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~—7* Plume phenomenology experiments conducted in 1990 uncovered the existence of plume speckle reflectance emanating from
the exhaust of a solid-propetlant rocket motor due to the presence of metallic particulates in the plume. This impeded attempts,
that are dependent upon the speckle return of an actively illuminated target hardbody, to discern the plume/hardbody interface.
This thesis investigates the feasibility of employing the Doppler return phenomenon in discerning the plume/hardbody interface
and locating the hardbody center-of-mass. The potential of the Doppler phenomenon'’s utilization lies in the fact that the Doppler
return frequency spectra of the plume and the hardbody respectively possess distinct properties and are differentiable from
each other. Hence, these differences can be exploited in the attempt to discem the plume/hardbody interface. For this study,
two center-of-mass Kalman filters are developed to receive the Doppler return measurements: a one-state filter and two-state A
Modified Maximum a Posteriori Multiple Mode! Adaptive filter. A sensitivity analysis is conducted wherein the performances
of the one-state filter and two-state filter are evaluated with variations in transmitted wavelength, signal-to-noise (SNR), and
probability-of-miss. Results show the center-of-mass filters are sensitive to increases in probability-of-miss, whereas decreases
in SNR produced insignificant degradation in performance. The two-state Modificd MAP MMAF achieved the best performance,
and clearly has the potential to accomplish the task of locating and tracking the hardbody center-of-mass, o
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Abstract

For thirteen years, the Air Force Institute of Technology (AFIT) has been engaged ir
studying the applicability of the Kalman filter to locate and track airborne targets precisely. A
majority of the research explored linear, extended (nonlinear) filters and multiple model adaptive
filter structures in conjunction with an enhanced correlator tracker to estimate the position and
velocity of the target exhaust plume. The tracking concept centers upon the use of a forward-
looking infrared sensor (FLIR) to detect the intensity centroid of the target plume. Raw FLIR data
is provided to an enhanced correlator algorithm that generates linear elevation and azimuth FLIR
image plane offsets as "measurements” for the Kalman filter. In comparison to conventional
correlation trackers, the AFIT Kalman filter tracker yields superior performance in both short and
long range tracking scenarios with target trajectories that range from benign to highly dynamic
maneuvers up to 20 g's. With the tracking problem of the exhaust plume resolved, recent AFIT
theses have shifted attention to tracking the missile hardbody and locating its center-of-mass.

Beginning in 1989, research efforts to locate the hardbody center-of-mass used a low-
energy laser to actively illuminate the hardbody. A low-energy scan would originate at the
estimated position of the target plume's intensity centroid, and continue along the target's
estimated velocity vector to intercept the hardbody. The hardbody's dimensions would be
apparent from the low-energy laser speckle return of the hardbody, upon which the location of the
center-of-mass can be derived. However, plume phenomenology experiments in 1990 uncovered
the existence of plume speckle reflectance emanating from the exhaust of a solid-propellant rocket

motor (due to the presence of metallic particulates) that made the plume/hardbody interface
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difficult to discern. In view of this shortcoming of the low-energy speckle return, the Phillips
Laboratory requested AFIT to explore the feasibility of using the Doppler phenomenon to locate
the hardbody,

The potential of the Doppler phenomenon’s utilization in the AFIT tracking scenario lies
in the fact that the Doppler return frequency spectra of the plume and the hardbody respectively
possess distinct properties and are differentiable from each other. The plume and missile
hardbody have opposite velocity vectors which result in opposite Doppler shifts. In addition, the
frequency spectrum bandwidth of the plume-induced Doppler return has been observed to be
significantly broader than that of the hardbody-induced Doppler return spectrum, due to the
diverse velocity orientations of the numerous particulates in the plume. Hence, these differences
can be exploited in the attempt to discern the plume/hardbody interface.

This thesis investigates the feasibility of employing the Doppler return phenomenon in
discerning the plume/hardbody interface and locating the hardbody center-of-mass. To accomplish
this objective, a Doppler return model is developed that also incorporates a probability-of-miss
parameter that represents instances when the target aspect angle approaches an orientation that
results in no Doppler shift of either plume or hardbody, as well as representing bending of the
low-energy laser by atmospheric effects so that the hardbody is not actually intercepted. Doppler
return measurement noise variances are determined as a function of iaser transmitted wavelength
and signal-to-noise ratio. The speckle return model is also modified to include the effects of the
plume speckle reflectance. For this study, two center-of-mass Kalman filters are developed to
receive the Doppler return measurements: a one-state filter and two-state Modified Maximum a
Posteriori Multiple Model Adaptive filter (MAP MMAF). The two-state Modified MAP MMAF

receives both speckle and Doppler return measurements and uses the speckle return measurement
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to compensate for occurrences of no Doppler shift measurement. A sensitivity analysis is
conducted wherein the performances of the one-state filter and two-state filter are evaluated with
variations in transmitted wavelength, signal-to-noise (SNR), and probability-of-miss. Results show
the center-of-mass filters are sensitive to increases in probability-of-miss, whereas decreases in
SNR produced insignificant degradation in performance. The two-state Modified MAP MMAF
achieves the best performance, and clearly has the potential to accomplish the task of locating and

tracking the hardbody center-of-mass.
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KALMAN FILTERING OF A REFLECTIVE TARGET USING FORWARD-

LOOKING INFRARED AND DOPPLER RETURN MEASUREMENTS

1. Introduction

The concept of a defensive posture capable of nullifying a ballistic missile attack has had
worldwide ramifications. One can point to the recent dynamic changes in the Soviet-US Arms
Control Treaty and progress in the Strategic Arms Reduction Talks as attributable to the US
government’s committment to Strategic Defense Initiative (SDI) research [1]. During the Desert
Storm operation, the world watched the success of the ground-based Patriot ballistic issile
defense system under actual war conditions. Still, technology issues continue to challenge the

scientific and engineering community regarding, in particular, the space-based contingent of SDI.

Of paramount concern is locating and tracking the ballistic target in the presence of its
plume and atmospheric background, whether the mode of intercept is achieved by kinetic or direct
energy means. Only the autonomous and precise tracking of the target over long ranges, can

ensure that these space-based anti-ballistic weapon systems achieve the goals of SDI.

This research, in conjunction with prior studies, addresses the intricacies of locating and
discerning the missile hardbody in the presence of its plume. It probes the feasibility of
employing Doppler frequency spectrum returns as a means of discerning the missile
hardbody/plume interface. Conventional tracking techniques, using a laser illuminator and

measuring the speckle return, have shown that the plume reflectance of a solid-propellant rocket
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motor is of the same magnitude as that of the hardbody [2]. This condition causes an ambiguity
in the position of the hardbody with respect to the plume. At the plume/hardbedy interface, a

unique Doppler function is expected and may, therefore, be used to define that interface precisely.

1.1 Background

For the past thirteen years, the Air Force Institute of Technology (AFIT) has been engaged
in the research and development of long and short range ballistic target trackers under the
sponsorship of the Phillips Laboratory (formerly the Air Force Weapons Laboratory/AWFL) at
Kirtland Air Force Base, New Mexico {5-7,10-12,14,21-25,27,29,32,33,35-37,40-43]. Central to
these trackers is a 30u x 500 pixel array Forward-Looking Infrared (FLIR) sensor which passively
detects the infrared radiation emitted by the mdssile plume. Each pixel in the array detects
infrared energy through an angle of 15 microradians in two orthogonal directions (azimuth and
elevations)[35). The array utilizes an 8 x 8 pixel sub-array field-of-view (FOV) as a window for

tracking purposes [33,35].

Information from the excited 8 x 8 FOV is provided to an enhawuced image correlator
algorithm that produces position offsets as pseudo-measurements to a linear Kalman filter. In the
Fourier domain, the enhanced correlator algorithm correlates the current raw FLIR data frame with
a template that represents an estimate of the target plume’s intensity function, Two linear position
offsets, x, and y,, are created that yield maximum correlation cf the curren: data and tive template.
The Kalman filter treats these offsets as measurements and computes optimum estinates of the
position offsets and furnishes these estimates to a pointing controller that centers the plume
centroid in the FOV. Since the high-energy laser is optically boresighted with the FLIR FOV, the

laser continously points to the target’s estimated position.
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Previous research concentrated upon tracking the plume centroid while the target exhibits
benign trajectories to harsh dynamic target manuevers up to 20 g's. However, the intended target
for the laser is the missile hardbody, which cannot be distinguished solely from information
provided by the FLIR measurements. Thus, the two most recent theses [5,6] have focused upon
tocating and discerning the missile hardbody utilizing the speckle return of a low-energy lascr.
These returns are fed as additional inputs to the Kalman filter algorithm in order to estimate the

hardbody center-of-mass as weil as the intrared target image centroid.

Prior to AFIT research into the Kalman filter algorithm, AWFL utilized a standard
correlation algorithm to perform the tracking function. This algorithm cross-correlates the FLIR
image with a previously sampled image to generate position offsets, assuming that a translation
in the image corresponds to a spatial translation of the target. The advantage of the correlation
algorithm is that it does not require a priori knowledge of the type of target and is therefore a

robust tracker. However, it does have several shortcomings.

First, the correlation algorithm inherently neglects any knowledge of the target type, shape,
and motion characteristics. This a priori information may be exploited to estimate the target
position adaptively and enhance tracker performance. Second, computation of the correlation
function and subsequent pointing of the wacker produces a finite time lag. Lastly, the correlation
tracker is unable to distinguish between true target motion and "apparent” target motion caused
by identifiable disturbances such as atmospheric jitter [27], distorted wavefronts of the inbound

IR energy, vibration/bending of the platform and optical system [12], and missile plume "pogo”

effects [35].
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These deficiencias of the correlation tracker have been resolved by incorporating Kalman
filtering methodology [5,6,8,10,11,12,14,27,29,32,33,35,36,37,40,41]. By developing accurate
models of the disturbinces mentioned above, the Kalman filter assigns the appropiate weight to
the FLI™ data to yield the optimum estimate of the target's position. Futhermore, a priori
knowledge of the target type, shape, and dynamic characteristics are modelled and incorporated
in the Kalman filter algorithm. This target m~dcl is propagated forward in time to establish an

estimate of the target’s future position for use in laser pointing and target tracking,.

1.2 Summary of Previous AFIT Research

Begining in 1978, AFIT has been engaged in research investigating the use of Kalman
filtering techniques for ballistic missile and other airborne target tracking. As a result, there exist
numerous papers and theses devoted to this area of study. By far, the majority of this research
lies in sixteen previous theses accomplished by AFIT gradvate students. As a stand-alone
document, each thesis contains an overview of previous theses. The overview presented by Roger

Evans [6] is noted for its completeness and is reproduced for this section.

Research in this area was initiated by Mercier [27] in 1978, who compared the extended
Kalman filter (EKF) performance to that of the AWFL correlation tracker under identical
conditions. An eight-state truth model was developed for simulation puiposes, consisting of two
target position states and six atmospheric jitter states. The position states defined the target
location in each of two FLIR plane coordinate directions (azimuth and elevation), by accurately
portraying target trajectories in three-dimensional space and projecting onto the FLIR plane. The
atmospheric jitter was modeled by a third order shaping filter driven by white noise for each FLIR

plane axis, as provided by The Analytic Sciences Corporation (TASC) [17]; three states defined
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the atmospheric distortion in each of the two FLIR plane coordinate directions. The Kalman filter
dynamics model consisted of four states: two states representing target position, and two
representing the atmospheric jitter (based on reduced order models, versus the six states of the
truth model). In both the truth model and filter dynamics model, the position states and
atmospheric jitter states were defined in each of the two FLIR plane coordinate directions. In the
filter, the position and jitter states were each modeled as a first-order, zero-mean, Gauss-Markov
process. The FLIR provided sampled data measurements to the filter at a 30 Hertz (Hz) rate. The
FLIR measurement noise due to background clutter effects and internal FLIR noises were modeled
in the filter as both temporally and spatially uncorrelated. The target was considered as a point
source of light (i.e., a long range target) having benign dynamics. The corresponding Airy disc
on the FLIR image plane was modeled as a bivariate Gaussian distribution with circular equal
intensity contours. The conventional correlation tracker and the extended Kalman filter were
compaced across three different signal-to-noise ratios (SNR), using a ten-run Monte Carlo analysis
to obtain the tracker error statistics. The results of the comparison are shown in Table 1.1 for a
Gaussian intensity function dispersion, o,, equal to one pixel. (For a Gaussian intensity function
dispersion equal to one pixel, most of the useful information is contained in an area of about five

pixels square.)

Wiule the correlation tracker showed dramatic performance degradation as the SNR was
decreased, the Kalman filter showed only a minor change in its performance at the lowest SNR
tested. The extended Kalman filter was shown to be superior to the correlation tracker by an
order of magnitude in the root mean square (rms) tracking error, provided the models incorporated
into the filter were a vaiid depiction of the tracking scenario. This success motivated a follow-on

thesis to improve filter modeling and thereby to enhance the performance.

1-5




Table 1.1 Kalman Filter and Correlation Tracker Statistics Comparison

Signal-to Correlation Tracker Extended Kalman Filter
Noise Ratio
Mean Error lo Mean Error 1o
20 7.0 8.0 0.0 0.2
10 8.0 10.0 0.0 0.2
1 15.0 30.0 0.0 0.8

The research accomplished by Harnly and Jenson [10,21] investigated modeling
improvements in the filter and tested more dynamic target simulations. A comparison was made
between a new six-state filter and a new eight-state filter, The six-state filter dynamics target
model included the four previous states as well as two velocity states in the FLIR plane
coordinates (azimuth and elevaticn), the dynamics model of the eight-state filter included two
acceleration states in the FLIR coordinates as well. The acceleration was modeled as Brownian
motion (BM) (¢ = w, where w is a zero-mean white Gaussian noise). The filter was also designed
to perform residual monitoring, which allowed the filter to react adaptively, and maintain track.
by quickly increasing the covariance values in the filter-computed P matrix, which in turn
increased the filter gain K. A recommendation was also made to examine increasing the FOV
during target jinking maneuvers to avoid losing lock. The constani-intensity contours of the target
were modeled as elliptical patterns as opposed to the earlier circular equal -intensity contours in
order to simulate closer range targets, The major axis of the target FLIR image was aligned with

the estimated velocity vector. A number of different target trajectorics were tested against the six-
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state and eight-state filters, and while the six-state filter performed well during moderate jinking

maneuvers, the eight-state filter performed better while tracking high-g target maneuvers,

Other approaches to modeling the dynamics of the target in the filter were considered by
Flynn {8]. He used a Brownian motion (BM) acceleration target dynamics model [10] and a
constant turn-rate (CTR) dynamics model. The CTR model portrayed the target behavior by
modeling the acceleration as that associated with CTR dynamics. Concatenating such constant
turn-rate segments together provides an accurate portrayal of manned target evasive maneuver
trajectories. Additionally, a Bayesian multiple model adaptive filter (MMAF) was developed
using the BM dynamics model. A MMAF (Figure 1.1) consists of a bank of K independent
Kalman filters, each of which is tuned to a specified target dynamics characteristic or parameter
(a,, a,...ay in Figure 1.1). The time histories of the residuals (r, (£) in Figure 1.1) of these K
Kalman filters are processed to compute the conditional probability (p, (¢) in Figure 1.1) that each
discrete parameter value is "correct." The residuals of the Kalman filter, based upon the "correct"
model, are expected to be consistently smaller (relative to the filter’s internally computed residual
rms values) than the residuals of the other mismatched filters (i.e., based upon "incorrect" models)
[8]. If that is true, then the MMAF algorithm appropiately weights that particular Kalman filter
more heavily than the other Kalman filters. These values are used as weighting coefficients to
produce a probability-weighted average of the elemental filter outputs [8]. Therefore, the state
estimate (£, () in Figure 1.1) is actually the probablistically weighted average of the state
estimates generated by each of the K separate Kalman filters (x, (1) in Figure 1.1). Testing of the
three filter models was conducted for three different flight trajectories which included 2-g, 10-g,
and 20-g pull-up maneuvers. Unfortunately, the residuals of the K Kalman filter did not differ

from each other enough to perform the weighting function properly, and MMAF did not track
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well. The BM and CTR filters both performed equaily well at 2-g’s. The CTR filter was found

to be substantially betier than the BM filter for 10-g and 20-g pull-up manuevers,

Mercier had assumed that the filter had a priori knowledge of the target shape and
intensity profile. Singletery [37] improved the realism in the target model by developing a model
in the FLIR plane which included multiple hot spots. However, he returned to the case of very
benign targets. The filter did not assumic a priori knowledge of the target size, shape, or location,
A new data processing scheme (Figure 1.2) was developed which included the use of the Fast
Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFFT), each of which can be

produced with a lens if optical processing is used. The plan included two data paths for




processing the intensity measurements z(¢). On the first path, the &8 x 8 array of intensity
measurements from the FLIR are arranged into a 64-dimensional measurement vector, This
measurement vector is applied to the extended Kalman filter (as in prior work). The purpose of
the second path is to provide centered target shape functions to be time-averaged with previous
centered shape functions in order to generate the estimated target template (A in Figure 1.2) and
partial derivatives of it with respect to the states (H in Figure 1.2), as needed by the extended
Kalman filter. 'This invokes the shifting theorem of Fourier transforms. The shift theorem states
that a translation of an image in the spatial domain results in a linear phase shift in the spatial

frequency domain. To negate the translationai effects of an uncentered target image in the spatial
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Figure 1.2 Data Processing Scheme using FFT and IFFT
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domain, the Fourier transform of the translated image is multiplied by the complex conjugate of
the desired linear phase shift [37]. The extended Kalman filter model, in path one, which was
developed by Mercier [27], was used to provide the optimal estimate of the linear translation. The
filter state estimates are used to develop the complex conjugate of the linear phase shift and
provide the centered measurement functions. Before the IFFT is taken, the resulting pattern is
e¢xponentially smoothed to yield an approximation to averaging the result with previously centered
frames of data, to minimize the effect of measurement noise. The result is a centered pattern with
noise effects substantially reduced. Following the application of the IFFT to form the nonlinear
function of intensity measurements (h of Figure 1.2), the spatial derivative is used to determine
the linearized function of intensity meusurements (H of Figure 1.2). These are both used by the
Kalman filter in processing the next sampled measurement [37]. The results of this data
processing scheme were inconclusive due to filter divergence problems. Despite the problems

encountered with the filter, the concept was considered to have filter perfc.mance potential.

Rogers [36] continued the work of developing a Kalman filter tracker which could handle
multiple-hotspots with no a priori information as to the size, shape, intensity, or location of the
target. However, he continued the application to benign target motion, as Singletary [37] had
done before, in order to concentrate on the feasibility of adaptively identifying the target shape.
Using digital signal processing on the FLIR data (as described above) to identify the target shape,
the filter uses the information to estimate target offset from the center ot the FOV, which in turn
drives a controller to center the image in the FLIR plane. Algorithm improvements included
replacing the Forward-Backward Difference block of Figure 1.2 with a partial differentiation

operation accomplished as a simple multiplication before the IFFT block.
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Rogers also considered an alternative design that used the target image k& (as generated
in Figure 1.2) as a ternplate for an enhanced cotrelator, as shown in Figure 1.3. The position
offsets produced as outputs from the correlator were then used as “"pseudo-measurement” inputs
to a linear Kalman filter, The improved correlation algorithm of Figure 1.3 compares the FLIR
image to an estimated template instead of the previous image, as is done in the standard correlator.
This tracking concept is thus a hybrid of correlation tracking and Kalman filtering [36]. lIts
performance was compared to the results of earlier extended Kalman filters that used the raw
FLIR data as measurements [10]. Although the extended Kalman filter performed well without

a priori knowledge of the shape and location of the intensity centroid, the improved correlator
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used with the linear Kalman filior outperformed the extended Kalman filter while providing

reduced computational loading,

Miliner [29] and Kozemchak [11] tested an extended Kalman filter and the linear Kalman
filter/enhanced correlation algorithm against close range, highly maneuverable targets, The linear
four-state filter used in the previous research was replaced by an eight-state filter consistivg of
position, velocity, acceleration, and atmospheric jitter states in the two coordinates of the FLIR
plane (azimuth and elevation). Two target dynamics models were also developed. The target was
first modeled as a first-order Gauss-Markov acceleration process, and secondly with a constant
turn-rate model. Both filters performed well without a priori knowledge of the target size, shape,
and location, using the FFT data processing methed for identifying the target shape function
[36,37]. However, at maneuvers approaching 5-g’s, the filter performance degraded considerably.
It was noted that the tracking was substantially better when the Kulman filter dynamics model

closely matched the target trajectory.

The Bayesian MMAF techrique [8] was reinvestigated by Suizu [40] based on the
recommendations of the previous work. The MMAF (Figure 1.1) consisted of two elemental
Kalman filters. One elemental filter was tuned for benign target maneuvers and obtained sampled
measurement information from an 8 x 8 pixel FOV in the FLIR plane. A second filter was tuned
for dynamic maneuvers and obtained sampled measurement information from a 24 x 24 pixel FOV
in the FLIR plane. The technique allowed the MMAF to maintain track on benign target
trajectories up to 20-g’s at a distance of 20 kilometers. The MMAF was configured for both the

linear Kalman filter/enhanced coirelation algorithm {36] and the extended Kalman filter. Both

filtering schemes exhibited comparable rms tracking performance results, with the correlator/tinear




Kalman filter having smaller mean errors and larger standard deviations than the extended Kalman
filter, as seen in earlier work of Rogers [36]. The state rms tracking error was on the order of 0.2

to 0.4 pixels ( one pixel being equivalent to 20 prad on a side).

The potential of the MMAF technique with the FFT processing method was continued by
Loving [14]. A third filter was added to the bank of filters, tuned for intermediate target
maneuvers and obtaining sampled measurement infermation from the 8 x 8 FOV in the FLIR
plane. This MMAF showed significant performance advantages over all the previous filters.
Additionally, a Maximum A Posterori (MAP) algorithm was developed and compared with the
Bayesian MMAF. The MAP algorithm differs from the Bayesian MMAF in that the MAFP
algorithm uses the residuals of the separate filters to select the one filter with the highest
probabiiistic validity, while the Bayesian MMAF uses a probability-weighted average of all filters
ir the bank, The Bayesian and the MAP techniques produced similiar results and delivered

performance that surpassed previous filters.

Netzer [32] expanded the study of the MMAKF algorithm. He investigated a steady-state
bias error that resulted when tracking a target exhibiting a high-g constant turn-rate maneuver.
A major cause of this bias is the MMAF mistuning the x-direction (azimuth) while maintzining
lock on the highly dynamic y-direction (elevation) transieat. This motivates the concept of
individual x- and y-channel target-motion filters in the MMAF, which would allow adaptive
filtering for maneuvers in the x- and y-channels independently [32]. The size of the FOV' was also
investigated. When a target came to within five kilometers of the FLIR platform, the § x 8 FOV

was saturated with the intensity centroid image, resulting in a loss of track. This analysis

motivates a changing FOV to maintain lock for targets and also warrants the possibility of adding




another Kalman filter which is tuned for extremely harsh manuevers at close ranges. A study of
the aspect ratio (AR) associated with target’s intensity centroid was also accomplished to identify
filter tracking characteristics for various target image functions [32]. This study used "greyscale
plots” to support the analysis. A greyscale plot is a pictorial display of an image in which shading
of the image is used to indicate similar parameters. In this case, the plot indicates regions of
varying levels of the intensity of the filter-reconstructed target image in a 24 x 24 pixel FOV.
Four different AR values of 0.2, 0.5, 5, and 10 were compared to the nominal AR of 1. The
results showed that tracking was slightly impaired for images with AR as high as 5. The reduced
performance is primarily along the semi-major axis of an elliptically modeled intensity centroid.
Additionally, a target-decoy experiment was conducted in which a high density decoy was also
2 located in the FOV with the target. Since the decoy was modeled with different dynamics not
given to the filter, it was hoped that the filter would reject the decoy. This was not the case; the
filter locked onvo the hotter decoy image. This indicates that the inability of the current filter
algorithm to reject this type of bright hotspot requires isolating the target image in a small FOV

or some other concept to ensure tracking of the desired target.

The previous research efforts [14,32,40] used Gauss-Markov acceleration models in the
development of the MMAF. Tobin [41] implemented the CTR dynamics model in another
MMAF. His results showed that the Gauss-Markov MMAF exhibited smaller bias errors while
the CTR MMAF gave smaller steady state standard deviation errors; both filters had comparable
rms errors. Motivated by earlier research [32], he also developed an 8 x 24 pixel FOV for both
the x- and y-directions of the FLIR image plane to be used with filters desigued to anticipate harsh
target accelerations in a specific direction (along which the longer side of the FOV would be

oriented). The results showed that the filter maintained lock on a target during a highly dynamic
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maneuver in the y-direction while maintaining substantially better steady state bias performance

in the benign x-ditection,

Leeney [12] expanded the previous used Gauss-Markov truth model by incorporating
bending vibrational states. The elemental filters in the MMAF were not modeled with this
information through explicit state variables, but performed well up to a 10-g maneuver. A
performance investigation was also conducted as to the effects of increasing the measurement
update rate from the previously used 30 Hz to 50 Hz. The sampling rate of 50 Hz showed a
minor performance improvement, but also increased the computational loading because of the
higher rate. A preliminary study was also done on replacing the 8 x 24 pixel FOV in the x- and
y-directions [41] on the FLIR plane with a single 8 x 24 pixel FOV, which is also known as the
rotating rectangular-field-of-view (RRFOV), The idea was to align the long side of the rectangular
FOV with an estimate of the acceleration vector. The higher precision velocity estimate was
actually used instead of the noiser acceleration estimate, and it was assumed that the acceleration
direction would be essentially orthogonal to the velocity veotor direction. Additionally, the five
elemental Kalman filters in the MMAF bank would be reduced to four by using this FOV rotation
scheme. The results were not conclusive, but the insight provided motivation to continue the

siudy.

The RRFOV research was continued by Norton [33]. He discovered that the appropiate
choice of the filter dynamics driving noise strength Q dictated the filter’s response to a high-g
jinking maneuver, and that the size of the FOV could be reduced to an 8 x 8 pixel rotating FOV,
also known as the rotating square field of view (RSFOV). His investigationi showed that a non-

rotating square FOV could provide good pe-formancs, but that the dynamics noise strength Q




matrix value must be large in the elements corresponding to the direction of the acceleration
vector, A mathematical matrix transformation was developed which rotated the Q matrix to keep
the larger values aligned with the acceleration vector. A study of both the rotating FOV and
rotating the @ matrix provided advantages and disadvantages for each method. Both methods are
affected by the tuning parameters used to represent the rms level of acceleration of the target,
which also contributes to error biases. The rotating FOV improves the x-direction (azimuth)
estimation for dominant y-direction (elevation) dynamics from previous MMAF algorithms, but
does not improve y-direction estimation for dominant y-direction dynamics, Rotating the Q matrix
adaptively improves estimation of both x- and y-directions and improves the jink maneuver error
transients, but is dependent on the orthogonality of the velocity and acceleration vectors and
proper initial tuning paraineters, The conciusion was that botk methods employed together
provide the ability to adjust filter characteristics to differentiate between harsh and benign
dynamics in any orientation of target acceleration (rotating @) while at the same time maintaining
appropiate view resolution in the directions of both benign and harsh dynamics (rotating FOV).
Therefore, the combination allows for tracking highly maneuvering targets without sacrificing the

resolution rovided by the smaller RSFOV [33).

‘The research up to this point was primarily directed towards tracking aircraft and missiles
froin a ground-based FLIR plane. Rizzo [35] initiated research on a space-based platform which
could track targets using the same filtering techniques. Since the linear Kalman filtet/enhanced
correlator algorithm had proven to be computationally more efficient than the extended Kalman
filter, it was chosen as the system filter. The plume "pogo” (oscillation) phenomenon of a missile
in the boost phase of flight was modeled in the truth model and in one of two filters used for the

analysis, The pogo was modeled as a second-order Gauss-Markov process, and applied in the
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direction of the missile velocity vector, The plan was to go adaptive on the pogo statcs using the
MMAF algorithm, treating the pogo amplitude and oscillation frequency as uncertain parameters.
Although the elemental filters were developed, no MMAF performance was accomplished, duc

to elemental filter performance difficulties.

Three rotation schemes were also developed and tested. The first scheme, referred to as
the rotating field-of-view (RFOV), involved using the 8 x 8 FOV filter and aligning a single axis
of the IFLJR plane with the estimated velocity vector of the target; therefore one of the coordinate
axes of the FOV would stay aligned with the oscillation of the plume. The second scheme,
referred to as the diagonal rotating field-of-view (DRFOV), used the 8 x 8 FOV with the diagonal
aligned with the oscillation of the plume. The motivation behind this scheme is that the 8 x 8
FOV is criented in such a fashion will be able to "see" more of the target’s intensity image, thue
enabling the sensor to obtain more measurement information [35]. The third tracking scheme was
the rotating rectangular field-of-view (RRFOV) algorithm developed from previous research
[12,41]. The RFOV, DRFOYV, and the RRFOV algorithms [32] were tested along with the non-
rotating field-of-view (NRFOV) filter. The NRFOV is the standard tracker used in previous
studies [12,32,41]. The DRFOV scheme was shown to be superior 10 the other three tested for
providing enhanced tracking of a missile hardbody whose plume is undergoing a pogo

phenomenon.

The eight-state filter (without pogo states; two target position states, two target velocity
states, two target acceleration states, and two atmospheric jitter states) and the ten-state filter (with

pogo states) surfaced a problem that may have gone unnoticed in previous work. Following

tuning of the filters with the twelve-siate truth model, it was discovered that the eight-state filter




outperformed the ten-state filter, An investigation into the cause of the imagularit)7 revealed that
there was a serious observability problem in the both filters, The affected states were velocity and
acceleration, A recommendation was made to remove the acceleration states in the ten-state filter,
and to model the velocity states in this new eight-state filter as a first-order Gauss-Markov

process.

Eden [5] resumed the research of the space-based FLIR platform. The scope of the
tracking problem was expanded by requiring the filter to track the hardbody of the missile rather
than just the intensity centroid of the FLIR, Since the FLIR could not supply the needed
information about the hardbody location relative to the image center of intensity to the Kalman
filter, another measurement source was developed. Under the advisement of the Phillips
Laboratory, the new measurement source was identified as a low-energy laser. The laser actively
acquires measurement data while the FLIR obtains its measurement information passively. This
scheme calls for a six-state Kalman filter (consisting of two position states, two velocity states,
and two atmospheric jitter states) to provide a velocity vector estimate for the target plume. The
low-euiergy laser is scanned along this vector from the target plume image intensity center to
intercept the hardbody. The hardbody is modeled as a rectangle with binary reflectivity. When
the low-energy laser (modeled with a beam width of 2.75 meters at the target) illuminates the
hardbody, the reflection is received by a low-energy laser sensor on the platform, This speckle
information is provided to a single-state Kalman filter which estimates the distance between the
center of mass and the center of intensity along the velocity vector direction, The center of mass
is defizied as the midpeint of the scan across the hardbody if the centerline of the laser beam
crosses the aft end of the missile and the top (nose) of the hardbody, or if the laser beam crosses

the aft end and one of the sides of the hardbody. The resuits of the laser scan show that the
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interception of the laser with the hardbody occurrs only 10-20% of the time. This low ratio of
hitting the target is attributed to the six-state filter being tuned for estimating only the intensity
centroid location on the FLIR plane and not for precise velocity estimation. Since the velocity
vector must be accurately estimated for active illumination of the target to be a viable concept,

it was recommended that the filter also be tuned for accurate velocity estimates.

Tracking the center-of-mass of a missile hardbody using FLIR measurements and low-
energy laser illumination was further investigated by Evans [6]. He surmised that the tracking
error, represented by a straight line between the estimated target center-of-mass and the true
center-of-mass [5], could provide more insight if it were separated into the x- and y- (azimuth and
elevation) components, or into along-track and across-track (2-d perpendicular axes of the
hardbody) components. Evans proposed the latter method would provide better informaton
relative to the principle axes directions of the error phenomenon. An eight-state filter was
developed by augmenting Eden’s six-state filter [5] with two additional bias states used to estimate
the hardbody center-of-mass [6]. A comparison between the eight-state filter and Eden’s one-state
filter used in conjunction with the six-state FLIR filter, resulted in negligible difference in
performance. Evans’ analysis of the eight-state filter’s error statistics showed that the wacking
error is much greater in the along-track direction than in the across-track direction, and thus the

separate one-state filter and six-state FLIR filter performed as well as the eight-state filter.

Aside from investigating the tracking error statistics, Evans enhanced Eden’s 2-d hardbody
model (which treated reflectivity as a binary on/off function) with a 3-d hardbody reflectivity

model to provide increased realism in the simulation., Two reflectivity functions, cross-sectional

and longitundinal, were defined hased upon empirical data obtained from a radar return off a 20




X 249 inch cylinder with hemispherical endcaps, rotaied longitundinally in the plane of the radar
source [7]. As shown in Figure 14, the cross-sectional and longitundinal reflectivity functions
were incorporated into Eden’s rectangular hardbody model as 29 discrete weighted line segments

along the longitudinal axis of the hardbody.

Evans also found that the sensitivity level of the low-energy sensor is a factor in
determining the reflectivity received at the sensor [6]. The sensitivity level represents a threshold
below which the reflected return is indistinguishable from sensor noise. A sensitivity factor, p,
is incorporated in the simulation to define the appropriate sensitivity level required to detect a

hardbody’s return as well as represent the physical limitations of the sensor.
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Figure 1.4 Discrete Implementation of Cross-Sectional Reflectivity Function
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Performance data collection from the eight-state filter and one-state/six-state filter
combination hinged upon the successful illumination of the hardbody by the low-energy laser.
Evans was faced with a low target intercept rate (10% - 20%), which inhibited any useful error
analysis of the center-of-mass filters. Realizing this, Evans generated an ad hoc technique of
offsetting the low-energy laser scan relative to the FLIR estimated velocity vector and "sweeping"
the scan across the hardbody, thus providing constant hardbody illumination information,
However, the "sweep" is not an optimal tool and should only be used to test the center-of-mass
filters in the simulation [6]. Both the 3-d reflectivity hardbody model and laser sweep were
employed to evaluate the performance of the eight-state filter and one-state/six-state filter

combination center-of-mass estimators.

1.3 Thesis Objectives

The vast amount of previous research is evidence of the complexity of the tracking
problem which grows more sophisticated with each thesis. As the progression of research shows,
the development of a tracking algorithm, employing Kalman filtering techniques, has ¢volved from
passively tracking the missile plume using infrared measurements to actively locating and tracking
the missile hardbody with the aid of information available from laser speckle returns. The prior
works of Eden and Evans [5,6] have confirmed the usefuiness of laser speckle returns in
discerning the hardbody from the missile plume. Unfortunately, the plume physical characteristics
affect the degree to which the missile hardbody/plume speckle returns may be precisely defined
[2]. Experiments have shown that the laser speckle return of a solid-propeliant rocket motor is

of the same magnitude as that of the hardbody, as a result of the metallic particles present in this

type of propellant [2). Moveover, this causes a non-negligible bias (25 - 30 meters, occurring at
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least 90% of the time) in the estimate of the location of the missile hardbody center-of-mass that
was not reflected in the previous analysis [6], and this should be properly incorporated into the
current performance analysis, However, it has been observed that the Doppler return of the
plume, utilizing a pulsed coherent laser, exhibited hoth unique frequency shift and broadening
attributes which may be strongly distinguishable from that of a hardbody [2]. Thus, the primary
focus of this thesis is to investigate the feasibility of employing the Doppler phienomenon to
discern the missile hardbody from its plume. The specific objectives of this endeavor are outlined

below.

1.3.1 Doppleir Phenomenon Modeling. Eden and Evans have established the methodology
of incorporating hardbody center-of-mass estimates inrto the linear Kalman filter/correlator
algorithm, The six-state filter (with two position states, two velocity states, and two atmospheric
states) augmented with the one-state filter that estimates the distance between the plume centroid
and the hardbody center-of-mass, performed well as long as hardbody tneasurements (i.e., Doppler
return for the current research) ro the one-state filter are consistently provided. This filter

structure shall be used for this thesis.

For this preliminary investigation into the Doppler phenomenon, a modeiing of the
physical processes of transmitting the pulsed coherent laser, or sensing the Doppler return shall
not be attempted, Instead, this effort concentrates upon specifying the form of measurement data

presented to the Kalman filter from these processes.

The Doppler return can be described by two characteristics: the magnitude of ihe
frequency shift, and the spread of the return spectrum. The direction of the hardbody's velocity

is presumed to be in the opposite direction of the plume’s velocity [26]. Hence, the plume and
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hardbody-induced Doppler return are expected to exhibit contrasting frequency shifts, The
respective spectrum spread of the hardbody’s and plume’s Doppler returns shall be seen to be
distinguishable from each other due to differences in mass density and particle velocities. In
essence, the plume will exhibit a broader spectrum spread as compared to the hardbody. On the
basis of these two factors, the Doppler return of the hardbody can be easily discriminated from

the Doppier return of the plume.

The angular resolutior;, expressed in tracking angle rms errors (a function of wavelength
and signal-to-noise ratio - to be developed in Chapter 1V), is used to define the noise inherent in
the measurements [16,26]. Furthermore, a probability-of-miss is incorporated to account for the
probability of no deiected plume/hardbody interface due to: bending of the laser path (so that
actual scan doesn’t intersect the hardbody even though the intended scan does), and cases where
the Doppler receiver cannot discern the presence of two separate returns from the hardbody and
the plume (i.e., both plume and hardbody velocities are normal to the sensor plane, resulting in

no Doppler shift).

Eden's binary rectangular hardbody model is utilized from the onset. Eventually, the
hardbody relectivity model developed by Evans will also be modified to exhibit the appropiate
Dopper return properties. For both hardbody models, the laser sweep routine developed by Evans
is employed. Chapter IV presents the basic pertinent aspects of the Doppler phenomenon and

discusses the Doppler measurement model.

1.3.2 Alternative Scan Techniques. Alternative scan techniques to detect the hardbody
are pursued as a secondary objective. The present sweep method is primarily an evaluation tool

for the one-state, hardbody center-of-mass filter. Although effective, the sweep action is
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admittedly not efficient, since it requires extra computer frame time. (The sweep is performed
at each update). In addition, future research involving active illumination may address more
dynamic target trajectories, jinking maneuvers, multiple hotspots, and decoy identification. For

these reasons, the scan time must be minimal.

Detection techniques considered include sinusoidal and conical scan patterns. Once the
target is detected, it can be actively followed by the laser radar in a special tracking mode where
the hardbody is continuously illuminated. Te method of scanning and tracking must be governed
by practical concerns, such as the power availabilty to the scanfracking device and choice of

appropiate wavelength considerations.

1.3.3 Performance Evaluation. With the Doppler phenomenon modeled as a form of
measurement data, the augmented six-state filter’s [5,6] performance is evaluated against the truth
model (composed of two target states - the actual result of accurate 3-d trajectory simulation and
projection onto the FLIR plane, six atmospheric jitter states, four vibration states, and two pogo
states). Truth model speckle return measurements to the one-state offset filter is modified to
exhibit the hardbody bias that appears with solid propellant rocket motors [2,3]. The results are
compared to the previous findings of Evan’s [6] research, Initial testing, with the laser sweep
technique and the binary rectangular hardbody model, is conducted without the pogo and vibration
states. Further evaluation includes permutations of these disturbances “switched on and off" in
the truth model. In addition, sensitivity analyses of specific Doppler parameters, such as laser

wavelength, angular resclution, signal-to-noise ratio, und probability-of-miss, are conducted.

The combination of Doppler and speckle measurements may enhance center-of-mass

estimates. This configuration is explored and evaluated in the same fashion outlined above.
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1.4 Thesis Overview

This chapter described the AFIT-developed tracking system that employs a Kalman filter,
a passive FLIR sensor, and active illumination of the hardbody. A review of the prior research
was provided. Chapter II gives a mathematical summary of the linear Kalman filter and relates
it to the Kalman filter/correlator algorithm and the Multiple Model Adaptive Algorithm (MMAF),
Chapter 11 describes the Doppler phenomenon aspects that are relevant to the control viewpoint
of this thesis and also provides a brief technical description of the alternative detection techniques
consicered for this study. The AFIT tra~king scenario is presented in Chapter IV. Chapters V
and VI discuss the tuth model and filter modcls, respectively. Chapter VIi provides the

performancc analysis, and Chapter Vill presents the final conclusions and recommendations for

further study.
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II. The Kalman Filter Algorithimn

2.1 Introduction

The process of estimating the target position, velocity, plume/hardbody interface, and other
variables of interest is accomplished by the Kalman filter. The Kalman filter accounts for the
uncertainties associated with the tracking system parameters and external environment, and
provides an optimal volution under the basic assumptions that the system is linear (or hnearized)
and is driven by white Gaussian noise. By optimally conibining measurements, dynamic
characteristics, and a priori knowledge of the statistical properties of the system and measuring,
devices, the Kalman filter produces optimal state estimates conditioned on the history of
measuremerits received, The a prieri statistics of the mean and covariance provided to the filter

as initial state conditicns are defined by

Elx@ )t = 2, (2-1)
Elfx(t,) - £,1x) - 2.7} =P, 2-2)
where the notation (¥) indicates an estimated value, and E{ } is the expectation, or ensemble

average, of ithe possible outcomes. The Kalman filter receives measurements at a prescribed

sample rate and propagates the state conditioned upon the messurement time history Z(1,), given

as:

7 ™
T




2(t,)
za) = | . (2-3)
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where z(t) is the measurement data available at sample time (#). Then the conditional mean and

covariance of the state variables are given by:

@) = rixt) | Zit) = 2} (2-4)

P(t) = Effx(t) - 2a)x(t) - )Y | Z¢t) = Z,) (2-5)

where Z, is a specific realization (observed set of valucs) of the measurement history Z(t,).

For this thesis, the linear Kalman filter is employed to serve two independeat functions:
the estimation of the target plume intensity centroid’s position and velocity (performed by the six-
state FLIR filter), and the estimation of the hardbody center-of-mass. Offset azimuth and
elevation "pseudo-measurements” for the linear FLIR filter are produced from an enhanced
correlator algorithm that compares the FLIR image to an optically processed template [36]). Two
different configurations of the center-of-mass estimators (a one-state and a two-state Modified
Maximuin A Posteriori, or MAP, Multiple Model Adaptive Filter) operate autonomously from the

FLIR filter,

A benigr target trajectory is used to obtain an initial "look" into the ability of the Doppler

phenomenon to define the plume/hardbody interface. Explicit knowledge of where the

plume/hardbody interface occuis will allow for locating and tracking the hardbody center-of-mass.




As will be seen in Chapter V, the dynamics associated with the Doppler returns permit the use

of a linear Kalman filter.

The following sections present the basic mathematical forms of the linear Kalman
filter and the Multiple Model Adaptive Filter (MMAF) algorithms. Due to the benign target
dynamics and the preliminary nature of this research, the filter development is constrained to the
linear Kalman filter. Howevey, this linear FLIR Kalman filter, which receives the offset "pseudo-
measurements” from the enhanced correlator, is shown to be an element in the MMAF structure
developed in previous AFIT research [12,14,33,40,41]. Thus, the MMAF is presented to offe: an
encompassing perspeciive of the AFIT adaptive tracking system, although this thesis doe’ not
explicitly develop such an MMAF algorithm. The interested reader is referred to Mayteck's
Stochastic Models, Estimation, and Control, Vol. ! and Vol. 2, for a rigorous developmen! of the

Kalman Filter theory and MMAF algorithm.

2.2 Linear Kalman Filter

Prior to implementing the Kalman filter a mathematical model of the system dynamics
must be developed and measurements must be available. A system is generally modeled with 2

set of linear state differential equations of the form:

i) = FOx) + BOu@) + GOw() (2-6)
where
F(t) = homogeneous state dynamics matrix
x(t) = vector of states of interest
B(t) = control input matrix
u(t) = deterministic control input vector
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G(1) = drivirg noise input matrix

w(t) = white Gaussian driving noise vector

2 mean of the white Gaussian driving noise vector is:

Elw(@)} = 0 (2-7)

and the noise strength is Q(z).

Ew(dw(t + 97} = Q%) (2-8)

The equivalent discrete-time system model of Equation (2-6) is needed to implement the
algorithm on a digital computer. The general form of the discrete-time state space form (denoted

by the d subscript) of that model is given by:

x(t,,) = D@, )x(t) + B,(t)ut) + wyt) (2-9)
where
d(1, ) = the n X n system state transition matrix that satisfies the
differential equation and initial condition:
did(t
AT ) 210)
dt
D) =1 (2-11)
and where
x(t) = discrete-time vector of states of interest
B, (1) = discrete-time control input matrix
u(t) = discrete-time deterministic control input vector
w, (1) = discrete-time independent, white Gaussian noise process

with mean and covariance statistics defined as:
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Elw,(t) = 0 (2-12)

Q) t =1y (2-13)
T -
Elw,(t)w, (¢} 0 Lot
with
Q,¢) = j¢(tm.r>a(x)c(c>c TP, ) dv (2-14)

i

The Kalman filter incorporates measurement information from external measuring devices
to improve its estimate of a desired state. The discrete-time (sampled data) measurement model

is of the forin:

z(t) = H(t)x(t) + v(t) (2-15)
where
z(t) = m-dimensional measurement vector at sample time ¥,
H(t) = state observation matrix
x() =  vector of states of interest
¥(t) = white Gaussian measurement noise

The discrete white Gaussian measurement noise v is independent of both x(,) and w for all time,
and has a mcan and covariance, R, given by:

Eb@) = 0 (2-16)

R() 1 -t 17
Eewie) =1 @17
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The Kalman filter propagates the state conditional mean and its covariance from the
instant in time immediately following the most recent measurement update, 4", to the instant in
time immediately preceding the next measurement update, #,,", by numerical integration of the

following equations:

£(eit) = F(OR() (2-18)
P(t) = FOP() + PUt)FT() + GOROGT®) (2-19)

where the notation ¥ (#/t) denotes optimal estimates of x at time ¢, conditioned on measurements

through time ¢, and with inital conditions:

2A41t) = 8¢ (2-20)
P@lt) = P(t) (2-21)
where ¥ (#%) and P(t") are the results of the previous measurement update cycle. At time ¢,, X,
and P, from Equations (2-1) and (2-2) are used to initialize the first propagation.

That update cycle when a measuremant becomes available at time ¢ is based on the

following update equations:

K(1) = PU)HG)HG)P@HHT(L) + R (2-22)
21') = 207) + KG)(t) - HE))) (2-23)
P@) = P(t) - KGDH()PW ) (2-24)

where K(t) is the time-varying Xalman filter gain imatrix that assigns "weights" to the new
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information (consisting of the difference between the actual measurement and the filter's estimate
of the measurement, H(t,)¥(t,), as seen in Equation (2-23)) based on known measurement noise

statistics and filter-computed covariances.

2.3 Multiple Model Adaptive algorithm

The optimality of the state estimator is dependent upon complete knowledge of the
parameters that define the best model for system dynamics, output relations, and statistical
description of uncertainties [18]. For Kalman filter tracking applications, maximum performance
is achieved when the parameters of the filter dynamics model match the parameters of the target
being tracked. Often, the pararneters are known only with some uncertainty and may exhibit time-
varying characteristics (such as in the case of maneuvering targets with changing acceleration
levels). Thus, there is a need to devise a method that produces optimum state estimates despite
the incomplete a priori knowledge of parameter statistics, and provides the estimates in an
adaptive, on-line fashion. The multiple model adaptive filter (MMAF) satisfies these requirements

[18].

To implement the MMAF algorithm, it becomes necessary to discretize the parameter
space by the judicious choice of discrete values that are representatively dispersed throughout the
continuous range of possible values. For the tracking problem at hand, a target can display X
different discrete sets of dynamic mancuvers corresponding to one of K discrete values of
acceleration vectors. As previously shown in Figure 1.1, a Kalman filter is then designed for each

choice of parameter value, resulting in a bank of X separate elemental filters.

Let a denote the vector of uncertain patameters in a given linear state model for a




dynamic system. A system model would be represented by the following time-invariant, first-

otder, stochastic differential equation:

() = F@a)x(® + Bl@u() + Glaw(d) (2-25)

with noise corrupted, discrete-time rieasurements given by:

Z(t) = H@)x(t,) + (1) (2-26)
where
x(t) = n-dimensional system state vector
u(t) = r-dimensional deterministic control vector
w(t) = s-dimensional white, Gaussian, zero-mean noise vector
process of strength Q(a)
z(t;) = m-dimensional measurement vector
¥(t) = m-dimensional discrete-time white, Gaussian, zero-mean
noise vector process of covariance R(a)
F(a) = nx n system plant matrix
B(a) = n x r input distribution matrix
G(a) = n x s noise distribution matrix
H(a) = m x n matrix relating measurement to states

The parameter vector, a, is discretized into a set of K finite vector values, a,, a,,...a, and
associated with each a, is a different system model of the form given by Equations (2-25) and
(2-26). Each elemental Kalman filter, tuned for a specific a,, produces a state estimate which is
weighed appropriately using the hypothesis conditional probability p,(t,) to produce the state

estimate £,,,, () as a probabilistically weighted sum, where:

N Sewazo ) |a,,2,.)pyt.)
Pll) = (2:27)
;ﬁ(.,)|.,Z(:,_,)(z: @, Z,.)p,(t.)
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() - {—%rfa,m;‘(r,)r,(:,)}

with
AJt) = kth filter's computed residual covariance
= Ht)P t(tf)HkT(’l) + Ry(t)
r(y) = kth filter's residual

= [ Z(f,) - Hg(t,)fk(t[) ]

a, = parameter value assumed in the kth filter
P(t) = kth filter's computed state error covariance before
incorporating the measurement at time ¢,
Z(t,) = measurement history up 1o time £,

The residual of the kth elemental Kalman filter, that best matches the current target
dynamics associated with the parameter value a,, is expected to be smaller than the residuals of
the other mismatched filters. The hypothesis conditional probability given by Equation (2-27)
with index corresponding to the "correct” filter will then be the largest among the other
conditional probabilities, thus assigning the most weight to the "correct” state estimate. This
algorithm performs well if each elemental filter is optimally tuned for best performance for a
specific target scenario, causing its residual to be distinguishable from those of the mismatched
filters. Itis also important not to add excessive amounts of pseudonoise to compensate for model
inadequacies, since this tends to mask the distinction between good and bad models [17]. If the
quadratic forms within the exponentials of Equation (2-28) are consistently of the same magnitude,
then Equation (2-27) will result in the growth of the p, associated with the filter with the smallest

value of | A, | The values of | A, | are independent not only of the residuals, but also of the
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"correctness” of the K models, and so the result would be totally erroneous [18]. Therefore, the
scalar denominator of the exponential in Equation (2-28) might be removed in the final

implernentation of the algorithm.

The output of the MMAF algorithm is the probabilistic weighted average of the elemental

filter's estimates given by:

c
L) = Y PR() (2-29)
k=1

The conditional covariance matrix for the MMAF is computed as:

K
P"‘""f(t;) = gpk(tl)[Pk(tl‘) + yt(f,’)ﬁrk(t,‘ )| (2-30)

where

yx(’f) i‘,‘(tf) " ‘emm}( 1)
p, = kth filter’s conditional hypothesis probability
Pyy’)

it

kth filter's state error covariance matrix after incorporating

the measurement at time ¢,

Since the values of p,(#) and £,,,, (7,") depend upon the discrete measurements taken through time
fis Poar (1) cannot be precomputed as in the case for the elemental filters. However, Equation

(2-30) need not be computed for the on-line filter algorithrn.

The calculated probabilities of Equation (2-23) should involve an artificial lower bound
[12,18,32]. This lower bound will prevent a mismatched filter’s hypothesis conditional probability

from converging to (essentially) zero. If a filter’s p, should reach zero, it will remain zero for all
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time, as can be seen from the iterative nature of Equation (2-27). This effectively removes that
filter from the bank and degrades the responsiveness of the MMAF to future changes of the
parameter values. If some future target dynamic scenario matched the model for which the p, was
locked onto zero, that elemental filter’s estimate would not be appropriately weighted and the
MMAF estimate would be in error. In previous work, Tobin [41] established a lower bound of

001 for py(t).

2.4 Summary

This chapter presented the mathematical models of the linear Kalman filter and the MMAF
algorithm, The linear Kalman filter is an optimal estimator and constitutes an elemental filter in
the MMAF structure used for the AFIT adaptive wracking system. The MMAF is an adaptive
algorithm that optimally combines the estimates of individual Kalman filters that are tuned for a
specific parameter value, This preliminary research of locating the hardbody via Doppler
measurements utilizes linear hardbody center-of-mass Kalman filters that function autonomously
from the six-state FLIR Kalman filter. The enhanced correlator that produces the offset "pseudo-
measurements” as a result of comparing the FLIR image to an optical processed template is

presented in Chapter V’s discussion of the filter measurement models.
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II. Simulation Space

3.1 Introduction

Simulation of the tracking scenario, which encompasses the target trajectory, the FLIR
sensor operation, and the low-energy laser illumination of the missile hardbody and the generation
of the speckle return and Doppler measurements, is performed on a digital computer, A 3-
dimensional "simulation space" is generated wherein a target plume is propagated along a realistic
trajectory. Several coordinate frames in the simulation space provide the means of mathematically
projecting the target plume’s infrared image and velocity vector onto the two-dimensional FLIR
image plane {10,11,32). In addition, these frames are utilized to project a representation of the
hardbody center-of-mass, as well as to define the start and orientation of the low-energy laser scan
for generating speckle and Doppler measurements [5,6]. This chapter describes the different
coordinate frames of the simulation space and cover the process of pointing the FLIR sensor at

the target during tracking,

3.2 Coordinate Frames

As shown in Figure 3.1, three primary coordinate frames are defined in the simulation
space: a system inertial reference frame, a target reference frame, and an a-p-r reference frame.

Each of these reference frames is described in the following paragraphs.

3.2.1 Inertial Reference Frame. The inertial reference frame is a North-Up-East (NUE)

frame wherein the target flight rajectory occurs.

Origin: location of the FLIR sensor
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Centroid Image ey
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gl ex __t}_
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== Inertial
: Frame
//
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Vector
o - B Plane

(FLIR)

Figure 3.1 Three Primary Coordinate Frames in Simulaticn Space

Axes:

Note:

e, - due north, tangent to the earth’s surface, defines zero azimuth

e

, - inertial "up" with respect to flat earth approximation

e, - vector completing right-hand coordinate se:, defines 90° azimuth
The azimuth angle (o) is measured eastward from e,. The elevation augle

(B) is measured "up” from the horizontal plane defined by e, and e,.

3.2.2 Target Plume Reference Frame. This frame is located at the target plume with one

of its unit vectors co-linear with the target's velocity vector,

Origin;

Axes:

plume intensity centroid A

e, - along the true velocity vector
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¢, - out the right side of the target, orthogonal to both e, and the
LC3 vector

e,, - vector completing the right-hand coordinate set

Note: , - along the velocity vector
» - perpendicular to ihe velocity vector
pv - perpendicular to both , and ,,

3.2.3 o~ B - r Reference Frame. The a-8-r reference frame is defined by the azimuth
angle o and the elevation angle B’ measured with respect to the FLIR line-of-sight (LOS) vector
¢, The true azimuth o and the true elevation f are referenced from true north and the horizon.

This frame is used to project the target’s position and velocity onto the FLIR plane.

Origin: plume intensity centroid
Axes. e, coincident with the true sensor-to-target LOS vector

€, and e, define a plane perpendicular to e,, rotated fioni inertial e, and ¢,
by the azimuth angle (o) and elevation angle (f)

There are thres special coordinate frames associated with the a-f-r referenc: frame; the q-8

(FLIR) plane. the absolute o-B-r refersnce frame, and the trans-FLIR plare.

3.2.3.1 a -} (FLIR Image) Plane. The FLIR plane is used to ubtain the measurements
of the target plume position and is the refers.ce frame for the geometrically derived velocity
vector componeris of the target’s intensity centroid. The FLIR plane is defined by the e, and e,
unit vectors, with the LOS vector (orthogonal to the FLIR plane) representing the pointing
orientation of the FLIR sensor, and the high and low-energy laser. Note the orientation of the

+ymue axis in Figure 3.1, which altows the LOS vector to be positive towards the target when it
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is considered the third member of a right-handed set of coordinates as defined by the unit vectors

E‘, - '3“ - e,.

Due to the large distance to the target (approximately 2,000 kilometers), sinail anglc
approximations are invoked, allowing the "pseudo" azimuth and elevation angles, o and f’, to be
linearly proportional to the x and y cartesian coordinates in the FLIR plane. The x and y
coordinates are measured in pixels (a pixel of linear length corresponds to 15 pradians of arc) and
will provide a means of ¢valuating the performance of the Kalman filter associated with tracking

the intensity centroid of the target.

3.2.3.2 Absolute a-B-r Reference Frame. The absolute o-B-r reference frame is fixed in
inertial space at the initial a-f-r coordinates of the target. This coordinate system defines the
initial poiniing direction of the FLIR LOS vector e,, and is also used to define the true and filter

estimated target positions and velocity components on the FLIR plane.

3.2.3.3 Trans-FLIR Plane. 'This plane is defined as the result of translaiing the center
of the FLIR FOV to the true center-of-mass cf the missile hardbody. The frame is used to
determine the x;  and yg coordinate etrors of the hardbody center-of-mass filter’s estimates,

for performance analysis purposes,

3.2.3.4 ALT/ACT Plane. This plane, shown in Figure 3.2, is a rotation of the trans-FLIR
plane by the true orientation angle 0, formed by the target trajectory with respect to the FLIR

coordinate plane. It is used to determine the along-track and across-track components of the

tracking error mean and covariance of the hardbody center-of-mass estimates [6].
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YR

Y trans - FUR

+ALT (along track, and
True Hardbody along true velocity vector)

Center-of-Mass —

———— e e ; . +
: ) ® X ans - FUR

+ACT (across track)

—_— +x
—1—" » "X ow

Figure 3.2 FLIR Plane, Trans-FLIR Plane, and ALT-ACT Plane

3.3 FLIR Image Plane

All dynamic events associated with the target plume intensity "pattern” or "function,” and
the active illumination of the missile hardbody in 3-dimensional inertial space are projected onto
the 2-dimensional FLIR image planc. The measurements generated as a result of IR detection by
the FLIR sensor are provided to the enhanced correlator algorithm, which produces "pseudo-
measuremeuats” to the FLIR Kalman filter to update its state estimates, For the missile hardbody,
low-energy laser-generated measurements of the offset distance relative to the pluine intensity
centroid are geometrically projected onto the FLIR image plane. Thus, the FLIR image plane is

the realm in which the performance of the Kalman filter is evaluated. Also note that it is a natural
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plane for such evaluation of 2 laser weapon, since pointing angle errors are critical and range is
riot, This section introduces the FLIR Field-Of-View (FOV) "tracking window," and discusses

the construction and projection of the tarpet models.

3.3.1 FLIR Field-Of-View. The FLIR FOV, shown in Figure 3.2, consists of an § x 8
pixel sub-array (in the FLIR sensor 300 x 500 pixel array) which provides sensed information as
a function of the varying intensity of the plume IR image and the background and internal FLIR
noise. Based upon this information, the position estimates from the six-state FLIR Kalman filter
serve to center the centroid of the plume IR image in the FOV. Since the low-energy laser is
boresighted widh the FOV, the FLIR filter position and velocity estimares of the intensity centroid
define the origin and orientation of the laser scan to "paint" the hardbody. The errors of the FLIR
filter's estimate of the cenaoid position and velocity, and the hardbody centes-of-mass filter's
estimate of offset, are expressed in units of "pixels." These errors become meaningful through
a pixel proportionality constant, k, equal to 15pradians/pixel [35]). With this constant, 1 pixel

corresponds to approximately 30 meters for a range of 2,000 kilometers,

3.3.2 Targe: Models on the FLIR Plane. The difference of two Gaussian intensity
functions creates a planform that models the hotspot of the plume target on the FLIR plane [35],
as shown in Figure 3.3. The "trailing” function is subtracted trom the "leading” function to
construct a suitable approximarion of empirically observed plume intensity profiles. The missile
hardbody is not sensed by the FLIR sensor. However, it is geometrically projected onto the FLIR
plane as a rectangle, located an offset distance from the plume centroid along the target’s velocity

vector. Since the FLIR sensor can only detea the IR intensity shape function of the pluine, the
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Figure 3.3 Target Plume Image in 8 x § FLIR Field-of-View (FOV)

remainder of this discussion emphasizes the intensity centroid model. Morc about the hardbody

model will be presented in Chapter 1V,

3.3.2.1 Target Plume Model on the FLIR Plane. The radiated energy from each intensity
function is represented as a bivariate Gaussian distribution with elliptical constant intensity

contours, Each of the two bivariate Gaussian intensity functions is given by [35]:

Ty X (0.7,,(0) = I expl-0.5(Ax AP (AxAy)" (3-1)




[
!

Ax = (X - X,,)c080, + (¥ - ¥,)5in0, measured along the ALT axis of

Figure 3.2
Ay = (Y- Ypua)cOSO, - (x - X,,,)sin0, measured along the ACT axis of
Figure 3.2
8, = true target orientation angle between the projection of the velocity
vector and the x-axis in the FI.IR plane; see Figuic 3.2
x,y = coordinate axes on the o - f plane
Xpars Ypear = Peak intensity coordinates of the single Gaussian intensity runction

I, = maximum intensity function
P

[}

2 x 2 target dispersion matrix whose eigenvalues (o,’ and o,,")

define the dispersion of the elliptical constant intensity contours

Figure 3.4 illustrates the spatial relationship between the two intensity functions along the target
e, axis. The displacement values are based on the assumption that the dispersion of the exhaust
plume in the e,, direction (normal to both e, and the LOS vector) is approximately 2.) #imes the
diameter of the missile [35). With the dimensions of the: hardbody chosen as 40 meters leng and
3 meters in diameter, the centroid of the first intensity function is located 65 meters behind the
hardbody center-of-mass. The placement of the first centroid simulates the composite centroid
of the exhaust plume being close to the missile exhaust nozzle, whereas the position of the second
centroid enables one to simulate different plume shapes. The second, "irailing" centroid is
arbitrarily located 110 meters tfrom the center-of-mass and the defined spatial relationship remain
fixed in the target frame during the simulation (should the difference between the two Gaussian
intensity functions become negative, the simulation clips the difference to zero). Any external
forces acting on the missile other than thrust and gravity are assumed negligible, which thus yields

an assumed zero sideslip angle as well as zero angle of attack. These assumptions allow the semi-
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1 - 65 meters 0 meters 0 meters
2 - 110 meters 0 melers 0 meters
_ Figure 3.4 Spatial Relationship of Target Plume Gaaussian Intensity Functions

major axes of the elliptical constant-intensity contours to be alighed with the projection of the
target’s velocity vector onto the FLIR image plane, and provides a simplified simulation geometry

while retaining the essential features of the trajectory simulation.

3.3.2.2 Target Plume Projection onto the FLIR Plaie. As the target plume is propagated

through inertial space, the output of the FLIR pixels is simulated by projecting the two intensity

functons cnto the FLIR plane. The geometry of the projection is shown in Figure 3.5. The
"reference target image" is oriented on the FLIR plane to correspond to the largest apparent
planform (i.e., with iis velocity vector orthogonal to the LOS vector) at a given initial reference

t range, r,. As seen in Figure 3.6, the target intensity image is defined by the dispersion along the

39




Inettial Frame Target Intensity

Centroid
e X
/ \\ i
eZ
¢
r
p_ ~h
+Xx
FLIR LOS Vector

g « - B Plane /
. (FLIR) —-

Figure 3.5 Target Plume Intensity Centroid Projection Geometry

principle axes of the two Gaussian intensity functions, given by:

_ (3-2)
0-pv B Gpvo [‘;“]

r
o 2o 00 m
(3-3)

il

v

opv[l + V“‘OS(AR - 1)}

where
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Figure 3.6 Intensity Centroid Dispersion Axes in FLIR Plane

the initial dispersions of the target intensity functions along e, and e, in the

target frame of the reference image

the current dispersions of the target image

initial sensor-to-target range of the reference image
current sensor-to-target range

initial velocity vector of the target

magnitude of v

projection of v on the o - B plane (FLIR); i.e., the component of v
perpendicular to the LOS vector

magnitude of v, ,:




Vitos = \/022 + 52 (3-4)

target aspect angle between v and the o -  plane (FLIR)

@ =
)] i

angle between v, o5 and +x; 5,

AR = o,lo,,: aspect ratio of the reference image

Referring back to Figure 3.4, the location of each intensity function, or "hotspot,” is
initialized as a displacement from the hardbody center-of-mass. The intensity functions are
oriented in the FLIR plane via the true target orientation angle 0, The relative positions of the
two intensity functions in the FLIR plane vary in response to the change in target aspect angle y
(of Figure 3.5), while the spatial relationship of the hotspots remains the same in the three-
dimensional target frame. If the plume pogo forcing input is applied, the hotspots do not remain
fixed in the target frame, causing the composite image centroid to oscillate along the velocity

vector and produce additional perturbations to the hotspot image in the FLIR plane [35].

3.3.2.3 Target Plume Velocity Projection onto the FLIR Plane. The general discrete-time

equation that models the target dynamics is given by:

x(t,) = B, 1)x@) + B,(tut) + G,()Iw, (1) (3-5)
where
D(r,,, ) = the system state transition mawmix
x(t) = discrete-time vector of states of interest

B,(t) = discrete-time control input matrix
u(t) = discrete-time deterministic control input vector

G,(t) = discrete-time driving noise input matrix
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wy(t) = discrete-time, zero-mean, white Gaussian noise process with independent
components and covariance Q,

Based on the geometry shown previously in Figure 3.5, the projection of the target’s

inertial velocity vector onto the FLIR image plane is the deterministic input vector given by [10]:

. R )
u, () = lae) 66) (3-6)
where
u,t) = true target deterministic input vector
&’(t) = target azimuth rate in the FLIR plane
/(1) = target elevation rate in the FLIR plane

As seen in the inertial frame diagrams of Figure 3.7, the azimuth angle can be defined as:

a(t) = arctan [%%] (3-7)

Taking the time derivative of Equation (3-7) and noting that the sensor-to-target range is large so

that o'(1) = a(t), the azimuth velocity in the FLIR plane is given by:

Xaw () - 2 (0

3-8
X1y + 2} &9

6 = a0 =

where

v, ¥, = components of the target’s inertial velocity in the e, and e, directions
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Figure 3.7 Inertial Velocity FLIR Plane Projection Geometry

Similarly, the elevation velocity in the FLIR plane is given by:

: : rOv ) - yOF (@) .
B =By = L (3-9)
re@
where
vy = component of the target’s inertial velocity in the e, direction

r, = horizontal projection of the sensor-to-target range, with its time derivative
expressed as:

xOv () + z(tyv ()
r0

PO = (3-10)
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3.4 FLIR Sensor Pointing Controller

The Kalman filter’s propagated estimates of the intensity centroid’s position dictate the
necessary change in azimuth and elevation the FLIR sensor should undergo over the next sample
period to center the hotspot on the FLIR FOV plane at the next imeasurement sample time,
Ideally, these positional estimates are fed as commands to a pointing controller that physically
implements the directional changes within one sample period (1/30 sec). However, the activation
and execution of these commands will not be perfect due to the lag dynamics inherent in the
controlier, and the resultant mis-positioning of the hotspot may be interpreted by the filter as target

motion, causing inaccurate estimates of future states.

Whether or not to include the controller lag dynamics in the simulation was the suhject
of a previous thesis [32]. It was found that the apparent target motion caused by the lag dynamics
are interpreted by the filter as atmospheric jitter, implying a degree of robustness on the part of
the filter to track a target. Moveover, the degradation in tracking performance due to the dynamic
lag was found not to be of primary importance. Thus, the controller is modeled as lag-free in this

research.

3.5 Summary

This chapter described the three main coordinate frames used in the simulation to establish
the target plume on the FLIR image plane: 1) the 3-dimensional inertial reference frame, in which
the target plume is propagated along its trajectory, 2) the varget reference frame, used to define
the axes of the target plume, and 3) the a - p - r frame, used to define the apparent image of the

target plume’s intensity centroid on the FLIR FOV. The model of the target plume was pictured
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as a planform resulting from the difference of two Gaussian intensity functions with elliptical
constant-intensity contours. The missile hardbody is not detected by the FLIR sensor, but is
projected on the FLIR image plane as a rectangle that lies along the velocity vector. More will
be said about the hardbody and measurements of its displacement from the plume centroid in the
next chapter. The spatial displacement of the two intensity functions, relative to the hardbody,
remains fixed in the target frame during the simulation. Plume pogo is invoked by oscillating the
composite centroid along the plume’s velocity vector, The position and velocity of the intensity
centroid is projected onto the FLIR image plane using the geometric relationships between the
three main frames. The trans-FLIR plane and the ALT-ACT plane are used to identify the missile
tardbody center-of-mass, as will be seen in the next chapter. The FLIR sensor controller is
modeled as lag-free since the filter interprets the lag dynamics-induced motion of the intensity
centroid as atmospheric jitter, and previous research has demonstrated that ignoring this effect still

yields viable performance evaluations.
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IV. Truth Model

4.1 Introduction

A "truth model" represents the designer’s best matilematical interpretation of the real-
world dynamics as applicable to the system of interest. Such a model is the procuct of extensive
data analysis, shaping filter design and validation in order to be confident that 1t adequately
represents the real world, since the performance evaluation and systematic design procedure is
totally dependent upon this assumption [17]. In many cases, the complete description of true

system behavior may require an infinite-dimensional state model. Of course, for computational

and simulation purposes, the number of truth model states must be of finite dimensionality, yet
capture the dominant characteristics of system behavior. The Kalman filter is developed by
systematically reducing the truth model to form the filter design model, and the resulting filter is

constantly evaluated against the full-state model to ensure performance specifications are satisfied.

The dynamics of the target intensity centroid’s image on the FLIR detector plane are a
result of true target motion, atmospheric jitter due to distorted infrared wavefronts,
bending/vibration of the optical hardware, and pogo effects of the plume’s oscillations. The truth

model is composed of the following fourteen states [12,27,35):

2 warpet dynamic states
6 atmospneric states
4 mechanical bending states

2 pogo oscillation states
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These dynamics are represcnted as changes of the image intensity centroid in the FLIR plane, with
the centroid components x, and y, baing measured in pixels from the center of the FOV in the x
and y FLIR plane directions. Refering to Figure 4.1, the position of the target image at any one

time is given by:

X, = X, + X, + %, + xc0s0, 1)
Yo = Vg * ¥, * Y, - X800, 4-2)
where
X, y, = targetimage intensity centroid coordinates
X, ¥, = coordinate deviation due to target dynamics

! \ « - { Plane (FLIR)

Figure 4.1 Plume Intensity Function Position on FLIR Image Plane
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X0 Y coordinate deviation due to atmospheric jitter

X Yy coordinate deviation due to bending/vibration of optical hardware

X, coordinate deviation due to pogo oscillations along the velocity vector directon

6,

true target orientation angle

Note that Equation (4-2) has a minus sign before the resolved pogo component, due to the
coordinate definition of the FLIR coordinate frame. The states x,, x,, x;, X,, ¥, ¥,» and y, comprise
the output states which are extracted from an overall state model in the form of fourteen coupled
scalar stochastic differential equations. The states x, and y, are each modeled by first-order
differential equations; x,, y,, and x, aze each modeled by second-order differential equations; and
x, and y, are each modeled with third-order differential equations. These differential equations,

when in space-staie format, comprise the dynamics portion of the FLIR tracker wuth model,

This chapter presents the dynamics model, the models of measurements that provide the
Kalman filter periodic updates, and the initial conditions of the truth mode! equations and target

trajectories. Some of the discussion is taken from Evans’ thesis with minor modifications.

4.2 Dynamics Model

The fourteen-state model state vector is described by a first-order, stochastic diferential

equation given by:

£ = Fx () + Bu( + Gw,(h) 4-3)
where
F, = 14 x 14 time-invariant truth model plant matrix
x (1) = l4-dimensional truth model state vector
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B, = 14 x 2 time-invariant truth model control distribution matrix

2-dimensional deterministic input vector

R

—~

=
i}

G, = 14 x 14 noise distribution matrix (G, = I)

14-dimensional, white Gaussian noise process with mean and covariance

z

—_

=
I

kernel statistics:

0
Q.50

Efw(n)

i

4-4)

E {w‘(t)w,T(t + 1)

To simulate the target dynamics model on a digital computer, the following equivalent

discrete-time solution to Equation (4-3) is given by:
x() = Rl 1E) + B () + G, (1) (4-5)
where the state trunsition matrix &, (2,¢;) is the solution to the differential equation:

ot 1)

T FR0, 1) (4-6)

with the initial condition: ®,(¢, ¢,) = I, (note that, for constant F,, ®,(¢,1;) can be expressed as

@, (t-t,)) and B

x,(t) = l4-dimensional discrete-time truth model state vector
B, = 14 x 2 discrete-time truth modei control distribution matrix :
uy(t) = 2-dimensicual discrete-time input vector .
G, = 14 x 14 discrete-time noise distribution matrix, (G4 = I) i ‘
wa(t) = 12-dimensional discrete time, white Gaussian noise process with mean and

covariance statistics:
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Etw, () = 0 @7)

Ew(t)wat) = Q, = f“’,a.., - 96,06/, - Ve *8)

i

where Q, is defined in Equation (4-4). The discrete-time input distribution matrix B,, is defined
as:

fn

" fcb,(r,,, - )B,d (#-9)

5

B

Note that tiis computation assumes #, () is constant over each sample period: u, (1) = u, (1) for

all 1 € [t,8,,)

The fourteen states of tie discrete-time truth model are defined in the x and y coordinate

axes of the FLIR plane as:

XrLig Yerm
1 tarpet state 1 target state
3 atinospheric states 3 atmospheric states
2 bending/vibration states 2 bending/vibration states

2 plume pogo states

where the plume pogo states are in neither the x,,,, nor yr, direction. These states are augmented

into the truth model staic vector:




* (4-10)

where

x; = 2-dimensional target dynamics state vector
x, = G6-dimensional atmospheric state vector
x, = 4-dimensional bending/vibration state vector

x, = 2-dimensional plume pogo state vector

L The 14 x 14 discrete-time truth model state transition matrix &, is given by:

o - ' ' ' @11)

where the partitions correspond io the dimensionality of the states defined above. The 14 x 2

discrete-time truth model distribution matrix B, is given by:

4 (4-12)




where B, is a 2 x 2 discrete-time conirol distribution matrix. The 14-dimensional discrete-time

truth model white Gaussian noise process w, is given by:

G6-dimensional discrete-time, white Gaussian noise related to atmospheric
jitter states

4-dimensional discrete-time, white Gaussian noise related to bending states

2-dimensional discrete-time, white Gaussian noise related to plume pogo
states

The block diagonal form of Equation (4-5), as seen in Equations (4-10) through (4-13), allows the
models for target dynamics, atmospheric jitter, bending/vibration, and plume pogo to be presented
separately. The following sections discuss each of the discrete state models which form the

siochastic discrete-time truth model.

4.2.1 Target Model State Description. As depicted in Figure 4.2, the a-p plane (FLIR

image plane) is coincident with the FLIR sensor FOV, and perpendicular to the LOS vector e,.

In the simulation, the 3-dimensional target dynamics are projected onto the FLIR image plane, and
the position components of the target's intensity centroid are obtained from the azimuth and

elevation displacement angles (o ” and B 7, respectively). Since the target distance is simulated
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LOS Vector

" FLIR

\ East i -——- Intensity Centroid

Figure 4.2 Target Centroid Image on a-f Plane with "Pseudo" Angles

as 2,000 kilometers, small angle approximations ate used measuring the angle displacements in
the cartesian coordinate system of the FLIR image plane. These "pseudo” angles, o “and B °, are
referenced from the current LOS vector and measured in microradians. Note that the unusual
orientation of the +y ; axis in Figure 4.2 allows the positive z axis to be in the positive e,

direction (by the right-hand rule).

The linear translational coordinates, x. and y, of Equations (4-1) and (4-2), locate the
target intensity function on the FLIR plane and are measured in pixels of displacement from the

center of the FLIR FOV. Thne angular and linear measurements are related by the pixel




proportionality constant k,. which is the anguiar FOV of a single pixel. Presently, the value of

k, is approximately 15 microradians per pixel for long range targets [5,35].

The derivation of the state space mudel of the target dynamics assumes that the azimuth
and elevation rates (&~ and 5 “, respectively) remain essentially constant over each sample period

At, Then the discrete-time target dynamics model is:

(a)(AD
x,(1.) = x,(1) + « (4-14)

4

(B (4
yd(tl.l) = }’d(f,) = —-—k——— (4-15)
[
Arranging thesc equations in state space form yields:
%) = D, 0)x,() + Bu,) (4-16)

xd(t(q) 10 xd(tl) At 0 a‘vl(tl)
T
= +

“4-17)

at

2| o 1fpue| |0 x||pw

where
a’(t) = do’/dt, measured in microradians/second and constant over the time interval
At
ﬁ’(t,) = dP 7/dt, measured in microradians/second and constant over the time interval

At
At

]

sample time interval, ¢, - §

k, = pixel proportionality constant (15 microradians/pixel)




Using these relationships in block form of the overall truth model, by inspection of Equation

(4-11), the upper left block is:

10 418
¢‘=[o 1] i

and the upper block of Equation (4-12) is:

At
g -l 4-19)
dd At
0 -—
kP
and the input vector in Equation (4-5) is given by:
/(1) (4-20)
Uy = .,
B¢

The minus sign of the lower right term in Equation (4-19) is due to the difference in the y axis

orientation between the inertial coordinate frame and the FLIR coordinate plane.

The two target dynamic states of Equation (4-10) are used to propagate the missile along
its trajectory. The formulation of the truth model target dynamics states in deterministic state

space form has two advantages. First, Equation (4-17) can be substituted back into Equation (4-5)

to form a single augmented vector differential equation that defines the truth model. Second, the




state spacc form allows the addition of white (or time-correlated) noise to Equation (4-17), if a

stochastic, rather than a deterministic dynamics model, is desired.

4.2.2 Ammospheric Jitter Model. The model for the wanslational displacement of the
intensity function due to atmospheric disturbances, is based on a study by The Analytic Sciences
Corporation [27]. Using power spectral density characteristics, the atmospheric jitter phenomenon
in each FLIR plane axis direction can be modeled as the output of a third-order shaping filter
driven by white Gaussian noise [27]. The Laplace domain representation of the shaping filter

transfer function is given by:

xa(s) = Kamlwi (4-21)
wﬁ(s) (s + (‘)1)(5 + (02)7-

x, = output of shaping filter (x  direction)

w, = zgro-mean, scalar, unit-strength white Gaussian noise
K, = gain, adjusted for desired atmospheric jitter rms value
o, = break frequency, 14.14 radians/second

o, = double-pole break frequency, 659.5 radians/second

The atmospheric jitter 2ffects can be modeled similarly in the y;, , direction, wherein y,
would be the output of an identical shaping filter defined in Equation (4-21). The two shaping
filters are assumed to be independent of each other and can thus be augmented to form a six-state

modei. The linear stochastic differential equation that describes the atmospheric jitter is given by:

200 = Fx(0 « Gw (1) (4-22)

where
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it

F, 6 x 6 time-invariant atmospheric jitter plant matrix

x,(1) = oO-dimensional atmospheric jitter state vector
G, = 6 x 2 noise distribution matrix
w,(1) = 6-dimensional, independent, zero mean white Gaussian noise with: unit
strength and independent components described as:
Elw(s) =0
. 10 (4-23)
Ew()w/ @) = @5(x) - [ 5(v)
01

The six atmospheric states in the state vector correspond to the low frequency pole and the higher
frequency double pole in the x  and the yg  directions. The atmospheric jitter plant matrix is

defined in Jordan Canonical form as:

[, 0 0 0 0 0

0 -o, 1 0 0 0
e “
0 0 0 0 -o I
0 0 0 0 0 -o

W The noise distribution matrix G, is:

_.‘,
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B ek

Ka‘”xmg 0
(0, = )
L
@ - o)
Koo
G - (@, -~ o) (4-25)
’ 0 Ka(s)lmg
(0, - ®,)
0 K00
(0, - @)
0 Kawl(n§
| (0, - W) ]

The equivalent discrete-time model for Equation (4-22) is of the form:

x,(8.) = O L1)x) + w, (1) (4-26)

The augmented six-state state transition matrix derived from the time-invariant piant matrix of

Equation (4-24) is [27]:

. 0 0 0 0 0]

0 &, d, 0 0 0
o chn - o 0 @, 0 0 0 @27)
‘ cC 0 0 &, 0 0

0 0 0 0 @, b,

(0 0 0 0 0 o




where

®,, = D, = exp(-o,AD
b, = $,55 = exp(-wAf)
(buZJ = (baid = At exP("(’)zAt)

) q)a33
At

Puss = €XP(-0A)

sample time interval, ¢,; - ¢,

The 6-dimensional, zero-mean, discrete-time, white, Gaussian noise w,(t,) has statistics defined
as:
Elw, () =0
o (4-28)
Ebw, (twh) = Q,, - fcp,(z,,l—x)GaQ‘,quﬁ'(t,,l—x)dfc

4.2.3 Bending/Vibration Model. The mechanical bending states were added to the truth
medel to account for the vibrational effects in the FLIR data that occur when the sensor is
mounted on a moving, non-rigid optical platform [12]. Based on tests at the AWFL (now Phillips
Laboratory), it was concluded in previous research [12] that bending effects in both the xp,, and
Y directions can be tepresented by a second order shaping filter, driven by white Gaussian

noise. The Laplace domain transfer function for the bending model is:

2
xh(s) — K,,(D,,,, (4_29)
: w8 57+ W s+ o,
where
x, = FLIR plane positional offset (x,,, direction) due to mechanical bending

disturbance

E
I

zero-mean, unit strength, white Gaussian noise
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=
i

gain adjustment to obtain desired rms bending output,
(K, = 5 x 10" rad"/sec®)
{, = damping coefficient, equal to 0.15

£
I

undamped natural frequency for bending, (o = = rad/sec)

The FLIR plane positional offset in the y, i direction, y,, is identically modeled with the
shaping filter defined in Equation (4-29). The two shaping filters are assumed to be independent
of each other and can thus be augmented to form a four-state model. The linear stochastic

differential equation that describes the bending/vibration is given by:

(0 = F, () + Gw,() (4-30)
where
F, = 4 x 4 time-invariant bending plant matrix
x,(1) = 4-dimensional bending state vector
G, = 4 x 2 noise distribution matrix
w,(t) = 2-dimensional, white Gaussian noise process with unit strength

components that are independent of each other:

Elw, (Ot = 0

10 (4-31)

Elw,(w, (t+0)} = @,8(x) = 8(v)
01

The bendingfvibration plant matrix is defined as:
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el

e b1

The noise distribution matrix G, is:

0 1 0 0
- :b -2wanb 0 O
F, =
0 0 0 1
| 0 0 o -200,
o .
m:,,kp 0
Gb =
0 0
i 0 o)i,,kp_

(Note that k, is the pixel proportionality constant.)

The equivalent discrete-time model for Equation (4-30) is of the form:

where

and
q)bl 1
Dy,
D

I}

xy(t.) = ®U,.1)

5) + w0

q)bll q)ulz 0 0 1
o & 0 0
Cbb(At) - 21 b22
O 0 q)b.i.? (I)b.u
0 0 &, P,
exp(-0,AD[cos(w,Af) + (0,/0;) sin(w,Ar)]

exp(-0,AD[(1/o,) sin(w,Af]

exp(-a,AN[-1 - (G,/0,)

sin(w,A”)]
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(4-33)

(4-34)

(4-35)




&y = Dy = exp-c,AN[cos(wAf) - (o/w,) sin(w,AL)]
At = sample time interval, 1,,-4
o, = real part of the root of the characteristic equation in Equation (4-29),
(o, = 0.47124 second™)

o, = imaginary part of the root of the characteristic equation in Equation (4-29),
(w, = 3.10605 radians/second)

The 4-dimensional, discrete-time, white Gaussian noise process vector w,(f) has mean and

covariance statistics:

Elw,,(t) = 0

I (4-36)
Elw, ()W) = Q, = f(bh(t,,l—r)GbeG,,be,,r(t,‘l—'c)d'c

4.2.4 Plume Pogo Model. To account for the oscillatory nature of a typical missile plume
in the boost phase, a plume pogo model was developed [35]. A second-order Gauss-Markov
model was generated using physical insight, and visual observation of the pogo phenomenon. The
model allows for the study of the amplitude and frequency characteristics of the oscillatory nature

of the plume, and of the effect upon tracking a missile using a Kalman filter.

The transfer function of the plume pogo model is decribed in the Laplace domain as:

2
x,(8) _ Ko, (4-37)

w (s 2 2
9 st Wo, s + o,

wherc

=
]

A plume pogo shaping filter output along the direction of the velocity vector

w, = 2€ro-mean, unit strength, white Gaussian noise
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{, = assumed damping coefficient, ({ = 0.05)
o,, = nominal undamped natural frequency for pogo; assumed range is 0.1 - 10
hertz, with a nominal value of 1,0 Hertz
K, = gain adjustment t0 obtain desired rms pogo ampitude determined by [35]:

K, - 20, | = (438

where

Q
]

desired rms pogo along the velocity vector

The linear stochastic differential equation that describes the plume pogo is given in state

space form as:

0 1 0
x(t) = ) x () + \ w’(t) (4-39)
~o,, ~20o,| " Ko,
where
x,(t) = 2-dimensional pogo staie vector
w,(t) = 1-dimensional zero-mean, white Gaussian noise with statistics:

E{wp(t)} =0

(4-40)
E{wp(t)wp(t+t)} = Q-1 Q, =1

The equivalent discrete-time model for Equation (4-38) is of the form:

x,(1.) = Bt,.0)x,(8) + wyt) (4-41)




¢ An ¢ ,.AH
- pli pr2 . (4-42)
x,(t,, 1) [q’le(At) d>p22(A t)}’(t‘) w”(t[)

where

. o f1-¢
¢, Ay = 11 - exp(—tpwnpAt)sm m”p\ﬁjc,z,At + arctan __t;
- P

P

P, A = —10)"”2 exp(—Cpm"pAt)sin (conp\/l—C,z,At)
- (4-43)

D, (AN = ""2 exp(- pm"pAt)sm( "p‘/l—l;f, At)
1-C,

QAN - ! _exp(- CpmnpAt)sm mnp[ ~E,,_At + gretan __t__"c" + T
\/1-C,, P

The 2-dimensional, discrete time, white Gaussian noise process w,,(1,) has mean and covariance -

statistics:

Efw,(t) = 0

4a (4_44)
Elw, (t)wie) = ,, = f 1,06, 0,6, 0N(1, 1) d

The 2-dimensional pogo state vector defines the position of the plume image intensity
centroid and its velocity along the longitudinal axis of the missile. For the simulation, it is
assumed that the velocity vector lies coincident with the longitudinal axis of the hardbody, As
shown in Figure 4.3, the plume oscillates about an equilibrium point also located on the

longitudinal axis. This equilibrium point is defined by the initial positions of the two intensity
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Figure 4,3 Plume Pogo Oscillation

functions in the target coordinate frame (to be discussed in Section 4.3.1), and remains equidistant
from the hardbody center-of-mass throughout the simulation (the spatial relationship of the
intensity functions can be seen in Figure 3.4). The crescent-shaped plume represents one of many

equal-intensity contour lines of the actual plume. The angle of attack and sideslip angle of the

missile are alsc assumed negligible, and have zero values for the simulation [35].

4.3 Measurement Models

In real-world applications, physical sensors provide the measurements that are used by the
Kalman filter to update its state estimates. In the simulation, the measurement models generate

discrete-time measurements for the filters used in this thesis. These measurements are corrupted
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by simulations of sensor inaccuracies or measurement noise, with characteristics that are
determined from prior knowledge andjor physical insight of the sensor’s limitations. Two distinct
types of measurements are modeled: first, "psuedo-measurements” are generated by an enlianced
correlator algorithm from raw FLIR data [36] to the six-state FLIR filter to update its position and
velocity estimates of the target plume centroid. Second, low-energy laser return measurements
of the hardbody are produced and furnished to independent center-of-mass filters. Use of the
latter type of measurements will allows one to explore the feasibility of the Doppler return in
discerning the plume/hardbody interface, as well as observe the effect of the plume’s speckle
reflectance upon the hardbody’s speckle return. For these reasons, this research is motivated to
study three separate, independent center-of-mass filters: a one-state filter that receives Doppler
return measurements, a one-state filter that accepts speckle return measurements, and a two-state
filter that processes both speckle and Doppler return measurements. These center-of-mass filters

will be discussed in detail in Chapter V.

The scenario for the center-of-mass measurement begins with the FLIR filter’s estimate
of the intensity centroid’s position, The plume of a ballistic missile in boost phase is tracked
using FLIR sensor measurements. The FLIR sensor measurements alone cannot provide any
information regarding the hardbody, for it only senses the plume’s IR radiation, The "psuedo-
measurements” derived from the FLIR measurements and enhanced correlator are input to a linear
Kalman filter which estimates the position and velocity of the plume’s intensity centroid. Using
the estimated intensity centroid position as a starting point, a low-energy laser is then scanned
along the velocity vector to obtain a reflection from the hardbody. Once the low-energy laser scan
illaminates the hardbody, information regarding the dimensions of the hardbody is obtained based

upon distinct low-energy laser returns of the plume/hardbody and the space-background/hardbody
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interfaces, An offset distance from the plume intensity centroid is calculated to pinpoint the
hardbody center-of-mass and is provided as the measurement to the one-state center-of-mass filter
for its update. If no laser reflection occurs, the one-state-filter continues to propagate its state

estimate,

Eden's [5] research revealed that, for long ranges, jitter in the filter-estimated intensity
centroid position resulted in a 15-20% rate of laser reflection from the hardbody. This low rate
hampered efforts to assess the performance of the one-state center-of-mass filter, and consequently,
a sweep of the low-energy laser scan about the velocity vector was created by Evans [6]. The
laser sweep, although not an efficient method of illuminating the hardbody, substantiaily increases

the rate of reflection returns and improves the estimate of the hardbody center-of-mass.

The two measurement models, one which simulates the 8 x 8 FLIR sensor array and one
which simulates the low-energy laser reflection returns, are discussed in subsections 4.3.1 and
4.3.2. An introduction to the basic concepts of the Doppler phenomenon and the Doppler

Measurement Model are presented in subsection 4.3.3.

4.3.1 FLIR Model. The FLIR sensor model is composed of an 8 x 8 pixel array "tracking
window" extracted from the total atray of 300 x 500 pixels. The missile plume is projected onto
the FLIR focal plane, with its characteristic crescent-shaped intensity function formed as the
difference of two bivariate Gaussian intensity functions, as shown in Figure 4.4. This model
depends upon knowledge of several parameters: the size of the major and minor axis of the
elliptical contours of each bivariate Gaussian function, and the orientation of the principal axis in
the FLIR image plane. The target intensity function obtained from evaluating the resulting non-

Gaussian intensity function is corrupted by spatially correlated and temporally uncorrelated
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Figure 4.4 Composite Plume Intensity Function on FLIR Plane
background and internal FLIR noise according to models of actual data taken from a FLIR sensor

looking at various backgrounds [33].

For each pixel in the FLIR FOV (the 8 x 8 array "wacking window"), the target’s intensity
function, corrclated background noisc, and FLIR internal noise are added together to produce an
intensity measurement. For the 8 rows and 8 columns of the FOV, the intensity measurement

corresponding to the pixel in the j* row and ™ column at sampling time ¢ is given by:

1
z,(t) = _Z;J;lxel,.“ 16252 DY i (1)

(4-45)
L0609 X (6ot ey

* njk(tl) + bjt(t,)
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where

output of pixel in the j* row and k" column

it

Z,(1)
A, = area of one pixel
1, I, = intensity function of first and second Gaussian intensity function
respectively of Figure 4.4

x,y = coordinates of any point within pixel jk

Xpeatts Ypeart =  CoOrdinates of maximum point of first Gaussian intensity function
Xpeatsr Ypearz = CoOrdinates of maximum point of second Gaussian intensity function

my(t) = effect of internal FLIR sensor noise on jk * pixel

bu(t) = effect of spatially correlated background noise on jk “ pixel

The sensor error, n,(t), is the result of thermal noise and dark current in the IR detectors

(pixels). This error is assumed to be both temporally and spatially uncorrelated [35].

The background noise, b,(t), was observed in the FLIR data by AWFL personnel during
a tracking operation [10}. It is represented as a spatially correlated noise with radial symmetry,
with a correlation that decays exponentially. Harnly and Jensen [10] concluded that spatial
correlation can be depicted as a correlation distance of approximately two pixels in the FLIR
plane, and simulated this by maintaining non-zero correlation coefticients between each pixel and
its two closest neighbors symmetrically in all directions. In that two-pixel distance, the correlation

decays exponentially to one-tenth of its peak value,

The generation of spatially correlated white Gaussian noises is accomplished by allowing
non-zero Cross correlations between the measurement noises, b,(1,), associated with each of the
64 pixels from the 8 x 8 pixel FLIR FOV. The correlated measurement noise in Equation (4-45)

is given as:
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b(t) = 64-dimensional vector of spatially correlated noise with statistics:

Eb(t) = 0

(4-46)
E{b(tl)bT(tj)} = RY,

where R is a 64 x 64 measurement noise covariance matrix. This matrix describes the spatial

correlation between pixels, and is given by [10]:

1o, r, T 64
ry o 1o, Ty 64

2 (4-47)
R =oy|r, I, 1 .. F364
Fear Teany Teaz - 1

CTATEH |

where o’ is the variance of each scalar noise and ti'2 correlation Coefficients r,, are evaluated to
reflect the radially symmetric, exponentially decaying pattern. The spatially correlated background

noise b(t,) is simulated as:

b(t) = VRb'G) (4-48)

where

<,
1

Cholesky square root
v)

64-dimensional vector of readily simulated discrete, independent white

Gaussian noise with statistics:

Eb) =0

(4-49)
Elb)b'"(t) = IS,
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4.3.2 Low-Energy Laser Speckle Reflection Model. The low-energy speckle reflection
model evolved through the work accomplished by Eden and Evans. The model makes no attempt
to simulate the detailed physical phenomena associated with the speckle return of the reflected
laser from the plume or hardbody. Rather, the model simulates the reflectivity information from
the hardbody speckle return which would be derived by speckle detection circuitry. This research
into the applicability of the Doppler return to discern the missile hardbedy from the plume is a
continuation of the laser speckle reflection model and hardbody center-of-mass development by
Eden and Evans [5,6). It is motivated by some shortcomings of speckle measurement information,
and the same perspective of modeling the information derivable from such measurements, rather

than the detailed phenomenology and physics of such measurements, shall be pursued.

The low-energy laser speckle reflection model simulates a measuremicnt to the one-state
center-of-mass Kalman filter for estimating the offset distance from the plume intensity centroid
along the vehicle’s FLIR image plane velocity vector. The first aitempt to model the laser speckle
return consisted of the hardbody designed as a rectangle with a binary-valued reflectivity function,
which provided a binary indication of the hardbody whenever successful interception by the laser
beam occurred [5]. With this model, speckle reflection information was equally obtained over the
eatire vehicle. Thi; was followed by an enhanced, 3-dimensional, reflectivity model which
accounted for the realistic distribution of the laser speckle return according to the curvature and
aspect angle of the hardbody [6]. The 3-dimensional model is employed for this research since
the Doppler return is also a function of reflectivity [38,39,44]. The following subsections discuss
the development of Evans’ 3-dimensional Hardbody Reflectivity Model and introduce the Plume

Reflectance Model.
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4.3.2.1 The Hardbody Reflectivity Model, The 3-dimensional reflectivity model was
developed by Evans [6) based upon his analysis of empirical data, shown in Figure 4.5, obtained
from the 6585 Test Group, Holloman AFB, New Mexico [7]. The data illustrates the return
power (expressed in decibels-square meters) as a function of radar cross section (RCS) from a 20
X 249 inch cylinder with hemispherical endcaps as it was rotated longitundinally in the plane of
the radar source. (RCS is defined as the projected area of a metal sphere which would return the
same echo signal as the target, had the sphere been substituted for the target [38].) Note the peak
values at 90° and 270°, where the cylinder was orthogonal to the line of sight, and the sharp
dropoff in reflection as the angle deviates from that orthogonal condition. The reflectivity model,
shown relative to the FLIR image plane in Figure 4.6, modifies the previous rectangular model
to include 29 discrete-weighted line segments along the length of the model. Two functions

define the hardbody reflectivity model: the cross-sectional function and the longitudinal function.

Fach discrete-weighted line represents a cross-sectional reflectivity function whick
duplicates the data in Figure 4.5. The reflectivity function models the curvature by defining the
strength of the reflected signal at each discrete line, where the amplitude of the reflected signal
is highest along the missile centerline and discretely tapers towards the hardbody sides in 0.1
meter increments, The discrete implementation of the cross-sectional reflectivity function for the
simulation is shown in Figure 4.7. Note the peak reflection of the cross-sectional reflectivity
function's center is represented by an arbiirary value of 50 units of reflection magnitude [6]. The
remaining line segments are scaled according to the empirical data of Figure 4.5. The reflectivity
function also yields zero reflection for those portions of the original rectangle far from the missile

centerline, so the effective reflective area of the hardbody is less than that of the binary model.
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Figure 4.5 Empirical Radar Reflection Data of Cylinder [7]

The angle v, defined as the angle between the inertial velocity vector and the FLIR plane,
is utilized by the longitundinal reflectivity function to provide a scaling factor of the total
reflection function if the missile centerline is oriented other than normal to the FLIR plane.
Similiar to the cross-sectional reflectivity function, the longitudinal function assigns a scaling

factor to the reflected signal based upon the angular aspect of the target velocity.

Another factor in determining the received speckle reflection is the sensitivity level of the
low-energy laser sensor. This sensitivity is represented in the simulation as a threshold limit
below which the low-energy laser sensor cannot detect the reflection return. To illustrate the
function of the sensor sensitivity factor, consider the hardbody at an aspect angle ¥, relative to the

FLIR image plane. In this orientation, the maximum amount of reflection is obtained in the
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Figure 4.6 3-d Hardbody Reflectivity Model Relative to FLIR Image Plane

simulation by multiplying the peak reflection value (50 units of magnitude) by an appropriate
scaling factor [6]. Let the sensor sensitivity factor be defined as some function of the threshold,
n(*), and the resultant magnitude of reflection be deiined as m,. If (*) is less than m, , the
reflective output is clipped to zero. Therefore, p(*) represents the sensor’s ability 1o discern a

target’s return signal [6).

The total reflectivity function is given by [6]:
n
R, = Y nlAFW) (4-50)
i1
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Figure 4.7 Discrete Inplementation of Cross-Sectional Reflectivity Function [6] “

where

R; = total reflectivity received by the low energy sensor
n = number of line segments crossed by laser scan

p(*) = sensitivity threshold function of low-energy sensor:

m, if m_2 threshold
nm,) =

0 if m, < threshold
A, = cross-sectional reflectivity function reflection amplitude of the i discrete

line segment
F(v)

]

longitudinal reflectivity function, where vy is the angle between target v and
the a-f plane
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As ihe hardbody traverses along its trajectory in 3-dimensional inertial space, the
projection of its motion onto the 2-dimensional FLIR image plane generates the corresponding
propagation of the first two states in the truth model. Similarly, to simulate the center-of-mass
measurements in terms of FLIR plane variables, the hardbody model is also projected onto the 2-

dimensional FLIR plane. Referring to Figure 4.8, the geometry for projection is decribed by:

ML, = ML,,..COSY 4-51)
where
MLy, = FLIR plane projection of missile length
ML,... = true missile length in pixels
[~ v .
Inertial Frame Target Intensity
Centroid
e

o - p Plane
(FLIR)

Figure 4.8 Projection Geometry onto FLIR Image Plane
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y = angle between v, (velocity vector of the target) and the FLIR plane

Since the missile is cylindrical, the projection of the missile diameter onto the FLIR plane is equal
to its diameter. Once the projection is accomplished, the hardbody is located on the FLIR plane
by offsetting the hardbody's center from the truth model intensity centroid by MLy, ,, of Equation

(4-51) along the truth model velocity vector,

The subtended arc of the low-power laser beam is simulated as a rectangle with the
smaller side represented as the finite width of a dithered laser beam after it has traveled 2000
kilometers. Shown in Figure 4,9 are the ideal conditions for the laser scan. (Generally, the filter
estimates of the intensity centroid position, the orientation angle, and the velocity vector are not
equal to the truth model values.) One end of the long centerline of laser scan rectangle is located
at the estimated intensity centroid, positioned at the center of the FLIR FOV. The other end of
the laser scan rectangle is taken as three times the truth model offset distance between the
intensity centroid and the hardbody center-of-mass (3 x 87.5 = 262.5 meters or 8.75 pixels) to
ensure the laser scan is long enough to intercept the hardbody, despite the effects of "pogo”. The

second endpoint of the laser rectangle along its centerline is given as:

x, = x, + Leos@, (4-52)
Yy = Ve " Lsinﬂ,
where
x,, ¥, = the FLIR plane coordinates of the second end of the centerline of the laser
rectangle
x, y. = the FLIR plane intensity centroid coordinates
L = length of the laser rectangle
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Figure 4.9 Ideal Low-Energy Laser Scan

8, = six-state (FLIR) filter estimate of velocity orientation angle

As mentioned earlier, the FLIR filter’s imprecise centering of the intensity centroid caused
inadequate hardbody illumination rates by the laser scan. (The estimated velocity vector, and thus
the estimated orientation angle, 6,, were estimated precisely, however.) As a result, an ad hoc
sweep routine was developed, shown in Figure 4.10, that offsets the initial laser scan clockwise
from the estimated velocity vector. The laser scans are swept counterclockwise in order to assure
illumination of the entire body. Evans found that, without pogo, a 30° offset was required, and

35° with pogo applied [6].
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Figure 4.10 Sweep Technique of Laser Scan

4.3.2.2 Plume Reflectance Model. Prior to this research, the concept of illuminating the
missile hardbody with a low-energy laser and analyzing the speckle return (also called backscatter
radiation) was predicated upon the assumption that the missile plume would not possess any
backscatter properties or possess a speckle return similar to the hardbody’s, when illuminated by
a low-energy laser, The laser scan travels along the intensity centroid’s velocity vector until a
speckle return is received, signifying the start of the metallic hardbody. The scan continues along
the hardbody until no backscatter exists, signaling the end of the hardbody, and thus information

is provided to calculate the center-of-mass. However, recent experimental data confirms the
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presence of plume reflectance from solid-propellant rocket motors [2,30] which significantly alters

the previous conception,

Experimental programs at the Arnold Engineering and Development Center (AEDC), in
Tennessee, have observed and measured laser backscatter radiation from the exhaust plume of a
solid-propellant rocket motor [30]. The measurements of the plume’s backscatter radiation were
found to be on the same order of magnitude and comparable to that of a hardbody [2], due to
aluminum particles and other substances in the plume. During the STARLAB flight experiment,
which collected plume data under actual flight conditions, a rocket booster and its exhaust piume
were "painted" by a low energy laser. Video recordings of the flight expueriment showed the
randomized appearance and low-frequency oscillation of the plume’s refectance [2,3]. The
existence of plume reflectance creates an ambiguity that impedes the precision tracking necessary

to define the plume/hardbody interface.

The purpose of the newly devised plume reflectance model is to simulate the prescace of
plume backscatter radiation and its effect upon the offset measurement. Figure 4.11 depicts the
reflectance from both the plume and hardbody, as observed in the STARLAB {iight experiment.
From the viewpoint of the speckle return sensor, the plume reflectance has the effect of elongating
the apparent missile hardbody. The plume reflectance model simulates the hardbody elongation
by applying a bias to the offset measurement in the direction of the clongation, defined as in the
opposite direction of the estimated velocity vector. In the simulation, the model first receives the
offset measurement as determined by the low-cnergy speckle reflection model. The biased

measurement, Xy, is formed by converting the bias into pixels, projecting it onto the FLIR

plane, and subtracting it from the original offset measurement. The biased offset measurement is




Hardbody
Reflectance

Hardbody
R i 1 Center-of-Mass

v

Bias Caused by
Plume Reflectance

Plume Reflectance of
Solid-Propellant

Exhaust Plume — Rocket Motor

Figure 4.11 Biased Offset Measurement Caused by Plume Reflectance

then provided to the one-state center-of-mass filter for its update. The plume reflectance model

is given by:
b (4-53)
X =X, = |—]|cosy
offsesbias offset
Rk,
where
Xomewws = Diased offset measurement due to plume speckle reflectance
Xomee = oOffset measurement from the low-energy reflectivity model, without plume
speckle reflectance effect
b = Dias value

R = range




k, = pixel proportionality constant (15 prads/pixel)
Y = angle between 3-dimensional inertial space velocity vector and the FLIR
image plane

The randomized nature of the plume’s reflectance is modeled as a percentage of time that
appearance of the bias occurs, A random number generator, of uniform density output, provides
the logic to turn the bias "on and off* according to the percentage selected. 1n correspondence
with Phillips Laboratory personnel, a bias of approximately 25-30 meters with an appearance

percentage of 90 - 95% was observed during the STARLAB flight experiment 3]

4.3.3 The Doppler Measurement Model. The Doppler measurement model simulates the
offset measurements that are obtained by exploiting the differences between hardbody and plume-
induced Doppler returns. As with the laser speckle return research of Eden and Evans, the
modeling of the actual physical properties of the Doppler phenomenon will not be attempted.
Instead, modeling efforts will entail simulating the information that would be available from
Doppler detection circuits as measurement data for the Kalman filter, The following subsections
briefly introduce and describe the basic concepts of the Doppler phenomenon, as applicable to the
properties of the hardbody and plume-induced Doppler returns. The treatment of the Doppler
phenomenon is not intended to be rigorous and reflects the level of understanding necessary to
appreciate the manner with which the Doppler returns are employed to generate an offset
measurement relative to the intensity centroid. For a rigorous development of the Doppler
phenomenon, the interested reader is referred to Principles and Practice of Laser-Doppler

Anemometry by Durst, F., A. Melling, and J. H. Whitelaw [4], and The Doppler Effect by Gill,

T. P. [9].




4.3.3.1 The Doppler Effect. The Doppler effect has becn well researched since Christian
J. Doppler published his work on the subject [9]. The phenomenon is employed in numerous
areas ranging from radar moving target indicators to police speeding traps and weather reporting.
Many define the Doppler effect as a shift in the frequency of a wave radiated, reflected, or
received by an object in motion [38,39]. From aradar, Doppler shifts are produced by the relative
motion between the radar and the target. The radar may be a pulsed, coherent laser beam that
propagates the electromagnetic energy to "paint" the target of interest. If the target is in motion
and illuminated by a low-energy laser, the returned signal (or backscatter) is represented as a time-
delayed, Doppler-shifted version of the iransmitted signal, wherein the amount Doppler shift is
proportional to the reflecting target’s range rate relative to the laser transmitier [38,39]. A

continous transmitted signal is given as:

E, = Ecos(2nft) @54

For this transmitted signal, the echo signal from a moving target will be [38]:

E, = kEcos[2n(f, + f,)t+¢] (4-55)
where
E, = amplitude of transmitted signal
E, = reflected signal
k = an attenuation constant that represents losses incurred during propagation
£, = Doppler frequency shift
f, = transmitted frequency
¢ = a phase shift, dependent upon the range of detection

4-38




Figure 4.12 shows the frequency spectrum of the echo signal, shifted from the transmitted

frequency, f,, by the Doppler shift, f, given by [38]:

#f =+ =370 (4-56)
7, A ¢
where
v, = relative velocity of target with respect to transmitter
A = transmitted wavelength
¢ = velocity of propagation (3 x 10° m/s)

The relative velocity. v,, is expressed as:

v, = v siny 457)
Amplitude
Spectra of Received Signals
a) No Doppler Shift,
No Relative Motion
, Frequency
4 0
i "‘ fd b) Approaching Target
Frequency
Y 0
fd_i - ¢) Receding Target
Frequenc
fa equency

Figure 4.12 Spectra of Received Signals [38]
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where
v = target velocity in 3-dimensional inertial space
y = angle between the target trajectory and plane perpendicular
to the laser LOS (i.e., FLIR plane); see Figure 4.8
The plus sign associated with the Doppler frequency shift applies if the distance between target
and transmitter is decreasing (approaching targer), and conversely, the minus sign applies if the

distance is increasing (receding target).

As shown in Figure 4.12, the frequency spectrum of a continous reflected sinusoidal signal
appears as a straight vertical line. The scenario proposed by the Phillips Laboratory calls for a
pulsed and coherent laser beam to illuminate a ballistic boosting target [3]. Both these laser

properties have an impact upon the nature of the returned spectrum.

For illustrasion purpcses, Figure 4.13 shows a train of independent pulses having a pulse
width (PW) of 0.001 seconds and a constant pulse repetition frequency (PRF), along with its
associated frequency spectrum. Because the pulses are "on" a fraction of the time, the amplitude
of the frequency spectrum decreases but is still centered at f,. The total power is in fact
distributed over a band of frequencies extending from 1000 Hz below f, to 1000 Hz above it, for
a null-to-null bandwidth of 2 KHz. The bandwidth (i.e. spectrum spread), is inversely

proportional to the pulse width and is given by [39]:

Bw

an

il

(4-58)

ale

where

BW,, nuli-to-null bandwidth

<
it

pulse width (sec)
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Figure 4.13 Pulsed Signal Frequency Spectrum [39]

By coherence is meant a consistency, or continuity, in the phase of a signal from one
pulse to the next [39]. The term ¢ in Equation (4-55) represents the phase shift which is a
function of the range during detection. Figure 4.14 illustrates the difference between the
frequency spectrum of a coherent signal and a non-coherent signal. With non-coherent
tranmission, the signal’s central spectral lobe is spread over a band of frequancies. In contrast,
the spectrum associated with coherent transmission shows the signal appearing at many points.
Its spectrum, in fact, consists of a series of evenly spaced lines, wherein the interval between the
spectral lines equals (1/PRF) [39]. Further comparison reveals that the coherent frequency

spectrum is sironger (higher amplitude) than the non-coherent signal because the energy has been
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Figure 4,14 Spectra of Coherent and Non-Coherent Pulsed Signals [39]

concentrated into a few narrow lines, In addition, the envelope within which these lines fit has
the same shape ([sinx]/x]) and the same null-to-null BW (2/x) as the spectrum of the non-coherent

signal.

4.3.3.2 Hardbody Doppler Return. At arange of 2000 kilometers, the missile hardbody
can be defined as a smooth, dense single point target. Any rotational motion of the hardbody
about its longitudinal axis is assumed much less than the hardbody’s velocity, and is considered

negligible. It is futher assumed that the target hardbody’s velocity remains constant over the

duration of a tranmitted pulse. With such a target, the spectrum of the return will have a




bandwidth that closely approximates (2/x), and centered about the Doppler-shifted frequency

corresponding to the range rate.

4.3.3.3 Plume Doppler Return. The case of the exhaust plume can be represented as the
situation where numerous point targets are imaged. The plume can be described as a randomly
distributed array of point targets which are dispersed in range and velocity. The plume
particulates are small (submicron in size), nonspherical and nonhomogeneous, and their size and
spatial distribution vary strongly with the radial distance from the plume axis [16,26,45).
Typically, larger particles are concentrated near the plume’s symmery axis, and in contrast to the
hardbody, the numerous exhaust plume particles exhibit numerous velocity orientations over the

duration of a lasexr pulse.

When the laser beam illuminates an infinite number of point targets, the superposition of
each particle’s backscatter radiation within the laser beamwidth will form the resultant return
[44,45]. Thus, the Doppler frequency spectrum will be quite broad, due to the numerous Doppler
shifts of the numerous plume particlulate velocities [3,16,26]. This Doppler spreading of spectral
lines arises from the fact that backscatter from a particulate will be shifted in frequency in a
manner depending on the approach or recession of the particulate. The plume experimental
programs at AEDC have observed and measured plume Doppler reflectance frequency spectruras
with null-to-null BWs of 2 - 5 GHz [28]. This sharply contrasts the hardbody-induced return
whose spectrum null-to-null BW equals 2/<, with an order of magnitude in MHz. However, one

other significant difference exists between the hardbody and plume-induced Doppler returns.

Generaliy, the velocity of the plume will be oriented 180 degrees from the hardbody’s

velocity [3,16,26). This is shown in Figure 4.15(a), where the respective Doppler frequency shifts
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Figure 4.15 Spectra of Plume and Hardbody-Induced Doppler Returns

will always be opposite in sign. A majority of the observed plume particles would have a relative
radial velocity towards the tracker and the resultant return would have a negative Doppler
fiequency shift. Conversely, the hardbody as shown is receding from the tracker and wiil thus
exhibit a positive Doppler frequency shift. Hence, by exploiting the two differences in plume and
hardbody-induced Doppler returns, precise tracking and definition of the plume/hardbody interface

can be realized.

However, the angle v, of which the relative velocity v, is a function, has an impact upon
o the discernibility between the plume and the hardbody-induced Doppler shifts. Referring to

Equation (4-57), as y approaches 0°, where the plume and hardbody velocity vectors become

4-44




orthogonal to the LOS vector, the radial velocity relative to the tracker approaches nil and no
Doppler shift is produced. Figure 4.15(b) shows that, under these circumstances, the return
spectra of the plume and hardbody converge towards the transmitted frequency and eventually
overlap, obscuring most of the hardbody-induced Doppler return. This imperfect ability to detect
the hardbody spectrum, as distinct from the plume spectrum, will be addressed in the next section

which develops the Doppler measurement model.

The measurement modeling approach taken by this thesis is to consider the Doppler return
of the hardbody significantly distinctive from that of the plume. The Doppler detector must be
designed to filter out the broader plume return and only pass the hardbody return, a function
achievable with a Doppler matched filter design [26,38]. This vital concept signifies that the
Doppler truth measurement model can neglect the plume’s Doppler return and solely simulate the
hardbody-induced Doppler return. Although there may be instances of no apparent distinction
between the plume and hardbody spectra, these occurrences will be embodied in a probability-of-

miss parameter (£,), to be discussed later,

Since Doppler information is obtainable from backscatter radiation, which includes the
speckle return [38,39], the 3-d hardbody reflectivity model is utilized in this modeling approach.
However, in contrast to the laser speckle return measurement model, the biasing effect caused by
the plume’s refleciance is no longer applicable and is not incorporated in the Doppler
measurement model. As a result, the center-of-mass measurement and offset measurement
generated by the Doppler measurement model will simulate the true offset measurement, x,,,,, for
the one-state filter (or two-state filter to estimate both offset and bias in the speckle measurement,

if both types of measurements are used).
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4.3.34 Doppler Measurement Noises. In a study sponsored by the Phillips Laboratory,
Dr. Paul McManamon investigated feasible and implementable wavelengths to illuminate the
plume and hardbody, while meeting the space tracking scenario requirements [16]. His choice of
wavelengths, based upon ranges, power requirements, hardbody temperatures, and tracking
accuracies, range from 0.53 to 15 pym. For this study, the following wavelengths were selected
for a sensitivity analysis: 0.53, 1.06, 2.01, 4.00, 6.00, 8.00, and 10.5 pm. The tracking
inaccuracies associated with these wavelengths are adopted in the Doppler measurement model

to corrupt the offset measurements realistically.

The tracking accuracy for a laser beam is a function of the amount of power, or
amplitude, of the return signal. The return signal, in turn, is dependent upon several variables,
among which are the target’s radar cross section (RCS) and the location of the target in the laser
beam [16,38,39]. A target ideally located in the center of the laser beam reflects the maximum
return signai (i.e., optimum SNR). If the target falls off to the side of the beam’s center, then less
energy hits the target. The degree of tracking accuracy then becomes a question of, how far off

to the side can a target be to reflect the signal at an acceptable level?

Dr. McManamon addresses this issue [16] by first defining the acceptable beam diffraction

limit as the angle within the 3db power points of the laser beam, He defines the diffraction limit

as:

e,, = 1.082 (4-59)

where

[}

0345 half angle defined from beam center to half-power points, in radians
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wavelength, in meters

radar aperture, in meters

One then determines the acceptable level of signal loss within the 0,4 limits. In Dr.
McManamon’s assessment, a 10% loss can be tolerated, and he determined that this loss is

reflected by decteasing the diffraction limit by a factor of 2.667 [16]. Equation (4-53) becomes:

0, - O30 (4-60)
2.667

where

0, = allowed diffraction limit for 10% signal loss

The measurement noise for the Doppler Measurement Model thus consists of the tracking
angle errors, in pixels, as a function of the diffraction limited beam and acceptable signal-to-noise
ratio (SNR). Inasmuch as SNR is a design parameter, this study includes the following values of

SNR for the sensitivity analysis: 10, 8, 6, and 4. The relationship is given as [16,26]:

0
o, -2 1 (@-61)
3/SNR &,
where
0, = rms tracking angle errors in pixels
9, = beam diffraction limit
SNR = signal-to-noise ratio
k, = pixel proportionality constant, 15 prads/pixel
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In addition to providing the offset measurement, the Doppler measurement model also
simulates a return signal probability-of-miss, P, The probability-of-miss encompasses two cases:
first, the probability-of-miss takes into account the situation in which the hardbody is illuminated
by the low-energy laser, but the return is not detected due to attenuation of the returning signal
as it propagates the 2000 kilometer range, beam-bending as a result of atmospheric distortions (the
intended location of the laser scan should have illuminated the target, but bending of the beam
resulted in no intersection with the target); or due to signal losses (i.e., high sensor sensitivity
threshold; refer to Section 4.3.2.1) within the receiving equipment. Secondly, in Equation (4-51),
it was shown that the relative velocity is a function of vy, such that no Doppler shift occurs if the
target’s velocity is normal to the transmitter’s LOS. Hence, as shown in Figure 4.15, as y
approaches 0°, both the broadened plume-induced Doppler spectrum and hardbody-induced
spectrum will converge and overlap. The two spectra will become more indistinguishable, perhaps

rendering detection of the hardbody’s Doppler return impossible.

The simulation of the probability-of-miss is similiar to the technique employed by the
plume reflectance model. A random number generator, with a uniformly distributed output, also
ptovides the logic to turn the hardbody laser backscatter "on and off." Figure 4.16 shows the
detection characteristic for a known signal. The graph present a set of parametric curves that give
the probability-of-detection, P,, as functions of peak signal-to-noise ratio (SNR) for various values
of probability-of-false alarm, P,,. P, is defined as falsely indicating the presence of a return signal
when none exists [38]. Both P, and P, are specified by the system requirements; the radar
designer computes the probability-of-false alarm and, from Figure 4.16, determines the minimum
detectable signal. A range of 70 - 99 percent probability-of-detection is representative of current

Doppler detection equipment capabilities with the tracking scenario [26). Since P, = (1.0 - P,),
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a performance sensitivity analysis will be performed for probability-of-miss values of 0.0, 0.01,

0.02, 0.03, 0.04, 0.05, 0.10, 0.20, and 0.30.

4.4 Truth Model Parameters

The discussions in the previous sections introduced some of the truth model parameters
used in the simulation, The purpose of this section is to provide a consolidated listing of the

parameters and initial conditions of the truth model.

4.4.1 Target Trajectory Initial Conditions. The initial conditions of the target inertial

position, velocity, and velocity vector orientation angle, 0, are as follows:

e, = 27,000 meters

e, = 100,000 meters
e, = 2,000,000 meters
v, = -2500 meters/sec
v, = 4330 meters/sec
v, = 0 meters/sec

8 = 60°

4.4.2 Target Model, Dimensions, and Orientation. The target plume consists of a
crescent-shaped intensity function formed from the difference of two bivariate Gaussian intensity
functions. Each Gaussian function is modeled with elliptical constant-intensity loci with an aspect
ratio of 1.5, and a semi-minor axis of one. For this thesis, Evans’ 3-dimensional reflectivity
model is used to model the hardbody. The hardbody length is 40 meters (1.33 pixels) and 3
meters (0.1 pixels) wide. The offset distance of the hardbody center-of-mass from the intensity

centroid is 87.5 meters (2.92 pixels), a carryover from the previous thesis. For the simulation, the
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intensity centroid and the hardbody longitudinal axis are aligned with the velocity vector, and the

hardbody has zero sideslip and zero angle-of-attack.

4.4.3 Intensity Functions. The two Gaussian bivariate intensity functions are centered
at 65 and 110 meters behind the missile. Each intensity function has a maximum intensity value

of 20 intensity units.

4.4.4 Atmospheric Jitter. The variance and mean squared value for the atmospheric jitter

in both FLIR directions is 0.2 pixels?.

4.4.5 Bending/Vibration. From Equation (4-29), the values for the second-order
bending/vibration model are as follows:

K72 = 5x 10" rad‘/sec’
g, = 0.15

w,, = 7w radfsec

4.4.6 Plume Pogo Characteristics. The size of the plume is on the order of 30 times the
diameter of the missile at the altitudes of interest. The values below represent values of pogo

oscillation as determined in previous research [35].

0.1 - 10 Hz (nominal is 1 Hz)
33.6 meters (1.12 pixels)

pogo oscillation

pogo rms

4.4.7 Spatially Correlated Background Noise. The rms value of v, the summed effect

of the spatially correlated background noise b, and the FLIR sensor noise n,, of Equation (4-45),

equals one. This produces a SNR of 20.




4.4.8 Low-Energy Laser Speckle Return Measurement Dimensions. The low-energy scan
is represented as a rectangle at the hardbody target. The scan length is 262.5 meters (8.75 pixels),
which is three times the true model center-of-mass offset distance, and the scan width is 0.1
meters. The measurement noise associated with the speckle return was obtained by taking 1% of

the hardbody’s length, and converting to pixels, giving a variance of 0.000178 pixels? [6].

4.4.9 Plume Reflectance Model. From correspondence with Phiilips Laboratory personnel
[3], the bias utilized by the plume reflectance model is approximately 25 - 30 meters and appears
90 - 95% while the plume is illuminated during the boost phase. For the simulation, nominal

values for the bias and rate of appearance are set at 25 meters and 90%, respectively,

4.4.10 Low-Energy Doppler Return Measurement Dimensions. The Doppler measurement
noise rms tracking errors are functions of wavelength, radar aperature, and SNR. From Dr.
McManamon’s study [16] and with agreement from the Phillips Laboratory, the wavelength values
of .53pm, 1.06 pm, 2.01pm, 4um, 6pm, 8um, and 10.5um, with SNR values of 10, 8, 6, and 4.
and P, values of 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.20, and 0.30 are utilized in a sensitivity

analysis. The radar aperature (d of Equation (5-29) of .5 meters is used as a constant.

4.4.11 Hardbody Reflectivity Measurement Model. The function p(-), in Equation (4-50),
represents the sensitivity threshold of the low-energy laser return sensor. The threshold must be
less than the magnitude of reflection, m, (scaled according to the aspect angle ), to detect the

return from the hardbody. In the simulation, the value of the threshold is set to 0.0.
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4.5 Summary

This chapter presented the mathematical description of the truth model. The truth model
consists of 14 states: 2 deterministic target trajectory states, 6 stochastic atmospheric jitter states,
four stochastic bending/vibration states, and two stochastic pogo states. The infrared target plume
model is formed from the difference of two bivariaie Gaussian functions. The FLIR
measurements are corrupted by spatially and temporally uncorrelated FLIR sensor noise, and
spatially correlated and tempurally uncorrelated background noise, The low-energy measurement
models, which provide an offset measurement from the intensity centroid to the hardbody center-
of-mass, consist of the plume reflectance model, the 3-dimensional hardbody reflectivity model,
and the Doppler measurement model. The plume reflectance model simulates the elongation of
the apparent hardbody in the speckle measurement data due to the simultaneous hardbody and
plume speckle return, The 3-dimensional hardbody reflectivity model provides realistic
backscatter that is a function of the hardbody’s curvature and aspect angle. The Doppler
measurement model also utilizes the backscatter informaticn from the 3-dimensional relectivity
model and corrupts that informiation with rms angle tracking errors associated with a particular

wavelength, radar aperature, and SNR,
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V. Filter Models

5.1 Introduction

The Kalman filter dynamics model is a reduced-order and simplified version of the tuth
model. The decrease in the number of states results in a more viable and implementable filter
algorithm when computational processing time and memory storage may be limited. However,

the state reduction must be accomplished in a purposeful manner such that the dominant behavior

of the truth model is preserved.

For this research, the FLIR filter receives measurements from the FLIR sensor to update
its state estimates, and subsequently propagates these estimates to the next sample time. Since the
FLIR filter’s one-sample-period-ahead predictions are used as commands for the FLIR sensor
controller to center the target on the FLIR image plane at the next measurement sample time, the
accuracy and reliability of the FLIR filter's state estimates are essential to maintain lock on the

target plume and to track it precisely..

This chapter discusses the four linear Kalman filters utilized for this study. First, a six-
state FLIR filter, a development from previous theses [5,35], uses an enhanced correlator [36] to
process FLIR measurements. The six-state FLIR filter presented here also defines an elemental
Kalman filter within the MMAF structure (Chapter II). Second is a one-state filter that estimates
the hardbody center-of-mass location relative to the target IR image center of intensity, A low-

energy laser is scanned along the FLIR filter’s estimated velocity vector from the estimated center
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of intensity and the received speckle return is used to generate an offset measurement from the
target plume intensity centroid to the hardbody center-of-mass, to be used as the input
measurement for this second filter [5,6). Third is a one-state center-of-mass filter that similarly
uses & low-energy laser scan, but instead receives measurements processed from the Doppler
return of the plume and the hardbody. Fourth is an alternative to either of the two previous filters:
a two-state center-of-mass filter, in a modified MAP MMAF structure, that utilizes the offset
measurements generated from both the speckle and the Doppler returns. The latter two filters are
relevant to the primary objectives of this thesis. Presented in the following sections are the

dynamics and measurement models for each filter, as well as the enhanced correlator algorithm.

5.2 Six-State FLIR Filter

This study and the two previous theses on locating and tracking the missile hardbody [5,6]
all employ the six-state FLIR filter that has been developed by AFIT students over thirteen years
of research {3,1,27,29,35,36]. The filter consists of two target plume position states, two target
plume velocity states, and two atmospheric jitter position states. A six-state FLIR filter as such
provides estimates for the plume intensity centroid’s position and velocity, separated from the
atmospheric jitter effects. The resulting estimates are used to track and maintain lock on the target
plume, and additionally to define the origin and orientation of the low-energy scan. The following

subsections cover the FLIR filter dynamics model and the FLIR measurement model.

5.2.1 Dynamics Model. The six-state FLIR Kalman filter is based upon the staie vector:




5 [
*) Y
P el B (5-1)
x, v,
xs 'xa
xﬁ Y a
where
x, = x component of centroid position (azimuth), relative to center of FOV
y; = ycomponent of centroid position {elevation), relative to center of FOV
v, = xcomponent of centroid velocity
v, =y component of centroid velocity
x, = xcomponent of atmospheric jitter
y. = Yy component of atmospheric jitter

Each state in Equation (5-1) is coordinatized in the o-p (FLIR) plane of Section 3.2.3.1. The
target velocity is represented as an exponentially time-correlated first order Gauss-Markov process
[5.35). A comparison between the filter model presented here and the fourteen-state truth model
eatlier described in Section 4.2 reveals the extent of state reduction. Note that the atmospheric
Jjitter model has been reduced from the six states defined in the truth medel in Section 4.2.2 to
two states. The effect of the higher frequency double pole in each FLIR axis direction was
negligible and was intentionally disregarded to reduce the filter order [33]. Furthermore, the

bending/vibration states defined in Section 4.2.3 are similarly excluded since past research found

no significant degradation in filter performance without these states [12]. Lastly, the pogo states

defined in Section 4.2.4 are not at all modeled in the filter for this research.




The following time-invariant, linear stochastic differential equation describes the six-state

FLIR filter model;

(0 = Fx () + Gw/®) (5-2)
where
F, = 6 x 6 time-invariant system matrix
x (1) = OG-dimensional filter state vector
G, = 6x 4 time-invariant noise distribution matrix

w,(f) = 4-dimensional, white Gaussian noise process with independent components,
and mean and covariance kernel statistics:

E{wI(t)} =0
(5-3)
Efw 0w ¢ + D) = 3@
The time-invariant system matrix ¥, is given by:
0o 0 1 0 0 0
¢c 0 0 1 0 0
o o -1 o o o
TX
F=|l 0 o o -L o o (5-4)
! T
Y
o 0o 0o o -1 o
Tax
o o o o o -1
Tay

The noise distribution matrix G, is:




"Wl

0 0 0 O
0 0 0 O
G = 1 0 0 0 (5-5)
1o 1 0 o
0 0 1 0
(0 0 0 1]
The strength of the white Gaussian noise w,, given by @, is:
[ 262 ]
X 0 0 0
Tx
2 2
o 2 o o0
0 - ¥ (5-6)
! 20,
0 0 ‘ 0
Tnx
20 1
0 0 0 o
Tay

where

T,

Tax tay
2 2
o\ Oy

2 2
Our’s Gay

correlation times for the intensity centroid x and y velocities
correlation time for the atmospheric jitter process in the x and y directions
variance and mean-squared value for the intensity centroid x and y velocities

variance and mean-squared value for the atmospheric jitter position process

The filter state estimate and error covariance matrix are propagated forward to the next

measurement update using the following discrete-time filter propagation equations [17]:

£(4.) = @,A02,(4) (5-7)
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where

£(1)
@, (A1)

Py(1)
()

(4"

Qu/

it

i

P1.) = LANP()P[AY + @, (5-8)

filter estimate of the 6-dimensional state vector

6 x 6 time-invariant state transition matrix for propagation over the sample
period: At =1t - ¢

6 x 6 filter covariance matrix

time instant before FLIR measurement is incorporated into the estimate at
time ¢,

time instant after FLIR measurement is incorporated into the estimate at
time ¢

6 x 6 filter dynamics noise covariance given by:

‘hl

Q, = f ® (..~ G, Q,G]P(1,.,- 1)t (5-9)

4

The time invariant state transition matrix ®,(As) is given by:

1 0 @, 0 0 0 |

0 1 0 @, 0 0
CERE A I

0 ¢ 0 0 9, 0

0 0 0 0 0 ¥
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L \ Yy J
4 3
Py, = exp 'S;ﬁ?—
\ ) (5-11)
4 \
$,, = exp —SA..Q.
\ Ty J
(o)
D,, = exp -.(A.L)
T
a )
SR
D, = exp 4
\ o

dyu 0 4y O O 0 1
0 qyn O gy 0 O
9yn 0 4Gy, 0 0 0 (5-12)
Qs - 0 Gy O qu 0 O
0 0 0 0 gu O
| 00 0 0 0 g |

where
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yn = Quns

\
Qo o; |} - CXP[‘ 2($t) }

Qs = 24

|
zqn
T —_
t
(4]
>4
<
|
R
<N B
=
. -
| SSSS—— |

Qapas =

[ (ZANE

t

Qs = Ou |1 - €xp —__i_.)_
L \ ¥/
2(A 1]

t

Qyes = Oay |1 = €xp|- @n
. oy ) ]

The propagated intensity centroid position estimates &,(¢,,’) and &, (t,,,’) are applied as
control signals to the FLIR pointing controller (Section 3.4). These estimates prescribe the
required change in azimuth and elevation that the FLIR pointing controller should execute over

the next sample period to center the hotspot image on the FLIR FOV plane at the next

measurement sample time.
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5.2.2 FLIR Measurement Model. Measurements of the intensity centroid’s position are
generated by an enhanced correlator algorithm, shown in Figure 5.1, developed by Rogers [36].
Unlike the standard correlator tracker that correlates the current FLIR data frame with the previous
data frame, this enhanced correlator algorithm correlates the current FLIR data frame with a
template that represents an estimate of the target plume’s intensity function. "Psuedo-
measurements” of the centroid’s position offsets are produced by this correlator; they are linear
in the states of the filter, and this tracker therefore uses a linear Kalman filter, The following
discussion of the processes within the enhanced correlator algorithm that are used to treat the

FLIR sensor data is reproduced from the previous thesis [6] with some modifications,

Template Generation

, g g o

| Updated State Estimate

|
; |
x (1Y) |
[+ ¥ |
8§x8 F Negating Exponential i
Input = T > Phase > Smoothing Template
Array || Shift of Data :
i :
Lnage < | R One Sample '
Correlation , h[x(t)¢t] Petiod Image
(IFFT) < T Stotage :
‘ i

z(t;) u

p| Kalman Filter

x=x (7, To FLIR/Laset
A - Controlle
Results of Yy =yd(ti+l) L—p

Propagation

Figure 5.1 Linear Kalman Filter/Enhanced Correlator Algorithm
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5.2.2.1 Enhanced Correlator Algorithm. The algorithm presented here was developed as

an alternative to an earlier 64-dimensional, non-linear measurement model of Equation (4-39).

Previously, an extended Kalman filter processed raw FLIR measurement data from a standard

FLIR sensor, with no correlation algorithm utilized at all [27]. With the enhanced correlator

algorithm, a linear Kalman filter is employed since the output measurements from the correlation

algorithm are 2-dimensional position measurements that are linear functions of the states to be

estimated. This configuration outperformed the extended Kalman filter and further provided a

reduction in computational loading. The "enhancement” occurs in the following manner [36]:

1.

The most current FLIR data is correlated with a template (which is an estimate of the

target’s intensity function), instead of with the previous FLIR data frame.

Instead of outputting the peak of the correlation function, a technique known as
"thresholding" is used along with a simple center-of-mass computation. The enhanced
correlator outputs the center-of-mass of the portion of the correlation function that is
greater than some predetermined lower bound. Consequently, the enhanced correlator
has no difficulty distinguishing global peaks from local peaks, as do many conventional

"peak-finding" correlation algorithms.

The FLIR/laser pointing commands are generated via the Kalman filter propagation cycle

instead of by the "raw measurement” output of a standard correlation algorithm.

The Kalman filter estimate, #(¢"), is used to center the template, so that the offsets seen

in the enhanced correlator algorithm should be smaller than those visible in the
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conventional correlator. This increases the amount of "overlap” between the actual FLIR

data and the stored template, and thus improves performance.

Referring back to Figure 5.1, the enhanced correlation algorithm uses the 8 x 8 array of
target intensities obtained by the FLIR measurement, to establish a 64-clement shape function
from the target plume intensity profile (Section 4.3.1). The intensity functions are centered on
the FLIR plane by translational shifts using centroid offset estimates from ¥(¢,"), using the "shifting
property” of the Fourier Transform, where negating phase shifts are applied in the spatial
frequency domain to accomplish a translational shift in the original domain. Rather than perform
the difficult correlation in the time domain, the Fourier domain allows onc to apply
straightforward multiplication to implement the "translational shift" of the intcnsity functions and
eventual correlation with the template. Exponential smoothing is then used to average the result
with previously centered images to yield an updated template. The current FLIR data is thien
correlated against the template of the previously stored shape function that has been centered on
the FLIR image plane. The outputs of the algorithm are two linear offsets, x, and y, as shown in
Equations (4-1) and (4-23, that yield the highest correlation of the current data with the template.
These "pscudo-measurements” are then fed to the linear FLIR Kalman filter {or its update. The
filter provides the updated estimate, %(¢"), used to center the FLIR intensity profile to be included

in the templawe generation for the next measurement.

5.2.2.2 Template Generation. The teraplate reconstructs the shape, size, and location of
the intensity centroid using the raw noise-corrupted FLIR measurements. The template generation

begins with an input of a FLIR frame of data to the enhanced correlator algorithm of Figure 5.1.

Using the "shifting" property of the fast Fourier transform (FFT), which states that a translational




shitt in the spatial domain is equivalent to a linear phase shift in the frequency domain, the phase

shift is coraputed by:

Flg = x5 Y = Yot = GUf, £expl=2n(f, « 2, * £, * V)t (5-14)
where

F{*} = Fourier transform operator
g(x,y) = 2-dimensional spatial data array

G(f.. fy) = Flegxy)}
ff, = spatial frequencies

The: Fourier transform is implemented in the simulation software using the Cooley-Tukey
algorithm [36]. The target plume intensity shape function is "centcred on the FLIR plane” by

phase shifting the transformed function an amount equal to:

NORENOREI

y_yw‘;(tl) = 9,,(‘;) * ?a(‘:‘)

(5-13)

where £, , 9,, %,, 9, are the state estimates defined in Equation (5-1). Once the data is centered
on the FLIR plane, it is incorporated into an updated template for the next sample period. In the

simulation, the Kalman filter’s first update cycle is bypassed to form the initial template.

The template is generated by averaging the N most recent centered intensity functions
observed by the FLIR sensor. The averaging process iends to accentuate the target intensity
function and attenuate the corrupting background and FLIR noises. The memory size N is chosen

according to how rapidly the shape functions change, i.e., highly dynamic intensity functions
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require small values of N, while slowly varying functions use large N values. Typically, a true
finite memory averager would require a large computer memory [18]. However, the enhanced
correlator algorithm circumvents the memory storage issue by incorporating an "exponential
smoothing" technique to approximate the averaging. This technique has properties similar to finite
memory averaging, but with the advantage of requiring only the storage of a single FLIR frame

of data. The template is maintained by the exponential smoothing algorithm given by:

fe) = yr) ~ (1 - i) (3-16)
where
Itt,) = "smoothed estimate” (template) of the target's intensity function
I(t,) = ‘"raw" intensity function from the current FLIR data frame

smoothing constant: 0 <y = 1

-2
I

The smoothing constant y is comparable to the value selected for N. From Equation (5-16), it can
be seen that large values of y emphasize the current data frame and correspond to small values

of N. Based on previous studies [14,40], a smoothing constant of ¥ = 0.1 is used for this thesis.

A reinitialization algorithm is used once after the first ten sample periods (although it
could be called periodically thereafter as well, in actual implementation). Once the templaie is
computed, its centroid is calculated and shifted to the center of field of view for the template, thus
eliminating any biases. It is this template which is now stored and correlated with the next FLIR

data to produce the "pseudo-imeasurements.”

5.2.2.3 "Pseudo-Measurements”. ‘The template serves as the best estimate of the shape

of the target plume intensity function prior to receiving a new FLIR data frame. The cross-
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correlation of the incoming FLIR data with the template provides the position offsets from the
center of the FOV to the centroid of the target intensity image. The cross-correlation is computed

by taking the inverse fast Fourier transform (IFFT) of the equation [36]:

Flgiy) * 1) = G(f,, fYL (£, 1) (-17)

where

i}

Fi}
8(xy)
I(x.y)
g(xy) ¥ l(x,y) = cross-correlation of g(x,y) and i(x,y)
G, fy) = Flexy))
L'(f,.f,) = complex conjugate of F{I (x.y)}

Fourier transform operator

measured target intensity function of the current FLIR data frame

it

expected target plume iniensity function (i.e., template)

After the IFFT is accomplished, the values of the correlation function, g(x,y) * [(x,y), are modified
such that any value less than 0.3 of the function’s maximum value is set to zero [14,32]. This
“thresholding” technique is used to eliminate false peaks in the correlation function that occur due
to noise and other effects. As shown earlier in Figure 5.1, the output of the image correlation is
the offset of the "thresholded" FLIR intensity centroid from the center of the FLIR FOV. This
offset is assumed to be the result of the summed effects of target dynamics, atmospheric jitter, and
measurement noise. The x- and y-components of the offsets are the pseudo-measurements
provided to the FLIR Kalman fiiter, and are expressed in terms of Equation (5-1) as:
Xomer = %g * %y + Yy

(5-18)
yomet = yd * ya * vf2
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These two measurements can be represented in state form as:

z(t) = Hx,(t) + v (1) (5-19)
where
z(tl) = [ xo/])u(tl ) ' yo[l':el(tl) ]T
H, = 2 x 6 measurement matrix
x.(t) = state vector of Equation (5-1)
v (1) = 2-dimensional, discrete-time, white Gaussian measurement

noise with statistics:

Efv(t) =
b} -1 20
Esw(tv*(t); =
v v () 0 41
The FLIR measurement matrix H, is given by:
100010 (5-21)
H, =
010001

The measurement noise v,(1,) represents the combined corrupting effects of the spatially correlated
background noise, the FLIR sensor noise (Section 4.3.1), and the errors due to the FFT/IFFT

processes. The covariance matrix R, (with units of pixels’) associated with this error is given by

[10,29,36):




R - 0.00363 0 (5-22)
! 0  0.00598

Since the pseudo-measurements are linear, a linear Kalman filter is utilized where the

update cycle is defined by the equations [17]:

K(t) = Pt )H [H P (¢ H] + R/]"
2,4 = 2,(17) + K@) () -~ H £,()] (5-23)
o) = P - Ke)H P ()

Kit) = 6 x 2 filter gain matrix
P(t) = 6x 6 filter covariance matrix
H, = 2x 6 measurement matrix; Equation (5-21)

R, = 2 x 2 measurement noise covariance matrix; Equation (5-22)

£(t) = 6-dimensional estimated state vector; Equation (5-1)
z(t) = 2-dimensional measurement vector; Equation (5-19)
(¢4) = time instant immediately before measurements are incorporated at
time
(¢) = time instant immediately after measurements are incorporated at
time ¢,

5.2.3 Filter Parameters. This section provides a consolidated reference of the parameters

used in the simulation. Presented below are definitions of the modeling parameters, initial

conditions, and tuning parameters for the six-state FLIR filter employed in this research.




5.2.3.1 Modeling Values. The filter target dynamics correlation time constants <, and 7,,
in Section 5.2.1, are both equal to 8.5 seconds and represent a missile target with benign
dynamics. The atmospheric correlation time constants 7, and t,, are botl set equal to 0.0707

seconds in the simulation [6].

5.2.3.2 Initial Conditions.  Since initial acquisition characteristics of the: FLIR filter

have been explored in the past [41], emphasi . is placed upon the tracking problem, rather than

aquisition and tracking. Thus, taken from previous research [5,6], the filter is artificially

initialized to zero error for the position and velocity states of Equation (5-1). 1he position states

._r. x, and x, are initialized with the target plume intensity centroid centered in the FLIR FOV. Thie

velocity states x, and x, are initialized in accordance with the target’s initial trajectory conditions

L

as defined in Section 4.5.1. Both atmospheric states x; and x, are initialized to zero.

The initia} state covariance matrix P(z,) is:

(100 0 0 0 0]
010 & 0 00
PG - 0 0 2000 0 0 O (5-24)
0 0 0 20000 0
00 0 0 20
; (00 0 0 02

where the units of the covariance associated with the position states x, and x, and the aimospheric
stites x; and x; are pixels’, and those of the velocity states x, and x, are expressed in

pixels’/seconds? [6].

=
e




The measurement covariance matrix R, was established empirically in past research

[23,36). K, (with units of pixels)is given by:

R. - 0.00363 0 (5-25)
! 0 .00598

5.2.33 Tuning Values. Both filter dynamic variances o,? and o,}, in Section 5.2.1, are
equal io 800 pixels*/seconds® with or without plume pogo applied to the intensity centroid. Both
atmospheric variances o, and o,,’ are equal to 0.2 pixels? in accordance with the truth model

(Section 4.4.4) [6].

5.3 Hardbody Center-of-Mass Filters

Parallel to the two previous theses [5,0], the. primary ohjective of this research is the
precise tracking of the missile hardbody and determination of its certer-of-mass locaton, T
basic premise underlying the dynamics modeling efforts is that the center-of-mass is located at an
offset distance relative to the intensity centroid. The offset distance is oriented angularly using
the FLIR filter estimated intensity centroid’s velocity in the FLIR image plane [5]. Figure 5.2
illustrates the geometry of estimating the offset distance and the dependence of the center-of-mass
filters upon the FLIR filter’s estimates of the position and velocity of the intensity centroid. (Note
that Figure 5.2 depicts the ideal situation; in general, the filter estiraates of the centroid position,
velocity, and the orientation angle are not equal to the truth model values.) Qriginating at the
intensity centroid’s estimated position, a low-encrgy laser is scanned along the estimated velocity
vecior. The reflections of the low-energy scan generate a measurement of the offset distance, to

be uiilized as aimpoint informaticn for the high-energy laser,
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Except for ihe Gependence upon the FLIR filter’s estimated intensity centroid position and
velocity, the center-of-mass filters function autonomously; the FLIR filter has no know!zdge of
the existence of the center-of-mass filter. Eden [5] developed a one-state center-of-mass filter that
processed measurements derived from the speckle return of the plume/hardbody interface. Evans
[6] foilowed with an eight-state filter, composed of the six-state FLIR filter augmented with two
states that represent the x and y components of the offset distance. Again, the augmented partition
of the eight-state filter is independent of the FLIR partition, exzept for its reliance on information
regarding the intensity centroid’s position and velocity vector. Evans compared the performance

IS of the hardbody center-of-mass ¢stimates between the eight-state filter and the six-state FLIR /one-
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state center-of-mass filter configuration and found that both performed equally well. He
concluded the one-state center-of-mass filter performs sufficiently well for the given benign

trajectory and has the advantage of requiring less computer processing time [6].

This thesis differs from Eden’s and Evans' work by using the Doppler return, instead of
the speckle return, of the low-energy scan to discern the plume/hardbody interface. This approach
is driven by the need for a more meticulous discrimination of the plume/hardbody interface since
there is evidence of speckle return emanating from the plume of a solid-propellant rocker due to
the presence of aluminum and other metallic particulates (Section 4.3.2.2). Measurements of the
plume’s speckle return were determined to be on the same order of magnitude as that of the
hardbody [2,34] and, under these conditions, the precise definition of the plume/hardbody interface
becomes ambiguous and degrades the ability to locate the hardbody center-of-mass. Eden’s one-
state filter, that processes measurements of the offset distance as derived from the laser speckle
return, is evaluated to determine the extent of performance degradation caused by the plume’s

reflectance (this phenomenon was not simulated in either Eden’s or Evans’ work).

To investigate the feasibility of employing Doppler returns, two center-of-mass filter
configurations are utilized in this study. First, the identical dynamics model of Eden’s one-state
filter will be used to process measurements of the offset distance as acquired i;om the plsme and
hardbody-induced Doppler returns. Second, a two-state center-of-mass filter in a modified
Maximum a Posteriori (MAP) Multiple Model Adaptive Filter (MMAF) structure is developed to

accept measurements generated from both laser speckle and Doppler returns.
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The following subsections begin by presenting the dynamics of the one-state filter and
includes separate discussions on the speckle and Doppler measurement models. Next, the two-

state MAP MMAF center-of-mass filter that employs both measurement models is described.

5.3.1 One-State Center-of-Mass Filter Dynamics Model. The offset between the intensity
centroid and the hardbody center-of-mass is represented as a bias. This bias is modeled as a
simple integrator, with driving pseudo-noise for filter tuning purposes. The single-state

representation of the linear, time-invariant, stochastic differential equation is given by:

k = Fx@) « Gw, () (5-26)
where
F, = 0
x(t) = state representing offset distance between missile center-of-mass and FLIR
image planc intensity centroid
G, = time-invariant noise distribution matrix, equal to unity
wy(z) = white Gaussian noise process, independent of the noise processes of the

six-state filter, with mean and covariance kernel statistics:

Elw, ' = 0

(5-27)
E {wr(t)wf(r + 7)) = QIB(‘C)

The scalar discrete-time representation of the filter propagation Equations (5-7) and (5-8)
is:

2,0) = DAL (1) (5-28)

P (t.) = @ ADP (5)YPT(AN + Q, (5-29)

where




(1)
P, (A1)

Fi(t)
(%)

(4"

Qu

filter estimate of the 1-dimensional state vector

time-invariant state transition matrix, equal to unity, for propagation over
the sample period: At=1¢,,- ¢,

1 x 1 filter covariance matrix

time instant before FLIR measurement is incorporated into the estimate at
time ¢

time instant after FLIR measurement is incorporated into the estimate at
time f

filter dynamics noise variance given by:

Q= fd)f(t,‘l—'c)G,Q,G,Td),T(t,l—t)d't (5-30)

[/

where Q= Q 4t since G, = ®,= 1. The transpuses that appear in Equations (5-29) and (5-30)

are not really necessary since all quanities are scalar, but they are retained for convenience.

5.3.1.1 Speckle Reflectance Measurement Model. This model is included in this study

to observe the effects caused by the low-energy laser speckle return of the plume (Section 4.3.2.2)

upon the center-of-mass estimates. If the speckle reflection of both the hardbody and plume is

received by a low-energy laser sensor, a noise corrupted measurement of the offset distance,

where

further biased by the plume’s reflectance, is provided to the one-state filter (Equation (4-47)). The

discrete-time measureient model is given by:

z2(t) = Hx(t) + v,(t) (5-31)
z(t) = biased measurement of the offset distance (Equation (4-47))
H, = measurement matix, equal to unity
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x(1) = center-of-mass offset state

v (1) = discrete-time, white Gaussian measurement noise with

statistics!
Eve) = 0
R, t =t (5-32)
Ev(@)vit)) =
P} =1, y

where R, = R, (true measurement variance) = 0.000178 pixels? (Section 4.4.8) [6].

5.3.1.2 Doppler Measurement Model. In contrast with the speckle measurement model,
this model provides a measurement based upon the low-energy laser Doppler return of the
hardbody. The significant dissimilarities between ihe plume and hardbody-induced Doppler
returns can be exploited to discern the plume/hardbody interface (Section 4.3.3.2) precisely, and
provide information regarding the location of the hardbody. The low-energy laser measurement
is provided to the one-state filter whenever the laser intercepts the hardbody, and the hardbody-
induced (and plume-induced) Doppler return is received by Doppler return sensor equipment. The
resulting measurement to be provided to the filter is a noise-corrupted offset distance between the
FLIR filter’s estimate of the intensity centroid and the computed center-of-mass. The discrete-

time measurement model is given by:

z(t) = Hox, () + v,(t) (5-33)
where
z(t) = measurement of the offset distance

H, = measurement matrix, equal to unity

x(1) center-of-mass offset state

I
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v (4) = discrete-time, white Gaussian measurement noise with
statistics;
E{v(t,)} =0

R t =t (5-34)

E{u, v} = 0’ . t/
! )

where R, = R, (true Doppler measurement variance), a function of low-¢nergy laser wavelength,
radar aperture, and signal-to-noise ratio (Section 4.3.3.4). Since both measurement models are
linear, the one-state filter processes the measurements using a linear update cycle defined by the

scaler version of Equation (5-23),

5.3.2 Two-State Modified MAP MMAF. For this research, a 2-state modified MAP
MMAF structure is developed to capitalize on both the speckle and Doppler reflections of the low-
energy laser scan. There are three advantages to this endeavor: first, this filter benefits from both
measurements, and all available information regarding the location of the hardbody’s centei-of-
mass is provided to the filtcr at each update cycle. Second, as the hardbody’s aspect angle y
approaches 0°(normal to the Doppler transmitter's LOS), the plume-induced Doppler spectrum
converges with that of the hardbody (as in Figure 4.14), rendering detection of the hardbody-
induced Doppler return difficult (Section 4.3.3.2). Nevertheless, the low-energy laser speckle
returns continue to provide measurements under these conditions, and can compensate for the
temporary loss of Doppler information. Third, should either the speckle return or Doppler return
sensing circuitry/equipment malfunction, the availability of both measurements establishes a level

of redundancy that ensures the tracking system remains operational, albeit with some degradation

in performance,
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Figure 5.3 Two-State Modified MAP MMAF Structure

Figure 5.3 shows the modified MAP MMAF structure with a decision block followed by
two elemental filters. Each elemental filter is composed of two states: one state that represents
the offset distance from the FLIR image intensity centroid to the hardbody’s center-of-mass; and
one state that represents the bias caused by the plume's speckle reflectance (Section 4.3.2.2). The
role of the decision block is to ascertain the presence of the hardbody-induced Doppler return in
the measurements for each sample time. If the hardbody Doppler return is detectable, the

measurements are provided to the two elemental filters that are based upon two hypothesis: 1) the
bias caused by the plume’s speckle reflectance exists in the measurement, and 2) the bias does not

exist in the measurement.
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The two hypotheses capture the intermittent appearance of the plume’s speckle reflectance,
As mentioned in Section 4.3.2.2, the plume’s speckle reflectance was observed to occur 90% of
the time during the boost phase, which implics that the bias is not included in the speckle
measurement 10% of the time. To validate either hypothesis, the residuals of the elemental filters
are monitored and compared to each other. The state estimate associated with the "best" residual
(meaning the smaller of the two) would have the highest probability of being associated with the

correct hypothesis, and thus of being the optimal state estimate for the given sample time.

The estimation process could have been handled as well by a Bayesian MMAF, in which
the state vector estimate of each elemental filter is weighed appropriately using a hypothesis
conditional probability to produce the state estimate, %,,.,{%), as 2 probabilistically weighted sum
(Section 2.3).  Nonetheless, it was felt that the respective residuals would be sufficient and
distinctive enough to verify their respective hypotheses, and the appropriate X,,,, (%) Would be
selected. In addition, the modified MAP MMAF is simple, requires minimal computational
processing, and is therefore easy to implement. Hence, a decision was made 0o pursue the

modified MAP MMAF structure [20].

If the hardbody-induced Doppler return is not detectable, the measurement is provided to
the elemental filter based upon the first hypothesis. This allows the speckle return measurement
to continue when the hardbody Doppler return ceases to be distinct from the plume’s (Section
4.3.3.2) and a Doppler return measurement cannot be generated. With the first hypothesis, it is
anticipated that the bias would exist in the speckle return measurements, due to the high rate of
appearance of the plume’s speckle reflectance. This bias is not separately observable based only

on speckle measurements, so the most recent bias estimate is retained until such time that Doppler
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measurements resume. The following subsections discuss the 2-state modified MAP MMAF

dynamics model, and measurement model, and it also covers the adaptive algorithm,

5.3.2.1 Two-State Dynamics Model. The two states, one offsst distance state and one bias
state, are each represented as the output of simple integrators driven by white Gaussian pseudo-
noise for tuning purposes. The linear, time-invariant, stochastic differential equation for this

model is given by:

£ = Fx (0 + Gw, (1) (3-33)
where
F, = 0
x.(1) = 2-dimensional state vector
G, = 2x 2 time-invariant noise distribution matrix equal to /
w,(t) = 2-dimensional independent, white Gaussian noise process with mean and
covariance statistics:
Elw (0D} = 0
. ! (5-36)
E{wl(t)w, (¢t + )= Q,5(v)
The time-invariant, discrete-time representation of the filter propagation Equations (5-7)
and (5-8) is:
2,5, = AN (5-37)
P[(t,jl) = <I>,(A1)P/(t,' )<D,T(At) +Q ” (5-38)
where

£(y) = modified MAP MMAF estimate of the 2-dimensional state vector
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@, (A1) = 2x 2 time-invariant state transition matrix, equal to 1, for propagation over
the sample period: At=1¢_,-¢
Pi() = 2x2 filter covariance matrix
(t) = time instant before measurement is incorporated into the estimate at time ¢,
(t = time instant after measurement is incorporated into the estimate at time ¢,
Q, = filter dynamics noise covariance given by:

fiy

g, = f ® (t,,-1G,Q G/ Pt ~)d (5-39)
[

where Q ,, = Q,At since G, = P, = I.

5.3.2.2 Measurement Model. When the low-energy laser intercepts the hardbody, noise-
corrupted measurements derived from both Doppler return and speckle return are provided to the
two-state modified MAP MMAF. While the Doppler return provides measurements of the offset
distance from the FLIR image irtensity centroid to the hardbody-of-mass, the measurements
acquired from the speckle return generally consist of the offset distance with the bias caused by

the plume’s speckle reflectance.

Let s denote a vector of uncertain parameters in the measurement. The discrete-time

measurement model is given by:

2(6) = His),x, (1) + v, (1) (5-40)
where
z(t) = 2-dimensional hardbody center-of-mass measurement
H(s)y = 2 x 2 measurement distribution matrix
x(4) = 2-dimensional state vector
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v(t) = 2x 2 discrete-time, white Gaussian measurement noise with

statistics:
Elv(t) = 0
. } R t =1 (3-41)
Eqw(t t) =
{v( ) 0 %1
The measurement distribution matrix, H(s),, is given by:
H
1peckle 5-42
H(s), = | o (3-42)
1 0
where
H

weete = 1 X 2 partition, adaptively configured according to the presumed quality of
the scalar speckle measurement

Figure 5.4 diagrams the algorithm for adaptively defining the H,,,,,, partition and shows
two paths that branch from the "Detectable Hardbody Doppler Return” decision block. Each path
corresponds to the two events mentioned earlier - the intermittent nature of the plume’s speckle
reflectance (right path), and the loss of hardbody-induced Doppler returnis (left path). The right
path of the algorithm is contingent upon two hypotheses: 1) the bias caused by the plume’s

speckle reflectance exists, and 2) the bias does not exist. The right path of the algorithm operates

sequentially in the following manner:




ypothesis

versus

hesig
1 l 2
A

H(s | ) H(s,)

L
n speckle

Figure 5.4 Modifiecd MAP MMAF Algoiithm

1. Under the first hypothesis, the measurement is provided to the filter according to the

model:
z/(t;) = H(S]),x/ (t[) + V]. (5'43)
The discrete-time, scalar representation of Equation (5-43) is given by:
z,(t) t -1 x,@¢) v
A ]= ............ R N (5-44)
Z/Z(tl) ! I 0 xn(t:) Ve

noise-corrupted speckle return measurement

where

It

Z; (1)
25 (1)

it

noise-cerrupted Doppler return measurement
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center-of-mass offset distance state

X, (1)
Xp(t) bias state
va(t) = discrete, white Gaussian measurement noise associated with

the speckle measurement
vo(t) = discrete, white Gaussian measurement noise associated with

the Doppler measurement
Note that the H,,,.,, partition is shown as [ 1 -1 ] to signify the bias caused by the

plume's speckle reflectance is in the opposite direction of the hardbody’s velocity vector.

The residual, r,, is then calculated as [17]:

r(t) = z,(6) = His) £,0) (5-45)

- where
r, = residual formed from the elemental filter vased on the first

hypothesis

2. Similarly, the measurement is provided simulianeously to the elemental filter under the

second hypothesis (that no bias exists in the measurement) according to the following

model:
z[(t‘.) = H(sz)[x,(t,) v, (5-46)

The detailed represeutation of Equation (5-46) is given by:

%ﬂ)}r f ....... 9 *(8) L (5-47)
2,,(t) ! 10 || %208 Vi
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with the H,,,.,, partition shown as [ 1 0]. The residual, r,, is then calculated as:

. ™
rt) = z,(4) - H(s) £,(/) (3-48)
where
r, = residual formed in the elemental filter based on the second
hyputhesis

3. Each residual r, is a 2-dimensional vector with the first scalar component directly

. associated with the hypothesis testing. The detailed representation of Equation (5-48) for
b
the residual, r,, is given by:
r“(tl) - z,"l(tl} _ }I.::f:ih,e x’l(t[)-! (5_49) . e
r,z(t() Zrz(t‘) 1 0 xﬂ(tl)J - e
where the componene r,, is given by:
ra) = 2,() - H %) (5-50)
Thus, the scalar componenis r,, of the residuals r, and &, are compared, whereby the
i . "best" residual {i.e., the smaller of the two r;, components) determines which associated

clemental filter has the highest probability to provide the correct state estimate at a given

time,

The left path of the algorithm aliows the reception of speckle return measurements to
continue during the ioss of distinct hardbody Doppler returns. The measurement is provided to

the elemental fiiter based upon the first hypothesis with the assumption that the measurement
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contains the bias. Thus. the H,,.,, partition is configured as [1 -1] to accept the speckle return

measurement of the offset distance, assuming that it has the bias.

5.3.3 Filter Parameters. In the preceeding discussions, parameters vsre introduced for
the filter dynamics and measurement models. This section consolidates and defines the initial

conditions and tuning parameters for the hardbody center-of-mass filters used in this research.

5.3.3.1 One-State Filter with Speckle Return Measurements: Initial Conditions, Based
on previous research [5,6], the offset distance from the FLIR image intensity centroid to the
hardbody center-of-mass is initialized to one pixel. The initial state variance P(t,) is vqual to 0.2

ixels?, and the measurement variance is equal to the tree measurement variance, 0.00178 pixels®.
p q p

5.3.3.2 One-State Filter with Speckle Return Measurements: Tuning Vaiues. From Evans

[6], the filter dynamics noise variance Q,, is equal to 0.7 pixels,

5.3.3.3 One-State Filter with Doppler Return Measurements: Initial Conditions. The
values of the initial offset distance and initial state variance, P(t,), are carried forward from Evan’s
thesis: 1 pixel and 0.2 pixels?, respectively [6]. The measurement variance, R,, is equal to the true
measurement variance and is a function of the low-energy laser wavelength, SNR, and aperture

diameter of the transmitter (Section 4.3.3.4). The filter measurement variance is given by:

e 2
Rf =R, = —r (5-51)
[ka\/S‘NR ]
where
R, = filter measurement variance
R, = true measurement variance
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0, = beam diffraction limit (Equation (4-54))

k, = pixel proportionality constant, 15 prads/pixel (Section 4.2.1)
SNR = signal-to-noise¢ ratio

5.3.3.4 One-State Filter with Doppler Return Measurements: Tuning Values. The filter

dynamics noise variance Q, is equal to 0.7 pixels?, based upon Evans’ research [6].

5.3.3.5 Two-State Modified MAP MMAF: Initial Conditions. The initial offset distance
is retained at one pixel, and the initial bias is again set at one pixel. Thus, the initial states x(1,)
is given by:

_| 10 (5-52)
%) = [1.0 }

The initial state covariance matrix, P(t,), is given as:

02 €0
Pt - (5-53)

“ oo o2

with units of pixels. The measurement variance matrix, R;, is given by:

0.0 R

122

. [0.%178 0.0 ] (5.5
/

where R,, is equal to the Doppler measurement variance of Equation (5-49).




5.3.3.0 Two-State Modified MAP MMAF: Tuning Values. The performance plots that
resulted from tuning the two-state modified MAP MMAF are shown in Appendix D. For the
initial tuning values, the filter dynamics noise variances were set equal to the values mentioned
in Sections 5.3.3.2 and 5.3.3.4 for each one-state filter, The covarianr e of the discrete-time white

Gaussian dynamics driving noise, given by @, is:

qyn 00 |
Q= (5-55)
0.0 gy,
where
qqu = offset dynamics noise variance
quz = bias dynamics noise variance

From Figure D.1, it can be seen that these original tuning values were overly conservative. The
variances were gradually decreased by an order of maguitude until the overall time histories of

actual rms errors and the filter computed rins error matched well [17]. Table 5.1 lists the statistics

Table 5.1 Two-Siue Modified MAP MMAF Tuning Siatistics

‘—J True Error True Error True Error True Error
L Qgu | Qe || ~Mean(t;) Mean(t') lo(t;) lo(t')

0.7 0.7 0.33329E-4 | -0.18450E-4 | 0.14906E+0 | 0.32113E-2

0.33747E-4 | -0.18576E-4 | 0.14905E+0 | 0.32121E-2

0.35241E4 | -0.18108E-4 | 0.14897E+0 | 0.31975E-2

0.34722E-4 | -0.17817E-4 | 0.14900E+0 | 0.31980E-2

0.33822E-4 | -0.18678E-4 | 0.14904E+0 | 0.31945E-2




that were achieved from 5 sets of tuning values. Decreasing the dynamics noisc strengths q,,,
and q,,, produced negligible diffcrences in performance; however, the last entry was chosen based

upon its performance plot in Figure D.25.

From Equation (5-54), the two-state modified MAP MMAF dynamics noise covariance

Q,» in units of pixels’, is given by:

(5-56)

5.4 Swmmary

Four linear Kalman filters are used for this research to investigate the feasibility of
employing measurements derived from low-energy laser reflections to locate and track the missile
hardbody center-of-mass, The previously developed six-state FLIR filter [5,8,10,11,12,14,27,29,
32,33,35,36, 37,40,41] processes "pseudo-measurements” from an enhanced correlator algorithm
and produces position and velocity estimates of the FLIR image target plume intensity centroid.
The position and velocity estimates provide the reference position and angular orientation for the
low-energy scan, The one-state center-of-mass filter [5] that receives measurements from the low-
energy speckle returns, is examined 1o analyze the effects caused by the speckle reflectance of a
solid-propellant motcr’s exhaust plume. This study adopts the one-state center-of-mass filter's
dynamics model to receive the alternative Doppler return measurements. A two-state center-of-

mass modified MAP MMAF is developed to capitalize on the available speckle and Doppler

returns. The two-state modified MAP MMAF yields several advantages over using just Doppler
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(or just speckle) measurements: the use of all available measurement information, compensation
for the loss of hardbody-induced Doppler returns by using speckle returns, and measurement

rcdundancy in the event of speckle or Doppler sensor equipment failure,
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VI. Procedures and Results

6.1 Introduction

This chapter presents the results of carrying out the research objectives cited in Chapter
1. The individual performances of two configurations of hardbody center-of-mass Doppler return
filters (the one-state and the two-state Modified MAP MMAF respectively) is evaluated by
conducting a sensitivity analysis with respect to three parameters (see Sections 4.3.3.4 and 4.4.10):
low-energy laser wavelength, signal-to-noise ratio (SNR), and probability-of-miss (P,,). Each
filter is subjected to all the possible combinations of all the respective variations of these three

parameters.

Time allotted did not allow the pursuit of two secondary objectives since the sensitivity
analysis generated a vast amount of data. Thus the alternative scan techniques are not explored,
nor is the implementation of the pogo phenomenon achieved. All simulation runs, however,
employ Evans [6] 3-dimensional hardbody model along with the laser sweep routine, as described

in Section 4.3.2.1.

Each simulation run consists of 10 Monte Carlo runs over a 10 second period of the
targei’s trajectory. The collection of the statistics of the actual errors (mean and standard
deviation) and the filter-computed error standard deviation is given in Appendix A. Performance
plots, statistical results, and tabular data are presented in the appendices, and are referred to
throughout this chapter. Note that, in the plots of Appendices C, D, E, and F, the coliection of

the error statistics begin at the second sample time. The purpose for the one-sample delay is to
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form the template for the enhanced correlator algorithm with the first set of FLIR data (Section
5.2.2.2). Consequently, most of the plots exhibit no initial transient behavior that would result
from the initial conditions given to the center-of-mass filters (Sections 5.3.3.1, 5.3.3,, and 5.3.3.5
define the initial conditions), However, depending on the circumstances imposed by the values
of wavelength, SNR, and P,, other plots may display an initial non-zero mean error; these are the
cases that exhibit slower initial transients. This is seen to occur particularly in Appendix F. For
practical purposes, only the performance plots for a selected parameter set which adequately
illustrate significant trends are contained in the appendices. Similarly, the tabular data shown in
this chapter are not all inclusive. However, the statistical results and tables in the appendices
reflect all data gathered for this research, A description and explanation of the statistical plots can

be found in Appendix B.

The analysis and performance evaluation of all the center-of-mass filters is based upon
their behavior and sensitivity to changes in the parameters. The performance indicators are the

RMS errors obtained at ¢ and ¢*. For time ¢, the RMS error is calculated as:

Epps(t) = Veaz(t.-) + Gez(tf) (6-1)
where
Epus(t) = RMS error
e(t) = mean error
o,() = error standard deviation

However, the mean crrors ¢ and ¢* of the upcoming tabular data are insignificant as compared

to the 1o values and would therefore have negligible impact upon the RMS error calculations.
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Thus, the standard deviatic.s at ¢” and ¢, can therefore become gauges of the trends in the RMS
errors, Furthermore, the error standard deviations at ¢ are deemed critical since they describe how
well the filter propagates its offset distance estimates, which are used as control signals for the

FLIR sensor controller (Section 3.4): these ultimately determine the tracker pointing accuracy.

The following sections discuss the results of each filter used for this study. The one-state
center-of-mass filter with only speckle return measurements is first evaluated to observe the effects
from the plume’s speckle reflectance. The subsequent sections discuss the results and trends
observed from the sensitivity analysis accomplished on both the one-state center-of-mass filter
with Doppler return measurements and the two-state center-of-mass modified MAP MMAF using
both speckle and Doppler return measurements. Finally, the resulting ertor statistics are compiled

in order to compare the two Doppler filters’ performances.

6.2 One-State Filter with Speckle Reiurn Measurements

As mentioned in Section 4.3.2.2, the plume’s speckle reflectance was observed to cause
an offset bias aftward of about 25-30 meters, appearing 90 - 95% of the time iii the measurements.
For the simulation, the nominal values for the bias and appearance rate were set at 25 meters
(equal o 0.833 pixels) and 90%, respectively. It was anticipated that the additional bias would be
apparent in the errors. The filter error statistics (in units of pixels and meters) are shown in Table
6.1, and the statistical plots are shown in Figures 6.1 through 6.3. Although Table 6.1 presents
5 significant figures, in actuality, the first 3 digits are significant. 'The values shown represent the
time-averaged statistics over ten Monte Carlo runs, (This is also true of Tables 6.4 through 6.7,
and the tables in Appendix H.) Note, in Table 6.1, the substantial increase of the 1o values, in

meters, over a propagation sample period. Figure 6.1 shows the true rms errors versus the filter
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Table 6,1 Offset Distance Statistics of One-State Speckle Return Filter

Offset distance mean(t;) mgan(t,*) | lo(t) lo(th)

pixels -0.7489 -0.7499 0.26857 0.19545
meters ~22.467 -22.497 8.0571 5.8635

computed rms errors, while Figures 6.2 and 6.3 show the true mean errors + the error standard
deviations. (Plots, such as in Figure 6.1, are included to demonstrate that good tuning is achieved,
whereas plots such as those in Figures 6.2 and 6.3 show the resulting performance of the filter,
A further explanation of the plot symbology is given in Appendix B.) The results do show an
inclination of the filter's offset measurements towards the bias. Attempts to tune the filter by
increasing the dynamics driving noise strength had no significant impact upon the performance.
Figure 6.3 shows that the 90% occurrence rate of bias due to plume speckle produced interesting
results in the offset errors at 1. Note, that if the bias were to occur 100% of the time, the plots
of Figures 6.2 and 6.3 would exhibit a mean error of .833 pixels (25 meters). Each of the
unbiased measurements (occurring 10% of the time) causes a quantized jump in mean and 1o,
where the quantization is directly attributed to using a 10-run Monte Carlo analysis, i.e., the
quantizations correspond to 0 "good" measurements out of 10 runs of measurements for each ¢;

1 "good" out of 10; 2 "good" out of 10, etc,

6.3 One-State Filter with Doppler Return Measurements

The primary purpose of this study was directed by the testing of the one-state filter that

is provided with Doppler return measurements of the offset distance rather than speckle return
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Figure 6.3. One-State Speckle Return Filter Biased Offset Error at 4
measurements. The filter is analyzed with variations in three parameters that influenced the
quality of the Doppler return measurements. Table 6.2 lists the three parameters and their
variations that are explored. Although the dynamics model for the one-state filter is identical to
what was dcveloped by Eden {3] and Evans [6], a fundamental difference between the speckle
return and Doppler return is the variance associated with the measurement noise. Referring to
Section 4.3.3.4 and Equations (4-53) through (4-55), Table 6.3 lists the assorted measurement
noise variances associated with given values of wavelength and SNR. In comparison with the
speckle return measurement noise variance equal to 0.000178 pixels? [6], the shortest wavelength

exhibits an order of magnitude decrease in the values of measurement noise, especially with the

higher values of SNR. Furthermore, a significantly more precise measurement should be




Table 6.2 Values of Parameter Variations

A 7 SNR P,

0.53 pm 10 0.00
1.06 pm 8 0.01
2.01 pm 6 0.02
4.00 pm 4 0.03
) 6.00 pm 0.04
8.00 pm 0.05
10.5 ym 0.10
3 0.20

0.30 ‘

Table 6.3 Measurement Noise Variances for Transmitted Wavelength and SNR

A SNR Measurement Noise Variance, pixels?®
053 pm 10 0.0000091
4 0.0000227 i
2.01 pm 10 0.0001308 |
P 4 0.0003272
i 10.5 pm 10 0.0035700
. 4 0.0089280
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realizable for a SNR of 4 with a wavelength of 0.53 pm., Thus, at the shorter wavelengths,
improved error statistics, as compared to the one-state speckle return filter, were expected using
Doppler return measurements, However, it remained to be seen how much impact the probability-

of-miss parameter would have upon the filter’s estimates.

The statistical performance plots for the one-state filter are contained in Appendix C. To
limiit the size of the appendices, only a chosen set of plots (identified with wavelengths 0.53 pm,
2.01 pm, and 10.5 pm; SNRs 10 and 4; and P,, of 0.0, 0.05, and 0.30) are shown to illustrate the

significant statistical trends.

In general, the plots show that the fiiter’s performance is relatively stable through all
variations of parameters. The filter obviously becomes less efficient and attains higher RMS
ertors as A increases or SNR decreases (which result in an increase in the measurement noise
variance). However, the average of the offset errors consistently converge about zero mean: note
that the mean is consistently much smaller than the standard deviation. Following the variations
in P, shows that the filter tolerates the intermittent absence of Doppler return measurements and
performs well for P, up to 0.05. Figures C.1.5. C.2.5, C3.5, C4.5, C.5.5, and C.6.5 show
negligible differences in the offset error mean + 1o values at ¢« for P, equal to 0.05. Figures
C.1.6,C.2.6, C.3.6, C.4.6 depict the offset errors mean + 1o values at ;" and show how the filter
recovers quickly when a measurement is received. It is noted that, as P,, increases, the plots of
the offset error mean + 1o at t*, do exhibit less efficiency, implying a sensitivity to variations of
P,. This is illustrated by comparing Figures C.1.1, C.1.2, and C.1.3 with Figures C.1.4 through
C.1.9. Note that the plots in the iatter group of figuros show large transienis, while plots in the

first group, (associated with P, equal to zero) do not. The cause of these tansients is therefore
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attributeq o the combination of the initial condition (set arbitrarily to 1 pixel) and the absence of

measurements, averaged over the ten Monte Carlo runs,

At 1/, the filter's performance remains consistent, as opposed to the sensitivity of the error
standard deviations at time 1 to parameter variations; this indicates that the filter's propagated
estimates maintain a degree of insensitivity to variations within the parameter set. This
insensitivity of the stancdard deviation at #; can be attributed to the propagation errors which
dominate the perfcrmance characteristics, Table 6.4 lists a subset of the error statistics for the
one-siate Doppler return filter, One can examine the mean errors at ¢ and ¢ and notice their
erratic pecformance (although still centered about zero mean, i.e., of much smaller magnitude than
the standard deviation) in contrast to the systematic behavior of the 1o values at £ and 4%, It is
apparent that the 1o values at #; are relatively stable, whereas those at ¢" increase with increasing
A and P,,, and decreasing SNR. To compare the one-state Doppler filter to the one-state speckle
return filter of the previous thesis, Table 6.5 lists the error statistics Evans [6] achieved without
including the effects of the plume’ speckle reflectance. Clearly, with the shorter wavelengths, the
one-state Doppler return filter achieved better values of 1o at ¢ throughout the SNR and P,
range as compared to the one-state speckle return filter. Furthermore, the one-state Doppler filter
performance is undcubtedly superior when Table 6.4 is also compared with Table 6.1, which

properly reflects the impact of the plume speckle bias on the one-state speckle filter (whereas

Table 6.5 artificially does not).




Table 6.4 One-State Doppler Filter Error Statistics (in Pixels)

Apum | SNR P, mean(t) mean(,") I lo(t) 1o(th)
53 10 0.0 -30391E-4 .15079E-3 .14402E40 28674E-2
.01 .13520E-3 .14715E-2 .14436E+0 12484E-1
.02 -.55185E-3 .16988E-2 .14479F+0 .18428E-1
.03 -.85223E-3 94931E-3 .14461E+0 29420E-1
04 - 44544E-3 85601E-4 .14509E40 .36608E-1
05 27581E-3 .64996E-3 14478EA40 .39320E-1
10 44882E-3 .50387E-3 .14477E40 .70834E-1
.20 J31482E-2 .39645E-2 .14495F+0 .11249E40
.30 .30750E-2 32894E-2 .14520E40 J12629E40
4 0.0 S1095E-4 23792E-3 .14399E+0 45304E-2
.01 -.68101E-4 .15506E-2 .14437E40 .14030E-1
.02 -.48477E-3 .17917E-2 .14485EA40 .19918E-1
03 -.78556E-3 .10110E-2 .14457E40 30657E-1
.04 -.38538E-3 .14446E-3 .14507E+0 37841E-1
.05 46723E-5 .38337E-3 .14528E+0 43738E-1
10 .49465E-3 .53090E-3 .14477E40 J71501E-1
.20 .31985E-2 A0154E-2 .14501E+0 .11270E40
30 31100E-2 33113E-2 .14521E+0 12634E40
2.01 10 0.0 .36007E-3 .56858E-3 .14399E+0 .10843E-1
.01 .18846E-3 .18493E-2 14439E40 .19898E-1
.02 -.23438E-3 .21442E-2 .14510E+0 .25584E-1
.03 -53112E-3 .12396E-2 .14440E40 .35400E-1
04 -.14913E-3 37758E-3 14500E+0 42347E-1
.05 30485E-3 .65790E-3 .14549E+0 47879E-1
10 .66959E-3 .64378E-3 .14476E+0 .74103E-1
.20 33901E-2 42120E-2 14529E+0 J11359E+)
.30 .32428E-2 .33960E-2 .14528E+0 .12665E40
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Aum | SNR P, II mean(t,) mean(t,") lo@t) lo(t})

4 0.0 .66680E-3 .89720E-3 .14401E+0 .17082E-1
.01 44352E-3 21331E-2 J444E+0 25713E-1
02 .17095E-4 24826E-2 14535E+0 31197E-1

.03 -27951E-3 J4609E-2  14426E4+0  .40153E-1
04 92439E-4  .60917-3 J4495E+0  46868E-1
.05 .60920E-3 93585E-3 J4569E+0  .52037E-1
10 .84940E-3 77198E-3 J4478E+0  .76803E-1
.20 .35800E-2 44078E-2  14560E+0  .11463E+0

.30 .33720E-2 34791E-2 .14543E+0 J2712E40
10.5 10 0.0 .26115E-2 .29295E-2 .14534E+0 53274E-1
.01 .20358E-2 .36996E-2 .14583E+0 .59557E-1
02 .16022E-2 43570E-2 .14770E+0 .63928E-1
.03 13037E-2 27672E-2 .14480E+0 .68595E-1
.04 16703E-2 .20807E-2 .14594E+0 .74279E-1
.05 25731E-2 27723F-2 .14776E+) 77298E-1
.10 20497E-2 18295E-2 J4653E+0 95123E-1

.20 47999E-2 S7305E-2 .14890E+0 .12380E+0
30 42102E-2 41334E-2 14854E+0 13309E+0
4 0.0 42651E-2  45982E-2 .14876E+0 .78044E-1
.01 33884E-2  .48892E-2 1491CE+0 .82539E-1
.02 29406E-2  .57096E-2 15147E+0 .86402E-1
.03 26006E-2  .38282E-2 14766E+0 88773E-1
.04 J30215E-2  32559E-2 .14908E+0 94020E-1
.05 42458E-2  43537E-2 AS119E+0 95596E-1
10 30541E-2  .28026E-2 15063E+0 .11036E+0
.20 S3285E-2  .69039E-2 .153862+0 13345E40
.30 49931E-2  48497E-2 15375E+0 .14073E+0
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Table 6.5 One-State Speckle Return Filter Statistics Without Plume Reflectance (in Pixels) [6]

mean (t) ~ mean (A 1o (1) 1o (¢})
0.67629E-3 0.66146E-3 0.14964 0.12666E-1

6.4 Two-State Modified MAP MMAF

The algorithm for the two-state Modified MAP MMAF allows the speckle return
measurements to be taken every sample period, to aid the estimation process especially
wheneverthe hardbody-induced Doppler return becomes undetectable (Section 5.3.2). The
circumstances that cause an indistinguishable hardbody-induced Doppler return are embodied in
the probability-of-miss (P, ) parameter. However, there is a second category of events that
requires investigation, namely, the instances where the low-energy laser return is not received
(either due to bending or attenuation of the returning signal as it propagates the 2000 km range,
or due to signal losses within the receiving equipment). Consequently, under these conditions,
neither speckle nor Doppler return measurements are generated and the filter merely continues to

propagate its most recent estimaies.

To accommodate the two preceding categories, the sensitivity analysis for the two-state
Modified MAP MMAF is conducted under two case conditions. Case 1 encompasses the
complete loss of the low-energy laser return signal and neither measurement is provided at the
specific sample time. In Case 2, the speckle return measurements are provided continuously
during instances of undetectable hardbody-induced Doppler return. Appendices E and F contain
the respective statistical plots for Cases 1 and 2, respectively. For a given set of parameters, the
plots portray the filter’s performance in estimating the offset distance state and the bias state
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caused by the pluine’s speckle reflectance. The plots of the bias estimation errors are included
simply for completeness. The discussion and comparison of filter performance focuses upon the

offset estimation errors, which are of importance to this research,

6.4.1 Case 1: The Loss of Both Returns. As mentioned in Section 5.3.2, the
measurements provided to the two-state Modified MAP MMAF generally consist of the hardbody-
induced Doppler return and the hardbody-induced speckle return which is biased 90% of the time
by the plume’s speckle reflectance. This case not only considers the loss of both returns, but also
provides the opportunity to observe the effectiveness of the filter’s adaptiveness once the
measurements resume (Section 5.3.2.2), i.e., the estimate associated with the filter which provides

the "best” residual is selected as being most the most probabilistically correct for the given sample

time.

The plots in Appendix E reveal those instances in which the filter produced the wrong
estimate. Such is the case in Figure E.1.3, where the 1o values at " occasionally expand, or
"spike.” Evidently, the wrong choice of "best” residual was made at those times when the
magnitude of the measurement noises caused the less precise hypothesis to be favored. However,
itis significant to note the filter's immediate recovery once subsequent measurements are received,
Referring to Figure E.1.2, the 1o values at ¢, (which indicate the quality of the control signals
for the FLIR sensor controller) appear stable and well-behaved. Figures E.1.7 through E.1.12
illustrate the impact of invoking the probability-of-miss. Although the 1o values at ¢ remain
relatively unchanged, the 1o values at 4 are more erratic, a behavior attributed to the combination
of incorrect state estimates and the propagation of state estimates when measurements are not

available. With P, equal to 0.30, the filter's performance degrades notably, as seen in Figures
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E.1.13 through E.1.18. The same pattern is noticeable for A equal to 2.01 pm, as seen in Figures

E.3.1 through E.3.18.

For the longer wavelengths, the filter’s perforruance becomes sensitive 1o increases in P,
as illustrated in Figures E.5.1 through E.6.18 with A equal to 10.5 ym. To refer back to Table
6.3, the measurement noise variance of the 10.5 pm Doppler return is now two orders of
magnitude greater than the variance for A equal to 0.53 pm. In addition, the 10.5 pm Doppler
return measurement noise variance is also greater than the speckle return measurement variance.
In Figure E.5.3, note the different characteristics in the o values. The recovery from a wrong
estimate is no longer a "spike" with a quick return, but extended periods of expansion. As Figures
E.6.14 and E.6.15 show, the filter’s performance further degrades with an increase in P,, to a point
where the filter successively generates incorrect state estimates. This behavior is brought about

by the increase in measurement noise and P, such that the correctness of the two hypothesis

become less discernible in the residual characteristics.

The extent of this deterioration can be seen in Table 6.6, which lists the true offset error
statistics for Case 1. Similar to the one-state Doppler filter, the true mean errors of Table 6.6 are
not systematic and offer little insight into the filter's performance; they are very small compared
to the standard deviation, as seen in the previous case. Nonetheless, trends can again be observed
in the 1o values at ¢ and . The pattern of these values confirm that the filter performs well
with the shorter wavelengths. Note that, while the values for 1o at # remain relativeiy stable, the
1o values at #* grow methodically with an increase in A and P,,, along with a decrease in SNR.

At A equal to 10.5 pm, the filter’s performance becomes unacceptable.

6-14




Table 6.6 Two-State Modified MAP MMAF Offset Error Statistics for Case 1 (in Pixels)

Apm | SNR P, mean() mean(t;) \ lo(t) lo(th)
53 10 0.0 33822E-4 -.18678E-4 14904E+0 31945E-2
01 -.39903E-3 32547E-3 .14932E+0 .12852E-1
02 -89191E-3 A43935E-3 .14954E+0 .18845E-1
.03 -.12107E-2 -.24677E-3 .14989E+0 .30205E-1
04 -.69277E-3 -.97808E-3 .14988E+0 .37895E-1
.05 -.13571E-3 -.38331E-3 .15000E+0 .44448E-1
10 .27966E-3 -.35659E-3 15038E+0 J72172E-1
20 .15996E-2 20021E-2 .15063E+0 A1733E40
30 .13357E-2 16175E-2 15053E+0D .13116E+0
4 00 || -.13042E-5  -.52716E-4 J14805E+0  .41866E-2
01 || -47029E-3 25518E-3 14927E+0  .13865E-1
02 -.94834E-3 37101E-3 .J4949E+0 .19772E-1
.03 - 12849E-2 -.34905E-3 .14986E+0 31022E-1
04 -.81988E-3 -.11022E-2 14972E4+0 .38708E-1
.05 -.23537E-3 - 49898E-3 .14983E+0 45154E-1
10 21631E-3 -43852E-3 JA5030E+0 J72594E-1
20 15713E-2 19594E-2 15054E+0 11738E40
.30 . .712517E-2 15399E-2 .15044E+0 A3112E40
201 | 10 0.0 | -45957E-3  -49394E-3 14870E+0  .12443E-1
01 -.12408E-2 -23504E-2 J4747E40 .20557E-1
02 || -.69788E-3 -.20630E-2 .14232E+40 .26077E-1
03 | -10382E2  -89523E-3 14823E40  .374090E-1
04 || -49185E-3  -13671E-2 14797E40  45259E-1
.05 .19771E-3 37456E-3 J14733E+0 49297E-1
10 - 17522€6-2 -.12557E-2 15180E+0 ,76836E-1
.20 .87361E-3 87518E-3 J15014E+0 .10868E+0
30 .18422E-1| JA18320E-1 A5178E+0 13459E4+0




Aum | SNR P, " mean(t,) mean(t;’) lo(t) lo(t")
4 0.0 -.32932E-2 -31397E-2 14971E40 228 19E-1
01 -33141E-2 -32291E-2 15189E+0 J2314E-1
.02 -.98558E-3 -.13796E-2 14561E+0 .31069E-1
03 -40762E-2 -42124E-2 J15748E+0 51092E-1
.04 -.32898E-3 .11863E-2 13978E+0 .46989E-1
.05 S50116E-3 -.10566E-2 J4657E+0 S3971E-1
.10 -.25768E-2 -.31636E-2 J4960E+0 73933E-1
.20 - 15304E-2 -.22255E-2 .14749E4+0 10642E+0
30 19264E-2 31013E-2 14733E+0 .12655E+0
105 | 10 00 || -21071E-1  -20738E-1 18448E+0  .84377E-I
01 || - 16689E-1  -.15960E-1 17880E4+0  .84557E-1
02 || -20723E-1  -.18649E-1 18634E+0  .97423E-1
03 || -.17178E-1  -.16382E-1 17808E+0  .93890E-1
04 || -29128E-1  -.29388E-1 J19848E+0  .13033E+0
05 || -26703E-1  -27624E-1 19660E4+0  .13089EA40
10 || -.26909E-1  -.27012E-1 J19716E+0  .14193E+0
20 || -.26618E-1  -26112E-1 20074E40  .17841E+0
30 || -35108E-1  -.34632E-1 21324E40  20015E+0
4 0.0 -.23786E-1 -.23439E-1 19198E+0 99170E-1
01 -.16894E-1 -16176E-1 JA18136E+0 92106E-1
.02 -.21026E-1 -.18947E-1 .18884E40 10353E+0
.03 - 17262E-1 -16431E-1 18008E+0 99596E-1
.04 -.32105E-1 -.32382E-1 20460E+0 14033E+0
.05 -47341E-1 «-47771E-1 23468E+0 J18452E4+)
.10 -.28458E-1 -.28269E-1 .20094E+0 . 14764E+0
20 -.30184E-1 -.29689E-1 .20984E+0 .18882E+0
30 -.35536E-1 -.35092E-1 21675E+0 20395E40
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6.4.2 Case 2: Continuously Available Speckle Returns. As mentioned earlier, the two-
state Modified MAP MMAF in this case functions with the P, parameter exclusively affecting the
Doppler return (the hardbody-induced Doppler retusn becomes indistinguishable from that of the
plume). Under these circumstances, the filter operates under the assumption that the bias caused
by the plume’s speckle reflectance is in the speckle return measurement (Section 5.3.2.2). Even
though this is true only 90% of the time, the bias cannot be actively estimated when the Doppler
measurement is unavailable (due to the inherent observability problem with only the speckle
measurement).  Therefore, the most recent bias value is assumed to persist in all speckle
measurements until Doppler measurements return and active bias estimation can resume. As the
plots in Appendix F show, the filter’s performance is almost similar to Case 1. Figures F.5.1
through ¥.6.10 show the same pattern of extended periods of incorrect estimates as compared to
Figures E.5.1 through E.5.10, However, the figures for Case 2 in Appendix F.4 begin to exhibit
longer transient timesbefore reaching a steady state. This initial behavior occurs in Case 2 since
the configuration of the measurement distribution matrix is forced to include the bias state
whenever the Doppler return is undetectable, thus providing more opportunities to select the wrong
hypothesis (Section 5.3.2.2). However, there is some improvement in the estimates, wiich can
be credited to the constant availability of the speckle return measurements. For instance,
comparing Figure E.6.9 with F.6.9 (the results of these plots are actually not acceptable, but they
clearly illustrate the improvement gained by having continuous specki: return measurements)
shows that Case 2’s performance does not deteriorate as much as Case 1's. Although & longer
initial transient is seen for Case 2 (Figure F.6.9), one can note the smaller values of o and the
better recovery ability. This better performance is confirmed by comparing Table 6.7 to Table

6.6 and noting the improvement in the 1o values.
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Table 6.7 Two-State Modified MAP MMAF Offset Error Statistics for Case 2 (in Pixels)

Aum | SNR P, mean(t;) mean(?) lo(t) lo(t")

53 10 0.0 0.33822E-4 -0.18678E-4 0.14904E4+0  0.31945E-2
.01 ~0.10650E-3 -0.25523E-3 0.14831E+0  0.53584E-2

02 0.27202E-3 0.11516E-3 0.14269E+0  0.79514E-2

03 || -0.43156E-3 -0.16704E-3 0.14806E+0  0.13082E-1

04 |1 -0.37338E-3 -0.14840E-3 0.14744E40  0.15582E-1

05 || -0.11909E-3 0.20641E-4 0.14750E+0  0.19875E-1

10 | -0.11103E-2 -0.11407E-2 0.15249E4+0  0.34393E-1

20 0.56603E-4 0.27481E-3 0.14906E+0  0.52569E-1

30 || -0.44194E-3 -0.32322E-3 0.14890E40  0.72982E-1

4 0.0 || -0.42414E-3 -0.33754E-3 0.14842E+0  0.56773E-2

01 -0.91824E-3 -0.57512E-3 0.14887E+0  0.82736E-2

02 0.43942E-3 0.38938E-3 0.14511E+0 0.10417E-1

03 || -0.12666E-2 -0.12221E-2 0.15557E+0  0.17398E-1

04 0.41729E-3 0.92052E-3 0.13861E+0  0.16539E-1

05 0.58756E-4 0.18977E-3 0.14590E+0  0.21870E-1

10 || -0.21232E-2 -0.17971E-2 0.14866E+0  0.34161E-1

20 || -0.26346E-2 -0.26733E-2 0.14541E+0  0.52123E-1

30 || -0.13965E-2 -0.12422E-2 0.14380E+0  0.73377E-1

2.01 10 0.0 || -0.45957E-3 -0.49394E-3 0.14870E+0  0.12443E-1
.01 -0.86927E-3 -0.101 56E-2 0.14819E+0  0.15144E-1

02 || -0.10440E-2 -0.12024E-2 0.14232E+0 0.17888E-1

.03 || -0.18569E-2 -0.16089E-2 0.14759E+0  0.22171E-1

04 i1 -0.12858E-2 -0.10667E-2 0.14644E+0  0.23761E-1

05 || -0.47967E-3 -0.34617E-3 0.14755E+0 0.26227E-1

.10 || -0.30232E-2 -0.30411E-2 0.1513144+0  0.41426E-1

20§ -0.11163E-2 -0.89814E-3 0.14899E+0  0.57322E-1

30 || -0.21351E-2 -0.20301E-2 0.14803E+0  0.75903E-1
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Aum | SNR | P, mean(t,) L mean(t,) lo() 1o
4 0.0 -0.23257E-2 -0.22422E-2 0.15023E+0 0.22428E-1
.01 -0.20302E-2 -0,16982E-2 0.15005E+0 0.21492E-1
02 -0.10081E-2 -0.10582E-2 0.14491E+0 0.23964E-1
.03 -042251E-2 -041811E-2 0.15707E+0 0.33630E-1
.04 -0.61153E-3 -0.11602E-3 0.13876E+0 0.27786E-1
.05 -0.40743E-3 <0.28042E-3 0.14638E+0 0.31682E-1
.10 -0.33908E-2 -0.31044E-2 0.14984E+0 0.43704E-1
.20 -0.56010E-2 -0.58369E-2 0.14825E+0 0.62616E-1
30 -0.43593E-2 -0.41875E-2 0.14626E+0 0.79954E-1
10.5 10 0.0 -0.21071E-1 -0.20738E-1 0.18448E+0 0.84377E-1
01 -0.13267E-1 -0.13409E-1 0.17218E+0 0.70387E-1
02 -0.19407E-1 -0.19548E-1 0.17415E+0 0.83323E-1
03 -0.18826E-1 -0.18930E-1 0.17470E+0 0.79366E-1
.04 -0.63974E-2 «0.62002E-2 0.15939E+0 0.57878E-1
05 -0.74758E-2 -0.73681E-2 0.16349E+0 0.62397E-1
10 -0.12305E-1 -0.12303E-1 0.16461E+0 0.76550E-1
.20 -0.20081E-1 -0.20217E-1 0.17927E+0 0.10990E+0
.?O -0.40824E-1 -0.40763E-1 0.21284E+0 0.16459E+0
4 | 00 [|-023344E-1  -023223E-1  0.19G79E+0  0.10238E+0
01 || -0.18769E-1  -0.18477E-1  0.18358E+0  0.90538E-1
02 || -0.16465E-1  -0.16187E-1  0.17719E+0  0.87058E-1
03 || -0.27113E-1  -027153E-1  0.19645E+0  0.10856E+0
04 || -0.28052E-1  -028138E-1  0.19392E40  0.12448E+0
05 || -0.67151E-4  035709E-5  0.15185E40  0.54615E-1
10 || -0.33658E-1  -0.33433E-1  020460E+0  0.13460E+0
20 || -0.32079E-1  -032443E-1  0.19449E+0  0.13145E+0
30 -0.28231E-1 -0.27757E-1 0.18730E+0 0.13638E+0




6.5 Comparison of the One-state Filter and the Two-State Modified MAP MMAF

This section compiles and compares the performance results of the one-state Doppler filter,
and Cases 1 and 2 of the two-state Modified MAP MMAF. The compiled results, contained in
Appendix G, are plotted to show the sensitivity of the filters to variations in the parameters of
wavelength, signal-to-noise ratio, and probability-of-miss at £ and #,*. Appendix G is divided into
two subappendices: Appendix G.1 contains graphs that present a set of parametric curves that give
RMS errors (in units of pixels) as functions of wavelength for various SNR’s and for a given
value of P,,, and Appendix G.2 contains graphs that show a set of parametric curves that give
RMS errors as functions of wavelength, for various values of P, and for a given value of SNR.
Each figure has thiee graphs, arranged to present the performances of the one-state Doppler filter,
and the two cases of the two-state Modified MAP MMAF, concurrently. Additionally, for each
subappendix, the results at #* are presented first, followed by the results at ¢, to illustrate the
pattern of errors that result from state estimate propagation. One should be aware of the change

of scale of the RMS errors axis when transitioning from " to ¢

In Appendix G.1, one notes the general increase in RMS errors as P, increases and/or
SNR decreases at both ¢* and ¢;. At ", the parametric curves of the one-state Doppler filter
appear constant, and as Figures G.1.1 through G.1.6 show, the slope of the curves decreases as
P, increases. The parametric curves for Case 1 and 2 of the two-state Modified MAP MMAF are
not as structured and stray at the longer wavelengths, This irregular behavior suggests that more
than ten Monte Carlo runs should be performed to smooth the data in order to reveal the patterns
more adequately. In Case 1, the curves at shorter wavelengths (less than 2.01 pm) do possess

some readable patterns. As P,, increases, the slope of the curves begin to decrease, and as Figures




b

G.1.4(b) through G.1.6(b) illustrate, the curves reacquire an increase in slope, causing 3 "basin"
phenomenon to develop for a range of wavelengths less than 2.01 pm, at P,, greater than or equal
to 0.10. The occurrence of the "basin" within a region of wavelengths implies a balance between
the propagation of the state estimates and the contribution of noise-corrupted speckle return
measurements. With lesser values of P, , the filter receives both Doppler and speckle return:
measurements more frequently, As P, increases, an equilibrium point, within a range of
wavelengths, is reached where merely propagating the state estimates is more advantageous to the
filter, instead of receiving a measurement. This rational is supported by recalling the small values
of dynamics noise variance that resulted from tuning the two-state Modified MAP MMAF
(Section 5.3.3.6) is now the dominant driver of the propagation errors. Also, an examination of
Tables 6.4 and 6.6 shows that the inclusion of the speckle return in the measurements, along with
the concurrent absence of both returns, increases the error standard deviations as compared to
using Doppler measurements alone. Thus, in a region of wavelengths less than 2.01 ym, the
absence of measurements (corresponding to an increase in P,) is an advantage, where it is more
beneficial for the filter to rely instead on using its dynamics model to propagate the most recent
state estimates. However, note that even though the "basin” occurs, the RMS errors remain larger

than Case 2's.

In Figures G.1.1 through G.1.6, a comparison at the shorter wavelength region of Case
2 with Case 1 reveals a slower growth rate of RMS errors. Although the curves do not exhibit
the decreasing slope or "basin” phenomenon, the RMS errors remain less than those of both Case
1 and the one-state Doppler filter. This exceptional performance can be substantiated by realizing
that, unlike Case 1, the offset state estimates are continually updated by virtue of the unhindered

speckle return measurements. Thus, the propagation errors do not grow as large as in Case 1, and
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the improved performance of Case 2 over Case 1 shows that the filter obviously functions better
with one measurement, corrupted as it may be, rather than no measurement. Based on these
results, using continuous speckle return measurements can indeed compensate for the loss of the

hardbody-induced Doppler return,

At i (note the change in scale compared to the case of #"), the one-state Doppler filter’s
errors are relatively constant at the shorter wavelengths. Curves at the longer wavelengths display
a tendency to spread, although the differences in errors are minuscule. In contrast, the curves of
Case 1 and 2 begin to spread at wavelengths beyond 2.01 ym. Furthermore, the same "basin"
pattern of Case 1 is seen in Figures G.1.8(b) through G.1.12(b). Generally, the one-measurement
filter achieves the best results at ¢, with Case 2 of the two-measurement filter configuration

slightly outperforming Case 1.

The graphs of Appendix G.2 show parametric curves that give RMS errors as functions
of wavelength, for a number of values of P,, and for a given value of SNR. For the one-state
Doppler filter at #7, it is evident that decreasing SNR has little effect, as compared to increasing
P,. Although the plots for Cases 1 and 2 also suggest a need for more Monte Carlo runs (as seen
previously), one can also observe an insensitivity to SNR. Figures G.2.1(b) and (c) through
G.2.4(b) and (c), illustrate that, at the shorter wavelengths, for SNR equal to 10, 8, 6, and 4, the

RMS errors are relatively unchanged.

At ¢, similar insensitivity to decreases in SNR is apparent in the one-state Doppler filter,
and for the shorter wavelengths of Cases 1 and 2. For a given SNR, the parametric curves of the
one-state Doppler filter are nearly horizontal and concentrated at the shorter wavelengths, As the

SNR decreases, the curves become slightly less dense as the wavelengths increase, which signifies
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less precise measurements due to the increase in measurement noise variance. However, the.
relative flatness of the curves is attributed to two factors, First, as seen in Equation (4-61), the
measurement noise variance is inversely proportional to the square root of the SNR value. Hence,
a decrease in SNR within the given range of values invokes small increases in measutement noise
variance. Second, the propagated state estimates remain accurate whenever a measurement is
missing due to the elementary form and adequacy of the one-measurement filter's dynamics
model. This type of insight is not as obvious in Case 1 or 2, although the divergence of the
curves does imply less precise measurements, particularly when the Doppler return measurement
noise variance approaches and exceeds that of the speckle return. The divergence is further
compounded by the occasional wrong estimates of the two-state Modified MAP MMAF due to
choice of the wrong hypothesis in the adaptive decision process. However, in the region of
shorter wavelengths, Case 2 consistently displays better performance than Case 1, proving the

benefit of continuously available speckle returns.

6.6 Summary

This chapter presented the results and findings of this thesis. The performance of the one-
state speckle return filter was shown to exhibit the effects of the plume’s speckle reflectance. As
anticipated, the offset estimates were biased by a corresponding amount of plume speckle return.
Graphical and tabular results of a sensitivity analysis conducted on the one-state Doppler filter and
two-state Modified MAP MMAF were presented and discussed. The results were compiled and
incorporated into two graphical sets of parametric curves which were utilized to compare the
performances of the Doppler filters. In general, each filter’s performance at #* showed a

sensitivity to changes in P,, and SNR, whereas the performance at ¢ was consistent, revealing
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a degree of tolerance to the parameter variations at #/. Although this tolerance is largely due to
the propagation errors that dominate the performance characteristics, the consistent behavior at ¢,
signifies that the propagated control signals to the FLIR sensor controller will also be dependable.
Overall, the center-of-mass filters all exhibited less sensitivity to vaciations in SNR values than
in P, values. In the shorter wavelengths, the two-state Modified MAP MMAF, Case 2,
outperformed both Case 1 and the one-state Doppler filter. Its superior performance results from
the constant update of the offset state, thus decreasing the propagation errors. The performance
not only attests to the advantage of using all available measurement sources, but also confirms that

the continuous speckle return is a viable backup during the loss of Doppler returns,
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VII. Conclusions and Recommendations

7.1 Introduction

This chapter presents the conclusions based upon the results in Chapter 6 and suggests
topics for further research. This thesis has been a feasibility study of employing Doppler for a
finer discernment of a target missile plume/hardbody interface than is possible from the speckle
return from a low-power laser. Presented in Section 7.2 are the conclusions derived from the
sensitivity analysis conducted on the one-state Doppler filter and the two-state modified MAP

MMAF. Section 7.3 covers the recommendations that arise from this study.

7.2 Conclusions

The results show the viability of utilizing Doppler return measurements with a linear
Kalman filter in the estimation of the location of the missile hardbody center-of-mass. A key
consideration in making the Doppler phenomenon workable in the tracking scenario is the distinct
contrast between the plume and hardbody-induced Doppler spectra. Based on these differences,
a model which represents offset measurements derived from the hardbody-induced Doppler return
was developed. For the model, no attempt was made to simulate the actual Doppler phenomenon,
Rather, the approach was based upon simulating the quality of the low-energy laser return as a
functicn of wavelength and signal-to-noise ratio, and simulating a specified probability of no
Doppler information at a given sample time due to either the plume and hardbody spectra being
nondistinguishable or the low-power laser beam being distorted as to miss the intended aimpoint

on the target body.
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This study, in conjunction with the two previous theses [5,6], regards the location of the
hardbody center-of-mass as an offset distance relative to the target plume intensity centroid on the
FLIR image plane. A low-energy laser is aimed at the FLIR filter's positional estimates of the
intensity centroid, and then scanned along the target’s estimated velocity vector. The success of
locating the hardbody is therefore dependent upon the accuracy of the FLIR filter's estimates.
However, an "apparent” jitter of the intensity centroid on the FLIR image plane due to
atmospheric distortions presents a major obstacle for the laser scan to intercept the hardbody and,

as a resuit, motivated the development of a laser sweep routine [6] .

The performances of the one-state Doppler filter and the two-state Modified MAP MMAF
are judged on the basis of the respective mean % 1o error plots at ¢ and at ¢+ (just before and just
after update, respectively) shown in Appendices C (one-state Doppler filter), E (two-state: Case
1) and F (two-state: Case 2). In addition to the error plots, the actual RMS errors at ¢ and ¢, in
units of pixels, are also calculated and are utilized to compare the respective performances
(Appendix G). The error analysis of Chapter VI noted from tabular data that the magnitude of
the true mean errors are substantially smaller than the 1¢ values and are thus insignificant in the
calculation of the actual RMS errors. The analysis, therefore, focused upon the quality of the
standard deviations (10) at 4 as a measure of the stability and performance of the center-of-mass
filters. The usefulness of this criterion is strengthened by recognizing that the estimates
propagated over a sample period are used to drive the FLIR sensor pointing controller, and
therefore the propagated values of standard deviations are crucial for maintaining track on the
center-of-mass in order to ensure that a high-energy laser is continuously directed at the hardbody

for a finite length of time. Presented below are the conclusions regarding the individual




performances of the one-state Doppler filter and the two-state Modified MAP MMAF, and the

comparison of their effectiveness during the sensitivity analysis.

7.2.1 One-State Filter with Doppler Return Measurements. The one-state Doppler filter's
performance was stable throughout the sensitivity analysis. The filter was tolerant to changes in
wavelength of the low-power laser and SNR of the return signal, and it demonstrated an
insensitivity to the intermittent absences of measurements. Under the worst conditions (A =
10.5um, SNR = 4, P, = 0.30), the one-state filter obtained a 1o value at ¢ of 0.154 pixel (from
Table 6.4), or a 6.8% increase of the 1o value under the best conditions. This increase
corresponds to a 0.291 meter difference between the two 1o values. The insensitivity of the 2(¢))
values is due to dominant effects of atmospheric jitter upon the propagation errors; much higher

sensitivity is seen in the 2(z") values.

The parametric curves of the one-state Doppler filter in Appendix G achieved nearly
constant RMS errors throughout the sensitivity analysis. The best performance is observed at the
shorter wavelengths‘, attributable to the smaller measurement noise variances associated with this
range, The curves indicate that the one-state filter is more sensitive to changes in P, than in
SNR. This observation can be substantiated by noting in Equations (4-53) through (4-55) that the
measurement noise variance associated with the Doppler measurement is inversely proportional
to the square root of the SNR. Thus, changes in SNR within the given range of values invoke
small changes in measurement quality, whereas the absence of measurements forces the filter to
propagate the most recent estimates without the benefit of a current update. Moreover, the
measurements may be absent over sequential sample times, and the quality of the propagated

estimates is then reliant upon the adequacy of the propagation model.




7.2.2 Two-State Modifled MAP MMAF. The two-statc Modified MAP MMAF was
proposed so as to take advantage of both speckle return and Doppler return measurements. The
sensitivity analysis was performed on two case conditions that respectively take into account the
absence of both returns or the exclusive absence of the Doppler return, In Case 1, both speckle
and Doppler return measurements are missing due to events that include attenuation of the return
signal as it propagates the 2000 km range, bending of the low-power laser beam such that no
intercept with the hardbody is accomplished, and signal losses within the receiving equipment.
Under these circumstances, the two-measurement filter merely propagates its most recent
estimates. Case 2 encompasses those instances where the target’s aspect angle approaches an
orientation orthogonal to the LOS vector. When this occurs, the radial velocity of the plume and
hardbody become nil, resulting in no Doppler shift. Consequently, the return spectra of the plume
and hardbody converge and overlap each other, which makes the hardbody-induced Doppler return
difficult, if not impossible, to detect. However, the availability of the speckle return measurement
is not affected by the target aspect angle and, under in this situation, continues to be provided to

the two-measurement filter.

It should be mentioned that the irregular nature of the RMS errors for the longer
wavelengths (as seen in Appendix G) suggest the need for more Monte Carlo runs in order to
pinpoint the statistics adequately in that region. Thus, conclusions about the two-state Modified

MAP MMAF's performance are confined and limited to the shorter wavelengths.

7.2.2.1 Case 1: The Loss of Both Returns. In Appendix E, the plots corresponding to

probability-of-miss P, equal to 0.0 show that the algorithm performs well in capturing the random

nature of the plume’s speckle reflectance by choosing between the two hypotheses about speckle




return; plume speckle bias present or absent in the measurements, There were instances, however,
where the algorithm provided the wrong estimates, generated by the filter based on the wrong
hypothesis, due to the nature of individual samples of the measurement noises. Nevertheless, the
filter recovered quickly and the effect of the erroneous estimates was negligible. The parametric
curves were observed to develop a "basin" phenomenon at P,, greater than or equal to 0.10, The
occurrence of the "basin" within a region of wavelengths implies a balance between the absence
of measurements and the contribution of noise-corrupted speckle return measurements. Otherwise
stated, with lesser values of P,, the filter received both speckle and Doppler measurements at a
higher rate. Tables 6.4 and 6.6 evince that including the speckle return increased the 1o values
over the results of using only Doppler return measurements. With higher values of P,,, the filter
benefits from the absence of corrupted mcasurements, relying instead on its internal dynamics
mode! to propagate the most recent estimates. The tabular data of Table 6.6 show that acceptable
values of 1o at ¢ are achieved at the shorter wavelengths. As with the one-state filter, the graphs

in Appendix G indicate the filter is inore sensitive to changes in P,, than to changes in SNR,

7.2.2.2 Case 2: Continuous Speckle Returns. As discussed in Section 5.3.2. during the
temporary loss of Doppler return measurements, the measurement matrix is configured to accept
speckle return under the assumption the plume speckle bias is present in the measurement. This
assumption is necessary since, without the Doppler return, the bias state is unobservable.
Furthermore, this assumption is supported by recalling that the bias appears 90% of the time. As

a result, until Doppler return measurements resume, the most recent bias state estimate is retained.

The two-state Modified MAP MMAF disclosed a better performance under Case 2

conditions. The effect of utilizing the speckle return measuremen. to compensate for undetectable
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hardbody-induced Doppler returns is clearly beneficial, as evidenced by the data in Table 6.7 and
the parametric curves of Appendix G displaying lesser RMS errors than Case 1. The parametric
curves also show that the filter is tolerant of changes in SNR and, compared to the one-state

Doppler filter and Case 1, is the least sensitive to fluctuadons in P,, at ¢,

7.2.3 Filter Comparison, In the region of the shorter wavelengths, each filter
performed well, due to the corresponding small measurement noise variance. In general, the filters
exhibited more sensitivity to fluctuations in P,, than in SNR. The one-state Doppler filter has the
advantage of receiving more precise measurements of only the offset distance (versus speckle
measurements that are less precise and are biased 90% of the time) and, as evidenced by the
nearly constant RMS errors, displayed a favorable degree of tolerance throughout the sensitivity
analysis. The one disadvantage of the one-state Doppler filter is the total dependence on the

Doppler return, which raises reliability concerns.

Although the specific analysis is lacking for the larger wavelengths, Case 2 of the two-
state Modified MAP MMAF identified a region of wavelengths where its performance i superior
to that of the one-state Doppler filter, Additionally, Case 2 has the advantage of being a dual-
return measurement system, which increases its level of reliability. Furthermore, the provision
of both speckle and Doppler return would enhance the filter’s performance if the target missile
utilizes a liquid propellant rather than a solid propellant and thus displays no significant plume
reflectance. This study, in spite of its limitations, advocates the tv o-state Moditied MAP MMAF

and use of shorter wavelength low-power laser to generate the measurements, as well as further

exploration on the operability of such a filter with the larger wavelengths,




7.3 Recommendations

The following are suggested topics for further study in using a linear Kalman filter to
track a missile hardbody using FLIR data and Doppler and/or speckle return measurements. Some
of the recommendations correspond to secondary objectives of this research which were not
pursued due to time constraints. Other recommendations are made to enhance the modeling of

the Doppler return and strengthen the analysis at the longer wavelengths.

7.3.1 Increased Number of Mcnte Carlo Runs. With the two-state Modified MAP
MMAF, the irregularity of the RMS errors at the longer wavelengths suggests a need for an
increased number of Monte Carlo runs. The two-siate Modified MAP MMAF displayed the
potential to provide equal, if not better, performance compared to that of the one-state Doppler
filter in a limited range o. wavelengths. Future it search into tiie operability of the two-state

Modified MAP MMAF over longer wavelengths necessitates this recommendation,

7.3.2 Plume/Hardbody Interface Dopp'er Return. The issue of whether the Doppler
phenomenon is feasible for tracking the missile hardbody was addressed on the basis of the
measurement quality for a low-energy laser reflection. Specifically, a relationship that gives RMS
angle tracking errors as a function of wavelength and signal-to-ncise ratio [16] was invoked to
model noise-corrupted Doppler return measurements.,  Although documentation regarding the
Doppler return characteristics of the plume is available, experimental data on the Doppler return
of the plume/hardbody interface would be more valuable for modeling purposes. The data should
reflect the effect upon the Doppler return as the laser beam traverses from the plume to the
hardbody. This wouid furnish a measure of how well the interface can be discerned and this

information can be coupled with the RMS angle tracking errors to develop a more realistic
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measurement model. Note that the "probability-of-miss” simulated here addresses the inability
to discern the difference between hardbody and plume returns under certain circumstances, but

only doing so probabilistically.

7.3.3 Consolidation of Cases 1 and 2 of the Two-State Modified MAP MMAF. Since the
sensitivity analyses for Cases 1 and 2 were conducted separately, the data generated can be used
in a conservative sense. Should there be a need to note the performance of the two-state Modified
MAP MMAF under Case 1 conditions for a P, of 0.10 and simultaneously under Case 2
conditions for a P, of 0.03, the reasonable approach would be to consider the performance as
ranging between the results for the two cases. However, the tracking scenario may not afford the
luxury of such conservativeness and may require more definite results. If so, then further research

in this area should develop a model that consolidates both cases.

7.34 Alternative Low-Energy Scan Techniques. As with the previous thesis [6], this topic
remains to be investigated. The low-energy laser sweep is one possible method to ensure that a
measurement is available to the filter at each update. Although the sweep is not preferred, it does
compensate for the "apparent” jitter of the intensity centroid on the FLIR image plane. Unless
the FLIR filter positional estimates improve, alternate means of propagating the laser scan which
are computationally more efficient than the sweep are required. Several techniques that may be
explored include sinusoidal scans and circular scans along the FLIR filter estimated velocity

vector.

7.3.5 Oscillation of the Plume’s Speckle Reflectance. As mentioned in Section 4.3.2.2.
the plume’s speckle reflectance was observed to exhibit low-frequency oscillations about its

longitudinal axis. This observed oscillation will have an impact on the offset distance estimates
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that are realizable from the speckle return measurements. The wavering action may be simulated
by a model similar to the pogo phenomenon model [35], with its own nominal amplitude and
frequency values. Since the observation is germane to the two-state Modified MAP MMAF, it

should be included in future studies,

7.3.6 Plume/Hardbody Interface Speckle Return. From the previous thesis [6], the
measurement noise variance associated with the speckle return was determined by setting the
standard deviaiion to 1.0% of the length of the hardbody and converting to variance in pixels® by
squaring, Based upon the uncertainties of the plume’s speckle reflectance, a decision was made
to retain that particular value of variance for this thesis. However, future studies should
incorporate relationships that give measurement noise variance as a function of wavelength and
SNR similar to the Doppler return measurement noise variance. Additionally, in a manner parallel
to Section 7.3.2, knowledge of the effect of the speckle return as the low-energy laser migrates
over the plume/hardbody interface would enhance the speckle measurement model. Moreover,
with the presence of the plume’s speckle reflectance, data regarding the speckle return as it

traverses from the plume to the hardbody may provide more modeling insight.

7.3.7 Bayesian Approach to the Plume Speckle Reflectance and MMAF. In this study,
the speckle reflectance emanating from the plume of a solid-propellant rocket moter is set to a
nominal value of 25 meters. Although sufficient for a first-cut model, the plume speckle
reflectance model can be enhanced further by modeling the length of the bias as Gaussian
distributed values that range from O to 30 meters. Moreover, a bias equal to O meters would
represent instances of no plume speckle reflectance and would therefore reflect the bias's non-

appearence percentage during boost time.
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Similarly, the estiination process of the two-state MMAF may be performed in a Bayesian,
rather than MAP, manner. As noted in the analysis of Chap VI and the performance plots in
Appendices E and F, the two-state Modified MAP MMAF occasionally produced the wrong state
estimate. When the parameters of wavelength, SNR, and P, were varied, the instances of
incorrect estimates became more frequent and sucessive, This is a dominang factor in the increase
of the time-averaged error standard deviations, With a Bayesian MMAF, the state estimate would
be a "blended", probabilistically weighed summed estimate. The instances of incorrect estimates

may diminish and thus reduce the error standard deviations,
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The performance of the Kalman filters used in this thesis is evaluated using ten Monte
Carlo runs. A Monie Carlo analysis involves collecting statistical information generated from
simulating samples of stochastic processes [17]). Although ten Monte Carlo runs -are generally
sufficient to converge to the actual statistics that would result from an infinite number of runs
(6.20], the analysis of the two-state Modified MAP MMAF’s performance showed a need for
more than ten runs,

For the simulation, the truth model creates an environment to provide a realistic target
plume representation as it propagates through inertial space. The FLIR filter attempts to track the
target plume using its internal dynamics model and periodic measurements from the enhanced
corre.ator algorithm, The truth model also simulates the location of the hardbody center-of-mass
as an a priori offset distance from the plume's intensity centroid on the FLIR image plane. The
center-of-mass filters estimate the offset distance upon acquiring low-energy laser return
measurements.

After collecting N samples of truth model and filter model data for ten separate Monte
Carlo runs, the true error statistics can be approximated by computing the sample mean error and

error variance for the ten runs. The sample mean error and error variance are computed by:

N

E(t) = '1:72, [ran @) = 28] (A1)
o¥(t) = ‘NSI—T ")h::l @) = 2 0] - WIY“T E() (A2)
where
l:?(t,) = sample mean of the error of interest at time ¢,
o)) = sample error variance at time ¢,
Xnnalt) = truth model value of the variable of interest at time ¢ during

simulation n




Xue(ty) = filter estimate of the variable of interest at time ¢, during
simulation n

N = number of Monte Carlo runs

The variable of interest for this study is the offset distance along the estimated velocity
of the intensity centroid on the FLIR image plane. The performance evaltuation of the center-of-
mass filters and the conclusions drawn from the sensitivity analysis are based upon the error
statistics of the offset distance estimates. The statistics are calculated before the measurement
update at (1) and after the update at (¢*). They are reduced further to obtain average scalar values
over the time of the run, by temporally averaging the mean error and standard deviation (o) time
histories over the last eight seconds of the ten second simulation. The first two seconds are not
used to ensure that the data reflects only steady state performance [6]. The errors are measured

in units of pixels, where a pixel is 15 urad on a side {approximately 30 meters at a distance of

2,000 km).
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Two different types of data plots are presented in Appendices C through F to assess the
performance of the center-of-mass filters employed in this thesis. The first type of plot, shown
in Figure B.1, provides filter tuning information by illustrating the relationship between the actual
RMS errors in the estimates of the variables of interest, committed by the filter, with the filter-
computed RMS errors, i.e., the filter's own representation of its errors. The second type of plot,
shown in Figure B.2, provides a measure of the tracking peformance. The plot shows the sample
mean filter error, averaged over the ten Monte Carlo runs, for a state or variable of interest. In
addition, this type of plot displays the 1o (standard deviation) through the mean £ 1o curves that
surround the mean curves, either just before a measurement is generated at ¢, or after a
measurement is generated at ¢*. The offset values at ¢ are used as control signals for the FLIR
sensor controller in between measurements and are crucial for tracking the hardbody effectively.

Futhermore, the quality of the 1o values at ¢ provides the basis for the analysis and performance

evaluation of the center-of-mass filters.
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This appendix contains the true offset error plots for the one-state center-of-mass filter that
receives measurements derived from low-energy laser Doppler measurements. The plots show the
errors, in units of pixels, between the filter’s estimated and true offset distance in the FLIR image
plane. The plots represent a sample of the sensitivity analysis that was conducted with
wavelength, signal-to-noise ratio, and probability-of-miss parameters. This appendix is divided

into the following sub-appendices:

Sub-Appendix Category
Cl1 0.53 pm Wavelength, SNR = 10
C2 0.53 um Wavelength, SNR = 4
C3 2.01 pm Wavelength, SNR = 10
C4 2.01 pm Wavelength, SNR = 4
CS5 10.5 uym Wavelength, SNR = 10
C.6 10.5 ym Wavelength, SNR = 4

Each sub-appendix contains three sets of three plots, for a total of nine plots. Each set
corresponds to a particular value of P, equal to 0.0, 0.05, and 0.30, respectively. The three types
of plots for each value of P,, show: 1) the filter-computed versus true RMS errors, 2) true mean

error 1 sigma at ¢, and 3) true mean error +1 sigma at . An explanation of the plot symbology

can be found in Appendix B.
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