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Preface

The purpose of this study was to investigate the development of a Walsh-domain adap-
tive filter. Discrete Walsh-domain signal processing provides computational and hardware
simplification versus discrete fiequency-domain sigual processing requirements. Therelore,
development of a Walsh-domain adaptive filter would provide a 1obust self-designing sig-
nal processor suitable for applications which limit available power and space. paiticulatly
space-based signal processing. By extending a circular convolution fiequency-domain adap-
tive filter and the Fast LMS frequency-domain adaptive filter into the Walsh-domain. two

Walsh-domain adaptive filters were developed.

T can not fully express my appreciation of the invaluable guidance provided by my thesis
advisor, Captain Rob Williams. His helpful suggestions were not meie cookbook solutions.
they provided this student with exciting opportunities for discovery and insight. 1 would

also like to thank those on the thesis committec; Dr Matthew Kabrisky and Martin Desimio.

Above all. T thank my best friend and wife, Shannon. Any accomplishments that 1

have made were gained by her sacrifices.

Larey J. Duvall
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2. Signal Test 4:WDF?2 Ratioor(k). This is the ratio of the 4 — shift input

32-point DWT bin 27 and the desired signal 32-point DWT bin 27 versus k.

A.1. Discrete Walsh Functions for N =8, in sequency order. . . . ... .. ..
A.2. This is a sinusoid with 16 sample period and amplitudeof 5 . . . . .. ..
A.3. This is the DWT of one period of the 0 — shi ft sinusoid. . . . . .. .. ..
A.4. This is the DWT of onc period of the 1 — shift sinusoid . . ... ... ..
A.5. This is the DWT of one period of the 2 — shi ft sinusoid. . . . . .. .. ..
A.6. This is the DWT of one period of the 3 — she ft sinusoid. . . . . .. . ...
A.7. This is the DWT of onc period of the 4 -- shift sinusoid. . . . . .. .. ..
A.8. This is the DWT of two periods of the 0 — sht ft sinusoid. . . . ... ...
A.9. This is the DWT of two periods of the 1 —sh?ft sinusoid . . . .. .. ..
A.10.This is the DWT of two periods of the 2 — shift sinusoid. . . . .. .. ..
A.11.This is the DWT of two periods of the 3 — shift sinusoid. . . . . ... ..
A12.This is the DWT of two periods of the 1 — shift sinusoid. . . . .. .. ..
A.13.This is a rectangular signal with 16 sample period and amplitude of 5
AL This is the DWT of one period of the 0 — shi ft rectangular signal.
A15.This is the DWT of one period of the 1 — shi ft rectangular signal.
A.16.This is the DWT of one period of the 2 — she ft rectangular signal.

AT This is the DWT of one period of the 3 — shi ft rectangular signal.
AL18.This is the DWT of one period of the 4 — shi ft rectangular signal.
AJ9.This is the DWT of two periods of the 0 — shi ft rectangular signal. . . . .
A.20.This is the DWT of two periods of the 1 — shi f1 rectangular signal. . . . .
A.21.This is the DWT of two periods of the 2 — shi ft rectangular signal. . . . .
A.22.This is the DWT of two period of the 3 — shi ft rectangular signal.

A.23.This is the DW'T of two periods of the 4 — she ft rectangular signal. . . . .

Xv

Page

A-10
A-10
A-1]
A-11
A-11
A-12
A-12
A-32
A-13
A-13
A-13
A-11
A-15
A-15
A-15
A-16
A-16
A-16
A-17
A-17
A-17
A-18




List of Tables

Table Page
2.1. FDF1 vs LMS Real Multiplies. . . . . . ... ... ... .. ... ..... 2-18
2.2. FDF2 vs LMS Real Multiplies. . . . ... ... ... .. ... . ...... 2-25
3.1. WDF1 vs FDF1 Real Multiplies . .. ... ... .. ............ 3-10
3.2. WDF2 vs FDF2 Real Multiplies . .. ... ... ... ... ........ 3-19
4.1. Verification Test coefficients . . . . . ... ... ... L. 4-5
4.2. Verification Test WDF1 filter settings . . . .. ... .. .. ... .. ... 4-5
4.3. WDF1 Verification Test Experimental Results . . . .. . ... ... ... 4-5
4.4. WDI2 Verificatio.r Test Experimental Results . . . .. .. .. ... ... 4-12
4.5. Forward Modelling Test:Plant tap values for Case 1 and Case 2 . . . . . . 4-22
5.1. Signal Test 1: 1 - shift input filter settings . . . .. .. .. .. ... ... 5-4
5.2. Signal Test 1: 3 — shift input filter settings . . . . . ... ... ... ... 5-7
5.3. Signal Test L: 4 — shaft filter settings . . . . . ... ... .. ... 5-10
5.4. Signal Test l:Lrror signal power for the last 96 samples. . . . . .. .. .. 5-13
5.5. Signal Test 1:Number of weight updates to converge. . . . . . . .. .. .. 5-14
5.6. Signal Test 2: 0 — shift filter settings. . . . . . ... ... ... ... ... 5-14
5.7. Signal Test 2: 3 — shift filter sebtings . . . . . ... ... .. 5-18
5.8. Signal Test 2: 4 — shift filter settings . . . . . .. ... ... ... ... 5-2]
5.9. Signal Test 2:Error signal power for the last 96 samples. . . .. .. .. .. 5-25
5.10. Signal Test 2: Number of weight updates to converge . . . . . ... .. .. 5-28
5.11. Signal Test 3: 4 — shift filter settings. . . . ... .. ... . ... ..... 5-30
5.12. Signal Test 3:Iirror signal power for the last 96 samples. . . . . . . .. .. 5-33
5.13. Signal Test 3: Number of weight updates to converge. . . . . ... . ... 5-34




5.14. Signal Test 4:-0 — shift filter settings. . . . . . ... .. ... .. .. ... 5-35
5.15. Signal Test «: 2 — shi ft input filter settings. . . . . . .. ... ... .... 5-39
5.16. Signal Test 4: 4 — shi ft filter settings. . . . . . ... .. ... .. .. ... 5-42
5.17. Signal Test 4:Error signal power for the last 96 samples. . . . . ... ... 5-45
5.18. Signal Test 4: Number of weight updates to converge. . . . ... ... .. 5-54

5.19. Processing Time: Time required to process 1000 data samples. Fu. TDF N

indicates number of taps; IV indicates blocksize otherwise. . . . . . . . .. 5-55
5.20. Time required to perform a i6-point transform. . . . . . . . ... ... .. 5-55
6.1. Subjective Ranking for Noiseless/Noisy Input. . . . . .. .. ... ... .. 6-4

a Vii




AFIT/GE/ENG/91D-15

Abstract

Two Walsh-domain dyadic convolution oaptive filters are developed using a ciicu-
lar convolution frequency-domain filer (FDV.: ¢ the Fast LMS adaptive filter (FDI2):
WDFEF1 and WDE2 respectively.

General theory of time-domain adaptine i, .. :s and a theoretical anal-sis of the FIMI.
FDF2. WDF1. and WDF?2 filters are presentc  WDFI and WDF2 software implenienta-
tions are shown to be error free. A time-domar v o1 (THI7) and a FDF2 fiequency-domain
The WDFIAWDEZ TDF. and FDF

filters ate tested using time-shifted sinusoidal <ud rectangualar noisy and noiscless sighe’s.

Alter (FDI) arc implemented for comparison .. ug.
WDF1 and WDIE2 aie shown to convere faster and produce less error filtering discontin

uous signals. relative to the TDF and FDF performance. WDI1 and \WDF2 are shovn to
converge slower and pioduce more error filtering continuous signals. relative 1o TDF and
FDF performance. WDF1 is shown to perform bettc, for noiseless signais. relative to WDF?2
performance. WDFE2 is shown to perform better for woisy sighals. relative to WDI1 perfor-
mance. WDFI and WDF2 filtering petformance was showi to degrads with incieasing time
shift. A processing speed comparison showed WDF1 to be faster than the TDF. FDF. and
WD filters.
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A WALSH-DOMAIN ADAPTIVE FILTER

[. Introduction

1.1 Backe sund

The development of space-ba-cd edaptive signal processors is an .ctive aica of resezrch
that has immediate military potential. In developing space-based syst as, sy stem robustiess
is a desirable quality. Adaptive systemns exhibit that quality {11]. Therefore. *an adaptive
system that continually secks the optimun: within an allowed class of possibilities, using an
orderly search process. would gi e supetior performance compared with a system of fixed
design” [9:5]. Real-*ime signal proceasing requires that the search process be conducted using
a minimum of time, which is why for example. frequency-domain adaptive signal processors
arc more commonly used than time-domain processors. Speed in this case is costly because
bardware required to implement the Fast Fourier Transform (FFT) is sophisticated and
expensive. Using other transform domains could possibly afford a hairdware savings and
1etain or surpass the processirg spec  of frequency -domain processing. ‘1 tis thesis looks at

the development of a Walsh-domain adaptive lilter.

1.1.1 The Walsh-Domain. Signal processing ol stochastic signals can be accom-
plished in a variety of domains. the most common being time and frequency. There are
basically e 1easens for choosing one processing domein veisus another. First. a computa-
tional advntage may be achicved. For example. the shnplicity achieved in peifouning the
convolution I two discretely sampled data sets with the Fast Fourier Transform (FI'T) ver-
sus performing the convolution sura [13]. e second. information of interest may be more
visibie in one domain than another [10]. Frequency distiibution is clearly indicated in the

{requency-domain, whae amplitude characteristics are clearly indicated in the time-domain.

Walsh-domain processing concerns the representation of a signal as a sum of weigh ed.
bipolar-pulse waveforms. In the Walsh-domain. continuous and discrete time signals aie
represented in terms of &n orthonormal set of basis functions consisting of waveforms with

discrete T amplitude values [1.17 18], Walsh functions are defined over a finite time interval,




which is usually normalized to one, and by an ordering number n [1:9-10] which specifies the

nuniber of times the function passes thru zero over the time interval; 1eferted to as scquency

[1:15].

The Discrete Walsh Transform (DWT) of a discretely sampled continuous time signal
is accomplished generally in the same manner as the Discrete Foutier Transform (DI'T). The

N-point DWT transform pair [1:50] is as fo'lows:

N-=1
X, =1/N Z x,WAL(n.?) (1.1)
1=0
and
N1
=Y NuWAL®, ) (1.2)
n=0

Figure 1.1 shows the N = 8 series Discrote W 'sh functions. The DWT spectial components
are represented by the .Y, terms and n i the ordering number. The data sequence is indicated
by x,. wheie i is the discrete time inde:. and N represents the number of data values being

transformed.

The kernel of the DWT sum. W AL(n,1). s £1 depend ne upon the values of n and 1.
Equations 1.1 and 1.2 show that the DW7T' produces its own inverse. Just as in the case of
the DFT, algorithms exist to produce a faster transform; the Fast Walsh Transform (FWT)
[« 53]

The DWT should be considered for time-limited wavefouins. because =it is possible
for the power spectium to be sequency limited although thie cortespouding time functions are
time limited” [1:103]. For a tume-limited waveforn:. the DWT sequency spectra has a finite
number of terms while the DFT would generate an infinite frequency specira [1:103] such
that. in general. “a continuous type of wavelform favours using the DI'F and o discontinnous

tvpe of wavelorm favours using the DWT™ {1:132).

In terms of an implementation compatison with the DFT. the DWT s mudh simples
and faster because the DWT transformation matiix is compose l of teal values (£1) while the
DFi transformation matrix is composed of complex valaes [1 31, Also. the DWT requires
no multiplication operations hecause the transform matris valaes are 1. thus 1educing the

multiplivation operations to simply addition.
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—>1 Processor

Adaptive
Algorithm

Figure 1.2. Adaptive Filter

1.1.2 Adaptive Filters. The adaptive filter is a signal processor that possesses self-
adjusting capability and is time varying [3:2-14]. The most common form of adaptive filter
uses a closed-loop design (See Figure 1.2). The filter processes the input r, to yield an
output y, which is compared against a desired signal d,, vielding an error signal ¢,. The
desired signal d, serves as a “training signal’ for the filter [9:18]. Adaptive filters can be
impleniented as time domain filters or as transform-based filters. which are referred to as

block processing adaptive filters.

1.1.2.1  Timc-Domain Adaptive Filters.  The single-input time-domain LMS
adaptive filter processor stiucture used in this thesis is referted to as an Adaptive Transversal
Filter (NTF) [9:16]. As shown in Figure 1.3. the AT is a standard Finite Impulse Response
(FIR) digital filter stiucture with tap weights which adapt with time per a predefined adap-
tation algorithm. In this figwe , the ATT has (L 4 1) taps. Since the filter weights arc
adjusted using the Widrow-Hoff LMS algorithm, h,(¢) represents the tap value of the jth
weight at time 7 [9:100].

[1.1.2.2 Block-Processing Adaptive Filters. Since the DWT is generated in a
manner very similai to the DFT, frequency-domain block-processing filter theory might
provide insight into how to develop a Walsh-domain block-processing filter. This section

looks at a Frequency-domain block-processing filter that performs circular convolution.
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Figure 1.3. Adaptive Transversal Filter

One significant difference between a transform-based adaptive filler and the time-
domain filters is that the data is processed in blocks [2:14G} (Figure 1.4). The constant
X specifies the block size. The N data points of d, and x, for the kth block are transformed
using the Fast Foutier Transform (FFT). The transform components of the kth input block.
Na(k). are then multij ied with the respective frequency-domain filter weights. (k). for
the kth block to produ-e the kth block output spectral components. Y, (F). The Y, (k)
components are then subtiacted from the corresponding block of desited signal spectial
components. 1), (k). to produce the ervor components. E, (k). The [, (F) values are nsed to

update the filter weights. H, (F).

In all cases. the index n indicates the spectral component. £ indicates the block being
processed. and 7 is the discrete-time index. Because the FFT of a disarete-time signal results
in complex values. the frequency-domain nth bin H, (k) and E,. (k) components are comples.
Unlike time-domain adaptive filtets which update the weights at cach 1. bloch processing
filters (BPF) update once per block.  The complex LMS algorithm is the most popular

weight update algorithm {2:1.47].

1.2 Problem Statcment

Merging DWT theory and tiansform-based adaptive filter theoty would enable the
development of 1obust selfl designing signal processors which possess minimal computational

reguirements suitable for applications which limit available power and space. particularly

space-based signal processing [11].
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1.8  Research Objective

The primary objective of this thesis is to develop working frequency-domain and Walsh-
domain block-processing adaptive filters in software and categorize their performance in

terms of convergence speed, output error, and processing speed.

1.4 Review of Literature

This section presents a brief discussion of the puhlished research that pertains to the
subject of this thesis. Two research efforts were found in the literature pertaining to Walsh-
domain adaptive filters. The first concerned the hardwaie implementation of a Walsh-domain
adaptive filter. The second presented an Adaptive Walsh equaliser. The following scctions

address each of the two research efforts.

1.4.1 Walsh-Domain Adaptive Filter.  Literature research revealed work done in
Walsh-domain adaptive filtering done by American Electronic Laboratories [8]. The Walsh
Adaptive Filter developed by American Electronics Laboratories was designed to adaptively
filter pulsed waveforms of varying widths, frequency, and time of arrival. The adaptive nature
of the filter, however, was in relation to the threshold used and was not LMS in nature. This
was not a true Walsh-domain adaptive filter since the emphasis was on threshold but is worth
mentioning since, as far as could be determined, it is the only combined implementation of

Walsh Transform and adaptive filtering theory.

1.4.2  Adaptive Walsh Equaliser.  The Adaptive Walsh Equaliser (AWE) [4] is a
continuous-time filter that performs linear convolution using a weighted sum of A/ .ari-
able coefficient continuous-time Walsh functions. Applying the supeiposit'on priuciple, the
continuous-time input signal is convolved with cach of the orthogonal impulsc 1esponse Walsh
components and the individual responses aie summed to produce the output, whicli is com-
pared to a desired signal. The impulse 1esponse component weights are adapatively adjusted
to minitnize the output ervor. This filter operates in the time-domain, while this thesis iu-

vestigates operation in the sequency-domain.

1.5 Assumptions

The Walsh-domain and frequency-domain filters will be implemented in softwaic and

it is assumed thal noise contributed by round-off errors and quantization eflects due to




finite word lengths is insignificant. Eriors of this ty pe aie generally ignoied since their noise

contributions can be minimized with FIR filter implementations [12:7].

1.6 Scope

The research will be limited to the development of frequency-domain and Walsh:-
domain laptive filters using the Fast LMS and Circular Convolution frequency-de.nain
adaptive filter structures [2:146-157]. A performance comparison of the filters will be made
with a time-domain LMS adaptive filter based on conveigence speed, error performance, and
processing speed. The signal scts used are time-shifted noisy and noiseless sinusoidal and

rectangular signals.

1.7 Hardware Requircments

This thesis requires a PC/AT-class computer with at least a 512K Ram Disk. 640X of

base memory, and a single floppy drive. No additional hardware is required.

1.8 Software Requirements

All software programs developed in this thesis were implemented using Tuibo Pascal

version 6.0.

1.9 Approach and Prescnlalion

The approach used in this research includes a literature searcli, software implementa-
tion of the Waish and frequency-domain adaptive filters, software testing. and a performance

comparison of the filters. The remaining chapters are structured as wollows:

o Chapter II presents a theoretical analvsis of Discrete Walsh Transform theory and the

frequency-domain filters.

o Chapter 111 presents two Walsh-domain adaptive filtets developed by extending the

frequencv-domain filter designs into the Walsh-domain.
] A

e Chapter I\ discusses the Walsh-domain adaptive filtes implementations in software

and the tests used to verify integrity.
o Chapter V discusses the performance comparison results.

e Chapter VI presents the conclusions and recommendations.

[-8




1.10  Original Research Contribulions

To the author’s knowledge. the unique and significant contributions presented in this

research include:

)

. Merging of Discrete Walsh Transform (DWT) theory and adaptive filter theory.

2. An extension of a frequency-domain circular convolution filter design to a Walsh-
domain dyadic convolution filter design, Walsh-domain Filter 1 (WDF1). that provides
a processing speed and discontinuous input signal filtering improvement over the Fast

LMS and time-domain LMS filters.

3. Development of a new transform-domain LMS algoritlun. Walsh Transform LMS algo-
rithm 1 (WLMS1), which permits use of the DWT in a frequency-domain filter that

performs circular convolution.

4. A new Walsh-domain filter design. Walsh-domain Filter 2 (WDF2), for a Walsh-domain
block processing iilter that uses a modified form of the “overlap-save” method, has
improved noisy input error performance over the WDF1 filter, and provides processing

speed and discontinuous input signal filtering improvement over the Fast LMS filter.

I-9




II. Background

This chapter presents the Walsh-domain and adaptive filter theory used in the devel-
opment of a Walsh-domain adaptive filter. Adaptive filter theory is presented in two areas:
time-domain adaptive filters and block processing adaptive filteis. The Llock processive
adaptive filter discussion piesents the Fast LMS {requency-domain fiiter and o aicutar con-
volution frequency-domain filter. Both filters are used in Chapter 3 as templates in the

design of a Walsh-domain filter.

2.1 Wdsh-Domain Theory.

Signal processing of stochastic signals can be accomplished in a vaiiety of domains., the
most commonly used being time and {frequency. There are basically two reasons for choosing
one processing domain versus another. First. a computational advantage may be achieved
[10]. One example is the simplicity achieved in performing the convolution of two discietely
sampled data sets with the Fast Fourier Transform (FFT) veisus performing the convolution
sumn. The second. information of interest may be more visible in one domain than anothc
[10]. Power distribution is clearly indicated in the frequency-domain, wlereas amplitude

characteristics are clearly indicated in the time-domain.

2.1.1 Walsh Funclions. Walsh Domain processing represents the signal as a sum of
weighted, bipolar pulse waveforms. In the Walsh-domain. continuous and discrete sigials
are 1epresented in terms of an orthonormal set of basis functions consisting of waveforms
with discrete £1 amplitude values [1:17-1§]. Walsh functions are defined over a finite time
interval, which is usually normalized to one. and by an ordeting number n {1:9-10]. The
ordering number specifies the number of times the function passes Uinu zero over the time
interval. and is referred to as sequency [1:15). Discrete Walsh functions are determined by
sampling the cortesponding continuous Walsh function at .V cqually spaced points over the
interval (0.1). The number of samples. N, must be a power of 2 [1:30]. For a series of A = 2"

terms. the discrete Walsh functions can be specified as [1:59)

p=1
H’AL('H.?.) = H(—l)"l'-l—r(‘r+1:+|)

1'.71 = 0.1.2.....4\"- ]




The indexes 7,n are expressed in terms of their binary digits such that

'I' = (il' i])—l 'il io)?

o
(8%
~—

n = (N, Np_y ... Ny Ng)2 (2.

where the subscript 2 on the right side of the equality in Equation 2.2 indicates the binary
representation of the left side of the equality. The leftmost bit is the most significant. An
example WAL(n,¢) term calculation and the first 8 discrete Walsh functions are presented
in Section A.l.

2.1.2  Discrete Walsh Transform. The Discrete Walsh Transform (DWT) of a dis-
cretely sampled continuous time signal is accomplished generally in the same manner as the

Discrete Fourier Transform (DFT). The discrete Walsh transform pair [1:50] is as follows:

N-1
Xa=1/N Y a,WAL(n.a) (2.3)
=0
and
N=1
z, = Z X, WALn.) (2.4)
n=0

The DWT spectral components are vepresented by the X, terms and » is the ordering
number. The data sequence is indicated oy a,. where 1 is the discrete time index while .\
represents the number of data values being tiansformed. The 2V input data values being
transformed are not assumed to be periodic. The kernel of the swm. W .AL(n.2), is £1
depending upon the values of n and @ (Iiquation 2.1). Because the transform kernel is %1
the DWT 1equires no multiplies while comversely. the DFT requites N2 complex multiplies.
Clearly. the DWT has a computational advantage over the DFT. As in the case of the DFT.
Fast Walsh Tiansform (FWT) algorithms exist {1:38-74] [7]. The transform is linear [1:30]

so that if

v Lo X, (2.5)

and
y Y, (2.6)

then
ax, + by, ALLAN a X, +bY, (2.7)




where a and b are real constants and W represents the DWT operator.

2.1.2.1 Walsh Matriz. The DWT can also be represented as a vector matrix

multiplication operation so that

Xu = (1/N)W y-x (2.8)

where x 1s the N'x1 data sequence vector, X, is the N x1 spectral component vector, and

Wy is the A x ¥ Walsh matrix. The matrix Wy and the input vector x are definc

[ WAL(0,0) WALO0,1) ... WALO.N—=1) |
Weo | WALLO WAL(L1) ... WAL{LLN=1) 29
| WAL(N ~1,0) WAL(N - 1,1) ... WALN = LN ~1) |
and
x=lro a1 ... ano] (2.10)

The rows of Wy are the first N Walsh functions. where the sequency 0 function is the first
row. and the matrix is diagonally symmetric. The first N/2 columns are characterized by
the fact that. in numbering the first row 0. the even and consecutive odd numbered rows
are equal: for example row0=10wl and row2=10n3. This characteristic will be referred to

as 10w svinmet ry.

The significance of the row symmetry characteristic can be scen when tiansforming
zero end-padded sequences. An N/2 zero end-padded input data vector produces a spectium
where, staiting with the 0 spectrum component. the even numbered components are equal to
their consecutive odd numbered components: for example Xy = X; and X, = X;. Therefore.
the resulting spectrum is component symmetric. Example Disciete Walsh Transforins of zero
end-padded vectors are presented in Section A.2.

2.1.2.2 Spectrum Characleristics. “An important feature of the power spec-
trum using Walsh functions is that it is possible for the power spectrum to be sequency
limited although the corresponding time functions aie time limited™ [1:103]. In compati-
son, the corresponding frequency spectrum for time-limited waveforms cannot. be frequency
limited. The representation of a continuous waveform with Walsh functions results in a

more complex spectrum than that produced using Fourier analysis [1:103]. Comversely. the
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representation of discontinuous waveforms using Foutier analysis results in a more complex

spectrum than that produced using Walsh functions.

Simple rectangular and sinusoidal waveforms are examples of discontinuous and con-
tinuous waveforms, respectively. In the case of periodic signals, the DWT of < 1e period
of the signal produces a different sequency spectrum than the DWT of two periods. This
characteristic is demonstrated in Section A.3 for a simple sinusoid and rectangular signal.

The sum of the sequency components squared equals the input signal power.

2.1.3  Circular Tune Shift Effccts. Unlike the DIT, the DWT does not possess a
circular shift property [1:51]. Given a sequence x, which produces a DFT Ay, the circularly
shifted sequence @,_,, produces a DFT of exp™?27¥/Nh X The spectrum of the circularly
shifted sequence retains the same magnitude characteristics as the spectium of the unshifted
sequence but possesses a different phase characteristic. Therefore, the DFT is referred to
as a shift invariant transform. The shift variant nature of the DWT is demonstrated in

Section A.3 fer a simple sinusoid and rectangular signal.

2.1.4 Convolution. The linear convolution of two discrete N point sequences z, and

y, iz the time domain is defined as

N

= Z Yy (2.11)
=0

The convolution theorem for the Fourier Transform states that the convolution of two N-
point time series x, and y, can be performed by multiplying the Fourier Transforms of the two
series and taking the inverse transform of the product. This results in circulat convolution
due to the fact that the DFT assuines the sequences to he periodic. Therefore it is necessary
to pad the sequences with N zeros. transform the 2N-point series. multiply the 2N-point
DITs of the two sequences. and inverse transform the result to perfoirm linear convolution

in the time domain.

In the case of the DWT. no relationship exists with regard to performing lincar time
domain convolution. This is demonstrated by replacing v, and y;.., in Equation 2.1]1 with

their equivalent inverse Discrete Walsh Transform. Perfoiming this substitution gives [1:99
| 5 5

N=1 N} N=1
=y (Y N WAL@DD. WAL =) (2.12)
1=0 n=0 1=0
2.

| S



N=1 N=1 N~

= > XY [Z WALk, )W (L{L.7 = 1)) (2.13)

n=0 (=0

The brackeied sum term represents the convolution of : .e discrete Walsh functions, and
demonstrates the fact that linear time convolution is not achieved. \What is achieved, is

rererred to as dyadic convolution.

The Walsh addition theorem [1:53] states the following relationship
WAL, ))WAL(m,7)= WAL(nZm.1) (2.14)

where & indicates modulo-2 addition for the binary representations of n and m. Dyadic

convolution is defined as [1:120;

N-1
5 = 1/N Z Tilren
1=0
= a1, (2.15)

and substituting the Discrete Walsh Transform (DWT) expression for y,,, into Equation 2.15
produces {1:100)

. N-]
s = N VAL 7)) (216)

n=0

Applying the addition theorem (Equation 2.14 to Equation 2.16 produces [1:100]

N-1
o= IINY Y, Z e WAL OWAL(n.7)
n=0
= Z N WAL (n.r) (2.17)
n=0)
which establishes the relationship
i 2 N, (2.18)

where Wis the DWT opwmator. In compatison. this realtionship demonstiates that distinct

sets of relationships exist for the Walsh and Fourier series. Fach establishes a form of




convolution theory with the dificrence being that the Fourier version utilizes aiithmetic

addition for the 1ecursive time shift and the Walsh version utilizes modulo-2 addition.

Dyadic convolution is similar to circular convolution in that there are .V product terms
associated with the 1esult at each 7 shift when convolving two N point sequences. Linear
convolution produces 7 + 1 product terms for each 7 shift. An example is presented in

Section A.2 that demonstrates the relationship stated in Equation 2.18.

2.1.5 Corrclation. Discrete autocorrelation in real time is defined by [1:100]

N=1
R: = 1/N Y aiTgr (2.19)
=0
where « = 0,1.2.....m and m&N. The constant m represents the total correlation lag.

Discrete autocorrelation in dyvadic time is defined by [1:100]

N=1

R:=1/N Y aaig (2.20)

1=0

Since modulo-2 addition and subtiaction aie identical operations, dvadic convolution and
correlation produce the same result [1:101]. Correlation of x, and ¥, can be accomplished
by multiplying the @, sequence DI'T conjugate and the y, sequence DFT. This is shown by
applying the convolution theorem for the “ourier series and the relationship

ro, XL (2.21)

where F is the DFT operator. The inverse DIT produces the cross-correlation of v, and y,.

No such relationship exists for DWTs since the DWT components are real.

2.2 Adaptive Filters,

An adaptive filter is a signal processor that possesses seif adjusting capability and is
time varying [3:2-11]. The filter is continually modifying its current state is, response to
input and output signais [3:2-11]. Tiie most common form of adaptive filter uved in signal
processing is the dosed-loop. which is illustiated in Figure 2.1. This filter processes the input
x, to vield an output gy, which is compated against a desired signal d,. vielding an error signal

¢,. The desired signal. d,. serves as a “training signal” for the filier [9:18]. All thiee variables
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Figure 2.1. Adaptive Filter Block Diagram

represent discrete values and the subscript 7 represents the discrete time index. Adaptive
filters can be implemented as time domain filters o1 as tiansform based filters, also referred

to as block processing adaptive filters.

2.2.1 Tine-domain Adaptive Filters. The single-input time-domain LMS adaptive
fi't- - processor structnre used in this thesis is 1eferred to as an Adaptive Trans-crsal Filter
[ + \sshown in Figure 2.2. the Auaj c.ve Transversal Filter is essential'y a Finite Impulse
P sponse (FIR) digital filter with adaptive weights that are represented sich that the jth
tap at time 7 is h,(7), where j =0.1..... L. Assuming a causal filter. the iilter size is L + 1.
Weight update at time 7 is imost commonly performed using the Widrow-Hoff LMS algorithm
[9:100]. Filter weight values arc corlectively represented as a weight vector which is defined
as follows:

hii) = [ho(s) h(i) - hp(i)]” (2.22)

The filter output at time 7 is produced from the lincar combination of products formed by

multiplying the filter weights with their conesponding delayed input signal salues as spedified
by [9:17]

L

yo= O x-ih(i)
=0

= xT(@)h(7) (2.

[
o
(9
A




T; P T, 71 b ] Z-1 Ti-L
ho(7) gh,(i) . hy ()
Y
O

Figure 2.2. Adaptive Transversal Filter

where

x(2) = [a; Tioy .. :c,-_L]T (2.24)

The error signal is specified by [9:19]

€ = (I, -

d, = xT(i)h(i) (2.25)

As a measure of optimal performance. the LMS adaptive filter secks to minimizce the
mean squared error Efe?]; with the ideal case typically being E[e?] = 0 [3:2-16]. The mean

squared error is defined as follows [3:2-16):

E[&) Eld® + 0T ()x(2)xT(i)h(7) = 2d,xT(0)h(3)]
Eld?) + EWT () E[x()xT () E[h(2)]) = 2E[dx" (1)) E[h(1))

= E[d®) + W) E[x()xT()h() = 2L{dxT (2)]h(7) (2.26)

There are two key assumptions made in the derivation of Equation 2.26. First, in
progiessing from the first to the second line, the weight vector and the iuput signal vector
arc assumed uncorrelated. The second assumption is that the weight vector conveiges to a
solution. When the weight vector converges E[h(i + 1) = h(7)] cquals the zero vector and the

weight vector can be ticated as a constant. This leads to the fina! form of Fquation 2.26.
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which is {9:20]
E[e?] = E[d?] + hTRh — 2P"h (

o
to
=i

A

where R is the autocorrelation matrix and is defined as [3:2-17]

[ $:2(0)  ze(=1) ... bg(—L) '
Hzz(1) Gex(0) ... up(l—1L)
R=ExOx" ()= | 62(2) 0e(—1) ... ¢ea(2—1L) (2.28)
] ¢xr(L) éxr(L - 1) . 0'1-1-(0) |
and d,.(n) = Elxia,4a). P is the cross correlation vector
[ 6es(0) ]
P = Bldis(i)] = | Y (2.29)
L C.‘J’dr(—L) i

where ¢g.(n) = Eld,x,4n]. Under the assumption that the input signal and desired signal

are stationary, R and P are constant and as such require no time subscript.

Equation 2.27 is referred to as the performance equation or mean-square error(MSE)
equation for the LMS filter. Equation 2.27 characterizes a performance surface which the
filter searches to find the global minimum which is guaranteed to exist by the quadratic
naturc of the equation. The weight vector that satisfies the global minimum is referred to as
hope- Solving for b, requires taking the gradient of E{cZ]. and sctting the gradient equal to
the zero vector. The gradient is being taken with 1espect to the weight vector W Defining

the gradient vector V,,. as [9:2-1§]

Vel = [0F[0wy OF[Ow, ... ?7[7/311:,,]7' (2.30)




where F represents a function of w and V,, the gradient operator. Applying the ¥, operator

to Equation 2.27 and solving for the minimum produces [9:21]: .

0 = Vu.E[d]+ V,hTRh =V, 2PTh
= 0+ V,(h")(Rh) - V,2PTh
= 2Rh—2P (2.31)

where the left side of the equality is the zero vector. Evaluating Equation 2.31 for h yields
hope such that [9:22

how = R™'P (2.32)

An important footnote to this result is that this assumes R to be invertible [9:2-18]. Substi-
tuting Equation 2.32 into Equation 2.31 for h yields the minimum mean-square error. which
is specified as [9:22

bmin = E[d®] = PTR7'P (2.33)

Equations 2.32 and 2.33 clearly show that the optimum filter solution and the optimum
MSE performance depends on the autocorrelation and crosscorrelation statistics. For an
input signal that is statistically wide sense stationary. the R matrix can be evaluated and will
be composed of constants. Evaluation of the P vector is arcomplished by cross correlating
x(7) and d,. The performance surface defined by Equation 2.27 as mentioned earlier is

quadratic in nature.

The gradient at any point on the performance surface corresponds proportionately to
the surface slope. The rate with which the weight vector converges also is proportional to

the gradient and therefore the surface slope.

A populai measure of adaptive filter performance is the learning curve whidl n.casures
the MSE as a function of time {10]. Generally. E{c}] is estimated by ensemble av aging ¢
versus 7 over a number of individual runs of the input. The minimum MSE or &,,,, occurs
when the filter taps have reached thein optimum solution as defined in Equation 2.32. In
most cases. an exact match with the desired signal is not achieved due to ..daptation noise

in the filter tap update and noise in the filter input x, {10].

The filter weightz for each tap position are updated using the LMS algorithm:
h(i +1) = h(i) + 2n6x(7) (2.34)
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after each time instant. based upon the error difference ¢, between the filter output y, and
the desired signal d,. The constant g is referred to as the gain constant and is used to zdjust
adaptation speed and control the stability of adaptation [9:100]. The filter searches the
performance sutface for the global minimum using the LMS algotithim. As the input data
is> processed. the LMS algorithm uses a gradient estimate derived from the instantaneous
crror to search the Performance Surface [9:99-100]. As stated in Equation 2.34. the next
weight vector. h(z 4 1), is calculated by adjusting the previous weight vector by the scaled
product of the instantancous error annd input vector. In the case of nonstationary signals, if
the statistics vary slowly. the gain constant p can be increased to allow the filier to track
the nonstationarity at the expense of increased adaptation noise. For rapidly changing input

signal statistics. the filter will not converge to an optimum weight solution [3:2-21}.

2.2.2 Block Proccssing Adaptive Filters. This section presents the Fast LMS adaptive
filter and a circular convolution frequency -domain filter. For cach filter. the presentation is

as follows:

1. Time-domain input vector definition.
2. Frequency-domain input.
3. Output Calculation.

1. Frequency-domain weight updaie.

-t

. Time-domain representation.

6. Optimum weight vector.
SO

-1

. Computational requirements in terms of multiplications.

RARIRA I Crrenlar Convelution Model One significant difference in the implemen-
tation of a tiansform based adaptive filter versus a time-domain filter is that the data is
processed in blocks {2:116]. .\ frequency domain adaptive filter that performs circular con
volution is depicted in Figure 2.3 [2:147] and will be referred to in the temainder of this
thesis as Frequeney-dom. in Filter 1 (FDF1). The block processing nature of this filter is

reflected in Figure 2.3 using the notation x(£). d(k). and s (4): which represent the kth block

input vector desired vector. and output vector respectively.




N-Point
FrT

N-Point | v(k)

N-Point
FFT

Td(l;)

FFT-' [

Figure 2.3. Frequency-domain Adaptive Filter
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FDF! Time-domain Input Vector Definition.  The first step in presenting
the frequency-domain equations is to define the filter input vectors. Letting x, represent
the input sequence, the N input sequence values which define the kth input block can be
represented by xxn4., where 7 =0,1,..., N — 1. Using this notation, the N-point Ath block

input vector is defined

\(l\‘) = [-'L'kN ‘e .1rk,V+N_1]T (23:))

Applying the same notation to the desired time-domain sequence, the associated kth block

desired vector is represented as
d(l\) = [de e de+1\r_1]T (236)

FDF1 Frequency-domain Input. The kth block input vector transform

components define the diagonal components of the kth block input FFT matrix X(&) {2:148]:

X(/\‘) = (l?'(Lg{f{[:l‘(kN) m(k[\r+Ar_1)]T}}
Xo(k) 0
Xy(k
_ 1(k) (2.37)
L 0 -X-:\’—l(]‘.), ]

where F represents the forward FFT operator.

The kth block desired vector transform components define the kth block frequency-

domain desired vector D(&), defined by

D(A) = f{{d(“\r) - (I(k_\'_*_‘\r_l)]’r} ( .

o
i
[vs)
~

Do(k)

(&
) = D_( ) (2.39)

| Dn-a(k)




FDF1 Output Calculation. The transform components of the kth input
block, X, (k), are multiplied with the respective kth block frequency-domaiu filter weights,
H,(k), to produce the kth block output spectral components, Y (k) [2:148-149):

Y(k) = X(k)H(k) (2.40)
where
H(k) = [Ho(k) Hy(k) ... Hy_ (k)T (2.41)

Taking the inverse FFT of Y(k) produces the kth block output vector. Representing the
N output sequence values as ypn4:, Where 7 = 0,1,.... N — 1. the kth block time-domain

output block vector is defined

y(k) = [yanys - - y(kN+N—1)]T (2.42)

and

y(k) = FH{X(k)H(k)} (2.43)

The F~! operator used in Equation 2.43 is the inverse FF'T operator.

FDF1 Frequency-domain Weight Update. Analogous to the time-domain
LMS filter weight update, the output spectral components. Y, (A). ate subtracted from
the corresponding desired signal spectral components. D,(k). to produce the kth block

frequency-domair error components, £,(k) [2:149}:
E(ky = D(k) - Y(&) (2.44)
The E,(k) valucs are used to update the frequency-domain filter weights, /1,(F)

H(k+1) = (k) + pX"(R)EK)
= H(k) + p[X"(k)D(k) = X" (F)X (k) H{K)]
= H(k) + nV (k) (2.

(8
en
o
g




where w is again the convergence constant, X*(k) is the complex conjugate of X(k), and

V r1(k) represents the frequency-domain gradient vector for FDF1 [2:149]. Vg (k) is defined

Veok) | [ Xg(R)[Do(k) — Xo(k)Ho(k))
omtiy= | TP | X;(k)uw):—xlwml(k)} .40
L Ve (k) | | Xvoi(B)[Dwv-a (k) = Xn-a(B)Hy-a ()] |

Equation 2.45 shows that the FDF1 Weight update is accomplished once per block as opposed

to each discrete time, 7, increment.

For the previous discussion, in all cases, the index n indicates the spectral component.
k indicates the block being processed, and 7 is the discrete time index. Also, because the

FFT of a discrete time signal results in complex values, the frequency-domain components

H,(k), Eq(k), Xn(k), Du(k), and Y, (k) are generally complex.

For each block of input data processed, the filter attempts to minimize the MSE be-
tween the desired spectral components and the input spectral components. This filter re-

quires stationary inputs for the weights to converge.

FDF1 Timc-domain Represcntation. The equivalent time-cdomain repre-
sentation of Equation 2.45 is as follows [2:149]:

bk + 1) = h(k) + ubx (£)d(k) = X x(k)h (k)] (2.47)

where

h(k) = F-UH(k) (2.48)

with the vector format specified as
h(k) = [ho(k) hy(k) ... hy_y(K))F (2.49)
The symbol x(k) represents a circulant matrix [2:149] given by

x(k) = F7IX(h)F

—_
o
it
=)
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and

zo(k)  xv-1)(k) ... a(k)
331(1") 10(1\) .’L‘z( )

o

| anai(k)  av-a(k) ... wo(k)

The first column of x(k) is the input vector x(k) since x(k) is the inverse FFT of the diagonal
elements of X(k). By expressing the ith row of x(k) as x¥ (k), Equation 2.47 can be rew1ilien
as N-1
bk +1) = h(k) + & 3 [d()x:(k) = yilk), () (2.52)
i=0
with y,(k) representing the 7th component, where ¢ = 0...N — 1, of the kth block output
vector (Equation 2.43). The output vector y(k) contains the N output values for the kth
output block of the filter. FDF1 output values for the kth block are calculated in the time-
domain by performing the circular convolution of h(k) and x(k). Using the circulant matrix,
the kth block output vector is defined [2:149]

y(k) = x(k)h(k) (2.53)

Substituting e,(k) = d,(k) — y.(k). where d,(k) represents the ith component of d(&)

(Equation 2.36), into Equation 2.52 produces

h(k +1) = h(k) + ;LNZ—] e(B)xi (k) (2.54)

i=0

where x,(k) once again represents the 7th row of x(k). Equation 2.54 reveals a distinct
departure from the standard LMS algorithm relating to the gradient estimate. In this case,
even though weight update occurs only once per block. the gradient estimate is calculated

as a recursive summ over the input block.

FDF1 Optimum Weight Vector. The first step in deriving an FDF1 op-
timal time-domain weight vector expression is the derivation of an equivalent frequency

domain exptession. The optimum frequency-domain weight vector minimizes [2:150)

= E[(D(F) = Y(R))"(D(k) = Y(k))
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= E[D(A)D(K)] - R, H = H* Rpy + H*R. H (2.53)
where
Rzq = E[X*(k)D(k)] (2.56)
and
Ree = E[X*(k)X(K)] (2.57)

Since d and x are stationary, R is a diagonal matrix and the nth diagonal element is given
by E[X;(k)X.(k)]. The nth element of Ry is E[X(k)D, (k)] [2:150]. Taking the gradient
of Equation 2.55 with respect to H, setting the result equal to the zero vector, and solving
for Hop produces [2:150}.

Hope = R Rpa (2.58)

The optimum time-domain weight vector is calculated by taking the inverse FFT of
Equation 2.58 which produces the optimum time-domain weight vector for a circularly con-
volving filter [2:150]:

hopt = 1) 120 {2.59)
where
Ire = FIRLF (2.60)
and
Ieg = F IR 4 F (2.61)

The matrix r;; is a circulant matrix, because R, is a diagonal matrix [2:150). Characteris-
tically, the first 1ow of ry; contains lags zero through A — 1 of the circular autocorrelation
function of the input x [2:150]. Using the linear autocorrelation function é(/). the circular

autocorrelation function at lag 7. ¢.(7), can be expressed as [2:150]

ocl1) =

N—1 i
] —o(7 — N 2.62

Similarly, the circular cross-cotrelation of r and d generates teims that compiise the elements

of the vector 1y [2:150].

FDF1 Computational Requirements. A computational reduction is achieved

with the FDT'1 filter versus the time-domain adaptive filter in terms of multiplication opera-



N FDF1 Real Multiplies

LMS Real Multiplies
4 1.375
S 0.875
16 0.531
32 0.313
64 0.180
256 0.056
1024 0.017

Table 2.1. FDF1 vs LMS Real Multiplies

tions required [2:147]. The FDF1 filter uses three N-point FFTs and 2.V complex multiplies

to calculate N-output points.

An N-point FFT can be accomplished using an N/2-point FFT and N/2 complex
multiplies [2:147]. Computationally, a N/2-point FFT requires (\V/4)log,(.V/2) — N/2 com-
plex multiplies so that a total of (N/4)log,(N/2) complex multiplies are performed in each
N-point FIT [2:148]. Adding 2N complex multiplies to the complex multiplies associated
with three N-point FFTs gives a total of (3N/4)log,(N/2) + 2N complex multiplies per N
output points produced. An N-tap time-domain LMS filter requires 2N? real multiplies to

produce N output data points [2:147].

Assuming four real multiplies is equivalent to one complex multiply, the 1atio of FDF1

real multiplies to LMS real multiplies is

FDF1Real Multiplies  3/21og,(N/2) + 4
LMSRealMultiplies ~— N

(2.63)

The computational savings is significant for large filters. as demonstrated in Table 2.1.

2,2.2.2 Fust LMS Filler In general, adaptive filters which peiform linear con-
volution are moic useful for digital filtering [2:152]. The Fast lecast-mean-square adaptive
filter (FLMS) [2:132-157] described in this section performs stiictly linear convolution: as
opposed to the stiictiy circular convolution model discussed eailier. This filter will be re-
ferred to as Frequency-domain Filter 2 (FDF2) throughout the remainder of this thesis. The
FDF?2 filter, depicted in Figure 2.4, is a block-processing adaptive filter that produces .V

output data values duiing each weight update cycle. In producing .V ountput values. the
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Figure 2.4. Frequency-domain Filter 2 (FDF2)
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filter is utilizing 2NV input data values, as opposed to the iV values used by the FDF1 filter.

The kth block input values consist of the N point current and N point previous input blocks.

FDF2 Time-domain Input Vector Definition. Using the notation z, to
represent the input sequence, the ' input sequence values which define the kth input block
can be represented by wxn.., where 2 = 0,1,..., N — 1. Referring to Figure 2.4, the kth
block input vector x(k) is composed of the concatenated N-point previous block and N-point
current block which defines a 50% overlap of the k — 1 and k N-point blocks. Therefore, the
kth block input vector is defined

X(k) = [2gen-ny --0 Tgn-l) TEN) oo TENeN-1)) (2.64)

(k~1)th block kth block

The kth block desired vector d(k) follows the FDF1 definition (Equation 2.36).

The additional input used during each block is due to the fact that the FLMS adaptive
filter utilizes the “overlap-save” niethod in performing linear convolution. The “overlap-
save” method “... corresponds to implementing .n L-point circular convolution of a P-point
impulse response h(k) with an L-point segment x(k) and identifying the part of the circular
convolution that corresponds to a linear convolution. The resulting output segments are
then patched together to form the output™ [5:538]. Performing the citculai convolution of
an L-point sequence with a P-point sequence (I’ < L) results in an output. sequence with the
first (P—1) points incorect in the context of linear convolution. The remaining points match
the linear convolution result [5:558]. In this case, a 50% overlap is employed (L/2 = \ = P)

which has proven to be the most efficient [2:153].

FDF2 Frequency-domain Input.  For the kth block. the 2N data points
comprising the Ath block input vector n(k) are tiansformed using the Fast Foutier Trausfoim
(FFT). The kth block input vector transform components define the diagonal compouents
of the kth block input FFT matrix X(&) {2:153):

N(h) = (/i('g{f(-’l‘(k.f\'-,\f) <o TRN-1) TRNY - -7'(k.~\’+:\'—l)]'r}

(k=1)th bluck kth block




0 Xon-1(k) |
where F is the forward FFT operator.
FDF2 Output Calculation. Representing the N output sequence values

which define the kth output block as yxn4.. where 1 = 0,1,..., N — 1, the kth block time-

domain output block vector is defined [2:153]

v(k) = [yuny- - yunan-n)’
= last N terms of F~H{X(k)H(k)} (2.66)
where
H(k) = [Ho(k) Hy(k) ... Hon_q (k)T (2.67)

FDF2 Frequency-domain Weight Update.  After producing the kth output

block the .V time-domain error samples for the kth block arc derived using
ern+1 = dkNgr = YkN 4 (2.68)

where k represents the current block and 7 = 0...N = 1. The time-domain error samples are
transformed to create the frequency-domain error vector E(k), which is used to deiive the

2N-point FDIF2 frequency domain gradient vector Vg (k).

The FDF2 frequency -domain weight update algorithm differs from that used by FDF1
in that a gradient constiaint is employed. The gradient constiaint procedure is identified
in Figure 2.4 as the dotted portion of the figure. The product of the 2N x2N kth block
transform input matrix conjugate (X"(%)) and the 2N x1 frequency-domain error vector
(E(k)) is the Gradient Constraint input. Since only .V error terms are generated from the
2N input values used, the .N-point kth time-domain error block scquence must be padded

with .\ preceding zeros in order to generate a 2.V-point frequency domain error vector. Thus.




the frequency-domain error vector for the kth block is [2:154]:

E(k)=F{0_.. 0 (dum —yam) - (donan-y = ypnan-u)l’ ) (2.69)

N zeros

kth error block

The first step in the Gradient Constraint procedure is to inverse transform the X*(k)E(k)
product and save only the first IV values. This result defines the FDF1 time-domain gradient
vector [2:154):

V(k) = first N terms of F~H{X"(k)E(k)} (2.70)

Next, the time-domain gradient vector (Equation 2.70) is zero end-padded with N zeros.
Finally, the FDF2 frequency-domain gradient vector Vpz(k) is calculated by transforming

the zero end-padded time-domain gradient vector.

Applying the definition for Vpa(k). the frequency-domain weight vector update is
[2:154]

V(k)
H(k+1) = H(k)+pF 0
L 0 -
= H(k) + 1 ViEa(k) (2.71)

where F is the forward FFT operator. The FDF2 frequency-domain gradient vector ¥ p2(k)

gth term is

N-12N-12N -]
Vi, (k) = 1728 > > S W WP WA X (k)dgn +0-n)
p=0 r=0 =N
—-12N -1 2N -1 2N -1

—(1/2N)? Z SN ST WA WIRPW I WIR N (k) X (k) H o (k)

p=0 r=0 =N n=0

g = 0.1....,2N — 1 (2.72)
where
Wy = ¢=22e/20 (2.73)

2.92




The derivation of Equation 2.72 is a unique result of this thesis and is presented in Ap-
pendix I along with the Yy (k) terms for the N’ =2 case. Comparing Equations 2.46 and
2.72, the Vpy, (k) terms contain only the X (k)X (k) H,(k) product, where » = 0,1,...,N -
1. The Vg (k) terms contain the Xy (k)X (k)H,(k) product as well as X[ (k).Xq(k)H,(k)
products; where ¢ = 0,1,...,2N — 1 and ¢#¢. Thus, the ¥V (k) vector components utilize
more filtering information than the ¥ py(k) components. The additional information present
in the FDI2 gradient is essentially an average of terms associated with each bin. Theoreti-
cally then, with a noisy input the FDF2 taps should converge with less adaptation noise and

generally converge slower relative to the FDF1 taps.

Because the FI'T of a discrete time signal generates complex values, the frequency-

domain components of H(k), X(k), and E(k), are gencrally complex.

FDF2 Time-domain Representalion. Having defined the FDF2 filter fre-
quency domain operation, the equivalent time-domain representation can now be discussed.
Applying the linear property of the DI'T, the FDI2 time-domain weight-update equation is
defined by the inverse I'FT of Equation 2.71 [2:152]. This relationship requires the A = 0
frequency-domain weight vector, H(0), to be initialized to zero. The inverse FFT of Equa-

tion 2.71 provides

h(k+1)=h(k)+p _ (2.74)

Thus. the gradient constraint and a requirement that the initial 2.V-tap weight vector H(k)
be initialized to all zeros, produces a 2N-tap time-domain weight vector with the last N
values equal to zero. This result is due to the fact that a constant zcro valued gradient is
added to the last N time-domain taps on cach weight update. which effectively results in an

N term time-domain weight vector that can be specified as
h(k) = [ho(k) hy(k) ... hyoa(K)]) (2.79)

Therefore, the frequency-domain versus time-domain FDF2 weight vector relationship can

be expressed as [2:153)

Hk) = F{hT(k) 0 ... 0]} (2.76)

N zar0s




The weight-update equation for the jth tap can be expressed as
hy(k + 1) = hj(k) + £ V;(k) (2.77)

where j = 0...N - 1. V,(k) represents the jth component of V(k) which was defined in
Equation 2.70. V,(k) is defined [2:153]

N-1
V,(k) = D een 4T (kN +izj) (2.78)

=0

where zxn4, and exny, represent the ith (7 = 0,..., N — 1) component of the kth N-point
block of the input and error sequences. Equation 2.78 shows the kth block gradient term
for each time-domain weight to be the cross-correlation of the erro1 terms derived from each
block and the filter input [2:154).

With the time-domain weight vector defined, the FDI2 time-domain output calculation
can be presented. Since the FDF? filter processes blocks of data, the output calculation is
most conveniently represented using vector multiplication. The linear convolution time-
domain output calculation for the kth block is defined [2:153]

yuneny = W (B)X(AN +4) i=0,1,...,N =1 ;k=0,1,2,... (2.79)

where y(x 4, represents the ith component of y(k) (Equation 2.66) and h(k) is specified iz
Equation 2.75. Letting the quantity (kN + ¢) represent a discrete time index, the vector
xT(kN +1) containing the N most current input data values at time (kN + 1) is specified by

X(EN +1) = [-l'(k,-\-'+,) TN 41-1) --- -T(L-.-\=+.-,\'+1)]T (2.80)

FDF2 Optimum Weight Vector. A derivation of the optimum time-domain
weight vector for the FDF2 filter is identical to the LMS filter derivation (Section 2.2.]
Equations 2.32). This is based on the fact that the FDF? filter performs linear convolution.
Using the result presented in Equation 2.32 and the relationship stated in Equation 2.76.

the frequency-domain optimum weight vector H,, can be expressed as

Hope = F{[bly 0 ... 0"} (2.81)

N zcros




N FDF2 Real Multiplies

LMS Real Multiplies
4 4.50
S 2.875
16 1.750
32 1.031
64 0.394
256 0.188
1024 0.057

Table 2.2. FDF2 vs LLMS Real Multiplies

FDF2 Computational Requirements. A computational analysis reveals that
the I'DF2 filter requires fewer multiplics for large filters than the time-domain adaptive filter
[2:154]. The FDF2 filter uses five 2.V-point FFTs and 4.\ complex multiplies to produce .V
output data points.

A 2N-point FFT can be performed using an .N-point FFT and .V complex multiplies
[2:134]. Since an N-point radix-2 FFT requires approximately {.N/2)log.(N) — . complex
multiplies [2:154], a total of (5.V/2)log,(.\') complex multiplies are required for the five
FFTs. Combining the FFT complex multiplies and 1.\ complex multiplies gives a total of

SN/2)log,(N) + 4N complex multiplies per .\ output values produced.
52 ! I i I I

The time-domain LY 7 filter requires 2\? real multiplies to produce .\ output poinis
[2:154].  Assuming four rear multiplies is cquiralent to one complex multiply vields the

following ratio:
FDF2Real Multiplics _ Slog, N +§

LMSReal Multiplics ~ N

o

(2.

2)

The computational savings is significant for large filters. Table 2.2 contains the ratio of FDI2
real multiplies to time-domain LMS real multiplies versus N, In comparison to Table 2.1.
the ratios in Table 2.2 are clearly larger. This makes sense dee to the fact that FDIF2
requires 10.V log, .V + 16.\ real multiplies per .V output points. FDE1 conversely. requires
3.V log.(N/2) + 8NV real multiplies.

2.3 Chapler Summary

Several major points presented in this chapter are now summarized hefore proceeding

to the next chapter. To begin. the major points presented concerning the DWT were:




S

(1]

6.

=1

(@4)

. The Discrete Walsh Transform (DWT) is a real valued transform that is implemented

in the same general fashion that the Discrete Feurier Transform (DI'T) is implemented
(See Section 2.1.2).

The DWT does not have a time-shift property (See Section 2.1.3).

The inverse DWT of the product of two N-point DWTs produces dyadic convolution
(See Section 2.1.4).

. Dyadic convolution uses modulo-2 addition to determine the recursive time shift,

whereas linear convolution uses arithmetic addition.

. Dyadic correlation and convolution are identical since modulo-2 addition and subtrac-

tion are equivalent.

The DWT requires no multiplications whereas the DFT requires N? complex multiplies

for an N-point transfrom.

The real DWT matrix and the complex DI'T matrix have similar symmetry charac-

teristics.

. Analogous to the DIT, Fast Walsh Transforms (FWT) exist to exploit the DWT

matrix symmetry.

The implementation sitnilarity of the DWT and DFT warrants research in applyving the

DWT to existing {requency-domain block-processing filter designs. A circular convolution
o l A ] [e] le)

friequency-domain filter (FDF1) (See Section 2.2.2.1). and the Fast LMS frequency-domain

filter (I'DF2) (See Section 2.2.2.2) were examined. The next chapter presents two Walsh-

domain filters that are developed from the FDI1 and FDF2 designs.




[II. Walsh-Domain Filter Design

In Chapter 11, a circular convolution frequency-domain filter (FDF1) and a linear
convolution frequency-domain filter (FDI'2) were presented. In this chapter, the following

developments are presented:

1. Section 3.1 presents a Walsh-domain extension of the FDIF1 filter design, Walsh-domain
Filter 1 (WDF1). The filter performs dyadic convolution and requires fewer multipli-
cation operations than FDF1.

2. Section 3.1 also presents a new algorithm, the Walsh Transform LMS algorithm 1
(WLMS1) which provides a weight update algorithm for the real valued WDI'1 Walsh-
domain tap weights.

3. Section 3.2 presents a new Walsh-domain filter design, Walsh-domain Filter 2 (WDF2),
that is developed from the FDI'2 filter. The filter uses a modified “overlap-save”

method and requires fewer multiplication operations than FDF2.

3.1 Walsh-Domain Filter 1 (WDF1)

This section presents the WDF1 filter which was developed by extending the FDF1
design into the Walsh-domain. To aid the reader, a discussion parallel to the FDF] presen-

tation in Section 2.2.2.1 will be used.

Implementation of the FDF1 design with the DWT is a direct application of Equa-
tions 2.16 and 2.18 from Section 2.1.4. The des’zn accommodates the use of the DWT
uicectly (Figure 3.1) with minor algorithm clianges assoiated with replacing a complex

sued transform with a real valued transform.
3.1.1 WDFI Tine-domain Input Vector Definition. WDF1 filter input vectors arc as
specified for the FDF] filter. Letting @, 1icpresent the input sequence, the N input sequence

values which define the kth input block are represented by xina., where 7 =0,1,....N =1

and k =0,1,2,.... Using this notation, the kth block input vector is defined

‘((/\) = [-’l'kN :l‘kN+;\l_l]T (51)
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Td(ls)

Figure 3.1. Walsh-domain Adaptive Filter 1 (WDF1)




Similarly, the kth block desired signal input vector is defined
d(k) = [div ... dinvenaa]t (3.2)

3.1.2 WDF1 Walsh-domain Input. Analogous to the FDF1 FFT input matrix (Equa-
tion 2.6, the kth block input DWT matrix X(k) is given by

X(k) = diagiW{lzun) ... zpnvev-n)})
Xo(k) 0 |
X (k)

0 Xn-1(k) |

where W is the forward DWT operator. The kth block desired vector DWT components
define the kth block Walsh-domain desired vector D(k):

D(k) = W{lduny ... dunsn-n)}
[ Do(k) |
Dy (k)

| Dna(k)

3.1.3 WDF1 Oulput Calculation. The transform components of the &th input block,
Xa(k), are multiplied with the respective kth block Walsh-domain filter weights. If,(F). to

produce the Fth block output spectral components, Y, (k):
Y (k) = X(k)H(k) (3.5)

where

H(k) = [Ho(k) Hi(k) ... Hyoo(B)T (3.6)

Taking the inverse DWT of Y(&) produces the kth block output vector. Representing the

N output sequence values as yea 4, Where 7 = 0.1,..., N = 1, the kth block time-domain
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output block vector is defined

y(k) = [?/(kN), e ,y(kN+N-n)]T (3.7)

and

y(k) = W™ {(X(k)H(k)} (3.8)

The W1 operator used in Equation 3.8 is the inverse DWT operator.

3.1.4 WDF1 Walsh-domain Weight Update. Following the same procedure used with
the FDF1 filter, the output spectral components, Y;,(k), are subtracted from the correspond-
ing desired signal spectral components, D,(k), to produce the kth block Walsh-domain error
components, £, (k):

E(k) = D(k) — Y(k) (3.9)
The E,(k) values are used to update the Walsh-domain filter weights.

Equation 2.45, which defines the FDF1 frequency-domain weight update algorithm,
uses the conjugate of the input diagonal transform matrix X(k) in calculating the frequency-

domain gradient. The corresponding Walsh-domain weight vector calculation is thercfore
H(k 4+ 1) = H(k) + 1 X(R)E() (3.10)

since the Walsh-domain components are real quantities. The vector format for II(k) is spec-
ified in Equation 3.6. Equation 3.10 defines Walsh Transform LMS algorithm 1 (WLMS1).

A literature search indicates that WLMS1 has not previously been developed.

Using an approach similar to that used for Equation 2.45, Equation 3.10 can be ex-

pressed as

H(k+1) = H(k)+ uX(k)E(K)
= H(k) + u[X(F)D(k) = X(k)X(k)H (k)]
= I‘l(l\‘)-*-/Lle(lf)

(3.11)




where p is the convergence constant and Vyy(k) represents the Walsh-domain gradient
vector for WDF1, i.e.

Vio®) | | Xo(k)Do(k) = Xo(k)Ho(k)
Vi (k) = VWl'x(k) _ Xa(R)[Dr(k) = Xy (k) Ha(k)) (3.12)
| Vg (B) | [ Xna(B)[Dnaa(k) = Xv-a(R)Hy - (F)] |

Vri(k) and Vi (k) are very similar (See Equations 2.46 and 3.12). The two vectors
differ in that the Vi, (k) terms, where j = 0,1,..., N — 1, are generally complex valued

whereas the Vyy; (k) terms are real valued.

For the previous discussion, in all cases, the index n indicates the spectral component,
k indicates the block being processed, and ¢ is the discrete time index. Because the DWT

of a discrete time signal results in real values, the Walsh-domain components H,(k), E,(k),

Xn(k), Dy(k), and Y, (k) are real.

3.1.5 WDF1 Time-domain Representation. In the preceding discussion it was demon-
strated that replacement of the FF'T with the DWT in the FDF1 design requires virtually no
change to the transform domain equations presented for FDF1 (Section 2.2.2.1). The equiv-
alent time-domain equations for the DWT implementation, however, present a departure

from the FDF1 time-domain equations.

Using the relationship

h(k) = W {H(k)} (3.13)

and the linear property of the DWT (Equation 2.7), the inverse DWT of Equation 3.10 gives

h(k+1) = h(k) + uV(E) (3.14)
where
V(k) = W HEE)X(k)} (3.15)

Equations 2.18 and 2.15 state that the inverse DW'T of the product of the two Walsh-domain
vectors E(k) and X(k) is equivalent to the dyadic convolution of their time domain vectors.

The dyadic convolution of the two time-domain vectors is analogous to the linear convolution




of these two vectors as described in Equation 2.78. The difference is the replacement of a
modulo-2 shift for a linear addition derived shift and the incorporation of a scaling factor.
These modifications provide

N=1
Vi(k)=1/N > elk)zpes, 7=0,1,...,N~1 (3.16)

1=0

where j is the time-domain weight index, @ indicates modulo-2 addition for the binary
representations of ¢ and j, and V,(k) defines the kth block gradient term for each time-
domain weight. The x,(k) and ¢,(k) terms represent the ith component of x(k) and e(k)
respectively, during the kth block:

x(k) = [ewv ... Trven-)
= ['I:O(IC) ’B(N_l)(k)] (317)
and
e(k) = [exv ... exnen-1]
= [(de—ykN) (de+N—1"?/kN+N—1)]
= [60(1.) e(N_l)(/c)] (318)

Using Equation 3.16, the Ath block weight update equation for the jth tap is defined
hi(k +1) = hy(k) + ¢ V;(k) (3.19)

Having defined the time-domain weight update equation, a similar equation for the out-
put will {ully specify WDFE1 in the time-domain. Using the same approach applied in the

derivation of Equation 3.16. Equation 3.8 can be expressed

N-1

w(k) = 1N S hy(k)Tgyy i=0.1.....N =1 (3.20)

1=0

where y;(k) is the 7th component of the kth block output vector y(k).

Equation 3.20 states that y(k) is calculated by dyadically convolving the time-domain

taps and input data values for the kth block. The time-domain output calculation can also
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be represented in vector form. Letting the quantity (kN +7) represent a discrete time index,

where

i = 0,1,....,N—1
0,1,... (3.21)

bend
li

the output sample at time (kN + ) can be calculated using
Yenen = (/NI (AN + O)x(EN +1) (3.22)

The vectors x(kN +7) and h(EN + 7) are defined

X(kN +1) = [-’C(kN+i) L(kN4@1) - - x((kN+z)e,(N—1))]T
h(AN +8) = [ho(kN +17) M(kN +1) ... Rpvoy(AN +0))7 (3.23)
where the terms of x(kN + i) are defined Tnyig;): J = 0,1,..., N — 1, and @ indicates

modulo-2 addition for the binary representations of (kN +7) and j.

3.1.6 WDF! Optimum Weight Vector. The optimum time-domain weight vector for
this design will differ from that presented in Section 2.2.1. due to the fact that the filter
output calculations are performed using dyadic convolution and the autocoirelation matiix
terms ate calculated using dyadic corielation, which is mathematically equivalent to dyadic
convolution (Section 2.1.5). The performance equation for WDF'1 can be derived using “ector
representations for the output and error calculation. Having defined the &th block output
vector calculation as a vector multiplication (Equation 3.20). it 1emains to define the crror
calculation in a similar manner. Using Equation 3.22 and the associated definitions. the

error sample at time (k¥ 4 1) is defined

CUN+) = N4y = Y(EN+1)
= dpnsg — (LN (R)x(EN +1) (3.24)

Making a change of variable such that the variable n is sub i o ted for (KN +7), Equation 3.22
becomes
p = (/N (n)s(m) (3:25)
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where

X(n) = [¥n Tng1) -+ Tnov-1))” (3.26)

and
h(n) = [ho(n) ha(n) ... hvony(n))” (3.27)

Similarly, Equation 3.24 becomes

¢t = dp—Yn

dn = (1/N)hT (n)x(n) (3.28)

Iollowing the h,, procedure outlined in Section 2.2.1; substitutior of Equation 3.28

into Equation 2.26 produces
E[é%] = E[d3] + (1/N))hT R,h — (2/N)PTh (3.29)

where R,, is the Walsh autocorrelation matrix and is defined as

Be0(0)  Dax(=1) ... Dop(=N+1)
Boe(1) Ore(0) ... Bu(-N+2)
Ry = Elx(m)x" ()] =|  &,.(2) Boo(l) ... Bu(-N+3) (3.30)
| 0 (N 1) ©u(N=2) ...  ©,(0)

and @, (j) = E{vaz(nzy). Pois the Walsh cross-correlation vector and is defined as

q)d.r(o)

P, = E[d.x(n)] = (D“”(__l) (3.31)

! q’dr("'N + 1) ]

where ®4:(j) = E[dy(ngy). Under the assumption that the input signal and desired signal

are stationary, R, and P, are constaut and as such require no time subscript. Equation 3.29
A { I 1
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is referred to as the performance equation or mean-square erroi (MSE) equation for the

WDF1 filter.

Equation 3.29 chaiacterizes a performance surface that the WDF1 filter searches to find

a global minimum which is guaranteed to exist by the quadratic nature of the equation. The

weight vector that satisfies the global minimum is referred to as hop. Solving for hyp requires

taking the gradient of E[¢2] with respect to the h vector. and setting the gradient equal to

the zero vector. Executing the same steps as indicated in Section 2.2.1, Equations 2.31 and
2.32, yields

hope = NR' P, (3.32)

Substituting Equation 3.32 into Equation 3.29 for h yields

émm = E[([i] - PZR;I Pw (333)

Analogous to the time-domain optimum weight vector result (Equation 2.32), Equa-
tions 3.32 and 3.33 show that the WDF1 filter optimum weight vector is determined by
the inverse of the input autocorrelation matrix and the cross-correlation vector. However,
the autocorrelation and crosscorrelation terms for WDF1 are actually dyadic convolution
terms (Section 2.1.5). Therefore, the dvadic autocorrelation input statistics and the dyadic
cross-correlation statistics of the desired signal and input will directly affect the optimum

weight vector.

3.1.7 WDFI Computational Requirements. A computational comparison can be con-
ducted for the WDF1 filter versus the FDF1 filter in the same manner as the LMS filter
was compared to the FDF1 filter. The WDF! filter uses three N-point DWTs to produce N
output points. No multiplication operations are involved with the DWTs since an \-point
DWT can be implemented with no multiplications and N(.V — 1) adds. 2.V real multiplies
are required for weight update and output calculation. Thercfore. the WDFI filter 1equires
2N real maltiplies per .V output points versus the FDF1 requirement of 3V log,(:V/2) + 8.V,

The ratio of WDF'] real multiplics to FDIF1 real multiplies is

WDF1Rcal Multiplics 2
FDF1Rcal Multiplics — 3log,(N/2) + 8

(3.34)




Table 3.1 contains the ratio of WDF1 to FDF1 real multiplies for various N-point block

sizes. Clearly, the WDF1 filtcy presents a computational savings in terms of multiplications.

N WDF1 Real Multiplies

FDF1 Real Multiplies
4 0.180
8 0.143
16 0.118
32 0.100
64 0.087
256 0.069
1024 0.057

Table 3.1. WDF1 vs FDF1 Real Multiplies

3.2 Walsh-Domain Filler 2 (WDF2)

This section presents the WII2 filter which was developed by extending the FDF2
design into the Walsh-domain. To aid the reader, a discussion parallel to the FDF2 presen-

tation in Section 2.2.2.2 wiil be used.

Unlike the FDF1 filter. the FDF2 filter design is not suitable for use with the DWT.
Figure 3.2 shows a block diagram of the final WDI2 configuiation. A comparison with
Figure 2.4 reveals a distinct difference in that the WDF2 filter does not use a Gradient
Constraint. The Gradient Constraint was incompatible with the DWT and the reasons for

that will be presented in Section 3.2.4.

3.2.1 WDF2 Timc-domain Inpul Vector Definition.  Like the FDF2 filter. WDF2 pro-
cesses the current and previous input blocks to produce the current output block. To facili-
tate reader understanding. the notation presented for the FDF2 filter will again be presented
at this time. Using the notation r, to represent the input sequence. the .\ input sequence
values which define the Ath input block are represented by rxysp, where i = 0.1..... N = 1.
Referring to Figure 3.2. the kth block input vector x(k) is composed of the concatenated

N-point previous block and N-point current block, which defines a 50% overlap of the & — |
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and k& N-point blocks. Therefore, the kth block input vector is defined

X(ln‘)={-7'(k1\'-1v) coo T(kN-1) T(N) --- 1‘(;.-N+N-1)]T (3-35)

(k-l);;z block kth block
The kth block desired vector d(k) follows the WDF1 definition (Equation 3.2).

3.2.2 WDF2 Walsh-domain Input. The kth block DWT 2N x2N input matrix X(k)
is specified using the DWT equivalent of Equation 2.65. In this case, the kth block input
vector transform components define the diagonal components of the kth block input DWT
matrix N(A):

X(/.) = (Il-(l_(j{W[.’l‘(k‘,\:__N) coe TEN-T) ﬂ;\.;\') .l‘(;‘._,\r_*_‘\-_,)]’r}
(k-l)?;-block kth block
[ Xo(k) 0o |
Xi(k
_ _1( ) (3.36)
0 ‘X-'ZN—l(k) ]

where W is the forward DWT operator.

3.2.3 WDF2 OQuiput Calculation. The lkth block output vector (v(k)) is determined
using the DWT equivalent of Equation 2.66:

v(k) = [yEnys - Yunen-n)’
= last N larms of WH{X(KH(L)) (3.37)
where
H(k) = [Ho(k) Hy(k) ... Hyxoa(B)T (3.38)

The FDF2 filter retains the last N values of the inverse transfoim result because they are
equal to the values produced by the linear comolution sum (sce Section 2.2.2.2). In Equa-
tion 3.37 the product X(k)H(k) defines the dyadic convolution of the associated time-domain
vectors for X(£) and H(k). Therefore. saving the last N'. or any .V-point combination of the

2.\ values produced. will not accomplish linear convolution. The choice of which output
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samples to retain is then unclear. For this thesis, the last N values were chosen as the

output, which is stated in Equation 3.37.

3.2.4 WDF?2 Walsh-domain Weight Update. The FDF2 implementation was dis-

ure 2.4 was necessary to ensure linear convolution. Section 2.1.4 presented the fact that
the inverse Walsh Tiansform of the product of two N-point Walsh-transforms is equivalent
to the dyadic convolution of their time-domain sequences (Equation 2.18). Thercfore, the
WDF?2 filter will perform dyadic convolution whether the Gradient Constraint procedure is
executed or not. As a result. using or not using the procedure fundamentally becomes a

weight update issue.

The equations pertaining to the Gradient Constraint procedure from Section 2.2.2.2.
replacing the FFT with DWT, are as follows:

E(R) =W{0_... O (dux)=yuny) -+ (dpwsnoyy = yon+n-1))]" ) (3-39)

N z¢ros

kth error block

(k) = first N terms of WH{X"(k)E(k)) (3.40)
[ v(k) |
0
Hik +1) = H(k) + oWV ' (3.41)
L 0 o

where W represents the DWT operator.

In executing the last step of the Walsh-domain gradient calculation. as indicated by
the vector transform in Equation 3.41. a zero end-padded vector is transformed using the
DWT. Since the vector is end-padded with .\ zeros. the resulting 2.V term Walsh domain
gradient vector 1s component syminetric (Section 2.1.2.1). s a result of the component
symmetric gradient vector. the H(k) vector will be component symmetric. Cleatly then. the
filter spectral bin taps arce not going to converge independently. Therefore. the Gradient
Constraint. structuie of Figure 2.1 is incompatible with a DWT based version of FDF2.
Eliminating the 50% “over-lap save™ method. which incorporates the Gradient Constiaint,

produces a filter equivalent to WDF1. However. eliminating the Gradient Constraint and
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Figure 3.2. Walsh Adaptive Filter 2 {(\WVDF2)

retaining the 505 over-lap characteristic presents a design unigue with respect to the WDFI

filter.

Removing the Gradient Constraint block from the design leaves a Walsh-domain gi«.-

dient vector that is identical in terms of calculation to that which appears in Equation 3.10:
H(k + 1) = H(k) + pN{F)E(E) (3.42)

where the X(k). E(F). and H(k) vector components are real valued quantities. The product
N(E)E(K) defines the WDF2 Walsh-domain gradient vector Viga{k). Comparativels. the
WDF1 vector Vig (k) and WDF2 vector Uiy o(k) are unique since E(%) for the WDF2 filter is
derived from the zero front-padded kth block error vector (see Equation 3.39}. Equation 3.12

will be referred to as \Walsh Transform LMS algorithm 2 (\WLMS2). A literature search

indicates that WLMS2 has never been developed previousiy.




Using Equations 3.39, 3.37, and 3.36 the Walsh-domain WDF2 gradient vector for
N > 2 is defined

Viva, (k)
Vi, (k)
Ve, (k)
Viva, (k)
Vivalk) = : (3.43)
Vg, (k)
Viwanoa(k)
Vv, (k)
Vivz,no, (K) ]
Xo(k)[Dn, (k) = Xo(k)Ho(k) + X1(k) Hi (k)]
X1(E)[=Dn, (k) + Xo(k)Ho(k) — X1 (k) Hi (k)]
Xa(k)[~ D, (k) = Xo(k)Ha(k) + Xa(k) Ha(k)]
X3(k)[Dn, (k) + Xao(k )H (k) — Xa(k)Hs(k)]

Xen-a)(B)[Dny_, (k) = Xean—ay(kB)Han—ay (k) + Xon-3) (k) Hian - —3)(k)

k) + -¥(21\’—4)(A)11(21V 1)(1\) - Xan- 3)( Y (an -3 (/
k) = Xan-2y(k)Han-2y(k) + Xanv-1)(k)Hon-n(k
) + Xen-2)(k) Hian-2)(k) = Xon-1)(k) H(an-1) (k)

‘X(QN 3)( ) DI\N 2(
Xen-2)(k)[=Dny_,(
Xenv-n(k)[Dyy_, (k

()]
)
)

J )

where the Dy, (%) terms repiesent the nth component of the N-point DWT of the curient

N-point block of the desired signal. For N = 2. ¥ yo(k) can be expressed as

| Vo, () oF)dzry + diaksry = 2Xo0( k) Ho(k) + 2X (k) (k)]
Viwn, (k) | _ i Xy (k)[=diary = dizsr) + 2Xo(k) Ho(k) = 2X, (MH k) (3.41)
Vg, (k) Xa(k)[~deary + diawsry = 2X2(k)Ha(k) + 2X5(k) I5( k)]
Viye, (k) X3(k)[deary — diarsry + 2X2(k) Ha (k) — 2X3(k) Ha (k)] |

Equations 3.43 and 3.44 are derived in Appendix E.




Comparing Equations 3.12 and 3.43, the Vi, (k) terms contain X,(k)H,(k) and
X4y (k) H41y(E) products, where j = 0,2,4,...,2N — 2. Conversely, the Vi, (k) terms
contain only the X,(k)H,(k) product, where j = 0,1,...,N — 1. The terms are distinct
because a different E(k) is used for WDI2 (See Equations 3.39 and 2.44). This relationship
is somewhat analogous to the associated FDF1 and FDF2 transform-domain gradient vector

comparison.

The Vi, (k) components are distinctly different from the Vg, (k) components. The
Vr2,(k) components, aside from being generally complex valued, contain multiple product
terms (See example in Appendix E) whereas the Vi, (k) components contain two prod-
uct terms. Thus, the removal of the Gradient Constraint procedure reduces the averaging

exhibited in the YV (k) vector components to two terms for the Vy-»(k) components.

3.2.5 WDF2 Time-domain Representation. Having defined the Walsh-domain struc-
tures of WDF2, the time-domain representation of this filter can now be addressed. The
time-domain weight-update algorithm is derived from the inverse D\WWT of Equation 3.42.
Taking the inverse DWT of the product E(k)X(k) yields the time-domain dyadic convolution
result of the two vectors

x(k) = [zen-m) o Tan-n) Tew) oo Tewnan-p)) (3.45)
(k=1)th black tth block
e(k) = [0 ... 0 (duwy—yany) - (dpnen-1) = yonven-n))’ (3.46)
N zeros

kth error block

The dyadic convolution result defines the time-domair WDF2 gradient vector V(k). The

Jth component of V(&) is defined

2N -1}

Vik)y =128 5 (Kzugy(k), 7=0.1....,2N =1 (3.47)

=0

where j is the time-domain weight index, & indicates modulo-2 addition for the binary
representations of ¢ and j, and Y ,(k) defines the kth block gradient term for each time-

domain weight. The x,(k) and e,(k) teiras represent the ith component of x(k) and e(k)
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respectively, during the kth block:

x(B) = [zan-n) --. zpN-oy) T(kN) - -'B(I:N+N—1)J]
(k=1)th block kth block
and
e(k) = [0 ... 0 (dgeny = yemy) - ((l(kN+N—l)"y(kN+N—1))JT
N zeros

kth error block

[eo(l\’) 6(2,\/-1)(}3)]7‘ (349)

Using Equation 3.47, the time-domain weight update equation can be specified
hy(k 4+ 1) = hi(k) + 1V, (k) (3.50)

The time-domain weight index j now spans 2N taps as opposed to the FDF2 case of N taps,
because the gradient constraint was eliminated. For a block size of N input data values, the
WDIJ2 filter has a time-domain equivalent filter with 2V taps as opposed to the FDF2 filter

which has N time-domain equivalent taps. The number of output values remains N.

The time-domain equivalent of Equation 3.37 is determined using the relationships
stated in Equations 2.18 and 2.15 from Section 2.1.4. Equation 2.18 states that the inverse
DWT of the product X(k)H(%) yields the dyadic convolution of the associated time-domain
vectors x(k) and h(k). The dyadic convolution sum for the 2N-point kth block input vector

x(&) and time-domain tap vector h(&) is given by

2N -1

v (k) = 1/2N > hij(k)rpen(k). i=0.1..... 2N ~1 (3.51)
=0

where (k) is the ith component of x(k) (see Equation 3.48), and @ indicates modulo-
2 addition for the binary representations of ¢ and j. The last N samples of this result

represent the values yn4,). where j = 0,..., N — 1. and k is the block index. Therefore,




the WDF2 kth block output can be expressed as

2N -1
w(k) =1/2N Y hy(R)oqeman(k), i=0,1,...,N =1 (3.52)
1=0

where y;(k) represents the ¢th component of y(k) such that

y(k) = [y(kN) y(kN+N-1)]T
= [yo(k) ... yow-ny(A]" (3.53)

The output calculation in vector form can be expressed as

Yunsy = hT (AN +9)x(kN = N +4) §=0,1,...,N -1 (3.54)
where
X(kN = N + i) = [R@n-n) TEN-N+1) - TEN4N-1)]] (3.53)

and h(k) is specified as
h(kN + 1) = [huamy (k) hpemaen(®) - hemaen-1n(80)]7 (3.56)

In comparison, both WDF1 and WDF2 kth block output vectors are determined from
the dyadic convolution of x(&) and h(k). The distinction between WDF2 and WDF1 output
calculation, aside from input vector and tap vector length, is that only the last N values of the
WDF2 dyadic convolution result are saved as the N output values {or the kth block whereas
the N-point \WDF1 dyadic convolution result represents that filters kth block output. In

both cases the time-domain weight vector is the same size as the input vector.

3.2.6 WDIF?2 Optimum Weight Vector. Given that the output values are derived from
the dyadic convolution of the input and time-domain weight vector in both cases, the WDI2
MSE equation is the same as that produced for WDF1 (Equation 3.29) with the constant
term changed from N to 2N\ v .~count for the fact that the WDF?2 filter is convolving 2N

size vectors.
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Replacing the N term in Equation 3.29 with 2N, yields the following WDF2 MSE
equation

Ele?) = E[d] + (1/4N*)hT Ryh - (1/N)PTh (3.57)

n

where the matrix R, and the vector P, are as specified in Section 3.1, Equations 5.30 and
3.31. Applying the optimum weight vector derivation procedure outlined in Section 2.2.1,

the optimum time-domain weight vector for WDF?2 is
hope = 2NR' P, (3.58)
Substituting Equation 3.58 into Equation 3.57 for h vields
Emin = E{d2) = PTR;' P, (3.59)

which is the same result that was derived for WDF1 (Equation 3.33). Theoretically this
is a reasonable result given that the optimum time-domain weight vectors differ only by a
factor of 2. Equations 3.58 and 3.59 show that the WDF2 filter optimum weight vector is
determined by the inverse of the input dyadic autocorrelation matrix and the dyvadic cross-
correlation vector. Therefore. as in the case of the WDF'1 filter, the dyadic autocorrelation
input statistics and the dyvadic cross-correlation statistics of the desired signal and input

determine the optimum weight vector.

3.2.7 WDF2 Computational Requirements. A computational compatison can be con-
ducted for the WDI2 filter versus the FDI'2 filter in the same manner as the LMS filter
versus the FDF2 filter. The WDIF?2 filter uses three 2N -point DWTs to produce .V output
points each requiring no multiplications since a 2N-point DWT can simply be imnplemented
with 2V(2V — 1) adds. 1N real multiplies are required for weight update and output calcu-
lation. Therefore. the WDE? filter requires 4N real multiplies per .V output points versus
the FDF2 requirement of 10.V log,(N) + 16N. The ratio of WDF2 real multiplies to FDF2

real multiplies is
W DF2Rcal Multiplies 2

FDF2RealMultiplies — 5log,(N) + 8

(3.60)

Table 3.2 summarizes the computational savings related to multiplications.
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N WDF2 Real Multiplies

FDE2 Real Multiplies
4 0.111
8 0.086
16 0.071
32 0.061
64 0.053
256 0.042
1024 0.034

Table 3.2. WDF2 vs FDF2 Real Multiplies

Chapter Summary

Two adaptive Walsh-domain filters were developed by extending the FDF1 and FDF2

filter designs into the Walsh-domain. The important developments presented are as follows:

. The D1 filter supports using the DWT with no modification to the design. This

implementation was termed Walsh-domain filter 1 {WDF1) (See Section 3.1).

. The gradient constraint portion of the FDF2 design is incompatible with the DWT.
Removal of the gradient constraint does result in @ DWT compatible design. This

implementation was termed Walsh-domain Filter 2 (WDF2) (See Section 3.2).

. The WDF1 and WDF2 Walsh-domain weight update equations (WLMS1 and WLMS2)

are based on the complex LMS algorithm and they are very similar but distinct.

. The dyadic autocorrelatior. input statistics and the dyadic cross-correlation and au-

tocorrelation statistics of the desited signal and input determine the optimum weight
vector for WDF1 and WDI2.

. A Walsh-domain LMS algorithm was developed for the first time in this thesis.

next chapter discusses the implementation and verification of WDFI and WDF2 software

lementations.
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IV. Filter Verification

4.1 Introduction

The previous chapter presented a theoretical analysis of two Walsh-domain adaptive
filters; designated WDF1 and WDF2. The next step is to implement the filters in software
and then verify the software implementations. Therefore, there are three major goals for

this chapter which are presented in the remainder of this section.

1. The equations and algorithms implemented in the WDF1 software are defined (Sec-
tions 4.2.3 and 4.2.2).

2. The equations and algorithms implemented in the WDF2 software are defined (Sec-
tion 4.2.4 and 4.2.2).

3. The WDF1 anu WDF?2 filters are tested for errors (Sections 4.2.3.2, 4.2.4.2, and 4.3).

4.2 Software Algorithm Identificalion And Testing.

This section is intended to familiarize the reader with the WDF1 and WDF2 software
and associated algorithms. This section also discusses the specific test used lo verify each
filter and the results of the test. A brief discussion concerning two filters used in this thesis

for comparison purposes is also presented.

4.2.1 Comparison Filters. This thesis utilizes a time-domain LMS adaptive filter and
a frequency-domain block-processing filter in Chapter V' to evaluate relative peiformance
measures for the WDFI and WDF?2 filters. The time-domain LMS adaptive filter will be
referred to as the TDF filter throughout the remainder of this thesis. The TDF filter is a
single-input adaptive transversal filter (Section 2.2.1) with a variable filter size. The FDI"2
filter (Section 3.2) is used as a bascline for comparison. This filter uses a radix-2 FFT.

Thioughout the remainder of this thesis, this filter will be referred to as the FDF filter.

4.2.2  Gain Constant Calculalion. There are several methods for calculating a gain
constant g based on the filter processing domain. Gain constant for the TDF filter is defined

as o
Misadjustment M

= N(Signal Encrgy) - .‘\'-/.’,'[-"',2]

7 (1.1)




where N represents the number of filter taps and z, is a stationary signal [3:3-6]. Misad-

Justment is defined as

...a measure of how closely the adaptive process tracks the true
Weiner solution ... " [3:3-6]. A larger Af value resu’.s in a larger u value and produces faster

adaptation but at a cost of greater adaptation noise.

There are two methods of calculating the gain constant, u, for the block processing
filters. The first uses the average power in each spectral bin. For the WDF1 and WDF?2

filters, the nth bin gain constant, w,, is calculated as follows

_ Misadjustment

/Ln B E[Pb”ln(l“)]

(4.2)

where Py, (k) = X2(k), k represents the kth block. and X, (k) represents the nth diagonal
component of the input transform matrix X(£). In the case of the FDF filter, the spectral
bins and their respective filter weights are complex. Therefore, the FDF filter utilizes an
independant y for the real and imaginary parts of the bin. Calculation of pirear and pimag:
the real and imaginary gain constants respectively, using Equation 4.2 is accomplished by

replacing Pyin, (k) With Ponreat,, (k) and Phinimag, (k) respectively.

The second calculates a constant g common to all of the spectral bins. This method
calculates the average power in each bin with respect to the block index k, Py, , and averages
the Py, values to produce Phnayg- For the WDF1 and WDF2 filters, the gain constant is

calculated as follows
Alisadjustment

(= (4.3
f anmv_q )
where 1
n—-
Pbmav_q = 1/7) Z Pbm, (11)
=0

and 7 represents the number of spectral bins (2N for WDIE2 and N for WDF1). In the case
of I'DF2, the average of the sum of all the real and imaginary bin component powers is used

to calculate Pyang
n=1

[)bmox'g = 1/41\' Z(Pbmrml, + anunmy.) (15)

1=0

where the 1 /AN constant acconnts for the 2N real bins and 2N imaginary bins.



4.2.3 WDF! Filter The WDF1 program implements the equations developed in the
previous chapter. In performing the DWT and inverse DWT, the program implements the

direct form of Equations 2.3, 2.1, and 2.4.

4.2.3.1 WDF1 Software Overview The WDF1 software flow is as follows:

Initialize variables, arrays, and vectors

Load input signal and desired signal

Calculate the number of N-point blocks in the input

Calculate p

Loop Start: Create the N-point current block input vector

e Calculate the Walsh-domain N by N diagonal input matrix X(k)

e Calculate the Walsh-domain N-point desired block input vector D(k)
e Calculate the N-point output block vector y(k)

o Calculate the Walsh-domain N-point error vector E(k)

e Calculate the Walsh-domain N-point Gradient vector

o Update the N-point Walsh-domain weight vector using WLMS1

e Loop to Loop Start if more blocks

4.2.3.2 WDF1 Filter Verification Test This test verifies the WDF1 filter which
includes Walsh Transform LMS algorithm 1 (WLMS1). The test input signal used is derived
from summing the columns of the Walsh § by § (W) translorm matrix (See Appendix A),
and periodically repeating the resultant sequence. Summing the columns of Wy produces an
S-point sequence of

2e={80000000) (1.6)

with a corresponding DWT of
Xo={11111111) (4.7)

The sequence expressed in Lquation 4.6, with the filter configured to process S-point blocks,

is the input vector a(A) for the kth block processed. The desiied input signal is produced
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by first multiplying each row of Wy by a different constant. The resulting modified Wy
matrix columns are then summed, producing an §8-point sequence, which is then repeated

periodically. Utilizing the coefficients listed in Table 4.1 produces the 8-point sequence

dp = {1815 —6.85 —2.934 —0.984 0411 -5.607 1.033 6.652} (4.8)
with a corresponding DWT of

D, = {1.2241 0.6116 3.5123 0.2921 4.8234 1.9142 2.8314 2.9311} (4.9)

The sequence expressed in Equation 4.8, with the filter configured to process S-point blocks,
is the desired vector d(k) for the kth block processed. Since the input spectral components
for each block processed all have a magnitude of 1 (Equation 4.7) and the corresponding
desired block spectral components (Equation 4.9) are constant from block to block, the
corresponding tap +alues for each bin should theoretically converge to the desired spectral

component values. The input and desired signal are depicted in Figure 4.3.

Configuring the WDF1 filter as specified in Table 4.2, the WDF1 output error is
depicted in Figure 4.4. Figures 4.9 thru 4.16 depict the adaptation tracks for the bin taps.
Clearly. the figures show that WLMS]1 is a valid Walsh-domain weight-update equation. All
of the data in the figures and tables presented for this test were produced using a contant p
value for the bin taps. The results using an independantly derived g value for each bin tap

were identical and the figuies and tables presented for this test ate representative of those

results. Table 4.3 displays the theoretical and experimental tap values for the WDF1 filter.




Row Coefficient
0 1.234
1 0.611
2 3.512
3 0.292
4 4.823
3 1.914
6 2.831
T 2.931

Table 4.1. Verification Test coefficients

Parameter Setting
Block Size 8
Misadjustment 0.2
Datasize 1000

Table 1.2. Verification Test WDF1 filter settings

Tap | Theorctical | Experimental
0 1.234 1.234
I 0.611 0.611
2 3.512 3.512
3 0.292 0.292
1 1.823 4.523
b} 1.914 1.914
6 2.331 2.831
7 2.931 2.931

Table -1.3. WDFI Verification Test Experimental Results
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4.2.4 WDF2 Filter The WDF?2 program implements the equations developed in Sec-
tion 3.2 of the previous chapter. As with the WDF1 program, the DWT and inverse DWT

transforms are performed using Equations 2.3. 2.1. and 2.4.

4.2.4.1 WDF2 Software Overview The WDF2 software flow is as follows:

Initialize variables, arravs, and vectors

Load input signal and desired signal

Calculate the number of N-point blocks in the input

Calculate ;e

Loop Start: Create the 2:V-point past-current block input vector

e Calculate the Walsh-domain 2N by 2N diagonal mput matrix X(k)

o Calculate the N-point output block vector v(k)

¢ Calculate the Walsh-domain 2.V-point error vector E(k)

o Calculate the Walsh-domain 2.V-point Gradient vector

o Update the 2:V-point Walsh-domain weight vector using WLMS?2

¢ Loop to Loop Start if more blocks

4.2.4.2 WDF2 Filier Vertfication This test verifies the WDF2 filier software

which includes Walsh Transform LMS algorithm 2 (\WELMS2). The signal set nsed to verify
the WDF1 filter is also used to verify the WDF?2 filter. Since the WDF?2 filter utilizes the

concatenated carrent and previous input data blocks to e ;ainate the curr-nt block .V output

values. the input vector. excluding the first block processed. is given by
X(k)={800000075000000 0} (4.10)
with a corresponding D\WWT of

Ao ={1.234 0 0 0.612 3512 0 0 6292 1823 0 0 1914 2831 o & 20310 {4.i}}




The 2N-point DWT, with.V = 8, of the desired sequence specified by Equation 4.8 for each
block is

d(k) = {18.15 —6.85 —2.934 —0.984 0.411 —5.607 1.033 6.652
18.15 —6.85 —2.934 —0.984 0.411 —5.607 1.033 6.652}  (4.12)

with a corresponding DWT of
D,=1{1234 0 0 0.612 3.512 0 0 0.292 4.823 0 0 1.914 2.831 0 0 2.931} (4.13)

The input vector and desired vector Walsh spectrums are illustrated in Figure 4.5 and
4.6. The figure. show that the zero valued components are identical in number and occur
in the same index positions. The nonzero valued componeats for each input block are of
magnitude 1 and therefore the corresponding taps for each bin should theoretically converge

to the desired bin spectral magnitudes.
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Figure 4.5. The 16-point DWT of two periods of the Input Signal

Configuring the WDF2 filter as specified in Table 4.2. the WDF2 output error is
depicted in Figure 1.8. Table 1.1 displays the theoretical and experimental tap values for
the WDF2 filter taps. The results displayed in the figures and tables were produced using
a vonstant g value for the bin taps. The previous input block for the initial current input

block was initiatized to zero.

Figure 4.7 depicts the DWT of the initial input vector processed by the filter. As

Figure 4.7 shows, the initial Walsh-demain input spectrum 1s such that there are no zero
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Figure 4.7. The 16-point DW'T of the initial input vector
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Figure 4.8. WDF?2 Filter Verification Test Output Error.

components. After the first block (¢ = 0), the bin positions 1,2,5,6,9,8,13, and 14 become
zero. The bin taps in those positions update after the first block is processed and then
freeze because their corresponding inputs are zero value thereafter. Figures 4.17 thru 4.32
illustrate the adaptation tracks for each of the bins utilizing a constant x value. Table 4.4
contains the experimental versus theoretical tap value results derived using a constant p
value for the bin taps. Initializing the previous input block to the sequence specified in
Equation 4.6 produces the spectrum in Figure 4.5. With the initial previous input ve-tor
initialized in this fashion, the experimental tap values correspond exactly to the theoretical

values.

Alternatively. using an independantly derived ; value for each bin tap, and ignoring
the first block the filter processes when accessing the average power in each bin, produces
experimental tap values that are equal to the theoretical values. The first previous block,
when initialized to zero, generally produces a block spectrum that is unique with respect to
succeeding block spectrums. Since the initial block is generally unique it can be considered
an anomaly and therefore ignored. The tables and figures displayed for this test are otherwise
representative of the results obtained when using a different u value for each bin tap. Clearly,
the figures and tap adaptation results show that WLMS2 is a valid Walsh-domain weight-

update equation.
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Tap | Theoretical | Experimental
0 1.234 1.234
1 0 0.123
2 0 0.061
3 0.612 0.612
4 3.512 3.512
5 0 0.351
6 0 0.029
7 0.292 0.292
8 4.823 4.823
9 0 0.482
10 0 0.191
11 1.914 1.914
12 2.831 2.831
13 0 0.283
14 0 0.293
15 2.931 2,931

Table 4.4. WDF?2 Verification Test Experimental Results
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Figure 4.17. WDF2 Ho(k) Adaptation Track
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Figure 4.24. WDF2 H;(k) Adaptation Track
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Figure 4.25. WDF2 I/5(k) Adaptation Track
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Figure 4.30. WDI2 /1}3(k) Adaptation Track
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4.8 Filter Verification Test 2

This section addresses a test that was used to validate the TDF and FDF software.

Jhis test was also used on the WDF1 and WDF2 filters and the results are discussed.

The FDF and TDF filters were tested using the filters in a forward modeling configura-
tion (Se= Figure 4.33). The input is zero-mean umt-variance 3.ditive White Gaussian Noise
(N(0,1)). ‘The desired signal is the N(0.1) noise passed through the plant (a four tap digital
FIR filter). Utilizing the Z-transform. the theoretical transfer function of the adaptive filters

after convergence is given by [10]

H(z) = g‘;‘g (4.14)

where ®4,(z) is the Cross-power spectrum of the desired signal and input signal and $..(z)

is the Auto-power spectrum of the input signal. Representing the z-transform of the plant

transfer function by H,(:), the the Cross-power specirum can be expressed as {10]
Gra(z) = Ho(2)Prr(2) (4.13)

The Auto-power spectrum. d_.(z), in this case is one because the input is N(0.1) noise {10].
Utilizing this fact and Equations 1.14 and 4.15, the transfer function of the adaptive filters

is determined by
Hy(z)-1
1

Equation 1.16 states that the transfer functions of the adaptive filters should theoretically be

H(z)=

(4.16)

equal to the nlant transfer function. In other words. the filter tap weights should converge
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Figure 4.33. Verification Test 2 Configuration

Tap | Case i | Case 2
he | 6.123 | 6.123
hy 0 1.127
ha, 0 1.344
hs | 0 | 4.001 |

Table 4.5. Forward Medelling Test:Plani tap values for Case 1 and (.se 2

to the plant FIR filter tap weights. In the I'DF case. this means that the inverse FFT of the
frequency-domain bin taps, after they have converged. should be equiralent to the plant FIR
filter tap weights. Two sets of tap weights were used for the plant FIR in this test (Table 4.5},
The first was a trivial case (See Table 4.5 Case 1): set the hg tap to 6.123 and the remaining
three to zero. This configuration simply scales the N(0.1) signal by a factor of 6.12. The
FDF filter was configured to process i point blocks. which means the filter was using 8- point
FFTs and, accordingly had § frequency-domain taps. The 8§ frequency -domain taps inverse
transform to an equivalent | tap time domain FIR filter via the gradient constraint used in
the FDF2 design.

For Case 1. the TDF taps converged 0 [6.123 0 0 0]. The inverse FFT of the

FDF frequency-domain taps. after convergence. produced the same result. In Case 2. the




time-domain tap weights for both filters achieved the plant solution. In both cases, a misad-
justment value of M = 0.1 was used and the FDF filter used a constant g value. The FDF

filter failed to converge to the theoretical tap values when a separate u for each frequency
bin was used.

The forward modelling test was also used to verify the WDF1 and WDI2 filters.
Both filters were configured to process 4-point blocks, using 4 and § Walsh-domain taps for
the WDF1 and WDF?2 filters respectively. The equivalent time-domain “yadic convolution
filter for WDF1 has 4 taps and 8 taps for the WDF2 filter, because WDF2 doesn’t use a
gradient constraint. Neither filter was expected to achieve the plant values because both
filters perform dyadic convolution. In this case, the N(0,1) input and the plant filtered

version of the N(0,1) signal serve as a nonperiodic input and desired signal pair.

Using the tap values for Case 1, and a Misadjustment of M = 0.1, all of the Walsh-
domain tap values converged to 6.123 for the WDF1 and WDF?2 filters. Both the independant
and constant bin u calculations produced the same result. This matches the theoretical ex-
pectation. N(0,1) noise produces an N-point DWT composed of all N sequency functions
used in the transform. The DWT is a linear transform (Section 2.1.2), so the scaling per-
formed by the Plant results in a scaled version of the inpu* signal transform for the desired

signal. Accordingly, the Walsh-domain bin weights should all converge to the scaling factor
of 6.123.

For Case 2 and M = 0.1; neither WDF'1 or WDF2 were able to filter the N(0.1) noise
to produce the Plant output. This was true for both an independant and constant bin . For
both filters, the Walsh tap adaptation tracks were excessively noisy and, with the exception
of the zero sequency bin tap, failed to converge. Figures 4.34 thru 1.39 show the adaptation
tracks for the WDF?2 filter bin taps Ho(k), Hs(k), and Ha(k): as well as the respective input
signal transfoim component to desired signal transform component ratios. These three bin

taps 1epresent best. typical. and worst case in terms of adaptation noise present.

As the figures show, tap Io(k) has the least amount of adaptation noise. Comparing
the bin ratios for the three taps (Figures 1.35, 4.37, and 1.39) clearly shows that the
adaptation noise for each tap is proportional to the variation in the bin ratio, where the nth

bin ratio is defined

. Xa(k)
(k) = 4.1
Ratio, (k) Da(h) (4.17)
where & represents the block index and £ = 0,1,.... The perturbation in Figure 4.37 at

approximately & = 110 is due to « very small Ds(110) value. The ratio variation is due
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to the fact that the filtered noise is also Gaussian but uncorrelated with the N(0,1) input,
so the resulting spectrums from block to block will differ between input and desired. The

- tap adaptation tracks and bin ratios shown for the WDF2 filter are representative of results

produced by the WDF1 filter.
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Figure 4.34. WDF?2 filter tap Ho(k): Ho(k) adaptation track for noise input and filtered
noise desired signal using constant bin ¢ and M = 0.1.
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Figure 4.35. WDF2 Ratiog(k). This is the ratio of the noise input 8-point DWT bin 0 and
the filtered noise desired signal 8-point DWT bin 0 versus k.
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Figure 4.36. WDF?2 filter tap Hs(k): Hs(k) adaptation track for noise input and filtered
noise desired signal using constant bin g and M = 0.1.
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Figure 4.37.  WDF2 Ratios(k). This is the ratio of the noise input 8-point DWT bin 5 and
the filtered noise desired signal 8-point DWT bin 5 versus k.
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Figure 4.38. 'WDF?2 filter tap H(k): Ha(k) adaptation track for noise input and fitered
noise desired signal using constant bin g and M = 0.1.
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Figure 4.39. WDF?2 Ratioy(k). This is the ratio of the noise input $-point DWT vin 2 and
the filtered noise desired signal 8-point DWT bin 2 versus k.




4.4 Single Tap Time-domein Filler Test

The result of Verification Test 2 (See Section 4.3) prompted the testing of a single
tap time-domain filter. The hypothesis is that the dynamics of a single *ap timc-domain
LMS filter (See Equation 2.34) are an effective model of the dynamics of L.« WDF1 and
WDTI2 real bin taps. This hypothesis is important because .t provides some n ~asure of
predictability for the WDF1 and WDF2 filtering performance. Figure 4.40 shows the test
configuration. N(0,1) noise is filtered by a sing'e tap Infinite Impulse Response (IIR) filter

and a constant is added to the result.

The purpose of the noise filtering procedure is to create a signal with a slowly varying
random envelope. The resultant signal serves as the input signal. &, (See Figure 4.11). to a
single tap time-domain adaptive LMS filter. The desired signal is a constant and the gain
constant was p = 0.01. Figure 4.42 shows the ho(7) tap adaptation trach versus the discrete
time index ¢ and Figure 4.43 shows the desired signal to input signal ratio, Ratio(7), versus
7. Clearly, the adaptation track of the filter tap is characteristic of the noiselike variation of
Ratiogz(¢). This result is similar to the plots presented in Section 4.3 and therefore supports

the hypothesis of this test.

3 6
N(0.1) r ¥
{0, + T; _
(1) © }Z( (1)
¥ ho(7)
7-1
0.8

Figure 4.40. Single Tap Time-domain Filter Configuration.
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Iigure 4.41. Single Tap Tine-domain Filter Test: z,. This is the filtered noise input.
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Figure 4.42.  Single Tap Time-domain Filter Test: ho(z). This is the ho(i) adap.ation track
versus 1.
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Figure 4.13. Single Tap Time-domain Filter Test: Ratiog (7). This is the ratio of the
desired constant to the filcered noise input signal versus 1.




4.5 Chapter Summary

The main purpose of this chapter was to verify the WDF1 and WDF?2 software in.ple-
mentations. Two tests were used.

The first test used a periodic input and desired signal (See Sections 4.2.3.2 and 4.2.4.2).
The input DWT for each block consisted of components that were all equal to 1. The
desired DWT for each ble k consisted of distinct magnitude nonzero components. In filtering
the input, the Walsh-domain taps for both filters converged to the corresponding desired

transform component values, i.e. the theoretical solution.

The second test validated the TDI and FDF filters, which are used for comparison
purposes in this thesis (See Section 4.3). This test used N(0,1) noise as the input signal
and a Plant-filtered version of the signal as the desired. Theoretically, the TDF and FDF
filter time-domain impulse responses should converge to the Plant tap values, given that the
Plant was a 4 tap FIR filter. In both cases the experimental results matched the theoretical
prediction.

The last test was also used on the WDF1 and WDF?2 filters as a nonperiodic signal
test (See Section 4.3). Both the WDF1 and WDF?2 filters perform dyadic convolution and
inerefore were not expected to achieve the impulse response of the Plant, which neither did.
Two FIR filter cases were used. The first was a trival case, with only the hy tap nonzero
the Walsh-domain taps were expected to converge to ho. Since the DWT of N(0,1) noise
produces a DWT with a nonzero spectral component at every position, and the desired
spectrum for this case is an hg scaled version of the input. Experimentally, both filters

achieved the theoretical solution.

For the second case, all four FIR taps were nonzero (See Section 4.3). Experimentally
the WDF1 and WDF2 filters were unable to filter the input to produce the desired signal. An
analysis of the bin tap adaptation tracks showed excessive adaptation noise that corresponded
with the amount of fluctuation that exists in the ratio of the corresponding input transfoim
bin to the desired transform bin from block to block. This prompted a single tap time-
domain filter test (See Section 4.4). This test was not compichensive but clearly indicated
that the adaptation dynamics of the WDF1 and WDF2 Walsh-domain taps can be genesally

modeled by t..e adaptation dynamics of a single tap time-domain filter.

In summary, the tests in this chapter verified the software implementations of the
WDF1 and WDF? filters. The secend test did expose a possible filtering limitation, the

Walsh-domain tap adaptation tiacks we disrupted by tiansform component 1ativ fluctuations
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between corresponding input and desired DWT components. The next chapter presents the
time-shifted sinusoidal and rectangular signal tests used to establish the filtering performance
of the Walsh-domain filters relative to each other and the TDF and FDF filters.
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V. Filter Testing and Comparison

5.1 Introduction

The previous chapter discussed the software implementation and verification of two
Walsh-dom.in adaptive filters: WDF1 and WDF2. Now that software verification has been
accomplished, a relative measure of performance must be established between WDF1 and
WDF2. Also, a relative measure of performance must be established between the two Walsh-

domain filters and other adaptive filters. Therefore, there are two major goals:

1. The WDF1, WDF2, TDF, and FDF filters are compared in terms of convergence speed

and output error using time-shifted noiseless and noisy periodic signals (Section 5.2).

2. A processing speed performance comparison is made between the WDF1,WDF2, TDF,
and FDF filters. (Section 5.3).

5.2 Time-shifted Signal Tests

The purpose of this section is to investigate the effects of the DWT’s lack of time-shift
invariance (Section 2.1.3) on the filtering abilities of the WDF1 and WDF2 filters. Four

signal tests are used to conduct the investigation:

1. Signal Test 1 (Section 5.2.1) uses a noiseless periodic rectangular signal as the input

signal.

[Sv]

. Signal Test 2 (Section 5.2.2) uses a noisy periodic rectangular signal as the input signal.

3. Signal Test 3 (Section 5.2.3) uses a noiseless periodic sinusoidal signal as the input

signal.

4. Signal Test 4 (Section 5.2.4) uses a noisy periodic sinusoidal signal as the input signal.

For each of the two periodic signals. input and desired are derived from the same signal
and the signal period is 16 data points. For the noiseless case. the input is shifted relative
to the desired signal. For the noisy case. Additive White Gaussian Noise (N(0,1)) is added
to the shifted or unshifted signal to create the input. Progiessive input sample shifts are
used for cach case with a 4 sample shift relative to the desired signal being the maximum.
In each test, the signal set is filtered by the WDF1, WDF2. TDF, and the FDF filters. The




TDF filter uses 16 taps while the WDF1, WDF2, and FDF filters use a 16-point block size
(N = 16). For periodic signals, set! ng N equal to the period of the signal results in the
same input spectrum for each block processed. The filters are then compared in terms of
their convergence speed and the amount of error between the filter output and the desired

signal for the last 6 blocks processed, which would be 96 output samples.

The number of weight updates required to achieve 10% of the normalized mean-square-
error (NMSE) serves as the criteria for the convergence speed comparison. MSE learning
curves for signal tests 1 and 3, are derived by squaring the output error. The MSE learning
curves for signal tests 2 and 4 are derived using 100 data files with the noise components
uncorrelated between files and the ensemble noise components being N{0,1) samples. The

MSE learning curves for all 4 signal tests are normalized by the desired signal power.

5.2.1 Signal Test 1 This test evaluates the WDF1 and WDF?2 discontinuous signal
filtering performance relative to the TDF and FDF filters. A rectangular signal is used as a
simple discontinuous signal representative. The hypothesis is that the Walsh-domain filters
will converge faster and produce less error filtering rectangular signals than the FDF and
TDF f4lters and that shifting the input will degrade the Walsh-filter performance. There are
two attributes of the DWT which suggest this hypothesis:

1. The DWT of a discontinuous signal produces fewer spectral terms than the correspond-

ing DFT spectrum (See Section 2.1.2.2).

Q)

. The DWT spectrum is not time-shift invariant (See Section 2.1.3).

The input signal used in the test is depicted in Figure 5.1. This signal functions as
the input and desired signal in this test. A 992 sample datasize is used because it produces
an integer number of 16-point blocks, as opposed to a datasize of 1000 which does not.
The input signal was time-shifted to assess time-shift affects on filter error performance and
convergence speed. An incremental shift of 1 sample is made on each filter run ielative to the
desired signal, with a maximum relative shift of 4 samples. For the remainder of this test,
the input signal for an n-point relative shift is designated the n — shi ft input. Filter output

results for the 1 — shift. 3— shift, and 4 — shi ft input are presented as they represent best,

typical, and worst case, in that order.
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Figure 5.1. Signal Test 1 Rectangular Waveform.




5.2.1.1 Noiscless 1 — shift Results. The 1 — shift signal pair is depicted in
Figure 5.2. The filter configuration used for all 4 filters is specified in Table 5.1. Figures 5.3,
5.4. 5.5, and 5.6 show the error for the last 96 output samples produced by each filter.
Clearly, the Walsh-domain filters produce less error than the FDF and TDF filters for the
1 — shift input. The two Walsh-domain filters produce zero error for the last 96 output

samples.

10 i 7 T i T 7
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Desired —

0 10 20 30 40 50 60
Time Index. 1

Figure 5.2. Signal Test 1: 1 —shift filter inputs. This is the noiseless 1 - shi f{ rectangular
input and desired signal.

{ Paramcter Sclting

Block Size 16
il Misadjustment 0.0%
l| Datasize 992

Table 5.1. Signal Test 1: 1 — shi ff input filter sedtings




1.5

0.5

-0.5 |-

-1

-1.5

_2 | ! ! 1 i | ! ! |

900 910 920 930 940 950 960 970 980 990
Time Index, i

=1 I !

Figure 5.3. Signal Test 1: WDF1 iter output error for 1 — shift input. This is the WDF1
output error for the last 96 output samples using M = 0.5.
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Figure 5.4. Signal Test 1: WDF?2 filter output error for 1 — shi ft input. This is the WDF2

output error for the last 96 output samples using M = 0.5.
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Signal Test 1: TDF filter output error for 1 — shift input. This is the TDF
output error for the last 96 output samples using M = 0.5.
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Figure 5.6.

Signal Test 1: FDF filter output error for 1 — shift input. This is the FDF2
filter output error for the last 96 output samples using M = 0.5.




5.2.1.2 Noiseless 3 — shift Results. The 3 — shift signal pair is depicted in
Figure 5.7. The filter configuration used for all 4 filters is specified in Table 5.2. Figures 5.8,
5.9, 5.10, and 5.11 show the error for the last 96 output samples produced by each filter.
Clearly, the Walsh-domain filter output error is less than the TDF and FDF filters for the
3 — shift input. The WDF1 and WDF2 3 — shi ft output error is greater than the 1 — shz ft

result.
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Figure 5.7. Signal Test 1: 3 — shift filter inputs. This is the noiseless 3 — shi ft rectangular
input and desired signal.

Parameter Sefting
-t Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.2. Signal Test 1: 3 — shaft input filter settings
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Figure 5.8. Signal Test 1: WDF1 filter output error for 3 — shi ft input. This is the WDF1
output error for the last 96 output samples using M = 0.1.
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Figure 5.9. Signal Test 1: WDI2 filter output error For 3~ shift input. This is the WDF2
output error for the last 96 output samples using M = 0.1.
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Figure 5.10. Signal Test 1: TDF filter output error for 3 — shift input. This is the TDF

output error for the last 96 output samples using M = 0.1.
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Figure 5.11.

Signal Test 1: FDF filter output error for 3 — shift input. This is the FDF
filter output error for the last 96 output samples using M = 0.1.




5.2.1.3 Noiseless 4 — shift Resrts. The 4 — shift signal pair is depicted in
Figure 5.12. The filter configuration used for all 4 filters is specified in Table 5.3 while
Figures 5.13, 5.14, 5.15, and 5.1€ show the error produced for the last 96 output samples.
Figures 5.13 and 5.14 show that the Walsh-domain filters were unable to filter the 4 — she ft

mput.
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Figure 5.12. Signal Test 1: 4 — shi ft filter inputs. This is the noiseless 4 — shi ft rectangular
input and desired signal.

Parameter Setting
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.3. Signal Test 1: 4 ~ shift filter settings
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Figure 5.13. Signal Test 1: WDF1 filter output error for 4 —shi ft input. This figure depicts
the WDF1 output error for the last 96 output samples using M = 0.1.
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Figure 5.14.  Signal Test 1: WDF2 filter cutput error for 4 — shift input. This is the WDF2
output error for the last 96 output samples using M = 0.i.
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Figure 5.15. Signal Test 1: TDF filt:- output ercor for 4 — shi ft input. This is the TDF
output error ‘~r the las® L+ output samples using A/ = 0.1.
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Figure 5.16  Signal Test 1: FDF filier output error for 4 — sh7 ft input. This is the FDF
output error for the last 96 output samples using Ad = 0.1.

5.2.1.4 Signal Test 1 Ancalysis. For each of the signal sets in Signal Test 1,
the three block processing filters per’ormed optimally using a constant pu value, in terins of
minimizing the error over the iast 96 samples of the 992-point data set. Using an independent
it value for each bin slowed the convergence speed of the filters relative to using a coustant
i

Less error occurs for « constant i due to the fact that Piney, (See Section 4.2.2) is
less than the Py, values. Therefore, the independant bin gain ~cnctznis, pu,, arc less than
the constant g. The Walsh-domain filters’ convergence speed decreased as the reference

shift increased. The TDF and FDF filters, however, produced output that was essentially
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M | Shift Error Signal Fower (Waits)
TDF FDF WDF1 WDFEF2
005] 1 |5.52#2 =02 3.48E - 01 0 0
70.05 | 2 [5.04FE —02]3.335 =01 0 } 0
01 [ 3 | 1355 - 03 |5.45E — 02 | 1.18F -- 04 | 1.31F — 04
01 ! 4 |1.31E =03 | 5.44E =2 25 95

Table 5.4. Signal Test 1:Error signal power for the last ¢+ samples.

in -ariant to the sample s!.it. The Walsh-domain filters co verge more slowly as the shift
increases because the input spectrum components become : _reasingly distinct with respect
to the desired signal spectrim (See Section A.3).

Error Performance. For the 1 — shift and 2 — shift inputs, the WDF1
and WDF?2 filters were able to produce an output that exactly matched the desired signal
(Figures 5.3 and 5.1). Conversely, the FDF and TDF filters were still converging at the end
of the data set with the TDF filter converging more rapidly (Figures 5.5 and 5.6). Table 5.1
specifies the filter configuration. The FDF filter converged more slowly because the input

frequency spectrum is more complex than the sequency spectrum.

Table 5.4 contains the ormalized crror signal power for each hlter. generated from the
last 96 error samplus produ ed in each of the four cases. Compaiaiively, for the first three
sample shifts. the Walsh-domain filters’ error performances were ident:ca: ¥or the 4 — shi ft
input, the TDF filter performed slightly better than the FDF filter while the WDF1 ~nd
WDI2 filters were unable to filter the 4-sample shifted rectangular signal as igures = -1
and 5.13 show. This is due to the fact that the Walsh-domain spectrums for the inpu: « nd
e :sired are zero magnitude with the exception of one component. The spectral value for the

1 ot is not located in the same sequency bin as the desired.

Convergence Speed Comparison. The results of signal test 1 are summa-
rized in Tavle 5.5 in terms of the number of weight updates required to converge. This
table shows iu general that the blockprocessing filters require fewer weight updates for this
test. With th.c exception of the 4 — shift input, the Walsh-domain filters alse required the
least numler of weight updates. The Walsh-domain filter entries for the 4 — shi ft input
are indicated in the table as “dnc”; indicating “did not converge”. Cleaily, the WDI'1 and

WDIF2 performances were equivalent.




M | Shift | Number of Weight Updates

TDF | FDF | WDF1 | WDF2
0.05] 1 297 37 2 3
005 2 320 | 40 6 6
0.1 3 168 21 11 12
0.1 4 168 21 dnc dnc

Table 5.5. Signal 1ust 1:Number of weight updates to converge.

Parameter Setling
Block Size 16
Misadjustment 0.05
Datasize 992

Table 5 6. Siz,.al Test 2: 0 — shi ft filter settings.

5.2.2 Signal Test 2 Signal test 2 is an extension of Signal Test 1 (See Section 5.2.1)
and evaluates the WDF1 and WDF?2 noisy rectangular signal filtering performance relative
to the TDI and FDF filters. The WDF1 and WD/ 2 filter error should increase significantly,
relative to the Signal Test 1 results. based on the testing accomplished in Sections 4.3 and
4.4. The input signal used in the test is the signal in Figure 5.1 with noise added. This
signal serves as the input and desired signal in this test. The filter input is simply a shifted
version of the desired signal. The maximum shift was 1 samples. For the remainder of this
test, the input signal for an n-point relative shift is designated the n — shz ft input. Filter
output results are presented for the 0 — shift, 3 — shift, and 4 — shi ft input cases. as they
represent best, typical, and worst case.

5.2.2.1 Noisy 0 — shift Results. The filter input signal and desired signal are
both depicted in Figure 5.17. The filter configuration used for all 4 filters is specified in
Table 5.6 while IMigures 5.18, 5.19, 5.20, and 5.21 show the error produced by each filter for
the last 96 output samples. The WDF1 and W12 error is blocky due to the rectangular

nature of the Discrete Walsh functions. Clearly, th> Walsh-domain filter error is less than
the TDF and FDF error.
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Figure 5.17. Signal Test 2: 0 — shift inputs. This is the last 96 samples of the noisy
0 — shi ft rectangular input and desired signal.
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Figure 5.18.  Signal Test 2: WDF1 filter output error for 0 — shz ft input. This is the WDF1
output error for the last 96 output samples using M = 0.05.
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Figure 5.19. Signal Test 2: WDF2 filter output error for 0 — shift input. This is the WDF2

output error for the last 96 output samples using M = 0.05.
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Figure 5.20. Signal Test 2: TDF filter output error for 0 — shi ft input. This is the TDF

output error for the last 96 output samples using M = 0.05.
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Figure 5.21. Signal Test 2: FDF filter output error for 0 — shift input. This is the FDF
output error for the last 96 output samples using M = 0.05.
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5.2.2.2 Noisy 3 — shift Results. The 3 — s!lzift signal pair is depicted in Fig-
ure 5.22. The filter configurat.on used for all 4 filters is specified in Table 5.7 while Fig-
ures 5.23, 5.24, 5.25, and 5.26 show the error for the last 96 output samples produced
by each filter. Clearly, the Walsh-domain filter error has increased relative to the 0 — shi ft

results.
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Figure 5.22.  Signal Test 2: 3 — shift filter inputs. This is the last 96 samples of the noisy
3 — shift rectangular input and desired signal.

Parameicr Scelting §i
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.7. Signai Test 2: 3 — <hi ft filter settings
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Figure 5.23. Signal Test 2: WDF1 filter output error for 3 — she ft input. This is the WDF1
output error for the last 96 output samples using M = 0.1.
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Figure 5.24. Signal Test 2: WDF?2 filter output error for 3 - shift input. This is the WDF2
output error for the last 96 output samples using M = 0.1.
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Figure 5.25. Signal Test 2: TDF filter output error for 3 — shifr input. This is the TDF
output error for the last 96 output samples using M = 0.1.
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Parameter Setting
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.8. Signal Test 2: 4 — shi ft filter settings
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Figure 5.26. Signal Test 2: FDF filter output error for 3 — shift input. This is the FDF
output error for the last 96 output samples using M = 0.1.

5.2.2.3 Noisy 4 — shift Results. The noisy 4 — shift signal pair is depicted
in Figure 5.27. The filter configuration used for all 4 filters is specified in Table 5.8 while
Figures 5.28, 5.29, 5.30, and 5.31 show the error for the last 96 output samples produced
by each filter. As expected the Waslh-domain filters are unable to filter the 4 — shi ft signal
(See Signal Test 1).
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Figure 5.27. Signal Test 2: 4 — shift filter inputs. This is the last 96 samples of the noisy
4 — shi ft rectangular input and desired signal.
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Figure 5.28. Signal Test 2: WDTI'1 filter output error for 4 — shif1 input. This is the WDF1
output error for the last 96 output samples using M = 0.1.
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Figure 5.29. Signal Test 2: WPDF2 filter output error for 4 — shift input. This is the WDF2
output error for the last 96 output samples using M = 0.1.
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Figure 5.30. Signal Test 2: TDF filter output error for 4 — shift input. This is the TDF
output error for the last 96 output samples using M = 0.1.
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Figure 5.31. Signal Test 2: FDF filter output error for 4 — shift input. This is the FDF
output error for the last 96 output samples using M = 0.1.

5.2.2.4 Signal Test 2 Analysis. For each of the signal sets in Signal Test 2,
the three block processing filters performed optimally using a constant pu value. Using an
independant u value for each bin slowed the convergence speed of the filters relative to using
a constant y (See Signal Test 1). The FDF filter did ..ot converge when an independant ux
was used for each bin and all four filters converged more slowly as the reference shift was
increased.

Error Performance. Considering the 0 — shift and 1 — shift cases, the
Walsh-domain filter outputs were able to reasonably match the desired signal. The error
associated with the WDF1 and WDF?2 filter output was nominal and primarily consisted of
a constant magnitude with occasional jumps corresponding with noise spikes in the input.
The WDF?2 response to the noise spikes was less pronounced than in the WDF1 case so that
there was less variation in the error (Figures 5.19. 5.18). Conversely, the FDF and TDF
filters were able to accomplish the necessary time shift, but unable to remove the noise from
the input. The FDF filter was still converging at the end of the data set. This analysis is
based on the filter configuration specified in Table 5.6.

The 2 — shtft and 3 — shift inputs increase the output error for the Walsh-domain
ilters significantly as compared to the 0 — shift and 1 — shift inputs. The error signal is
characteristically the same except larger in amplitude by a factor of 3 in the 2 — shi 't case
and 4 in the 3 —shift case. The TDF and FDF filter error is characteristically the same and
shows no appreciable change in amplitude. This analysis is based on the filter configuration
specified in Table 5.7.




M | Shift Error Signal Power (Watis)
TDF FDT WDF1 WDF?2
005 0 |4.88FE—01|748—~01]1.65F—01|6.01E —02
0.65 1 [483F—-01|731E—-01]220E—-01]8.46" --02
005 2 |3.64E6—-01]3.77F -01[4.99F -01 | 1.86F —01
0.1 3 | 472F-01]537E =01 1.49 6.49L — 01
0.1 4 3.85FE - 01 | 4.24F - 01 24.97 24.99

Table 5.9. Signal Test 2:Error signal power for the last 96 samples.

Table 5.9 contains the normalized error signal power for each fiiter for the last 96 error
samples produced in each of the five noisy input cases. Comparatively, for the 0 — shift,
1 —shift, 2 —shift, and 3 — shift cases, the WDF2 filter was better than the WDF1 filter
in terms of minimizing the MSE. Compared to the TDF and FDF filters, the WDF2 filter
performed better in terms of MSE for all four signal sets while the WDF1 filter performed
better in terms of MSE for all but the three sample reference shift. The WDF1 and WDF2
filters were unable to filter the noisy 4 — shift rectangular signal as Figures 5.29 and 5.28
show. The input spectrum in this case has no zero valued components due to the addition
of the N(0.1) i.oise to the input.

The inability of the WDF1 and WDF?2 filters to filter the noisy 4 — shi ft rectangular
signal arises fiom the fact that the spectrum components vary from block to block due to
the noise. Vaiiation in the ratio of the input spectrum values to the desired spectrum values
disrupts the tap adaptation (See Sections 4.3 and 4.4). The particular bin of interest for
WDF1 is bin 1, because the only nonzero desired spectral value is the sequency 1 term (See
Section A.3). The particular bin of interest for WDF2 is bin 3, because the only nonzero
desired spectral value is the sequency 3 term (See Section A.3). Figures 5.32 and 5.33 show
the bin 1 tap and Ratio(k) (See Equation 4.17) for WDF1. Figures 5.34 and 5.35 show
the bin 3 tap and Ratioz(k) for WDF2.
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Figure 5.32. WDF! Bin Tap H,(k). This figure depicts the WDF1 H;(k) adaptation track
for the noisy 4 — shz ft rectangular signal.

0.3 1 T T T T T
91 0.2 _
p
0.1 - -
1 14 \/ V"V \|J
Loo—oa -
d -0.2 -
€ -0.3 A } 1 1 1 1
0 10 20 30 40 50 60
Block Index, k

Figure 5.33. WDF1 Ratioy(k) This figure depicts the WDF1 spectral bin 1 input to desired
ratio.
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Figure 5.3¢. WDF2 Bin Tap Hj(k). This figure depicts the WDF2 Hj(k) adaptation track
for the noisy 4 — shift rectangular signal.
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Figurc 5.35. WDF?2 Ratioz(k). This figure depicts the WDF2 spectral bin 3 input to desired

ratio.




M | Shift | Number of Weight Updates
TDF | FDF | WDF1 | WDF2
0.05, 9 329 | 43 1 2
0.05] 1 360 | 45 3 3
0.05] 2 134 | 24 3 3
0.1 3 192 | 25 14 1
0.1 4 201 25 dnc dnc

Table 5.10. Signal Test 2: Number of weight updates to converge

Convergence Speed Comparison. The results of signal test 2 in terms of
number of weight updates required to converge are reflected in Table 5.10. The table shows
in general that the blockprocessing filters require fewer weight updates for this test. Also,
the Walsh-domain filters required the least number of weight updates, with the exception of
the 4 — shift case. The WDF1 and WDF?2 filters had similar performance for the 1 — shi ft
and 2 — shift cases. The WDF1 filter was able to achieve coavergence (i.e. 10% of the
NMSE) after a single weight update whereas the WDF?2 filter required two. The WDIF2
filter outperformed the WDF1 filter on the 3 — shift case, only requiring twelve weight
updates whereas the WDF| filter required fourteen. The VWalsh-domain filter entries for the

4 — shift input are indicated in the table as “dnc”; indicatir; “did not conveige”.

5.2.8 Signal Test 2 This test compares the WDFI and WDF?2 continuous signal
filtering performance against the TDF and FDF filters. A simple sinusoidal signal is used
as a continuous signal -epresentative. The hpothesis is that the Walsh-domain filters will
converge inc re slowly and produce more error filtering the sinusoidal signal than the FDF
and TDF filters and v.at shifting the input will degrade the Vilsh-filter performance. There

are two cttributes of the DWT which suggest this hypethes's:

1. The DWT of a continuous signal produces more spectral terms than the corresponding
DFT spectrum does (See Section 2.1.2.2).

2. The DWT spectrum is not time-shift invariant (See Section 2.1.3).
The input signal used in the test is depicted in Figure 5.36 and serves as the input

and desired signal in this test. .\ 992 sample datasize is used because it produces an integer

number of 16-point blocks, as opposed to a datasize of 1000 which does not. The input
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Figure 5.36. Signal Test 3 Sinusoidal Waveform.

signal was time-shifted to assess time-shift affects on filter error performance and convergence
speed. An incremental shift of 1 sample is made on each filter run relative to the desired
signal, with a maximum relative shift of 4 samples. For the remainder of this test, the input
signal for an n-point relative shift is designated the n — shift input. The results of the
4 — shi ft case are presented be_ause it was representative of the results produced for all the
shift cases. The purpose of this test is to evaluate the WDF1 and WDI2 sinusoidal signal
filtering performance in relation to the TDF and FDF filters. The input signai used in the
test is depicted in Figure 5.36. This signal functions as the input and desired signal. An
incremental shift of 1 sample is made on each filter run relative to the desired signal, with
a maximum relative shift of 4 samples. Only the results for the four sample reference shift

are presented because it was representative of the results produced for all the shift cases.

5.2.3.1 Noiscless 4 — shift Results. The sinusoidal 4 — shi ft signal pair is de-
picted in Figure 5.37 and the filter configuration used for all 4 filters is specified in Table 5.11.
Figures 5.38, 5.39, 5.40. and 5.41 show the error for the last 96 output samples produced
by each filter.




Parameter Setting
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.11. Signal Test 3: 4 — shi ft filter settings.
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Figure 5.37. Signal Test 3: 4 — shi ft filter inputs . This is the noiseless 4 — shi ft sinusoidal
input and desired signal.
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Figure 5.38. Signal Test 3: WDF1 filter output error for 4 —shift input. This figure depicts
the WDF1 output error for the last 96 output samples using M = 0.1.
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Figure 5.39. Signal Test 3: WDF?2 filter output error for 4 —shi ft input. This is the WDF2
output error for the last 96 output samples using M = 0.1.
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Figure 5.40.

Signal Test 3: TDT filter output error for 4 — shift input.
output error for the last 96 output samples using A7 =0.1.
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Figure 5.41. Signal Test 3: FDF filter output error for 4 — shift input. This is the FDF
output error for the last 96 output samples using M = 0.1.
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5.2.8.2 Signal Test 3 Analysis For the two Walsh-domain filters, an indepen-
dant gain constant u for each bin was optimum in terms of minimizing the output error
while a constant u value was optimum in terms of minimizing the error for the FDT filter
in all cases. Figures 5.38 thru 5.41 show the output error over the last 6 samples for each

filter. The optimum g algorithm was used.

Error Performance. The results of test 3 in terms of error signal power,
normalized to a one ohm resistor, for the last 96 error samples are contained in Table 5.12.
Results for all sample shift cases produced indistinguishable squared error plots. The TDF
and FDF filters produced a zero error output as Figures 5.40 and 5.41 show. The WDF1
filter error (Figurc 5.38) was nominal compared to the WDF?2 filter error (Figure 5.39).

Convergence Speed Comparison. Table 5.13 summarizes the results of sig-
nal Test 3 in terms of number of weight updates updates required to converge (i.e. reach
10% of normalized mean-square-error). Entries with an * designate results determined using
an .ependant bin g value. The table reflects that the blockprocessing filters, with the
exception of WDF?2 for shifts 3 and 4, required fewer weight updates to converge. The FDF
filter was the quickest in terms of weight updates required; only needing two weight updates.
The two Walsh-domain filters performed equally for the first two reference shifts; requiring
five weight updates for the 1 — shift input and eight for the 2 — shift input. The WDF1
filter required less than half the number of weight updates required by the WDF2 filter for
the 3 and 4 — shz ft signals.

M | Shift Error Signal Power (Watts)
TDF | FDF | WDF1 WDF2
0.1] 1 0 0 |590E—05]3.33E 02
01 2 [ 0 | 0 |590F—05]3.33E -02
0.1 3 0 0 |590L—-05]3.33E -02
0.1] 4 0 0 |590E—-05| 3.33-02

Table 5.12. Signal Test 3:Error signal power for the last 96 samples.
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M | Shift | Number of Weight Updates
"\DF | FDF | WDFI | WDF2
01} 1 21 2 5 )
0.11 2 21 2 8 8
0.1] 3 21 2 10 22"
0.1 4 15 2 10* 22"

Table 5.13. Signal Test 3: Number of weight updates to converge.




5.2.4 Signal Test |/ Signal test 4 is an extension of Signal Test 3 (See Section 5.2.3).
This test evaluates the WDF1 and WDF2 noisy sinusoidal signal filtering performance in
relation to the TDF and FDF filters. The WDF1 and WDF?2 filter error should increase
significantly relative to the Signal Test 3 results. This is based on the testing accomplished
in Sections 4.3 and 4.4. The desired signal used in the test is the signal in Figure 5.36 and
the input is the same signal with noise added. The filter input is simply a shifted version of
the desired signal. The maximum shift was 4 samples. For the remainder of this test, the
input signal for an n-point relative shift is designated the n — shift input. Filter output
results are presented for the 0 — shi ft, 2— shi ft, and 4 — shi ft input cases, as they represent

best, typical, and worst case.

5.2.4.1 Noisy 0—shift Results. The sinusoidal 0 — shi ft signal pair is depicted
in Figure 5.42 and Table 5.14 specifies the filter configuration. Figures 5.43, 5.44, 5.45,
and 5.46 show the error for the last 96 output samples produced by each filter using the

optimum u calculation method.

Parameter Setting
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.14. Signal Test 4: 0 — shift filter settings.
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Figure 5.42. Signal Test 4: 0 — shift inputs.

This is the last 96 samples of the noisy

0 — shi ft sinusoidal input and desired signal.
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Figure 5.43. Signal Test 4: WDF1 filter output error for 0— sh7 ft input. This is the WDF1
output error for the last 96 output samples using M = 0.1.
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Figure 5.44. Signal Test 4: WDF?2 filter output error for 0 — shift input. This is the WDF2
output error for the last 96 output samples using M = 0.1.
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Figure 5.45. Signal Test 4: TDF filter output error for 0 — shift input. This is the TDF
output error for the last 96 output samples using M = 0.1.
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Figure 5.46. Signal Test 4: FDF filter output error for 0 — shift input. This is the FDF
output error for the last 96 output samples using M = 0.05.
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5.2.4.2 Noisy 2 — shift Results. The 2 — shift signal pair is depicted in Fig-
ure 5.47 and Table 5.15 specifies the filter configuration. Figures 5.48, 5.49, 5.50, and 5.51
show the error for the last 96 output samples produced by each filter using the optimum g

calculation method.
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Figure 5.47. Signal Test 4: 2 — shift filter inputs. This is the last 96 samples of the noisy
2 — shift sinusoidal input and desired signal.

Parameter Setling
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.15. Signal Test 4: 2 - shi ft input filter settings.
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Figure 5.48. Signal Test 4: WDF1 filter output error for 2 — shift input. This is the WDF1

output error for the last 96 output samples using M = 0.1.
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Figure 5.49.

Signal Test 4: WDF2 filter output error for 2— shi ft input. This is the WDF2

output error for the last 96 output samples using M = 0.1.
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Figure 5.50. Signal Test 4: TDF filter output error for 2 — shift input. This is the TDF
output error for the last 96 output samples using M = 0.1.
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Figure 5.51.  Signal Test 4: FLF filter output error for 2 — shift input. This is the FDF
output error for tle last 96 output samples using M = 0.1.




5.2.4.3 Noisy 4 — shift Results. The 4 — shift input pair is depicted in Fig-
ure 5.52. Table 5.16 specifies the filter configuration. Figures 5.53, 5.54, 5.55, and 5.56
show the error for the last 96 output samples produced by each filter using the optimum g

calculation method.
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Figure 5.52. Signal Test 4: 4 — shi ft filter inputs. This is the last 96 samples of the noisy
4 — sha ft sirusoidal input and desired signal.

Parameter Setting
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.16. Signal Test 4: 4 — shift filter settings.
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Figure 5.53. Signal Test 4: WDF'1 filter output error for 4 —shz ft input. This is the WDI'1
output error for the last 96 output samples using M = 0.1.
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Figure 5.54. Signal Test 4: WDF?2 filter output error for 4 — shi ft input. This is the WDF2
output error for the last 96 output samples using M = 0.1.
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Figure 5.55.

Signal Test 4: TDF filter output error for 4 — shi ft input. This is the TDF
output error for the last 96 output samples using M = 0.1.

10 (— T N Bm— —T- ¥ T ; T T
5 .
0 ~ -
-5 k- i
_10 1 ! ] ] 1 ! ] 1 [} 1
900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.56.

Signal Test 4: FDF filter output error for 4 — shift input. This ;s the FDF
output error for the last 96 output samples using M = 0.1.




M | Shift Error Signal Power (Watts)

TDF FDF WDF1 WDIF2
0.1 0 7056 -02 | 149F - 01 | 2.93L — 01 | 2.18F — 01
0.1 1 |6.711E—-02|138E--01511E-01|2.67F — 01
0.1 2 6.22F - 02 | 1.26FE — 01 | 6.52FE — 01 | 4.67T£ — 01
0.1 3 5.83K - 02 | 1.20F - 01 3.19 2.13
0.1 4 572-02 |1.20F -01 3.01 1.96

Table 5.17. Signal Test 4:Error signal power for the last 96 samples.

5.2.0.4

and WDTI2 in minimizing the error for all reference shifts while the FDF filter did not

Signal Test 4 Analysis. An independant bin g was optimum for WDF']

converge for any reference shift using an independant bin p.

Lrror Performance. Time shifting the input did not affect the output error
for the TDF and FDF filters as clearly shown in Figures 5.46, 5.45, 5.50, 5.51, 5.53. and
5.56. The TDF error is, on average, approximately half that of the FDF filter. Figures 5.43,
5.44, 548, 5.49, 5.53, and 35.54 show that the output error for the Walsh-domain filters
increases as the reference shift of the input increases while Table 3.17 contains the results of
Signal Test 4 in terms of the error signal power, normalized to a one ohm resistor. for the
last 96 error samples. The WDI2 output error is not as significant as the WDF1 filter and
changes much less dramatically during the test than the WDF1 filter error. In both cases

though, the error is much more significant than the FDF or TDF filter error.

The source of increasing ervor generated by the WDF1 and WDF2 filters is the progres-
sive reduction in power of some of the input spectral components that correspond with the
desired signal spectral components as the reference shift between the two signals increases
(See Section A.3). For the noisy input, the signal to noise 1atio of these bins is reduced which
induces noise in the bin tap adaptation. Considering the noisy 2 — shi f1 sinusoid input. Fig-
ures 5.57 thru 5.60 show the resulting WDF1 input to desired bin ratios (Equation 1.17)
for bins 9 and 13, and the resulting tap adaptation tracks for those bins. Figures 5.61 thru
5.61 show the same information concerning WDF2, which is using a 32-point transform of
the input. In this case bins 19 and 27 are good examples of the adaptation noise created by
bin ratio variation. Considering the 1 — shi f{ input, Figures 5.57 thru 5.60 address WDF1

bin numbers 9 and 13. Figures 5.69 thru 5.72. address WDF2 bin numbers 19 and 27.
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Figure 5.57. Signal Test 4: WDF1 filter tap Hg(k) for the 2- shi ft input using independent
bin g and M =0.1.
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Figure 5.58. Signal Test 1.\WDF1 Ratiog(k). This is the ratio of the 2~ +hi ft input 16-point

DWT bin 9 and the desired signal 16-point DWT bin 9 versus k.
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Figure 5.59.

Signal Test 4: WDF1 filter tap Hy3(k) for the 2—shi ft input using independent
bin x and M =0.1.
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Figure 5.60.

Signal Test 4:WDF1 Ratioy3(k). This is
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the ratio of the 2 — shift input
16-point DW'T bin 13 and the desired signal 16-point DWT bin 13 versus k.
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Figure 5.61. Signal Test 4: WDF?2 filter tap Hi9(k) for the 2—shi ft input using independent
bin g and M =0.1.
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Figure 5.62. Signal Test 4:WDF2 Rati019(k). This is the ratio of the 2 — shift input
32-point DWT bin 19 and the desired signal 32-point DWT bin 19 vers .s k.
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Figure 5.63. Signal Test 4: WDF2 filter tap H,7(k) for the 2—shi ft input using independent
bin 4 and M =0.1.
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Figure 5.64. Signal Test 4:WDF2 Ratio,;(k). This is the ratio of the 2 — shift input
32-point DWT bin 27 and the desired signal 32-point DWT bin 27 versus L.
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Figure 5.65.

Signal Test 4: WDF'1 filier tap Ho(k) for the 4 —shift input using indcpendent

bin ¢ and M = 0.1.
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Figure 5.66. Signal Test 4:WDF1 Ratiog(k). This is the ratio of the 4—shi ft input 16-point

DWT bin 9 and the desired signal 16-point DWT bin 9 versus k.
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Figure 5.67. . Signal Test 4: WDF1 filter tap Hi3(k) for the 4—shi ft input using independent
bin g and M = 0.1.
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Figure 5.68. Signal Test 4:WDF1 Ratio3(k). This is the ratio of the 4 — shift input
16-point DWT bin 13 and the desired signal 16-point DWT bin 13 versus k.
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Figure 5.69. Signal Test 4: WDF2 filter tap Hyg(k) for the 4—shi f1 input using independent

bin ¢ and M =0.1.
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Figure 5.70.

Signal Test 4:WDF2 Ratiog(k).

This is the ratio of the 4 — shift input

32-point DWT bin 19 and the desired signal 32-point DWT bin 19 versus k.
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Figure 5.71. Signal Test 4: WDF?2 filter tap Ho7(k) for the 4—shi ft input using independent
bin g and M = 0.1.
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Figure 5.72. Signal Test 4:WDF2 Ratiox;(k). This is the ratio of the 4 — shift input
32-point DWT bin 27 and the desired signal 32-point DWT bin 27 versus k.




M | Shift | Number of Weight Updates
TDF | FDF | WDF1 | WDF2
0.1] 0 21 1 9 9
0.1 1 21 2 5 6
0.11 2 22 2 10 10
0.1] 3 22 2 61+ 49"
0.1 4 21 2 61+ 61+

Table 5.18. Signal Test 4: Number of weight updates to converge.

Convergence Specd Comparison. The convergence speed comparisons of
signal test 4 are reflected in Table 5 1S which summarizes the number of weight updates
required to converge. Entries with an * designate results determined using an independent

bin p value while an entry with a “4” indicates convergence was not achieved.

5.3 Filter Processing Speed Comparison

This section presents a processing speed performance comparison between the WDF1,
WDF2, TDT, and FDF adaptive filters. Table 5.19 contains the time required for each
filter to process a 1000 sample input sequence. The WDF1, WDF?2, and FDF filters were
configured to process blocksizes of N = § and N = 4 while the TDF filter was configured with
8 and 4 taps. Run-time for each filter began after all data constructs had been initialized.
the data was loaded, and the gain constant was calculated. Also. all external and internal
write statements were removed for the 1un. Run-time was stopped after all data had been

processed.

The WDF1 and WDF?2 filters used a Fast Walsh Transform (FWT) [7]. Computa-
tionally. the FWT requires .\ log, N summations for an .V-point transform and no multi-
plies. The FDF filter used a Cooley-Tukey radix-2 FFT algorithm [6:135-436] that requires

2N log, N — 4N real multiplies. The TDF filter requires 2.\ real multiplies to produce .V

As indicated in Table 5.19, the TDF filter recorded the fastest time for the N = 4
case and the WDF1 filter was the fastest for N = 8. Both WDFI and WDF2 were much

faster than 'DF. The time required for the 'WT and FFT routines to perform a 16-point

transform is contained in Table 5.20, excluding set-up time. Cleails. the FWT is much faster




than the FFT. The FDF filter requires 5 FF'Ts per block to produce N output points (See
Section 2.2.2.2). The FWT’s faster processing time and the fact that the Walsh-domain

filters are using only three tranforms per block (See Sections 3.1 and 3.2) accounts for the

faster processing times relative to FDF.

N| Processing Time in Seconds
TDF | FDF | WDF1 | WDF2
41422 | 5268 | 6.87 9.89
817856080 7.74 10.00

fable 5.19.  Processing Time: Time required to process 1000 data samples. For TDF N
indicates number of taps; N indicates blocksize otherwise.

Transform | Processing Time in Seconds
FWT 0.05
FFT 0.11

Table 5.20. Time required to perform a 16-point transform.

5.4 Summary.

This purpose of this chapter was to establish a performance measure for WDF1 and
WDF2, relative to each other and the TDF and FDF filters. In terms of convergence speed
and error performance, the Walsh-domaiu filters” performance degiaded as the reference shift

was increased in all 4 signal tests.

Since numerous observations were made in the course of testing error perfoimance of
the filters in this chapter it would be wise to 1caddiess each of them at this time. The major

error performance results from this chapter are as follows:
1. In Signal Test 3 (See Section 5.2.3) all 4 filters produced error results that were invariant
to the shift.

2. The 4 — shi ft rectangular signal in Signal Test 1 (Section 5.2.1) and Signal Test 2
(Section 5.2.2) produced the worst performance for the WDF1 and WDF?2 filters.




o In Signal Test 1 the 4 — shijt input results in a single sequency conmiponent DWT
for the desired and a different single sequency DWT for the inpui. Since the signals
are periodic and the block size matches the period, both DWTs arc constant from
block to block. With single nonzero noncoincident components, the input cannot

be filtered to achieve the desired signal.

e In Signal Test 2, the input DWT component position correspending with the
desired DWT nonzero component is due to noise only. In *his case, the variation
of the input bin of interest is such that the bin tap cannot converge. This problem
also arises for the WDF'1 and WDI2 filters in Signal Test 4 (Section 5.2.4).

3. The 3 — shift and 4 — shift noiseless sinusoidal spectrums result in low power com-
ponents that correspond with higher sequency components in the desired spectrum.
Adding noise to the input results in a low signal-to-noise-ratio (SNR) for these low
power bins. In filtering this noisy spectrum to achieve the desired spectrum, the low
SNR bin tap gradient follows the continuously changing relationship between the con-
stant valued desired bins and the ncisy input bins. Thus, the bin tap adaptation
tracks are correspondingly noisy which limits the filtering abilty of the WDF1 and
WDF2 filters.

1. In general, the WDF?2 filter error signal performance was better for the noisy input
cases, refative to the W1 filter.

3. The WDTI'I filter eror performance was better for the noiseless input cases. relative to
the WDFE?2 filter.

In this thesis, convergence speed was measured in terms of the number of weight
updates required to achieve 10% NMSE (See Section 5.1). Using this criteria. the Walsh-
domain filters were faster than the TDF and FDF filters when tested using rectangular
signals. The WDF1 filter was better than WDF2 in Signal Test 1 while WDF2 was better in
Signal 'Test 2. The FDF filter required the least number of weight-updates for the sinusoidal
input used in Signal Test 3 and 4. Comparing the two Walsh-domain filters; WDF1 required
as many or fewer weight-updates as WDF?2 did for the noiseless sinusoidal input in Signal Test
3. WDF2 required as many or fewer weight-updates as WDF1 did for the noisy sinusoidal

input in Signal Test 4.

A processing speed comparicon (See Section 5.3) showed the Walsh-domain filters to

he at least four times as fast as FDF for A" = 8. The WDF1 filter was the fastest of the
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blockprocessing filters used in this thesis followed by the WDF2 and FDF filters, in that
order. This is based on the FDF filter using a radix-2 FFT and the Walsh-domain filters
using a Fast Walsh Transform. The TDF filter was slightly slower than the WDF1 filter for
a blocksize of N = 8. The next chapter presents the conclusions and recommendations for

this research effort.
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VI. Conclusions and Recommendations

6.1 Conclusions

This thesis investigated the development of two Walsh-domain adaptive filters. The
first, WDF1, was implemented using a frequency-domain circular convolution design while
the second, WDI'2, was implemented using a modified Fast LMS design. A time-domain
adaptive filter (TDF) and the Fast LMS filter (FDF) were also implemented in software and
used for comparison. Rectangular and sinusoidal test signals were used. Shifted noisy and
noiseless versions of both were used to conduct error performance, convergence speed, and
processing speed performance comparisons for the TDF, FDF, WDF1, and WDF2 filters.

The following subsections address the performance comparison conclusions.

6.1.1 Error Performance Conclusions. Based on the last 96 error samples produced

by each filter, the error performance conclusions from this research effort are the following:

o The Walsh-domain filters are better than the TDF and FDF filters in terms of mean-
square-error { MSE) filtering discontinuous input signals, while the TDF and FDF filters

are better for continuous signals.

o Input shifts cause WDF1 and WDF?2 error performance to degrade for noisy and noise-

less discontinuous signals.

e The WDF1 filter is better than the WDF?2 filter for noiseless signals while the WDF2
filter is better than the WDF1 filter for noisy signals.

o A single ju is better than separate p's for Walsh-domain filters filtering rectangular

input signals whilc a separate g is better for sinusoidal input signals.

e Shifts in the input data do not degrade WDF1 and WDF?2 performance when filtering

noiseless sinusoidal signals. That is not the case for noisy signals.
e Shifts in the input data do not affect TDF and FDF MSE performance.

e The FDF filter produces less error using a single bin u for simple sinusoids and rect-

angular signals, relative to the results obtained using a separate bin j.




6.1.2 Convergence Speed Perforinance Conclusions. The convergence speed criteria
was the number of weight updates required to achieve 10% Normalized Mean Square Error
(NMSE) where normalization was with respect to the desired signal rower. For the noisy
input signals, MSE learning curves were generated from 100 data files using Additive White

Gaussian Noise (AWGN). Using this criteria it was concluded that:

e The Walsh-domain filters converged more slowly when filtering sinusoidal input signals

as opposed to rectangular input signals.

e The Walsh-domain filters converged more quickly for noisy and noiseless rectangular
input signals and more slowly when filtering noisy and noiseless sinusoidal signals,
relative to the FDF filter.

e The TDF filter converged more slowly than the FDF, WDF1, and WDF?2 filters when

filtering noisy and noiseless rectangular signals.

e Beyond a two sample shift of the input, the Walsh-domain filters converge more qu’ckly

using a separate bin ¢ when filtering noisy and noiseless sinusoidal signals.

e Beyond a two sample shift of the input, the TDF converges more quickly than WDF2
for the noiseless sinusoidal signal and more quickly than WDF1 and WDF2 for noisy

sinusoidal signals.

e Convergence speed was the same for WDIF2 and WDF1 for noisy and noiseless rectan-

gular signals.

e The WDF?2 sinusoidal input signal convergence speed for the noiseless input degrades
more quickly as the input shift increases and degrades at the same rate for noisy input.

relative to the WDF1 sinusoidal input signal convergence speed performance.

e The Walsh-domain filters converge more quickly filtering a rectangular input signal

using a single bin ji. relative to the results obtained using a separate bin p.
¢ Data shifting degraded the convergence speed of the Walsh-domain filters.

o The convergence speed of the TDF and FDF filters was independant of the input shift.

6.1.3 Processing Specd Performance Conclusions. The FDF filter was implemented
with a radix-2 FFT while the Walsh-domain filters used a Fast Walsh Transform (FWT).
The FDF. WDFI, and WDF2 filters were configured to process S-point and 4-point block

sizes and the TDF filter was configured with S and 1 taps. The datasize was 1000 samples
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and the run time started after all data constructs had been initialized, the data was loaded,
and the gain constant was calculated. Based on this configuration. the processing speed

performance conclusions for this research effort are the following:

e The TDF filter processed the 1000 samples more quickly than the FDF, WDF1. and
WDF2 filters for small N,

e The WDF1 filter processed the 1000 data samples more quickly than the FDF and
WDF1 filters.

e The WUF1 filter is faster than the WDF2 filter.

e Tle FDF filter processes the 1000 samples more slowly, relative to the TDF. WDF2,
and WDF1 filters.

6.1.4 Filtering Limitations.

e A WDF1 and WDF?2 filtering limitation exists due to the time-shift variant nature of
the DWT. This is based on the fact that a signal data shift can result in a DWT that
has different sequency terms than the DWT of an unshifted version of the signal. The

4 — shi ft input signal in Signal Test 2 was an occurrence of this.

o The quality of the convergence characteristics for WDF1 and WDF2 is inversely pro-

portional to the variance of the input-to-desired sequency ratios.

6.2 Subjective Ranking
The TDF. FDF. WDFI1. and WDF?2 filters can be subjectively ranked using the re-

sults of Chapter 1. Table 6.1 provides subjective rankings for the filters when the noiseless
and noisy. sinusoid and rectangular inputs were used. .\ rank of 1 indicates best. Oxerall
performance was considered for each input signal. The 1 — shi ff rectangalar input was not

included in the rankings presented because it was considered an exception.

6.3 Recommendations

There are several recommendations which might make a reasonable thesis topic or serve

as topics within related research.

1. The WDF? filter implemented in this thesis used a 50% overlap to create the kth block
input vector. One might further imestigate what effects the choice of another overlap

percentage would have on the filtering performance of the filter.
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2. The Walsh-domain filters were implemented using a modified form of the complex LMS
algorithm. One could also implement the filters using a modified form of the Leakage

LMS algorithm to investigate whether this would improve the general convergence

characteristics of the Walsh-domain bin taps.

3. Finally, this thesis used a simple representative of a continuous and discontinuous

gnal to test the Walsh-domain filters. To {urther evaluate the filters, more complex

representatives of each type of signal could be used.

Criteria Sine Input (Noiseless/Noisy) || Rect Input (Noiseless/Noisy)
TDF | FDF | WDF1 | WDF2 || TDF | FDF | WDF1 | WDF2
Process Time 2/2 | 4/4 1/1 3/3 2/2 | 4/4 1/1 3/3
Convergence Speed | 4/2 | 1/1 2/3 3/3 4/4 | 3/3 1/1 2/2
Error 1/1 [ 1/2 | 2/4 3/3 2/2 | 3/3 1/4 1/1

Table 6.1. Subjective Ranking for Noiseless/Noisy Input.
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Appendix A. Discrete Walsh Transform

This Appendix presents examples of Discrete Walsh Functions and the Discrete Walsh
Transform (DWT) and its properties.

A.1 Discrete Walsh Functions

For a series of N terms, the discrete Walsh functions can be specified as [1:59)

p—1
WAL(n,i) = JJ(=1)rem1-rlirtiras) (A.1)
r=0
iin=01,2,...,N~1 (A.2)
r=0,1,2,...,p-1 (A.3)

where N = 27 defines p. The indexes i,n are expressed in terms of their binary digits such
that

i = (ip’?:p—lv- . .,I.],Z'())g

n = (npanp—la"-anhnO)? (A4)

An example calculation for the NV = 4 series term W AL(3,1) using Equations A.1 and A.5
is presented. In evaluating WAL(3,1) we start with

N=4=2?

which means there are p = 2 product terms, so that
, .
M;AL(3, 1) = H(—.l)"l—r(‘r"l"lﬂ-l)

r=0

and

n = (1 1)




The first product term (r = 0) then, is

— (__1)711(1'0'*'11)

— (_1)1-(0+1)

The second product term.(r =1)is

WAL(3,1) can now be calculated by multiplying the first and second product terms
together, so that

WAL(3,1)

~11
= -1

Figure A.1 shows the N = § series Discrete Walsh functions.

A.2 Dyadic Convolution

Dyadic convolution is defined as {1:100]

N-1
z, =1/N Z T Yray (A.5)
=0
and using the Discrete Walsh Transform (See Section 2.1.2)
N-1

Z; = XoYaWAL(n, 1) (A.6)

n=0
Two N = 4 point time-domain sequences z, and y; are given by

z, = {1 538}
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1 ¢ @@ @@ -®
WAL(0,7)
-1
1 - -@---@---®---1
; WAL(1,1)
-1 o-—-o-—-0--®
1 3---¢----, o---o
: ! WAL(2.1)
-1 o---o---¢---0----
1 é---@---4 ¢ ---®-——
: . ! WAL(3,1)
$
-1 ‘--—-o———-’ é---9
1 *-*-1 ®---®---4 r---e
: : : : W AL(4,1)
-1 o---o---- o---¢
1 ‘-—_-: ®---4 ®---0--—4
; : : ' - WAL(5.i)
! 1 )
1 é-— @l @i .
1 $ - «___, ®---1 ]
. : 1 ! ! \ WAL(6.1)
t
1 'b----: & @2 ’t_.__.:
| ey peen @ecen eeoen
; L - : L : bOWAL(T. Q)
) ! I .
] e--1 el &3 e
1 | | | ! | | |
[ | ] i 1 i I —
0 1 2 3 4 S 6 T
Discrete Time Index, i

Figure ... .. Discrete Walsh Functions for N =8, in sequency order.
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y;={2741}

where the xg and yo terms are the 1 and 2 terms respectively. Using Equation A.5, for 7 = 0

we have

3
5 = 1/42.’8,’3/0@,
s
= 1/4[zoyo + 131 + T2y2 + 23y3)
= 1/4[12+57 + 34+ 81]
= 14.25

For 7 = 1 the result is

3
5L = 1/4 Z-’vfym;

1=:0
= 1/4[zoys + 190 + T2Y3 + T3Y2)

= l/4[1-7+5-2+3'1+8-4]
= 13.00

For 7 = 2 the convolution result is

3
n o= 1/4Y Tipe
=0

= 1/4[zoy2 + 1y3 + 2290 + T3]
= /414451 +32+87)

——

= 1775
Finally, for 7 =

3
o= 1/4) Tiyse
=0

= 1/4zoys + 21y2 + T2y1 + Tayo)
= 1/4(1] +54 + 37+ 8:2]
= 14.50
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The first step, in applying the DWT to perform the dyadic convolution of z, and y,,

is to perform the DWT on both sequences. Using the matrix vector form of the transform,
the 4-point Walsh matrix is given by

I 1 1 1
1 1 -1 -1
W, = (A.7T)
1 -1 -1 1
1 -1 1 -1]
The DWT then is given by
Xa = (1/4)Wyx; (A.8)

For a general 4-point sequence, written as a column vector
x'=[A B C D]

such that the 4-point DWT is given by

(11 1 1 ][4a]
1 1 -1 =1 B
Xn=1/4 (A.9)
1 -1 -1 1 C
|1 -1 1 -1]|D
The resulting DW'T is given by
 A+B+C+D |
A+B-C-=-D
Xy = 1/4
A-B-C+D
| A~ B+C-=D ]




Substituting in the z, and y, sequence values for A,B.C,D yields a DWT for z, of

17
-5
X, = 1/4
1
=3 _9 -
and for y; of
14
4
-8
-2

Performing the multiplication of Y,, and X,, vields

14.875 |
~1.95
—0.50

| 1125

The inverse DWT of Z,, is evaluated by multiplying the 1x4 matrix W, and 4x1 vector Z,

111 1| s
I 1 -1 -1 -1.25
2y = (‘\10)
1 -1 -1 1 —-0.50
1 -1 1 -1 1.125
which yields the 4x1 vector
14.25
13.00
2, = (A1)
17.75
| 14.50 |
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This result is equivalent to the result calculated using the dyadic convolution sum.

Utilizing the FFT instead of the DWT in this example results in circular convolution
of the two sequences. Linear convolution i. performed if both sequences are zero end-padded
with 4 zeros. The result of zero padding the x, and y, sequences and taking the inverse DW'T
of the product of their transforms, produces the result in Equation A.11 multiplied by 1/2.

The two sequences in this case are

T,

{15380000}
yi = {274100 0 0}

The required 8-point DWT Walsh matrix is given by

W = (A.12)




The resulting DWT for y, is

The resulting DWT for z; is

0.125
0.125

-1.125

-1.125




Multiplying X, and Y, and taking the inverse DWT produces

Z; =

which is the result in Equation A.11 scaled by 1/2 and end-padded with 4 zeros.

A.3 DW'T of Time-shifted periodic signals

A.8.1 Sinusoid. The effects of shifting a sinusoid on the resulting D\VT are presented
in this section. The sinusoidal signal used has a period of 16 samples. DWT spectra of one
and two periods of this signal, shifted and unshifted, are presented for one (Section A.3.1.1)
and two periods (Section A.3.1.2) of the signal. Notationally an n-point shifted sinusoid will

be referred to as the n — shi ft sinusoid.

A.3.1.1 16-Point Transform. The 16-point DWT of the signal in Figure A.2 is
represented for zero, single, two, three, and four sample shifts in Figures A.3, A.d. A.3,
A.6,and A.7. Clearly. the shift variant nature of the DWT is demonstrated in that the 16-

point DWT of this signal is changing as the signal is shifted.

A.3.1.2  32-Point Transform. The 32-point DWT of the signal in Figure A.2is
represented for zero, single, two. three. and four sample shifts in Figures A8, A.9. A.10,
A.11, and A.12. Notationally an n-point shifted sinusoid will be 1eferred to as the n — shift

sinusoid.

Clearly. the 32- point DWT of this signal is changing as the signal is shifted. Also, the
spectrums are clearly different from those in Figures A3, A4, A5, A.6,and A.7, because

the DWT does not assume periodicity of the input.

A-9

DRI ]




-5

-10

AWAWAWAWAN
BVAVAVAVAVARY

Time Index, i

Figure A.2. This is a sinusoid with 16 sample period and amplitude of 5

i -
2+ -
V 0 T l v T
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-4} ]
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0 2 4 6 8 10 12 14

Sequency
Figure A.3. This is the DWT of one period of the 0 — shi ft sinusoid.
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Figure A.4. This is the DWT of one period of the 1 — shift sinusoid
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Figure A.5. This is the DWT of one period of the 2 — shi ft sinusoid.
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Figure A.6. This is the DWT of one period of the 3 — shi ft sinusoid.
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Figure A.7. This is the DWT of one period of the 4 — shi ft sinusoid.
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Figure A.8. This is the DWT of two periods

of the 0 — shift sinusoid.
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Figure A.9. This is the DWT of two periods of the 1 — shi ft sinusoid
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Figure A.10. This is the DWT of two periods of the 2 — shi ft sinusoid.
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Figure A.11. This is the DWWT of two periods of the 3 — shif* sinusoid.
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Figure A.12. This is the DWT of two periods of the 4 — <4: [ sinuseid.
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A4.8.2  Rcctangular. The effects of shifting a rectangular signal, on the resuiting DW'T
are presented in this section. The rectangular signal used has a period of 16 samples. DWT
spectra of one and two periods of this signal, shifted and unshifted, are presented for one
(Section A.3.2.1) and two periods (Section A.3.2.2) of the signal. Notationally an n-point

shifted rectangular signal will be referred to as the n — shift rectangular signal.

A.3.2.1 16-Point Transform. Tl.e 16-point DWT of the signal in Figure A.13
is represented for zero, single, two, three, «nd four sample shifts in Figures A.14, A.15,
A.16, A.17,and A.18. Clearly, the 16- point DWT of this signal is changing as the signai

is shifted, which again demonstrates the shift variant nature of the DWT.

10 T T T ] i T T T T

—10 ! ! 1 ) 1 1 ! ' ]

0 10 20 30 40 50 60 70 30 90
Time Index, i

Figure A.13. This is a rectangular signal with 16 sample period and amplitude of 5

A.3.2.2  32-Point Transform. The 32-point DWT of the signal in Figure A.13
is represented for zero, single, two, three, and four sample shifts in Figures A.19, A.20,
A2l A.22,and A.23. Clearly, the 32- point DWT of this signal is changing as the signal

is shifted.
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Figure A.14. This is the DWT of one period of the 0 — sh7 ft rectangular signal.
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Figure A.15. This is the DWT of one period of the 1 — shift rectangular signal.
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Figure A.16. This is the DWT of one period of the 2 — shi ft rectangular signal.
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Figure A.17. This is the DWT of one period of the 3 — shift rectangular signal.
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Figure A.18. This is the DWT of one period of the 4 — shift rectangular signal.
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Figure A.19. This is the DWT of two periods of the 0 — sh7 ft rectangular signal.
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Figure A.20. This is the DWT of two periods of the 1 — shi ft rectangular signal.
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Figure A.21. This is the DWT of two periods of the 2 — shi ft rectangular signal.
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Figure A.22. This is the DWT of two period of the 3 — shi ft rectangular signal.
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Figure A.23. This is the DWT of two periods of the 4 — shi ft rectangular signal.
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Arpendix B. WDF1 Weight Update

This Appendix derives the WDF1 Walsh-domain gradient vector which is used in
Chapter I (see Section 3.1). An exarple is presented for the N = 4 block size. A WDF1
time-domain gradient example is also presented for the block ¥ = 2 using the block size
N = 4. This example is used to facilitate a comparison with the WDF2, FDF1, and FDF2
filters.

B.1 Walsh-Domain Gradient

The Walsh-domain weight vector is specified by
H(k 4+ 1) = H(k) + uX(k)E(k) (B.1)

where the X(k), E(k), and H(k) vector components are real valued quantities since the Dis-
crete Walsh Transform (DWT) produces real valued components. The product X(k)E(k) in
Equation B.1 defines the Walsh-Domain gradient vector V- (k) for WDF1. Using V1 (k),

Equation B.1 can be expressed as

Hok+1) | [ Ho(k) | [ Vislh)
(k41 Hy(k Vi, (k
1 11/\:_1(1\7-*' 1) i | I'IN..](]\') i L VH’]N_I(I\') ]

The first task in deriving the Walsh-domain gradient vector Yy (k) is to define some
necessary time-domain notation. Using the notation &z, to repiesent the input sequence. the
N input sequence values which define the kth input bloch can be represented by g 4., where

t=0,1, .., N — 1. Using this notation, the N-point kth block input vector is defined

X(I\‘) = [.’l‘k;\f .I‘k;\-'+,\=_1] (53)




Applying the same notation to the desired tinic-domain sequence, the associated kth block

desired vector is represented as
d(/\) = {(l;;N cee de+N—l} (B4)
The kth block input DWT matrix X(%) is given by

X(k) = diag{W{[zpeny --- T@envenv-nl}} (B.5)

where W is the forward DWT operator. The forward and inverse N-point DWT pair {1:50]

is as follows:
N-1

Xp = 1N S 2, WAL(n, i) (B.6)
1=0
and
N-1
2= Y XaWAL(n, i) (B.7)
n=0

The DWT components of the kth N-point input block, X, (k), comprise the diagonal com-

ponents of the input n.a.:ix as indicated in the following equation

The Waish-domain output vector for the kth block is calculated as follows:

Y(k) = X(k)H(k) (B.Y)
s0 that _
No(k) 0 Ho(k)
Y(k) = Xi(k) II,Fk)
0 .\',.v_,.(k) I Hyan(k)

\j
d
[




The resulting Waish-Domain output vector is then

‘oK) 1o(k)
Y(k) = Xl(k)_m(k) (B.10)
| Xv(F)H -1 (k)
The Walsh-domain error vector for the kth block is defined
E(k) = D(k) - Y(F) (B.11)

where D{k} is the kth block desired DW'T component vector. Therefore, D(k) is defined

D(k) = W{lduww) --- dunsn-nl} (B.12)
and _ _
Do(F)
oty = | D)
| Dyt |

Substituting Equations B.! and B.10 into Equation B.11 results in

Do(k) = Xo(E)Ho(k) |

E(k) = Dk - ‘\'_‘(k)”'(k) (B.13)

| Dxa(k) = Xaoa(k)Hy (k)
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Performing the matrix vector muitiplication X(k)E(%) produces

Vi (k) Xo(k)[Do(k) — Xo(k)Ho(k))
Yy, (k Xa(R)[Dy (k) = Xy (R)H, (k
Yy (k) = m'l( ). 1(B)[D1(k) ‘ (k) H, (k)] (B.14)
| Ve (B) | | An-1(K)[Dv—r (B) = Xnoa (k) v -a(K))
This is the result used in Section 3.1.
B.2 Time-domain Gradient
The equivalent time-domain gradient expression for WDF1 is given by
N-1
VJ(L) = 1/.’\7 Z c,(k)x(;@j)(k), ] = 0, l, e N-1 (B.15)
=0

where j is the time-domain weight index, © indicates modulo-2 addition for the binary
representations of ¢ and j, and V,(k) defines the kth block gradient term for each time-
domain weight. The z,(k) and ¢,(k) terms represent the ith component of x(k) and e(k)

respectively, during the kth block:

x(h) = [oen o0 Trnven—]
= [zo(k) ... Tvoyy(k)] (B.16)
and
e(k) = fexx .- Cingn-1)
= [co(k) C(,\'-])(/{)] (B.17)

The first step in defining the ¢,(k) terms is to define 7,(k). The y.(k) terms are derived from
the inverse DWT (Equation B.7) of Y(&) (Equation B.10):

v(k) = W H{Y(k)) (B.18)
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where W™1 is the inverse DWT operator. Notationally, the N output sequence values for
the Ath block are represented by yin4., where ¢ =0,1,..., N — 1. Therefore, the kth block
output vector y(k) is represented by

y(k) = [uen o grvan—a)’ (B.19)
The ¢,(k) terms represent the ith component of the time-domain error vector e(k) such that

e(k) = WTHE(K)}
[(din —yrn) oo (deven-1 — ZM-N-{-N—])]T
[eo(k) ... en—1(K)T (B.20)

Using V;(k), the tin = domain weight update equation can be specified

hy(k+1) = hy(k) + pV,(k) (B.21)
so that o _ ) ;
ho(k +1) ho(k) Vo(k)
hy(k +1 hy(k Vi(k
e || wn | e -
btk 1) | A ] | Vo) |
For a N = 4 block size, the expression for the k = 2 block, where in general k = 0,1.....
becomes ) i i i X .
ho(3) ho(2) Vo(2)
h(3 hy(2 V(2
1(3) _ 11(2) +p 1(2) (B.23)
ha(3) h2(2) Vo(2)
| ha(3) | | Aa(2) | Va(2)




Each gradient term is calculated using

3
VJ(Q) = 1/4Zet(2)r(t®J)(2)a .7= 0, 1,...,3 (B24)
1=0
where
X(k) = [IS Tg ZTyo .’l?nl
e(k) = [es e9 e en)

The initial sample index for hoth x(k) and e(k) begins at 7 = 8§ since kN = 2x 4.

The j =0 termis

Vol2) = 1/d[eo(2)70(2) + e1(2)71(2) + ea(2)x2(2) + e3(2)73(2)]

= 1/4lesxs + coTg + €10T10 + €n1]
The j =1 term is

Vi(2)

1/4[e0(2)z1(2) + €1(2)z0(2) + €2(2)x3(2) + e3(2)72(2)]

= 1/4[esTo + eoTs + €10T11 + €117 10
The 7 =2 term is

Ta2) = 1/4[eo(2)z2(2) + e(2)Ta(2) + ea(Do(2) + ea(2)i(2)

= 1/4[csTio + corn1 + coTs + €11 7a)

Finally. the j = 3 termis

Va(2) = 1/4[co(2)x3(2) + e1(2)x2(2) + 2(2)71(2) + €3(2)x0(2)]

1/4[eszi1 + €90 + 1029 + €11 73]

Each of the Y,(2) terms represents the dyadic convolution of the kth error block and input
block.
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Appendix C. WDF2 Weight Update

This Appendix derives the WDF2 Walsh-domain gradient vector . An example is
presented for the N = 2 block size. A WDI2 time-domain gradient example is also presented

for the block k = 2 using the block size N = 4.

C.1 Walsh-Domain Gradient

The Walsh-domain WDF2 weight vector is specified by
H(k + 1) = H(k) + pX(K)E(k) (C.1

where the X(k), E(k), and H(k) vector components are real valued quantities and the product
X(k)E(k) defines the WDF2 gradient vector Viyo(k). The WDF?2 filter requires the use of
2N-point transforms due to the 50% overlap method employed in determining the input
vector. Accordingly, the filter uses 2N Walsh-domain taps to filter the data. In vector form

the weight update equation can be expressed as

Hok+1) | | Ho(k) [ Vi (k)
Hy(k +1 11 (k Vira, (k
1 .+ ) _ l.( ) ny 112';( ) (2)
| Mavoa(k+1) | | Hanea(F) | Ve (K)

At this point we begin the Uy (k) derivation by defining the kth block \WDF2 time-
domain input vector x(k). Using the notation x, to represent the input sequence. the N input
sequence values which define the Ath input biock can be represented by ry4,. where s =
0,1.....N—1. Next. the N-point previous block and N-point current block are concatenated

to produce the kth block input vector, defined as

X(h) = [rgev-n) oo Tpwony Tan) -0 T an-n) (C.3)

(k=1}th block kth block
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The kth block input transform matrix X(k) is given by

X(k) = ([iag{W[iI:(k,v_,\f) coe TEN-1) T(EN) - :lt(k_.\'+;\=_,)]} (C4)

{(k—=1)th block kth block

where W is the forward DWT operator. The forward and inverse N-point DWT pair [1:50]

is as follows:

N-=1
Xo=1/N Y 2WAL(n i) (C.3)
=0
and
N-}
T, = Z X, WAL(n.7) (C.6)
n=0

Representing the DWT transform components of the 2.V-point Ath block input vector

as X,(k), X(k) can be expressed as

0 Xoxvoa(k) |

The first step in deriving the Walsh-domain expression for E(£). is the evaluation of the kth

block Walsh-domain output vector Y(&):

[ Xo() o || ik
XNk 1k
0 Xavar(h) | | Haxoath) |




Performing the multiplication of the 2NV x 2.V matrix X(k) and 2.V x1 vector H{k} vields the

2N x1 vector Y{k} given by

X})(!’C) Ho(k)

. X, (k)6
Y{k) = ) (C.9)

i -“"Z.\'—i(k)”m\'—i(k) ]

Taking the inverse DWT of Y(4) and saving the last N values (See Section 3.2) produces the
kth block output vector. Representing the .V output sequence values which define the kth
output biock as yrxvs,. where i = Q,1...., N = 1. the kth block time-domain output block
vector is defined

.

—
Eel

N
|

[peeny: - - -y an )"
= last N terms of W™H{X(k)H(k)} (C".10)

The W~ operator used in Equation C.10 is the inverse DWT operator. Using the inverse

DWT sum (Equation C.6), the y(k) vector can be expressed as

Yix Tals WAL, N) X (k) Ha (k)
i+ ANV AL(n. N + DN (B H L (k
_\'(k) = Y \ 1 - Z:n—o ( . ) ( ) { ) ((,ll)
| exana || TR WAL(L 2N = V)N (K HA(K)

The Walsh-domain error vector E(£) for the kth block is defined by

E(k'l = )"‘;{[0 ... 0 (:1("-\') - y(k.\')) o ((l(k.\'+.\'-|) - .'/(i:.\'+.\'-l)l}'r} (("-]2)

N zeros

kth error block

where dien s represents the ith sample in the kth \V-point desired sequence block.
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Using the linear property of the DWT (See Section 2.1.2), Equation C.12 can be

expressed as

E(I'C) = W{[O 0 d(kN) d(kN+N-—l)]T}
N zeros
“W0 ... 0 yuny --- Yonan-u)'} (C.13)
N zeros
Evaluation of
W{[O ... 0 YkNy - y(;,.N.,_N_l)]T} (C.14)
N zeros

using Equations C.5and C.11 produces the vector

N1 SSN=1 7 AL (0, )W AL(n, §) X (k) Ha(k)

1 SISV ISV W AL(L, ()W AL(n, ) Xo (k) Ha(K)
oV . (C.15)

o

| SN SIS WAL — 1)) W AL(n, ) Xa(K) Ha(F) |
Cancellation of terms reduces this expression to

Xo(k)Ho(k) — X1 (k) Hy (k)
— Xo(k)Ho(K) + Xy (k) Hy (k)
Xo(k) Ha(k) — Xa(k)Hy(k)
—Xo(k)Ha(k) + Xa(k)Ha(k)
1/2 : (C.16)
Xon-a(k)Han-ay(k) — Xav-3)(k)Han-3)(k)
~Xon-4(k)Hon-g(k) + Xen-ay(F) Han-z)(F)
Xn-2)(F)Hn-2)(k) = Xev-n)(k)Han-1(F)
|~ Xav-2)(k)Han-2)(k) + Xon -1y (k) Han -1)(F) |




where (1/2N)-N = 1/2. For N greater than 2

W[O .. 9 (l(kN) d(;‘.N+N_1)]T (C.]?)

N zeros

can be expressed as

where the Dy, (k) terms represent the nth component of the N-point DWT of the current N-
point block of the desired signal. The 1/2 factor results because the N-point DWT terms were
calculated using a 2N-point DWT. The N-point DWT components of the desired signal occur
due to the zero front-padding of the vector transformed. For N = 2 Term C.17 produces the
vector

di2ky + diars1)

—dary — drs)

1/4 (C.19)

—diaky + dizk41)

| diary — diareny |




Substituting the vector results C.18 and C.16 into Equation C.13, results in

E(k) = 1/2

DNN—z(k)
_DNN—z(k)
_DNN-l (k)

L DNN—l(k) |

which simplifies to

E(l\‘) =

1/2

Dy, (k) = Xean-ay(k)Hanw -y (k) + Xan-3)(k) Han—3)(k)
~Dy_, (k) + Xon-a)(K) Haw-0) (F) = Xion-3)(K) How-3) (k)
—Dny_ (k) = Xon-2)(K)Hian —2)(k) + Xan-1) (k) Hian <1y (k)
| Dy, (k) + Xan-2y(F) Han-2)(k) = Xav-n(k)Hanv-1(k) |

Xo(k)Ho(k) = X1(k)Hi (k)
—Xo(k)Ho(k) + Xy (k) Hq(%)
Xo(k)Ho (k) — X3(k)H3(k)
= Xo(k)Ha(k) + Xa(k)Ha(k)

~1/2 :
Xan-ay(k)Hon-3)(k) = Xon-2)(k) Hon-3)(k)
—Xan-a)(F)Hen-4(k) + Xan-3)(k) Hon -3) (k)
Xn-2) (k) Hon-2)(k) = Xan-1)(k) Hian-1)(k)
| —Xenv-_2)(k)Han-2)(k) + Xanv-1)(k)Han-1)(k) |

(C.20)
Dy (k) = Xo(k)Ho(k) + Xy (k) Hy (k)
~ D, (k) + Xo(k)Ho(k) — X1 (k) Hy (k)
=D, (k) = Xo(k)Ha(k) + Xa(k)H(k)
D, (k) + Xo(k)Ho(k) — X3(k)Hs(k)
: (C.21)
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Performing the multiplication of the 2N x2N matrix X(k) and 2N x1 vector E(k) yields the

2N x1 vector VWQ(]C)

Xn-3)(k

Xa(k)[Dn, (k) + Xo(k) Ha (k) -

Viweo(k) =
Vi (K)
Viva,n_o(k)
Vivzsm—o(K)
| Vivasyo, (K)

Xo (k)[DN (k) — Xo(k)Ho(k) + Xy (k) H1 (k)]

(K)[—Do(k) + Xo(k)Ho(k) — Xy (k) Hy (k)]
; 2( k)|~ Dn, (k) — Xa(k) Ha(k) + X3(k) Hs(F)]
X3(k)II3(k))

Xan-a)(F)[Dry_y (k) = Xon-ay(k) Han-a)(k) + Xzv-3) (k) Hizn-3)(F)]
k) =Dy, (k) + Xan-a) (k) Hen-ay(k) = Xi2v-3)
Xaw-2)(k)[= Dy, (k) = Xen-2 (K} Hen-2)(k) + Xen-)
| X(zN—l)(/\')[DNN_,(k)+X(2N—2)(k)H(2N-2)(k)‘X(zN—l)(k)H(zN 1)( )] i

k)H2x-3)(k))
k)Han-1y (k)]

,—\,—\

This is the result presented in Section 3.2. For .V = 2 the Walsh-domain gradient is

- Vo, (k
Vi, ( - 14
Viva, (

(

] v”’?s

2

)|
k)
k)
k) |

ol K)diary + diarsry — 2Xo(k)Ho (k) + (I‘)Hl(l‘)] _
(E)[—dky — diakisy + 2Xo(k)Hol k) = 2X, (k) H, (k)]
)[ diaky + diarary = 2X2(k) Hao ) X3 (k) Hs(k)]
S(F) oty — diawan) + 2Xa (k) Halk .‘3(1.-)H3(k)] |

(C.23)




C.2 Time-domain Gradient
The equivalent time-domain gradient expression for WDF?2 is given by
2N -1

V,(k)=1/2N 3" e(k)zigy(k), 7=0,1,...,2N —1

=0

(C.25)

where j is the time-domain weight index, @ indicates modulo-2 addition for the binary

representations of z and j, and V,(k) defines the kth: block gradient term for each time-

domain weight. The x,(k) and e,(k) terms represent the ith component of x(k) and e(k)

respectively, during the Ath block:

x(i:) = [-’L'(k.fv-N) s T(kN=1) T(EN) - I(k,\=+1\'-1)]
(k—1)th block kth block

= [zo(k) ... z@ENn-1(k)]

and

elk) = [0 ... 0 (duny=yuny) --- (dignen-1y = Yanven-n)l’

~ o~

N zeros kk error block

{eo(l{) 6(2,\=_1)(k)]T
Using ¥, (k), the time domain weight update equation can be specificd

hy(k + 1) = hi{(k) + pN (k)

so that i i i i
ho(k + 1) [ ho(k) Vo(k)
h(k +1) ha (k) Vo)
. =| |
| hanaa(k+1) || han-a(R) | Van-i(K) |
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For a N = 4 block size, the expression for the & = 2 block becomes

[ o3y ] [hot2) ] [ 90(2) ]
h'@ _ h,Fz) y v,‘(z) 0
i 117(3) ] | IL','(‘.Z) ] ! V7(2) ]

Each gradient term is calculated using

= l/bz (ze(2), 7=0.1,....7 (C.31)

where

X(l\’) = [.‘134 Ty Xg T7 Tg T9 Ty 17“]

[0 000 Cs €9 €9 611]

o
—_—

o
~—

!

The first sequence value in x(k) is x5 because £ = 2 and N = 4, so that kN - N = 4.
Similarly, the first nonzero sequence value in e(k) is eg because k.V = 8. Excluding the zero

valued products in each sum, the time-domain gradient terms are as follows:

The 7 = 0 term 1s

Vo(2) = 1/8[ca(2)x4(2) + es(2)5(2) + es(2)76(2) + e5{2)2:(2)]

= 1/8[esTs + corg -t €10716 + €51211]
Thej=1termis

i(2) = l/b[f; 7)’1%() +05 )’1; 7)+C(;( 2‘7(2) + < (2):1'(;())]

= 1/8[esrg + eos + €10x11 + €11T10)
The 7 = 2 term is

Va(2) = 1/8[ea(2)x6(2) + es(Z)x:(2) + es(2)74(2) + c(2)x5(2)]

= 1/8[esTi0 + o) + 1075 + €11 T
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The 7 = 3 term is

Va(2) = 1/8[es(2)77(2) + e5(2)x6(2) + es(2)75(2) + e2(2)z4(2))

= 1/8[esz11 + egri0 + cro0Ts + €117s]

The 7 =4 term is

Va(2) = 1/8[eal2)z0(2) + €5(2)71(2) + e6(2)22(2) + €7(2)x3(2)]

= 1/8[esws + eoTs + e10%6 + €1127]
The j =5 term is

Vs(2) = 1/8les(2)21(2) + e5(2)70f2) + e6(2)72(2) + er(2)x2(2)]

= 1/8[63.’1‘5 + egxry + 21077 + 61113(;]

The j = 6 terin is

Va(2) 1/8[e4(2)x2(2) + e5(2)x3(2) + es(2)20(2) + e7(2)x(2)]

1/8[63.’1‘6 + egT7 + €0ty + 6“225]

Finally. the j = 7 term is
Vi(2) = 1/8[ca(2)xa(2) + es(2)a2(2) + es(2)1(2) + ex(2)zo(2)]

= 1/8[esx- + eaxs + €10Ts + €1174)

\ comparison of the gradient terms just calculated with those calculated for WDE1 in
Appendix B. clearly reveals a difference. Thete are § WDF2 terms and only 4 WDFI
gradient terns. This is because the number of time-dumain taps equals the transform size:
WDF2 uses 2V -poiat transforms and WDF1 uses N-point traisforms. The first N WDEF2
gradient values are equai to the WDFI value multiplied by 1/2. The 1/2 factor results from

the change in transform size.




Appendix D. FDF1 Weight Update

This Appendix derives the FDF1 frequency-domain gradient vector. An example is
presented for the .V = 1 block size. A FDF1 time-domain gradient example is also presented
for the block £ = 2 using the block size NV = 4. This example is used to facilitate a
comparison with WDF1, WDF2, and FDF2.

D.1  Frequency-Domain Gradieni

The frequency-domain weight vector is specified by
H(k 4+ 1) = H{E) + o X (LJE(E) (D.D

where the X(k), E(k), and H(k) vector components are in general complex valued quantities.
The » notation indicates complex conjugate. The produvct X*(k)E(k) in Equation B.1 defines
the frequency-domain gradient vector Vgy(k) for FDF1. Usirg Vi, (k). Equation D.1 can

be expressed as

Hok+1) | [ Hoh) | Y r(k)
. . TF .
U I e P R (D2)
] Hy (k4 1) ] | ”.-\'-l(/") i | vFlN—!(k) ]

Given that the X(k). E(k), and (k) vector components are in general complex. the weight

update equation for the jth tap can be represented as two separate update operations:

llreul,(l" + 1) l[rcal,(k) + /lv."'lrcal,(k) (D;)
Homagy(k+1) = Himag, (£) + 8V Frinsag, () (D.4)

whete e, (k) and Hynag, (F) represent the real and imaginary parts of H,(k). The terms
VFireat, (k) and ¥V gpimag, (k) represent the real and imaginary parts of Vi (k). Therefore.
during the Ath block cach frequency-domain tap is decomposed into a real component and

an imaginary component. The respective kth block frequency-domain gradient term Ypy, (k)

D-1




is similarly decomposed and the real and imaginary kth block jth gradient terms are used
to update the respective part of the H,(k) tap. The expansion of Vi(k) in terms of the
frequency-domain vectors X(k), H(k), and D(k) follows the same development presented in
Appendix B for WDF1. All time-domain vector notation is the same. The frequency-domain
vector notation follows the Walsh-domain vector notation with the exception of replacing
the W and W~! operators with the corresponding DFT operators F and F~'. Therefore,

V ri (k) has the same general! form as the Vg (k) 1esult (Equation D.3), such that

(k) X5(kYiDo(k) ~ Xo(k)Ho(£)]
Ve, (k STRNDy(E)Y = Xq (KL (K
cri=| T | D) = X)) D3)
| Ve (0) | L XRo(R)[Dv—alk) - X_a(k)Hn-y (R))
The forward and inverse DFT pair used in the development is given by [5:150]
N-1 .
Xo= ) o W¥ {(D.6)
1=0
and
N-1
z, = 1/N Y X, (D.7)
n=0
where
Wy = ¢77¥ N (D.3)
D.2 Time-domain Gradient
The equivalent time-domain gradient expression for FDF1 is given by
N-1
C(k) =Y eilk)xi(k). j=0.1.....N =1 (D.9)
1=0

The ¢,(k) terms represent the ith component of the time-domain error vector ¢(k) such that

e(k) = F'{E{k)}

((den = mkn) o (denvaen-1 = grxvax-1)]"
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= leo(k) ... enoa(k))" (D.10)

A brief discussion of the time-domain output vector is necessary to define x,(k). The time-
domain Ath block output vector is calculated by performing the circular convolution of the
kth block time-domain weight vector h(k) and the kth block input vector x(k). Accordingly,
the output vector is defined

yik) = x(k)h(k) (D.11)
where _
zolk)  xv_n(k) ... xi(k)
(k) = :rlfl:) :rofl:) .. J'gfl.’) (D.12)
| zxa(R) an2(k) ... xo(k)

and r,(k) specifies the ith value of x(k) (See Equation 2.35) while x7(k) is the ith row of
x(k).
Using V', (k) to denote the jth component of V(k), the time domain weight update

equation can be specified

hy(k+ 1) = h,(k) + ¥, (k) (D.13)
so that o _ )
ho(k + 1) ho(k) Vo(k)
hy(k+1 hy(k V(K
nle+ . R () (D.14)
| hxvea(k+1) || hxoa(k) | Vx-i(k)

For a .V = 4 block size. the expression for the k = 2 block becomes

@) ] [h@] [ wo@) ]
h ’l 2 2
1(3) _| (2) n Vi(2) (D.15)
ha(3) ha(2) Va(2)
L h3(3) ] i 113(2) ] ] V3(2) ]
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Each gradient term is calculated using

3
Vi(2) =Y e2)x:(2), j=0.1,....3 (D.16)
=0
where
Ts T T o
g9 ITg I3 Ty0
x(k) =
Tyo T9 TIsg I
| Ti1 Tio T9 Ts |
C(L') = [65 €9 €10 6]1]

The xo(F) term is x5 because k =2 and N = 4 so that kN =§. The j = 0 term is

VO(Q) = [80(2)1‘0(2) + 61(2)1'1(2) 4 62(2)1‘2(2) -+ 63(2)1'3(2)]

= [es7s + €aTg + 10710 + entyy)
The s =1termis

Vi{2) [cof2)x3(2) + €1(2)xo(2) + €2(2)x1(2) + ¢3(2)x2(2)]

[esTyy + €oxs + €1070 + CnIxo]

The j =2 term is

Va(2) [co(2)x2(2) + €1(21r3(2) + ca(2)x0(2) + €3(2)x1(2)]

= [esrio+ oy + ¢5ors + Cnl‘sl

Finally. the 7 =3 term is

Va(2) = [cof2)r1(2) + 1(2)r2(2) + ea(2)x3(2) + e3(2)xo(2)]

= [esro + €oTio + €roxy; + cniTs)
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A comparison of the terms calculated above with similar calculations for WDF1 in
Appendix B reveals that the first gradient term for both are cqual. Subsequent terms have

individual products that match products .n corresponding WDF1 gradient terms.




Appendix E. FDF2 Weight Update

This Appendix derives the FDF2 frequency-domain gradiei.t vector. An example is
presented for the N = 2 block size. A FDF2 time-domain gradient example is also presented

for the block & = 2 using the block size N = 4 and is used to facilitate a comparison with

FDF1.

E.1  Frequency-Domain Gradient

The frequency-domain FDF2 weight vector is specified by

[ V(k) |
Hk+1) = H(k)+pF 0
L 0 .
= H(k) + uVra(k) (E.1)

where F is the forward FFT operator and the vertical vector is zero padded with N zeros.
V(k) is defined

V(k) = first N terms of F~H{X"(k)E(k)} (E.2)

Referencing Equations E.1 and E.2, X(k), E(k), and H(k) vector components are, in general,
complex valued quantities. The vector X*(k) is ti:e complex conjugate of X(k). The resul-
tam vertical vector in Equation E.1 defines the FDF2 gradient vector Vgp(k). The FDF2
filter requires the use of 2N-point transforras due to the 50% overlap method employed in
determining the input vector. Accordingly, tle filter uses 2N fiequency-domain taps to filter

the data. In vector form. the weight update equation can be expressed as

Ho(k+1) ] [ Ho(k) W [ Vra(k) W
Hi(k+1 Hilk Vi (k
1 _+ ) _ 1.( ) y ;2.,( ) (E.3)
| Hon—a(k+1) | | Hav-a(k) | | Vg, (F) ]

E-1




Given that the X(k), E(k), and H(k) vector components are generally complex, the weight

update equation for the jth tap can be represented as two separate update operations:

I'Ireal_,(k + 1) = }Ireal‘,(k) + ﬂvFlreal,(k) ( '
‘Himagj(k + 1) = Htmag,(k) + ﬂvplt'mag)(k) ( .

=
=

4]
(4]
~—

where Hrear, (k) and Hymag, (k) represent the real and imaginary parts of H,(k). The terms
Vrireat, (k) and V piimag, (k) represent the real and imaginary parts of Vi1, (k). Therefore,
during the Ath block each frequency-domain tap is decomposed into a real component and
an imaginary component. The respective kth block frequency-domain gradient texm Vg, (k)
is similarly decomposed and the real and imaginary kth block jth gradient terms are used
to update the respective part of the H,(k) tap.

At this point we begin the Vpo(k) derivation by defining the kth block FDF2 time-
domain input vector x(k). Using the notation z, to represent the input sequence, the N input
sequence values which define the kth input block can be represented by xin4., Where 1 =
0,1,...,N—1. Next, the N-point previous block and N-point current block are concatenated
to produce the kth block input vector, defined as

x(k) = [ZEN-N) - TaN-1) TEN) oo TEN+N-1) (E-6)
(k=1)th block eth block

The kth block input transform matrix X(k) is given by

X(k) = diag{f[iv(kN_N) v z(kN—l)l -'i(kN) -l’(kx\'+N—1)j]} (E7)
(k=1)th block kth block

where F is the forward DFT operator. The forward and inverse 2N-point DFT pair is
defined [5:150]

2N =1
Xo= > oW (E.3)
1=0
and
2N-1 )
zi=1/2N > X, Wt (E.9)
n=0
where
Won = ¢ 73/2N (E.10)

152




Representing the DFT transform components of the 2N-point kth block input vector as
X, (k), X(k) can be expressed as

[ Xo(k) 0

X(k) = X_‘(k) (E.11)

0 Xon-a(k) |

The first step in deriving the frequency-domain expression for E(k), is the evaluation of the

kth block frequency-domain output vector Y(k):

[ Xo(k) 0 11 Ho(k)
= RO s e
0 Xon-1(k) | | Han-1(R) |

Performing the multiplication of the 2N x2N matrix X(k) and 2N x1 vector H(k) yields the
2N x1 vector Y(k) given by

Y(k) = 1R (E.13)

the &th block output vector. Representing the N output sequence values which define the

4

kth output block as yrn 4, where i = 0,1,....N — 1. the kth block time-domain output

block vector is defined

y(k) = lyawy .-, y(kN+N-1)]T
last N terms of F-H{X(k)H(k)} (E.14)

E-3




The F~! operator used in Equation E.14 is the inverse DFT operator. Using the inverse
DFT sum (Equation E.9), the y(k) vector can be expressed as

wn | TN Wi n X (k) Ha (k)
1| e SN W X (k) Ho (K)
y(k) = 5% = o (E.15)
| YiN+N-1 i i Zizal ‘4/2-;\(’2N—1)an(k)Hn(k) i

The frequency-domain error vector E(k) for the kth block is defined by

!
E(k) = F{0 ... 0 (dun) = ygeny) -+ (dunar-t) = yonen-n)]7} (E.16)

——

N zeros kth error block

where the dixn 4, terms represent the kth N-point desired sequence block. Using the linear
(kN+1) 1 th N-p g

property of the DFT, Lquation E.16 can be expressed as

1l

E(/\) ]—'{[0 ... 0 (l(kN) d(k,\r_*_N_l)]T}

N zeros .
~F{0 .. O yuwy - yenen-n)T)
N zeros .

Ey(k) — Eq(k) (E.17)

Evaluation of
Eo(k)=F{[0_... O YNy - 7J(L-N+N—1)]T} (E.18)

N zeros

using Equations E.8and E.15 produces the vector

TR S W Xa(k) Ha()
TR DI Wiy W X (k) Ha(k)

,

Ea(k)

(E.19)

o
=z

N AN W T WS X (k) Ha (k)
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The rth component of Equation E.19 can be expressed as

2N-12N-
Ey(k)=1/2N 5 Z WA Wi Xo (k) Ha(k), r=0,1,...,2N =1 (E.20)
=N n=0
Evaluation of
El(k) = .7-'[0 ... 0 d(kN) (l(kN+N_1)]T (EZ])
N zeros
produces
2N~1
Ey{(k)=1/2N Z w. N([(U\'+t N)s r=0,1,...,2N -1 (E.22)
=N
such that
X" (k)E(k) = X*(k)Ey (k) = X* (k) Ex(k) (E.23)

At this time. the inverse DFT is performed on Equation E.23. Taking the inverse DFT
of the product involving E, (k) produces
2N -1
Vi, (k) =1/2N Y B (k)X (k)W,RP (E.24)

r=0

Substituting the result from Equation E.22 for E (k) gives

2N-12N-1
= 12N YD WM () reen) (E25)
r=0 =N
where p = 0,1,....2N — 1. Taking the inverse DI'T of the product involving E;(k) produces
2N -1
Vi, (k) = 1/2N Z By (B) X)W, 37 (E.26)

and substitution of the result from Equation E.20 for £, (k) yields
, ANt
Vo, (k) = (1/2N)2 S > > Wi WP W X (k)Xo (k) I (k) (E.27)

r=0 =N n=0

where p = 0,1,...,2N — 1. The next step in deriving V (k) is to replace the last N values

of V5 (k) and V (k) with zeros and forwaid transform the resulting vectors to produce two

E-5




frequency-domain vectors: identified as ¥V g, (k) an' Vo, (k) respectively. Vpo(k) is defined

by the difference of the resulting frequency-domain vectors:

VF2(k) = vF?](k) - vF22(k) (EQS)
which can be expressed as
N-12N—12N~-
Vi (k) = 12N 3 3 Z WA VNPWER XY (R)d (kN 4om )
N p=0 r=0 =N
-12N-12N-12N~
—(1/2N)? Z Sy Z Wi WonP Wt WL X (k) X (K) H o (k)
p=0 r=0 =N n=0
g = 0,1,...,2N =1 (E.29)

This is the solution presented in Chapter II.
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For N = 2 the frequency-domain gradient real and imaginary (j) terms are as follows:

Vi(k) = (don/4)RX5(A) = XT(k)(1 + ) = X5(k)(1 = j)]
+(dirn)/4)2X5 (k) = X7 (k)(1 = 7) 3
= Xo(R)* Ho(k) = (1/2)|X: (K) P Hy (R)(3 + 5)
~(1/2)| X3 (k)P Ha(k)(L = 7) + (1/ ) (k)
+(1/2)Xo (k) X3(7) Ho(k) + (1/2) X
+(3 /22X (k) Xa (k) Ha(R) = (j/2)X
+(1/2) X5 (k) Xa(k) Hs(k)(1 = j)

Vi (k) = (dan/HXs(R)(1 =) = 2X7 (k) + X3(k)(1 +5)]
+(dzk) [4) X5 (F)(1 = 5) = X5(k)(1 = j) + 25 XT (k)]
=1 X1 (k)P H (k) = (1/2)1Xo(k)* Ho(R)(1 - j)
= (121X (k)P Ha(K)(i < 5) + (1/2) Xo(k) X (F)Ho(R)(1 = 7)
+(1/2)Xg (R) Xy (k) Hy (R} + (1/2X5 (k) Xy (k) H, (k)
+(1/2) X7 (k) X2 (k) Ha(K):1 + 7)
=(1/2) X (k) Xa(k) H(k) + (5/2) X7 (k) X3(k) H3(k)

Vin(k) = (don/4)-X(K)(1 —j)+?\"(k)—/\"(k)(1+j)]
F(dren /4)[=2X3 (k) + X550+ ) + X5(k)(1 = j)]
= |Xa(R)]? Ha(k) ~ (1/‘2)IX A)I Ihk) (1 =)

—(1/2) I\ (R)1PEL. (1~)(1+J + (1/2) X2 (h)XT (k) Ho(R)

+(1/2) X3 (R) X2 (k) Ho(io) + 7 ) XGURYN R H (R (1 = 7)

+(1/2) X3 (k) Xs( /)Ho(ﬁ (1+))

= (/2 X7 (R) Xo(k) ho{k) + (5 /2) X3 (k) Xo(k) Ho(k)



Virg(k) = (dan/HX5 (k)1 +j) + 2X5(k)(1 - j) - 2X5(k)]
+(diarsn) /DX (k) 1+J) X3 (R)(1 = j) = 25.X5(k))
=1 Xa(k) Ha(k) = (1 = wolk) P Ho(k)(1 + )

—(L/2)| Xo(- W e -;:-é-(l/?)Ao(L-)Xg( RYHo(k) (1 + J)
H(1/2) X5 (k) Xa(h, &2 07)(1 = ) & (1/2) X5 (k) X5(k) Hy(k)
+(1/2) X3 (k) Xs(k) 4. (k)

+U/2) X (R) Xy ()25 o) = (IDXZ(R) X (k) Hi ()

E.2 Time-domain Gradient

‘The equivalent time-domain gradient expression for FDF2 is given by

2N -1
V,(k)= Y ekrp-pnliy, 5=0,1,...,N =1 (E.30)

=N

wheoe j is the time-domain weight index and Y, (k) defines the kth “lock gradient term for
each time-domain weight. The x,(k) and ¢,(k) terms repiesent the ith component of x(k)

and e( k) res;ectively, in the kth block:

XUA) = [Tgnvea) oo Tgen-1) TN --- TENAN-1)
(k=1)th block kth block
= [."l'o(k) .’lf(g,\r_l)(;\‘)] (Egl)
and
elk) = [0 ... 0 (duvy=yony) - (dgnvan-y) = yoven-n)l’
N zeros kth error bluck
= [(3()(1\') (‘(2_,\1_1)(1.‘)]7' (ETZ)

Using V,(k), the time-domain weight update equation can be specified

hy(k 4+ 1) = hy(k) + pV, (k) (E33)

-
o
o




e,

so that

Cohotk+1) ]| kotk) 1T )
hy(k +1) ha(k) Vi (k)
. =| . |+
EASICEN N | An-a(R) Vin-iik) |

For a N = 4 block size, the expression for the & = 2 biock becomes

ho3) | [ho2) ] [ wu2) 1|
@) | _ h@ N vl-(z):
| ha3) | | k@] | Va2 J

Each gradient term is calculated using

VJ(Q) = Z 6;(2):17(;_5)(2), J = G, 1, ey 3
1=
where
X(k) = [rq4 @5 26 47 T To Tio 1

[
—_—

Loy
—~—

i

0000 es eg €10 €]

since N =4, k = 2. and therefore the x(£) index (kN — N + i) equals (4 +7) and the e(r
ind-~ for the last N values. (kN + 7). equals (8 + 7).

Excluding the zero valued products in each suin. the time-domain giadient terms are

as follows:

the J =0 terin is

Vo(2) = [ea(2)a4i2) + es{2)xs(2) + co(2)a6(2) + er(2)a7(2)]

= [ests + €979 + €107 10 + entnl

E-9



The j =1 term is

Vi) = [es()ral2) + es(2)za(2) + eo(2)s(2) + ex(2)ee(2)]

lesz7 + eos + €10z9 + €11 10

The j = 2 term is

V4(2) [ea(2)z2(2) + €512)23(2) + es(2)24(2) + e2(2)75(2)]

[esws + g7 + €10Ts + €11%g)

Finally, the j = 3 term is

Vi(2) = feal7 02V 1 25{2)ic2(2) + e6(2)x3(2) + er(2)za(2)]

= [esws -+ 297, i €1027 + €1128]

In comparison to the FDI1 time-domain gradient terms (Appendix C), the FDF2 time-
domain gradient terms above are the cross-correlation of x(k) and e(k). Since the FDF1 filter
performs circular convolution, the gradient terms are . al nlated using the product of e(k)

and the correspending column of the kth block circulant matrix.
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Appendix F. Program Listings

<)

F.1 WDF1 Filter Listing

This is the Turbo Pascal 6.0 listing of the WDF'1 program.

Program WDF1;

{N+}

Uses Printer,CRT,DOS;

CONST
N=8; (xx* N is block sizex)
P=3; (* N=2%%P x*)

datasize=1000;
Misadjust=0.1;
TYPE

RealArrayN2=ARRAY[O..(N-1)] of real;
InputArray=ARRAY[0. .datasize~1] of real;
OutputArray=ARRAY[O..datasize~1] of real;
FArray=ARRAY[O0..P,1..N,0..N-1] of Real;

VAR
hr,m,s,s100:Word;
StartClock,StopClock:Real;
data:RealArrayN2;
F:FArray;
gain_mu,Pbin,X,H,W,ERR,V2,input_block,grad,D,Yw:RealArrayN2;
desired,input:Inputfrray;
error,y:0utputArray;
isign,nn,Block_num,k:integer;
mu:real;
infile,desiredfile,errorfile,outfile,weightO:text;
weightl,veight2,weight3,weight4:text;
(**************************************************************)

(* Procedure Init_var *)
(* *)
(* This procedure initializes all variables. *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called: None *)

(**************************************************************)
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Procedure Init_var;
Var
1,j,i:integer;

Begin

Block_num:=0;
For j:=0 to datasize-1 Do
Begin
error(j]:=0;
desired[j]:=0;
input[j] :=0;
y[jl:=0;
End;
For j:=0 to (N-1) Do
Begin
X[31:=0;
Wljl:=0;
HL3j]:=0;
ERR[j]:=0;
v2[j]:=0;
input_block[j] :=0;
grad(j]:=0;
gain_mu[j]:=0;
Pbin[j]:=0;
D[j]:=0;
Yulj]:=0;
End;
For j:=0 to P Do
For i:=1 to N Do
For 1:=0 to N-1 Do
F(j,1,1]:=0;

End;

(*************************************************************)

(* Procedure Open input files
(=

(* Called By:

(* Main Program

(% Routines Called: None

*)
*)
*)
*)
*)

(*****************************************#********#**********)

Procedure Open_input_files;
Begin




Assign(infile, ’B:tstinpt2.Dat’);
Assign(desiredfile, ’B:tstdes2.Dat’);
Reset(infile);

Reset(desiredfile};

End;

(****************************************************t**********)

(* Procedure Open output files *)
(* *)
(* Called By: *)
(* Kain Program *)
(* Routines Called: None *)

(*****************************t*********t**#************t*******)
Procedure Open_output_files;
Begin
Assign(errorfile, ’B:Error.Dat’);
Rewrite(errorfile);
Assign(outfile, ’B:0ut.Dat’);
Rewrite(outfile);

End;

(********* *t********t**##*t************************t*tt*tt‘**)

(* Procedure Close input files *)
(= *)
(= Called By: x)
(* Main Program *)
(* Routines Called: None *)

(******#*#***t**#**t*#tttt*tt#*#t*t**#t#**tt#tttttttt#ttttt‘tt)
Procedure Close_input_files;
Begin
Close(infile);
Close(desiredfile);

End;

(*#t*t***t*‘ttttttt*ttt#ﬁ‘ttttt.tt"*tt"t#..ttt""tttt“t’tt)

(* Procedure Close output files *)
(= *)
(* Called By: *)
(* Main Program *)
(= Routines Called: None *)

(**tt*#‘**ttttt‘tttttttttttt#‘##t*‘tt"*t“‘tttttttitttttttttt)

Procedure Close_output_files;
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Begin
Close(errcrfile);
Close(outfile);

End;

(Q**tt*#t#tt****3#tt*tttt43*tt*#‘*t‘t*‘ttttttttt‘t*ttt#t.tttt‘*)

Procedure ClockOn; ,

Begin

GetTime(hr,m,s,si00);
StartClock:=(hr*3600)+(m+*60)+s+(s100/100) ;

End;
(t“*t“tt‘ttt‘t.“*"t“’t‘l#tﬂtttt“ttﬁtﬁtt#“3*‘3‘33*'33‘3***)
Procedure ClockQ0s<f;

Begin

GetTizechr,m,s,s100);

StopClock:={nr*3600)+(=*60) +s+(siG0/$22):

WriteLn(’Elapsed time = ’,(StopClock-StartClock):0:2);
End;

(t"’t‘ttt"t‘tt‘t"ttttt“‘l‘tttt‘tt‘ttttt‘ttt‘ttt"tlt3‘3#"#)

(* Procedure Calc_nuzblocks *)
(s *)
(= This procedere calculates the number of blocks to *)
(s be processed. *)
(= *)
(s Called By: *)
(* ¥ain Progranm *)
(= Routines Called: Kone *)

(Ot'“"t"ttt"“"tt"‘"'k"t.‘t‘t".“""‘Q"‘.’t”“‘t.'.)

rocedure Calc_nuzbiocks;
Begin

Block_num:=datasize div N:
End;

("“"'..l‘O0.0".“"..O‘l‘.‘.““."”...t.‘t'.."‘.”.‘t't...’)

(» Procedure ¥altren *)
(s *)
(+ This procedure performs the forward and inverse L-point *)
(+ Fast Walsh Transforz (FWT). This routine calculates *)
(+ the forward a2nd inverse iransforos using the sase loop: )
(¢ the forvard transforz requires the loop result to be *)
(*+ multiplied by 2 factor of 1/(K). *)

Fi




(*  The algorithm is recursive and requires P stages, where *)

(x  N=2%xP. This routine requires no multiplications *)
(* and NLog(N) summations, where the logarithm is base 2. *)
(% *)
(* Called By: *)
(* Procedure Past_Current_Block *)
(* Procedure Calzulate_y *)
(x Procedure Calculate_error *)
(* Procedure Calculate_Gradient *)
(* Procedure Update_Weights *)
(% Routines Called: *)
(x None *)
(x Variables: *)
(* P: N=2%*P *)
(% isign : indicates inverse or forward transform *)
(* datalj] : input and output: *)
(* F[P,1,j] :Fast Walsh Matrix result *)
(* j=0,1,..2N-1 *)

(0 ok ok o HOK o  K K K K K K o K R K ok o o ok ok ok 3 ok o 3 ok sk ok R ok ok ok sk o o o o kKR K K K Kok ok ok )
(*****************************************************************)
Procedure Waltran;

Var
j»1,1i,jmax,lmax,exponent:integer;
jlog,jinv:real;

Begin
For 1:=1 to N Do
Begin
F[0,1,0]}:=datafl-1];
(*x WriteLn(Lst, * F(’,0,1,0,’)= *,F[0,1,0]); *)
End;
For i:=0 to P-1 Do
Begin
jlog:=(i+1)*Ln(2);
jinv:=Exp(jlog);
jmax:=Round(jinv);
(% WriteLn(Lst, ’jmax= ’, jmax); *)
lmax:=N Div jmax;
(* WriteLn(Lst, ° kmax= ’, kmax); *)
For 1:=1 to lmax Do
Begin
For j:=0 to jmax-1 Do
Begin
exponent:=(j+1) Div 2;
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If Odd(exponent) then
F(i+1,1,j]:=F[i,2%1-1,(j Div 2)]
-F[i,2%1,(j Div 2)]
else
F[i+1,1,j]:=F[i,2*1-1,(j Div 2)]
+F[i,2%1,(j Div 2)];

End;

End;
End;

For j:=0 co (N-1) Do
Begin
if isign=-1 then
datalj]:=F(P,1,j]
else .
datalj]:=(1/N)*F[F,1,3];

End;
End;

(***********»**************************#ﬁ***************************)

(* Procedure Prepare_input_block_for_Waltran *)
(* *)
(* This routine enters the data values into datalj] in *)
(* preparation for forward or inverse DWT. *)
(x *)
(* Called By: *)
(* Procedure Past_Current_Block ' *)
(* Procedure Calculate_y *)
(x Procedure Calculate_error *)
(% Procedure Calculate_Gradient *)
(* Procedure Update_weights *)
(* Routines Called: None *)

(e koo ok ok ok ok ok ok sk ok sk o ok ok sk Kok koK ok koK K Kok ok KK 4o Kok ok ok o ok ok ok ok o o ok K K ok ok ok ok ok ok ok ok ok ok )
Procedure Prepare_input_block_for_Waltran;

Var
j:integer;

Begin

if isign =1 then

I'-6




For j:=0 to (N-1) Do
begin
datalj]:=input_block[j];
end;
if isign =-1 then
For j:=0 to (N-1) Do

begin
datal(j]:=v2[j];
end;

End;
(******************************************************************)
(% Procedure Past_Current_Block *)
(r *)
(* This routine concaterates the current and previous blocks *)
(* together: [(previous)(current)]. Each block is N points %)
(* long; the combination is 2#N points long. *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called: *)
(* Procedure Prepare_input_block_for_Waltran *)
(* Procedure Waltran *)
(* Variables: *)
(* input_block[j] : (previous blck,current blck) *)

(******************************************************************)
(******************************************************************)

Procedure Current_input_block;
Var
j:integer;

Begin

isign:=1;
For j:=0 to (N-1) Do
Begin
input_block[j] :=input [j+k*N];
(¥ WriteLn(Lst, ’inputblock(’, j,’)=’, input_block[jl); *)
End;

Prepare_input_block_for_Waltran;
Waltran;




End;
(et ok o ok ok ok ok sk o o ko ok o ok o o ok ok sk ko 36K Ko o o ok o sk sk o R oK sk o e ok ok ok ok sk ok ok )
(* %)
(* Procedure Current_desired_block *)
(ke ook oo ook o o ok ok o ko ook ok ok o o sk ok o oK o ok o ok ok sk sk o K K o o ok ok ok o sk ok ok ok sk ok s o ok )
Procedure Current_desired_block;
Var
j:integer;
Begin
isign:=1;
For j:=0 to (N-1) Do
Begin
input_block[j] :=desired[j+k*N];
End;
Prepare_input_block_for_Waltran;
Waltran;
For j:=0 to (N-1) Do
Begin
D[j]:=dataljl;
(* WriteLn(Lst, > D(’,j,’)= ?,D[j1); =)
End;
End;

(oo o o o ok ok sk ko oSS 3 K o R KKK SR o ok o KK oK KoK o K K Sk K e sk oK o K KK oK o ok o K 3K K ok ok ok oK Kok ok ok )

(x Procedure Load_input
(*

(* This procedure reads in the input sequence from a data

(x file.

(%

(% Called By:

(* Main Program

(* Routines Called: None

*)
*)
*)
*)
*)
*)
*)
*)

(**************************************************************i:*)

Procedure Load_input;

Var
j:integer;

Begin

For j:=0 to datasize-1 Do




ReadLn(infile,input[j]);

End;

(****************************************************************)

(x Procedure Load_desired *)
(x *)
(x  This procedure reads in the desired sequence from a data %)
(x file, *)
(* *)
(x Called By: *)
(x Main Program *)
(* Routines Called: None *)

(oo ook o ke s ok ko ook sk koo ok ks o ok ok ok o o sk ook o kK ok ok ok o K Kok ok Ko ok o K Kok K Kok ok o Kok )

Procedure Load_desired;

Var
j:integer;
Begin
For j:=0 to datasize-1 Do
ReadLn(desiredfile,desired[j]);
End;

(**************************k********************************)

(* Procedure Write_output *)
(* *)
(* This procedure writes the filter output and error )
(* vectors to data files. *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called:None *)

(***********************************************************)

Procedure Write_output;

Var
j:integer;
Begin
For j:=0 to datasize-1 Do
Begin
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WriteLn(outfile,y[jl);
WriteLn(errorfile,error(jl);
End;
End;

(***************************************************************)

(* Procedure Diagonal_of_X *)
(* *)
(* This procedure creates the data vector X. ’
(*  The X data vector represents the diagonal component *)
(* of a diagonal matrix that contains the DWT of the *)
(*  concatenated previous and current input blocks. *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called: None *)
(* Variables: *)
(* X[j] : diagonal values *)
(* *)

(********************************************************+******)

Procedure Diagonal_of_X;
Var
j:integer;
power:real;

Begin

For j:=0 to (N-1) Do
begin

X[j]:=datalj];
(% WriteLn(Lst, > X[’,j, ’] =, X(j1); ®)
end;

end;
(****************************************************************)

Procedure Calculate_avg_input_bin_pvr;
Var
num, j:integer;
Begin
num:=Block_nun-1;
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For k:=1 to Block_num-1 D¢
Begin
Current_input_block;
For j:=0 to (N-1) Do
Pbin[j]:=Pbin[jl+Sqr(dataljl);
End;
For j:=0 to (N-1) Do
Begin
Pbin[j] :=(1/num)*Pbin[j];
(*  WriteLn(Lst, ’ Pbin(’, j, ’) =’,Pbin[jl); *)
End;
End;

(e sk ko 3k ok ook o ok ook o s 3 o ok ok sk ok o ok o ok 3k K ok ok sk o ok ok ok ok ok ok sk ok skok ok ok ok sk k  akok ok ok ok ok ok )
Procedure Calculate_mu;
Var
j:integer;
avgPur:real;
Begin
avgPwr:=0;
For j:=0 to (N-1) Do
Begin
(* gain_mu[j]l:= Misadjust/(Pbin[j]+1.0E-8); *)
avzPwr:=avgPwr+Pbin[j1*(1/N);

End;
(* gain_mu(6]:=gain.mu[7]; *)
mu:=Misadjust/avgPur;
(* WriteLn(Lst, ° gain constant mu = ’, mu);  *)
(* WriteLn(Lst, ’ average power = ’,avgPwr); *)
End;

(***************************************************************)

(o ook koo ok o o o ok ook ok oK o ok ok ok o ok o ok o K 3K oK ok ok o kK 3K ook ok ok ko sk ok R K o ok ok s ok o ok Kok )

(* Procedure Perform_Matrix_Multiply *)
(% *)
(* Multiplies a 2Nx2N matrix by a 2Nx1 dimension vector. *)
(* The matrix in all cases is a diagonal matrix so the *)
(* routine automatically ignores the off diagonal terms *)
(* during the multiplication. *)
(* *)
(% Called By: *)
(* Procedure Calculate_y *)
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(% Procedure Calculate_Gradient *)

(* Routines Called: None *)
(* Variables: *)
(* V2[j] : the resulting 2Nx1 vectes *)
€ *)

(*****************************************k*********************)

Procedure Perform_Matrix_Multiply(var M,V: RealArrayN2);

Var
j:integer;
Begin
For j:=0 to (N-1) Do
Begin
¥2(j1:=M[31*v{j];

End;

End;

(**************************************************************)

(* Procedure Calculate_y *)
(x *)
(* This procedure calculates the output sequence values *)
(* for the current block being processed. The output is *)
(¥ equal to the last N terms of the inverse DWT of the *)
(* product of X and the walsh domain weight vector. *)
(* x)
(* Called By: *)
(* Main Program *)
(* Routines Called: *)
(* Procedure Waltran *)
(* Procedure Prepare_input_block_for_Waltran *)
(* Procedure Perform_Matrix_Multiply *)
(* Variables: *)
(* y[j] : filter output *)
(* *)

(************************* k************************************)
Procedure Calculate.y;

Var
j:integer;
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Begin

Perform_Matrix_Multiply(X,H);
For j:=0 to (N-1) Do
ywljl:=v2(jl;
isign:=-1;
Prepare_input_block_for _Waltran;
Waltran;
For j:=0 to N-1 Do
Begin
y[k*N+j] :=datalj];
(* WriteLn(Lst, ° y(’,kxN+j,’)= ?,y[k*N+j]); *)
End;
End;

(**********4****************************************************)

&
! x
(x
(*
(+
(*
(*
(%
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

Procedure Calculate_error

This procedure calculates the error sequence values for
the current block and the complex error vector.

The error block for the current inpt

block equals the current desired block minus the output
for the current input block. The error vector

ERR[j], equals the FFT of the zero padded error block:
DWT[N zeros, error block].

Called By:
Main Program
Routines Called:
Procedure Prepare_input_block_for_Waltran
Procedure Waltran
Variables:
ERR(j] : the DWT of the error sequence
for the current block

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
)
*)

(***************************************************************)

Procedure Calculate_error;

Var
j:integer;

Begin
For j-=0 to N-1 Do
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begin
ERR[j]:=D[j]1-Yw[jl;
v2[jl:=ERR[)];
end;
isign:=~1;
Prepare_input_block_for_Waltran;
Waltran;
For j:=0 to {(N-1) Do
begin
error [kxN+j]:=datalj];
(x WriteLn(Lst, > e(’,k*N+j,’)=’, error[k«N+j]); *)
end;
End;

(******»***********‘.‘******************************************)

(* Procedure Calculate_Gradient *)
(* *)
(* This procedure calculates the gradient sequence for the x)
(x current block being processed. The gradient sequence x)
(* equals the first N terms of the inverse DWTIT of the *)
(* product of X and the error vector E. *)
(x *)
(* Called By: *)
(* Main Program *)
(*  Routines Called: )
(* Procedure Perform_Matrix_Multiply *)
(* Procedure Prepsie_input_block_for_Waltran *)
(* Procedure Waltiza *)
(* Variables: *)
(* grad[j] :valsh-domain gradient vector for block k *)
(x Tgradlj]: tim¢-domain gradient ve:tor for block k *)
(* *)

(koA kR ok oz 3ot 3 b ok akokok ok ko o ok Aok ok sk ok o ok ok ok K ok sk ok kKo 8k Ye kR kR kR Kok )

Procedure Calculate_Gradient;
Var
j:integer;
Tgrad:RealArrayN2;
Begin
Perform_Matrix_Multiply(X,ERR);
For j:=0 to (N-1) Dc
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Begin
grad[j]:=v2[j];
(* WriteLn(Lst, ’ Grad(’, j, ’)= ’, grad(jl); *)
End;
isign:=-1;
Prepare_input_block_for_Waltran;
Waltran;

For j:=0 to (N-1) Do
Begin
Tgrad(3i]:=datalj];
(* WriteLn(Lst, ’ grad(’,j,’)= ’,Tgrad(jl); *)
End;

End;

(***************************************************************)

(* Procedure Update_weights *)
(* *)
(* This procedure updates the filters tap weights. The *)
(*  new weights equal the old weights plus the product of the *)
(* gain constant and the gradient vector. The *)
(x  gradient vector equals the DWT of the gradient *)
(x  sequence padded with N zeros: DWT[(grad seq), N zeros]. *)
(% *)
(* Called By: *)
(* Main Program *)
(* Routines Called: *)
(* Procedure Prepare_input_block_for_Waltran *)
(* Procedure Waltran *)
(* Variables: *)
(* H(j] : Walsh domain weight vector *)

(*****************************************¢*********************)

Procedure Update_weights;

Var
tap,j:integer;

Begin
For tap:=0 to (N-1) Do
begin
H(tap] :=H[tap] +mu*grad[tap];
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(* WriteLn(Lst, > H(’, tap, ’)= ’, H[tapl); *)

end;
End;
(ot oo oo ook ook ok skskok KK sk oK KKK KoK oK K ok Kk Kok o ok oK Ko ok ok oK ok ok ok )
(* Procedure time_domain_wts *)
(soke ook ko ok ook ok sk et ok o Rk Ak KR KKK K SR Ko KK KK Ko o Aok ok ok ok )
Procedure time_domain_wts;
Var
j:integer;
Begin
For j:=0 to (N-1) Do
Begin
v2[j]:=H{j];
(> WriteLn(Lst, *H(’,j,”)=", H[j]); *)
End;
isign:=-1;
Prepare_input_block_for_Waltran;
Waltran;
(* WriteLn(Lst, ’> Block ’, k); *)
For j:=0 to (N-1) Do
Begin
Wlj]:=datalj];
(* WriteLn(Lst, * W(’, j, ’) =2, W[j1); *)
End;
End;

(***************************************************************)

(% Procedure Set_weights *)
(*************t*************************************************)

Procedure Set_weights;
Var
j:integer;

Begin
w[0]:=48.4796;
wW[1]:=5.6844;
W(2]:=5.0732;
W[3]:=10.7032;
For j:=0 to (N-1) Do

input_block[j]:=W[j];

isign:=1;
Prepare_input_block_for_Waltran;
Waltran;
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For j:=0 to (N-1) Do
H[j] :=datalj];
End;

Begin
Oren_input_files;
Open_output_files;
Init_var;

Load_input;
Load_desired;

(*  ClockOn; *)
Calc_numblocks;
Calculate_avg_input_bin_pwr;
Calculate_mu;

(*  Set_weights; =)

For k:=0 to Block_num-1 Do
Begin
Writeln( ’ processing block’, k);
Current_input_block;
Diagonal_of _X;
Current_desired_block;
Calculate_y;
Calculate_error;
Calculate_gradient;
Update_weights;
(= time_domain_uts; *)
end;

(* time_domain_wts; x*)
Write_output;
Close_input_files;
Close_output_files;

End.

(ot sk ok oo o K 3R A K R oK AR AR A K o KK A R KRR KRR KA X )
(Fxxrkkxsokkkxkkioorkskkxkx  Main Program ERKEERKKKERARRKKKEEEKKEEX)
L T T P T P T P PP PP PP P T ey




F.2 WDF? Filter Listing

This is the Turbo Pascal 6.0 listing of the WDF2 program.

Program HDF2;
{$H+}
Uses Printer,CRT,D0S;

CONST
N=8; (*s* N is block sizes)
datasize=1000;
Misadjust=0.1;
=4; (= 2H=2%2P »)
TYPE

RealArraylN2=ARRAY[O..(2+N)-1] of real;
Inputirray=ARRAY[0. datasize-1] of real;
OutputArray=ARRAY[0. .datasize~1] of real;
Firray=ARRAY{C..P,1..(2sK),0..(2+k-1)] of Real;

V&R
hr,m,s,si00:Word;
StartClock,StopClock:Real;
data:RealirrayN2;
F:FArray;
gain_su,Pbin,X,H,W,ERR,V2, input_block,grad:Realkrrayk2;
desired,input:inputarray;
error,y:0utputarray;
isign,nn,Block_num,k:integer;
ousreal;
infile,desiredfile,errorfile,ouctfile,veightO:text;
veighti,veight2,weight3,veight4,veightS,veight6,veight7:text;

(3293588252232 SAITSSESSIELEIIEII2FETEISASISITILSSISSRESS)

(= Procedure Init_ver *)
(= s}
(= This procedure initializes all variables. )
(= *)
(+ Czlled By: *)
(= ¥2in Program )
(= Routines Called: None *)

(t’.ttt"0'3’“““"‘"“".‘t‘ttt'.“'""t"tt"'.'t.t "'t’t")

Procedure Init_var;
Var
1,j.i:integer;

-
Y




Begin

Block_num:=0;
For j:=0 to datasize-1 Do
Begin
error(j}:=0;
desired(j]:=0;
input(jl:=0;
y(j]:=0;
End;
For j:=0 to (2*N)-1 Do
Begin
X[j]:=0;
W{jl:=0;
H(j]:=0;
ERR[j]:=0;
v2[j]:=0;
input_block[j]:: J;
grad[j]:=0;
gain_mu(j]:=0;
Pbin([j]:=0;
End;
For j:=0 to P Do
For i:=1 to (2x*N) Do
For 1:=0 to (2%N-1) Do
F[j,i,1]:=0;
End;

(*************************************************************)

(* Procedure Open input files *)
(x *)
(* Called By: *)
(* Main Program *)
(* Routines Called: None *)

(K oo o o ok ok ko s o ek ok Kok o o ok 3 K oK ok o ok ok ko ook K 3o oK o o ok ok KKk ok K oK K R K o )
Procedure (pen_input_files;
Begin
Assign(infile, ’B:tstinpt2.Dat’);
Assign(desiredfile, ’B:tstdes2.Dat’j;
Reset(infile);
Reset(desiredfile);
End;

(***************************************************************)
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(* Procedure Open output files *)

(* *)
(* Called By: *)
{* Main Program *)
(* Routines Called: None *)

(**********************************************f****************)
Procedure Open_output_files;
Begin
Assign(errorfile, ’B:error.Dat’);
Rewrite(errorfile);
Assign(outfile, ’B:out.dat’);
Rewrite(outfile);
End;

(koo ok o o ok kKoK KoK o K o K K o KoK o ok sk ok K KK KoK ok sk ok ok R KKK oK ok oK o8 3K ok sk ok ok K ok ok ok Kok K )

(* Procedure Close input files *)
(* x)
(x Called By: *)
(* Main Program *)
(% Routines Called: None *)

(ko ks o o ok sk o o ok o ok o ok sk ok ok ok Kok ok o K o 3 K oK ok ok ok oK o o ok Ko o ok ok ok ol R K Rk oK ok ok o )
Procedure Close_input_files;
Begin
Close{infile);
Close(desiredfile);
End;

(*************************************************************)

(* Procedure Close output files *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called: None *)

(*************************************************************)
Procedure Close_output_.files;
Begin
Close(errorfile);
Close(outfile);

End;

(**************************************************************)

(* Procedure Calc_numblocks *)
(* *)
(* This procedure calculates the number of blocks to *)
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(* be processed. *)

(* *)
(* Called By: *)
(x Main Program *)
(* Routines Called: None *)

(**************************************************************)

Procedure Calc_numblocks;
Begin

Block_num:=datasize div N;

End;

(*****************************************************************)

(* Procedure Waltran *)
(* *)
(* This procedure performs the forward and inverse 2N-point *)
(* Fast Walsh Transform (FWT). This routine calculates *)
(*  the forward and inverse transforms using the same loop: *)
(¥  the forward transform requires the loop result to be *)
(*  multiplied by a factor of 1/(2N). *)
(* The algorithm is recursive and requires P stages, where *)
(*  2N=2%+P. This routine requires no multiplications *)
(* and 2NLog(2N) summations, where the logarithm is base 2. *)
(*x *)
(% Called By: *)
(* Procedure Past_Current_Block *)
(* Procedure Calculate_y *)
(* Procedure Calculate_error *)
(* Procedure Calculate_Gradient *)
(* Procedure Update_Weights *)
(* Routines Called: *)
(* None *)
(* Variables: *)
(* P: 2N=2%xP *)
(* isign : indicates inverse or forward transform *)
(* data[j] : input and output *)
(* F[P,1,j] :Fast Walsh Matrix result *)
(* j=0,1,..2N~1 x)

(*****************************************************************)
(*****************************************************************)
Procedure Waltran;
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Var
j»1,i,jmax,lmax,exponent:integer;
jlog,jinv:ireal;

Begin
For 1:=1 to (2*N) Do
Begin
F[0,1,0] :=datall-1];
(* WriteLn(Lst, > F(’,0,1,0,’)= ?,F[0,1,0]); *)
End;
For i:=0 to P-1 Do
Begin

jlog:=(i+1)*Ln(2);

jinv:=Exp(jlog);

jmax:=Round(jinv);

(* WriteLn(Lst, ’jmax= ’, jmax); *)
lmax:=(2*N) Div jmax;
(% WriteLn(Lst, ’ kmax= ’, kmax); x)
For 1:=1 to lmax Do
Begin
For j:=0 to jmax-1 Do
Begin
exponent:=(j+1) Div 2;
If 0dd(exponent) then
F[i+1,1,j]:=F[i,2*1-1,(j Div 2)]
-F[i,2%1,(j Div 2)]
else
F[i+1,1,j]:=F[i,2%1-1,(j Div 2)]
+F[1,2%1,(j Div 2)];

End;

End;
End;

For j:=0 to ((2%N)-1) Do
Begin
if isign=-1 then
dataljl:=F[P,1,j]
else
datalj]:=(1/(2*N))*F[P,1,j];

End;




(******************************************************************)

(x
€
(*
(x
(x
(*
(%
(*
(x
(x
€
(x

Procedure Prepare_input_block_for_Waltran *)

*)

This routine enters the data values into datal[j] in *)
preparation for forward or inverse DWT. )
*)

Called By: *)
Procedure Past_Current_Block *)
Procedure Calculate_y *)
Procedure Calculate_error *)
Procedure Calculate_Gradient *)
Procedure Update_weights *)
Routines Called: None *)

(******************************************************************)

Procedure Prepare_input_block_for_Waltran;

j:integer;
Begin

if isign =1 then

For j:=0 to (2«N)-1 Do

begin

datalj] :=input_block[j];

end;
if isign =-1 then

For j:=0 to (2«N)-1 Do

begin

data[j]:=v2[j];

end;

End;

(oot s ok oo sk ok oo ok s o o o sk o sk R ok sk o o o o Kok oo ok KoK KK oK oo o KK Yok ok o oK o Kok ok )
(*
(*
(%
(*
(*
(*

Procedure Past_Current_Block *)

*)

This routine concatenates the current and previous blocks *)

together: [(previous)(current)].

Each block is N points  *)

long; the combination is 2*N points long. *)

*)




(* Called By: *)

(* Main Program %)
(* Routines Called: *)
(* Procedure Prepare_input_block_for_Waltran *)
(* Procedure Waltran *)
(* Variables: x)
(* input_block[j] : (previous blck,current blck) *)

(******************************************************************)
(******************************************************************)

Procedure Past_Current_Block;

Var
j:integer;
Begin
isign:=1;
For j:=0 to (2*N)-1 Do
Begin
if (k*N-N+j<0) then
input_block([j] :=0
else
input_block[j] :=input [j+k*N-N];
End;
Prepare_input_block_for_Waltran;
Waltran;
End;

(o o ko ok ok o ook Kok S o o ook ok K 3K o 3K o 3o K oK Kook oo Ko o o ok oK ok Ko Kok Kok K Kk Kok )

(* Procedure Load_input *)
(* *)
(*  This procedure reads in the input sequence from a data *)
(x file. *)
(x *)
(* Called By: *)
(* Main Program *)
(* Routines Called: None *)

(oK ok ok ok ok K ko o oK oK oK o o ok o 6 8ok KK ok K K ks Kok KoK ok sk ok ok ok koo ok ok ok ok ke k ok ok ok ok ok ok )
Procedure Load_input;

Var
j:integer;




e ETET,S T - S e T ST TR N e G s AT T AT FRSTAT b At B G Ae T el R e ravm S ey e i e S0 SRS

- - R - =T
~a - ‘ Ea V£ ’f‘ )

Begin

For j:=0 to datasize-1 Do
ReadLn(infile,input(jl);

End;

(****************************************************************)

(* Procedure Load_desired *)
(* *)
(* This procedure reads in the desired sequence from a data  *)
(* file. *)
(x *)
(* Called By: *)
(x Main Program *)
(* Routines Called: None *)

(e ks e oo sk ke sk ok ok ok o ok sk o o ok o ok o sk Sk o ook ok sk sk ook o sk Kok K sk sk ko ook sk sk ok oKk s ok o ok ok ok ok ok )

Procedure Load_desired;

Var
j:integer;
Begin
For j:=0 to datasize~1 Do
ReadLn(desiredfile,desired[j]);
End;

(***********************************************************)

(* Procedure Write_output *)
(* *)
(> This procedure writes the filter output and error *)
(% vectors to data files. *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called:None *)

(ko ook o ok KoK ok o KoK oK ook K ok o 3 4K KR K oK K K o K KK o K Sk o ok K Kok K K ok o ok Kok ok ok )

Procedure Write_output;
Var




j:integer;

Begin
For j:=0 to datasize-1 Do
Begin
WriteLn(outfile,y[j]l);
WriteLn(errorfile,error[jl);
End;

End;
(**************************************************************)
Procedure Cleockfn;
Begin
GetTime(hr,m,s,s100);
StartClock:=(hr*3600)+(m*60)+s+(s100/100) ;

End;
(***************************************************************)
Procedure ClockOff;

Begin

GetTime(hr,m,s,s100);
StopClock:=(hr*3600)+(m*60)+s+(s100/100) ;
WriteLn(’Elapsed time = ’,(StopClock-StartClock):0:2);

End;

(***************************#***********************************)

(* Procedure Diagonal_of_X *)
(* *)
(x  This procedure creates the data vector X. *)
(*  The X data vector represents the diagonal component *)
(* of a diagonal matrix that contains the DWT of the *)
(*  concatenated previous and current input blocks. *)
(% *)
€ Called By: *)
(* Main Program *)
(* Routines Called: None *)
(* Variables: ' *)
(* X[j] : diagonal values *)
(* *)

(***************************************************************)

Procedure Diagonal _of _X;
Var
j:integer;
power:real;
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Begin

For j:=0 to (2«M)-1 Do
begin

X[j]:=datalj];

(* WriteLn(Lst, ° X[’,j, '3 = *,X[31); %)
end;

end;
(ks sk ks ook o ok ook ok ko ok o o o ok ook ok ok ok ok ok sk ok oo sk ok Kok kb ok kol ok ok ok ok )
Procedure Calculate_avg_input_bin_pwr;
Var
num, j : integer;
Begin
num:=Block_num-1;

For k:=1 to Block_num-1 Do
Begin

Past_current_block;

For j:=0 to (2*N)-1 No

Begin
Pbin[j]:=Pbin[j]+Sqr(dataljl);
End;
End;
For j:=0 to (2*N)-1 Do
Begin

Pbin(j] :=(1/num)*Pbin(j]l;

WriteLn(Lst, ’ Pbin(’, j, ’) =’,Pbin[jl); *)
End;

End;

(*

(************************************************************)

(***************************************************************)
Procedure Calculate_mu;

Var
j:integer;
avgPwr:real;
Begin
avgPur:=0;
For j:=0 to (2%N)-1 Do
Begin

avgPur:=avgPwr+Pbin [j1#(1/(2+N));

(* gain_mu[j]:= Misadjust/(Pbin[j]+1.0E-8);

*)
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End;
(* gain_mu[6]:=gain_mu(7]; %)
mu:=Misadjust/avgPur;

WriteLn(Lst, ’ gain constant mu = ’, mu);
Writeln(Lst, ’ average power = ’, avgPwr); *)

End;

(****************************************ﬂ**********************)

(***************************************************************)

(*
(*
(*
(=
(*
(%
(%
(*
(*
(*
(*
(*
(*
(*

Procedure Perform_Matrix_Multiply

Multiplies a 2Nx2N matrix by a 2Nx1 dimension vector.

The matrix in all cases is a diagonal matrix so the

routine automatically ignores the off diagonal terms

during the multiplication.

Called By:

Procedure Calculate_y

Procedure Calculate_Gradient
Routines Called: None
Variables:

V2[j]l : the .esulting 2Nx1 vector

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

(*************************$*************************************)

Procedure Perform_Matrix_Multiply(var M,V: RealArrayN2);

Var

j:integer;
Begin

For j:=0 to (2+N)-1 Do
Begin
v2[3]:=M[jI*Vv[j];
End;
End;

(**************************************************************)

(*
(*
(=
(*

Procedure Calculate_y

This procedure calculates the output sequence values

for the current block being processed.

The output is

*)
*)
*)
*)




(* equal to the last N terms of the inverse DWT of the *)

(* product of X and the walsh domain weight vector. *)
(* *)
(* Called By: *)
(* Main Program *)
(x Routines Called: *)
(* Procedure Waltran *)
(* Procedure Prepare_input_block_for_Waltran *)
(* Procedure Perform_Matrix_Multiply *)
(% Variables: *)
(* v[jl : filter output *)
(* *)

(**************************************************************)

Procedure Calculate_y;
Var
j:integer;

Begin

Perform_Matrix_Multiply(X,H);
isign:=-1;
Prepare_input_block_for_Waltran;
Waltran;
For j:=0 to N-1 Do
Begin
y[k*N+j] :=data[N+j];
(* WriteLn(Lst, * y(’,kxN+j,’)= ?,y[keN+j1); *)
End;

End;

(3o e s ok ok s o o ok o KK o o oK oK oK o K K Ko SR kKo K KK K Kok o o o o ok oK ok kK ok ok ok )

(% Procedure Calculate_error *)
(* *)
(* This procedure calculates the error sequence values for *)
(* the current block and the complex error vector. *)
(* The error block for the current input *)
(* block equals the current desired block minus the output *)
(¥ for the current input block. The error vector *)
(» ERR[j], equals the FFT of the zero padded error block: *)
(* DWT[N zeros, error block]. *)
(= *)
(* Called By: *)
(* Main Program *)




€ Routines Called:

(* Procedure Prepare_input_block_for_Waltran
(* Procedure Waltran

(* Variables:

(* ERR[j] : the DWT of the error sequence
(* for the current block

(%

*)
*)
*)
*)
*)
*)
*)

(***************************************************************)

Procedure Calculate_error;
Var
j:integer;
e:RealArrayN2;

Begin

For j:=0 to N-1 Do
begin
e[j]:=0;
input_block([j]:=e[j];
end;
For j:=N to (2*N)-1 Do
Begin
e[j):=desired [k*N+j-N]-y[k*N+j-N];
input_block[j]:=e[j];
error [kxN+j-N]:=e[j];
(* WriteLn(Lst, > e(’,k*N+j~-N,’)=’, error[k+N+j-N]);
End;
isign:=1;
Prepare_input_block_for_Waltran;
Waltran;
For j:=0 to (2#N)-1 Do
begin
ERR[j] :=datalj];

end;
End;

(*************************************************************)

(* Procedure Calculate_Gradient

(*

(* This procedure calculates the gradient sequence for the
(* current block being processed. The gradient sequence

(* equals the first N terms of the inverse DWTT of the

(* product of X and the error vector E.
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(* *)

(*» Called By: *)
(* Main Program *)
(* Routines Called: *)
(* Procedure Perform_Matrix_Multiply *)
(* Procedure Prepare_input_block_for_Waltran *)
€ Procedure Waltran *)
(* Variables: *)
(* grad(j]: gradient sequence for current block *)
(* *)

(************************************************#************)

Procedure Calculate_Gradient;

Var
j:integer;
Tgrad:RealArrayh2;
Begin
Perform_Matrix_Multiply(X,ERR);
For j:=0 to (2*N)-1 Do
Begin
grad(j]:=v2[j];
(* Writeln(Lst, * Grad(’, j, ’)=’, grad[jl); =*)
End;
(* isign:=-1; *)
(* Prepare_input_block_for_Waltran; =)
(* Waltran; *)
(* For j:=0 to (2#N)-1 Do #*) (» Calculate the time %)
(* Begin *) (* domain gradient *)
(* Tgrad[j] :=dataljl; *)
(* WriteLn(Lst, ’ grad(’,j,’)= ’,Tgrad(jl); =+
(* End; *)

End;

(*************#****‘*************tt****t#**t#*t**t*#***3*‘****1‘)

(* Procedure Update_weights *)
(* *)
(+ This procedure updates the filters tap weights. The *)

(*  new weights equal the old weights plus the product of the #)
(* gain constant and the gradient vector. The *)
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(¢ gradient vector equals the DWT of the gradient *)
(¢+ sequence padded with N zeros: DWT[(grad seq), N zeros]. =)

(= *)
(* Called By: *)
(= Main Program *)
(* Routines Called: *)
(= Procedure Prepare_input_block_for_¥altran *)
(* Procedure Waltran *)
(* Variables: *)
(= H{j] : Walsh domain weight vector *)

(#tt**tttt**tt*ttttt**ttttttttttt#*tt#tt##tt*stt#t‘ttttttttt’ttt)
Precedure Update_weights;

Var
tap,j:integer;

Begin

For tap:=0 to (2#N)-1 Do
begin
fi{tepl :=H[tapl+musgrad(tap];
(+ W¥ritein(Lst, ’ H(’, tap, *)= °, Hftapl); »)

end;

End;
€ S Ry e PRI E S PE R
(» Procedure time_domain_wis *)
('tttt‘ttt‘*‘t‘tt“‘tt't‘tttt‘.“t.‘ttt‘tt"tttttt‘#“"‘ttt“‘)
Procedure time_domain_wts;
Ver
j:integer;
Begin
For j:=0 to (2sk)-1 Do
Begin
v2(j]:=k{j1;
(» WriteLn(Lst, *H(’.j,’)=', K[j1): *)
End;
isign:=-i;
Prepare_input_block_for_Waltran;
Waltran;
(» WriteLn(Lst, ’ Block ’, k); *)
For j:=0 to (2slN)-1 Do
Begin




Wij):=datalj];

End;
End;

(******************************************************** %****)

(x Procedure Set_weights *)
(oA AR R AR R AR ARk R R R Ao ok sk ok sk ok ko koo )

Procedure Set_weights;
Var
j:integer;

Begin
W[0]:=48.4796;
W[1]):=5.6844;
W[2]:=5.0732;
W[3]:=10.7032;
For j:=0 to (2%N)-1 Do
input_block[j1:=W[j];
isign:=1;
Prepare_input_block_for_Waltran;
Waltran;
For j:=0 to (2*N)-1 Do
H{j]:=datalj];
End;
(koo sk ok ok sk ok ok sk sk o s ok ok ok sk Ko Rk oK KK R K o sk K KK KKK 3ok K o oK KRR KR ok K )
(e rooncob ook Main Program  sxkskokkokskiortomkkkkkokkdokk )
(ks ok ok ookt sof Ko oK e ok ok o ok ook R K oK oo 3 sk o K KK o KK KK o KoK KKK Kk ok )

Begin
Open_input_files;
Open_output_files;
Init_var;
Load_input;
Load.desired;

Calc_numblocks;

Calculate_avg_input_bin_pwr;

Calculate_mu;

(¥  Set_weights; *)

(*  ClockOn; *) (* Turn Clock on *)
For k:=0 to Block_num-1 Do

Begin

(* WriteLln( ’ processing block’, Kk); *)




Past_current_block;
Diagonal_of _X;
Calculate_y;
Calculate_error;
Calculate_gradient;
Update_weights;
(* time_domain_wvts; *)
end;
(* ClockOff; %) (*Display elapsed timex*)
(* WriteLln; *)

(* Write(’Press Enter.. ’);%)
(x Readln; %)
(* time_domain_wts; *)

Write_output;
Close_input_files;
Close_output_files;

End.
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F.3 FDF Filler Listing
This is the Turbo Pascal 6.0 listing of the FDF program.

Program Freq_adfil;

{$N+}
Uses Printer,CRT,DO0S;
CONST
N=16; (+xx N is block sizex*)

datasize=992;
Misadjust=0.1;

TYPE
RealArrayN4=ARRAY[1..4*N] of real;
RealArrayN2=ARRAY[1..2*N] of real;
InputArray=ARRAY[1..datasize] of real;
OutputArray=ARRAY[1..datasize] of real;

VAR
hrr,m,s,s100:Word;
StopClock,StartClock:Real;
data:RealArrayN4;
XR,XI,XI_conj,HR,ER,WR,WI,EI,HI,V2R,V2I,input_block,grad:RealArrayN2;
igain_mu,rgain_mu,Pbinr,Pbini:RealArrayN2;
desired,input:Ing .tArray;
error,y:OutputArray;
isign,nn,Block_num,k:integer;
mu:real;
infile,desiredfile,errorfile,outfile:text;
weightO,weightl,weight2,weight3,weight4,weight5,weightf,veight7:text;
(**************************************************************)

(* Procedure Init_var *)
(* *)
(* This procedure initializes all variables. *)
(x *)
(* Called By: *)
(* Main Program *)
(% Routines Called: None *)

(**************************************************************)
Procedure Init_var;

Var
j:integer;
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Begin

Block_num:=0;
For j:=1 to datasize Do
Begin
error(j]:=0;
desired[j]:=0;
input[j]:=0;
y[j1:=0;
End;
For j:=1 to 2xN Do
Begin
XR{j]:=0;
X1[j]:=0;
XI_conjl[j]:=0;
HR[j]:=0;
HI[j]:=0;
ER[j]:=0;
EI[j]:=0;
V2R[j]:=0;
V2I[j]:=0;
input_block[j]:=0;
grad[j]:=0;
igain_mu[j]:=0;
rgain_mu[j]:=0;
Pbinr[j}:=0;
Pbini(j]:=0;
End;

End;
(ko ook Rk AR oK K A KoK K oK Kok Ao K o KKK KK KKK ok K ok ok )
Procedure Open_input_files;
Begin
Assign(infile, ’A:S53N.Dat’);
Assign(desiredfile, ’A:S5.Dat’);
Reset(infile);
Reset(desiredfile);
End;

(*****************#******************************************)
Procedure Open_output_files;
Begin
Assign(errorfile, ’B:FFS3SNE.Dat’);
Rewrite(errorfile);
Assign(outfile, ’B:FFS4SNY.Dat’);
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Rewrite(outfile);

End;

(*********************************************************)
Procedure Close_input_files;
Begin
Close(infile);
Close(desiredfile);

End;
(**************************************************************)
Procedure Close_output_files;

Begin

Close(errorfile);
Close(outfile);

End;
(st sotor sk ko sk ok ook KKK K K 3 ok kKKK KRR ok K ook KoK ok ok ok o o )
(x Procedure Calc_numblocks *)
(* *)
(* This procedure calculates the number of blocks to *)
(* be processed. *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called: None *)

(**************************************************************)

Procedure Calc_numblocks;
Begin

Block_num:=datasize div N;

End;

(******************************************************************)

(* Procedure FFT *)
(* *)
(* This procedure calculates the forward and inverse Fast *)
(* Fourier Transform of a data sequence that has a power of *)
(* 2 number of data points. Both real and complex data can *)
(* be transformed. The routine has two sections. The first *)
(* section sorts the input data into bit-reversed order. The  x)
(* second section has an outer Loop that is executed log N *)




(*
(*
(*
(*
(%
(*
(*
(*
(*
(*
(*
(%
(*
(*
(*
(=
(%
(=
(*
(*
(*
(*
(*
(*
(*
(*
(*

(power 2) times. Transforms of length 2,4,8,...,N are
calculated in this section. The section has two nested
inner loops that execute the Danielson-Lanczos Lemma.
Data tranformed or inverse transformed is entered into
the vector datalj] according to R1,I1,R2,I2,...RN,IN;
where R1 and Il represent the real and imaginary
components of the first data value or transform value.
Transform results are returned in datalj] in the same fashion.
The forward and inverse transforms are indicated to the
routine by setting the isign flag: isign=1 indicates
forward transform, isign=-1 indicates inverse transform.
In the case of inverse transform the resultant
is scaled by a factor equal to the number of points
transformed.

Called By:
Procedure Past_Current_Block
Procedure Calculate_y
Procedure Calculate_error
Procedure Calculate_Gradient
Procedure Update_weights
Routines Called: None
Variables:
isign: indicates inverse or forward transform
data[j]: input and output
nn: number of points to be transformed
n : number of Re and Im value in data[j]l =2*nn

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

(ke sk o ks ok sk sk o iR ook ok oK oK o KoKk KK oK R K Ko K K ok Kok oo s ok o sk o ook o ok o ok o ok ok )
Procedure FFT;

VAR
ii,jj,n,mmax,m,j,istep,i:integer;
Wtemp,wWr,wpr,wpi,wi,theta:double;
tempr,tempi,wrs,wis:real;

Begin

n:=64; (* 2 times 2N *)
nn:=32; (*x 2N x)
ji=1;

For ii:=1 To nn Do Begin

i:=2*%ii-1;
If j>i Then Begin
tempr:=datalj]l;




tempi:=datal[j+1];
dataljl:=datalil;
data[j+1] :=datali+1];
datali] :=tempr;
data[i+1] :=tempi;
End;
m:=n DIV 2;
While (m >= 2) And (j > m) Do Begin
ji=j-m;
m:=m DIV 2
End;
j:=j+m;

End;

mmax:=2;
While n > mmax Do Begin

istep:=2*mmax;
theta:=6.28318530717959/ (isign*mmax) ;
wpr:=-2.0*sqr(sin(0.5+theta));
wpi:=sin(theta);

wr:=1.0;

wi:=0.0;

For ii:=1 To mmax DIV 2 Do Begin

m:=2%ii-1;

WIS :=wr;

wis:=wi;

For jj:=0 To (n-m) DIV istep Do Begin

i:=m+jj*istep;

j :=i+mmax;

tempr :=wrs*data[jl-wisxdata[j+1];
tempi:=wrsxdata[j+1]+wis+dataljl;
data[j]:=datali]-tempr;

datalj+1] :=data[i+1]-tempi;
datafi]:=datali]+tempr;

datali+1] :=dataf[i+1]+tempi

End;
wtemp:=wr;

VI SWrkepr-wikupi+wr;
vi:=wiswpr+wtemp*wpi+wi;
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End;

mmax:=istep;
End;

End;

(******************************************************************)

(* Procedure Prepare_input_block_for_FFT *)
(* *)
(* This routine enters the data values into data[j] in *)
(* preparation for forward or inverse FFT. *)
(% *)
(* Called By: *)
(* Procedure Past_Current_Block *)
(* Procedure Calculate_y *)
(* Procedure Calculate_error *)
(* Procedure Calculate_Gradient *)
(* Procedure Update_weights *)
(* Routines Called: MNone *)

(******************************************************************)
Procedure Prepare_input_block_for_FFT;

Var
j:integer;

Begin

if isign =1 then
For j:=1 to 2*N Do
begin
data[2*j-1] :=input_block[j];
data2%j]:=0;
end;
if isign =-1 then
For j:=1 to 2*N Do
begin
data[2*j-1] :=V2R([j];
datafl2+j]:=v2I[j1;
end;
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End;

(******************************************************************)

(* Procedure Past_Current_Block *)
(* *)
(* This routine concatenates the currept and previous blocks *)
(* together: [(previous)(current)]. Each block is N points  *)
(* long; the combination is 2#N points long. *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called: *)
(* Procedure Prepare_input_block_for_FFT *)
(* Procedure FFT *)
(* Variables: *)
(* input_block[j] : (previous blck,current blck) *)

(******************************************************************)
(******************************************************************)

Procedure Past_Current_Block;

Var
j:integer;
Begin
isign:=1;
For j:=1 to 2xN Do
if (kxN-N+3j-1<0) then
input_block[j] :=0
else
input_block[j] :=input [j+k*N-N];
Prepare_input_block_for FFT;
FFT;
End;

(******1**************************************#**********t*******)

(* Procedure Load_input *)
(* *)
(*  This procedure reads in the input sequence from a .ata *)
(* file. *)

(+ +)




(x Called By: *)
(* Main Program *)
(% Routines Called: None *)
(ko oo KRR KRR R KA KRR A KA R KK oK Aok K KKK AR Ko ok K ko )

Procedure Load_input;

Var
jiinteger;

Begin

For j:=1 to datasize Do
ReadLn(infile,input[j]);

End;

(koo ook o s ook ok ok o s sk sk sk ok ok oK sk ok sk Sk o K oK o K Kok o ok o Ko A Kk K ok Kok )

(* Procedure Load_desired *)
(x *)
(*  This procedure reads in the desired sequence from a data *)
(* file. *)
(* *)
(* Called By: *)
(r Main Program *)
(* Routines Called: None *)

(****************************************************************)

Procedure Load_desired;
Var
j:integer;

Begin

For j:=1 to datasize Do
ReadLn(desiredfile,desired(j]);

End;

(***********************************************************)
(* Procedure Write_output *)

D)




C *)

(* This procedure writes the filter output and error *)
(* vectors to data files. *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called:None *)

(ko sk Aok oK ok ok Kok oK Aok ko ok ook Aok K KKk K ok ok ook o ok s ok ok ok ok ok ok ok )

Procedure Write_output;
Var
j:integer;

Begin
For j:=1 to datasize Do
Begin
WriteLn(outfile,y[j]);
WriteLn(errorfile,error[jl);
End;

End;
(s K ek ok ok o o 33 ok ok o oo ok ok ok K s ok o ok Kok sk sk ok o ok ok ok Kok o ok o K ok ok o 3 KKK Kok K KoK Kok )
Procedure ClockOn;
Begin
GetTime(hrr,m,s,s100);
StartClock:=(hrr*3600)+(m*60)+s+(s100/100);
End;
(s ok A KK R o AR OK ok AOK KR JOK o A K ok AR KKK KKk ok kK kK ok )
Procedure ClockOff;
Begin
GetTime(hrr,m,s,s100);
StopClock:=(hrr*3600)+(m*60)+s+(s100/100) ;
WriteLn(’Elapsed time = ’,(StopClock-StartClock):0:2);
End;

(o ook ook Ao KR ROk AR R KKK AR R o KA KR K KKKk KRRk kR KK )

(* Procedure Diagonal_of_X *)
(* *)
(* This procedure creates two data vectors: XR and XI. x)
(* The two data vectors represent the diagonal component *)
(* of a diagonal matrix that contains the FFT of the *)
(* concatenated previous and current input blocks. XR *)

(» represents the real part of each value and XI represents )
(*  the corresponding imaginary part:(diagonal of X)=XR+XI. %)
(* x)
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(* Called By: *)

(* Main Program *)
(* Routines Called: None *)
(* Variables: *)
(* XR[j] : diagonal real values *)
(* XI[j] : diagonal imaginary values *)
(% *)

(***************************************************************)

Procedure Diagonal_of_X;
Var
j:integer;
pover:real;

Begin

For j:=1 to 2*N Do
begin
XR[j] :=data[2*j-1];
XI[j]:=data[2xj];
WriteLn(Lst, > X(*,j-1,’)= ’,XR[j],’+i’,XI[j]1);

end;

end;
(**************************************************************)
Procedure Calculate_avg_input_bin_pwr;
Var
num, j:integer;
Begin
num:=Block_num-1;
For k:=1 to Block_num-1 Do
Begin
Past_current_block;
For j:=1 to 2*N Do
Begin
Pbinr(j] :=Pbinr [j1+Sqr(datal[2*j-1]);
Pbini[j] :=Pbini[j]+Sqr(data[2#%j]);
End;
End;
For j:=1 to 2*N Do
Begin
Pbinr(j]):=(1/num)*Pbinr(j]l;
Pbinif[jl:=(1/num)*Pbini(jl;




—a = T L T T = mas s o 7 e == - - ~ - - poy -

End;
End;

(*************************t***********************************)
Procedure Calculate_mu;
Var
j:integer;
avgPur,ravgPwr,iavgPwr:Real;

Begin
avgPwr:=0.0;
ravgPwr:=0;
iavgPur:=0;
For j:=1 to 2«N Do
Begin

ravgPur:=ravgPur+Pbinr(jl;
iavgPur:=iavgPwr+Pbinil(j];

(* rgain_mu(j]:=Misadjust/(Pbinr(j]+1.0E-8); *)

(x igain_mu[j]:=Misadjust/(Pbini[j]+1.0E-8); *)

(* WriteLn(Lst, ’ mmu(’,j,’) =’, rgain_mu{jl}); *)

(* Writeln(Lst, ’ imu(’,j,’) =’, igain_mu[jl); #)
End;

avgPur:=(ravgPur+iavgPur)*(1/(4*N));

WriteLn(Lst, ’ avgPur = ’,avgPur);

mu:=Misadjust/avgPur;

WriteLn(Lst, ’ gain constant mu = ’, mu);
End;

(*****#******t***********#***********#********#**#********#****)

(= Procedure Conjugate_X *)
(* *)
(* This procedure creates the conjugate of the diagonal *)
(* matrix X. The routine creates the conjugate of X *)
(* by creating XI_conj[j] which is the negative of XI{j]. =)
(+ Then, the conjugate of the diagonal of X equals *)
(+ XR+XI_conj. *)
(* *+)
(» Called By: *)
(= Main Program *)
(= Routines Called: Mone *)
(= Variables: *)
(» XI_conj(j] : -X1[j] *)
(= *)

(***#t#*t*t#t***t*ti‘ttt#*#*tt##*#tt‘tttt*!tt*l#***tt‘tttttttit)
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Procedure Conjugate_X;
Var
j:integer;

Begin

For j:=1 to 2*l Do
XI_conj{j):=-Xx1{jJ);

End;

(tx*iX‘*t***t***#t#t*tt#ttt*‘t*tttt#t*tt**ttt***tt*tt’31‘**“*8*)

(= Procedure Perform_Matrix_Multiply

(*

(= Multiplies a 2Nx2N matrix by a 2lx1 dimension vector.
(= The matrix in all cases is a2 diagonal matrix so the
(= routine automatically ignores the off diagonal terms
(#  during the multiplication.

(=

(= Called By:

(= Procedure Calculate_y

(* Procedure Calculate_Gradient

(= Routines Called: lione

(= Variables:

(= V2I[j] : the resulting vector imeginary component
(= V2R[j]1 : the resulting vector real component

(=

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

(tt‘#““‘*“tt’ttttttttttt#tttttt‘ttttt‘t“tt‘tttttt"t‘t*t“tt)

Procedure Perform_Matrix_Multiply(var MR,MI,VR,VI: Realarrayl2);

Var
j:integer;
dR1,dR2,dIi1,d12:double,
RR1,RR2,RI1,RI2:real;

Begin

For j:=1 to 2¢K Do
begin
dR1:=MR[jI*VR[j]:
dR2:=-(MI[jI*VI{j]);
RR1:=dR%;
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RR2:=dR2;

V2R[j] :=RR1+RR2;
dI1:=MR[jI*VI[j];
dr2:=MI[jI*VR[j];

RI1:=d4I1;

RI2:=dI2;

V2I[j]:=RI1+RI2;
end;

End;

ok ek ek ook ok ok sk ok o ok o s ook ok o oKk ok sk ok sk ok ok ok Ko ok ok sk ok sk o o ok ok ke oK K K KoK K K ok KoK KKK oK KoK o ok )

(* Procedure Calculate_y *)
(* *)
(* This procedure calculates the output sequence values *)
(* for the current block being processed. The output is *)
(* equal to the last N terms of the inverse FFT of the *)
(* product of X and the complex weight vector. *)
(x *)
(* Called By: *)
(* Main Program *)
(* Routines Called: *)
(* P-ocedure FFT *)
(* Procedure Prepare_input_block_for_ FFT *)
(* Procedure Perform_Matrix_Hultiply *)
(* Variables: *)
(* y[j] : filter output *)
(* *)

(333K ko ok o ook ok o ok ok ok sk ok ok ok oK 3K ok o ok ok oK 3k o ok ok o ok K ok K ek o 3 ok o ok K Kok 3 ok o 3k ok ok ok ok ok ok oK )
Procedure Calculate_y;

Var

j:integer;

Begin

Perform_Matrix_Multiply(XR,XI,HR,HI);

isign:=-1;
Prepare_input_block_for FFT;
FFT;

For j:=1 to N Do
y[k*N+j] :=(1/(2xN)) *data[2*% (N+j)-1];

End;
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(***************************************************************)

(* Procedure Calculate_error *)
(* *)
(* This procedure calculates the error sequence values for *)
(* the current block and the complex error vector. *)
(* The error block for the current input *)
(* block equals the current desired block minus the output *)
(x for the current input block. The complex error vector *)
(* E[j], equals the FFT of the zero padded error block: *)
(* FFTN zeros, error block]. *)
(2 *)
(* Called By: *)
(* Main Program *)
(* Routines Called: *)
(* Procedure Prepare_input_block_for_FFT *)
(% Procedure FFT *)
(* Variables: *)
(* ER[j] : real part of the FFT of the error sequence *)
(% for the current block *)
(* EI[j] : imaginary part of the FFT of the error seq *)
(* for the current block *)
(* *)

(***************************************************************)

Procedure Calculate_error;
Var
j:integer;
e:RealArrayN2;

Begin

For j:=1 to N Do
begin
e(j]:=0;
input_block[j]:=e[j];
end;
For j:=N+1 to 2*N Do
Begin
e[j]:=desired [k*N+j-N] -y [k*N+j-N];
input_block[j]:=elj];
error [kxN+j-N]:=e[j];
End;
isign:=1;
Prepare_input_block_for_FFT;
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P e B L G T CE =R N Rt e i R T R POr

FFT;
For j:=1 to 2*N Do
begin
ER[j]:=datal2*j-1];
EI[j):=datal2*j];
end;

End;

(*************************************************************)

(* Procedure Calculate_Gradient *)
(* *)
(** This procedure calculates the gradient sequence for the x*)
(* current block being processed. The gradient sequence *)
(* equals the first N terms of the inverse FFT of the *)
(* product of X conjugate and the error vector E. *)
(* *)
(* Called By: *)
(* Main Program *)
(* Routines Called: *)
(% Procedure Perform_Matrix_Multiply *)
(* Procedure Prepare_input_block_for_FFT *)
(* Procedure FFT *)
(x»  Variables: *)
(* grad[j]: gradient sequence for current block *)
(* *)

(b o sk ok ok ok o K oo o R S K o o o oo Kok RO o O K ROk o ok oo Ok oK ok ok ok ok ok Kok oK ek K Kok )

Procedure Calculate_Gradient;

Var
j:integer;

Begin

Perform_Matrix_Multiply(XR,XI_conj,ER,EI);

isign:=-1; (* calc inverse *)
Prepare_input_block_for_FFT; (*x FFT of X_conj*E *)
FFT;

For j:=1 to N Do
grad{j] :=1/(2xN)*data[2*j-1]; (* grad = 1st N termsx)
For j:=N+1 to 2#N Do (* of inv FFT *)
grad[j]:=0;
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End;

(R AAR A A A A AR F KA A AR KA A AR AR AR A AR AR K KA AAK A F KKK A A
(x Procedure Update_weights
(*

(*  This procedure updates the filters complex weights. The
(*  new weights equal the old weights plus the product of the
(* gain constant and the complex gradient vector. The

(*  complex gradient vector equals the FFT ¢f the gradient

(*  sequence padded with N zeros: FFT[(grad seq), N zeros].

(*

(% Called By:

(% Main Program

(* Routines Called:

(* Procedure Prepare_input_block_for_FFT

(x Procedure FFT

(x Variables:

(* HR{j] : real part of complex weight vector

(* HI[j] : imaginary part of complex weight vector

(**************************************************************

Procedure Update_weights;

Var
tap, j:integer;

Begin

For j:=1 to 2*N Do
input_block[j] :=grad(jl;
isign:=1;
Prepare_input_block_for_FFT;
FFT;
For tap:=1 to 2*N Do
begin
HR[tap] :=HR[tap]+muxdatal[2*tap-1];
HI[tap] :=HI[tap]l+mu*data[2+*tap];
end;

End;
(oo Aok ok ok ok Kok 4 sk ook ko Kok oK Kok ok ok o o ok R R Rk ok ok Aok ok ok )
(* Procedure time_domain_wts *)

(* *)

[*-50
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*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)




(koo ok ok okokok ook ok ok ok ook sk ook ok o ok oK KK KK KKK R K Kok K Ko ok ok ok ko ook )
Procedure time_domain_wts;

Var
j:integer;
Begin
For j:=1 to 2xN Do
Begin
V2R[j] :=HR[j];
V2I[3]:=HI[j];
(* WriteLn(Lst, * H(’, j,?)= ’,HR[j],’+i ?,HI[j1); *)
End;
izigni=-1;
Prepare_input_block_for_FFT;
FFT;

(*  WriteLn(Lst, ’Block ’,k); *)
For j:=1 to 2%N Do
Begin
WR[j1:=(1/(2%N))xdata[2*j-1];
WI[jJ:=(1/(2*N))*datal2*j];
End;
End;
ettt s sk o o ok ok o o s o K K ok o o K K Ko o o Kok 3K sk o o ko o ok sk ok ok ok ok ok ok sk Kok ok ok ok ok ok )
(exxoiokksokkdooookokfopokck Main Program kxkssonkokkskokiokkokiokkokokkkok )
(et ok sk ok ok sk ook ok ook o o ok o o o ko o oKk sk ok oK Kok oKk ok ok o K K A koo oKk KKk Rk oK )

Begin
Open_input_files;
Open_output_files;
Init_var;
Load_input;
Load_desired;
ClockOn; (* Turn clock on *)
Calc_numblocks;
Calculate_avg_input_bin_pwr;
Calculate_mu;
For k:=0 to Block_num-1 Do
Begin
Writeln( ’ processing block’, k);
Past_current_block;
Diagonal_of _X;
Calculate_y;
Calculate_error;
Conjugate_X;




Calculate_gradient;
Update_weights;
time_domain_wts;

end;
(* ClockOff; *) (*Display elapsed timex)
(* WriteLn; *)
(* Write(’Press Enter...’); *)
(* ReadLn; *)

(x time_domain

Write_output;
Close_input_files;
Close_output_files;

End.




F.4 TDF Filter Listing
This is the Turbo Pascal 6.0 listing of the TDF program.

Program TDF;
{$N+}
Uses Printer,CRT,DOS;

CONST
datasize=992;
N=16;
Misadjust=0.1;
TYPE
Realarray=ARRAY[0..datasize-1] of real;
RealarrayN=ARRAY[O..N-1] of real;

VAR

k:Integer;

h,m,s,s100:Word;

Mu,Px,StartClock,StopClock:Real;
errorfile.outfile,infile,desiredfile:Text;

error,desired, input,output:Realarray;

weight_array:RealarraylN;
weightO,weightl,weight2,weight3,veight4,weight5,veight6,ueight7:text;

(oo ook st sk ok ok ook ok KoK o 10K KKK R Aok 3K sk K o ok Ak ok sk ook ok ok ok ok Kok ok ook )
{Rokskokrgocktookiokek Initialize Variables sokkssoksksoksksrsdkk ok koriokkiokkikkior)
(ko ok ok ok koo koo A ok K o Kk ok K 3ok SRR KoK Ok A Kok KK AR K AR ok ok ok Aok Kok Aok ok ok ok )
Procedure Init_Var;

Ver
j:integer;
Begin
For j:=0 to datasize-1 Do
Begin

desired{j]:=0.0;
error(j]:=0.0;
input[j]:=0.0;
output(jJ:=0.0;
End;
For j:=0 to N-1 Do




Weight_array[j]:=0;
End;
(ot s ok ok koo sk ok o oKk ok oo skok Aok ok okl ok ko ok ko sk ok sk ok ok okok )
Procedure Open_input_files;
Begin
Assign(infile, ’A:S53N.Dat’);
Assign(desiredfile, 'A:S5.Dat’);
Reset(infile);
Reset(desiredfile);
End;
(ko ok ok ok ok ok ok sk ook ok ook sk ok ok sk ok ook ook ok sk ook ok sk ok o ok Rk ok ook ok )
Procedure Open_output_files;
Begin
Assign(errorfile, ’B:TFS3SNE.Dat’);
Rewrite(errorfile);
(* Assign(outfile, ’B:TFS4SNY.Dat’);  *)
(* Rewrite(outfile); *)

End;
(**********************************************************)
Procedure Close_input_files;

Begin

Close(infile);
Close(desiredfile);

End;
(**********************************************************)
Procedure Close_output_files;

Begin

Close(errorfile);
(* Close(outfile); *)

End;
(**************************************************************)
Procedure Load_input;

Var

j:integer;

Begin

For j:=0 to datasize-1 Do
ReadLn(infile, input(jl);

End;
(*****************************k********************************)
Procedure Load_desired;

Var

j:integer;

Begin




For j:=0 to datasize-1 Do
ReadLn(desiredfile, desired[j]);
End;
(esodok ok tofooR o kR R ok o ok Sk o 3ok oK ok ok oo o ok sk ok ok sk o ok ok ok ok ok ko ok ook ok Ko Kok ok ok ok ok ok )
Procedure ClockOn;
Begin
GetTime(h,m,s,s100);
StartClock:=(h*3600)+(m*60)+s+(s100/100) ;
End;
(oo skt ok oo ok R K Kok o ok o KoK K KKK o ok Sk ok ko ok kK ok ok ok o ok )
Procedure ClockOff;
Begin
GetTime(h,m,s,s100);
StopClock:=(h*3600)+(m*60)+s+(s100/100);
WriteLn(’Elapsed time = ’,(StopClock-StartClock):0:2);
End;
(**************************************************************)
Procedure Write_output;
Var
j:integer;
Begin
For j:=0 to datasize-1 Do
Begin
(* WriteLn(outfile, output[jl); *)
WriteLn(errorfile,error(jl);
End;
End;
(*************************************************************)

Procedure Calculate_mu;

Var
j:integer;
Begin
Px:=0;
For j:=0 to datasize-1 Do
Px:=Px+Sqr(input[j])*(1/datasize);
mu:=(1/N)*(1/Px)*Misdjust;
(* WriteLn(Lst, ’ mu= ’, mu); *)
(* Writeln(Lst, ’ Signal Power = ’,Px); *)

End;

(tt****#**#*#*******t#**t**t*******‘**#t***tt*t**t**t***t***)
Procedure Calculate_y;

Var
j:integer;




sum_var:real;
Label End_loop;
Begin
sum_var:=0;
For j:=0 to N-1 Do
Begin
If (k-j<0) Then Goto End_loop;
sum_var:=sum_var+weight_array[jl*input[k-j];

End_loop:
End;
output [k] : =sum_var;

End;
(ke ok o o o e K oK oK K K o o ok o oK oK Ko ok o o o Kok K o ok ok sk ok ok ok o ok ok o o ok ok sk ok ok ok 3 o o ok ok ok ok ok )
Procedure Calculate_error;
Begin
error (k] :=desired[k]-output[k];

End;
(**************************************************************)

Procedure Update_weights;

Var
j:integer;
Label Skip_wt_update;
Begin
For j:=0 to N-1 Do
Begin
If (k-j<0) then Goto Skip_wt_update;
weight_array[j]:=veight_array[jl+
2xmuxerror (k] *input[k-jJ;
Skip_wt_update:
End;
End;

(€I R I TS IIT L))

Procedure Store_weights;
Var
j:integer;
Begin
For j:=0 to N-1 Do
Begin
If j=0 then
WriteLn(Lst,weight_array[jl);
If j=1 then
WriteLn(Lst,weight_array(jl);
If j=2 then
WriteLn(Lst,weight_array(jl);
If j=3 then
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WriteLn(Lst,weight_array[j]);
If j=4 then
WriteLn(Lst,weight_array[jl);
If j=5 then
WriteLn(Lst,weight_array(jl);
If j=6 then
WriteLn(Lst,weight_array[j]);
If j=7 then
WriteLn(Lst,weight_array[j]);
End;
End;

(*********************************************************************)
(ks ok ook o ok o e oK Kok ok o ok ok ok o ok Main Program AR ok ok doF sk Rk koK ok ok KKKk )
(*********************************************************************)
Begin

Open_input_files;

Open_output_files;

Init_Var;

Load_input;

Load_desired;
(* ClockOn; =)

Calculate_mu;

For k:=0 to datasize-1 Do
Begin
Calculate_y;
Calculate_error;
Update_weights;
(*+  Store_ueights; *)

End;
(= Store_weights;  *)
(* ClockOff; =*) (#Display elapsed time#*)
(* Writeln; *)
(* Write(’Press Enter...’); *)
(* ReadlLn; *)

Write_output;
Close_input_files;
Close_output_files;

End.
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