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LINTRODUCTION

During the period from July 1. 1986 through August 31. 1939, the execution of contract
No. F19623.56-C-0019 was diiected toward the development and implementation of numerical
methods for simulating and describing the transport of electrons and photouns in layered vae-
dimensional and multiregion two- and three-dimensional structures such as metallized
semiconductors. In addition to microelectronic device structures. the numerical methods
developed were also applied to liquid media (i.e. H,O}. The transport simulatious were used
to caiculate charge distributions and to predict dose distributions in these media. resulting
from electron beams and sources of x- and gamma irradiation. Another important aspect of
the electron transport calculation activity duving this contract was the extension of the range
of our simulation capability to electron-phonon scattering. The effects of this interaction and
the effect of the presence of applied electric fieids on the energy spectra and spatial distribution
of electrons in SiO, were examined, with particular attention to the promotion of electron
energies from the subionization region to energies above the ionization threshold and the
resulting electron multiplication. Some of the results of the electron and photon transport
calculations are reported in seven techaical papers in which the principal investigator shared

authorsnip.

The electron and photon transport calculations were made using the method of dis .rete
ordinates and the Monte Carlo trajectory simulatior method. The discrete ordinates

calculations were made using the ON ETRAN[I]

computer code. With this code we calculated:
(1) charge distributions and energy deposition in nine materials due to the incidence of
monodirectional eiectron sources for several energies and incident angies; (2) electron and
ohoton transport in H,O; (3) energy deposition in and electron transmission energy spectra
from Al for the purpose of comparison with independent transport calculations made using the
method of streaming rays. The Monte Carlo method was used to perform electron transport
calculations in one-, two- and three-dimensicns. Most of the Monte Carlo calculations
involved the use of the lTSIz]code series., However, some of the one-dimensional calculations
were performed with Monte Carlo programs which we wrote expressly for the purpose: in

particular an electron transport calculation to test a new scattering cross section formulation:

and an electron-phonon scattering simulation.




This report is otganized into five sections in addition to this, the introduction. Section Il
is a discussion and presentation of results of one-dimensional discrete ordinates calculations of
electron and photon transport. Section IIl presents the results of electron transport Monte
Carlo calculations in one-, two- and three-dimensions and shows comparisons of these results
with transport solutions obtained by other methods. Section I\ consists of a discussion of
electron-phonon scattering and somne of vhe resuils obtained with our Monte Carlo siinulation
of eclectron transport in the 1 to 20 eV energy rarge. Section V is a discussion of the
formulation of and progress made towards a discrete ordinates solution to the electron
transport problem in the 1 to 20 eV energy range. The final section, VI, is a list of the

references cited throughout this report.
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1. DISCRETE ORDINATES CALCULATIONS QF ELECTRON AND PHOTON
TRANSPORT IN ONE-DIMENSION

1. Introduction

Prior to the start of this reporting period, we had acquired a substantial amount of
experience iu adapting the multigroup. discrete ordinates method to che calculation of electron
energy deposition profiles aad electron flux distributions in several materials. In view of this.
it was deemed appropriate. during the performance of this contract. to perform a systematic
study of the rauge of validity of this method. The conclusions reached as a result of
performing this work weret 1) that the simple continuous-slowing-down approximation
(CSDA) electron transport model was adequate for electron transport calculations in the
energy range 100 keV to ~1.5 MeV for a wide range of scattering materials; and 2) above tlis
energy range. the CS5DA proved inadequate. This second conclusion led to an extensive
amount of effort to account for radiative energy losses and knock-on secondary electron
production in our transport calculations. To account for these two electron energy loss
mechanisms, we began an effort to apply the discrete ordinates method to electron-photon
transport,  We shall first discuss the results of the application of the methad of discrete
ordinates, incorporating only the CSDA model, to the determination of electron energy
deposition and charge distributions in several materials. Following this will be a discussion of

our application of the discrete ordinates mathod to electron-photon transport.

2. Application of the Discrete QOrdinates Method to Electron Transport in the Q.1 - 1.4 MeV
Energv Range

The multigroup discrete ordinates code ONETRAN! was used to calculate energy
deposition profiles and charge distributions in a number of sclids due to the incidence of
electron beams ranging in energy from 0.1 to 1.4 MeV. In these calculations electron energy
loss was allowed only through application of the continuous-slowing-down approximation
(CSDA). Thus energy downscatter was allowed only between adjacent energy groups. Energy
losses through radiative processes or through catastrophic (knock-on) collisions were not
considered. The primary motivation for this study was to determine the range of validity of
the method of discrete ordinates under the above straightforward assumptions. The transport
calculations were made for several materials over a wide range of atomic numbers (Z=4 - 92).
A large body of datala'ﬂ, experimental measurements and Monte Carlo calculations of energy

deposition, was available to us for comparison purposes. Some of the results obtained will be
3




presented here. However, the complete body of results and comparisons. consisting of 3 flux
picts. 14 cnergy deposition plots, a transmission spectrum and a reflection specirum, is

presented in Ref. 3.

Since the bhasic principles of the discrete ordinates method are presenied briefly in Ref. 5
and extensively eisewhere {e.g. Ref.G). it is sufficient to state here that in the multigroup
approximation. the eléctren energy range is divided into a number of epergy groups of width
AE,: the monoenergetic trausport equation is then solved for each encrgy group flux. ¢, with

the remaval cross section oay for group g given by CSDA as
oag = S(Eg),/DEy, (1)

where S(E,) is the collisivn stopping power for electrons with energy Eg. If the group
structure is arranged sach that increasing group index g corresponds to decreasing energy, then
the electrons removed from group g. @ay;9g. become the inscatter source to group g+1. The
group flux, ¢y, i3 a function of position and angle. The angular dependence is treated by
resolving the flux into a number of angular components, each corresponding to a particular
discrete ordinate, and thep solving the transport equation for each of these components. The
spatial(x) dependence of the flux is solved for by the use of the diamond difference
approximation, or in the case of ONETRAN, the linear discontinuous finite element

approximation.

If we define the angular flux along a particular discrete ordinate, say u;, as é,,(x). then
we can, by integration over angle, obtain the group scalar flux ¢,(x). If the integration is

performed numerically, tien

£

@9(x) = 3 widiy(x) (2)
i=

where the w, are the numerical quadrature weights corresponding to the discrete ordinate
direction pu;. A sample plot of 4y(x) is shown in Fig. 1 for the case of a 1 MeV
monodirectional electron source, incident direction g, = 1.0, located at x = 0 in an infinite
medium of Be(Z=4). The ONETRAN calculation was made for 200 energy groups of equal
width. Shown in Fig. 1 are the group scalar fluxes, as a function of distance, for every tenth
group. beginning with a top energy of 0.95 MeV. From a figure such as this one can gain an
appreciation for the change in the spatial characteristics of the charge distribution as the

electron energy decreases. In Ref. 5 other scalar flux plots are given for 1 MeV electron in
4
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higher Z materials. Fe:Z=26) and Ta(Z=73).

25 me, . MeV
W/O.Qb MBV
20 -
0.90 MeV
e
0.85 MeV
—
g 15 ~ //0.80 MeV
LT_ /0.75 MeV
: |
O
-
O
2 10
= |
5~
0 K T T T 7T 1

-0.4 -03 -0.2 -0.1 0.0 0.1 02 0.3 0.4 05 0.¢ 0.7 0.8
Depth (g/cm2)
Figure 1. Electron group scalar flux, as calculated with ONETRANM, in an infinite medium

of Be for 1 MeV electrons incident at an angle of 0° (Ref. 5) .

From these it can be observed that the directionality of the source electrons is sooner
“Inrgotten” in the high Z materials than in materials of lower Z. Since the scattering in low 2
materials is more anisotropic than for high Z, the elecirons approach diffusive behavior sooner

(at higher ~nergy) than in low Z materials.




The energy deposition profile W{x; is calculated as

W(x) = f: 94(x) S(Ey) + o¢(x) S(E,) . (3)
Jg=.

where 64(x) is the unscattered flux at the source energy E . and G is the total number of
groups. Typical encrgy deposition profile nlots are shown in Figs. 2, 3 and 4. In all three of
these figures we compare our ONETRAN result (solid curve) with the Monte Carlo calculation
(histogram) and experimental calorimetric measurements{circles) of Lockwood, Miller and
Halbleib(al. In Fig. 2, the energy Jeposition is plotted for a 0.1 MeV electron beam normally
incident on Be. The agreement with Monte Carlo is good, but not perfect. The agreement
with experiment is not very good. ut then neither is the agreement between experiment and
Monte Carlo. Fig. 3 shows the energy deposition results for a slant beam (60°) of 0.5 AMeV
electrons incident on Mo. The overall agreement among the three metiods is much better in
this case.  The resulte of a ONETRAN calculation for a three-layered scattering medium
(Al/Au/Al) is shown in Fig. 4. A 1.0 Me\ electron beam is normally incident on the vacuum

boundary of the lefumost laver (Al). As can be seen, the agreement is very good.

3. Extension of the Discrete Qrdinates Method to Coupled Electron-Photon Transport in the
1 MeV - 20 MeV Energv Range

As was stated in the above section, very good agreement with experimental and Monte
Carlo energy deposition data was achieved for electron sources in the energy range 0.1 to 1.1
MeV. In the one high energy case tha. we treated in Ref. 5, the 20 Me\ electron beawm
incident on H,0O, the energy deposition profile obtained dia not agree well with Monte Carlo
results'’) (see Fig. 5). It became apparent that for high electron source energies, it would be
necessary to include consideration of radiative energy losses in our calculations. The success of
the coupled electron-photon S, calculations performed by Lorence, Nelson and Morel®! for
isotropic electron sources provided us with sufficient encouragement to perform a set of
calculations for hLigh energy electron beam sources, in particular to repect the 20 MeV.1{.0O
calculation. 7The technique developed would then be applied to other beam energies in 1.0
and other materials as well. We installed a bremsstrahlung photon production and transport

module into our code.
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Figure 2. Energy deposition, as calculated with ONETRANM, in semi-infinite Be for 0.}
MeV electrons incident at an angle of 0° (Ref. 5). Circles (experiment) and histogram (Monte
Carlo) data taken from Ref. 4.
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Figure 3. Energy deposition. as calculated with ONETRAN[”, in semi-infinite Mo for 0.5
MeV electrons incident at an angle of 60° (Ref. 5). Circles (experiment) and histogram
(Monte Carlo) data taken from Ref. 4.




Aluminum/Gold/Aluminum, 1.0 MeV, 0 degrees
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Figure 4. Energy deposition, as calculated with ONETRANm, in a Al/Au/Al configuration
for 1.0 MeV electrons incident at an angle of 0° (Ref. §). Circles (experiment) and histogram
(Monte Carlo) data taken from Ref. 4,
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Figure 5. Energy deposition. as calculated with ONETRAN[”, in semi-irfinite H,O for 20

MeV electrons incident at an angle of 0° (Ref. 5). Circles (experiment) and histogram (Monte
Carlo) data taken from Ref. 7,
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3.1 Electron Energv Loss Cross Sections

In our previous calculations it was assumed that electron energy loss was adequately
described by the continuous sjiowing down approximation (CSDA). In .ne multigroup Sa
formulation. energy downscatter of electrons was allowed to occur only between adjacent
energy groups. This simplifving assumption led to the use of a version of the ONETRAN code
much smaller in size and complexity than the original. Inclusion of radiative energy losses
necessitated the use of the full ONETRAN capability to allow for energy downscatter betwcen
any two groups. As for the radiative energy loss cross sections. we performed our early
calculations with a ve:y approximate elementary treatment[gl, subsequently improved, for the
bremsstrahlung generation cross sections which proceeded as follows:

the differential cross section for the emission of a photon with energy between k(=hv) and
Kk+dk by an electron with kinetic energy E as it passes through a scattering medium is given
by

. (cm™h) (4)

dardd —_ !00B22 E+ mocg
Tied = Nl (AT )

where o, is a constant,
B is 2 slowly varying function of E,
Z is the atomic number of the scattering medium,
mec? is the electron rest energy (all encrgies are expressed in MeV),
N is the nun.ber of atoras/cm?.

The radiative stopping power (electron radiative energy loss per unit path length) is defined as

(4

Substituting Eq.(4) into Eq. (5),

E
NJkda,,d . (MeV/cm) (3)

0

1
(.d.d%),“ = No,Z*(E + m,c’)JB d(k/E)
0
= NoyZ2%(E + m.c?)B , (6)

1
where B -:-JB d(k/E) (7)
0

11




is the average value of B over the allowed photon energy range.
If the paramieier B of Eq.(4) is sufficiently slowly varying, we may approximate it as

Bx~B . (3)
Then Eq.(4) becomes

d0.aq Ncr.;fﬂjZ’(E'-{-Trnoc?) ’

dk k
~ 1 (.4dE) dk o=l
or do, 4= £ ( ds ),.ad L {em™) (9)

Eq. 0 formed the basis for our early calculations of multigroup bremsstrahlung cross sections.
Nuimnerical evaluation of the radiative stopping power was facilitated for us by the fact that the
DATPACmprogram calculates this quantity for arbitrary E and Z, and we had alrcady
adunced the DATPAC prograxf\ to supply the Mott and Riley scattering cross sectious for

electrons.

The preponderance of literature pertaining to the calculation of bremssicahlung cioss

. {10-13)
sections

was a strong indication that the accuracy of our coupled electron-photon
calculations might be significantly improved by the use of a more sophisticated bremsstrahiung
cross section model than that given above. By fortunate circumstance, the DATPAC

program incorporates much of the physics formulated in the Koch and Motz“ol

paper and
provides tabulations of the differential cross section (kde,,s/dk) as a function of eleciron
energy E for arbitrary E and Z values. We extracted this data from DATPAC. In Fig. ¢ we
made a log-log plot of (do,,4/dk) vs. k for the top ten electron energy groups in a 100 gronp
ONETRAN calculation where we took the electron source energy to be a 20 MeV beam
incident on H,0. Thus the ten curves correspond to electron energies ranging from 19.9 to
18.1 MeV in 0.2 MeV increments. The points indicate the tabulated values from DATPAC.
While the curves are themselves difficult to read, we concluded from this plot and other:
similar to it, that the bremsstrahlung cross section could be easily approximated by straight
lines (on log-log scale) connecting the points calculated by DATPAC. Thus, our
approximation algorithm for (do,,,/dk) is of the form

darad~ b
W~Ak’ (10}

where A and b are constant between any pair of points calculated by DATPAC. A unique

determination of A and b is made for each point pair.
12




In our coupled electron-photon transport calculation. the multigroup cross sections for
encigy downscatitur of elecirons Ly radiative energy loss were calculated as follows:
givenr an election caergy groip structute (as shownan Fig. Ty with G unitormly spaced electron
energy groups. vacl. charactetized by midpoint energy E; (where E;>L ., then the cross

sectios: for emdssivt, of a photon with energy h += hv) between k; aud k.. say. is

darad
dk

k.
. "/d _
ag(k)zf(—%if'—d)dk . (119
k
Energy Group
U1 3 E,~~ 1
: GROUPS 1 -10 o 0
E,
L J
< 001 =
E : .
P p —_
t'.D T Eg s 4
N\. i .
5 0001 A )
S -
i Eivi/2 2
E.’ - — 1
00001 o Eio1/2
3 .
.
] G-1
O 00001 - T T R T ryrrrty L]
1 10
k (MeV) Eg™ G
Fig. 6. Differential bremsstrahlung «russ section Fig.7. Electron energy group structure

for 10 electron energies {15.9-18.1(.2)MeV] as
calculated by DATPAC'”

If we assume that the energy of the electron after photon emission is E,, then the limits of the

integral are
13




ki = Ey- E\ e (12a)
ky=E;-E,_q. (12b)
or (Ey- £,,,,.)S k<(Eg- E, ) /0). (12c)

where E, ., and E,_, ., are the upper and lower energy bounds of group i.

[t miay then bLe said that the downscatter cross section from group g to group i due to the
emission of a photon with energy between ky and ky is

rad — . S 1y

oo, = o4(k) (13)

where o,(h) s calculated from Egs. 10 and 11 above,

3.2 Bremszatrahlung Photon Source

In addition to providing the means by which the electron downscatter due to radiative
energy loss cuuld be incorporated into the S, calculation, the cross sections, 0;“_1,'. were used
to determine the photon source function. The procedure we followed was: 1) perforim the
electron transport calculation with the ONETRAN S, code; 2) retain @ file of electron fluxes
as functions of energy (group) and position; 3) calculate the photon source for use in a
subsequent photon transport calculation; 4) perform the photon transport calculation with
ONETRAN using multigroup photon cross sections which we generated with the GAMILEG
(Od‘__!’-'ﬂ; 5) calculate deposition profiles from both the electron (using flux file from step 1 and
collision stupping vowers) and photon contributions(using photon flux file from step 4 and

energy absorption coefficients cemputed by GAMLEG). The energy group structure for the

electron transport calculation was taken to be uniform. that is AE, = E, - E, | for all .. The

141
photun energy group spacing was taken to be uniform for some calculations and logarithimic
for others. The transport calculations were carried out for 11,0, and for the source energies
considered, the energy lost to radiation was generally a small fraction of the total energy loss
by the electrons. e found that our results were insensitive to the photon energy group

structure, possibly due to the small overall radiative energy contributiou. Also foi this

reason, we determined that a second electron transport calculation arising from the presence of

Compton and photo-electrons would not significantly alter the results.




We made considerable modifications to the original version of the photon cross section
calculation program G.-\.\ILEG[H}. The original version, published in 1966, was written in

““'bicompiled in 1966. \We

FORTRAN IV and incorporated a set of Biggs-Lighthill coefficients
updated the coding to FORTRAN-T7 and incorporated the latest available set of Biggs-
Lightlill coefficients' *“and approximation algorithms for the cross sections. Also iun the
original version the photon cross sections cruld be calculated for up to 20 eilements per run.
We changed the code so that it now computes cross sections for an arbitrarily large (user-
specified) number of chemical elements. We configured the code is now configured so that for
a chemical compound, we enter as input the chemical symbol and weight fraction for cach

constituent element. The new input data structure, as we configured it. is identical to that

implemented ip the ITS code system.

3.3 Results for 5 MeV and 20 Me\’ Electron Beam sources

Figures 8 and 9 show the energy deposition results obtained with a 100 group coupled
ONETRAN calculation for a 5 MeV electron beam normally incident on H,0O. The “siab”
thickness for the electron calculation was taken to be 3 ¢cm (the range of 5 MeV electrons in
H,O is 2.6 ecm.). Tle depth of the scattering mediumn was extended to 10 cm. for the plioton
calculation to account for the backscatter of photons transported, due to their long mean free
path, beyond 3 c¢cm. In Figure 8 the total (electron + photoa) energy deposition profile
calculated with the ONETRAN code (solid curve) is compared with a TIGER"'Monte Carlo
calculation (histogram). The agreement between ONETRAN and TIGER is good, with the
exception of the region between 1.25 and 1.8 ecm. The electron beam source energy of 5 MeV
pretty much delineates the point where errors due to numerical straggling become noticable.
We believe that the consistently higher ONETRAN result shown between 1.25 and 1.8 cm. is
primarily caused by numerical straggling, an error source caused by using the multigroup
energy discretization scheme which is first-order accurate. As will be seen, this effect shows up
more prominently as the source energy is increased. In Figure 9 we have plotted the energy
deposition contribution of the bremsstrahlung photons for the 5 MeV electron source case.
The agreement is generally good, although the TIGER histogram indicates that not enough
histories were run to achieve statistical reliability. As can be seen from the photon dose scale,
the maximum photon dose contribution is approximately 0.15% of the maximum electron duse
contribution. For the electron transport, a 20 term extended transport corrected scattering
cross section was used in an S, ONETRAN calculation. For the photon transport, a P,

scattering cross section model was used in an S,; ONETRAN calculatioa.
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In Figures 10 and 11 are plotted the total (electron + photon) and photon energy
deposition profiles obtained with a 40 group coupled ONETRAN calculation for a 20 MeV
electron beam normally incident on H,O, 12 cm. thickness (20 Me\V election range in H.O is
9.3 cm.). As in the previously described calculation, an extended scattering medium depth was
assutned (60 cm.). In Figure 10 the energy deposition profile calculated with the ONETRAN
code (solid curve) is compared with a TIGER Monte Carlo calculation (solid histogram) and
an EGS4'") AMonte Carlo calculation (dashed histogram). The agreement between ONETRAN
and TIGER is exceilent to a depth of about 5.5 cm., beyond which the ONETRAN result is
consistently higher. The EGS4 calculation includes knock-on electrons which account for the
lower energy deposition in the first 1 to 1.5 cm. (when knock-ons are included in the TIGER
calculation, the two Monte Carlo results agree very well). The photon dose results (Fig. 11)
agree fairly well. \We believe that the discrepancies found may be caused tu part by our crude
mode| for the photon source angular distribution. The effects of numerical straggling on the
electron energy deposition profile (Fig. 10) are definitely more pronounced for the 20 MeV
source than for the 5 MeV case. This was somewhat mitigated by increasing the number of
energy groups, but even when we increased the number of groups to 100, the straggling effect

persisted and was significant.
3.4 IKnock-on Electron Production

In modelling high energy electron transport, we made modifications to our clectron cross
section module that would include electron energy losses and secondary electron production
through knock-on collisions. As was stated, the EGS4 calculation shown in Fig.10 included the
effects of knock-on eleciron production, while TIGER was run for the case of no knock-ons.
When knock-ons were taken into account, the dose near the surface of incidence was fouvud o
be about 5 percent lower than that obtained without the knock-ons. Evidently, the highest
energy electrons suffe.ed a sufficient amount of knock-on collisions to experience significant
downscatter in energy. As primary electrons penetrate the medium, the continuous slowing-
down collisional and radiative energy losses outweigh any visible effect of downscatter through
knock-on collisions. In order to resolve this disagreement between Monte Cario and discrete
ordinates, we installted a knock-on algorithm in the calculation of the electron energy loss

cross sections for the ONETRAN calculation.
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Acccunting for downscatter of primary electrons and secondary electron production due to
knock-on collisions. translated into the calculation of multigroup cross sections for these
proceses. Along with this. it was found necessary to use a modified stopping power function to
account for the fact that some of the energy of the primary electrons. rather than being
entirely expended along the primary track. is transfered to secondary electrons, which are in
turn downscattered. The definition of “restricted collision stopping power™ and the means for

its calculation are provided in Ref. 16.

Qur calculation of the multigroup knock-on cross sections proceeded as follows:
the total knock-on cross section (0%°) for primary electrons in group g with energy E, is given
by

fmari=l/2)

= [ (d2)ac 1)
€e
where ¢ = B (13)
. E;
E .
and € = —ﬁl . (Ecu¢ =~ 0.01 MeV) (16

E,.. and E_,, a:- respectively, the secondary electron energy and low energy cutoff for

17
the secondary electrons,s ad!'!

de - _C )1 1 (27+1) 1 .
de ~ PE;{ 2tTat (FR) (r+1)? ( c(l-c))}’ (i7)

with C = QxN,romc2<%> (=.153536<%>), T = '5—1—1%—3-2 ( = the group energy in inc?

units). J is the electron velocity divided by the speed of light, M, = Avogadro’s number, r,=
electron radius, Z and A are the atomic number and weight, respectively, and <%—> signifies

the average Z/A for the molecular composition of the scattering material.

If we ellow the maximum fractional energy loss of the primary to be e€mar =1/2. as
indicated in the upper limit of the integral (Eq.14), then the total knock-on cross section for

group g is



= b oy () R () 08

In view of the above, and given the electron energy group structure. uniformly spaced
energy groups of width AE, as depicted in Fig. 12, the cross section for and electron with

enetgy E, to produce a knock-on with energy Ey. and therefore suffer a reduction in its own

energy to E," (= E; - Eg, ) is

J (d2)de 5 (E,/E;< tmas)
€
Ta—mgtg" T (19)
l 0 ’ ( Egl/ Eg 2 Cma.r)
where 1
) E :+.-)AE
€, = min -—-g——Eg'—— « €mar , 120,
E -1AE
and €, = max —yE;— s €émar 121
g

Combining Egs. 17 .19-21 we obtained for the group-to-group cross section,

[ o =
y—9 .9

C E, E, E, Ey
5BV E 2l T Edar TV EE IAE T
g Eyl+§AE Lg,"-jAE Eg'Egl'QAE Eg-Eg:+§AE

.._.
\

- (5 )zé_- ,_ \?)ln(( o+ AE)( ,+(1—,AE))1.
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Eq. 22 does not include the special cases where ¢; or ¢; = ¢mar. These endpoint cases were

treated in our computer program.

After a hnock-on collision has occurred, the primary electron, with energy Eg,, has undergone

(18]
cosw = (1-e)(r+2) .
TN 24+ (1

angular deflection = given by

-~

[ 3]
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PY The angle x between the knock-on
. secondary and the incident primary
E, ) g electron directions is given b_\'“q

’ ‘ ((.‘1-'2}

E¢a .%E g+1 COS\ = \TTor (24)
. B}
. The Legendre coefficients of the angular

Eg” g" deflection dependence of the primary
r electron downscatter cross section
o o, are then given by

E” g g—3" .

g, = ay_y,g,,P,(cos-) . (25)
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Fig. 12 Electron energy group structure showing relative

pcsitions of primary and secondary electron energies

With some experiimentation, we found that ¢mer could be adjusted to impose realistic
limits on the primary electron energy loss due to knock-on collisions. While the theoretical
value for ¢ma: = 1/2, stepwise examination of the integrated values of Eq.17 revealed that
such occurrences were rare. The best agreement with Monte Carlo was obtained with the
following upper limits on the knock-on electron energy: for primary energy 5 MeV and above,
E,cc?“= 2 MeV’; for primary energies below 5MeV, E,;r = 200 keV. To account for the
energy carried off by the secondary electrons, a separate transport calculation for the knock-
ons was performed. Figure 13 shows the total energy deposition profile, obtained using the
knock-on algorithm, for the 20 MeV beam source on H,O. Even though agreement with the
EGS4 result is much improved in the first 1.5 cm. over that shown in Fig. 10, this calculation,
also in contrast to the Fig. 10 curve, consistently underestimates the dose in the region beyond
the profile maximum. It is clear, from the above results, that improvement in both the

knock-on algorithm and the energy discretization s. - .ae is required.
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included in this calculation.
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3.5 Structure of the Coupled Electron-Photon Discrete Qrdinates Programs

\We wrote and/or modified programs for the one-dimensional coupled electron-photon
discrete ordinates calculation with a modular design consisting of four sections:

1) an interactive (with the user) program to collect the user-specified information which
defines the problem to be run and translates this information into an input data file
formatted to be compatible with the cross section and transport codes.

2) cross section generation programs which are modified versions of DATPACH (for
electrons) and GAMLEG[“](for photons).

3) data handling programs to couple the electron and photon transport calculations by
converting and passing data between them; compute quantities such as energy
deposition profiles, energy and angle spectra; prepare plot data files.

4) O.\'ETRAN“] transport code.

Gf the above, the programs in the second and fourth categories are well documented by
their originators. The linking programs, third category, perform perfunctory programming
tasks. The first program, the user-calculation interface, which is run interactively, has self-
expianatory prompts, and the input format from the keyboard is free form. We wrote iwo
versions of this program, one in BASIC and one in FORTRAN-T77, so that it can be run either
on an IBM PC or compatible (BASIC version) or on a mainframe such as VAX or MicroV'AX.
The user is interrogated regarding such problem-defining items as the number of mat -'ils in
the scattering medium; the chemical composition (element symbol and weight f.ac*i. a. of each
material; source type (electron, photon, angular distribution, spatial distrubur.-a, enr . ;
spectrum); whether a photon transport calculation is to be run; whether a knock-cu ¢. culation
is to be included; ecc. This program also creates the list of files (with defiritions and names
linked in a directory) to serve as repositories for data (such as electron and photon fluxes,
cross sections, plot data). These files are used by the data handling programs (category 3,
above) and ONETRAN. This program also contains provisions for eliminating redundant
calculations of cross section sets by providing the user with the opportunity to specify the
names of already existing cross section files which may be pertinent to the problem to be run.
A run of this program results in the creation of an “input run deck” for the transport
calculation on the mainframe. If the BASIC version is used, the “run deck” file is written to a
floppy diskette which can then be transferred to the mainframe for a batch mode transport
calculation. A hard copy of the prompts, responses, run file and a data file directory is

printed.
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L ELECTRON TRANSPORT CALCULATIONS IN ONE-, TWOQ- AND THREE
DIMENSIONS
1. Introduction

During this reporting period, there were many opportunities to provide benchmark
electron transport calculations for the purposes of testing newly developed one- and two-
dimension electron transport techniques and scattering cross section formulations. Most of the
benchmark calculations were made using the Monte Carlo method. In addition to performing

{19]

benchmark Monte Carloc and Sn calculations in one-dimension® ', we also wrote a new single
. 21 .
collision, electron Monte Carlo (1-d) transport code*Mor the purpose of testing the

effectiveness of a new scattering cross section, the “smart” cross section.

Gur participation in research in the area of two-dimensional electron transport calculation
methods consisted of providing benchmark Monte Carlo calculations, using the ITS[Q] Series
ACCEPT code, for two papers. The first**ldemonstrated the feasibility of using the "smart”
cross section in conjunction with first collision (or once-scattered) sources for electron beam Sn

calculations. The second of thesc[”]

represents a continuation of the electron beam source
work. It contains, however, a mcre extensive set of comparisons between S, and Monte {'arlo
results consisting of isodose contour maps and energy deposition profiles in one-dimension

across the two-dimensional scattering medium.

We conclude this chapter with a discussion of three-dimensional electron transport
1)

. [z . . .
calculations. A recent paper’ which reports the results of a set of S, and Mounte Carlo
calculations of energy deposition in and electron exit currents from realistic microelectrounic
device geometries due to the incidence of a beam of electrons. We provided the device

geometry description and mock-up as we'l as the Monte Carlo calculations for this paper.

the Method of Streaming Rays

In a paper which appeared in 1987“91, a complete description was given of the application
of the method of streamning rays to one-dimensional electron transport problems. Earlier
papers (op. cit.) had already demonstrated the applicability of this calculation method to
neutral particle transport in two-dimensional media with void regions and time-dependent une-

dimensional problems. The similarity between the time-dependent neutral particle transport
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equation and the Spencer-Lewis equation for electron transport strongly suggested the
applicability of the streaming ray (SR) method to this problem. In the Spencer-Lewis
equation, the electron energy is the continuous-slowing-down-approximation (CSDA) defines a
unique relationship between the electron pathlength and stopping power. The reason for
employing this approximation is that the major mechanism for electron energy loss, inelastic
collisions with other electrons, cannot be treated in a tractable way by a form of the transport
ecuation that considers one collision at a time. There are far too many of these collisions, and
the electron energy loss resulting from an individual inelastic collision is miniscule. The SR
method is highly compatible with CSDA because the SR model assumes that the motion of an
electron is assumed to take place along a streaming ray (a characteristic line of the Spencer-
Lewis equation). With the SR method the electron pathlength/energy increases/decreases
continuously. This is the basic point of departure from the conventional multigroup Sn»
method in which the spatial dependence of the Spencer-Lewis equation solution is obtained by
finite differencing over a series of discrete steps for a given constant energy value. When. by
means of an iterative spatial differencing scheme, the equation is balanced for a particular
energv group, the electron energy is then decremented by a discrete step to the next lower(in

energy) group.

Numerical errors associated with the spatial and energy discretization of the S, method
give rise to artificial straggling. In some cases this leads to a fortuitously close agreement with
Monte Carlo and experimental measurements of energy deposition because the Monte Carlo
method is capable of accouinting for the actual physical straggling, the departure from CSDA.
Numerical straggling in the S, method introduces large errors in the calculated electron energy
spectra unless a very large number of energy groups is used. This effect is greatly reduced
with the SR method. Ref. 19 provides a method for simulating physical straggling in addition
to CSDA in the transport calculation. Fig. 14 shows a comparison of energy deposition results
obtained with the SR, Sn[l] and Monte Carlo'?) methods. These results were obtained for the
case of a slant source (u, = .916667 , see Fig. 14 inset) of 0.2 MeV electrons on a 0.04 g/cm?
Al slab. The SR calculation was jormulated and performed by Filippone, while the S, and
Monte Carlo calculations were done by Woolf. As can be seen, the SR calculation, which has
straggling effects included, agrees better with the Monte Carlo benchmark than either of the 2

S« calculations.
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Figure 14. Energy depc:ition profile for 0.2 MeV electrons obliquely incident (u;, = 0.916667)
on a 0.04 g/cm? thick Al slab (Ref. 19).
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Figure 15. CSDA transmission spectra, as calculated by the SR, Monte Carlo and S, methods,
for 0.2 MeV electrons obliquely incident (uy = 0.916667) on a 0.04 g/cm? thick Al slab (Ref.
19).
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Fig. 15 shows the CSDA transmission spectra for the samce 0.2 Me\ source geometry.
However in both the SR and Monte Carlo calculations. CSDA was assuined (that is, the
straggling effects were omitted on purpose). The “countershove™ correction, refer-ed to in the
figure. is a method devised by Filippone to correct the spatial discretization errors associated
with cell-collided elzcirons. SR treats the collided and uncollided portions of the electron flux
separately. The uncollided part is treated exactly, while the collided part, generally much
smaller if. for example. extended transport corrected cross sections are used, is treated in the
same manner as in S,. As can be seen from Fig. 13. the SR and Monte Carlo results ageree
very well, while even the 80 group S, calculation is far off the mark above 0.13 MeV. The
delta function referred to in the figure occurs at the maximum energy at which the uncollided
electrons can cmeree from the slab, given the sglant path and CSDA. Fig. 16 compares the SR
and Monte Carlo benchmark calculations with the inclusion of physical straggling. Again the

agreement between the two methods is good.
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Figure 16. Transmission spectra, as calculated by the SR and Monte Carlo methods, for 0.2
MeV electrons obliquely incident (u, = 0.916667) on a 0.04 g/cm? thick Al slab. Straggling

effects are included in both calculations (Ref. 19).
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3. Implementatjon of SMAR [[20] Scattering Theory in One-Dimensinonal Monte Carlo Electron
Transport Q.’:xlculatic:ms['“1

The SMART”Q:scattering cross section, originated by Filippone, is a representation of an
angular redistribution function for electron scattering based on Goudsmit-Saunderson theory
(see Ref. 20). The Goudsmit-Saunderson multiple scattering theory allows one to obtain
infinite medium solutions for the Spencer-Lewis equation. The basis of SMART scattering
theory is the conjecture that the validity of the scattering theory, and its representation
through the scattering matrix should not depend on the problem geometry. A rigorous
treatment of SMART scattering theory is given in Rei. 20, thus it is not necessary or
appropriate to repeat it here.  As a result of collaboration between Drs. Filppone (Univ. of
Arizona) and Woolf (Arcon Corp.) a paper was written and published, first in a meeting
proceedingsm“], and then in Nuclear Science and Engineering[nb]describing the
implementation of this cross section, in scattering matrix form, in a Monte Carlo electron
transport code written by Dr. Woolf. The term “SMART” is a acronym for simulating many
accumulative Rutherford trajectories. These scattering matrices were originally developed for
implementation with the discrete ordinates (S.) method. One of the purposes of performing
these Monte carlo calculations was to demonstrate that the validity of the SMART scattering
theory did not depend on the method of implementation; that its applicability to the Sn
method was not due to a numerical artifact of the method. The other purpose of this work
was to introduce a possible alternative means for performing electron Monte Carlo calculations
to the implementation of multiple scattering theory as manifested in the ITS code series’ ™). It
was felt that applicaticn of SMART scattering theory in the Monte carlc method could result
in a more economical means for performing these calculations than those which presently exist.
This is due in large part to the fact that an essential characteristic of this theory is a large
effective mean free path for electrons, much large than the true single collision mean free path.
The extent to which this feature would result in a more economical calculation than that
afforded by, say, the TIGER[2]code, which employs a multiple collision cross section and is also
much more economical than true single collision Monte Carlo, remained to be determined by

the results of this paper.

The Monte Carlo code written for the implementation of the SMART scattering theory,
incorporated a single collision trajectory analog algorithm. It departed from conventional

Monte Carlo algorithms in two important ways: 1) the calculation of the intercollision distance
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takes into account the variation of the total cross section with electron path length and
direction: and 2) the directinn cosines of the electron trajectory after a collision has occurred
are obtained directly from the scattering matrix. The total electron trajectory path length,
determined from the electron CSDA range, was divided into a number of equal path length
steps As.  The intercollision path length was determined by rsampling the well-known
exponential attenuation laws., When, along the intercollision parth segment, a given As step

was traversed, the total cross section, a function of path length and direction, was updated.

The presently existing form of the Monte Carlo code treated one-dimensional slab
geometry problems. Extension to two- and three-dimensions would be straightforward. For
purposes of testing the code, two 200 keV electron source configurations, beam and isotropic,
were assumed to be incident on two thicknesses of Al , .01 g/gm® and .02g/cm®. The incident
obliquity of the beam source was defined by its cosine uy= 0.916667. The results obtained
with this code, emergent energy spectra and energy deposition profiles, were compared with
benchmark runs of TIGER!?. A sampling of the results given in the paper are shown in Tigs.
17-20. A comparison of the transmission spectra (SMART and TIGER) through 0.01 g/cm?’
Al is shown in Figs. 17 and 18 for the beam and isotropic sources, respectively. Beam source
reflection spectra for the thicker slab are compared in Fig. 19. Finally, the energy deposition
profiles for the beam source in .02 g/cm? are compared in Fig. 20. As can be seen, the results
obtained with the SMART Monte Carlo calculation compare very well with the TIGER
benchmarks. Both codes were run with 10000 electron case histories. In all cases tested. it
was found that the SMART matrix Monte Carlo calculations ran approximately 3 times faster
than TIGER. Since our code was developed for research rather than production purposes, it is

likely that this run time ratio could be improved.
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Figure 17. Transmission spectrum for a 0.2 MeV electron beam source, with incident obliquity
p. = 0.916667. incident on ,a 0.01 g/cm?® Al slab. as calculated by SMART cross-section
Monte Carlo and ITS- TIGER! *I Monte Carlo (Ref. 21).
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Figure 18. Transmission spectrum for a 0.2 MeV electron beam source, with incident obliquity
g, = 0.916667. incident on % a 0.02 g/cm® Al slab, as calculated by SMART cross-section
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4. Electron Transport Calculations in Two- xmenslons[ ]

4.1 Determination of Dose Profiles and Isodose Contours for 200 keV Electron Transport jn

Two-Dimensions

In a paper that resuited from a collaboration among W, L. Filippone, S. Woolf and J.C.
Garth(n], it was reported that the Spencer-Lewis equaticn for electron transport in two-
dimensions was solved using the S, method with diamond differencing in the spatial and
pathlength variables. Dose profile calculations in two-dimensions were made for 200 keV
electrons incident on Al. The electron source configuration were of three types: 1) normally
incident beam; 2) beam with slant incidence (45°*); and 3) isotropic incidence. Comparison

runs were also made with the ACCEPTmMonte Carlo code.

In two-dimensions, the Spencer-Lewis equation for the electron flux ¢(x,y.s,Q) is given
byl?i’)

(% + nga; + ch,% +a(s)) o(x,y,s.8) = JdQ'a(s.Q’—oQ)cﬁ(x,y,s,Q') + Q(x,y,s.92) , (24)
4
where 2z, 2y = the x and y velocity direction cosines,
s = electron pathlength,
o(s) = total scattering cross section.
o(s,Q2'=Q) = differential scatering cross section,

and  Q(x,y,s,?) = electron source density.

The energy deposition function, W(x,y), is determined from the Spencer-Lewis solution
#(x,y,s.9) as follows:
W(xy) = [14E16(xy.) de, (25)

where
I%I is the electron stopping power, and ¢(x,y,s) is the scalar flux.

Eq. 24 is solved using the Sn method with diamond differencing. The solution steps are
outlined in Ref. 22. Because of the extreme anisotropy of the electron scattering kernel,
SMART!®! scattering theory was employed to render the S, numerical! solution feasible. An

effective scattering matrix was defined in order that the required number of discrete ordinates
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for the description of the angular redistribution of electrons would not exceed manageable
limits. Figures 21 and 22 are isodose contour plots of the energy deposition in Al for normal
and 45° electron beams, respectively. In both cases, the dimensions of the Al rectangle were
0.01 x 0.02 g/cm®. For a direct quantitative comparison with the Monte Carlo method. we
ran the acceprt code, which is a three-dimensional electron Monte Carlo program, for the
two cases shown in Figs. 21 and 22. The two-dimensional problem geometry was simulated
by extending tne z-coordinate of the scattering medium to essentially toc, where “x" is taken
to be ~1.5 electron range units. Figures 23 and 24 show comparisons of dose profiles obtained
with Sn calculations and ACCEPT. These profiles are the integrated (over area) doses
across the rows A, B, and C as indicated in the accompanying cell diagram. In Fig. 23, the
isotropic source results for two Sa calculations, Sg and S,,, are compared with Monte Carlo,
while in Fig. 24, the corresponding comparisons for the normal beam source results for S, and
S, is are shown. As can be seen, overall agreement between our Mounte Carlo calculations and

Filippone's Su calculations is very good.
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Figure 21. Energy deposition (isodose) contour plots for a 0.2 MeV electron beam normally
incident on Al rectangle of dimension 0.02 g/cm? x 0.01 g/cm? (Ref. 22).
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4.2 Two-Dimensional Electron Transport Calculations with Once-Collided Beam Sources

In a continuing collaboration among W.L. Filippone, S, Wopif apd J.C. Garth on two-

. . 23
dimensional electron transport problems, a paper[ )

was presented at _fhe_ November. 1987
meeting of the American Nuclear Society in which the use of analytic first collision (or once-.
collided) electron sources was introduced into ,itwu-'dimensional Sn electron transport
calculations. In previous one-dimensional electron transb'ort calculafions, it was found that S,
calculations could not be done for beam sources unless an analytically derived once-scattered
source was used. This was due to the high degree of anisotropy associated with electron
scattering kernels, While in two-dimensional electron transport Sn calculations incorporating
the SMART cross section, this anisotropy could be handled without the aid of the ounce-

[22], it was believed that use of such a device, in conjunction with the SMART

scattered source
cross section, could gieatly improve the accuracy of these calculatinns. As in the puaper
discussed in section 4.1, we provided the Monte Carlo benchmark calculation for this work. A
200 keV beam of electrons was assumed incident on an Al slab of dimension .01 g/cm® x .02
g/cm?. The angle of incidence in the x-y plane was 45°, and the point of incidence was located
at x=0, y=.01, as shown on the inset of Fig. 25. Also shown in Fig. 25 are the two encrgy
deposition results, S, ( S4) and Monte Carlo (ACCEPT[Z], 100000 case histories), To aid in
the interpretation of the diagrams of Fig. 25, it should be pointed out here that the
rectangular slab was divided into 50 square zones (.002 x .002), and the histograms display the
energy (keV) deposited in each zone. The results appear to agree well. The advantage in
computation speed of S, over Monte Carlo became especially apparent in this work. It was
found that the S, calculation consumed ~1/30-th as much computer time as did the Monte

Cailo.
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5. FElectron Transport in Three-Dimensions

Throughout all of the previous one- and two-dimensional electron transport research in
which we have participated, a primary objective, in addition to achieving high computational
accuracy, has been to achieve a high degree of realism in our modelling capability. In pursuit
of the first objective, consideration of realistic three-dimensional device geometries was
postponed until the present. Also causing delay in this regard was the unavailability, until
recently, of a good three-dimensional electron Monte Carlo program, and finally, the lack of
adequate descriptions of realistic microelectronic device geometries. The availability of the
ITSm Monte Carlc code series has satisfied the first requirement, while the appearance of two
papers[25'26] in the 1987 IEEE Tronsactions on Nuclear Science, in which two microelectronic
device geometries were published, satisfied the second. The work to be discussed here, resulted
in the presentation of a paper at the American Nuclear Society Mathematics and Computation

Topical Meeting[“].

This paper will appear in Nuclear Science and Engineering in early 1990.

In Ref. 24 is reported the extension of Filippone’s S, method for solving the Spencer-Lewis
equation for electron transport to treat three-dimensional multiregion problems. One of the
key points of this work was the utilization of the flux continuity condition, which is generalized
for muitiregion problems by expressing the flux as a function of electron energy rather than
pathlength. Such a representation results in a set of S,/diamond difference equations which
are nearly identical in form to conventional S,/diamond difference equations. The S, method
was then used to calculate electron energy deposition due to 200 keV electron beams incident
on problem geometries typical of silicon and gailium-arsenide semiconductor microelectronic
devices. Our roles in this work were: 1) to research and define the realistic device geometries;
2) to provide quantitative descriptions of these silicon and gallium-arsenide device geometries
for modelling purposes; 3) to define the inputs required by the ACCEPT Monte Carlo

calculation; and 4) to aid in the interpretation and presentation of the results.

A fairly extensive discussion of the theory of the three-dimensional S, calculation method
was included by Filippone in Ref. 24, and thus need not be reviewed here. The result of the
electron transport calculations were presented in the form of energy deposition resulting from
the incidence of electron beam sources on problem geometries typical of semiconductor
microelectronic devices. The configurations we chose to work with are based on fairly detailed

descriptions of: 1) a silicon (Si) hybrid diode-resistor!*®]

[2€]

; and 2) a gallium-arsenide(GaAs) field-

The final configurations for the device geometries that were used in our
41
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calculations are simplified versions of these, however their essential geometrical character and

material compositions were preserved. The Si device geometry is shown in Figure 26.

The S code was run for 200 keV electron beam sources incident at a slightly off-center
point: x=0um, y=28um, 2=0um for the Si device (as shown in Fig. 25). The incident beam
orientation is given by 6=90°, $=45°, where # is the polar obliquity with respect to the z-axis
and ¢ is the azimuthal angle in the x-y plane. The scattering cross sections were taken to be

screened-Rutherford.

We made independent calculations of energy deposition using the ACCEPT module of the
Integrated TIGER beries(lTS)lz]of coupled electron-photon Monte Carlo codes. The ACCEPT
code was run using the screened-Rutherford cross section with the CSDA (no-straggling)
option. In this way it was possible to ensure that both the SN and Monte Carlo calculations
were based on the same physical model. Sufficient numbers of Monte Carlo case histories
(10%) were run so that valid benchmark results could be obtained. The estimated standard
error was <1 percent in all of the Monte Carlo tally cells for which the energy deposition
exceeded 1 percent of the maximum value. The worst cases, 5-6 percent error estimates, were
encountered in only 2 of 129 cells for the Si calculation and 1 of 120 cells for the GaAs
calculation. In these instances the energy deposition values were less than 0.1 percent of the

peak value.

The energy deposition results, S, and Monte Carlo, for the Si device mock-up are shown in
Figures 27a and 27b, respectively. The data shown result from integration, over the z-
coordinate, of the energy deposited per unit volume in the regior bounded by the gold cap, and
are therefore given in units of MeV/cm?, The energy deposition results obtained with S, were
found to compare well with results of ACCEPT Monte Carlo calculations., The agreement
between the Sn and Monte Carlo results for the GaAs device configuration is qualitatively
similar. This comparison is shown in Ref. 24. Computer run times required for the Sn
calculations were found to be lower than that required for Monte Carlo by factors ranging
from 30 to 50.
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Figure 27a.Three-dimensicnal Sa calculation of energy deposition (MeV/cm?) resulting from a

45* electron beam iucident in a Si device. Souice energy = 0.2 MeV (Ref. 24).
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Figure ‘.>7b.1TS-ACCEPTm Monte Carlo calculation of energy deposition (MeV/cm?) resulting

from a 45° electron beam incident in a Si device. Source energy = 0.2 MeV (Ref. 24).
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IV. LOW ENERGY ELECTRON TRANSPORT (0 : 20 eV)

1. Introduction

We have written computer programs and performed calculations to model the inelastic
scatter and transport of electrons with very low energy (0 - 20 eV) in SiO,. The inelastic
scatter can occur via two processes: 1) ionization and/or excitation collisions with other
electrons; wnd 2) electron-phonon interactions. The first of these can occur in SiQO, only for
electron energies above the ionization threshold of 8.9 eV. It is believed that the second of
these processes, interactions with phonons, can occur across the energy range 0 - 20 eV. Qur
principal activities in this research area have consisted of three projects. The first of these is
the interpretation of electron-phonon scattering theory and its translation into a set of
numerical algorithms, and a computer program (PHONON), for the evaluation of basic
scattering parameters, such as scattering cross section, scattering angle distributions. and
effective stopping powers. The second task in this project is the incorporation of the above
calculated parameters in a Monte Carlo transport code (LOWEND) for electrons in the 0 - 20
eV energy range in SiO,. The third of these is the application of the methcd of discrete
ordinates (Sn), a determininstic method for the numerical solution of the transport equation.

to electron-phonan scattering.

2. PHONON: Computer Program for the Evaluation of the Basic Parameters of Election-
Phonon Scattering

Electrons of very low energy, below ionization threshold, can undergo inelastic scatter
through the electron-phonon interaction. These are interactions with the lattice and resuit
phonon emission or absorption. Specific information relating to the evaluation of electron-

phonon cress sections, stopping powers and scattering angles comes to us by way of the both
(27]

[27]

private communication and open literature The theoretical basis of the contents of this

section is adapted from the work of Askley and applies to electron-phonon scattering in
SiO,. With this theoretical basis, we designed the numerical algorithms and wrote the
computer program PHONON for the evaluation of the cross sections, stopping powers and
scattering angle. Some of the results of our calculations to be shown here also appear in Ref.
28. Electron-phonon interactions occur in two modes, longitudinal (LO) and acoustic (AC).
There is a total of 6 interaction modes, 4 LO and 2 AC. This arises from the fact that both

the ILO and AC modes may result in phonon emission (electron energy gain) or phonon
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absorption (electron energy loss), and there are 2 discrete phonon energies to consider for SiO,

(hwp = 0.068 eV and 0.153 eV[wy is the phonon frequency]}).
2.1 LO Modes

The inverse mean free paths for the LO modes are given by the following expression[”]:

\ WE(E)
Weo® = TRk & (nbeh)] G
WiE(E)
-4
= ':‘;3’; (2 -&] (n..,-i—%i:%) 19\-}\}”-?% . (26)
where :fLo = inverse mean free path for phonon emission,
’\:,lLO = inverse mean free path for phonon absorption,
wp = phonon frequency,
v = incident electron velocity,
€ = SiO, dielectric constant in the optical region,
[ = §i0, static dielectric constant,
N = (exp(hu/kBT) -1)"‘,
kgT = .025 eV,
q = wave number corresponding to electron energy gain (+) or loss (-) .

The total inverse mean free path (crose section) for the LO mode is then given by
-1 - -
Mo = Mlo + Xlo - (27)

The upper and lower limits of the integral in Eq. 26 correspond, respectively, to the maximum

and minimum possible g values: if the incident electron kinetic energy is denoted as E, then

WE(E) = min{ko(1+ 14:%‘_‘:’-8 )+ kaz } , (28a)
and
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WEE) = :tko(l-\|14=’—i§—" ) (28b)
where
hkq = 32m'E ,
m” = electron effective mass,
and kgz is the wavenumber corresponding to the Brillouin zone threshold energy.

The quantity [?%Z (Lo] has two values, 0.0816 for hwp=0.068 eV and 0.112 for hAwp=0.153 eV'.

2.1.2 Scattering Angle Distribution

The distribution of scattering angle cosines, cosf ., is determined from momentum and
(27]

enerny conservation and is given by

1-q%/2k2+hw,/2E

cos&i.Lo(E) = 129)

where, as before, the momentum tranfer wave number, q, ranges from Wft(E) to Wf([‘:).

The average scattering angle cosine < cosf . | (E)> is obtained from

wé‘t(E)d w;’C(E)d
<cosfy  o(E)> = j -qg(l-qz/ng:thwp/QE)/ 1¥hwp/E J’ qu
wWiE(E) wiE(E)

(13 hwp/2E) In[WF(E)/WE(E)] - o5 WE(E)-WiE(E)’]

= === e s {30)
({1Fhwp/E ) In[WF(E)/WE(E)]
2.1.3 Stopping Power
The expression for the LO mode stopping power is given by[”l
dE) = Swr(l (n +l:tl)ln‘——-————vék(E) (31)
adioy = Sl iy N




o]

2 AC Modes

b

2.2.1 Inverse Mean Free Path

The inverse mean free paths for the AC modes are given by

(27]

+
Qma: 3

Al = —3m” J'd q 14l 32)

T AC T 4aMN A3k, ) 15@ [n(a) + 53] e

where M and N. are, respectively, the mass and density of the SiO, unit cell

and
2k, F 2m°C,/h » 9 < kgz
Qmar = { (3‘3)
ke (1 + 1;hC,kBZ/E) »q 2kgz
{ e‘“‘-l)'1 s a<Kkgz
n(q) = k e
(e“ 52.1)'1 .+ q 2kpgz
Ciq ya<kgz
wp(q) = )
Cikgz » a2kgz

C, = velocity of sound in SiO,, and

2:2.2 Scattering Angle Distribution

For the AC modes the distribution of scattering angle cosines cosf L is also determined

. L 7
from momentum and energy conservation and is given by[2 ]

1-q7/2k3 £ hwp(q)/2E
JTFhu,(a)/E

cosBiAC(E) = (36
where the phonon frequency wp(q) is now dependent on the the momentum transfer wave
number, q, as given in Eq. 35. In contrast to the LO case, an exact analytical expression

cannot be derived for the average scattering angle cosine < cosf . 5-(E)>.
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4
mazr

q 3
/ J’ dg .%7, [ﬂ(Q)+%i.l§E37)
0

q%:::

3
, & In(a)+32d](1-a%/2k3 2 00, /2E)
< cos()i‘Ac\E)> = dq Jl_

must be evaluated numerically.

2.2.3 Stopping Power

The expression for the AC mode stopping power is given by

{27]

£
qmasr
%‘EIACi = 3;,7%3’;3}*0 J dq q® [n(q) + %i.-_lz] : (38)
0

2.3 Numerical Evaluation of Scattering Parameters

The above expressions for the electron-phonon inverse means free paths, scattering angle
distributions and stopping powers were evaluated in our computer program, PHONQON, Since
the expressions for the longitudinal mode parameters (given by Eqs 26,30,31) are analytic and
do not involve complicated numerical evaluation of special functions, tables of these quantities
as functions of electron energy were generated in a straightforward manner. Algorithm
development for numerical evaluation of the acoiustic mode parameters was somewhat more
involved. The integral expressions (Eqgs. 32,37,38) could not be evaluated analytically without
approximation. We divided the region of integration into 3 sub-regions: 1) 0 to q;, where the

energy fraction hwe/kgT = 0.005 ; 2) q; to kg ; and 3) kg7 to gmac= .

In the first sub-region, recalling Eq. 35, we made the following approxiimations :

( 1 ¥ nc,q/rs)‘”2 ~ 1 £hC,q/2E , (39)
and
kg T
n(q) ~ ACq (40)

\Vith these approximations, the integrands of Eqs. 32,37,38 become simple algebraic functions

of q which are then evaluated exactly.

The second integration sub-region, q; to kg, is handled with our adaptive Gaussian




quadrature numerical integration program, AQG4. This program employs the method of
interval splitting to perform the numerical integration to within a user specified accuracy. If
such accuracy is unattainable, due to the functional form of the integrand or computer

limitauon. AQG4 informs the calling program through informative diagnostics.

Finally, in the third sub-region, both wy(q) and n(q) take on constant values, so that the
integrals of Eqs. 32,37,38 are evaluated analytically. We made extensive calculations, for the 4
LO and 2 AC interaction modes, based on the above theory for the electron-phonon scattering
cross section, mean scattering angle cosine and stopping power in SiO, for subionization
electrons (E < 8.9 eV). In Fig. 28 we show a plot of the total scattering cross section,
averaged over the LO and AC modes. Fig. 29 is a plot of the mean scattering angle cosine
averaged over the LO and AC phonon emission modes (solid curve). The dashed curves show
the contributions on the LO and AC emission components individually. Finally, Fig. 30 is a

plot of the electron-phonon interaction stopping power, averaged over the 6 modes.

Tabulations of the electron-phonon cross section, average scattering angle cosine and
stopping power were compiled using the PHONON program and then incorporated into our
low energy electron transport Monte Carlo trajectory simulation program, LOWEND (to be
discussed in the next section). It was then possible to obtain, through trajectory simulation,

electron energy spectra, energy loss(gain), and drift velocity values in the presznce of an

applied electric field for subionization electrons in Si0,.
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3. LOWEND: Monte Carlo Simulation Program for Subionization (<89 eV) Electron
Transport

3.1 Qverview

The physical parameters governing the transport process for low energy (subionization)
electrons were calculated with program PHONON and then supplied through a set of tables to
our single scatter Monte Carlo program LOWEND{®®). These tables consisted of the following
energy-dependent entries for the electron-phonon interaction: 1) total inverse mean free path,
A~ 2) total stopping power , dE/dx; 3)scattering angle average cosine, <cosw>. The total
inverse mean free path and stopping power values were obtained by summation over the 4
longitudinal and 2 acoustic phonon emission and absorption modes, while the scattering angle
cosine values were obtained with a summation over the 6 modes weighted by their respective

probabilities of occurrence.

The main features of the LOWEND code are that it accounts for: 1) electron energy loss
and scatter with both LO and AC phonons; and 2) energy loss/gain in the presence of an
applied electric fieild. With this code it is possible to obtain, through trajectory simulation,
electron energy spectra, energy loss(gain) or AE distributions, and drift velocity values in the
presence of an applied electric field for subionization electrons whick appear in SiO, as a result
of inelastic scattering processes. The electric field values for which this program has been
tested range from 0 to 10 MV/cm. In this calculation electron trajectories are simulated in
direct analog Montc Carlo fashion. It was found that 5000 - 10000 electron case histories were
sufficient to produce statistically adequate results for energy spectra, while 1000 histories
proved sufficient for determination of averaged quantities such as drift velocity. The above
estimates appied provided that the case histories were allowed to run for a sufficiently large
number of simulated collisions to produce quasi-equilibrium conditions (small variation of
energy spectrum shape and magnitude) over a large spatial region (300-1000 X). This
condition gave rise to a “rule of thumb” that 600-1000 collisions per case history were
adequate for electric field (8) values below 5 MV/zm, while a larger number, ~3000 for
determination of averaged quantities and ~10000 for energy spectra, were required for § = 10
MV/cm. Typical run times for the Monte Carlo program ate on the order of 0.6 hr/(1000
histories) on the AFGL VAX 8650 computer.
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3.2 Electron Trajectories in the Presence of an Applied Electric Field

The action of the applied field, 8. is to transform the electron trajectory path segments
into parabolic sections. For short patl segments, this curvature can be ignored and the
calculations can be made on the basis of a straight line segment approximation. The length of
the segment, As, is chosen by random selection from the path length probability distribution
(via the usual inversion of the exponential attenuation rule, A(E) is taken to be the mean free
path). The energy change is then given by

Asfvy
AE=[Fds=| P

[

As/vg
= Ew+ane "y
where F= %—E v + €8z, % = electron stopping power,
a= %%—E v+ ’-’,ﬁsi. e = electron charge,

vz = cosf = velocity direction cosine along 8 di.ection.

Insertion and integration yields

AE = (%—XE + eScos())As + (l‘a—i"lz + (e8)? + 2 %es)ﬁ . (42)

From these expressions one can calculate the velocity components and position coordinates.

For longer As segments, which admit of curvature and larger energy change, we have
used a five sub-segment approximation to the path integral for energy change. Iu this
procedure the values of E, cosf, M E), dE/dx and the position and velocity coordinates are

updated in each step. The resulting energy change is given by

E/ - I:' = ZAE, = Z\’O(T‘-‘ - Tk-l)(%% + eSCosgk) +
k k :
- . ° 2
(|(—1(%£|~' + (e€)? + 2 %egcosékxi%»; . Qtr:-l‘k—l--l) , 13,




Ask

where T, = Tey + and 7, = 0.
k k-1 5-T—2Ek/mk 0

The velocity component (v,,) in the direction of the electric field (8) is given by

8

(4

SN
T

(44)

= (v J_dE As e
Vie = (\0 + m*dx 5v),‘_lcosﬂ,‘_, + (m' Sv

3.3 LOWEND Calculations of Electron Energy Spectra

One of the results obtainable with a LOWEND calculation is the determination of kinetic
energy equilibrium spectra in the presence of an applied electric field. When we considered
electron transport exclusively in the subionization energy region. it was found that for a 5 eV’
irjection energy into SiO,. energy equilibrium was well established at a depth of 500 g fur a
wide range of electric field values. Fig. 31 shows calculated electron kinetic energy spectra for
3 values of & , (0.5, 4 and 10)x10°V/cm. When we extended the electron-phonon cross
section, scattering angle and stopping power tables to the 8.9 - 20 eV range,ionizing collisions

(28] sed in this calculation, supplied by ORNL, are

occurred. The ionization cross sections
shown in Fig. 32.  Fig. 33 shows the electron energy spectrum in the presence of a 10°V/cm
electric field, This result was obtained using electron-phonon parameter tables extended to 20
eV and the ORNL inelastic cross sections. As can be seen, the high energy portion of the
spectrum(>8.5 eV') accounts for a significant fraction. It was found that for fields in excess of
~7x10%V/ecm., our predictions of the amount of electron multiplication exceeded experimental

observation. An effort is presently underway to reconcile these differences.
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4. Transport Equation Solution for Electron-Phonon Scattering by the Method of Discrete
QOrdinates (Sn)

Discrete ordinates electron transport calculations were made using the standard S, code,
O.\'ETRA;\'M. for low energy (subionization) electrons in SiO,. Preparation for these
calculations involved reformulating the electron-phonon transport parameters, cross-section
and stopping power into the multigroup format compatible with the S, method. As was done
for the Monte Carlo calculations reported in the previous section, these multigroup parameters

were derived separately for the longitudinal(LO) and acoustic(AC) mode.

4.1 LO Modes

4.1.1 Group-to-Group Scattering Cross Sections

Making use of Eqs. 26, 28a,b and 29. we arrived at expressions for the group-to-group
energy transfer cross sections.
For energy loss:
let E; = initial electron energy, and E;’ = final electron energy , so that E;>E,’ .

Then the downscatter cross section is
Awnulnlq /Wi(Eg)] ¢ Wi(Ey) € q,, £ Wi(Ey)
o .O(E, —~E,) = { * " (43)

¢ ; elsewhere

where hq”, = ,I?m‘(E,-E,’)

There are two cross sections cr_Lo(E, —E,;') corresponding to the two values of fw.

Similarly, for E;<E;’ (energy upscatter) we have

Aw (nw+1) In{q, /Wi (E)] ; T(Eg) €q,, € W3(Ey)
oO(E, —Ey') ={ e o (46
0 . elsewhere

where hq", = ,|2m'(E,’-E,)
As in the ;-honon absorption case, there are two cross sections a+L°(E, —E;') corresponding

to the two values of hw.
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4.1.2 Groyp-to-Group Scattering Angle

The scattering angle cosines corresponding to the above are given by

1-q% ,/2k2+hw/2E,
Bog= g9
99'E J1Fhu/E,

(17)
where 7 hky = {2m°E,

Expressions were derived for the Legendre expansion coefficients of the angular scattering
cross section for electron-phonon interactions. This was ﬁecessita.ted by the fact that most
discrete ordinates algorithms and codes accept and utilize the angular scattering data in this
format. The analysis for the longitudinal optical {LO) mode downscatter in energy from group

g to group g’ (E4>E,’) is shown below (the derivation for upscatter was similarly derived).

The average scattering angle cosine is given in terms of integrals over the momentum
transfer, q, by:

w=
2,99

49 (1-q?/2k3+hw/2E,)

w?
<pm > = LR - . (48)

99 2.99'

q'l'hU/E, 'dqg
w?

where 199

woo o= g {2 (EsEsan), (492)
- = (E.-E.'- ,

wo %ﬁr’n (E;~E,"-1/2) (49b)

with the restrictions that

min[ w= ] = Wi(E,) = k,(l- 1+ ) (50a)
179

3

and

€

maxw | = Wi(E,) = min{k,(1+ 142 ) ksz}. (50b)

L

where fhk = Y2m°E , m" is the electron effective mass and kg; is the wavenumber

corresponding to the Brillouin zone threshold energy.
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The Legendre expausion {ur the angular scattering cross section is

«
a(w) =Y (I+1/2)0,Py(u) {31)

where

o, = jam Py(u) du . (52)

\With the following definition for the n-th moment of u ,

Joiu) u” dp
<p'> = = . {53)

+1

Jd(u) du

-1

the first five Legendre expansion coefficients are given as

0y = jd(;t) du . (54a)
-1

T, = <u>oy, (54b)

oy = §(3<pu®> - 1)ag, (54c¢)

03 = §(5<u®> - B<u> ey, (54d)

o4 = §(385<u?> - 30<u?> +3)a,. (54e)
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The above moments of u were calculated with analytical integrations of the form

w=
2,99

| § aar/agenaee,)

<(u= "> - w—— . 39
99 2.99

JTRa/E, I d

w
!
Lgg

Program PHONON (see sec. 2 of this chapter), which was originally written to calculate
electron-phonon cross sections for the LOWEND (see sec. 3 of this chapter) Monte Carlo
calculations, was modified to incorporate the above algorithms for the Legendre expausion

coefficients.

KN

4.2 AC Modes

The acoustic mode (AC) cross sections were treated differently from the LO cross
sections. The simplifying assumption of isotropic scattering was made for the angular
dependence of the AC cross sections. This arises from the following considerations. The
maximum energy transfer in an AC collision is ~0.02 eV. The average scattering angle cosine
for these individual collisions is ~-0.3 and is fairly constant until the energy approaches values
less than 2 eV. For a reasonably sized energy group width, say 0.1 eV, outscatter to other
groups would not occur in any single collision. It is known that many such individual collisivns
can vccur (for much of the energy range of interest aAC/aLO~10). Thus it was decided to
treat the AC mode case using the continuous slowing-down approximation. Since we already
had expressions for the AC mode stopping power (up- and down-scatter)as given by Eq. 38,

we could calculate the cross section for transfer between adjacent energy groups as

oxc, = 45i/aE,, (56)

where ('“'al;(E)_,ft is the AC mode stopping power.

The above cross section (Eq. 56) may be considered as representing a composite of many
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individual collisions. the number of which depends on the energy group width AE. This
composite “collision™ consists of many turn-around collisions which average out to a scattering
angle cosine ~ 0 (isotropic scatter). This algorithm was also incorporated in program
PHONON. In addition, a section of code was wriiten for PHONON 1o convert the cross

section Legendre coefficient table into a format compatible for use with ONETRAN.

4.3 Results of Sp Calculations

A series of preliminary electron transport calculations were made with ONETRAN for
electron-phonon scattering. The calculations were done in the abseuce of au electric field. The
electron source energy was taken to be 5 eV. The calculations were made with 100 uniformly
spaced energy groups over the energy range 0 to 10 eV. The thicl ~ss of the scattering
material, SiO,, was taken to be 0.1 um, with 100 spatial discretization intervals of equal width
(Az = 0.601 um). Four source geometries were considered: 1) planar(at z = 0)
monodirectional (along z-direction) source [fig.35a); 2) monodirectional (along z) source
uniformly distributed from 2z = 0.04 um to z = 0.06 um [fig. 35b); 3) monodirectional (along z)
source of width Az centered at z = 0.0505 pm ({fig. 35¢|; 4) isotropic (in direction) source

uniformly distributed from z = 0.04 gm to z = 0.0€ pm {fig. 35d].

2

0 0.1um 0 0.1pm
Fig. 35a. Fig. 35b.

0 0.1pm 0 0.1um
Fig. 35¢c. Fig. 35d.

Sample plots of thz electron flux profiles as calculated for § energies are shown in Figs. 36
and 37 for the plane perpendicular and isotropic source configurations shown in Figs. 35a and

35d, respectively.
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4.4 Su Treatment of Electron Transport in the Presence of an Externzl Electric Field

Calculations of electron transport in the presence of an applied external electric field Lave
been done by Wienke(**] using the method of discrete ordinates. We began the process of
modifying our ONETRAN calculations to include an electric field term. We used as a

theorstical basis the method outlined in Ref. 29.

The Lorentz force term, ﬁe;v(—é + VxB)-V,¢, is incorpcrated into the right-hand-side
(source side) of the Boltzinann equation. The quantities e, mo, vy E and _B'a.re, respectively,
the electron charge, mass velocity, electric and magnetic fields. ¢ is the electron flux. For our
purposes, the magnetic field portion was omitted. In this formulation, electric fields are
treated as effective sources. The electric fields are regarded as having the effect of up- and
down-scattering electrons in energy and also redistributing their directions. Slowing down and
speeding up of electrons due to electric fields are treated in the continuous
approximation(CSDA), i.e., only energy transfers between adjacent groups are allowed.
Assuming slab geometry, Wienke’s treatment of the Lorentz force source term (electric field

portion only) proceeded as follows:
defining the direction cosine y in one-dimensional plane geometry,

= vxu, (57)

V=¥ £+ @&+Eng. (58)
one obtains ( mv)E Vs = ( m%v)[pEg%-i-E(l-y’)g%] . (59)

The first term in [ ] above is the energy upscatter or downscatter term, depending on the
direction of E, while the secord term in [ ] is the angular redistribution term. The first term

can be expressed in finite difference form as

i}
(mEVrE) LR = () Opeim - d4m) , for p> 0 (60)

and
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( ﬁﬁwE)afﬁ = () @gtm - Gm). oru <O (61)

where. as in Fig. 34. E; > E,,, and ¢ = ( g5cE).

The subscript m denotes tie direction of the m-th discrete ordinate, un. Both cases above
~ contribute a positive downscattered or upscattered source to group g in the direction m. The

upscatter terms necessitate outer (energy) iterations in the Sa calculation.

The angular redistribution term, a—z was treated as a within-group collision (self-scatter)
term. Since in Sa calculations, the angular dependence of the flux is expressed in terms of a

Legendre series expansion of order M-1 in y, it is advantageous to make use of the fact that

apP (141 .

(1'“2)3'_1 = (gl'}-l))(P‘ 1Pra) {62)
in the flux expansion, so that

ek aéym A ] 0 ..

( 2) (1-p)=%" = Z(Ql+1/4")‘t¢apx(/‘"l) “€gPgm (63)
i=0

. e (2M? . 2M -1) 0« (282 - 21-1) .

with 4 = GloMaD e 3)] ad €= ¢ - ¢limoEs) (64)

The extended transport correction of order M-1 was used in the electric field expansion.

When the above expressions were incorporated into the discrete ordinates form of the
transport equation, all of the terms containing é;m are then transposed to the left-hand side
(removal terms)of the transport equation and grouped into the total loss term , g,¢4m, with
the appropriate modification of the total cross section (o;). The remaining source terms
involving group-to-group transfer and angular rediatribution will be grouped on the right-hand
side (g2in terms)of the transport equation with the in-group source, thz fixed source,

secondary electron source and inelastic downscatter source.

Since Wienke states in Ref. 29 that the analysis described above can be used to modify
existing S, codes, we began the process of incorporation of the electric field terms into our S,

calculations. This work is presently in progress. We believe that the use of another S, code,
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rather than ONETRAN, may be preferable. We have a code which, uniike ONETRAN,
directly calculates electron fluxes (rather than flux Legendre moments), and makes direct use
of the source terms (rather than their Legendre representation). Such a code may prove more

suitable for the incorporation of electric field terms than ONETRAN.
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