I11
and the results are analyzed in Chapter V. |

2. Stacey’s tn,xth and filter models are based on 128 error-states. It presently takes
over 18 hours for a single MSOFE one-run analysis to be completed for a 2-hour
simulated fighter flight trajectory. A 10-run Monte Carlo analysis is considered the
minimum which should be completed beforé any reasonable estimate of filter perfor-
mance can be eValuated. Decreasing the INS truth model from 72 states to 41 states
allows a 10-run analysis to be completed in only 4 days. However, for the 41-state

INS model to be considered adequate, it must provide a irue navigation solution as

accurate as the full LN-93 93-state INS truth model. Using MSOFE and the rec- .

ommendations of Lewantowicz and Keen, the 41-state INS truth model is evaluated

against the 93-state INS truth model showing almost identical performance (10).

“The reduction of INS states is explained in Chapter III with results in Chapter V.

3. Once the INS truth model is reduced, new full-order 97 error-state NRS truth
and filter models are developed. A 10-run Monte Carlo analysis is 'perfqrmed on the

. filter and the results are compared to CIRIS and Stacey’s NRS filter. Since four days

is still a long time to wait for results and the objective of this thesis is to develop a

filter of less than 70 states, a 69-state reduced-order filter is implemented by‘elirr'\i- .

n'aiing all but two GPS error-states (the receiver clock states). This filter completes
a 10-run Moh;e-Carlo analysis in 36 hours, but with proper tuning (see Chapter I1)

produces a navigation solution just as accurate as Stacey’s N RS filter or the 97-state

NRS filter described above. The work in this section provides a baseline to analyze

how well the DGPS model i)elfforms. The filter reduction is explained in detail in

'Chépter HI with the analys;is of filter performance presented in Chapter V.
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4. The DGPS model is very similar to 1he GPS model developed by Stacey. The
diﬁerencgs lie in the fact that the SV's clock error is totally eliminated while t.hel
atmospheric and SV ephemeris errors are greatly reduced. A complete discussion of
DCPS as well as a detailed analysis pf the 22 error-states which make up the DGPS

error model are given in Chapter 1V.

5. The 89-state truth and filter models in the full-orde} ENRS are only different
from the 97-state NRS models discussed above by the change in the number of GPS
error-states when using DGPS. A 10-run Monte Carlo analysis is performed and the
results discussed in Chapter 1V. Then, in order to meet the 70-filter-state rcqlnir(;-
ment and reduce the 10-run time to less than one day, a 48-state filter model is
implemented by again eliminating all but two of the DGPS error-states (the two
clock s'tates) and 21 more INS states according to the recommendation of Lewan-
towicz and Keen (10). This 48-state filter is discussed in Cﬁaptor IV with the filter
results presented in Chapter V.

6. DGPS delta-range and RRS range-rate measurements are both needed if the ve-
locity error estimates of the ENRS filter are to be more accurate than CIRIS which
uses range-rate measurements alone for velocity aiding. The theory prcsent(-d behind
delta-range and range;-rate measﬁrements is given jn Chapter IV. A DGPVS-I'NS filter
of 22 error-states (no RRS) and RRS-INS filter of 46 error-states (tio DGPS) are.
used to tune the vglocity- aiding mca.snremehts‘ separately for optimal performance
using a 10-run Monte Carlo analysis. The results of these two filters are presented

in Chapter V.

7. Finally, delta-range and range-rate measurements are incorporated into the 48-

state ENRS filter to complete the ENRS. A 25-run Monte Carlo anélysjs is performed
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for a final comparison against all previously discussed filters. The results of this com-

parison are presented in Chapter V.

1.6 Assumptions

Because of the lack of perforrﬁance of Stéxcey's 4-state baro-altimeter model,
the Litton 93-state error model using one barc-altimeter state is consibdered the true
error model of the INS subsystem of CIRIS. The 41-state error model implemented
as truth in this thesis is shown to be a very close approximation to the 93-state
LN-93 error model. Snodgrass’s RRS error model is used as the truth model for the
~ RRS subsystem as it was implemented in Stacey’s thesis (19, 22). Finally, Stacey’s
‘GPS error model ‘derived from articles by Cox (4), Martin (12), and Milliken and
Zoller 17) is considered adequate to use as a starting point for the DGPS subsystem
for the ENRS. | |

1.7 Opverview of Thesis

. Chapter 11 provides a brief description of the EKF theory used in this thesis.
Filter order reduction and tuning are also presented. Chapter II [ errviews the NRS
developed by Stacey An explanation of the procedure used in reducing the INS
error—state model from 72 to 41 states is given. The 97-state N RS truth and filter

models and the 69-state reduced-order filter model a.re.explamed. Chapter IV begins -

with an e’xplanat.ion of the ENRS. DGPS principles and error-states are presented.

Detailed analysis of the DGPS full-state truth and filter models are shown along thh ‘
the development of the reduced-order ENRS EKF and the delta-range and range- p

- rate meesurement equatnons. Chapter v discusses the results of all the Monte Carlo
analyses of the above EKFs. Chapter VI contains the conclusions drawn from the
work presented in this thesis. A summation of the overall performance of the NRS

and ENRS ﬁlters is given. Recommendations for further rmearch in this area are
also addressed




II. Ezxtended Kalman Filtering

2.1 Overview

This chapter refamiliarizes the informed reader with the extended Kalman filter
(EKF) dynamics, measurement, propagation and update equations as they pertain
to this thesis, and discusses filter state reduction and tuning. The reader who is
not familiar with Kalman filtering is directed to Maybeck’s textbooks on stochastic
control in which robust derivations of the EKF equations and discussions of state

reduction and filter tuning are presented (14, 15, 16).

2.2 The Eztended Kalman Filter

When both the dynamics and measurement equations of a system of interest

are constructed using a linear combination of the states modeled, a linear Kalman

~ filter can be develoged. Hcwever, the error-state model for this research is not a

linear function of the error-states in either the dynamics or measurement equations.
Because of this, a linearized Kalman filter of some form must be used. The lin-
earized Kalman filter implemented here is the eztended Kalman filter, which allows
relinearization at each measurement update time. The equations describing the EKF
used in this research are derived from a nonlinear continuous-time dynamics equ@tion
(14): | 4 | o
- x(2) = f[x(£),1] + G(O)w(t) . @.1)

In this case, the state dynamics matrix f[x(¢),¢] is a nonlinear function of the state

'vector x(t) and time ¢ . For this thesis, G(¢) =1 and the white Gaussian noise

w(t) is defined with mean:

m, = E {w(t)} =0 ¢ £



and noise strength Q(t) of:

E{w(tywT(t + .T)} = Q(1)é(7)  (@3)

In addition, the discrete-time measurement equations z(t;) are also a nonlinear func-

tion of the state vector and time (15):
2(t) =hx)tl+vt) 0 (249)

The discrete-time noise vector v(t;) is also zero-mean and its covariance is described
by: ay
1 R(t) for ti=t; L
E{v(tv7(t;)} = ST R T (28)
0 for ti#1¢; '
A system must be linear in order for the Kalman filter to yield the “optimal” state
estimates, so the nonlinear Equations (2.1) and (2.4) are linearized by the method
given in Mayveck’s Volume II ( 15). A nominal state trajectory, Xa(t) is generated
satisfying X.(fo) = xn, and o '
| Xn(t) = £xn(t),1] | | (2.6)
where f[x,(t),t] is specified in Equa.tfbn (2.1).- The nominal measurements are
defined as: ‘ ' : o
o m () =hba(t) 6] e
The “perturbation” of the states are obtained by subtracting the nominal trajectory

(Equation »(2.6)) from the original nonlinear dynafhiés equation (Equation (2.1)):.
fe(t) - *ﬂ(t}l 0, () )+ GO ) (28)
The equation above is approximated to first order by a Taylor series expansion:
Sxa(t) = th;s‘:;_(tn s Gowe) . (29)

22




where 6x(t) represents a first-order approximation of the process [x(t) — x,(t)],
and F[t;x,(t)] is a matrix of partial derivatives of f[x(t),t] with respect to x(t)

evaluated along the nominal trajectory x,(t) (15):

Flta(t)] = A1), 4 (2.10)

S ox =Xn(t)

The perturbed discrete-time measurement equation is derived in like fashion and is
expressed as (15):
621\( H[tuxn )]+V ' (2'11)

where

' Oh(x(t:), )
Hti;xa(t:)] = , 2.12
[ X ( ) 6x X=Xn(ti) ( )

The nonlinear continuous-time dynamics and discrete-time measurement equations
have now been successfully converted to linearized “error-state” equations. Estimates

of the whole-valued quantities of interest are calculated from (15):
R(t) = xa(t) + 8x(t) ' (2.13)

The expression above for the linearized Kalman filter is useful provided that the
linearization assumption is not violated. However, if the nominal and “true” trajec-'
tories differ by too large an amount, unacceptable errors may result (15). It is for this-
reason that extended Kalman ﬁlterin'g‘ is useful in many cases where perturbé;.tion
techniques alone do not suffice. Extended Kalman ﬁltefin.g allows for relinearizing
abcut newly declared nominals at each sample time, to enhance the adequacy of the

linearization prdcess, and thus of the resulting filter perfofmance as well. (22)

Discrete-time measurements are incorporated into the EKF by the following

state equations (15):

K(t) = P HT (%067 )| {HICH&(E PG HT(RE] +R(E)} T (2.14)




R(tH) = R(7) + K(t) {z: - bR (0)]} (215)
B() = PU7) — K HIREDIR(E) (2.16)

where ah' |
() = SR (.17

The state estimate and covariance are propagated from t; to ¢;;; by integrating the
following equations (15):

| X(t/t:) = f[R(t/t:), 1] (2.18) |

B(1/t) = FIER(/6)IPE/4) + PURFTIER(/)] + GHQWGTE)  (219)

where ‘ ' |
Fit(e/t)] = 20t ‘ (2.20)
) . . ax . x=X(t/t;) '
and the initial conditions are:
x(t:/t:) = X(t}) o (2.21)
P(ti/t;) = P(t]) , - (222)

The EKF equations given are programmed in MSOFE for optimal error-state de-
' termination. It is importanf to point out MSOFE uses the U-D Fac£ored form of -
the update and propagation equations (3). A complete development of linear and
lihéarized/extended Kalman filters is given by Maybeck’s Volumes 1 and 2, respec-
tively (14, 15). An extensive explanation of Kalman filtering as lt pertains to this
: researlch is given in Chapter II of Stacey’s thesis, and the information present‘ed in

 this section is paraphrased from it (22).




2.3 Filter Order Reduction

When an engineer is faced with the task of designing a Kalman filter for a
system with a large state vector, it sometimes becomes desirable or necessary to
decrease the number of states modeled in the filter, often referred to as “filter order

reduct’on.”

How and why the filter is to be utilized are important considerations
in setting the final number of states modeled. As an example, a filter which is
implemented off-line on.a large mainframe or supercomputer can incluae a larger
number of filter states than a ,ﬁlfer implemented on an 8-bit aifctaft‘ navigation
computer operating real-time to estimate INS position and velocity errors. Even in

the case of this thesis, where a post-processing filter is developed to run off-line on

a Hewlett-Packard minicomputer, time considerations limit the filter to less than 70

states (a 10-run Monte Carlo analysis of a 2-hour flight trajectory must be completed

in 24 hours or less). Proper choice of states from the truth model is critical to ensure
accurate position and velocity error estimates. The next few paragraphs offer some
general recommendations for filter order reduction with a bias toward the work

performed in this thesis.
A good starting pointl for filter order reduction is determining which states can-
not be eliminated. For example: the position, velocity, attitude, and baro-altimeter

sté.tes are the 10 states of interest for an INS and cannot be considered for elim-

ination (assuming they are.observablg) (14); Those readers familiar with aircraft

'Kalman filters notes that these states compose the bulk of the states used in aircraft

navigation filters. However, the other 83 states which compose the full-order LN-93 -

INS efror model are states which are not directly of interest, but contribute to the
position, velocity, and aftitude errors (see the ,dnscﬁssion of ‘Stacey’s INS model in
Chapter III). Which of the 83 states can be eliminated? A smart engineer starts by
conducting a literatiire search on the type of model he is implementing and analyzes
'the work previously accomplished with goéd results. The paper by Lewaﬁtowicz and

Keen (10) is a good example for this thesis. It pr'esentsl‘four different reduced-order
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filters for the INS ranging from 41 states down to 17 states, all performing reason-
ably well. This paper forms the basis for both the truth and filter state reductions

executed in this thesis.

What happens when there is no literature on the subject? The engineer must
then analyze the states mathematically or use software tools such as MSOFE (3).
Normally, the time and frequency respons'e of the states anle determined. Then, states
with negligible magnitudes.ban be eliininated, or they can be combined with those

of la.rgér'magnitudes and similar frequency responses. Note that filter “tuning” is

often necessary when states are combined or eliminated, and this subject is covered -

in the next section. The engineer must be extremely careful when performing state
reduction to ensure that accurate state estimates of the quantities of interest are

maintained.

A filter analysis tool such as MSOFE also helps the engineér in other ways than
those expressed above (3). When a full-order filter’s state estimates are compared to
. the trut‘hl model of the system, sometimes even a well-tuned filter provides estimates
of states that do not adequately follow the true states dynamics. Normally, this lack

of filter performance in estimating states can be attributed to a lack of observability

of the states (14). Maybeck states that it is improper to include unobservable truth

model states in the filter design model (13). Examples of this phenomena in this .'

thesis are the GPS space vehicle (3V) position errors (see Appendices D.,‘ E, and
G). The filter’s covariance_valueél for these states show an adequately tuned filter.
However, the ﬁlt\er’s state estimates never follow the true error states due to a lack
of observability of the states. MSOFE allows the engineer'to perform Monte Carlo
or covariance",aﬁnaiysis on the filter and accurately assess its state estimation per-

formance under a wide range of conditions. Maybeck recommends using covariance

analysis on linear or linearized Kalman filters because enly one simulation run is re-

quired to determine the true states covariance (14). However, this one simulation run

takes a much longer time to complete when '-l_arg,e dimension filters are implemented
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and is not as useful for an EKF implementation, both satisfied in this thesis. Monte
Carlo analysis provides quicker results if many-run analysis is not used, though not

it is not as accurate as the covariance analysis. Often filter designers use 1- to 5-run

- Monte Carlo analysis at first to get quickly “in the ballpark” and then use covariance

analysis to determine true filter performance. Only Monte Carlo analysis is used in

this thesis due to time constraints and the implementation of an EKF.

A brief discussion of filter order reduction has been given. The general proce-
dure used to eliminate filter states successfully in this thesis has been outlined. This
procedure is by no means all inclusive, but should give the i'nexperienced engineer a

foundation for performing filter order reduction.

2.4 Tuning Kalman Filters

When the truth model of a system of interest is composed of linear dynamics

and measurement equations, a linear Kalman filter based upon this system proves’

to be the “optimal” estimator by almost any criteria (14). When a full-order filter
of the truth model is implemented, the dynamics and measurement noises used to
construct the filter (similar to the noises used in the nonlinear filter derivation given

previously) would normally match the truth model noises. However, when filter

.order reduction is pbrfqrmed on this linear filter, the noise strengths may have to be

adjusted to comi)ensate for the missing/combined states. Along similar lin , whena

' linearized/extended full-order Kalman filter is implemented to simulate a nonlinear

system, the noise strengths again may have to be adjusted in both the full-arder and
reduced-order filters to compensate for the approximations used in implementing

linearized equations to model a nonlinear system and for the reduction /combination

. of states. This filter rioise strength-adjustment, or “tuning”, is overviewed in the

next few paragraphs as it applies to this thesis.

The dynamics and measurement equations used in this research have been

shown previously (Section 2.2). The closer the full-order filter approximates the
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truth model, the less the noise strength Q(t) and covariance Ryt;) are adjusted

(normally increased) to compensate for nonlinearities in the true dynamics. For the
full-order filters implemented in this research, there are three main reasons why the

dynamics noise strength Q(¢) on some of the states needed increaéing.

* The first reason occurs when states which have noise (or have no noise) associ-
ated with them in the truth model need increased noise (or some noise) in the filter
model to track the dynamics of the true state adequately. Adding noise increases
the uncertainty of the filter-assumed state’s dynamics to compensate for noniineftr
" behavior or to keep the Kalman filter gains in that channel from going to zero. Usu-
ally the states in the filter needing this ‘type of noise adjustment are the states wh:ch
" are not part of the measurement equation. In this thesis, some of the IN S states not
part of a measurement equation need a small amount of added noise to compensate
for nonlinear dynamics. If the states are not directly part of the mea.éurementéi;ua—
tion, and the dynamics equations do not totally describe the true states behavior,
‘the EKF has difficulty estimating these states. Tke noise increase/addition is" not
large, just enough to increase the uncertainty in the dynamics equation to account

for using a linearized/extended Kalman filter (14).

" The second reason that dynamics noise needs to b~ added into a filter model
occurs when the ﬁlter variance of a state goes negative. Maybeck states that this
numPncal dxfﬁculty is a normal occurrence, when the range of numbers the filter
estllmates is large as mlthus filter when some of the INS states are on the order of 1.0e-6
and the GPS clock bias state is ‘often 1.0e10 (14). The problem of negative variances
arises due to., the limited numerical precision of coraputers which must multiply high
order matrices together. True state variances _Which showed this tendency often have
a value of 0.0 in phe truth model, and the filter does a good job of estimating the
state, but the'variance often goes negative. A small amount of added'noise in the‘
. filter keeps the variance of the state positive and does not ‘degrade the filter's state -

estimate,




The third and final reason why dynamics noise is added involves filter order

reduction. States are eliminated in the INS model: states which do not show up
_directly in the measurement equations, but which impact the states which are part
of the measurement equations. To compensate for the eliminated statc"s,b the noise in
the states they affect is increased. The noise increase is small, since the eliminated
states all have small magnitudes, but is hecessdry to ensure a well-tuned filter. In
this thesis, the first two INS states in the reduced-order filters relating to latitude
| ;md longitude need a small amount of noise added into the filter to compensate for

the elimination of INS states.

There are two reasons why the measurement noise covariance R(¢;) is adjusted
in the filters. The first reason is the same as why the dynamics equation noise is-ad-
justed upward in the full-order filters, to increase the uncertainty in the measurement
equations due to using linearized equations to model nonlisiear systems. Remember,
the EKF only has access to measurements which are a combination of states, not to

the states themselves.

The second reason for increasing the measurement noise R(t;), and the‘ most
important and time consuming reason for increasing noise in these filter models? is
due to filter order reduction. When states are eliminated in the filter model which
are part of the measurement equalion, it is necessary to'increase R(#;). This increase
in noise is often not small, as some ellmmated states have large covariance values.
A good starting point for this noise increase is to add the variance of the eliminated
states from the full-order model to the ongmal variance of the measurement nolse.

| (13). If this is done progress:vely for each eliminated state, the resuli:ng R(;) is

often very close to what is needed for a well-tuned filter.

An overview of how and why filter tuning is performed in this thesis is given.
Once again, these procedures are not universal to all Kalman filter tuning. They
are basic veasons why Kalman filters need to be tuned, and any engineer involved in

Kalman filter tunmg needs to be familiar with. them.
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2.5 Summary

Thi: chapter gives a summary of the Kalman filter techniques utilizéd in this
thesis. TlLe general EKF equations, filter order redliction, and ﬁlter.tuning are
Iexai::ined, with a bias toward ho§v they were accomplished in this thesis. A more
detaled derivation of Lhe EI\F equations as they pertéin to this research can be
found in Stacey’s thesis (22). Now ihat‘ the basic theory is covered, the NRS truth

and filter models are described in the next chapter.
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IIL.. The Nawigation Reference System (NRS)

8.1 Overview

This chapter ovérviews the Litton LN-93 error model and the NRS developed
by Stacey (22) along with the 97- and 69-state NRS models implemented in this
thesis. First, the original Litton LN-93 error-state model is overviewed. Second,
Stacey’s INS, RRS, and GPS models‘are briefly described since they form the basis
for all the other models and filters in this thc;sis. Third, the steps used to reduce
the 93-state INS error-model to 41 states while maintaining the accuracy of the full
93-state model are explained. Fourth, a 97-state NRS model incorporating the new
41-state INS truth model is described. Fir.lally, a €9-state reduced-order NRS filter

_is described. For a detailed explanation of Stacey’s NRS, refer to Chapters 3, 4,"and
5 of his thesis (22). | | |

8.2 The 93-State LN-93 Error Model

This section overviews the original 93-state Littql'x INS error model (11). Six
categories of errors are associated with this error model. The first category represents
the'“gen'eral” error-states, states which are gonibinations of several other states in
the error model. Position, velocity, platform’ tilt, ’and vertical channel errors are
in this‘category. The second categofy of errors consists of states described by. first-
order Markov processes. Both the gyros and accelerometers have exponentially time-
correlated errors, and the buo@ltimeter state is also included in this group. The |
third and fourth categories of error states are the gyro and accelerometer bias errors,
respectively. These states are modeled as random constants in the truth model. The
fifth category of error states are again first-order Markoy processes modeling the
gyro and accelerometer thermal ltmnsiont‘s. Fir'xally; the last category of error states

are gyro compliance errors modeled as random constants. The following equation
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describes the overall 93-state error model using the six categories of states (22):"

sx =[x, 6x,T x,T 6x,T 6x.T 6xsT |7 (3.1)

where é6x is a 93 X 1 column vector and:

6x"

éx,

8x,

ox,.

bxs

represents the “general” error vector containing 13 position, velocity, attitude,

and vertical channel errors.

consists of 16 gyro, accelerometer, and baro-altimeter exponentially time-correlated
errors, and “trend” states. These states are modeled as first order Markov pro-

cesses in both the truth (systém) model and in the Kalman filter.

represents gyro bias errors. These 18 states are modeled as random constants
in the truth model and are modeled as random walks (with small magnitude

pseudo-noises) in the Kalman filter.

is composed of the accelerometer bias error states. These 22 states are modeled

in exactly the same manner as the gyro bias states.

dépicts accelerometer and gyro initial thermal transients. The 6 thermal tran-

sient states are first order Markov processes in the system and Kalman filter.

models the gyro compliance errors. These 18 error states are modeled as biases

in the system model and as randony walks in the Kalman filter.

~ The truth model system state space differential equation is of the form:

| 6%, 1 [ Fu Fi2 Fyy Fiu Fis Fis | [ 6x, 1 (W, l
65, | | 0 Fn o/ 0 0 o || éx, w,
6%, o 0o o 0 0 O 6%, 0
N L t + 4 - (3.2)
ox, 0O 0 o0 o o0 O éx, 0
6*5 0 0 ; 0 0 FM 0 6X5 0
léx ) [ 0 0 o o o0 o0 ]){éxs) | O]
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Appendix A, Tables A.1 through A.4, contains a full listing of the 93 INS error states
as well as the RRS (Table A.5) and GPS (Table A.6) states which are explained
in later sections of this chapter. Appendix B, Tables B.1 through B.10 coatain the
non-zero entries of the LN-93 error-state dynamics matrix F(t) and tixe the dynamics
equation noisg strength matrix Q(¢). Stacey’s thesis dgscribes the LN-93 error states'
in more detail including the mathematical models of first order Markov processes,

random constants and random walks used in all the truth models and filters (22).

3.3 Stacey’s 128-State NRS Model

, This section overviews the NRS‘model Stacey developed in his thesis (22).
- Stacey only performed a single Monte Carlo run on this filter, am‘i its performance
was inéonclusive. This thesis analyzes Stacey’s 128-state filter using 10-run Monte
Carlo analysis. The results of this analysis can be found in Chapter V with plots of
filter performance in Appendix D.

3.3.1 The 72-State LN-93 Error Model. Stacey used the Litton LN-93 error
state model as the basis for the work performed in his thesis (22). However, Stacey
recognized the iﬂadequacy of the a baro—altiméter statein this model and designed a
4-state baro-altimeter error model (22) to implement as the truth aﬁd filter models in

‘his thesis. This increased the INS error model to 96 total error states. Un_fortunﬁtely,
Stacey’s fo;xr-state baro-altimeter model never performed up to expectations, and the
ENRS designed in this thesis returns to a smgle baro-altimeter state (22). Tables

" A.l1 through A4 in Appendxx A list t'le 93 INS error states.

When Stacey merged his 96 state INS model with the 26 state RRS model -
and the 30 state GPS model, he found the VAX III workstations he was using did
not contain enough memory to compile and link the 152-state Fortran code. le

. knew Soloraon had suvccessfully executed code with 127 states, so he reduced the
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. INS model by 24 states, mainté;ining the 93-state error performance, bringing the

total error model to 128 states (20, 22). Stacey eliminated the last 24 states in the
INS model and then ran simulations to prove the position, velocityl', and attitude
errors were essentially the same as in the full 96-state error model. At this point,
Stacey declared this 72-state INS model to be the truth and filter models in his
analysis (22).

3.3.2 The 26-State RRS Error Model. The Range/Range-Rate System (RRS)

_is a navigation aiding system which comprises a significant part of CIRIS. Conse-

quently, the RRS is used in both the NRS and ENRS. Navigation -information is

obtained by “interrogating” ground transponders and subsequently processing the

~ electromagnetic (EM) signals which the transponders emit. The information ob-

. tained allows high quality range and range-rate measurements to be calculated by

the RRS interrogating hardware (19). Using these range and range-rate measure-

" ments, updates to the NRS. posmon (and ENRS position and velocity estimates) are

then possible.

Solomon, Snodgrass, and Stacey each have given detailed explanations of the
RRS error-states and the range measurement equation (20, 19, 22). This section
reviews these topics to acquaint the reader to the dynamics and measurement equa-

tions. The range-rate measurement is explained in the next chapter when the

. ENRS is developed. The following sections have been excerpted from Chapter 4

of Stacey’s thesis, and the reader should review his thesis if a detailed explanation

“of the Range/Range-Rate System (RRS) is needed.

3.8.2.1 RRS Model Equations. The RRS error state vector is c':orr_x'p'osed '
of 26 elements (shown in Table A.5, A'ppéndix A). The RRS states occupy mmibersV
Sins +1 through S, ~3+26 in the complete error state model, where S, represents
the total number of statos used to model ‘the INS subsystem in the truth model

The first two RRS states are slmple random constant (blas) states which model

N
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the effects of user hardware (RRS interrogator) range and range-rate calibration
errors, respectively. Coupling of these states into the RRS measurement equation is

presented in the next subsection. The error state model equation for these states is

(19):
T 00 Ty
ol ’ (3.3)
.’i‘(,,, 00 Thy
where
Tpy = range equivalent of interrbgator bias
Tpy = velocity equivalent of interrogator bias
The initial state estimates and covariances for these states are (19):
Zor(t 0 ‘
i (o) 1 _ | - (3.4)
Iw(to) 0
and
/8 0 .
Py s(to) = (3.5)

0 1074ft3/sec?

While the two states discussed above are common to all RRS measurements,:

there exist two sources of errors which are unique to each individual ‘tr'ansponder.
First is the error due to transponder surveyed‘ position uncertainty (x, y, z compo-
nents in earth-centered earth fixed ( ECEF.) frame (2)), and second is the error due to
atmospheric propagation deiays 'between the user and each individual tranqundei‘.
The three position error sources are well modeled by tandom bias states and the

atmospheric error states are represented by first order Markov processes. Then for
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each transponder, four states are used to define error sources (19):

¢ ‘j’.'. 3 - 0 o 0 0 ¢ 2 Y r‘ aw,,
..' 000 0 s Wy,
¥t SRS ( 6)
é; 000 O 23 w,,
{ ‘6Ratm.' J i 000 "‘l.; 11 aRatm.- ] | Watm; |

The subscript ¢ in the equation above denotes the i** transponder and 7 = 300 sec

is the transponder atmospheric error state time constant. The initial conditions for

these states are (19):

[o5/2 0 0 - o
0 o25f2 0 0
Pz.y.z,atm(t‘o) = . (38)
0 0 25 0
0 0 0 :00(PPM) |

and .
E{wz.y;:.atvv‘t}=0 (39) '
000 0 |
: ' : 000 O
E{Weysatm(1)Wz g s am(t 4 7))} = 8(r) (2.10)
-. ' 000 0. |, .
000 *un
300 . p

with o2, = 10719 ft2. Equations (3.3) throu.gh (3.10) were developed by the Cubic
Corporation, designers of the RRS system for CIGTF, and are based on real static

. and dynamic mea.suremént analysis of the RRS (20). Once again, the set of equations ,

above (Equations (3.6) through (3.10)) apply to a single t.ra.hsponder.' There are six
such sets of equations fcr RRS transponders which are used in this thesis. The

'cdmplete RRS error vector is specified in Appendix A. '7
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3.3.2.2 RRS Range Measurement Equation. In CIRIS, RRS range mea-

- surements aid in estimating positiou errors of the reference INS. The RRS range

measurement is derived from the time delay detected between the time at which the

reference hardware (CIRIS or NRS) sends an interrogation signal and the time at

* which a reply from the transponder is received. This temporal difference is multi-

'- plied by the speed of light (and divided by two, to account for the “round trip” of
the EM signal) to obtain an uncorrected range measurement. Correction factors are
then applied in order to compensate for delays introduced by the propagation of EM
signals through the atmosphere and to correct for errors introduced by equipment
calibration biases (19). The uncorrected range measurement as obta:ned from RRS

is modeled as:

" Rpps = R+ 8Ratm + 6Ry, + v (3.11)
where
R..s = RRS range measurement, from transponder to user
R; = true range, from transpo~de: to user
6Rym =  range error due to atmospheric delay
§ Ry, =  range error due to equipment calibration

v =  zero-mean white Gaussian measurement noise

Equatxon (3 11) is a model for the range as determined by the RRS truth
model. It includes the true range (Wthh is never precnsely known) along, wnth terms

' whlch reflect the sources of error discussed in the previous subsection.

3.3.2.8 Range Calculation From iNS Data. In order to fbrlmulate, a dif-
ference measurement as shown in Chapter 11, two sources of range information must .
be obtained. The first is the RRS range measurement which is modeled by Equa-

tion (3.11). Another range indication is computed from the INS indicated position
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and RRS (surveyed) positions. (Both the indicated INS position and transponder
surveyed position contain uncertainties which must be considered.) In this approach,
the user (INS) indicated position is represented by an R® vector expressed in the

Litton ECEF coordinatcs as:

_ Xy =1 v, (3.12)

while the true RRS transponder position is represented in the Litton ECEF frame
by:

X, ={y, ' (313
Zr

Then the calculated range from the user (INS) to the transponder is given by:

R zU xT ) ‘
Rms X, - 'x'r = ' Yv - Yr (3'14)
2z, z;
Equation (3.14) may be rewritten as:
Rivs = oy — 2. ) + (0o — 40 + (20 — 2, (3.15)

If the nonlinear equation above is “perturbed” to reflect: uncertainties in user and
transponder positions, then a first-order Taylor series may be written to approximate

the range (2, 14). The truncated first-order series is of the form (20):

OR,s(X;,X,)

Rms. B R_‘ ¥ X, (X7 Xy Jnom - '(er
OR (X, X)) .

.- 86X 3.16

X, ' (X7 Xy Inom i : : ( )
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After substituting Equation (3.15) into Equation (3.16) and evaluating the partial

derivatives, the INS-derived range approximation becomes (19, 20): -

T,—I

Rys = R - vl 6z, - ———yf'yv]-s [ZT" ] 5z,
‘T [mml] i [lﬁ’msl Yu 1Ryws|
z ] 2y —
+—T————]6x +[T ]6;, +[’ ]& 3.17
[Ile T B T 3 (3.17)

At this point, the diﬂérence measurement may be formed as:

bz = Rms - Rnns
Tr — Ty |
— Y . .

[ | R, ysl ] v IRmsl ] [ IR ysl ] i
- Yr — Yy zZ,—z

+ [e= v]_éx +[T c]_5 +[ u] 2,
[ Rosl |77 Rosl |77 7 1Rl

— [1]6Rstm — [1]6Ry, — v : (3.18)

The range measurement noise v has been determined to have a variance of 4 ft? in
the truth model when RRS range measurements occur at 6 second intervals (20, 19).
Note that the true whole-valued range { R;) formerly rresent in both individual range |
_measurements is cancelled in the differencing operation (2, 14). Also note that the
bracketed coefficients in the equation aBove appear in the H matrix presented in the
EKF update equations overviewed in Chapter II IAlso note that the measurement
equations must be implemented in a single ;oordina.te frame, the Litton ECEF frame
being the frarjxie‘ of choice in this thesis (11)." Although not presented in this thésis,
Capt Stacey does an outstanding job of deriving the necessary @rdinate frame

transformations to implement all the measurement equations in his thesis (22).

3.9.3 The 30-State GPS Error Model. GPS is design'ed to be a highly accu--
rate, stand-alone navigation system. However, for this research, GPS is used as a

subsystem to improve the navigation'solution of the LN-93 based NRS. In a manner




somewhat reminiscent of the RRS transponder system discussed in the previous sec-
' ti‘on, GPS ﬁavigation information is obtained from EM signal propagation through
the media (space and atmosphere) between the user (NRS) and each of fhe space
vehicles (SVs) which the'vuser “locks” into a reception channel of the GPS receiver.
In a stand-alone GPS receiver, navigation information is.obtained by receiving GPS
SV ephemeris data which are broadcast continuousiy from each active (“locked-on”)
SV, correlating the phase of the signal with a matching signal in the GPS receiver,
and correcting for known error sources to produce a highly a.ccura;te ran;je estimate
.between the user and each SV which is monitored. In this thesis, uncorrected range

measurements (known as pseudorange measurements) are channeled to a Kalman

- filter which prov des estimates'of the error sources. Although not used by the NRS,

range-rate information may be obtained from GPS ephemeris in a similar manner.
As in the RRS, GPS range measurements make refirements to the NRS navigation

solution possible.

A basic dynarhic error model for the GPS system was developed by Solomon

- (20) and revised in (6). However, substantial changes to the basic GPS model have

been made by Stacey (22). In the references cited (6, 20), a simplified GPS model
~ was assumed. It consisted of four stationary space vehicles (SVs) and did not per-
- form Igeomefry optimization cé,lculations. ,In Stacey’s model, a- 24-SV. “optimal”
constellation based on a paper by Gteen (7) is modeled. Stacey’s model includes
orbital calculations for all SVs, and simulates GPS receiver operation as well." These
enhancements are discﬁésed in detail in Chapter V of‘Stacey’s_ thesis (22). iThe mfsh-
. surement model .equati’ons for the GPS system follow a parallel development to that

of the RRS measurement model shown previously.

3.3.3.1 GPS Error-Model Equations. The GPS error state vector is
.composed of 30 elements (shown in Table A.6, Appendix A). The GPS states oc-
cupy the thirty “uppermost” states in the NRS error state model. The first two

GPS states model the user set (receiver) clock bias and_drift errors, respectively.
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The error state model equation for these states is (6, 20):.

TUclk, _ 01 TUclk, : ' (3.19)
TUclkg, 00 TU kg,
where
TUClk, = range equivalent of user set clock bias
TUClk,, = velocity equivalent of user set clock drift
"The initial state estimates and covariances for these states are (19):
Tyer, (t 0
venlto) | _ o (3.20)
Zycik,, (to) 0
‘and
. . 9.0 x 10Mf12 0
Pycik, vetk,, (to) = (3:21)
0 9.0 x 101 £t?/sec?

Note the large uncertainties associated with the user clock states. These values

are representatlve of the normal receiver clock bias and drifts associated with GPS

_receivers used in mllxtary and civilian alrborne applications. Until the user clock error

is determined, it is the single largest source of error in GPS range measurements.

While the two states discussed above are common to all GPS measurements, ihere

exist five sources of errors which are unique to each individual SV.

One error source specific to each SV is code range quantization error. At the

- heart of any GPS receiver exists a pair of interacting tracking loops (12). One of

these loops, the “code tracking loop” is the source of pseudorange error which is

" modeled as a first order Markov process (12) with an exponential autocorrelation

function. Other significant error sources include the tropospheric and ionospheric

propagation delays. Both of these error sources are modeled and corrected to a large

N
N
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degree b); the GPS receiver. However the uncompensated error contribution of these
error sources is still significant. Both of these are also ‘modeled as first order Markov
processes (with different time constants). Still other sources of error which must
be included in the GPS model are SV clock error and SV position error, which are
treated as random bias states. The reader should note the strong possibility for
observability problems in a médel such as this. In this case, three position error
states are used, but the measurements provide new information only along the line-
of-sight vector between the user and SV. All error sources discussed above which are

unique to each SV are included in an error state vector shown below:

(R )] . [-1 o o o000 o[ 6Rs) ([ wy )
6Rirop 0 =k 0000 0[] 8Ru | Wirop
6Rion - 0 0 —35 000 0] 6Rin Wion

S8R, ¢t = |0 0 0 000O0|{6R,, ¢+ 0 ¢
8z, 0 0 0 0000|[ 6z 0
8y, o 0 o0 o0000]|]| by 0

| 6z, ) 0 0 0 0000 & | | o |

] | (32
0.25f82 0 0 0 0 0 0 ‘
0 L0/ 0 6o 0 0 0 '
0 0 10/ 0 o6 0 0

C Popslte) =] 0 0 0 25/ 0 0 0 . (3.23)

o 0 0 0 0 25f2 0 0 |
0 0 0. 0 0o B2 o0
L c o o o0 . 0 2517 |

and

E {waps(t)} =0. ‘ L ‘ (3.24)'
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0 0 00°00]
0 0004 0 0000
0 0 0004 0000
E{wors(t)Wops(t+7)}=( 0 0 0 00 0 0] ft*/sec -8(r)
6 0 C. 0000
6 0 0 0000
(0.0 0 0000

| (3.25) -
The GPS model depicted by Equations (3.19) (through (3.25) is representative of
a military 5-channel GPS receiver c‘>perating'on P-code. Once again, the set of
equations above apply to each SV. There are four such sets of matrix equations for
GPS SV errors modeled in this thesis since it is assumed 4 SVs are required for

receiver operation. The error-state vector is completely specified in Appendix A.

3.3.3.2 GPS Pseudorange Measurement Equation. GPS range measure-
ments aid in estimating position errors of the reference system. The GPS range mea-
surement is derived by decoding ephemeris data which are broadcast continuously
by each active SV. The user’s GPS receiver (considered to be a sﬁbsyst‘e“m in NRS
and ENRS) processes signals received from the GPS SVs to determine pseudorange
between the user and the SV. The range measurement thus ohtained is corrupted by

several.error sources which must be estimated and compensated.

In its simplest form; a range measurement between a single GPS SV and the
user (in this case, NRS) may be determined as the product of propagation speed of
' the EM signal and elapsed time during such propagation. Stated mathemativcall'y,
the pseudorange is given by: -

R, = ¢ - t, | (3.26)

where R, is pseudorange, c is the speed of light in vacuum, and t. represents the

time for transit of the EM signal.
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However, two major problems exist in using this simple deﬁrnition for range.
First, the EM signal is not propagated entirely in vacuum. The signal originates
in space (where the assumption of vacuum is acceptable), but must subsequently
propagate some distance through the earth’s atmosphere as well Naturally, the
| signal delay introduced by atmospheric propagation must be tdl\en into account.
Second, in order to preserve any hope of accurately determining range, it is critical
to determine the EM signal transit time with an extremely high degrce of accuracy.
‘Recalling that light (or any EM signal) propagates on the order of 3 x IOsm/s it is
rea.dnly apparent that even a very small error in determining the EM signal propaga-
tion time can wreak havoc on attempts to use uncorrected pseudorange mformatlon

to improve the navigation system solution in the NRS (or any other such:system).

As a consequence of the concerns above, it is imperative to develop' a much
higher fidelity model for range estimation. A typical model for the pseudorange
. measurement between the user and space vehicles is given by the following equation

(20):

Rops = B+ 0Ra+ 8Riop + 6Rion + 6R,,, +6R, , +v (3.27)
w‘h'ere
R.,, = GPS pwudorangc measurement, from SV to user
R =  true range, from SV to user ‘

6R ‘= " range error due to code loop error |
6Ry., = range error due to tropospheric delay
6Ron =  range error due to ionospheric delay
SRsax = range error due to SV clock error -
6Ruar =  range error due to User clock error

1]

zero-mean white Gaussian measurement noise

As in the comparable equation for RRS, the GPS p««'mlorango equation above

- mcludm the true range (which can never be known exactly) along with tcnm which

" reflect sources of error nnd unccrtamty inherent to G P'S range nw:mnrmm'nts
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3.8.3.3 GPS Pseudorange Calculation From INS Data. As in the RRS
subsystem, it is desirable to formulate a difference measurement in the GPS model
as well. Once again, two sources of range information must be obtained. Like the
, RRS case, the first source is the range measurement which comes from the GPS
subsystem and which is modeled by Equation (3.27). The second range estimate ls
constructed by differencing INS-indicated position and SV (broadcast) positions to
calculate the range. (Note that the indicated INS position and SV position contain
uncertainties which must be considered.) The user (INS) position is represented by
an R® vector expressed in the Litton ECEF which n repeated below for convenience.

SV position, X, , is represented in like fashion.

[ 4 e
z, z
X, =14y, v Xo=1{y, | (3.28)
:U :.s

[ [ d
Ty Ts
R, = lxv‘ - X, = Yu - Ye (3.29)
2y ' g '

. Equation (3.29) may also be written in the equivalent form:

R, = \/('tu -2, )+ Yy, =y + (2, - 3,)? (3:30)

E Invoking perturbation thcofy (2, 14), the nonlincar equation above is written as a
first-order Taylor series to approximate the (INS derived) calculation of user to SV

range. The truncated (to first-order) series is expressed as: _
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aRINS(XS7 xU)

X, 11X X Jrom

aRlNS(xS’xv)
X,

- 6X

Ruvs = Rg,

s

xox X . (3.31)
- s u nows

When Equation (3.30) is substituted into Equation’(3.31) and the partial derivatives

evaluated, the INS-derived pseudorange approximation becomes:

' . I, —z | y—?y z
R.. = R - |% v]wz -{ﬁ——%}& [s ] 2,
tns =T [IRmA v IRowsi |00 |R,s|

T, -1z, Yo~y z.—2z,) '
+ |2 ]~6.t + [5 ”]-éy + [5 Lr.8z, (3.32
Bl | 0% [Mmr ] ™ 1Ry 0 O

Now the GPS pseudorange difference measurement is formed as:

0z = R\ - R,
= - bz, - ] é - [ZS-ZU]'62
[ anve| ] v ‘RINS‘ yu lRINS‘ v
z.~z [ Z2. -2,
+ [—f___l].éz [—.\-——L + {S t’].&z
{Rnsl [Rynsl UIR sl s
- [l]éRd - [l]6Rg,-o' - [I]GR.,,.
- [l]6R5d,, - [JéR,, - v } . (3.33)

The pseudorange measurement noise v Stacey usod has a variance of 2 ft* when
GPS pseudorange measurements occur every 10 seconds. It should also be noted
that the 97-state NRS truth model also has shghtly higher noise modeled in its GPS
pacudoran‘ge measurement e’quation; S(&ey liad implemented a measurement noise

variance of only Z jt3, while further research reveals the actual noise variance to be
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9 fi* foe ohis tyro of GPS medel (12). Of course, the filter measurement noise was
correspondingly incrrased. As noted in the RRS case, the true whole-valued range
{ R;) fecmerly prese . 'u the individual pseudorange representations (R, and R,)
is cancelleq 'n: tro: (ifferencing operation. The v ok ted coefficients in the equation
above are used in the H riatrnix appear in the {.3.1' apdate equations shown in

Clapter I,

3.4 Rifuction to a §1-Stole LN-23 Error Vodei

The NRS developed by Stacey orizies 8 states in both ita uth and filter
models {22). A one-run Monte Carlc a-iLlvsis .. a 2-hour flight trajectory of Stacey’s
NRS using MSOFE on a § MIP VAX worlsiation takes over 18 hours to complete;
In order to reduce the cc'anutatioral 1 v den, the INS truth and filter model in the
RS is further reduced f.om “he 72 states Stacey used down to the 41 states fol-
lowing the recommendetious of Lewantowicz and Keen (10). This 31 state reduction

significantly decreases ‘he computationial time needed for analysis of the NRS and

ENRS ﬁlters,n but coes not significantly affect the estimation accuracy of the errors

of interest (position, vrlocity, and attitude). Tables A.7 and A.8 in Appendix A list
the 41 states used in this new INS truth model.

It is necessary to confirm Lewantowicz and Keens® claim that a 41-state error

model gives essentially the same solutions for position, velocity, and attitude error

as the full-order truth model (10). Their methodology for arriving at 41 states,

-~

based on their 68-state truth model for the INS which had already eliminated states |

69 through 93 from the 93-state ‘truth model, was to eliminate 15 states which '

contributed one or more orders of magnitude less error contribution to the attitude
and velocity error estimates than the states that were retained. Théy'also combined

12 other states with errors which exhibited similar behavior, but were more dominant

(10). This thesis takes a slightly different approach, by simply eliminating all the

states they recommend, including the 12 states theylcombincd with other states.
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This one deviation from their recommendations (lbcsn’t appear to affect the results
adversely. Tables A.7 and A.8 in Appendix A contain lists of the 41-state INS error
model. Appendix C gives a 10-run Monte Carlo comparison between the 93-state
LN-93 truth model and the 41-state truth niodel discussed above. As shown by
Figure 3.1 (and Appendix C), the 41-state model does give position, velocity, and
attitude etror-statés almost exactly matching the 93-state model over the two-hour
fighter flight profile. At this point, the 41 error-state INS model is consideréd the
truth model for this thesis. = ’

3.5 The 97-State NRS Error Model

' By merging the 41-state INS model, the 26-state RRS mo‘dgl, and the 30-state
GPS model, a new 97-state NRS model is formed. This NRS model performs as we;ll
as Stacey’s 128 state model did, but does so 3 times faster due to the elimination of
31 INS states. Chapter V discussés the performance of Stacey’s NRS model and the
97-state NRS model and. compares their performance to each other and various other
filters which are described in this and the following chapter. Appendix E contains
the results of a 10-run Monte Carlo analysis performed on the 97-state NRS filter.

3.6 The 69-State NRS Filter Model

Once the 97-state NRS truth and full-order filter models aré developed, filter ’

order reduction is performed. Th§ stat iinier_lsion for the ENRS'Vpost,-proceSSing

filter is limited to 70 states, this number was set as the ilarget for a NRS reduced-

order filter. Recognize that‘only the number of filter states is to be reduced; the

_truth model remains. at 97 states.
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Using research accomplished before as a basis (12, 5), the Kalman filter’s GPS
error-model was feduced from 30 states t<.> only 2 states (10, 12). The two remaining
states are the receiver clock bias and drift states (see Appendix A or GPS error-state
discussion), leaving a 69-state NRS filter. Looking at the plots of the 97-state NRS
filter in Appendix E, note that the two GPS receiver clock error-states are many
orders of magnitude larger than the eliminated code drift, atmosphere, SV clock,
and SV position error-states. This huge magnitude difference gives an indication
as to why these states can be eliminated while retaining the two dominating states .
(see Chapter II's filter order reduction sgc‘tion). However, these states cannot simply
be dropped with the expectation of adequate filter performance. The filter tluning
techniques of Chapter II are exploited, noting each of the eliminated states is part
of the pseudorange measurement equation. Thus, the measurement equation néise

(see Equation (3.33)) is increased to compensate for the eliminated states.

As stated previously, the truth model measurement noise variance was 9 ft2.

. Chapter II recommends adding the filter covariance values of the eliminated states to

the measurement noise variance to compute a new value for the meésuremeni; noise

variance. Performiny this operation gives a new value of approximately 225 ft2 (9

ft? original noise + .09 ft? code loop + 6.3 ft* atmosphere + 16 ft* SV clock + 64-3

ft? SV position). Remember, this new value of the measurement noise is only a first .
best guess, further tuning may be needed for optimum filter berformdncer Chéptér

5 dxscusses and compares the 69-state NRS filter performance to the other filters
a.na.lyzed in this thesis. Appendix F contains the plots of the 69-state reduced-order
NRS filters performance agamst the 97-state truth model

3.7 Summary

This chapter revnewed the LN- 93 and Stacey’s NRS error-state models, and '
then ‘developed 97-state and 69-state error models by eliminating 31 INS and 28
..G‘PS states, respectively. These three NRS filters form a baseline to which the
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ENRS filters developed in the next chapter are compared.. Comparisons of filter

performance can be found in Chapter V while the state variable plets are located in
Appendizes D, E, and F.
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IV. The Enhanced Navigation Reference System (ENRS)

4.1 Overview

This chapter gives a complete description of the ENRS. First, an explanation
of DGPS and hkow it is implemented at CIGTF is given. Second, a DGPS error
model is developed. Third, the'v DGPS error m<‘>de1 is combined with the 41-state
INS and 26-state RRS models from Chapter III to form an 89-state ENRS model us-
ing only DGPS and RRS range measurements to update tne filter. Fourth, a 48-state
reduced-order ENRS filter is developed. Fifth, the DGPS delta-range measurement
equation is derived and merged into a 22-state reduced-order DGPS filter (no RRS})
'~ to speed the tuning of delta-range measurements. Sixth, the RRS range-rate mea-

surement equation is overviewed and mergéd into a 46-state CIRIS filter (no DGPS)
to speed tuning of the range-rate measurements. Finally, DGPS delta-range and
RRS range-rate measurements are merged into the 48-state reduced-order ENRS
filter to complete the devélopment of a post processing ENRS filter of iess than 70

states. .

4.2 Differential Corrections to GPS Measuremehts}'

This section discusses the theory behind DGPS as it is is being impleménted at
~ CIGTF. Interimetrics, Inc. is the government sponsored contrax:tor'résponsib}e for the

DGPS referehce station at CIGTF (1,“5). Personal interviews were conducted with

Mr Darwin Abbey and Mr Scott Dance of Intermetrics to determine how differential.

corrections to GPS are implemented at CIGTF. The following discussion of DGPS '

comes directly from these interviews and the DGPS error model created in the next
section is a combination of Intermetric’s description and a course given by Navtech

Seminars on DGPS error models (1, 5, 18).

In order to apply differential corrections to GPS measurements, a ground based:

reference receiver (GBR) is needed as well as the airborne GPS :pcgi\fgr (ABR) used
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in the NRS. Figure 4.1 shows the basic DGPS system as it is being implemented
~ at CIGTF. The ground based receiver must be capable of tracking all SVs in view,
possibly as many as eleven when the full GPS constellation is placed in orbit. The
GBR’s anterlma, position has been permanently fixed and surveyed to within centime-
ter accuracy. A high accuracy rubidium clock is used in place of the GBR'’s normal
clock, greatly decreasing the large clock errors common to the ABR as discussed
in Section 3.3.3.1. Using the transmitted SV ephemeris data, the GBR computes
its position (different from the surveyed position) known as the ground truth. The
data (pseudorange measurements, SV transmitted corrections, GBR applied correc-
tions, ground truth, clock errors, etc...) is fed to a 30386 personal computer which
then estimates the SV position errors, SV clock errors, and atmospheric delays with
great precision. Because the GBR's true position is accurately known and its clock
errors are much smallef than the ABR’s, the SV position and clock errors and atmo-
spheri;: delays are highly observable. This is unlike the NRS GPS model where the
large ABR’s clock errors and dynamics cause these states to be largely unobserv-
able. These erroré, now called differential corrections, are time tagged and stored on
- magnetic tapel or disc. Note tkut the differential corrections could be immediately
~ transmitted via a d_a.tz; link fo: real-time differential corrections if the need ever ‘arises
a, 5). |
Remembering that the NRS is a post-processing filter, the rajp airborne pseudo-
range measurements (which are also stored magnetically and tim tagged) now have
the differential corrections applied before they are analyzed in the post-processing
" filter. Of course, this assumes the GBR is tracking the same four SVs the ABR
. was tracking (a good assumption if the ABR is within thé CIRIS test range). Us-
ing differential corrections in this manner, the SV clock error is eliminated frbrh
- each pseudorange measureﬁxent and the SV position errors are peaily eliminated.
Depen_dihg on the distance between the ABR and the GBR during the ﬁight‘pro—

file, the atmospheric propagation errors can be almost totally el&minated for close
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trajectories or greatly reduced for ﬂigbts within 200 miles of the iGBR. Even with
long-range DGPS (flights which extend more than 200 miles fr‘om.the GBR‘), the
post-processing in the 30386 personal computer eliminates some of the atmospheric
propagation errors. The largest remaining errors in the pseudoré;nge measurement
are the ABR clock errors (see Section 4.2.2). With this basic knoivledg_e of DGPS,
a2 new DGPS error model is now developed assurhing itha.t differential corrections ' KR
have previously been applied to the raw pscudorange measurements from the ABR _ B ‘
(1, 5, 18). o . . 5

4 2.1 The 22-State DGPS Model. The DGPS error-model i is composed of 22
states (shown in Ta.ble A.9, Appendxx A). Note the DGPS states are almost identical - .
" to the GPS states except for elimination of the SV clock efror througb,dxﬁ'erentxal v .
correctxons, and removal of the SV code loop error. Dance states tha.t compensa,tlon
for the code loop error (truth and filter models) is provided by the measurement
' noise variance in the pseudorange measurement as implemented in this thesis (3). i , /

While the names of the states are the same, only the receiver clock error states are
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modeled exactly as in the NRS. These two error-states are again modeled by (22):

(
Tyae, | |0 1 TUclky (4.1)
Ty clky, 00 TUclky,
where
TUClk, = range equivalent of ABR clock bias

TUclk,, = . velocity equivalent of ABR clock drift

Again the initial state estimates and covariances for these states are (22):
Zuctk,(to) _ 0 (4.2)
Zyciky, (to) 0

9.0 x 10M f22 0
Pucik, Ucik,, (to) = (4.3)
0 9.0 x 1010 ft?/sec?

As noted previously, until the ABR clock error is determined, it is the single largest
. source of error in DGPS range measurements. While the two states discussed above
apply to all DGPS measurements, The troposphere, ionosphere and SV position
errors are unique to each SV. N‘oté' that these errors have a much smaller contribution

after differential corrections than in the GPS model (see Section 3.3.3.1) (18):

: r . 3 , Y Y ¢ 9
6 Rirop [~ 0 00 0][6Ry| [
Rion | 0 —3%% 00 0| 8Rin Win
{ bz, ¢ = 0 0 000§ 8z, ¢+ 4§ 0 ¢ (44
8y, 0 0 000}]| &, 0
| bz, 0 0 00 0|]| &z 0

, - 4 N s s \ J
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10582 0 0 o o |
0 10ff 0 0 0
Poows(t)=| 0 0 352 0 0 (4.5)
0. 0 0. .35ft2 0
0 0 0 - 0 .35ft
and | | |
- E{Woars(t)} =0 (4.6)
(0001 0 00 0]
| 0 0.0004 0 0 0 .
E{WoorsWoges(t+7)} =] 0 0 0.0 0] (fi*/sec)-8(r) (&7)
‘ 0 o 0nooO
0 6 000

Once again, the set of -equations above apply to a single SV. The initial covariance
values in Equafion (4.5) and atmoépheric error dynamics noise variances in Equation
(4.7) were obtained from (18) and are modeled slightly larger than Abbey and Dance
(1, 5) recommend since a conservative filter is develened. There are four such sets of
matrix equatlons for DGPS SV errors modeled in this thesis. The error-state vector :

is completely specified i m Appenghx A.

’4 2.2 DG’PS Pseudorange ‘Measurement Equation. The DGPS, pseudorange
measurement equation is developed 1dent1cally to the GPS pseudorange measurement

equation of Section 3.3.3.2. After applymg dxﬂ'erentlal corrections, the measurement

'equatlon is'modeled as:

Ryges = R+ 6Ryop+ 6Rion + Ry +v (48) .

" where




R,.,s =  DGPS pseudorange measurement, from SV to user
' true range, from SV to user

Ry

6§Ri,p =  range error due to tropospheric delay
6R;,n =  range error due to ionospheric delay
§Ryar =  range error due to ABR clock error

v = zero-mean white Gaussian measurement noise

As in the comparable equation for GPS (Equation (3.27)), the DGPS pseudorange

equation above includes the true range (which can never be known exactly) along

with terms which reflect sources of error and uncertainty inherent to DGPS range

measurements.

4.2.2.1 DGPS Pseudorange;’ Calculation From INS Data. Asinthe NRS
subsystem, it is desirable to formulate a difference measurement in the DGPS model
as well. Once again, two sources of ranée information must be obtained. Like the
NRS case, the first source is the range measurement coming from the DGPS reference
station and modeled by Equation (4.8). The second range estimate is constructed
by differencing INS-indicated position and SV (broadcast) positions to caiculate the
range. Following the same derivation as in Secti(;n 3.3.3.3, the DGPS difference

measurement %s formed as:
6 = Rovs = Roors - |
- - [ e - e - e
* Lo ] o+ [
~ [1}6Buwop = [1]6Hion ~ [1]6R,, - v (4.9)

The pseudorange measurement noise variance is 9 ft* when DGPS pseudorange mea-
surements occur every 10 seconds. As noted in the NRS case, the true whole-valued

range (R;) formerly present in the individual pseudorange representations (R, and
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R, ps) is cancelled in the differencing operation. The bracketed coefficients in the
equation above appear in the H matrix used in the EKF update equations shown in

Section 2.2.

4.3 The 89-State ENRS Error Model

The 22-state DGPS error-model developed is now mlorg(’-d with the 41-state
INS model and 26-state RRS model to form aﬂ 89-error-state ENRS model. At this
point, only DGPS pseudorange and RRS range measurements are available to the
filter for position updating. A 10-run Monte Carlo analysis is performc;d and the
plots ;>f filter performance are located in Appendix G. This filter serves as a baseline

for DGPS measurements, and a discussion of its performance relative to the NRS

. filters is given in Chapter V.

{4 | The 48-State ENRS Filter (Position Measuréments Only)

Now that a full-order filter has been discussed, a reduced-order filter of 70,
states or less is developed. The first step in filter-order reduction uses the method
discussed in Sections 2.3 and 2.4. Since all the DGPS error-states are small except for

the ABR’s clock errors, they are eliminated. All 20 states eliminated are part of the

pseudorange equation, so again the measurement noise v is inrreased to compensate

for the eliminated states. The original measurement noise variance is 9t2, and' the
modified no: « varianice is.calculated to be approximately 252 Once again, this is
only a first best guess and additional filter tuning may b(." ni-rmsgxry (see Chapter
V). - -

. At this point the 89-state model has been reduced to 69 states by the climina. -
tion of 20 DGPS states. However, DGPS delta-range and RRS rangt‘; rate measure-
ment equations are td be implemented and the additional computation time required |
to implement 4 DGRS delta-range and 6 RRS range-rate measurements slows the

Monte Carlo ann'l_vsiq» down by 50 percent over the NRS 69-state filter using only




position aiding measurements. Further order reduction is necessary to ensure the
post-pracessing filter can complete its analysis of a 2-hour flight trajectory within
24 hours. For this reason, an additional 21 INS states are eliminated to reduce the
E;\'RS filter to 48 error-states. Once again the recommendations of Lewantowicz
and Keen are followed for this INS state reduction (10): The new 20-state INS filter
is formed by elimination of states '2'1 through 41 of the 41-state ,l.\'S" model, and
Ithis model is shown in Tables A.7 of ‘Ap.pondix A. Zero-mean white-gaussian noise
(10~ "®rad®/scc) is added to dynamics equations of the first two INS states (related
to position (-rrlors) to compensate for this filter order reduction (see Section 2.4).
The plots of filter performance for the 48 error-state ENRS filter (no velocity aid-
ing) are found in Appendix H with a discussion of filter perfoxm'ance relative to the

previously designed filters in this thesis found in Chapter V.

4.5 DGPS Delta-Range Measurements

In a manner similar to the GPS and DGPS pseudorange measurement equa- -

tions development in Sections 3.3.3.2 and 4.2.2, the delta-range measurement equa-
tion can also be developed. Typically, the velocity between the user and SV is not
directly measured in a GPS receiver. Rather, the number of carrier-cycles for a
p.eriod of time is counted, which calculates the change in pscudorange over a time
interval, not the: time rate of change of pseudorange (12). For this thesis, since

error-states are modcled and not the true receiver operatian, the previous pseudor-

ange measurement (see Fquation (4.8)) is subtracted from the current psendorange

measurem~nt and divided by the time interval hetween measnrements to yield:
HINJI’! =R+ 6”(!::. +v: - . (4.‘0)'

where

R



R

‘ogrs

I

DGPS delta-range measurement, from SV to user

R, = irue delta-range, from SV to user
6Ryar =  delta-range error due to ABR clock drift error
v = zero-mean white Gaussian measurement noise

Note that the a.tmbspheri'c errors in Equation (4.8), once subtracted, are small and

are ignored. The delta-range equation above includes true delta-range (which is |

never known) along with an ABR clock drift error term.

4.5.1 DGPS Delta-Range Calculation From INS Data. As in the GPS subsys-

tem,‘ it is desirable to formulate a' difference measuremeﬁt in Ithe DGPS delta-range
model as well. Once again, two sources of delta-range infofﬁ]atioxlx must be obtained.

| Like the pseudorange case, the first source is the delta-range measurement which
comes from the DGPS subsystem and which is modeled by Equatioh (4.10). The
second delta-range @timéte is constructed by taking the time derivative of Equation

. (3.30). As a reminder, Equation (3.30) deﬁned R, as:
Rys = llz, -z, + Gu - ys)f + (2, — 2V | (4-1-1)
and ta.l;ing its time derivative yielqs:
Ryus = Spue | Rye 1)

where:

Siws = (20 = 25)(Ey = £5) + (8 = 9)Gy  Gs) + (70 = 20)Gy = 5] (413)




Remember from Section 3.3.3.3 that:

X, =[z, v, zu“T (4.14)

Xs=[zs5 us zs]T ' (4.15)
so that:

xU = [z, v éu]T . (4.16)

xs = [is Vs Z.slT (4.17)

Invoking perturbation theory (2, 14), Equation (4.12) is written as a first-order
Taylor series to approximate the (INS derived) calculation of user to SV delta-range.

The truncated. (to first-order) series is expressed as:

R = jztv+ a&rvs(xsvxuvxsvxn) . 65('
w ‘ X, K Xy Xy Kphoem
aileS(xS’xU'xs’x‘u) . . 6X
Y : . . s
a){s (xsdtuj(sjtuhwn
+ . aiz;ns(xs’xv'XS'xu) . 6XU
X, (X5 Xy Xg. Xy Inom
aileS(xs’xU’xs'xu) . 6x
r o v
8}(U (xsrxvust(u)nuu

(4.18)

Because the SV position errors are modeled as bias (constant) terms, their time

derivative is zero, so that 6).(,' = 0 When Equation (4.12) is substituted into
Equation (4.18) and the partial derivatives evaluated, the INS-derived delta-range -
approxiination becomes: '

‘ Rms = Rl + [(R-l Nz, "is)‘(R‘J/z)(sms)(zv - z4))éz,

(R Wy = Bs) = (RTINS 0 vy = w504y

INS INS

+ URT )Gy = 3) = (R22PY(S s )2y = 25)l62,

4-10 =




+ (Rys)(zy — 256z,

+ (R ) wy = v5))639y

+ (Rt = =)ty

- [(R,.,:s)(zu -ig)~ (3:342)(51145)(30 ~z5)|6z
- [(Rl—;s)(yu - ys) - (R:géz)(sle)(yu - ys)]éys

- [(R;—;:s)(éu - &) - (R,_:éz)(sms)(zu - 25))0z .

(4.19)

Now the delta-range difference measurement is formed By subtracting Equation (4.10) from

. (4.19):

6z

]

Rms - RDGPS

[(R,.,:s)(i'v - z's) - (R;:éz)(sxns)(zu - xs)]&”u

+ [(R7}

ms)(gu -

gs) - (R;.:gz)(slus)(yu = ys)]6yv :

+ [(R72)(y = 25) = (R3S s )2y = 25))62,

INS

+ (R — 25)b2,

INS

+ [(Rus)vy =

INS

+ (R )z, -
- (R )&, -
- (R )Gy -

- [(Rl—l:s)(zu -

)L

23)1620

j"s) - (R;;%z.)(slns)(zu - zs)]ézs

¥s) = (R2P)(S10s) (W0 = ¥3)169s

zg) - (R,.:,/;z)(sms)(zu - z5)]624

- [ll‘skuah -0
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The variance of the delta-range measurement noise v used is 0.16 ft* when
delta-range measurements occur every 10 seconds (12). The true whole-valued range-
rate (R,) formerly present in the individual delta-range represéntations (R,Ns and
R,,s) is cancelled in the differencing operation. The bracketed coefficients in the
equation above appear in the H matrix of the EKF update equations shown in

Section 2.2.

,4.5.2 The 22-State DGPS Filter (No RRS). Now that the DGPS delta-range
model has been derived, it is nccessary to implement this algorithm into MSOFE
to analyze its performance. To speed up the process of implementatio}x, a 22-state
red aced-order filter is. modeled. This filter contains the 20 INS states discussed in
the 48-state ENRS filter and 2 DGPS clock states. No RRS states are included in the
filter or truth model, so the full-order truth model for this system is 63 states (41 INS
and 22 DGPS). A 10-run Monte Carlo analysis using the 2 hour fighter flight profile
on this filter is completed in 5 hours, allowing two or three analyses per day until the
algorithm is properly implemented and the filter well-tuned. The filter performance
plots from the fighter flight profile are located in Section I.1 of Appendix L. For a
robustness check, the filter was then analyzed using a 10-run Monte Carlo analysis of
a 2-hour straight flight proﬁle.v These filter performance plots are l;)cated in Section
1;2 of Appendix I. A discussion of the results of this filter implementation can be

found in Chapter V.

* 4.6 Transponder Range-Rate Measurements

In a manner similar to the DGPS delta-range measurement equation develop-
ment in Section 4.5, the RRS range-rate measurement equation can also be devel-

oped. From Equation (3.11), the RRS range-rate eq'uation" is modeled by:

Ros =R +6R,, +v a2

- 4-12



where

R..c = RRS range-rate measurement, from transponder to user
R ‘= true range-rate, from transponder to user

-SRBV =. range-rate error due to calibration bias error

v =  zero-mean white Gaussian measurement noise

Again the atmospheric'error is small and can be neglected. The delta-range equation
above includes true range-rate {which is never known) along with an equipment

calibration velocity error term.

4.6.1 RRS Range-Rate. Calculation From INS Data. As in the DGPS sub-
system, it is desirable to formulate a difference measurement in the RRS range-rate

model as well. Once again, two sources of range-rate information must be obtained.

Like the delta-range case, the first source is the range-rate measurement which comes ‘

from the RRS subsystem and which is modeled by Equation (4.21). The second delta-
range estimate is copstrixcted by taking the time derivative of Eq{xation (3:15). As

“a reminder, Equation (3.15) defined R, as:
Rms = [(zy-2;)*+ (yq -9 + (2 - zr)zlln (4.22)
and taking its time derivative yields:

Riys = Tiye / Ry o o (4.23)

where:

Remember from Section 3.3.2.3 that:

Xy = [zv Yu ZU]T ' E | (4-25)'

Xp=[z oy )T - (4726)
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Tiys = [(zq -z ) (&) + (yy = !lr)('flu) +(z, - Z,-.)(éu)] - (4.24)/




and again X, is defined:

X, =[2, 9, 2,7 , (4.27)

The transponders do not move, so the velocity term X = 0. Invoking perturbation
theory (2, 14), Equation (4.23) is written as a first-order Taylor series to approxnmate
the (INS derived) calculation of user to transponder velocity. The truncated (to first-

order) series is expressed as:

OR, (X7, X,,X,)

R = R + ). ¢
INS t axT (xT'xU‘xU)nm T
aRINS(xT’xU’xU) .. 86X
axU (xrwa’xu)m v
+ aRms(xz"xwxv) ' . 65(,,

axU (xT»xvvxu)nom

(4.28)

When Equation (4.23) is substituted‘ ir;to Equation (4.28) ;nd the partial derivatives eval-
ﬁa.ied, the INS-derived range-rate approximation becﬁmes:
Biws = Re + (R1)(E0) = (RPN Do)z, - 2202,
+ (R )do) = (R T,s) (50 = 41169
4 (RIL)G0) = (R Tos)zy = 2262,
¥ )y = 2oty
+ [(R,,.s)(yu 29
+ [(Brps) 2y = 21))85,
= [(Ba ) (Ey) = (R3PNT ps) (g = 24))62,
~ (B2 = (RT2Y(T,s) ¥y = 920169

— (RTL)(0) = (RZBYTos)zp = 20)2p
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(4.29)

Now the range-rate difference measurement is formed by subtracting Equation (4.21) from

(4.29):

6z

‘ Rms - RRRS

(R} )(Ey) - (R;:QZ)(T,NS)(% - z,)l6z,
+ [(BZ)(0) = (B2(Tys) vy -
[(Rms)(zv) (R;A%z)(Tms)(zu - z7)|8z,

+ [(Rys)ay - 2.)l6z,

Yr )]&/U

+ [(Brgs )y = )b
+ [(Brys)
= (B0 = (Ryf) Tins)(zo = 20)lézs
= [(Ris)iw) = (RN (T vy = 92160

= (RL)(Ry) = (BT, us) (2 = 20 )lb2r

-z, ))6%,

- [éR,, - v | (4.30)

The variance of the range-rate measurement noise v is 0.09 f42 when range-rate

measurements occur every 6 seconds (19). The true whole-valued range (Ry) formerly

pt‘esexit in the individual delta-range representations (R,,s and R_,,) is cancelled in .

the différehcing operation. The bracketed coefficients in the equation ab§vé’ appear

in the H matrix of the EKF update equations shown in Section 2.2.

4.6.2 The 46-State CIRIS Filter (No DGPS), 'In a manne'r similar to the 22-
~ efror-state DGPS filter, a 46-error-state CIRIS filter is developéd to implement the
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RRS range-rate measurement algorithm. The filter model consists of the 20-state
INS model and 26-state RRS model. A iO-run Monte Carlo analysis using the 2-
hour ﬁght'er flight proﬁlev is again used to tune the filter, and the filter performance
plots are located in Section J.1 of Appendix J. As a robustness check, another 10-
run Monte Carlo analysis using a 2-hour racetrack flight profile is performed. The
filter performance plots of this analysis are located in Section J.2 of Appendix J. A

discussion of this filter’s performance is found in Chapter V.

4.7 The 48-State ENRS Filter (Position and Velocity Measurements)

The culmination of the work in many other theses is finally reached when the
“ 20-erfor-state INS modei, the 26-state RRS model with range and range-rate mea-
surements, and a 2-state DGPS model with pseudorange and delta-range measure-
ments are assembled into the 48-error-state ENRS filter. This ﬁltér is tuned using a
10-run Monte Carlo analysis using the fighter flight profile, and a final 25-run Monte
Carlo e?,nalysis is performed to demonstrate this filter’s performance relative to all
the other filters a‘nalyzed in this thesis. The filter performance plots are found in .

. Appendix K while a compleie discussion of the final results is located in Chapter 5.

4.8 Summary

This,chalpter steps through the develobment leading to the 48-error-state ENRS

ﬁlte’r. Differential corrections to GPS measurements are first discussed, followed by
| development of a DGPS modelI. Then full- and reduced-order models and delta-;'ange' |
and range-rate measurement equations afe developed. F_inaily, all this data is merged
inté a 48-state post-proceésing ENRS filter designed to determine thé position and '
velocity of the test article a.ccﬁra.tely'so its perfovrmance can be evaluated. Remember,.
the truth model throughout this chapter is composed of 41 INS er;or—vstates, 26'.,I{RS
error-states, and 22 DGPS error-states. All NRS and ENRS filters’ performance is

discussed in detail in the next chapter.
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V. Results of Filter Implementations

5.1 Overview

This chapttler evaluates the performance of all the filters implemented in this
thesis. Réduced-ordef filters are compared to their full-érder counterparts, GPS
filters are compared to DGPS filters, and all the filters are analyzed relative to the
current CIRIS system. As a final presentation of results, a section is given containing
tables of the filter tuning parameters, Q(t) and R(t;) if different from their truth
model values for all the filters implemented in this thesis. Before any ana.lysis of

filter performance can begin, an important assumpti(;n pertainirig to three of the

truth/filter models in this thesis must be explained to the reader.

" 5.1.1 The Double Precision Factor. The truth/filter models implemented
previously by Solomon, Snodgrass, and Stacey utilized Fortran on VAX mainframe
and workstation: computers (20, 19, 22). Their computer code was normally com-
piled, linked, and executed using “single precision” (the 7 most significant numi)efs
are Stored). For Solomon and Snoldgra.ss, whose work dealt mainly with implement-

_ ing an updated CIRIS filter without GPS, this method was more than adequate.

However, when Stacey implemented his GPS subsystem and brought in pseuddr-'

ange measurements, all his filters utilizing GPS diverged and could not be tuned

properly ‘As seen in Figure 5.1, the typlcal truth model GPS clock bias error state .

attains values requiring much more than 7 significant figures to estimate the state
adequately. As Stacey had mentioned in his thesis, “double precision” (14 most

sxgmﬁca.nt figures) is reqmred for optimal filter performance.

, Because the clock bias grows to such a large number, executing in single pre-
cision mode denies the filter the 1- or 2-foot clock bias state estimation accuracy re-
quired for accurate pseudorange measurements. However, simply switching to double

_ precision is not as easy as it seems. ‘When Stacey’s 128-state model algorithms were
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Figufe 5.1. Typical GPS Clock Bias Error State for Two Hour Flight Profile

modified to double precision, neither the VAX mainframe nor workstation computers
had enough memory available to link the code. The same problem arises with the
97-State NRS and 89-State ENRS fuli-order filter models. Howevér, all the reduced-
order filters in this thesis are compiled, linked', and exécuted in double precision

mode.

At this point an assumption is made so that t};e full-order filters ca.;x be ana-
~lyzed, and 1;he reduced-order filters have benchmark filters for comparison purpdsesT
All the full-order filters truth models have their 2 GPS clock states’ initial covariance
values reduceld four orders of magnitude (sce Section 3.3.3 or 4.2.1). By tedﬁ-cing their
mé.griitudes, the filters are able to estimate the clock bias error-state adéquately in
single precision mode, and these 2 clock states still maintain errors several orders of'
magnitude larger than any other error states. Notice in Figures D.8, E.8, and G.8,
that au the very end of the t;vo-hour flight profiles the clock bias state approacheé the

limit of single precision and once again starts to diverge slightly, causing the clock
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drift stattlavto diverge also. However, overall, these full-order filters are tuned well
" enough to produce accurate navigation solutions. - Note that, if these clock states
were not so much larger in magnitude than the other error states, this approach
would not be valid and the results could not be accepted without serious reserva-
tions. Also note that the CIRIS ﬁlt‘er without the GPS subsystem does not need

double precision, and it is not implemented in this filter.

In summary, the 128- and 97-state NRS and the 89-state ENRS truth and

full-order filter models were run in single precision mode with the GPS clock crror

truth states’ initial covariance values reduced 4 orders of magnitude. This modifi-

cation in no way affects the reliability of these ﬁlter_s when used as benchmarks, as
the 2 GPS clock .error-sta,tés are much larger than any other error states, and the
GPS clock bias state continues to be the largest source of errors in the pseudorange
measurement by several orders of magnitude. The 46-state ICIRIS filter iz also run in
' éingle precision, but it does not model GPS states, so double precision is not needed.
All of the reduced-order NRS, DGPS, and ENRS filters (evaluated against 97-state
NRS,, 63-state DGPS, and 89-state ENRS full-order double precision truth models)
are programmed in double precision so the performance of these filters is in no way

compromised.

5.2 The NRS Filters

- This section evaluates the performance of the 3 NRS filters analyzed in this:

. thesis. Remember that the NRS models the error states of a L_N~93 INS with baro-

é.ltimeter, RRS transponders with fange measurements, and GPS receiver with pseu-
_ dorahge measurements. Stacey’s 128-State NRS filter is examined first. After'some
preliminary tuhing runs, its performance is outstanding. Then the 97-State NRS
filter i's analyzed. It too produces a navigation solution one order of magnitude bet-

ter than CIRIS. Finally, a 69-state reduced-order NRS filter is exzmined. Although
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not as impressive as the first two NRS filters, its performance is well above that of

' CIRIS.

5.2.1 Stacey’s 128-State NRS Filter. As the largest truth/filter model in this
thesis, taking over 8 days to complete a 10-run Monte Carlo simulation, this filter
also had the least amount of tuning performed on it for optimal state estimation..
Appendix D contains the plots of the filters performance on the main states of inter-
est. While some of the GPS states require further tuning, overall, this filter performs
well, with the possibility of a significant increase in precision over CIRIS as it is im-
plemented today. Remembering this filter was implemented in single precision, Table
5.1 contains the temporal average of the ensemble average of true filter estimation
errors (1o) for the position, velocity, and attitude errors over the two-hour fighter
flight profile. Ensemble average is the average of the error-states for the number of
Monte Carlo runs performed in the analysis over the 2-hour trajectories. This vector
is the oy in'the filter performance plots in Appendices D through K. The scalar
temporal average is simply the average of the ensemble average for the 2-hour tra-
jectories. As a remiunder from Chapter 1, CIRIS specified accuracy is also included
in this and all tables in this chapter for comparison purposes. Attitude is included
in this end future tables simply to round out the navigation solution and show how |

_ INS state reduction affects'these error states. Remember, no attitude measurements

are i)resent in any of the filters implemented in this thesis.

Table 5.1. Temporal Average of the Ensemble Average of Ttue Errors for Stacey’s
128 Error-State. Filter

Lati- | Longi- | Alti- || East | North
tude | tude | tude Vel | Vel
(ft) | (&) | (&) || (fps) | (fps)

[ CIRIS | 14.00 | 14.00 | 40.00 | 0.100 | 0.100 ] 0.400 | I

(| 128-NRS || 1.59 | 2.35 | 5.58 | 0.015 [ 0.011 {0.045 ]| 1.65 | 2.02 | 12.83

~ Filter
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. Stacey never resolved the precision problem for this filter due to time con- .

" straiats and was only able to perform a one-run Monte Carlo simulation. The tun-

ing performed in this thesis on his filter ir+~lved only the random bias states in the
RRS and GPS subsystems. RRS ranée bias and transponder position error states
and the GPS SV clock and SV position error states have a dynarﬁics noise strength
Q(t) addition of approximately 1073 ft?/sec fc. the performance seen in Appendix

D. Although not yet optimal, the filter’s performance at this point speaks for itself.

- Using only RRS range and GPS pseudorange measurements, and once adequately

tuned, Stacey’s filter will produce a navigation solution one order of magnitude more

accurate than CIRIS.

5.2.2 | The 97-State NRS Filter. This filter is only different from Stacey’s filter
by use of the 41-state INS model instead of Staccy's 72-state model in the truth and
filter models. Since the 41-state model provides true error states which almolst match
those for the 93-state LN-93 error model (see Appendix C), this filter’s performance
should also be 'vefy close to that of Stacey’s 128-state filter. This simulation was also

implemented in single precision, with the'2 GPS clock error states’ initial covariance

- values decreased 4 orders of magnitude. Table 5.2 compares the 128- and 97-state |

NRS filters to each other and to CIRIS..

‘Table 5.2. Temporal Average of the Ensemble Average of True Errors for 128- and

97-State NRS Filters

Filter Lati- | Longi- | Alti: || Fast | North | Up East | North | Azi-
tude | tude | tude | Vel Vel | Vel Tilt | Tilt | muth

(ft) (ft) (fv) || (fps) | (fps) | (fps) || (arcs) | (arcs) | (arcs)

"CIRIS_ ] 14.00 | 14.00 T 40.00 [Fv.100 T 0.100 T 0.400 :

128-NRS || 1.59 | 2.35 5.58 [ 0.915] 0.011 | 0.045 ] 1.65 2,02 | 12.83

l!)?-NRS 135 - 271 5,28 110.014 ] 0.610 { 6.045 | 1.07 1.29 9.714

~ As surmised, the performance of these two filters is almost identical, with a

large increase in performance over the CIRIS sy-tem. Aoy discrepancy between
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Stacey’s 128-state NRS filter’s performance and the 97;state NRS filter’s perfor-
mance is attributed to the fact that more time was spent tuning the 97-state NRS
filter than the 128-state filter. Again, the only filter states requiring tuning were
the random bias RRS and GPS states mentioned in the previous section, and these
states have increased dynamics equation noise similar to the 128-§tate filter. Ap-
Ipendix E contains the filter performance plots of the main states of interest. Once
‘qga.in, the 97-State NRS filter provides a navigation solution one order of magnitude
more accurate than the current CIRIS system while using only RKS range and GPS |

pseudorange measurements.

5.2.3 The 69-State NRS Filter. This first attempt at a reduced-order filter
shows less optimal résults than the previous two NRS full-order filters. As a reminder,
‘the 69 error-states implemented in this filter were a combination of 41 INS error-
states, 26 RRS error-states, and the 2 GPS clock error-states. Also, the 97-state truth
and 69-state reduced-orcer filter models i this analysis were coded and executed in
"double precision, 0 the GPS clock error states’ iﬁitia! covariance values are at their
true magnitude. The filter performance plots are found in Appendix F while Table

5.3 compares this filter with the other NRS filters and CIRIS.

Table 5.3. Temporal Average of the Ensemble Average of True Errors for NRS
Filters : ' ‘

Filter | Lati- - Longi- | Alti- || East | North [ Up || Fast | North | Azi-

tude | tude | tude || Vel Vel Vel || "'Hilt | Tilt | muth

(ft) (ft) (ft) || (fps) | (fps) | (fps) i (ares) | (arcs) | (ares)

T CIRIS [ 14.00 T 14.00 T40.00 J0.100 7 0.100 T 0.100 ] T I 1
CI28-NRS || 159 | 235 | 558 0015 ] 0.011 0045 f 1.65 | 2.02 | 12.83
97-NRS || 135 | 271 [ 528 [[0.014 [ 0.010 [0.045 ([ 1.07 | 1.20 | 9.74
69-NRS || 3.28 | 4217 1 904 00331 0.026 [ 0.070 | 1.37 [.2.11 | 18.42

As discussed 1n Section 3.6, the pseudorange measuretient noise variance of

this filter is adjusted upward to compensate for the eliminated GPS error-states



(which are all part of the pseudorange measurement equation). The first best guess
was 2‘25 fti, while the currently implclmented value of 300 ft* is still not enough
to ensure adequate performance using conservative filter tuning methods (see the
latitude state in Figure F.2). Even when ‘taking into account the filter’s nonoptirhal
tuning, it appears the navigation solution from this filter is 1.0t as accurate as the two
full-order filters. However, when comparing to CIRIS performance, this filter is at
least 3 times more accurate in position and velocity estimates. This is a substantial
increase, considering v'only RRS range and GPS psct.xdorange equations are used to
update the filters state estimates. It can be deduced from this filter implementation
that the eliminated GPS states, even though they have relatively small magn\itudes,
do affect the navigation solution accuracy even when‘t,he filter is optimally tuned. It
is with this thought in inind that one is lead into implementing differential corrections
to GPS measurements‘ to achieve higher accuracy in the ﬁavigation solution when

implementing reduced-order filters.

5.3 The ENRS Filters

Various NRS filters have been implemented and analyzed with impressive re-
sults compared to C[RIS. The incorporation of differential corrections to GPS pseu-
dorange measurements takes this accuracy a step further with the ENRS. The 89-
State ENRS filter is analyzed first, Using only DGPS bsoudprange meastrements,
this full-order filter's pe[fformance in horizontal position‘elv'ror‘ standard deviation is
on the order of 1 ft. Then a 48-state reduced-order filter is examined. Forty-bne :
. states are eliminated with only a slight decrease, in velécity and attitude error esti-
mation performance. Then two .iters are examined which implement DGPS dol‘tag
range and RRS range-raie measurements for velocity aiding. Finally, delta-range
and range-rate measi ements are combined into the '4‘8-state ENRS reduced-order

filter as the conclusion to the work perforined in this thesis.




It is also important to bring out at this time that when an ENRS filter is
* actually implemented at CIGTF, the diiferential corrections should ensure that the
this filter performs almost as well in real life as it does in smulatxon Because
the atmospheric, SV clock, and SV position GPS error sources are computed very
accurately at the GPS Reference Station, the post-processing ﬁlter can estimate the

true position errors with higher accuracy than can a filter utilizing normal GPS

measurements. The added error sources of real world GPS measurements will likely ’

decrease the accuracy of the NRS filter somewhat, while having much less affect on
the ENRS filter due to the large reduction in magnitude of the error sources through

differential corrections to the pseudorange measurement.

5.3.1 The 89-State NRS Filter (Position Measurements Only). This filter is |

very similar to the 97-state NRS filter, except for the assumption that differential
corrections have been applied to the raw pseudorange measurements before filter
processing. It includes the 41-state INS model and the 26-statc RRS model with
the GPS clock states’ initial covariances decreased so the filter executes accurately
~ in single precision mode. As shown by Table 5.4, the inclusion of differential correc-
tions improves filter performa.nce by almost 50 percent in position error estimation

accuracy over the 97-state NRS filter.

‘Table 5.4. Temporal Average of the Ensemble Avcrage of True Errors for NRS and
89-State ENRS Filters :

~ Filter | Lati- Longi- Alti- || East | North | Up || East | North | Azi-
tude | tude | tude || Vel Vel Vel | Tilt | Tilt | muth
(t) (ft)y | (ft) || (fps) | (fps) | (fps) || (ares) | (arcs) | (arcs)

[ CIRIS ] 14.00 [ 14.00 ] 40.00 [ 0.100 ] 0.100 J 0.400 | [

i

128-NRS || 1.59 235 | 5.58 | 0.015 | 0.011 [0.045 § 1.65 | 2.02 | 12.83

97-NRS 1.35 | 2.71 5.28 || 0.014 | 0.010 | 0.045 || 1.07 1.29 | 9.74

69-NRS || 3.28 | 4.21 9.04 ({0033} 0.026 [ 0070 || 1.37 | 2.11 | 18.42

e

'89-ENRSL 0.84 1.04 3.80 || 0.013 | 0.010 { 0.042 || 0.94 1.29 | 6.46




The filter performance plots are located in Appendix G, and the reader will
. note how well the filter is tuned. The only unusual behavior in any of the plots
stems from the fact Ithat the GPS clock bias state approaches the limit of accuracy
of single precision near the end of the run and both GPS clock states diverge slightly
due to this fact. Other than this small anomaly, this filter performs better than any

filter examined so far.

5.3.2 The {8-State ENRS Filier (Position Measurements Only). Since-the
full-order ENRS filter performs so well, it is now time to analy‘ze the reduced-order
filter designed to fulfill the “less than 70 state” requirement as stated in Section
1.2. To remind the reader, 48 states were chosen over the 69 states of the NRS
filter because the addition of DGPS delta-range and RRS range-rate measurements '
increases the time required to update the states in"the EKF by 50 percent, causing the
Monte Carlo analysis to take almost 50 percent longer. Because of this time increase,
21 additional INS states relating to velocity and attif.ude errors were eliminated
along with the 20 upper DGPS error states as discussed in Section 4.4. Table 5.5
once again compares the performance of this 48-state reduced-order ENRS ﬁiter‘t'o
all previous filters and CIRIS. As can be seen, the position states suffer almost no
degradation due to the order réduct:ion, whilf: the veldcity and attitude stgtés degrade )
significantly from the eliminated INS states. However, the addition of ve!c;city aiding
measurements should increase the velocity states’ accuracy and approach the full-

' order filters’ perforrr ance.

Appendxx H contains-the 10-run Monte Catlo analyqls plots for the 2-hour
fighter flight profile. Once again, using the techmques of Section 2.4, this filter has
been conservatively tuned for optimum performance. As mentioned in Section 4.4,
the va.riance of the pseudorange measurement equation nbise v(¢;) was increased ,
from its full order value of 9f t? to 30ft? to compensate for the eliminated DGPS
sta.tes Also, a dynamics equatlon noise of 10~'®rad®/sec is added to the first two

lNS sta.tes to compensate for the 2l chmma.ted states. It is of interest to note




Table 5.5. Temporal Average of the Ensemble Average of True Errors for NRS,
89-State ENRS, and 48-State ENRS Filters

" Filter  [[ Lati- | Longi- | Alti- || East | North | Up || East | North [ Azi-

tude | tude | tude || Vel Vel | Vel Tilt Tilt | muth
(ft) (ft) (ft) [l (fps) | (fps) | (fps) || (arcs) | (arcs) | (arcs)

[ CIRIS [ 14.00 [ 14.00 |49.00 || 0.100 | 0.100 | 0.400 | [

]

128-NRS 1.59 | 235 | 5.58 || 0.015 | 0.011 | 0.045 |} 1.65 | 2.02 | 12.83

97-NRS 1.35 | 2.71 | 5.28 | 0.014 | 0.010 {0.045 || 1.07 | 1.29 [ 9.74

'69-NRS 3.28 | 4.21 | 9.04 {1 0.033 | 0.026 | 0.070 || 1.37 | 2.11 | 18.42

89-ENRS 0.84 1.04 | 3.80 || 0.013 | 0.010 | 0.042 ]| 0.94 | 1.29 | 6.46

48-ENRS-P || 0.90 | 1.32 | 3.05 i 0.027 | 0.020 | 0.044 || 3.83 | 4.09 | 19.23

that the 21 eliminated INS states actually fééd into the velocity and attitude error
states, but these states need no increase in noise, while the po;ition-mlated states
do need noise added for acceptable tuning. Once again, this 48;state reduced-order
ENRS filter with DGPS pseudorange and RRS range measurements incyeases thel
navigation solution accuracy in position by better than one order of magnitude
compared to CIRIS. Now the velocity aiding filters are explored to analyze how

velocity measurements can increase INS velocity error-state estimation accuracy.

5.4 Velocity-Aiding Filters

- The ﬁlters‘analyzed in this section implement velocity-aiding measurements

into the DGPS and RRS subsystems. By implementing the DGPS delta-range and - .

RRS range-rate equatlons separately .in this way, each measurement. is ‘'separately
tuned for optimal performance before they are mergcd together into the final 48-
state ENRS filter. Al:;.o, separating the DGPS and RRS error models allows faster
execution of the simulations so that more tuning runs can be pcrformea in a shorter
period of time. All of these sitnulations operate in double precision mode using a

' 10-run Monte Carlo analysis.




5.4.1 The 22-State DGPS Filter. This section analyzes the results of the 22-
* state DGPS filter used for DGPS delta-range measurement equation implementation.
’I.‘a;ble 5.6 contains three entries for the 22-state DGPS filter. The first entry “22-
DGPS-P” displays the average errors for the 22-state ﬁiter using only pseudorange
' measurements during a 10-run Monte Carlo fighter flight profile analysis. No plots
are included in the appendixes for this ﬁfter; it is evaluated simply to establish a
baseline to show whaft. the true navigation solution errors are without delté.-range
measurements. The second entry for this filter, “22-DGPS-1”, is a 10-run Monte
Carlo fighter profile analysis incorporating DGPS delta-range measurements. The
third entry,.”22-DGPS-2” utilizes a straight flight profile in its 10-run analysis.

Table 5.6. Temporal Average of the Ensemble Average of True Errors for Previous
.and 22-State DGPS (Velocity Aiding) Filters

Filter Lati- | Longi- | Alti- | East | North | Up | East | North | Azi-
- tude | tude | tude || Vel Vel Vel Tilt | Tilt | muth

| - (ft) (ft) (ft) i (fps) | (fps) | (fps) || (arcs) | (arcs) | (arcs)
[ CIRIS [ 14.00 | 14.00 | 40.00 J] 0.100 | 0.100 | 0.400 i I
128-NRS 1.59 2.35 5.58 || 0.015 | '0.011 ]0.045 || 1.65 2.02 | 12.83
97-NRS- 1.35 2.71 5.28 |1 0.014 { 0.010 | 0.045 {| 1.07 1.29 9.74
69-NRS' 3.28 4.21 9.04 |1 0.033 | 0.026 |0.070 || 1.37 | 2.11 | 18.42
89-ENRS 0.84 1.04 3.80 {{ 0.013 | 0.010 | 0.042 || 0.94 1.29 | 6.46
48-ENRS-P || 0.90 1.32 3.05 | 0.027 | 0.020 | 0.044 || 3.83 4.09 | 19.23
22-DGFS-P || 1.95 1.84 3.14 || 0.037 | 0.044 | 0.052 |} 5.28 | 3.94 | 29.85
22-DGPS-1 || 2.10 { 1.96 | 3.25 { 0.043 | 0.051 | 0.063 || .5.46 | 4.33 | 45.02
22-DGPS-2 || 2.20 | 2.14 3.33{ 0.044 | 0.049 | 0.060 || 5.56 | 4.09 | 63.24

' The filter performance. plots for the delta.-ra.nge'DGP‘S filters are ‘llqcated in
Appendix 1(22-DGPS-1 and -2). As seen from the plots and th'e values in TaBle 5.8,
the DGPS delta-range méasurement.is corrupting the position and velocilﬁy error-
state estihation in these filters a small amount (remember position errors are part
of the delta;fange mea.gurement). This degradation in filter performance is likely to

be caused by cross-correlations of the position and ‘'velocity. measurements which are

5-11




not modeled in this thesis, and it is currently being investigated to solve this problem.
However, even with this anomaly, this reduced-order filter performs as well or better
tha..n the 69-state reduced-order NRS filter (a reduced-order DGPS only filter versus
a reduced-order GPS/RRS filter issue). Assuming the anomaly with the DGPS
delta.—rahge measurement equation is remedied, this 22-state DGPS filter is expected
to produce position and velocity error estimates 50 percent more accurate than the
69-state NRS filter and on par with the other full-order filters discussed prevliously.
' The DGPS delta-range measurement is implemented exactly as discussed in Section
4.5.1, with no changes required in state dynamics noise or measurement noise from
the truth model values. This is not unusual since no measurement states have been
eliminated, essentially a “full-order” measurement equation. Since the DGPS delta-
range and RRS range-rate measurements are very similar, it is no surprise if the

46-state CIRIS filter analyzed in the next section suffers from the same anomaly as

the 22-state DGPS filter.

5.4.2 The 46-State CIRIS Filter. Again, this filter is implemented to evaluate
RRS range-rate measurements optimally before they are incorporated with DGPS
delta-range measurements in the 48-state ENRS filter.: Table 5.7 contains values
for three CIRIS filters si"milar to the DGPS filters discﬁjxed in the previous section.
The‘ first filter, “46-CIRIS-P”, is a 46-state filter incarporating only RRS range
meas.urements. It is used as a baseline to evaluate the peLforma.nce of the range-rate
. méasurement equations. No plots are contained in appendices for this 10-run Monte
Carlo fighter profile analysis since filters utilizing only] RRS range me:-;‘skurements
have been thor'ough‘ly covefed in previous thesis' (20, 19, 22). The results of the
sccorl:d CIRIS filter, “46-CIRIS-1", are derived from a 10-run Monte Carlo fighter

_ profile analysis using RRS range and range-rate measurements. The third filter,

- “46-CIRIS-2", was analyzed with 10-run analysis using a racetrack flight profile and

also incorporates RRS range and range-rate measuréments.
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Table 5.7. Temporal Average of the Ensemble Averaée‘ of True Errors for Previous
and 46-State CIRIS (Velocity Aiding) Filters

Filter Lati- | Longi- | Alti- || East | North{ Up || East | North | Azi--
tude | tude | tude || Vel | Vel | Vel || Tilt | Tilt | muth
(ft) (ft) (ft) || (fps) | (fps) | (fps) || (arcs) | (arcs) | (arcs)
[~ CIRIS | 14.00 ] 14.00 | 40.00 [ 0.100 ] 0.100 [0.400 | | | |

128-NRS 1.59 | 2.35 5.58 |1 0.015 | 0.011 {0.045 || 1.65 | 2.02 | 12.83

97-NRS 1.35 | 2.71 5.28 || 0.014 | 0.010 [ 0.045 || 1.07 | 1.29 | 9.74

69-NRS 3.28 | 4.21 9.04 |1 0.033 | 0.026 | 0.070 || 1.37 | 2.11 | 18.42
89-ENRS 0.84 1.04 3.80 || 0.013 | 0.010 | 0.042 || 0.94 1.29 6.46
48-ENRS-P || 0.90 1.32 3.05 | 0.027 | 0.020 | 0.044 || 3.83 | 4.09 | 19.23
22-DGPS-P || 1.95 1.84 3.14 || 0.037 | 0.044 | 0.052 || 5.28 | 3.94 | 29.85
22-DGPS-1 |f 2.10 | 196 | 3.25 || 0.043 | C.051 | 0.063 | 5.46 | 4.33 | 45.02
22-DGPS-2 || 2.20 | 2.14 | 3.33 || 0.044 | 0.049 [ 0.060 | 5.56 | 4.09 | 63.24
46-CIRIS-P | 3.12 6.84 | 18.09 | 0.046 | 0.026 | 0.100 || 4.01 4.39, | 47.48
46-CIRIS-1 || 2.80 6.40 | 11.87 || 0.042 | 0.024 | 0.046 || 4.01 4.34 | 45.53
46-CIRIS-2 || 3.91 6.20 8.94 1 0.039 | 0.026 | 0.044 || 4.08 413 |12.92 |

Appendix J contains the filter perforfnance plots fdr_ the filters utilizing range
and range-rate measurements (46-CiRIS-1 and -2). Ih v'this filter, the range-rate
measurements are not corrupting thg positioh states, butit'hey do not improve the

' velocity states’ estimlation except possibly in the Qertical channel. In this filter, the
velocity measurement anomaly does not have a pronoluncedveﬁ'ect as in 'the DGPS
filter, possibly because the transponders are stationary and the GPS satellites circle
the earth. .Ih any case,,tlnis.énomaly still hinders the evalu.ativon of how much veldcity

. aiding will enﬁance tl;e navigation solution. The RRS range-rate measurement is'”

’ ilmplemented exactly as discussed in Section 4.6.1, with no changes required in state

dynamics‘noise or measurement noise from the truth model‘val_ues. vAgain,"this' is not
unusual since no measurements states have been eliminated, essentially producing.‘a

“full-order” measurement equation. For completeness and in the hopes the anomaly

is eventually corrected, both DGPS dcita-range and RRS faﬁge-ra.te measﬁrement

equations are merged into the 48-state ENRS filter in the next section. ,
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5.5 The Complete 48-State ENRS Filter

Because the velocity aiding measurements do not cause the DGPS or CIRIS
~ filters to diverge or become unstable, a decision is made to proceed with incorporating
DGPS delta-range and RRS range-rate measurements into the 48-state ENRS filter.
This way, when the anomaly is discovered, the Fortran code can be quickly fixed
and filter analysis preformed. Table 5.8 contains the true errors for the navigation
solution for all filters discussed and implemented in this thesis. Notice that even with
velocityl measurement corruption, the 48-state ENRS filter performs much better
* than CIRIS or even the 69-state NRS filter. In fact, its position error-state estimation

is one of the best, even with the anomaly present.

Table 5.8. Temporal Average of the Ensemble Average of True Errors for All Filters

Filter Lati- | Longi- | Alti- || East | North | Up || East | North | Azi-
- tude | tude | tude || Vel Vel Vel || Tilt | Tilt | muth
(ft) (ft) (ft) || (fps) | (fps) (fps) |l (arcs) | (arcs) | (arcs)
CIRIS [ 14.00 [ 14.00 [ 40.00 [[ 0.100 | 0.100 [ 0.400 [ ‘ l.
128-NRS || 1.59 | 2.35 | 5.58 [ 0.015] 0.011 | 0.045 | 1.65 | 2.02 | 12.83
97-NRS 1.35 2.7 5.28 || 0.014 | 0.010 | 0.045 || 1.07 | 1.29 9.74
69-NRS 3.28 4.21 9.04 | 0.033 | 0.026 | 0.070 || 1.37 2.11 | 18.42

' 89-ENRS 0.84 1.04 3.80 |1 0.013 | 0.010 | 0.042 j| 0.94 1.29 6.46
48-ENRS-P || 0.90 1.32 3.05 || 0.027 | 0.020 ;0.044 || 3.83 | 4.09 | 19.23
22-DGPS-P || 1.95 1.84 3.14 | 0.037 | 0.044 | 0.052 || 5.28 3.94 | 29.85
22-DGPS-1 | 2.10 {. 1.96 3.25 | 0.043 | 0.051 | 0.063 || 5.46 .4.33 | 45.02
22-DGPS-2 || 2.20 | 2.14 3.33 || 0.044 | 0.049 | 0.060 | 5.56 | 4.09 | 63.24
46-CIRIG-P || 3.12 | 6.84 |18.09 |[ 0.046 [ 0.026 | 0.100 || 4.01 | 4,39 | 47.48
46-CIRIS-1 || 2.80 | 6.40 | 11.87 |[ 0.042 | 0.024 | 0.046 || 4.01 4.34 |'45.53
46-CIRIS-2 3.91 6.20 894 [ 0.039 | 0.026 | 0.044 )| 4.08 | 4.13 | 12.92
48-ENRS 1.19 1.80 5.46 |[ 0.040 [ 0.029 | 0.087 || 5.14 4.92 1 31.21

——

—

Plots of this filter’s state estimation performance can be found in Appendix
K. These plots represent a 25-run Monte-Carlo analysis of the fighter flight profile.
No changes were made to the dynamics equation or measurement noises other than

those discixssed in previous sections. It appears that when the velocity measurement
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equations anomal'y.is remedied, this 48-state ENRS filter will produce navigation
solutions one order of magnitude more accurate than current CIRIS system, and

will rival any of the full-order filters implemented or analyzed in this thesis. ‘

5.6 Filter\Tulning Pard_meters

This section contaiﬁs tables of the filter tuning parameter’s (Q(¢) and R(t;))
final values 'for_thé filters implemented in this thesis when the values were dif-
ferent f'rom: the truth model values. Table 5.9 lists the Q(t) values from among
the first 20 INS error-states. The listed states were the only states requiring tuning
when a 20-state'INS filter modél was implemented, and the tuning values were the

same for a.ll'_“the filters. For a'definition of the listed states, consult Table A.7 in

Appendix A.

Table 5:9. INS States Tuning Parameters Q(t)

State State | Truth Model Filter
Number | Symbol Value Value
1 80, 0.0 10~ ®rad?/sec
2| 49, 0.0 10~ "%rad’/sec
12 653 0.0 108 ft%/sec’
|13 Sy | 0.0 1975 ft?/sec .
14 | V. 0.0 10~ 8rad?/sec
15 \ 0.0 10-Brad?/sec
16 V.. | 0.0 10" Brad? [ sec
17 | ébg: | - 0.0 10" 2ug?/sec
18- bg, 0.0 10~ ug?/sec
19 bg. 0.0 10~"ug?/sec |

Table 5.10 lists the 26 RRS error-state’s turin, parameters. All of the RRS
error-states requ’ifed tuning and are listed. Rer:ciber that there are r'ange' and
velocity bias states along with four errc. states (3 position errors and 1 atmospheric

- error) for each of six transponders in the truth and filter models throughout this _.
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thesis. Table A.5 in Appendix A contains the definition for each of the states now
listed.

Table 5.10. RRS States Tuning Parameters Q(¢)

State State - Truth Model - Filter
Number Symbol Value Value
1 ~6Rs 0.0 10-5 /1% sec
2 dvy -0.0 . 1078 ft*/sec’
3, 1,11,15,19,23 | éPr;, ' 0.0 . 2-107° ft*/sec
4, 8,12,16,20,24 | 6Pr;, 0.0 310731 [sec
5, 9,13,17,21,25 | 6P, 0.0 3102 f12]sec
6,10,14,18,22,26 | &Rr;, | 6.66- 10713 ft*/sec | 6.66 - 107° ft2/sec

Table 5.11 lists the 30 GPS error-state’s tﬁning parameters. Most of the GPS
error-states required tuning, so they are all listed. Listed are receiver clock bias
and drift error-states along with seven error-states (1 code-loop, 2 atmosphere, 1
SV clock,and 3 position error§) for each of 4 SVs in the full-order filter models

throughout this thesis. The re<uced-order GPS filters only include the two clock

" error-states but are still tuned with the values shown below for these two states.

Table A.6 in Appendix A contains the definition for each of the states now listed.

Table 5.12 lists the 22 DGPS errpr~s£ate's tuning parameters. All of the’ DGPS
error-states required tuning, so they are all listed. Listed are receiver clock bias and
drift error-states along with five error-states (2 atmosphere and 3 positioh errors).

for each of 4 SVs in the full-order filter models throughout this thesis. The ;educéd-

order DGPS filters only include the two clock error-states but Are still tuned with

the values shown below for these two states. Table A.9 in Appendix A contains the

definition for each of 'the. states now 'listed.
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‘Table 5.11. GPS States Tuning Parameters Q(t)

State State Truth Model Filter
Number | Symbol Value Value
1 OR.x, 0.0 1072 ft?/sec
2 . 6Dk, 0.0 10‘6ft2/sec
3,10,17,24 | §R.ioop, | 0.5ft/sec 0.5ft*/sec
4,11,18,25 | §Rypop, | 41073 ft*/sec | 4- 1073 ft?/sec
5,12,19,26 | 6Rion, | 4-107°ft%/sec | 4- 1073 f1?/sec
6,13,20,27 | 8 Ruis,,, 0.0 105 ft*]sec
11 7,14,21,28 | bz, 0.0 1074 ft*/sec
8,15,22,29 | %o, 0.0 10-2 /% sec
9,16,23,30 | 6z, 0.0 102 ft*/sec

Table|5.12. DGPS States Tuning Parameters Q(t)

.State
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State Truth Model Filter
I Number | Symbol |  Value Value
1 6Ruar. | - 0.0 107% ft*/sec -
2 8§Dy i, . 0.0 10°°ft*/sec
3, 8,13,18 | 0Rupop, | 1-10-371%]sec | 5-10-1t3/sec
4,9,14,19 | SRim, | 4-107%ft?/sec | 1510~ ft?/sec
5,10,15,20 | 6250, 0.0 1-10-7f1%/sec
6,11,16,21 | %0, 0.0 1- 107 f£2[sec
7,12,17,22 | 6z, 0.0 11074 ft%/sec




The last table in this section lists the final R{t;) value for the GPS/DGPS
pseudorange measurement for the reduced-order filiers impiementeci in this thesis.
The full-order GPS/DGPS filters measurement noise variance is alwgys 9 ft2. The
RRS range measurement noise variance is always 4 ft*. Only the 69-state NRS,
48-state ENRS, an? 22-state DGPS reduced-order filters need adjustment of their

pseudorange measurement noise variance, so only values for these filters are listed.

Table 5.13. CPS/DGPS Measurement Noise Variance Tuning Parameters R(#;)

Filter Truth Model | Filter

' Value Value
69-State NRS 9ft* | 300ft*
48-State ENRS 9ft? 30ft*
22-State DGPS 9ft 30ft*

57 Summary

_This chapter discusses the results of all the ﬁlpers designed, impleinented, and
ana’lyzed in this thesis. As expfécfed, the full-order filters perform better than the
reduced order filters, whilé the filters utilizing DGPS measurements outperforin fil-
ters with, only GPS measurements. Again as a reminder, -the truth-model for the
INS is 41 stlateé (exéept'forIStacey’s 72-state model), the RRS truth model is 26
states, the GPS truth model 30 states, and the DGPS truth model is 22 states. The |
anomaly in the -vglocity~aidiﬁg measurement equations hindered the'analysis of the
ﬁlters impleménting this type of measurement. However, every filter in this tne-

sis significantly outperforms CIRIS and shows the benefit of augmenti‘ng the RRS

transponder measurements with GPS and DGPS measurements.
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VI. Conclusicns and Feco ivmerdations

6.1 Co_nclusions

6.1.1 Thz NRS Filters. All three NRS filters performed well and sreatly
increased the accurqcy. of the navigation solution over CIRIS a: it is implemented
today. The following sections contain specific conclusions drawn from the NRS
filters’ performance while :ecommendqtions derived from their implementation are

found later in this chapter.

| 6.1.i.1 41-State INS Model. The 41-state INS ‘error model proves to
be an adequate substitute for the 93-state LN-93 INS error model in both the truth
and filters models were it was utilized. As shown in Appendix C, the 41-state error
model followed the 93-state error model to within one percent over ’the entire fighter
flight trajectory with respeét 10 position, velocity, and attitude errors. The reader
must recognize that the eliminated states from the 93-state model feed into the first
ten states in the INS error model, so the remaining INS states (states 11 through 41
in Tables A.7 and A.8 in Appendix A) do not vary from the 93-state efror model and
plots from thgse states are not included in Appendix C. This reduction in states in
both truth and filter models greatly decreased the time requiréd for filter p‘c;rforma.x;ce '

analysis.

6.1.1.2 Sinjle versus Double Precision. As stated in Section 5.1.1, dou-
ble précisibn is necessary to faithfully model GPS/DGPS measurementsin VAX For-
tran. Recognizing that every computer system implemenuts precision differently, the
reader is \yarned that 12-bit accuracy is the minimuta accuracy required fbr a 2-hour
simulation with receiver clock er'rors.modeled as in this thesis. However, also recog-
nize that the single precisi;)n Iassur‘nption used in the {ull-order filters implemented

in this thesis only affects the initial filter acquisition (estimation) of the receiver
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clock errors, and the size of these two clock errors makes the decreased magnitude

assumption a viable alternative to double precision simulation analysis. -

6.1.1.3 NRS Filter Performance. As ctated in Chapter V, the full-order
128- and 97—state NRS filters perform so much alike that any discrepancy in perfor-
mance shown in the tables is a tuning issue and nov a performance issue. However, -
the 69-state NRS filter performance degrades significantly when compared to the two
fu'll'-order filters mentioned above. Even though the 69-state filter in not optimally
tuned, it is a safe assumption that its position and velocity error estimation accuracy
will be worse than the full-order filters. Recognize, though, that the 69-state filter is
at least 3 times more accurate than the current CIRIS system. This increase in per-
formance can be attributed to the incorporation of GPS pseudorange measurements
to augment transponder aiding and more filter states used for the analysis (69 in the
NRS versus 11 in CIRIS). How much each of these attributes individually increases
performance is not in the scopé of this thesis; however, an educated guess would be -
that increased filter states give the most increase in performance in evaluating the

69-state NRb filter’s performance increase over CIRIS.

6.1.2 The ENRS Filters. Liké the NRS filters, the ENRS filters all show
a great. increase in performance over CIRIS. The full-order 89-state ENRS filter
.outperforms any other filter 1mplemonted in this thesis by producmg a navngatlon
solution one order of magnitude more accurate than CIRIS. The 48-state reduced-
order filter 1s also very accurate, and produces position error es'tlmates one order
~ of magnitude better than CIRIS along with velocity error estimates 5 times better
(usiné only DGPS pséudorange and RRS range measurcmcnfs). As stated in Chap.ter
Vv, th.e 48-state ENRS filter using position- and velociiy-aiding measurements has
not. been adequately modeled and the corruption of the navigation solution by:an

anomaly eliminates any meaningful conclusions which can be drawn form this filter.



However, the following section contains a conclusion which can be drawn from the

ENRS filters successftﬂly implemented in this thesis.

- 6.1.2.1 Utility of DGPS. The one main conclusion which can-be drawn
from the work performed in this thesis, and one which cannot be emphasized enough,
. is that incorporation of DGPS pseudorange measurements greatly'inc‘r'eases
the navigation solution accuracy of CIRIS. When éithér the 8_9-s'Late full-order.
filter or the 48-state reduced-order filter is analyzed, it‘ is readlily.zipparén't that DGPS
provides the increase in navigation solution accuracy required. fbr CIRIS to be used
as a test reference against the GPS-aided INSs CIGTF is likely to be iestiny in the
nezt decade. This one .conclusion is the cplmingtion of the wori{ perfoxl"med in this

thesis and the 3 other theses which preceded it (20, 19, 22).

6.2 Recommendations

There are many recommendations which could be derived from the work per-
formed in this thesis. The following sections contain a few of the most important as

determined by the author and the thesis committee.

6.2.1 Velocity-Aiding Measurements Require Further Stuid};.- 'WHe,h velocity- -
aiding measurements (DGPS delta-range and RRS rang&raté) .. were implem‘entéd
into the 48-state EN.RS filter, 'corrupti‘or; of both posjtioﬁ and velocity 'erron‘-stiate
estimation precluded performance analysis: of the filter. At ﬁfst, an error in fbe
algorithm imblemehtgtion was suépec‘ted; however, careful Ianalysisl préveslthis not to
be the case. Then, the céordin#te tr'al,nsformation fll'om the navigation frame; (NWU)
to Litton ECEF became s.uspe;::t. When a dfﬂ'érent_ transformation was implemented
(results inot shown in this thesis), the corruption of position ;'md' ‘velqcity states
continued. Fixially, during the thesis.‘defense, the correlation between position and
velocity measurements in the DGPS subsystem as it is modeled:in t.l'xis thesis (and
is performed by the ABR in real life) was bréught to the surface. Since there is'a
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definite correlution between position and velocity measurements in the truth and filter

models of this thesis, it is necessary to model them as being correlated. This requires
further anélysis on the part of CIGTF to determine to true correlation values so
they can be implemented accurately in the EKF. . he measurement noise covariance
matrix R(Z;) is modified to include off-diagonal terms describing the correlation
between the position and velocity measurements. Note that when utilizing MSOFE
as the EKF evaluation tool, scaler measurements are assumed (R(%;) is a diagonal
matrix) so that for correlated measurements (off-diagonal terms), this matrix must
be diagonalized before implementation. Unfortunately, Maybeck has stated this lack
of corrélation between measurements used in this thesis still does not apcount; for the
corruption of the navigation solution, since the truth model implements uncorrelated
measurements as well ( 13). This anomaly, which has plagued the three previous

theses alsc (20, 19, 22), remains undefined and a subject for further research.

. 6.2.2 Return to a 93-State INS Truth Model. The NRS and ENRS truth and
filter models developed or analyzed in this thesis assume that either a 72-state INS
model (Staccy’s NRS) or 41-state INS model (all other models in this thesis) performv '
close enough to the true 93-state LN-93 error model so that auy real difference can .
be ignored. However, before real measurement.s are used to test any of the filters,
the 93-state INS model should be included in the truth model and filter perforrﬁance '

against a full-order truth model analyzed in case further tuning is required.

6.2.3 Use of Real Measurements. Once the velocity-aiding measuréments"
anomaly has been identified and corrected and the filter analyzed against the true
93-state INS model,'actual DGPS and RRS measurements should be used t:o test the
48-state ENRS filter for robustness. It is a foregone conclusion that the filter will need
further tuning for optimal pérfqrménce, and this tuning can only be accomplished

using rcal measurements.
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6.2.4 Reduction of the RRS error-states in the Filter. Another worthwhile

effort could be the reduction of the 26-state RRS model in the filter to a 2-state
model. The RRS range and velocity bias states would be retained (see Table A.5
in Appendix A) with increased variance of the RRS range measurement noise to
compensate for the eliminated states. Recognize this reduction does not affect the
RRS range-rate méasuremént since the eliminated statés don’t appear in this mea-
- surement. Allso, since DGPS measurements alone provide.zlm' accurate navigation
solution, ohly a minimal degradation of the navigation solution should be'realized.
Preliminary work using this technidue has begun utilizing only position-aiding mea-
surements (not included in this thesis), and the results look very encouraging. Note
that reduction of the RRS states from 26 to 2 reduces the 48-state ENRS filter to
24 states. This allows for inclusion of the 21 previously eliminated INS states (see
Table A.8 in Appendix A) definitely increasing the filter’s ability to estimate atti-
tude and velocity error-states while staying undgr the 70-state post-processing filter .

limit. This newly proposed filter would in theory have 41 INS err.or-states, 2 RRS
error-states, and 2 DGPS error-states for a ,t;)tal of 45 error-states to be compared

to the 89-state ENRS truth model developed in Chapter IV.




"Appendix A. Error Model State Definitions

This appehdix contains a tabular listing of the 93 Litton INS, 26 RRS, 30 GPS,
41 reduced INS truth model, and the 22 DGPS error-states.

A.1 Litton LN-93 Error-States

Tables A.1 through A.4 list the LN-93 error model (93 states) as defined in
the Litton CDRL (11). Note that this document cortains several errors, which have

been corrected in these tables (22).

A.2 RRS Transponder E'fror States

Table A.5 lists the RRS transponder error states as they are modeled in the
NRS. These states are defined in and extracted from (19). A total of 26 states are in-
cluded to model the error characteristics of six ground iransponders plus interrogator

error sources (22).

A3 GPS Error States*

Table A.6 lists the GPS error states as they are modeled in the NRS. These
states are defined in and extracted from (6). The definitions are believed to be |
ultimately traceable to the paper by D.B. Cox (4). A total of 30 states are included to

model the error characteristics of 4 space vehicles plus uscr equipment error sources.

(22)

A4 Reduced Order INS Truth Model States

Tables A.7 and A.8 list the 41 INS states used in all the full-order models in
this thesis except for Stacey’s 128-state model. These states are based on the the

recommendations of Lewantowicz and Keen (10).

A-1



A5 DGPS Errorl States

© Table A.9 lists the DGPS error states as they are modeled in the ENRS. A
total of 22 states are included to model the error characteristics of 4 space vehicles

plus user equipment error sources.
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Table A.1. INS System Model: INS States 1 — 29

State State | Definition
Number | Symbol
1 80, | X-component of vector angle from true to computer frame
2 80, Y-component of vector angle from true to computer frame
3 86, Z-component of vector angle from true to computer frame
4 & X-component of vector angle from true to platform frame
5 &y Y-component of vector angle from true to platform.frame
6 * ¢, | Z-compouent of vector angle from true to platform frame
7 6V, X-component of error in computed velocity
8 oV, Y-component cf error in computed velocity
9 6V, Z-component of error in computed velocity .
10 oh Error in vehicle altitude above reference ellipsoid
11 dhy | Error in lagged inertial altitude
12 8Sa | Error in vertical channel aiding state
13 6Ss | Error in vertical channel aiding state
14 b, X-component of gyro correlated drift rate
15 by, Y-component of gyro correlated drift rate
16 b, Z-component of gyro correlated drift rate
17 V.. | X-component of accelerometer and
velocity quantizer correlated noise
18 . V.. | Y-component of accelerometer and
velocity quantizer correlated noise
19 V.. | Z-component of accelerometer and
velocity quantizer correlated noise
20 69: X-component of gravity vector errors
.21 o9, Y-component of gravity vector errors
22 8g. Z-component of gravity vector errors
23 thp Total baro-altimeter correlated error
24 b,, X-component of gyro trend
25 b,, | Y-component of gyro trend
26 b,, Z~comiponent of gyro trend
27 V., X-component of accelerometer trend
28 e Y-component of accelerometer trend
29 v Z-component of accelerometer trend




Table A.2. INS System Model: INS States' 30 — 47

Sgs,

State State | Definition
1| Number | Symbol , -

30 b X-component of gyro drift rate repeatability
31 b, Y-comporent of gyro drift rate repeatability
32 b, Z-component of gyro drift rate repeatability
33 Sy, - | X-component of gyro scale factor error
34 Sqy Y-component of gyro scale factor ‘error
25 Sg. Z-component of gyro scale factor error
36 X1 X gyro misalignment about Y-axis
37 X2 Y gyro misalignment about X-axis
38 X3 Z gyro misalignment about X-axis
39 2 X gyro misalighment about Z-axis
40 P Y gyro misalignment about Z-axis
41 v3 Z gyro misalignment about Y-axis
42 D.:. | X gyro scale factor non-linearity" .
43 . Dy, | Y gyro scale factor non-linearity

44 D.,. | Z gyro scale factor non-linearity
45 ~Sos. | X gyrc scale factor asy.nmetry error
46 Sqs, | Y'gyro scale factor asymmetry error
47 -

Z gyro scaie factor asymmetry error




Table A.3. INS System Model: “NS States 48 — 69

State State | Definition
Number { Symbol
48 Vs, X-component of accelerometer bias repeatability
49 Vi, Y-component of accelerometer bias repeaiability ]
50 Vs, Z-component of accelerometer bias repeatability
51 Sa. X-component of accelerometer and velocity
quantizer scale factor error
52 Sa, | Y-component of accelerometer and velocity
quantizer scale factor error
53 Sa, Z-component of accelerometer and velocity
- quantizer scale factor error
54 Sqa, | X-component of accelerometer and velocity
quantizer scale factor asymmetry
55 S@4, | Y-component of accelerometer and velozity
' ' quantizer scale factor asymmetry
56 So4a, | Z-component of accelerometer and velocity
quantizer scale factor asymmetry.
57 fex Coefficient of error proportional to square
| of measured acceleration
58 Su Coefficient, of error vroportional to square
of measured acceleration
59 Sz Coefficient of error proportional to square
of measured acceleration :
60 fry Coefficicnt of error proportional to products of acceleratior:
along and orthogonal to accelecrometer sensitive axis
61 Jez Coefficient of error proporticnal to products of acccleration
, along and orthogonal to accelerometer sensitive axis
62 for Coefficient of error proportional to products of acceleration
| along and orthogoral to acceleromceter sensitive axis
63 Jye Coeflicient of error proportional to products of acceleration o
' along and orthogunal to accelerometer sensitive axis
64 fiz Coefficient of error proportional to products of acceleration
: along anA o: .hogona: to accelerometer sensitive axis
" 65 Sry Coeflicient of error proportional to products of acceleration
along and orthogonal to accelerometer wnqltlve axis
66 1 X acceleremeter misalignment aboui Z-axis
67 Ha Y accelcrometer misalignment about. Z-axis
68 U 7, aceelerometer misalignment about Y-axis
69 Ty

Z-accelerometer misalignimert about X-axis
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Table A.4. INS System Model: INS States 70 — 93

State State | Definition A
Number | Symbol ' |

TU V., | X-component of acceleromater bias
thermal transient
71 Vye | Y-component of accelerometer bias

.| thernial transient

72 Ve Z-component of accelerometer bias
thermal transient

73 bz, X-comnponent of initial gyro drift rate
bias thermal transient .

74 by, Y-component of initial gyro drift rate

bias thermal transient

75 b., Z-component of initial gyro drift ral.
bias thermal transient

76 Fzy: | X gyro compliance term
77 Fzyy | X gyro compliance term
78 Frur X gyro compliance term
79 Frzy | X gyro compliance term
80 F,.: | X gyro compliance term
81 | F,.. |X gyrocompliance term
82 Fy.: | Y gyro compliance term
83 F,.. | Y gyro compliance term
84 F,:y | Y syro compliance term
85 Fyz. ! Y gyro compliance term
' 86 Fy:z | Y gyro compliance term
87 F,sy | Y gyro compliance term
88 F.zy, | Z gyro compliance term
89 Fi:x | Z gyro compliance term
90 F.z» | Z gyro compliance term
91 - F.y: | Z gyro compliance term
—-‘ 92 .y, | Z gyro compliance term
93 F.y: | % gyro compliance term

|
|
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Table A.5. RRS Error States

- State State | Definition

Number | Symbol | [NOTE: S;ys = Total INS States]

Sins + 1 6R, | Range error due to equipment bias

Sins + 2 dvy | Velocity error due to equipment bias

Sins+3 | 8Pry, | Transponder 1 x-component of position error

Sins+4 | 6Pry, | Transponder 1 y-component of position error

Sins+ 5 | 6Pry, | Transponder 1 z-component of position error

Sins+6 | 8Rr;, | Transponder 1 range error due to atm propagation

Sins+ 7 | 6Pr;, | Transponder 2 x-component of position error

Sins+8 | 6Pry, | Transponder 2 y-component of position error

Sins+9 | 6Pr;, | Transponder 2 z-component of position error °
Sins + 10| 6Rr;, | Transpoader 2 range error due to atm propagation
[ Sins + 11 8Prs, | Transponder 3 x-component of position error
Sins + 12 dPr;, | Transponder 3 y-component of position error
Sins + 13 | 8Pr3, | Transponder 3 z-component of position error

Sins + 14 | 6Rr3, | Transponder 3 range error due to atm propagation
Sins+ 15| 8Pry, | Transponder 4 x-component of position error
Sins + 16 | 8Pry, | Transponder 4 y-component of position error
Sins + 17 | éPr,, | Transponder 4 z-component of position error
Sins + 18| 6Rry, ' | Transponder 4 range error due to atm propagation
Sins+ 19| 6Prs, | 1ransponder 5 x-component of position error
Sins +20 | 8Prs, | Transponder 5 y-component of position error
Sins +21 | 8Prs, | Transponder 5 z-component of position error
Sins +22 | 6hrs, | Transponder 5 range error due to atm propagation
Sins + 23 | 8Pre, | Transponder 6 x-component of position error
Sins +24 | 6Pre, | Transponder 6 y-component of position erior
Sins +25 | 8Prg, | Transponder 6 z-component of position error

Sins + 26 | dRys, | Transponder 6 range error due to atm propagation




R Table A.6.

GPS Error States

State

Sins + Srrs + 30 |

State Definition ,

Number Symbol | [NOTE: Sgps = Total RRS States]
SiNs+ Sras+1 | 6R.x, | User clock bias
SiNs+ Srrs +2 | 8Dk, | User clock drift
SiNs+ Srrs + 3 SRc[oapl SV 1 code loop error
SiNs + Srrs +4 |'6Riop, | SV 1 tropospheric error
Sins + Srrs +5 | 6Rion, | SV 1 ionospheric error
Sins + Srrs +6 | 6Ray,,, | SV 1 clock error
Sins+ Srrs+7 | 6z,, | SV 1 x-component of position error |
Sins + Srrs + 8 8y,., | SV 1 y-component of position error
Sins+ Sprrs + 9 024y, SV 1 zycomponent of position error
Sins + Srrs + 10 | 6 Ruoop, | SV-2 code loop error
Sins + Srrs + 11 | 6Ryy0p, | SV 2 tropospheric error
Sins + Srrs + 12| 8Rion, | SV 2 ionospheric error
Sins + Srrs + 13 | 8Ry,,, | SV 2 clock error .
Sins + Srrs + 14 | éz,,, | SV 2 x-component of position error
Sins+ Srrs +15 | 6y, | SV 2 y-component of position error
Sins + Srrs + 16 | éz,,, | SV 2 z-component of position error
Sins + Srrs + 17 | 8Reioop, | SV 3 code loop error
Sins + Srrs + 18 | 8Riop, | SV 3 tropospheric error
Sins 4+ Srrs + 19| ORism, | SV 3 ionospheric error
Sins + Srrs + 20 | 6R.,,. | SV 3 clock error ,

.Sins+ Srrs +21 | d6z,, | SV 3 x-component of position error
Sins + Srrs +22 | 8y,, | SV 3 y-component of position error
Sins + Sprs +23 | 62,,, | SV 3 z-component of position error
SiNs + Srrs + 24 | 6 R.ioop, | SV 4 code loop error
Sins + Srrs +25 | 6Rivop, | SV 4 tropospheric error
Sins + Srrs + 26 | 8Ri,,, | SV 4 ionospheric error
Sins + Srrs + 27 | 6Re,,, | SV 4 clock error
Sins + Srrs +28 | b6z,, | SV 4 x-component of position error
SiNs + Sprs +29 | 6y.., | SV 4 y-component of position error

024, | SV 4 2-component of position error.
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Table A.7. Reduced-Order INS System Model: INS States 1-— 20

| State State | Definition
Number | Symbol L
1 60, X-component of vector angle from true to computer frame
2 80, Y-component of vector angle from true to computer frame
3 [TA Z-component of vector angle from true to computer frame
4 O X-component of vector angle from true to platform frame
5 oy Y-component of vector angle from true to platform frame
6 ?: Z-component of vector angle from true to platform frame
7 1A X-component of error in computed velocity
8 6V, | Y-component of error in computed velocity
9 8V, | Z-compouent of error in computed velocity
10 oh Error in vehicle altitude above reference ellipsoid
11 Shy, Error in lagged inertial altitude
12 8S; | Error in vertical channel aiding state
| 13 | 85, Error in vertical channel aiding state
14 - Vi, | X-ccmponent of accelerometer and
velocity quantizer correlated noise
15, V,. | Y-component of accelerometer and
velocity quantizer correlated noise
16 - V.. | Z-component of accelerometer and
. velocity quantizer correlated noise
17 89z X-component of gravity vector errors
18 bgy Y-component of gravity vector errors
19 " 69, Z-component of gravity vector errors
20 dh-3 | Total baro-altimeter correlated error
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Table A.8. Reduced-Order INS System Model: INS States 21 — 41

State State | Definition
Number | Symbol
21 b, X-component of gyro drift rate repeatability
22 b, | Y-component of gyro drift rate repeatability
23 b, Z-component of gyro drift rate repeatability
24 Sq. X-component of gyro scale factor error
25 - Se, Y-component of gyro scale factor error
26 S,. Z-component of gyro scale factor error
27 Vs, X-component of accelerometer bias repeatability
28 Vi, | Y-component of accelerometer bias repeatability
29 Vi, | Z-component of accelerometer bias repeatability
. 30 S4, | X-component of accelerometer and velocity
quantizer scale factor error
31 Sa, Y-component of accelerometer and velocity
| quantizer scale factor error .
32 Sa, Z-component of accelerometer and velocity
' quantizer scale factor error
33 - Sq4, + | X-component of accelerometer and velocity
' quantizer scale factor asymmetry
34 Spa, | Y-component of accelerometer and velocity
quantizer scale factor asymmetry
- 35 Sqa, ' | Z-component of accelerometer and velocity
Co ' quantizer scale factor asymmetry
36 # X accelerometer misalignment about Z-axis
37 o Y accelerometer misalignm-=nt about Z-axis -
38 p3 | Z accelerometer misalignment about Y-axis
- 39 oy | X-accelerometer misalignment atout Y-axis
40 o Y-accelerometer misalignment about X-axis
41 03 . | Z-accelerometer misalignment about X-axis
<
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Table A.9. DGPS Error States

State State | Definition
' Number Symbol | [NOTE: Sggrs = Total RRS States]
Sins + Srrs +1 | 6Ryar, | ABR clock bias
SiNs+ Srrs +2 | 8 Duak, | ABR clock drift
Sins+ Srrs +3 | 0Reop, | SV 1 tropospheric error
Sins + Srrs'+4 | 6Rion, | SV 1 ionospheric error
SiNs+ Srps + 5 ézr,,, | SV'l x-component of position error
SiNs + Srps + 6 8Ys, | SV 1 y-component of position error
Sins + Srrs + 7 825y, | SV 1 zycomponent of position error
Sins + Srrs + 8 | 0Riyop, | SV 2 tropospheric errcr
Sins+ Srrs +9 | 6Rion, | SV 2 ionospheric error
Sins + Srrs +10 | 6z,,, | SV 2 x-component of position error
Sins + Sias + 11 | dy,,, | SV 2 y-component of position error
Sins + Srrs + 12| 6z,,, | SV 2 z-compcnent of position error
Sins + Srrs + 13 | 6Ruyop, | SV 3 tropospheric error
Sins + Srrs + 14 | 8Rion, | SV 3 ionospheric error
. SiNs -+ Srrs + 15| 0z, |.SV 3 x-component of position error
Sins+ Srrs +16 | by,,, | SV 3 y-component of position error
Sins + Sprs + 17| 62,,, |SV3 z-component of position error
Sins + Srrs + 18 | 6Ryyop, | SV 4 tropospheric error
Sins+ Srps +19 | 6R,,n, | SV 4 ionospheric error
Sins + Srrs +20 | 6z,, | SV 4 x-component of position error
SiNs + Srrs + 21 | dy,,, | SV 4 y-component of position error
62,y, | SV 4 z-component of position error |

Sins + Srrs + 32




Appendix B. Litton LN-93 Error-State Model Dynvamics Matriz
. 22) .

The LN-93 error-state dynamics matrix (F) as provided by Litton is a 93-by-
93 array that. contains a large number of elements that are identically zero. Litton
partitions the F fnatrix into thirty-six subarrays (11) reflecting the logical divisions
of error s;)urces discussed in Chapter III. -

The reader should note that only the NON-ZERO elements are included in (:,he
tables which follow, and should further note that the revised baro-altimeter model

states are NOT included in this set of ORIGINAL F matrix elements extracted from
the Litton document (i1). - «

A notational convention (22) is to label elements of the C! , sensor-to-true,

matrix as C;; where ¢ is the row and j is the column in the transformation matrix.
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Table B.1. Elements of the Dynarics Submatrix Fy; {22)

[ Element | Term || Element | Term B
(1,3) —Py (1,8) —Cry
(2,3) Pr (2,7) Crx
(3s1) _ Py ’ (3’2) Pz
(4,2) -0, (4,3) 2,

(4’5) @Wit, (4a6) —Wit,

(4’8) —Cry (5v1) Q2,

(5,3) -, (5,4) —Wie,

(5,6) Wit (5,7) Crx

(6,1) = (6,2) Q.

(6,4) Wig, (6,5) —wie,

(7,1) -2V, Q, - 2V, 0, (7.2) 2V.Q,

7,3) 2V,9, (7,5) -A,

(7a6) Au (7v7) '_'VzCRX
(78) [ . 29, (7.9) —py — 29,
(8,1) 2V, (8,2) -2V, -2V, 02,
(8,3) 20,9, (8,4) A,

(8,6) C o —Ay (8,7) =29,

(8,8) —‘/xCRY (8a9) P+ 2Qr
(9,1) 2V.0, (9,2) 2V,Q,
(9,3) -2V, QQ, -2V, (9,4) -A, .
(9,5) |. A - (9.7) |py+20, + V:Crx
(9,8) —pr — 202 + VyCRY (9,10) 2g,/a
(9,11) —ky (9,12) e
(9,13) k3 (10,9) 1
(10,11) —ky (10,13) Ky —1
(11,10) 1 (11,11) -1
(12,11)  ky (12,13) —ks
(13,10) ky (13,11) —ky

| (13,13) k-1 ~
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Table B.2. Elements of the Dynamics Submatrix Fi2 (22)

[ Element | Term | Element | Term || Element | Term ||
@14 | Cu | (815) | Cuz | (416) | Cns
(420) | Cut || (4,25) | Cuat | (4,26) | Cist
(5,14) Cgl ’ (5,15) 022 (5,16) 023
(5.28) | Cnt | (5.25) | Caaf | (5.26) | Ciot
6,14) | Coi | (6.15) | Cuz | (6,16) | Cm
(6.22) | Cmf | (6.25) | Caaf || (6,26) | Cat
717 1 Cu T (518 1 Cu 1 (519) | Cw
(7.20) |1 | (7.25) | Cut | (7.28) | Cust
(7,29) ClSt (8,17) Cau (8,18) Ca
(8,19) 023 (8,21) -1 (8,27) ’ Cglt
(8,28) ng't N (8,29) .Czat ] (9,17) Ca]
9.18) | Cm | 019) | Cu | 0.2) | 1
(9.93) | k2 || (9.27) | Cot | (9,28) | Coat
9.29) | Caf [ (10.23) | k1 || (12,23) | —Fs
(13.23) | %:/600 B

Table B.3. Elements of the Dynamics Submatrix Fi.3 (22)

Element Term Element Term Element Term

1 (4,30) Cn (431) | Cn (4,32) Ciz |
(4,33) | Chwa, (4,34) Crawis, (4,35) Chawip,
(4,36) Criwis, (4,37) —=Crows, .(4,38) C‘-”““"bg

. (4,39) —an.‘b. '(4,40) , Crawa, (4,41) | =C13wp,
(4,42) C"nw?,,x (4,43) Cuw?,,& (4,44) g C];g,(‘c),-"‘;,x
(4,45) {0.5Cn|wis, | (4,46) O.SCnlw.'b’| (4,47) 1 0.5C)3)wis, |
(5,30) Cy (5,31) Caa (5,32) Ca
(5,33) Cnwip, ' (5,34) Crawis, (5,35) | Chawa,
(5,36) Cglw,'(,, (5,37)‘ -ngwa,, ' (5,38) Cg;;w;b,‘ '
(5,39) —Cawip, (5,40) Cuws, [ (541) —Crwip,
(5,42) Cnw}, (543) | Cnwj [ (5:44) Cyaw}y, .
(5,45) | 0.5Ca|wip,| || (546) | 0.5Cz)wis, | || (5,47) | 0.5C:ajws, |
(6,30) - Cyy (6,31) | = Cs (6,32) | -Cx
(6,33) me.-b, (6,34) ngw.-by (6,35) : ngw.-b,‘
(6,36) C;nu).‘b. (6,37) i -C:nw.'b. (6,38) Cg:;b).‘il
(6,39) | —Cmwi, || (6,40) Crpwip, (6,41) | —Caawa,
(6,42) C3|w?b’. (6,43) . C32“’3,. (6,44) C’;aw:il ‘
(6,45) 0.5031 Iw;b,l A (6,46) 0.5032 ]u_)_.hl (6,47) 0.5033'“).?6,‘
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Table B.4. Elements of the Dynamics Submatrix F,q (22)

[Element | Term [ Element| Term [ Element| Term |
(7,48) Ci (7,49) Cn (7,50) Cis
(7,51) | C,,AB (7,52) | C1pAB | (7,53) | CizAP
(7,54) | CulAB] | (7,55) | CulAP| | (7.56) | CuslAP|
(7,57) | CuaB® | (158) | CaB® | (7,59) | CuaB”
(7,60) | CLiABAZ [ (7,61) | CLlAZAP || (7,62) |CiA0AT
(7,63) ClgAfAf (7,64) C]3AfAzB i f\l 65) Cm.‘ifAf
(766) | CnAP (767) | —C AV | 7768) | Ci3AP
(7769) CISAf (8348) C21 ‘ (8149) Cn
(8,50) Ca (851) | CuAF | (852) | CnAP
(8,53) | CuAP | (854) | Culdf] | (855) | CnlA?
(8,56) | CnlAP| | (857) | CuABY | (8:39) C1AB*
(8,59) | C2AP” | (8,60) | CuABAB | (861) |C; ABAB
(8,62) | CpABAZ || (8,63) | CrA A7 | (8,64) | CisAZ AP
(8,65) | CAZAT | (866) | CnAP || (8,67) | —CnAl
(8,88) | CpAP (8,69) A || (9,48) Cii
(9,49) C3-3 (9,50) 033 ' (9,51) C:;[AL
(9,52) | CnA® (9,53) | CaAB 1| (9,54) | Cs]AB)
(9.55) | CslAB| | (9.56) | CxAZ| | (5.7 | CAB”
(9,58) | CxuAB® | (9,59) | C3AB” | (e : CyABAB
(9,61) | CiAPAF | (9,62) | CABAP || (9,63) | CyALAP
(9,64) | CnAZAT | (9,65) | CuAPAZ | (9,66) | CyAP
(9,67) | —CnAP | (968) | CxAP | (9:69) T3 AD

Table B.5. Elements of the Dynamics Submatrix Fys (22)

Element | Term §| Element _Terrr_ 'Eklnent Term ]
' (4,73) C" (4,74) C]g (4,75) C|3
(5,73) Cn (5,74) o (5,75) | Ca
(6,73) Cy (6,74) C (6,75) Cxy
(7,70) Cn (7,71) Cha (7,72) Cia
(8,70) |, Cy (8,71) | Cy (8,72) | Cn
(9,70) [ Cu || (971) | Car || (9,72) | Cm
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" Table B.6. Elements of the Dynamics Submatrix Fig (22)

[ Element | Term || Element| Term Element | Term |

[ (4,76) | CuAPwa, | (4,77) | CuAfwis, | (4,78) | CriATwa,
(4,79) CquBw.‘by (4,80) CquBw,'b: (4,81) CnAsz.'b,
(4,82) Clefw,'b, (4,83) CnAfw,'b, (4,84) C-]zAfw,'by
(4,85) | CroAZwis, | (4,86) | CraAZwa, | (4.87) | CraAlwa,
(4,88) | CisAZwip, | (4,89) | CizAzwis, | (4,90) | CizA7wa,
(4,91) 1 Ci3APwip, || (4,92) | CraAPws, | (4,93) | CiaAlwa,
(5,76) Cz]Afw,‘b, (5,77) Cz; Awa,'b, (5,78) CzlAfw.‘b,
(5,79) CglAZBw—,'by (5,80) Cg,Afw,-b, (5,81) Czl/ifw,‘b‘
(5,82) | C22ABwy, | (5,83) | ConAZwis, || (5,84) | CoaAZwis,
(5,85) ngAfw.-b, (5,86) ngA‘fw.-b, (5,87) ngAfw,-by
(5.88) CzsAfw.'by (5,89) ngAfw,-b, (5,90) ngAfwa,,
('5,91 ) Cz;Afw.'b, (5,92) CgsAwa,'by (5,93) CzsAfw.'b,
(6,76) | Ca1AZwip, | (6,77) | Ca1Afwis, || (6,78) | CaAZwis,
(6,79) | Ca1A7wip, {| (6,80) | Ca1A7wis, | (6,81) | Ca1A7wis,
(6,82) C32Afw"b, (6,83)‘ C32A?w,'b, (6,84) ngA;rw,-b,

. (6,85) ngAm, (6,86) C32Afw,'b, (6,87) C32A;rng1,y
(6,88) | CaAPwa, || (6,89) | CxsAPws, | (6,90) | CxsAPurs,
(6,91) | CasAjwiv, || (6,92) | CasAjwis, || (6,93) | CAjwa,

Table B.7. Elements of the Dynamics Submatrix Fp; (22) 5

Element | Term || Element | Term Elginent Term
(14,14) | =B, || (15,15) | =Py, —{16,16) [ =B,
(17.17) —ﬂV,; (18,18) ' "'HVI‘ (19,19) _ﬂvsr_
(20,20) | —Psg, || (21,21) | —Bsg 1| (22,22) | —fss, |
(23,23) —ﬂﬁhc L

Table B.8. Elrments of ‘the Dynamics Submatrix Fis ’(22)

Term Term [ Element | Term l
(70,70) | =Pe, || (TL,71) | =pv |t (72,72) | =pv,,
(3,73) | =Py | (T4,T0) | =B, | C15.75) | =P,
B-5




B.1 Elements of the Process Noise Matriz

The Litton document (11) includes a 53-by-93 process noise matrix (Q) for the
LN-93 error model. Like the F matrix, the Q matrix is partitioned-int> subarrays
which correspond to the error-state subvectors discussed in Chapter III. The vast

majority of the elements in Q are identically zero. Only the non-zero elements of Q

‘are shown below.

Table B.9. Non-zero Eiements of Process Noise Submatrix Qy; (22)

[| Element | Term || H—;nmnt | Term ||

(44) | a3, || 55 | a7,
G I I
(838) | o7, (9.9) | on..

Table B.10. Non-zero Elements of Process Noise Submatrix Q, (22)

" Element [ Term l[ Element [ Term ]]
(14,14) [ 20y, 05 || (15,15) | 206, 00
(16,16) [ 28, 07 I (17,17) |23y, 0%
(18,18) [28v, 0% [ (18,18) [ 23y, 0%
(20,20) | 28s5,05,, || (21.21) | 2854 of,
(22,22) | 284,05, || (23.23) | 285,07,
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Appendix C. Compariscn of 93-state and 41-State INS Models

‘This apperdix cortains plots of position, velocity, and attitudel errors of the
93-state and 41-state Litton Ln-93 INS truth models during a 10-run Monte Carlo
2-hour flight proﬁle (11). No alignment was performed previous to the start of the
flight, causing the large magnitudes in all the errors. These plots show that the 41-
state truth model almost ex@ct]y matches the 93-state truth model, and it is suitable

for use as the truth model for all the filters developed in this thesis.
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Appendix D. Stacey’s 128-State NRS Filter Performance Plots

All plots contained in this and subsequent appendices are discussed in Chapter
V (Results). All plots contained in this and subsequent appendices contain five traces.
The innermost trace (- - -) on each data plot is the mean error time history for the

applicable state. Mean Error is defined as being the difference between the filters

.estimate of the state and the true state averaged over the number of Monte Carlo

runs performed. The equation describing this relationship is defined by (14, 22):

— 1 v &
M.(t) = _A—( Z ej(t,-) = -1\7 E {Ij(t.') - Ig,.',,,(t,')} ' (D.1)
j=1 _ j=1 ,
where Z;(t;) is the filter-computed estimate of variable j and z(ry., (t:) is the truth
model value of the same variable, at time ¢;, for sample j, and N is the number of

time histories in the simulation (10 in this thesis).

In addition to the center trace, two more pairs of traces are plotted'. The first
pair (represented by.- -+) is symmetrically displaced about the mean and as a result
follows the “undulations” of the M,(,.). The )ocus of these traces is calculated from ,
(15, 22) M.(t;) + \/m where P.(t;) is the true error covariance at time t;. The

true standard deviation is calculated from (14, 22):

. N o
coelti) = P(t) = \Jﬁ;é,‘(u)—%M}(ti) (D.2)

where N is the number of runs in the Monte Carlo simulation (10 in this thesis),
and M2(t;) is the mean-squared value of the variable at each time of interest (such

as measurement times).

The last pair of traces (—) represents the filter computed + o fitter Values for
the same variables of interest and are symmetrically displaced about zero because

the filter “believes” that it is producing‘zero-mean errors (16, 22). These quantities

D1



are propagated and updated in the MSOFE (3, 22) software using the covariance

propagation equation shown in Chapter II. These traces represexi‘t the filter’s estimate

of its own error.

D.1 Stacey’s 128-State NRS Filter Performance Plots

The plots in this section represent results of a 10-run Monte Carlo 2-hour fighter
ﬂight profile simulation. In these runs the GPS réceive_r clock states initial covariance
values have been decreased 4 orders of magnitude, as di'_séusse'd' in Chapter V, so that

single precision could be used in the MSOFE simulation. This filter incorporates both

~ RRS range and GPS pseudorange measurements.
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Appendix E. 97-State NRS Fuilter Performance Plots

The plots in t‘his section represent results of a 10-run Morte Carlo 2-hour fighter
flight profile simulation. In these runs the GPS receiver clock states initial covariance
values have been decreased 4 orders of magnitude, as discussed in Chapter V, so that
single precision could be uselrd in the MSOFE simulation. This filterincorporates both

RRS range and GPS pseudorange measurerents.
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Appendix F. 69-Stote NRS Filter Performance Plots

The plots in this section represent results of a 10-run Morte Carlo 2-hour fighter
flight profile simulation. This filter analysis was performed in double precfsion, S0
the GPS receiver clock errors are at their actual values. This reduced-order filter

incorporates both RRS range and GPS pseudorange measurements.
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Appendix G. 89-State ENRS Filter Performance Plots

The plots in this section represent results of a 10-run Monte Carlo 2-hour fighter
flight profile simulation. In these runs the GPS receiver clock states initial covariance
values have been decreased 4 orders of magnitude, as discussed in Chapter V, so that
single precision could be used in the MSOFE simulation. This filter incorporates both

RRS range and DGPS pseudorange measurements.
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.Appendiﬁc H. 48;State ENRS Filter Performance Plots

The plots in this section represent results of a 10-run Monte Carlo 2-hour fighter
flight profile simulation. This filter analysis was perfofmed in double precision, so
the GPS receiver clock errors are at their actual values. This reduced-order filter

incorporétes both RRS range and DGPS pseudorange measurements.
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Appendix 1. 22-State DGPS Filter Performance Plots

The plois in this appendix present results of 10-run Monte Carlo simulations
for a 22-state reduced-order filter used to implement delta-range measurements. The
first section contains plots from the 2-hour fighter flight profile. The second section
contains plots from a 2-hour straight trajectory. Both filter analyses were performed
in double pfccision, so the DGPS receiver clock errors are at their actual values.
These reduced-order ﬁlvters incorporate both DGPS pseudorange and delta-range

measurements.
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1.2 2-Hour Straight Flight Profile
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Appendix J. 46-State CIRIS Filter Perfor‘rﬁancc Plots

The plots in this appendix present results of 10-run Monte Carlo simulations
for a 46-state full-order filter useld {o implement range-range measurements. The
first section contains plots from the 2-hour fighter flight prolﬁle. The second section
contains plots from a 2-hour racetrack trajectery. Both filter analyses yvcfe performed
in single precision since no DGPS states are modeled. These reduced-order filters

.incorporate both RRS range and range-rate measurements.
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Appendix K. 48-State ENRS Filler Performance Plots

. The plots in this section represent resulfs of a 25-run Monte Carlo 2-hour
fighter flight profile simulation. This filter analysis was performed in double preciL
sion, so the DGPS receiver clock errors are at their actual values. This redu-ed-order
filter incorporates RRS range/range-rate and DGPS pseudorange/delta-range mea-

surements.

K-1




g

8 2 8 8
f \
\
/1

g\
/
)

N

el 2
—
YT

B
>

A
8
)
o~
] Yy
d
i

é

7
-
<
1

L
2
/|
~~
N\

L
S
_ //
L

Longitude (degrees) Latitude (dc‘:;a._-)
£
o

X
S
(2]

BENAE

J

I

Altitude (ft).

S B - - _
1000 2000 3000 4000 © 5000 600 7000 8000
S Time (sec) . R g

Figure K.1. 2-Hour Fighter Flight Profile (a) Latitude (b) Longitude and (c).
Altitude I o




{1) Latitude Brver (R}

(2) Loagilnde Brrer (R)

(00} Atitude Broer (R)

oE "V "“ ’W“) gvi‘ Y “’. ‘“

Flgure K.2. 48-State ENRS Filter (a) Latitude (b) lmgntude and (c) Altitude
Errors

---- | Mean Error = M, = (M, )i
cveses  Mean l'rroridmo
— |0 O’Ncn

K-3




2 - Oa

£

E

p3

z

1‘

i

-3

'z .

| I

2 °

L oe
\.s "’ .
Figure K.3

N
AN

i =S BAN

T

‘ |
A| / ”"b‘ dn ':bl‘/J’. | “"ll ”! J? lb‘
“,*, . .,'- %ﬁ,,\ FVGATHUVL AV
| 1 A A""\' »v*\. by v

i’ v‘i‘"- AR R

. 48-State .ENRS Filter (a) F,ast Velociy
Vertical V. locaty Errors.

Tieme 1...)

North Volbciiy and (c)

Mean Error = M, = (M,)u.

Mean Error + om..

0+ ng"

" K4




{4) Zast THR Brrer (arcest)

s 388
t””
) .

E
—

{5) Nerth TR Brver (arcwec)
] v I
S

) laineth Brroe foceoc)
]
$

-} B8

Ty

L

ay LAY | b

Y R [ IR

E oy

s N i L

o ij‘

SIS L U RN R | aa .

o 1 000 BOOO E - 000 000 PYOoOoOo a0
Timne (oeow)

' At

<

)

o

-

]

-

F

E

k-

-

-

b i P i e i_a - 1 A ol PP WP o i Ao
o s oo BOO® 3000 - oVO L ] AP0 OO OO0

Liles Anase

- .
FoN .

- ]

: ~\f

- )

- P PSP SO T S PE St Lo Loetaa .
[ ] + 0N OO - 000 HOen aeee rone 008

Figure K.4. 48-State ENRS Filter (a) East Tilt (b) Noith Tilt and (c) Azimuth

Errors.

Mean Error = M, - (Air)lru

ses e

Mean Error £ 0.

0% T folter
K-5




(1) Lagged At Brvee (1)

L

‘ & Ay | f‘,,t ) p.h 1,
~.c00® F h‘\‘ﬁ \ lw hi &’ :

(10 bov-skimeter (1)
[ ] [ ]

-
H H
-0 4
-18
-20 P & - 4 1 PP | “ P U i L 1 e
o 100e »o0e Nooo so0o wooo Yooo ascoe

Figure K.5. 48-State ENRS Filter (a) Lagged Altitude (b) Dcl S3 and (c) Ba.ro-
. _Altimeter Errors. :

!] e e .= Mcqn Error = H,r - (M.r)truc ) .
ﬂ devana Mean Error £ 0pee ' T
r* VEXSTT o

K-6




, F
. E A
. a - \
A
s LY
3.8 F—\}
3 o
= 3
i Y= —
A e
E o b4 .- e eemmsatmeeiti i ieieiiies., - s
L
! -8 b I -
= 3
B =
—-1.8 F
-
<
-
-2.8 - 1 | 1 . 1 . 1 P . Lses
o soo0 =000 3000 -
. Tiome (eoeoc)
.08

3
-

.o0e -
on
3 v P o monen -
. 3 P ..
.08 [ et X ..
9 e nomnn e
o8 Pom—

{22) 133 %l Do ()
ik

\ Skl

\

, —— . .
: PR N -~ ’,/ S s
— — N ———

e —

A i

_"‘,,-J-,,.,..._-~.....~—~

Timme (oae)

.e
..
.a F
2 F
A [
; a
- | St
g P =T
) s .
s r
P N /4
s
[
[
) ,
* .
- s P PR | PRI PP USRI TP SN
[-] 1000 BOOS 2000 2000 L ] 000 S006

4000
Tisne (o)

Figure K.6. 48-State ENPS Filter (a) RRS Range Bias (b) RRS Vel Bias and (c)
T1 Atmosphere Errors.

<. 'Mean ET’"O"‘ = ﬁg - (Mr)lrue
veaeee Mcan Error £ Oirue
— 0% O filter

K-7




(23971 X Pos Lrror (1)

(24011 ¥ Pos Reeer {1t)

(71 2 P roe ()

a00n
3 A
L
Y
a \\W - .
:.’\ P
AN ,.———-hz——-rw
3 _ vy -
E R b RN
E e .
h bt R !
y * <
C - .'\,-/""'““‘\’*-\‘o"-v SRR N N
o ol .
3 =~
i,A P SN T NI NSNS SR S SN T
o 1000 OO IO000 - 0000 S000 rOoOO SO0

Timme (o)
- . o poewr M 1] B i)
E. T Ve -"‘\/\\“,u....l
E‘f o tamre s et e vtenine S A ettt o
- ' ! : 'y ) !
E_ TN N
3 .
. - ——
\
" " " U DY PN | S a
o 3 000 OO 3000 < 000 . a0 AV OO L]
Tione (ose) . :

F:gure K.7. 48-State ENRS F:lter (a) 'T‘l X Posmon (b) T1 Y Position and (c) T1

g ---- | Mean Error = M, — (M:)ire

Z Position Errors.

se e s

Mean Error £ ogue
0+ O filter -

\\ ' K-8




———p—

(47) User Clock Bias

(48) User Clok Drift-(fps)

Errors.

- Figure K.8. . 48-State ENRS Filter (a) User Clock Bias and (b) User Clock Drift

Mean Error = M; — (M;)irue

Mean Error + 04,

0 £ oyilter

K9




10.
11.

12.

L

Biblz’ogmphy

. Abbey, Darwin and Scott D. Dance of Intermetrics, Inc. GPS Data Analysis

Reference Station, Briefing to AFIT Students, Holloman AFB, NM, June 1991.

. Britting, Kenneth R. Inertial Navigation Systems Analysis. New York Wiley-

Interscience, 1971.

. Carlson, Neal and Stanton Musik. User’s Manual for a Multimode Simula-

tion for Optzmal Filter Evaluation (MSOFE). AFWAL-TR-88-1138, erght-
Patterson AFB OH: Avionics Lab, AFWAL/AARN-2, Apr 1990. ‘

. Cox Jr., D. B. “Integration of GPS with Inertial Navigation Systems,” Global

Positioning System, Papers Published in Navigation: Journal of the Institute of
Navigation, pages 144-153 (1980). .

. Dance, Scott D. Personal Interviews. Intermetrics, Inc., Holloman AFB, NM,

June 1991.

. GE-90D, EENGT735 Class. GPS Aided LN-93 INS. EENGT735 Class Preject Fi-

nal Report, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
May 1990.

Green, G. B. and others. “The GPS 21 Primary Satellite Constellation,” Navi-
gation: Journal of the Institute of Navigation, 25:9-24 (Fall 1989). ‘

. Guidance Test Divisior. “CIRIS II Test Summary Report,” In-House Report,

CIGTF, 6585th Test Group, Holloman AFB, NM, May 1988.

. Guidance Test Division. “The Completely Integrated Reference Instrumentation

System (CIRIS),” Unpublished Contractor Informational Pamphlet CIGTF '
6585th Test Group, Holloman AFB NM. .

Lewantowicz, Zdzislaw H. and Danny W. Keen. “Gracefﬁl Degradation of
GPS/INS Performance With Fewer Than Four Satellites,” The Instztute of Nav-
igation, National Technical Meeting (Jan 1991) ‘ '

Litton Guidance and Control . Systems. Performance Accuracy (Truth.
Model/Error Budget) Analysis for the LN-93 Inertial Navigation Unit. DID
No. DI-S-21433 B/T:CDRL No. 1002. Woodland Hills, CA, Jan 1985.

Martin, E. H. “GPS User Equipnient Error Models.” In Janiczek, P. M., editor,
Global Positioning System, Washington, D.C.: The Instltute of Navngatnon,

- 1980.

BIB-1




“

13.

14.

15.

16.

17.

18.

19.

Maybeck, Peter S. Personal Interviews, Air Force Instif.ute of Technology (AU),
Wright-Patterson AFB, OH, June-November, 1991.

Maybeck, Peter S. Stochastic Models, Estimation, and Control, Volume 1. San

.Diego, CA: Academic Press, 1979

Maybeck, Peter S. Stochastic Models Estimation, and Control, Volume" San
Diego, CA: Academic Press, 1982.

Maybeck, Peter S. Stochastic Models, FEstimation, and Control, YYolume 3. San
Diego, CA: Academic Press, 1982.

'Milliken, R. J. and C. J. Zoller. “Principles of Operation of NAVSTAR and
. System Characteristics,” Navigation, Journal of the Institute of Navigation,

25:3-14 (Summer 1978).

Navtech Seminars, Inc. “Dyramic Differential GPS,” Notebook from Course
311, Alexandria, VA, December, 1989.

Snodgrass, Faron Britt. Continued Development and Analysis of a New Eztended
Kalman Filter for the Completely Integrated Reference Instrumentation System
(CIRIS). MS Thesis, AFIT/GE/90M-5. School of Engineering, Air Force Insti-
tute of Technology (AU), Wright-Patterson AFB OH, March 1990.

. Solomon, Joseph K. Development of the Eztended Kalman Filter for the Ad-

- vanced Completely Integrated Reference Instrumentation System (CIRIS). MS

21.

22.

Thesis, AFIT/GE/89M-8. School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, March 1989.

Solomon, Joseph K. CIRIS Special, Study, Final Report, EENG 699, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 1989.

Stacey, Richard Darrell. 4 Navigation Reference System (NRS) Using Global Po-
sitioning System (GPS) and Transponder Aiding. MS Thesis, AFIT/GE/91M-
04. School of Engineering, Air Force, Institute of Technology (AU), Wright-
Patterson AFB OH, March 1991.

 BIB-2




. A

Vita
Captain William Joseph Negast j

LT BN R

L " AR F After
graduating from Bellevue West High School in Nc.braak,; in 1‘979,@};; ﬁ‘re‘urd with
his family to Texas where he first attended Baylor University and finally South-
west Texas State University graduating in 1984 with Bachelor of Science Degrees
in Chemistry and Physics. He was then accepted into the Air Force Undergradu-
ate Engineering Conversion Program and, after Officer Training School, was sént to
Louisiana Tech University where he received a Bachelor of Science Degree in Elec-
trical Enginecring in August 1986. He was then assigned to Eglin AFB, Florida,
where he worked as a simulation analyst, guidance and control engineer, and Execu-
tive Officer for the Deputy for Engineering, Munitioas Systems Division, until May
1930, Froau June 1990 till March 1992 he attended the Air Force Institute of Tech- -
pology receiving a Master of Science Degree in Electrical Engineering with emphasis
in’ navigation and control. Following AF IT, he was assigned to the Central Inertial
Guidance Test Facility, Holloman AFB, NM, where he is currently working.

. VITA-1




