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TRIPTYCH: A New FPGA Architecture

Carl Ebeling, Gaetano Borriello, Scott A. Hauck.
David Song, Elizabeth A. Walkup

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

N .4 bstract

"- Existing FPGA architectures can be classified along two dimensions:
reprogrammable vs. one-time programmable and general-purpose vs. domain
specific. The most challenging class of FPGA architectures to design is the
reprogrammable. general-purpose FPGA, of which Xilinx is the most well-
known example. In this paper we describe Triptych, a new FPGA architecture
that addresses two problems of current reprogrammable FPGAs. the large
delays incurred in composing large functions and the strict division between
routing and logic resources. Our studies indicate that Triptych is more area-
efficient than current architectures and has comparable delay characteristics for a
large rankte of circuits that include both data-path elements and control logic.

lkpr.

INTRODUCTION

The most common approach to field-programmable gate array architectures is to dedicate a
portion of the total chip area to logic functions and the remainder to interconnection resources.
The logic functions may be fixed or programmable, while the routing is usually highly
programmable to ensure that a large percentage of designs are routable. The flexibility of the
interconnection network is limited by two factors: the number of configuration points (bits or
fuses) that can be accommodated on chip and the speed requirements of the signals routed
through the network (more switches or fuses on a signal path imply slower wires) (Rose
1991).

FPGAs can be programmed using a reprogrammable memory-based scheme or a one-time
programmable fuse technology. Xilinx is the most well-known example of a reprogrammable
FPGA (Carter 1986). It has logic blocks that can perform arbitrary functions of five inputs.
The routing resources are arranged in an orthogonal grid around the function blocks and
occupy approximately 90% of the chip area. Approximately 300 function blocks can be placed
in a single device, the number being limited by the extra routing resources additional function
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cells would require. In a chip with 320 cells, 64.160 programming bits are required. or
approximately 200 bits per cell (Xilinx 1991).

Among one-time programmable FPGAs, Actel is the most common (El-Avat 1989). Actel
arranges a basic cell in rows similar to an arrangement of standard cells in a semi-custom
integrated circuit. The cell functionality is fixed, with the logic function determined by where
inputs are connected to the cell (typical usage is as a 3-input function). The interconnection
resources are also similar to the standard cell style with wires running in segmented channels
between the rows of cells and orthogonally across the cells to provide routing in all four
directions. The logic cells account for 10-15% of the chip area and 750.000 bits are required to
program a typical chip of 1200 cells (Actel 1991). The number of routing tracks limits the total
number of cells that can be placed with reasonable routability on a single chip.

A more recent entry in the FPGA arena is the Apple Labyrinth architecture (Furtek 1990).
Rather than dedicating chip area to either computation or interconnect, the Labyrinth FPGA
tiles the chip with identical small cells that can perform either 2-input functions or routing,
depending on the user-specified programming in the 4 bits per cell. Each cell is connected only
to its four nearest neighbors. The design is intended for pipelined bit-serial applications,
because the delays incurred in routing through many cells severely limit the cycle time.

In this paper, we present an alternative structure for reprogrammable FPGAs that blends
logic and routing resources more closely than most other FPGAs. That is, each routing and
logic block (RLB) in the Triptych array can be used both to compute a logic function and route
signals. More importantly, the array is structured to match the inherent fanin/fanout tree
structure of circuit graphs. This allows the physical layout of a mapped circuit to follow its
logical structure, reducing the need for extensive routing resources. Circuits use varying
numbers of RLBs for routing depending on how much their structure diverges from the
Triptych structure.

We decided to undertake the detailed design and implementation of Triptych in the graduate
VLSI implementation course (CSE568) in the winter quarter of 1991. The problem was an
ideal class project because there was only a small collection of basic cells to design, and
students could work on implementation and mapping issues in parallel. This paper describes
the basic Triptych architecture and the experience we gained implementing it and mapping
circuits to it. The two sections following this introduction describe the architecture in detail and

the issues and design choices encountered during implementation. The next section provides a
first look at how the architecture can be used and how it compares to others, as well as some
ideas for automatic mapping. Finally, we conclude with remarks about both the architecture
and the educational experience.

TRIPTYCH

The FPGA architecture we present in this paper differs from other FPGAs by matching the
structure of the logic arrav to that of the target circuits, rather than providing an array of logic
cells embedded in a general routing structure. By matching the physical structure to the logical
structure, we reduce the amount of "random" routing that is otherwise required.

Figure 1 shows a high-level view of a typical multi-level combinational logic circuit. The
flow is shown as unidirectional, from inputs to outputs. From the point of view of each input.
the data flow forms a fanout tree (shown with solid arrows) to those outputs that the input
affects. From the point of view of each output. the data flow forms a fanin tree (shown with
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dashed arrows) from those inputs it depends upon. It is this fanin/fanout tree form that
Triptych emulates architecturally by arranging RLBs into columns, with each RLB having a
short, hard-wired connection to its nearest neighbors in adjacent columns (see Figure 2).

The basic structure is augmented with segmented routing channels between the columns
that facilitate larger fanout structures than is possible in the basic array. Finally, two copies of
the array, flowing in opposite directions, are overlaid. Connections between the planes exist at
the crossover points of the short diagonal wires. It is clear that this array does not allow
arbitrary point-to-point routing like that associated with Xilinx and Actel FPGAs. However,
we claim that this array matches the form of a large class of circuits and that mapping will
produce routable implementations.

Inputs -. o Outputs

0~~0

0~0

Figure 1 View of a multi-level combinational logic circuit as interleaved fanin/fanout
trees.

Figure 2 The overall structure of the Triptych FPGA shown in a progression of steps
highllighting more and more features. The basic fanin/fanout structure on the left is
augmented with segmented routing channels that make a third input and a third output
available to the RLBs. The structure on the right is obtained by merging two copies of
the middle structure. with data flowing in opposite directions in the two copies. Not
shown are the connections between the two copies. which permit internal feedback.
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Each RLB in the array has three inputs and three outputs and may perform an arbitrary
logic function of the three inputs, with the result optionally held by a master/slave D-latch
(Rose 1990). Routing in the Triptych array is in three forms: horizontally through the RLBs
(by selecting an input to be routed to an output), diagonally through short wires to neighbors,
and vertically through the segmented channels between columns of RLBs. Only one input and
one output can be connected to the vertical wires: the other two must be on the local diagonal
interconnect.

Circuits can be mapped onto this array by partitioning the logic into circuit DAGs
containing nodes with at most three inputs. These DAGs are then mapped to the physical
structure, with the inputs at one side of this structure and the outputs generated at the other.
The nodes of the DAGs are placed such that input signals are available from the nei ghbor nodes
or along a vertical connection. As Rose suggests in (Singh etal 1990), delay can be minimized
by using mostly direct, hard-wired connections for the critical path. Triptych implementations
do not strive for 100% logic utilization. Many RLBs will be used to provide routing, either to
fanout a signal or to pass it forward to the next level. Sometimes a mapping will leave some
cells unused to achieve a routable placement of nodes. Examples are provided below.

Figure 3. Triptych RLB design. The RLB consists of: 3 multiplexers for the inputs,
a 3-input function block, a master/slave D-latch, a selector for the latched or unlatched
result of the function. and 3 multiplexers for the outputs.

RLB structure

A logical schematic of the basic Triptych RLB is show in Figure 3. As can be seen, the cell is
designed to handle both function calculation and signal routing simultaneously (hence the name
routing and logic block. RLB). It takes input from three sources and feeds them into a function
block capable of computing any function of the three inputs, and the output can then be used in
latched or unlatched form. The RLB's three outputs can choose from any of the three inputs
and either the latched or unlatched version of the function block output. One last feature is the
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loopback from the master/slave D-latch, which enables the function to be dependent on its
previous value. This last feature is included for state machine implementation, although it may
be used to output both the latched and unlatched versions of the function block. Again, only
one of the inputs and one of the outputs can be connected to the vertical wires; the other two of
each type are connected to the local diagonal wires.

Typical RLB utilization

A Triptych RLB is capable of performing both function calculation and routing tasks
simultaneously, which leads to several different uses of the RLB (see Figure 4). The three
most obvious are: (a) a routing block with each input connected to one of the outputs; (b) a
splitter with one of the inputs going to two or three of the outputs; and (c) as a function
calculator with the three inputs going to the function block and the function going out the
outputs. However, there are two important classes of hybrids that help produce more compact
designs. The first comes from the observation that in blocks used to calculate a three-input
function, the function block will most likely not go out all three outputs, and one or two of the
input signals could be sent out the unused output connection(s), as in (d). Secondly, a
function of two inputs can be implemented by making the function insensitive to the third
input, thus allowing the unused input to be used to route an arbitrary signal, as in (e). An
important observation is that the RLBs will never need to be used for one-input functions (i.e.,
an inverter), since any output signal will only be used either as an input to another arbitrary
function block where the inverter could be just merged into the function computed, or to an
output pin where an optional inversion can be applied.

As was shown earlier, the Triptych FPGA has no generalized interconnect for moving
signals horizontally. Instead. there is a heavy reliance on unused RLBs and unused portions of
RLBs to perform these routing tasks.

(a) (b) (C) (d) (e)

Figure 4 Five typical uses of Triptych RLBs.

Interconnection

The Triptych RLBs are connected by three separate interconnection schemes. The first is for
horizontal interconnect and is accomplished through the RLBs as described above. The second
is for local high-speed communication between neighboring RLBs and is achieved through
'diagonals". The detailed structure of the diagonals is shown in Figure 5. They allow RLBs

to send outputs to the RLBs immediately above and below them. which flow in the opposite
direction, and to the two RLBs in the same position in the next column, which flow in the same
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direction. Diagonals are important for two reasons. Diagonals permit the construction of
multilevel functions of more than three inputs without the speed penalty of general-purpose
interconnect. They also allow signal flow to change direction both so that circuits can be more
rightly packed and feedback can be provided for the implementation of sequential logic.

Xx

Figure 5 Schematic view of a pair of diagonals and the routing combinations they
allow (implemented by a multiplexer at each diagonal input). The diagonals connect an
RLB's outputs to the RLB's four nearest neighbors: two directly above and below in
the same column and the two in the same positions in the next column.

The third type of interconnect is used for longer range connections and large fanout nodes.
It is implemented as a set of segmented "channel wires" between adjacent columns (see Figure
6) that connect middle outputs of RLBs to the middle inputs of RLBs flowing in the same
direction in the next column. Needless to say, this flexibility leads to a slower path. and speed-
critical designs will avoid using the vertical channels for critical paths. There are 7 tracks in a
vertical channel, with 6 handling inter-cell RLB routing and a seventh to carry a pin input. The
6 inter-cell tracks are broken up into two tracks each of 8. 16, and 32 RLB high segments.

Figure 6 Top half of a segmented channel (on its side). The bottom half is a mirror
image of the top.
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One last important feature of the interconnect structure is how it handles the array borders.
Since there are no RLBs beyond the right and left edges for the channel wires to route to, the
channels on the edges tie the two directions of RLBs together. This way of handling the
border cases leads to a different way of looking at the array, namely as a cylinder of RLBs. If
the diagonals leading to the opposite direction of RLBs were cut except for those at the edges,
the chip would appear to be a folded cylinder of RLBs. In fact. it is often helpful to think of the
array as containing many smaller cylinders. For example, a six by six square of RLBs can be
broken off from the rest of the array and considered to be a cylinder three RLBs high and
twelve RLBs in circumference. This is not quite true because the vertical channel for the left
and right edges of the original six by six square will be unusable on the cylinder, however it
can be a useful abstraction for hand mapping. In fact, the Triptych chip is an array of 64x8
RLBs, yielding a cylinder of 32x 16.

Programming bit implementation and the scan path

Triptych is a RAM-based reprogrammable gate array with 26 memory bits per RLB, including
those bits used for all three types of routing. The memory cells are implemented pseudo-
statically with a "'hold" signal asserted during normal operation and unasserted during
programming. We found that this gave a much smaller layout than a fully static design
(including the space needed for this extra hold line), especially when it was realized that the
hold signal was necessary for selectively disabling RLB output drivers during programming.
The memory cells are connected by a scan path running throughout the chip, allowing it to be
programmed by cycling data through the bits.

The Fca path used fcr programming is also attached tc the RLB's master/slave D-latches.
This not only allows the chip to start in any arbitrary combination of latch states, but it also
allows the contents of the latches to be shifted out after the chip has run an arbitrary number of
cycles to facilitate debugging. Also, if the scan path input is connected to the output, a
programmed circuit can be stopped at any point, the contents of the D-latches analyzed, and the
circuit resumed at the previous starting point.

Vital statistics

The speed of a path in a Triptych RLB can be calculated from the numbers given below in
Table 1. For example, a path using 4 RLBs, 2 for routing and 2 for function calculation, and 1
channel wire would take 13.9±0.6 nanoseconds (4Y1.6 + 2Y2.2 + 3.1±0.6 = 13.9+0.6).
Note that being able to use such a simple speed calculation method is due both to the simplicity
of the interconnect and also to the design philosophy of "independence of paths" described
below.

Table I Speed of important features, estimated using HSPICE with parameters for
the 1.2mm CMOS n-well process available from MOSIS.

Resource Used Delay
RLB 1.6ns
Function Block additional 2.2ns
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Channel Wire 2.5-3.7ns

Table 2 Estimated space and memory utilization per RLB of various features. (Note:
percentage of RLB area includes area for memory cells.)

Percentage of Number
RLB area of bits

Vertical Segmented Channels 54% 9
Diagonals 6% 2
Internal Routing & Multiplexers 23% 7
Function Block & D-Latch 17% 8
Total 26

Table 2 describes the relative sizes of the main components of the Triptych RLBs. The
features measured are "Vertical Segmented Channels", including the line drivers and line
readers: "Diagonals" which includes similar features as the "Vertical Segmented Channels";
"Internal Routing & Multiplexers" which includes the three 4:1 multiplexers for selecting the
signal to send to each output as well as the 2:1 multiplexer that chooses between the latched and
unlatched function block output: and "Function Block & D-Latch". Note that each category not
only includes the area needed for the given functionality, but also the area necessary to store the
configuration bits (which contributes 1% of RLB area per bit, since 26 programming bits take
up 26% of the RLB area).

Probably the most important observation to be made from the table is that 83% of RLB
area is devoted to routing of one form or another, with the actual function calculation only
occupying 17%. Note that this number is fairly small compared to other reprogrammable
FPGAs since a full 30% of the space for "Vertical Segmented Channels" is actually the
inverters and tri-state buffers used to drive the channel wires, with another 60% in associated
memory cells. These features would be included in the function blocks of other FPGAs.

DESIGN ISSUES

The design and implementation of the Triptych FPGA brought up several issues that we feel
are of general interest. These are discussed in the following subsections.

Regularity

A goal in the design of the Triptych cell and interconnect was to achieve as regular a structure
as possible. This was done because technology mapping is difficult, and anv irregularities only
complicate the issue. For example. the Triptych function block can compute any function of
three inputs, as opposed to designs such as the Actel FPGA where only a subset of the
possible functions can actually be realized in a cell. Also, an arbitrary function block removes
the worry of what to do for inversions, since an inverter can easy be factored into any or all of
the inputs and the output of the function block.



Ebelin gBorriello/Hauck/Song/Walkup 9

The interconnect scheme follows the same philosophy' the only deviation is caused by the
edges of the array. A more creative structure with the interconnect optimized differently (e.g.,
as a buttertly) could have been implemented. but we feel that the complications added to the
technology mapping stage would negate any potential gains.

Independence of paths and logical effort

The Triptych RLB is mostly composed of multiplexers and bus drivers. Early on, the decision
had to be made whether to implement most of the multiplexers with switch or gate logic. Our
original choice was to do most of the RLB in switch logic and only insert inverters where
necessary to drive loads. We have since decided this was a mistake and have redesigned the
circuit almost completely in gate logic. The main reason for this is something we call
".independence of paths". The idea is that the routing of two different paths should affect the
timing of each other as little as possible. This point is much the same as the one above, except
that where the above rule dealt with the logical specification of the RLB and the interconnect,
this deals with how the RLBs are actually implemented. Take for example the case where a
single RLB output fans out to several inputs. If the RLBs were implemented in switch logic,
with pass-gates taking inputs off the vertical channels. a signal would propagate more slowly if
-everal RLBs were reading the same interconnect line than if each had its own. Thus, a
technology mapper designed to optimize for speed would have to make sure that the critical
path always used its own interconnect line. There are several other places where this effect can
manifest itself, such as routing an input to an output (which slows down the function
calculation) and splitting a signal to two or more outputs (which slows down both signals).
This rule exists not just to make technology mapping easier: by making paths independent, it is
also much easier to optimize the RLB channel wire drivers.

The Triptych chip was originally laid out by a handful of graduate students with little or no
previous integrated circuit design experience. The project was carried on by one of these
graduate students (Scott Hauck). who did a completely new layout aided significantly by the
model of logical effort (Sutherland and Sproull 1991) which assists in the proper sizing of
transistors and insertion of buffers to optimize speed. Although we have no firm numbers
determining how much better the second design is than the first, we feel that logical effort can
help novice designers develop faster circuits.

Routing flexibility

There are several unsettled issues in the design of the Triptych routing network. First and
foremost is the sharing of tracks in the vertical segmented channels. By sharing tracks between
RLBs flowing in opposite directions, we could implement a more flexible feedback capability
than is possible using only the diagonals. Currently. the array has seven tracks for each
direction, for a total of 14 in each segmented channel. One alternative is to have 5 tracks for
each direction with another 2 shared for a total of 12. It is difficult to tell just how much
sharing is needed. The shared tracks would have more drivers and receivers than they would if
they were not shared and thus be slower. More experience with manual and automatic
mapping will be needed before this issue is resolved.

Another issue relates to the D-latch loopback capability, which replaces the channel wire
input in RLBs that use the loopback. Most likely, this input will be needed for an input and
conflict with the use of the loopback. The loopback exists because it was extremely cheap to
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include. The alternative is to route the output of the D-latch around through the RLB above or
below on diagonals. Whether this is sufficient or a form of internal loopback is required
(possibly coming in on diagonal inputs) will also be determined by experimentation.

Finally, we stili must resolve how the Triptych array will be connected to the chip's 1/0
pins. Inputs can reach the array by entering RLBs on either vertical edge or by entering the
vertical channels from the top and bottom. We expect to provide general input/output pads on
all four sides with routing channels along the top and bottom of the array. Connections with
either vertical edge will be more direct to provide a fast path into and out of the array for data-
path applications.

Programming hazards

In FPGA design it is very tempting to ignore the programming phase, except to demand the
most compact implementation of the programming bits as possible. However, this can lead to
some serious problems. In an FPGA, there are certain assumptions made about the
programming that are not enforced by the hardware. For example, it is assumed that at most
one RLB drives any specific channel wire, This is automatically enforced in intra-cell routing
and diagonals by virtue of multiplexer logic. In the case of channel wires, special hardware is
required to enforce this constraint, with a very high overhead. In the Triptych FPGA, we
"imply assume that the software performing the mapping deals with this problem and that no
configuration loaded will violate this constraint. During programming, however, bits stream
through the programming memory, violating this programming assumption. This leads to
short-circuits in the chip and possible damage. One solution is to adopt a bit-addressable
scheme for the programming memory rather than a scan-path. but this is quite expensive due to
the extra routing and decode logic required. Instead, we use the same signal that enables the
scan-path to disable all channel wire drivers. Thus. while the chip is being programmed no
drivers are active, thereby eliminating the problem. This costs approximately an extra 3% in
chip area for the transistors and wiring required.

USING TRIPTYCH

In this section, we present several circuits that we have mapped by hand to Triptych. The
purpose of these examples is to demonstrate the constraints on routing and how multilevel logic
circuits do indeed map to the physical structure provided by Triptych. In these examples, each
RLB is shown as a cell with three input entries and three output entres. Each entry indicates
an incoming or outgoing signal. Note that each block may create a new signal by computing a
logic function over the inputs. Diagonals and reverse diagonals that are used in the
implementation are highlighted, as are connections to the channel wires. For clarity, only those
vertical wires carrying signals are shown.

8-bit rotate function

The power of using columns of RLBs for routing only is shown in this example which rotates
a set of 8 bits 4 positions. Each level can be used to send one signal from each RLB to a
neighbor of the final position. Since each RLB has two outputs. one intermediate RLB column
and two vertical channels are required to route the signals to their final destination (see Figure
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7). This generalizes to the case where three signals are routed per RLB. which requires two
intermediate RLB columns and three channels.

Figure 7 Triptych mapping of a 4-bit rotate of 8 bits.

Generalizing this use of the vertical channels suggests a naive place and route algorithm that
alternates columns of RLBs used for routing with columns used to compute logic functions.
Subject to a sufficient number of routing tracks, this leads to a viable routing of arbitrary logic
functions. However, as the next example shows, this scheme is much less area-efficient than
is generally achievable.

State machine example

Figure 8 shows the factored logic equations and corresponding Triptych implementation for the
ubiquitous traffic light example. This example shows that circuit mappings can be very
compact if the individual logic blocks are correctly placed. The inputs and outputs of this
circuit are all connected at th,: left and right of the armay, except for three signals that use the pin
input track of the vertical channels (shown dangling off the bottom) . In this example 16 RLBs
are used to compute logic functions. 2 RLBs are used only for routing, and 6 RLBs are left
unused (these 6 RLBs must be counted in order to achieve a rectangular mapping; they might
be used in neighboring circuits). Also, this circuit is assumed to be placed along the left edge
of the chip, so the vertical tracks at that edge are used to connect RLBs in the same column.
Note that this example would have been easier to map if the vertical wires could be used to
route within a column anywhere in the chip, not just at the borders, and in fact such an
extension is under consideration. This is about as compact a Triptych layout as can be
expected for a random logic function.

I : I IE
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INORDER = sl s2 dl st SBO SBI;

OUTORDER NSBO NSB1 rl y! gl r2 y2 a2 sd:

NSB1 = 'St ' !al * 'Z2;

y1 = r2 * 51;

gI = r2 * !51;

r2 = 'st SBO '9 - !st I 'B3BO 9;

y2 = 53 + 45;

g2 = !st !r2 * !y2;

sd = 12 + 45;

51 = s2 * !SBI + !SBO SBI;

9 -SB1 + !dl;

45 = sl * ISB1 * 46;

52 = !dl * SBI

53 =52 * 46;

12 = !SBl * 18;

NSBO = st * r2; a

46 = !st ' SBO; r2 51--

18 = !SBO * s2 *'st: d 9r

Figure 8 Factored equations and Triptych realization of the traffic light controller.

Lyon bit-serial multiplier

Although our experience shows that Triptych can be used to implement a wide range of
circuits, its locally connected structure makes it especially good for repetitive arrays like bit-
serial arithmetic circuits. The Triptych structure has some of the same features (e.g., nearest
neighbor connections) as the Labyrinth FPGA which was targeted to bit-serial and
pipelined/systolic circuits. We have chosen the Lyon bit-serial multiplier cell (Lyon 1981)
shown in Figure 9 as a representative circuit from this class. A full n-bit multiplier comprises n
copies of this cell, and signal processing circuits typically make use of several of these
multipliers, containing many individual cells.
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Al A X2 X

so S1 Cl S2

Figure 9 Design of a single Lyon bit-serial multiplier cell.

Figure 10 Layout for the Lyon bit-serial multiplier cell.

This multiplier cell presents the same classic layout problem as that faced by VLSI cell
designers. The cells need to tile horizontally so that inputs match outputs and vertically so that
little space is wasted between adjacent multiplier cells (see Figure 10). In this case, however,
there is an extra dimension since a string of multiplier cells will wrap around the chip on the
opposite direction of RLBs. Since there is one RLB that is used from the opposite direction
(position E-2), the layout must provide a "hole" into which this RLB can fit (position B-4).
Note that these two logical RLBs can share a single physical RLB since they use independent
paths through the RLB. The cost of this multiplier cell design is 12.5 RLBs which is not much
more than the smallest conceivable design, which costs 11 RLBs. The 0.5 RLB results from
the sharing of one RLB (positions A-3 and F-4) between two vertically adjacent multiplier
cells.

Measurement and comparison

Although our experience with mapping circuits to Triptych is thus far very limited since
automated placement and routing are still being developed, we have some preliminary
measurements of the cost of Triptych implementations relative to Labyrinth and Xilinx. Since
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the area cost is measured for each FPGA type in terms of the number of logic blocks used for
that technology, we must first normalize the cost of the different FPGA logic blocks to be able
to compare the different FPGAs. Although such relative figures are difficult to come by, we
have combined a relative size estimate based on die size and number of logic blocks, along with
the relative number of program bits to arrive at the following relative cost figures. Using the
cost of the Labyrinth logic block as the normalized unit cost, we estimate that the cost of a
Triptych RLB is about 4-5 (4.5) units and that of a Xilinx CLB (configurable logic block) is
about 20-25 (22) units. This places the Triptych logic cell squarely in the middle between the
very cheap Labyrinth cell and the relatively expensive Xilinx cell.

Table 3 gives the approximate cost of implementing a number of circuits using all three
FPGAs, both in terms of each technology's logic blocks and in normalized cost as defined
above. We believe these figures indicate that Triptych is a promising architecture for a range of
different circuits. These results are of course very preliminary and many more experiments
must be done with other circuits and using automatic place and route tools.

Labyrinth normalized Xilinx normalized Triptych normalized
Circuit # blocks cost # blocks cost # blocks cost

Multiplier 54 54 5 110 12.5 56
Traffic 280 280 6 132 24 108
s208 N/A N/A 26 572 61 275

Table 3. Results of mapping three examples: the Lyon bit-serial multiplier: a traffic
light controller: and ISCAS benchmark s208 the Labyrinth. Xilinx and Triptych.

Issues in mapping to Triptych

We have successfully mapped a number of regular structures and small control circuits to the
Triptych architecture, and we are currently working on CAD tools that will automatically
perform the mapping for arbitrary circuits. As with other FPGAs. the process of mapping a
circuit onto Triptych can be considered to consist of three steps:

* covering: forming a circuit graph containing function nodes with at most three inputs,
• placement: assigning these function nodes to cell locations on Triptych. and
* routing: making the connections in the graph through the available routing on Triptych.

If the circuit to be mapped has a regular structure, as is encountered in domain-specific
applications such as digital signal processing, an initial pattern for the repeating portion may be
derived by hand. Circuits without regular structure. or "random logic", must rely on heuristic-
based automatic placement and routing methods similar to those used by other FPGAs.
However. because Triptych's routing resources are highly constrained, placement and routing
must be more closely integrated than they are in other FPGAs.

For the covering portion of mapping to Triptych. we assume that a tool such as chortle or
mis-pga is available to express the original circuit as a graph of elementary gates and then cover
the graph's fanout-free trees with collections of three-input RLBs (Francis 1991, Murgai
1990). It should be noted, however, that a covering which minimizes the total number of
RLBs may not be optimal when placement and routing are taken into consideration. For
example, if after placement two of the inputs to a three-input RLB naturally both occur at a
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single location distant from that RLB. it is usually advantageous to split the RLB into two two-
input functions. If this is possible, we can route one less signal across the large distance.
Clearly, such situations are not unique to Triptych. However, we particularly wish to avoid
routing extra signals horizontally whenever it can be avoided. Otherwise, RLBs become
congested with signals they do not use. Such optimizations are difficult to predict at cover time
and thus need to be attempted during routing.

Because Triptych's routing resources are limited and fairly tightly constrained, we believe it
is necessary to keep placement and routing well integrated. Evaluating possible placements
with simple measures of routing length can lead to placements whose congestion make routing
nearly impossible. Currently, we are exploring iterative improvement methods for placement
which will assign an RLB only into locations which are adjacent to enough free tracks to route
the RLB's inputs and outputs. Thus, we avoid congestion at a local level whenever we place
an RLB.

A complicating factor is that Triptych's distance metric is non-symmetric. All pairs of
RLBs that face in the same direction, except those in the same column, have a distance from the
first's output to the second's input different than that of the second's output to the first's input.
Also, vertically adjacent blocks have the same routing distance as diagonally adjacent blocks.
For these reasons, routing distance is not well represented by the x-y coordinates given to the
RLBs. Work is ongoing to develop an integrated force-directed placement procedure, a
Triptych-specific distance measure, and the congestion avoiding method mentioned above.

CONCLUSIONS

The new FPGA architecture presented in this paper was motivated by three needs: permitting
the realization of delay-critical circuits: including data-path and control elements in the same
array: and minimizing the space devoted to routing resources. We believe that Triptych
achieves these goals given the experience gained so far with many example circuits: a few of
which have been presented above. The examples have proven to be more densely packed and
to have delay characteristics comparable to the other FPGAs.

The most interesting and challenging future direction for research is automatic mapping.
Triptych requires that the functional and interconnect elements not be treated separately.
Combining the considerations for covering, placement. and routing should allow us to develop
mapping tools that more precisely predict the performance of circuits and more accurately trade
off density for speed.

Pedagogically, the design of a field-programmable gate array made an excellent class
project. It exposed our students to a large vertical slice of the design problem stretching from
electrical details to technology mapping issues. They were able to experience many of the
issues and tradeoffs that must be resolved in both integrated circuit and logic design.
Furthermore, the design and layout were ideal for a class project because the work was easily
partitioned and only a small number of cells needed to be considered. In this respect, the
Triptych effort was a resounding success and has motivated several of the non-VLSI, non-
CAD oriented students to continue to look into VLSI issues.

In summary, we learned much from the design experience and believe we have a viable
new FPGA architecture for circuits where either minimization of delay is of critical importance
and/or data-path elements must be included with control logic. There is much work to be done,
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especially in the area of automatic mapping, and promising directions are just beginning to be
pursued.
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