
AD-A243 676 ION PAGE FormAoved
OPM No. 0704-0188

neeed ad eve TI! 1 O W W &P~dOfths ~in f Wnraton ik~ngsugoaseton for redwci thinbdetoWs hnlf

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
TeleSoft, TeleGen2 Ada Cross Development System, Version 3.1, for VAX to 80386,

VAX Cluster (2 VAX to 80386 (Host) to Intel SBC 386-120 (80386)(Target),

91032511.11139
6. AUTHOR(S)

IABG-AVF
OttobIinn, Federal Republic of Germany

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) 8. PERFORMING ORGANIZATION

IABG-AVF, Industrieanlagen-Betriebsgeselschaft REPORT NUMBER

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 092
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081 O T IC__
11. SUPPLEMENTARY NOTES 15 ELr'_CT i' "w

OCT 0 7 1991 I-

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

TeleSoft, TeleGen2 Ada Cross Development System, Version 3.1, for VAX to 80386, Ottobrunn Germany, VAX Cluster (2
VAX to 80386 (Host) to Intel SBC 386-120 (80386)(Target),ACVC 1.11

91-12443
I l IM ,l 1 1i I H 1 1 11i i i l l

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

91 10 3 178 Prescribd by ANSI Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 91-03-25.

Compiler Name and Version: TeleGen2T" Ada Cross Development System,

Version 3.1, for VAX to 80386

Host Computer System: VAX Cluster with 2 VAX 6210 under VMS 5.3

Target Computer System: Intel SBC 386-120 (Intel 80386)
with TeleAda-EXEC runtime, Version 1.0

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
#91032511.11139 is awarded to TeleSoft. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

(JL JJ
IABG, Abt. ITE 'I i'
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany J- .t fic

By.......
Distr;b : ,,

SAla V i _Organization

Director, uter & Software Engineering Division
Institute r Defense Analyses
Alexandria VA 22311 Dist Sp.c,

/~ Ada Joint rogram Ofice
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

,4 '

AVF Control Number: IABG-VSR 092
25 March 1991

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 91032511.11139
TeleSoft

TeleGen2TN Ada Cross Development System
Version 3.1, for VAX to 80386
VAX Cluster (2 VAX 6210) =>
Intel SEC 386-120 (80386)

based on TEMPLATE Version 91-01-10

Prepared By:
IABG mbH, Abt. ITE
Einsteinstr. 20
W-8012 Ottobrunn

Germany

Declaration of Conformance

Customer: Telesoft
Ada Validation Facility: IABG

ACVC Version: 1.11

Ada Implementation

Ada Compiler Name: TeleGen2Tm Ada Cross Development System,

Version 3.1 for VAX/VMS to 386

Host Computer System: VAX 6210 under VMS 5.3

Target Computer System: Intel SBC 386-120 (80386/387) board

with TeleAda-EXEC runtime

Customer's Declaration:

I the undersigned representing Telesoft declare that Telesoft has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD- 1815A,
ISO 8652-1987, in the implementation listed in this declaration.

Date: March 22, 1991

StefnB*so

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

This Validation Summary Report describes the extent to vhich a
specific Ada compiler conforms to the Ada Standard, ANSI/HIL-STD-1815A.
This report explains all technical terms used vithin it and thoroughly
reports the results ot ..xtsting this compiler using the Ada Compiler
Validation Capability OrVY) . An Ada compiler. must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.h

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist betveen implementations.
The Ada Standard permits some implementation dependencies- for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardvare, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
54- won -in 1 sport.)

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized jests, the ACVC, as inputs to an Ada compiler and
evaluating the results.SThe purpose of validating is to ensure conformity
of the compiler to the AIa Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-depeodent b* is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and dur execution.

1-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada

Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.

For any technical terms used in this report, the reader is referred to

(Pro90]. A detailed description of the ACVC may be found in the current

ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.

In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only

to the computers, operating systems, and compiler versions identified in

this report.

The organizations represented on the signature page of this report do not

represent or warrant that all statements set forth in this report are

accurate and complete, or that the subject implementation has no

nonconformities to the Ada Standard other than those presented. Copies of

this report are available to the public from the AVF which performed this

validation or from:

National Technical Information Service
5285 Port Royal Road

Springfield VA 22161

Questions regarding this report or the validation test results should be

directed to the AVF which performed this validation or to:

Ada Validation Organization

Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311

1-2

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90) Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECKFILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

- 1-3

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described
in the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-4

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of.A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial
or complete hardware implementations are possible.

Target A computer system where the executable form cf Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used i,. conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is availakle from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 91-03-14.

E28005C B28006C C34006D C35508I C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A A74006A C74308A B83022B B83022H B83025B
B83025D B83026B C83026A C83041A B85001L C86001F

C94021A C97116A C98003B BA2011A CB7001A CB7001B
CB7004A CC1223A BC1226A CC1226B BC3009B BDlB02B
BD1B06A AD1B08A BD2AO2A CD2A21E CD2A23E CD2A32A
CD2A41A CD2A4lE CD2A87A CD2BI5C BD3006A BD4008A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B AD7206A BD8002A
BD8004C CD9005A CD9005B CDA201E CE21071 CE2117A
CE2117B CE2119B CE2205B CE2405A CE3111C CE3116A
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L. .Y (14 tests)
C35706L..Y (14 tests) C35707L. .Y (14 tests)
C35708L..Y (14 tests) C35802L. .Z (15 tests)
C45241L..Y (14 tests) C45321L. .Y (14 tests)
C45421L..Y (14 tests) C45521L .Z (15 tests)
C45524L..Z (15 tests) C45621L .Z (15 tests)
C45641L..Y (14 tests) C46012L .Z (15 tests)

The following 21 tests check for the predefined type SHORTINTEGER:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or
SHORTINTEGER.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C46013B, C46031B, C46033B, and C46034B contain 'SMALL representation
clauses which are not powers of an integer.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINEOVERFLOWS is FALSE for floating point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

B86001Y checks for a predefined fixed-point type other than DURATION.

CA2009C, CA2009F, BC3204C, and BC3205D check whether a generic unit can
be instantiated BEFORE its generic body (and any of its subunits) is
compiled. This implementation creates a dependence on generic units
as allowed by AI-00408 and AI-00530 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3)

LA3004B, EA3004D, and CA3004F check for pragma INLINE for functions.

CD1009C uses a representation clause specifying a non-default size
for a floating-point type.

CD2 84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPENDENCIES

AE2101C and EE22O1D. .E (2 tests) use instantiations of package

SEQUENTIAL_-10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected by
this compiler.

AE21O1H, EE24O1D, and EE2401G use instantiation~s of package DIRECT_.f10
with unconstrained array types and record types with discriminants
without defaults. These instantiations are rejected by this compiler.

The following 264 tests check for sequential, text, and direct access
files:

CE21O2A. .C (3) CE2lO2G. .H (2) CE21.02K CE2lO2N. .Y (12)
CE21O3C. .D (2) CE21O4A. .D (4) CE21O5A. .B (2) CE21OEA. .B (2)
CE21O7A. .H (8) CE2107L CE21O8A. .H (8) CE21O9A. .C (3)
CE2110A. .D (4) CE2lllA. .I (9) CE2115A. .B (2) CE212OA. .B (2)
CE2201A. .C (3) EE22O1D. .E (2) CE22O1F. .N (9) CE2203A
CE2204A. .D (4) CE2205A CE2206A CE2208B
CE2401A. .C (3) EE2401D CE2401E. .F (2) EE240IG
CE24O1H. .L (5) CE2403A CE2404A. .B (2) CE2405B
CE2406A CE2407A. .B (2) CE2408A. .B (2) CE2409A. .B (2)

CE24lOA. .B (2) CE2411A CE31O2A. .C (3) CE31O2F. .H (3)
CE31O2J. .K (2) CE3103A CE3104A. .C (3) CE31O6A. .B (2)
CE3107B CE31O8A. .B (2) CE3109A CE3110A
CE3111A. .B (2) CE31llD. .E (2) CE32.12A. .D (4) CE31l4A. .B (2)

CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C. .D (2) CE3403A. .C (3)
CE3403E. .F (2) CE3404B. .D (3) CF3405A EE3405B
CE3405C. .D (2) CE3406A. .D (4) CE3407A. .C (3) CE3408A. .C (3)
CE3409A CE3409C. .E (3) EE3409F CE3410A
CE341OC. .E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A. .C (3) CE3414A
CE3602A. .D (4) CE3603A CE3604A. .B (2) CE3605A. .E (5)
CE3606A. .B (2) CE3704A. .F (6) CE3704M. .0 (3) CE3705A. .E (5)
CE3706D CE3706F. .G (2) CE3804A. .P (16) CE3805A. .B (2)
CE3806A. .B (2) CE3806'D. .E (2) CE38OEG. .H (2) CE3904A. .B (2)
CE3905A. .C (3) CE3905L CE3906A. .C (3) CE3906E. .F (2)

2.3 TEST MODIFICATIONS

modifications (see section 1.3) were required for 12 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B71001Q BA3006A BA3006B BA3007B BA3008A
BA3008B BA3013A

CA2009C, CA2009F, BC3204C, and BC3205D were graded inapplicable by
Evaluation Modification as directed by the AVO. Because the implementation

2-3

IMPLEMENTATION DEPENDENCIES

makes the units with instantiations obsolete (see section 2.2), the Class C
tests were rejected at link time and the Class B tests were compiled
without error.

CE3901A was graded passed by Test Modification as directed by the AVO. This
test expects that the checks at line 60 & 70 cannot be meaningfully made
for implementations that do not support external files, since these checks
depend on the creation of an external file. This implementation does
support external access to the console, and so the Report.LegalFilename
call within the call to create an external file at line 52 was replaced by
the string "CONSOLE:".

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for both technical and sales information about this
Ada implementation system, see:

TeleSoft Europe
Bryggargatan 6
P.O. Box 1001
S-14901 Nynashamn
Sweden

Testing of this Ada implementation was conducted at the customer's site
by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90.

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3546
b) Total Number of Withdrawn Tests 93
c) Processed Inapplicable Tests 66
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 531 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

The above number of I/O tests were not processed because this
implementation does not support a file system.
The above number of floating-point tests were not processed because
they used floating-point precision exceeding that supported by the
implementation.
When this compiler was tested, the tests listed in section 2.1 had
been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler
was tested, the tests listed in section 2.1 had been withdrawn because of
test errors. The AVF determined that 531 tests were inapplicable to this
implementation. All inapplicable tests'were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation and 264 executable tests
that use file operations not supported by the implementation. In addition,
the modified tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded via DECNET onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by a serial interface, and run. The results were captured on the
host computer system.

Test output, compiler and linker listings, and job logs were captured on
a magnetic tape and archived at the AVF. The listings examined on-site
by the validation team were also archived.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts prov4.ded by the customer and
reviewed by the validation team. See Appendix B for a complete listing
of the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test are given on the next page, which was supplied by the
customer.

3-3

1.11 Validation
VAX/E386

Compiler Option Information

B-TESTS:

TSADA/E386/ADA/MONITORi/LIBFILE-<BIN NAME>/VIRTUALSPACE-3000/OPTIMIZE/LIST
<TESTNAME>

TSADA/E386/ADA invoke Ada compiler
LIST generate source listing

MONITOR verbose

OFrIMIZE optimize with all options
LIBFILE=<BINNAME> each bin gets its own library list allowing multiple

compiles in the same directory and setting up a new
library for each compilation

<TEST NAME> name of Ada source file to be compiled
VIRTUAL_SPACE=3000 set virtual space of the library manager greater than

default

1.11 Validation

VAX/E386

EXECUTABLE TESTS:

TSADA/E386/ADA/MONITOR/LIBFILE-<BINNAME>/VIRTUALSPACE=3000/OPTIMIZE

/LIST/BIND-<MAINNAME> <TESTNAME>

TSADAIE386/ADA invoke Ada compiler
LIST generate source listing

MONITOR verbose

OPTIMIZE optimize with all options
LIBFI1LE=<BIN_NAME> each bin gets its own library list allowing multiple

compiles in the same directory and setting up a new
library for each compilation

<TEST_NAME> name of Ada source file to be compiled
VIRTUALSPACE=3000 set virtual space of the library manager greater than

default
BIND=<MAINNAME> generate a bind with the the main program of

I <MAIN NAME>

TSADA/E386/LINK/LIBFILE-<BINNAME>/OPT-<OPTIONS_FILE>

/LOADMODULE <MAINNAME>

Legend:

TSADA/E386/LINK invoke Ada linker
LIBFILE=<BINNAME> each bin gets its own library list allowing multiple

compiles in the same directory and setting up a new
library for each compilation

OPT=<OPTIONS_FILE> options file appropriate for target configuration
LOADMODULE output executable in Telesoft execute form suitable

for downloading to enhance speed

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 200 -- Value of V

$BIGIDI (I..V-1 => 'A', V => '1')

$BIGID2 (1..V-I => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(1..V-l-V/2 => 'A')

$BIGID4 (I..V/2 => 'A') & '4' &
(1..V-1-V/2 => 'A')

$BIGINTLIT (I..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 -> '0') & "690.0"

$BIGSTRINGi '"' & (1..V/2 => 'A') & 'll

$BIGSTRING2 '"' & (1..V-1-V/2 => 'A') & 'I' & '-'

$BLANKS (l..V-20 => '

SMAX LEN INTBASED LITERAL
"2:" & (1..V-5 => '0') & "I :"

SMAXLENREALBASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL "CCCCCCC1OCCCCCCCC20CCCCCCCC30CCCCCCCC40
CCCCCCCC50CCCCCCCC60 CCCCCCCC70 CCCCCCCC 80

CCCCCCCC90CCCCCCC100CCCCCCC11OCCCCCCC120
CCCCCCC13OCCCCCCC14OCCCCCCC15CCCCCCC 160
CCCCCCC170CCCCCCC18OCCCCCCC19OCCCCCC199"

A-I

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

SACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2_147_483_646

$DEFAULTMEMSIZE 2147483647

$DEFAULTSTORUNIT 8

$DEFAULTSYSNAME Ada386

$DELTA-DOG 2#1.0#E-31

$ENTRYADDRESS ENT-ADDRESS

$ENTRYADDRESS1 ENTADDRESS1

$ENTRY ADDRESS2 ENTADDRESS2

$FIELDLAST 1000

$FILETERMINATOR

$FIXEDNAME NOSUCHFIXEDTYPE

$FLOATNAME NOSUCHFLOATTYPE

$FORMSTRING

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY'I

$GREATERTHANDURATION
100_000.0

$GREATERTHANDURATIONBASELAST
131_073.0

$GREATERTHANFLOATBASELAST

1. 80141E+38

$GREATERTHANFLOAT SAFELARGE

4. 25354E+37

$GREATERTHANSHORTFLOATSAFELARGE
1. 80141E+38

$HIGHPRIORITY 63

A-2

MACRO PARAMETERS

SILLEGALEXTERNALFILENAMEl

BADCHAR*^/%

$ILLEGALEXTERNALFILENAME2
INONAMEIDIRECTORY

$ INAPPROPRIATELINELENGTH
-1

S INAPPROPRIATEPAGELENGTH
-1

$ INCLUDEPRAGMAI PRAGMA INCLUDE ("A28006D1 .ADA")

SINCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006E1.AD)A")

$INTEGERFIRST -32768

SINTEGERLAST 32767

SINTEGERLASTPLUS_1 32768

5 INTERFACELANGUAGE ASSEMBLY

$LESSTHAN DURATION -100_000.0

SLESSTHANDURATIONBASEFIRST

-131_073.0

SLIMETERMINATOR I'

SLOWPRIORITY 0

SMACHINECODESTATEMENT

1386_CODE' (OP => NOP);

SMACHINECODETYPE OPCODES

SMANTISSADOC 31

SMAXDIGITS 15

$MAXINT 2147483647

SMAXINTPLUS 1 2_147_483_648

$MININT -2147483648

$NAME NOSUCHTYPEAVAILABLE

SNAMELIST TELEGEN2

SNAMESPECIFICATION1 ACVC: (TEMP]X2120A.;l

SNAMESPECIFICATION2 ACVC: [TEMPJX212OB.;l

A- 3

MACRO PARAMETERS

SNAMESPECIFICATION3 ACVC: (TEMP]X3119A.;1

SNEGBASEDINT 16#FFFFFFFE#

$NEWMEMSIZE 2147483647

$NEWSTORUNIT 8

SNEWSYSNAME TELEGEN2

$PAGETERMINATOR ASCII.FF

$RECORDDEFINITION RECORD OP OPCODES; END RECORD;

$RECORDNAME 1386_CODE

STASI(_SIZE 32

$TASKSTORAGESIZE 1024

$TICK 0.01

$VARIABLEADDRESS VARADDRESS

SVARIABLEADDRESS1 VARADDRESS1

$VARIABLEADDRESS2 VAR_-ADDRESS2

A- 4

APPENDIX B

COMPILATION SYSTEM AND LINKER OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and not
to this report.

B-i

Ada-386 User's Guide for VAX/VMS Systems

Table 3-1. Compiler Command Qualifiers.

Qualifier Name Action Default

'ABORT COUNT=<value> Specify maximum errors/warnings. 999

/iNO!BIND /BIND runs the Binder on unit iNOBIND
I=<main-unit>; being compiled or on unit specified.

/CONTEXT Request <value> context lines on each 1
-<value> side of an error in error listing.

/JNOIDEBUG /,DEBUG enables generation of iNODEBUG
information for the Source Level Debugger.

/INPUTLIST Input file contains names of files File contains
to be compiled, not Ada source. Ada sourre.

/LIBFILE=<file spec > Specify name of library file. LIBLST.ALB

/!NOILIST /LIST creates listing file. Default name /NOLIST
[=<filespec>] is <source file name>.LIS, or

<file_ spec>.LIS, if specified.

!iNOIMACHINECODE /MACHINECODE requests an ASM-386 /NOMACHINECODE
1<.file_spec>I listing, which is sent to <compunit>.AS3

or to <file spec>, if specified.

/:NO'MONITOR /MONITOR requests progress messages. /NOMONITOR

,/:NOiOBJECT /NOOBJECT restricts compilation to /OBJECT
syntactic and semantic analysis.

/[NO'OFFSET /OFFSET includes hex offsets NOOFFSET
in an assembly listing.

/NOiOPTIMIZE ,OPTIMIZE causes Optimizer to be iNOOPTIMIZE
=(<option>{.<option>J) run on unit(s) being compiled.

!<qualifier>;

/'NOPROFILE PROFILE causes execution profile cnde 'NOPROFILE
to be output in generated object code.

NO SQUEEZE SQUEEZE deletes unneeded intermediate SQUEEZE
unit information after compilation. (,'NOSQUEEZE if DEBUG

or iNOOBJECT)
:NO SUPPRESS SUPPRESS suppresses selected run-time /NOSUPPRESS
(=<option> {..<option> }) checks and/or source line references

in generated object code.

[TEMPLIB Specify a temporary library None.
=(<sublib .- sublib>}) containing listed sublibraries.

NO UPDATE UPDATE updates the working sublibrary /UPDATE
after each successful compilation.

3.4.2.2. Using a List File: /INPUTLIST. The /INPUTLIST qualifier instructs the
compiler that the command line parameter is a list file specification and that the file contains a

list of source file specifications for units to be compiled. The list file must contain one source file
specification per line. For example, to compile source files CALC ARITH.ADA and
CALCMEM.ADA in the current default directory and file CALCIO.ADA in directory
!CIOS RC1, first prepare a file CALC COMPILE.LIS containing the following text:

481048-002 3-6 UG-1206-Vi .4

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implemntation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are given on the following page.

C-i

1.1 1 Validation

VAX/E386

Attachment F: Package Standard Information
For the VAX/E386 Ada compiler running on a VAX Server under VMS 5.3 Operating System, the
numeric types and their properties are as follows:

Integer types:
INTEGER

size = 16
first =-32768
last = +32767

LONG_ThNTEGER
size =32
first - -2147483648
last - +2147483647

Floating-point types:
FLOAT

size = 32
digits =6
'first = -1.70141E+38
'last = +1.70141E+38
machineradix = 2
machine_mantissa = 24
machine_emin = -125
machineemax =+128

LONGFLOAT
size = 64
digits = 15
'first = -1.79769E+308
'last = 1.79769E+308
machine_radix = 2
machinemantissa = 53
machine_ernin= -1021
machine_emax = + 1024

Fixed-point types:
DURATION

size = 32
delta = 2#1.0#e-14
first = -86400
last = +86400

Ada-386 User's Guide for VAX/VMS Systems

Table C-3. Attributes of Type Duration.

Attribute Value

'Delta 2 ** (-14)
'First -86400
'Last 86400

(LRM 9.81 Priorities

The compiler provides sixty-four levels of priority to associate with tasks using pragma
Priority. Package System specifies the predefined subtype Priority as:

subtype Priority is Integer range 0..63;

The default priority assigned to tasks without a pragma Priority specification is (Priority'First +
Priority'Last) / 2 (i.e., 31).

[LRM 9.11] Shared Variables

The restrictions on shared variables are only those specified in the LRM.

C.5. LRM Chapter 10 - Program Structure and Compilation Issues

[LRM 10.11 Compilation Units - Library Units

All main programs are required to be either parameterless procedures or parameterless
functions that return an integer result type.

C.6. LRM Chapter 11 - Exceptions

[LRM 11.1] Exception Declarations

The compiler raises Numeric Error for integer or floating point overflow and for division-
by-zero situations. Floating point underflow yields a result of zero without raising an exception.

The compiler raises ProgramError and StorageError in those situations that are specified
in LRM Section 11.1.

C.7. LRM Chapter 13 - Representation Clauses and Implementation-Dependent
Features"

The compiler supports most LRM Chapter 13 facilities. The sections below document those
LRM Chapter 13 facilities that are not implemented or that have implementation restrictions.
Facilities implemented exactly as described in the LRM are not mentioned.

ILRM 13.11 Representation Clauses

Records that are packed using pragma Pack follow these conventions:

481048-002 C-4 U G- 1206- VI. 4

LRM ANNOTATIONS

1. The allocated size of each component is always a power of 2 (1, 2, 4, ...).

2. Components of records can cross word boundaries.

3. Components that are composite types (arrays and records) are always allocated on a
System.Storage_Unit (8-bit or word) boundary.

Refer to Section 6.8 for examples that illustrate these points.

[LRM 13.2] Length Clauses

A length clause specifies an amount of storage associated with a type.

(a) Size specification: T'Size

The prefix T denotes an object. The size specification must allow for enough storage space
to accommodate every allowable value of these objects. The constraints on the object and on its
subcomponents (if any) must be static. For an unconstrained array type, the index subtypes
must also be static.

For discrete and fixed-point types (integer, enumeration (including character, Boolean)), the
minimum specifiable size (Min Size) is somewhat target-dependent. For ADA386, the Min Size
is the smallest number of bits logically required to hold any value in the range, no sign bit is
allocated for non-negative ranges. Biased representations are not supported; e.g., a range of 100
.. 101 requires 7 bits, not 1.

Warning: in V3.23.06, using a size clause for a discrete type may cause inefficient code to be
generated. For example, consider an integer type Nibble:

type Nibble is range 0 .. 15;
for Nibble'Size use 4;

Each object of type Nibble'will occupy only 4 bits, and relatively expensive bit-field instructions
will be used for operations on Nibbles. (A single declared object of type Nibble will be aligned on

a storage-unit boundary, however.)

For access types, the simple expression in the size clause must be equal to 16. This includes
task types, which are implemented as access types.

For floating-point types, the simple expression must be equal to the required hardware

length for the type (32 or 48).

For composite (array or record) types. a size clause acts like an implicit pragma Pack.
followed by a check that the resulting size is no greater than the requested size. Note that the
composite type will be packed whether or not it is necessary to meet the requested size. The size
clause for a record must be a multiple of storage units (8 for s).

(b) Specification of collection size: T'Storage_Size

A collection is the entire set of objects created by evaluation of allocators for an access type.
The prefix T denotes an access type. Given an access type AccType, a length clause for a
collection allocated using Acc _Type objects might look as follows:

for Acc_Type'StorageSize use 64;

For ADA386, this length clause allocates from the heap 64 words of contiguous memory for
objects created by AccType allocators. Every time a new object is created, it is put into the
remaining free part of the memory allocated for the collection, provided there is adequate space
remaining in the collection. Otherwise, StorageError is raised.

UG-1206-VI.4 C-5 481048-002

Ada-386 User's Guide for VAX/VMS Systems

Keeping the objects in a contiguous span of memory allows system storage reclamation

routines to deallocate and manage the space when it is no longer needed. Pragma Controlled can

prevent the deallocation of a specified collection of oo.iects. Objects can be explicitly deallocated
by calling the Unchecked _Deallocation procedure instantiated for the object and access types.

Header Record

In this configuration of ADA386, information needed to manage storage blocks in a
collection is stored in a collection header that requires 24 bytes of memory. adjacent to the

collection, in addition to the value specified in the length clause.

Minimum Size

When an object is deallocated from a collection, a record containing link and size
information for the space is put in the deallocated space as a placehoider. This enables the space

to be located and reallocated. The space allocated for an object must therefore have the

minimum size needed for the placeholder record. For this TeleGen2 configuration, this minimum
size is the sum of the sizes of an access type ard a integer type, or 8 bytes.

Dynamically-Sized Objects

When a dynamically-sized object is allocated, a record requiring 2 bytes accompanies it to
keep track of the size of the object for when it is put on the free list. The record is used to set the

size Feld in the placeholder record since compaction may modify the value.

Size Expressions

Instead of specifying an integer in the length clause, you can use an expression to specify
storage for a given number of objects. For example, suppose an access type DictRef references a
record Symbol _Rec containing five fields:

type Tag is String(1..8);

type Symbol_Rec;
type DictRef is access Symbol_Rec;

type Symbol_Rec is
record
Left :Dict Ref;
Right : DictRef;
Parent : DictRef;
Value : Integer;
Key : Tag;

end record;

To allocate ten Symbol _Rec objects. you could use an expression such as:

for DictRef'Storage_Size use ((Symbol_Rec'Size * 10)+24);

where 24 bytes is the extra space needed for the header record. (SymbolRec is obviously larger
than the minimum size required. which is equivalent to one access type and an integer.)

In another application, Symbol Rec might be a variant record that uses a variable length
for the string Key:

type Symbol_Rec(Last : Natural :=0) is
record
Left :Dict Ref;
Right : Dict-Ref;

481048-002 C-6 UG-1206-Vi .4

LRM ANNOTATIONS

Parent :Dict Ref;
Value : Integer;
Key String(l..Last);

end record;

In this case, Symbol _Rec objects would be dynamically sized depending on the length of the
string for Key. Using a length clause for DictRef as above would then be illegal since
Symbol Rec'Size cannot be consistently determined. A length clause for SymbolRec objects, as
described in (a) above, would be illegal since not all components of SymbolRec are static. As
defined, a SymbolRec object could conceivably have a Key string with Integer'Last number of
characters.

(c) Specification of storage for a task activation: T'StorageSize

The prefix T denotes a task type. A length clause for a task type specifies the number of
storage units to be reserved for an activation of a task of the type. For ADA386, the stack size is

specified by the Linker options constant TASKSTACK SIZE. In the Linker options file

provided, the default stack size is 4000 storage units (bytes).

(d) Specification of 'Small for a fixed point type: T'Small

Small is the absolute precision, a positive real number, while the prefix T denotes the first
named subtype of a fixed point type. Elaboration of a real type defines a set of model numbers.
T'Small is generally a power of two, and model numbers are generally multiples of this number so
that they can be represented exactly on a binary machine. All other real values are defined in
terms of model numbers using explicit error bounds. For example, suppose T is a fixed type
defined as follows:

type Fixed is delta 0.25 range -10.0 .. 10.0;

Fixed'Small = 0.25, a power of two.
3.0 is a model number (3.0 = 12 * 0.25), but it is not a power of two.

The value of the expression of the length clause must not be greater than the delta of the
first named subtype. The effect of the length clause is to use this value of 'Small for the
representation of values of the fixed point base type. The length clause thereby also affects the
amount of storage for objects that have this type.

If a length clause is not used, for model numbers defined by a fixed point constraint, the
value of Small is defined as the largest power of two that is not greater than the delta of the fixed
accuracy definition.

If a length clause is used, the model numbers are multiples of the specified value for Small.
For the ADA386, the specified value must be (mathematically) equal to either an exact integer or
the reciprocal of an exact integer. Below are some examples of legal and illegal values for Small:

Legal:
1.0, 2.0, 3.0, 4.0,
0.5, 1.0/3.0, 0.25, 1.0/3600.0

Illegal:
2.5, 2.0/3.0, 0.3

The Ada language requires the value specified for 'Small to be no larger than the 'Delta of the
type (13.2:12).

UG-1206-VI.4 C-7 481048-002

Ada-386 User's Guide for VAX/VMS Systems

[LRM 13.31 Enumeration Representation Clauses

The compiler does not support enumeration representation clauses on Boolean types.

[LRM 13.4] Record Representation Clauses

The compiler supports record representation clauses within the following constraints:

1. You must specify each component of the record with a component clause.

2. The alignment of the record is restricted to mod 2, word aligned.

3. The ordering of bits within a byte is right to left, where the high-order bit is at the left.

4. Components can cross word boundaries.

5. Any object of a discrete type of size larger than 8 bits requires a sign bit. In the
example below, the type Actually 11 bits appears to be representable in 10 bits:

type Actually_11_Bits is new Integer range 0..2**10-1;

type Small Rec is record
Isit 10 Bits: Actually_11_Bits;

end record;

for Small Rec use record at mod 2;
Isit 10-Bits : at 0 range 0..9; -- error! Invalid size.

end record;

Since actually 11 bits are used because of the sign bit, the component clause in the
example is illegal.

There are no implementation-dependent names to denote implementation-dependent
components.

[LRM 13.5] Address Clauses

The compiler does not support address clauses for packages or tasks.

For address clauses applied to objects, the compiler interprets a simple expression of type
Address as a position within the linear address space of the 80386. You must use
Unchecked Conversion to the private type System.Address to specify address constants.

[LRM 13.5.1] Interrupts

For interrupt entries, you can give the address of an interrupt descriptor. Refer to Section
6.12.1 for more information.

ILRM 13.6] Change of Representation

The compiler does not support changes of representation for types with record
representation clauses.

[LRM 13.71 The Package System

The compiler does not support pragmas System Name. StorageUnit, and Memory _Size.

[LRM 13.7.21 Representation Attributes

The compiler does not support 'Address for packages or labels.

481048-002 C-8 UG-1206-V.4

LRM ANNOTATIONS

[LRM 13.7.31 Representation Attributes of Real Types

The representation attributes for the predefined floating point types Float and LongFloat
are shown in Table C-2.

[LRM 13.91 Interfaces to Other Languages

The compiler supports pragma Interface to subprograms in Intel languages ASM386, PL/M,
FORTRAN-386, and C-386 if Intel Assemblers and compilers process these routines into Intel
OMF-386 format. The Ada-386 Object Module Importer can convert an OMF-386 module into
Object Form acceptable to the Ada Linker, and the Linker can link the routine with a compiled
Ada-386 program.

[LRM 13.10.21 Unchecked Type Conversions

The compiler allows unchecked conversions between types (or subtypes) Ti and T2 provided
that:

1. They have the same static size.

2. The destination is not an unconstrained record or array type.

3. They are not private, unless they are subtypes of or are derived from System.Address.

4. They are not types with discriminants.

Note that the size used in the unchecked conversion is the 'Size of the target, which may not be
the same as the static size of the target.

C.8. LRM Appendix A - Predefined Language Attributes

The compiler implements the predefined attribute 'Address as described in Section 6.11. The
attribute is not supported for packages or labels.

C.9. LRM Appendix F - Implementation-Dependent Characteristics

The Ada language definition allows for certain target dependencies. These dependencies
must be described in the reference manual for each implementation, in an "Appendix F" that
addresses each point listed in LRM Appendix F. The sections below constitute Appendix F for
this implementation.

C0.91. Implementation-Defined Pragmas. The compiler has four implementation-defined

pragmas: pragma Comment, pragma Linkname, pragma Interrupt, and pragma Images.

Pragma Comment

Use pragma Comment to embed a comment into the object code using the syntax:

pragma Comment(< string_literal>);

where <stringliteral> represents the characters to be embedded in the object code. You can
put pragma Comment at any location within the source code of a compilation unit, except within
the generic formal part of a generic unit. You can enter any number of comments into the object
code using pragma Comment.

Pragma Linkname

UG-1206-VI.4 C-9 481048-002

Ada-386 User's Guide for VAX/VMS Systems

Use pragma Linkname in association with pragma Interface to provide access to a routine
whose name can be specified by an Ada string literal. Pragma Linkname takes two arguments,
the name of the subprogram specified in a pragma Interface and a string literal specifying the
exact link name that the code generator is to use in emitting calls to the associated subprogram.
In the example below, pragma Linkname associates the linkname "DM@ACCESS" with the
procedure DummyAccess used in a pragma Interface specification:

procedure Dummy_Access(DummyArg: System.Address);
pr'agma Interface(Intel, Dummy_Access);
pragma Linkname(DummyAccess, "DMACCESS");

A pragma Linkname specification must immediately follow the pragma Interface for the
associated subprogram or else a warning is issued that the pragma Linkname has no effect.

Pragma Interrupt

Pragma Interrupt is used for function-mapped optimizations of interrupts as described in
Section 6.12.1.6.2. The syntax of this pragma is:

pragma Interrupt (Function Mapping);

Pragma Interrupt has the effect that entry calls to the associated entry, on behalf of an
interrupt, are made with a reduced call overhead.

Pragma Images

Pragma Images controls the creation and allocation of the image table for a specified
enumeration type. The syntax of this pragma is:

pragma Images(< enumeration _type>, Deferred);
or

pragma Images(< enumeration _type>, Immediate):

The default for Ada-386 is Deferred, which saves space in the literal pool by not creating an
image table for an enumeration type unless the 'Image, 'Value, or 'Width attribute for the type is

used. If you use one of these attributes, an image table is generated in the literal pool of the

compilation unit in which the attribute appears. If you use the attributes in more than one

compilation unit, more than one image table is generated. eliminating the benefits of deferring
the table. The image table is a string literal whose length is:

(sum of lengths of literals) + (3 * (number of literals - 1))

For a very large enumeration type, the length of the image table might be greater than
Integer'Last and too large to fit into a string. For the 80386 target with a 16-bit integer, the
upper bound on the length of the image table is 32767. Using the default Deferred value for all
enumeration types allows you to declare very large enumeration types. The attempt to use
'Image. 'Value, or 'Width for such a type, however, might cause the compiler to attempt to
create an image table that exceeds the upper bound, resulting in an error message.

C.9.2. Implement ation-Dependent Attributes. The compiler defines two
implementation-dependent attributes, 'Address and 'Offset. which facilitate machine code
insertions by allowing you to access Ada objects with little data movement or setup. These
attributes and their usage are described in detail in Section 6.11. 'Address is not supported for
packages or labels.

481048-002 C- 10 UG-1206-V1.4

LRM ANNOTATIONS

C.9.3. Package System. The specification of package System is provided below. Note that

the named number Tick is not used by any component of the compiler or run-time system.

Similarly, Memory-Size is not used.

package System is

type Address is access integer;

type Name is (Ada386);

SystemName : constant Name = Ada386;

StorageUnit constant 8;
Memory_Size constant (2 ** 31) - 1;

-- System-Dependent Named Numbers:

Min Int : constant := -(2 ** 31);
Max-Int : constant := (2 ** 31) - 1;
Max-Digits : constant := 15;
Max-Mantissa : constant := 31;
Fine Delta : constant := 1.0 / (2 ** (MaxMantissa));
Tick- : constant : 10.0E-3;

-- Other System-Dependent Declarations:

subtype Priority is Integer range 0 .. 63;

.- Other Declarations:

type SubprogramValue is private;

private

end System;

C.9.4. Representation Clauses. Restrictions on representation clauses are discussed in the
LRM 13.1 paragraph of Section C.7.

C.9.5. Implementation-Generated Names. There are no implementation-generated names
to denote implementation-dependent components.

C.9.6. Address Clause Expression Interpretation. An expression that appears in an

object address clause is interpreted as the address of the first storage unit of the object.

C.9.7. Unchecked Conversion Restrictions. Restrictions on unchecked conversions are
discussed in the LRM 13.10.2 paragraph of Section C.7.

UG-1206-V1.4 C.11 481048-002

Ada-386 User's Guide for VAX/VMS Systems

C.9.8. Implementation-Dependent Characteristics of the I/0 Packages.

1. Only 1/0 to a system console is supported in Text_10.

2. In Text_10, the type Count is defined as follows:

type Count is range 0..2_147_483_646

3. In TextJO, the type Field is defined as follows:

subtype Field is integer range 0..1000;

4. The standard library contains preinstantiated versions of Text _O.Integer_10 for type
Integer and LongInteger and of Text IO.Float 10 for type Float and LongFloat. Use
the following to eliminate multiple instantiations of these packages:

IntegerText_10
LongInteger Text)
FloatText_10 -

Long_-Float-Text_10

5. According to the latest interpretation of the LRM, during a Text IO.Get Line call, if
the buffer passed in has been filled, the call is completed and any succeeding characters
and/or terminators (e.g., line, page, or end-of-file) are not read. The first Get Line call
reads the line up to but not including the end-of-line mark, and the second Get Line
reads and skips the end-of-line mark left by the first read.

481048-002 C-12 UG-1206-VI.4

