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:'i‘liis'pabcr summarizes research in two areas of molecplar recognition: affinity polymerﬁ and
mgleculat'sc!f-asscmbly. We illustrate thcsé areas by examples drawn from affinity gel electro-
pboresis, soluble synthetic macromolecular inhibitors of binding of influenza virus to erythrocytes
(i ): protein adsorption on self-assembled monolayers (2,3), and self-a;sembling hydrogen-bonded
~ molecular aggregates (4-6). | |

Affinity I»"olymersé Molecular Recognition in Gels

Afﬁhi_ty -gel electrophoresis (AGE) uses the biospeéific equilibrium binding of a protein to an
immobilized ligand toreduce the electrophoretic mobility of that prot_ein selectively. AGE is auseful
technique for studying receptor-ligand interactions (7). It combines the selectivity of affinity
chromatography with the high sensitivity of gel electrophoresis. AGE allows both the qualitan've
examination of the specificity of binding between protein and covalently immobilized ligand and the -
quantitative determination of the dissociation coﬁstant of the protein-ligand complex. By observing
how the‘dissociation constant changes’ with the struciure of the ligand, it is pos;ible to pfobe the
chemical characteristics and topology of the ligand-binding site. ,
We chosc carbonic anhydrase B (CAB, E.C.4.2.1.1) as amodel protein for our initial studies
of AGE. CAB sawell-characterized protein (§-11). Itis nhibited By a number of aryl sulfonamides, '
with dissociation constants rangihg from 10610 10-3 M(Z1). The active siteot *he enzyme is knowx;
from X-ray Exystallography-and can be described qﬁalitativcly as being ldcated at the bottom of a
conical pocket approximmy 15 A deep and 15 A wide. | |
| In‘order to test the sensiﬁvity of AGE 10 the !opoldgy of a binding pocket, we prepared the
series of glycyl-linked monomers 1 and formed gels by copolymerizing thcm in different concen-

la n=0
Q_.NH,| 1b n=1
W le n=2
1d n=3
le n=4
11 n=$§
1g n=6
1 - l1h n=7

0

Z -0
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trations with acrylamide and crosslinking aécnt. ’l‘hé_se' gels were used as the stationary phase in
electrophoresis cxpcrimcnts.v The retention rafid, Ry, 6f CAB on clecxrophorcsis in these gels was a
function of the concentration of immobilized sulfonam1dc in the gel, [L], as illustrated in Figure 1
for gels bascd on poly(lf-ca-acrylamxdc) The rctcnuon rano is related to the dissocition constant,
Ka, by equation 1(7). When [L]Ryisplottedasa funcnon of Rf, both thc slope and the [LIRfmtcrccpt

[L]Rf- Ka-KaRe - )
give the value of K4. Figure 2 showsthe measured values of K4forthe affinity }igands 1,asafunction

of the number of glycine residues in the spacer. From these data, we conclude that the binding pocket

of CAB isinsensitive to linking chains longer than three glycixic residues. Use of a.linkcrcon'nectingv

the sulfonamide to the polymer backbone shorter than {zly)4 gives an apparent K s that is larger than.

the solution value, reflecting (we presume) unfavorable steric interactions between the protein and

the backbone. Thxs value is in agreement with our estimate from the crystallographxc dxmensmns of -

the binding pocket.

Affinity-Polymer Inhibition of Influenza-Induced Agglutﬁnation of Erythrocytes. We havealso
begun to design soluble, polymcﬁc affinity ligands to interact with proteins on biological surfaces.
We have explored the inhibition of the agglutination of erythrocytes induced by influenza virus in

[, uM -
00 57 115 230 34.6 460

== X31 BHA

- |- CAB

k . BPTI

F'gm'e 1. Affinity electrophoresis of bovine carbonic anhydrase B (CAB) on
polyacry!am:dcslabgclscontaxmngvanousconrenu-auonsofaﬂimtyhgandlf Bovine
pancreatic trypsin inhibitor (BPTI) and the’ bromelain-released hemagglutinin of
influenza virus X-31 (X31 BHA) were uscd as internal standards.
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Figure 2. Dependence of the dissociation constanlts. K4, of complexes of bovine
-cavbonic anhydrase B (CAB) and immobilized (filled circles) or soluble (hollow -
circles) uffinity ligands 1 on the number of glycine residues, », in the ligand.

 greatést denail. Hemagglutinin (HA) present on the viral surface binds to sialic acid (SA) residues
onl' glycoproteixis and .glycolipi"d's located at the surface of the cell (J2-14). Unlike the tight-binding
(Kq = 10-6-10-8 M) CAB-»sulfclmamide system, the HA-SA complex is weakly bound (K4 = 2 mM)
" (I5). Although there s no corresponding value for the binding of virus 1o erythrocyte, the binding

of genetically altered firbroblasts expressing HA on their surface to erythrocytes has a substanﬁaliy .

lower dissociation constant (Kq=7 % 10-10 M) (16). We and others believe that thé difference in

strength between the interactions of HA with sialic acid and of influenza virus with erythrocyte can

_betracedtothe polyvalency of»the‘latter (17-20). We wi_shed totestthe hypoxﬁesis thatan appropriate

pquvalént molecule presenting many sialic acid residues to the virus would b : an effective inhibitor .

of the binding of infhlx'e'nu o eryths"ocytes.
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The naturally occurring hemagglutination inhibitors are structurally complex glycoproteins
(21, 22), and rather than attempting io mimic thcslc proteins (23), we chose to include sialic acid
residues in acrylamide-derived polymers. 'We hoped that the flexibility of the acrylamide backbone
would allow multiple sialic acid residues per polymer chain tc bind to the surface of the virus particle,
and that this multipoint attachment would result in strong inhibition of the bindihg of virus to
erythrocytes. Acrylamide-derived polymers are well suited for this purpose, since they can be
prepared easily, their structures can be varied readily, and they are water-soluble.

We synthesized monomer 2 and copolymerized it with'a number of acrylamide monomers

(3a-g). Figure 3 shows the inhibition constant of the soluble polymer, K, determined by a hemag-

oH co; 0
2
H O(CH,)O(CH,)sNH Az |
AcNH : .
Hé OH
2
0 3a R=NH, 3e R =NH(CH2)30(CH2).0-B-Glc

.\)LR 3o R=NHCHOH 3t R u NH(CH,)0(CH5COr

3¢ R=N(CHs) .
- 3g R = NH(CHp)eNHs*
3 3d R=NHC{GHLOH); © 1 NA(CHNHS

'glunnanon assay, as a function of the mole ﬁ-acnon. xs4,of 2in the mxxtme of 2and 3a used to form

the polymer (). The values of K; were calculated on th baszs of sialic acid groups in solution. '
Po]ymcrs havmg values of Ki>0.625 mM (the bonzon line in Figure 3) were not examined -
quantitatively; the hollow poxnts represent upper hrmts e values of K foi"pfoteins and an}alogs |
of sialic acid were obtained from the Literature and are shown on the right. The strongest inhibition
occtlmed cver a broad range of ASA (0.2-'0.6) and was within an order of magnitude of the best
- naturally occurring inhibitors. Copolymers derived from th othércé—monomers (3b-g)showedlitde =
' difference in inhibition but were less water-soluble than those derived from 3a. Copolymer# derived
from analogs of 2 containing shorter spacers, howe;'er. showed signiﬁpimtly lower inhibition

constants. We do not yet understand why sialic acid residues boundmshonspiger;mless efficient
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Figure 3. Inhibition of hemagglutination of erythrocytes by poly(Z-ca-acrylaﬁxidc).
- (Reproduced with permission from ref. 1. Copyright 1991, American Chemical
Society.) ; . ,
inhibitors than those linked to long spacers, but the X-ray structure of hemagglutinin shows that the

_ binding site is notin a pocket. This observation suggests that the change in inhibition with the length
of the spacer may arise from changes in the structure of th’e hfﬁnity polymeritself, or from interaction
benveenthe HA a.n& the polyxﬁcr backﬁone. Similarresults were found by other groui)s (24,25). We

are cm'rcntly working' to optimize the pcxfo:’-mancé of these polymers aﬁd to determine the

. relaﬁqhship becween their structures and their inhibition constants.
Self-Assembly: Moiecular Recognition in Monolayers and Solids

The term “seif-assembly” is used to describe a variety of processes, all of which involve the
spontaneous organization of dispersed molecules into an ensemble with a defined structure. Selt-
"assembled structures are “biquitous in nature: the double helix of DNA; many multi-unit enzyines,

structur~] proteins, sibosomes, and viruses assemble spontaneously into their native structures from
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solutions of their consntuent parts (26).

Self-assembly is also a practical symhcnc stratepy in the laboratory {albeit at a simpler level
than in nature'). For example, long-chain surfactants wi:h terminal groups capable of bonding 10
561id surfaces (head groups) sclf-assemble into ordered, oriented monomolecular films when
sclutions of the surfactants contact the solid surfacels.. Such sei-asserabled moriolayers (SAMs) are
known for alkanoic acids on a variety of mezal cxides (27); trichlorcsilanes o1 oxide surfaces (28),
suchassi hca (29-32)and alumina (33), alkanethiols, dialkyl sulfides, ard diatky! disulfides on gold,
silver, and copper (34); and alkyl 1somtnlcs onplatinum (35). The monolayer-airinterface of a SAM
comprises pﬁgcipﬂly an ordcrcd array of the tail group (the end of the malecule opposite from the
Au~S irterface). By synthetic variation in the tail groups, SAMs can be prepared that exhibit a wide,
variety of propcrﬁgs (36).

Inthis secu'on', wedescribe firsttheuse of SAMs asmod'cl systems forstudying the adsorption
of pn teins on orgamc surfaces. We then turn to an example of a different strategy for self-assembly:

the ase of hydrogcn—bondcd networks to prepare 'arge, sclf-asse-nblmg complexes.

Seif-Assembled Monolayers as Substrates for Studying the Mechanisms of Adsorption of .
Proteins to Man-Made Surfaces. SAMs formed by the adsorption of alkanethiols onto gold have

received considerable attention in our laboratories (34). Two at._.ctive features of ﬂﬁs formof SAM.

~ are the variety of polar functional groups that are compatible with Au-S binding and the ease of

preparing SAMs containing mixtures of tail groups from solutions containing mixtures of differeni

. alkaasthiols (36).

“Wehave used mixed SAMs tomodel polymer surfaces that contain poly(ethynene glycol) and
d ffucnt amounts cf hydrophobxc materiz] (3) Figure 4 suggests schanancally the stmctm'e ofthe:

- monoiayer-waterinterface of one of the SAMSs. The tail groupisﬂexibleanddrawnroughlytos;a]e. . "

* Weimmersethe SAMs insolutionsof proteins and observe (by ellipsometry and X-ray photoclectron

spectroscopy) the amount of protein that is retained on the SAM after rinsing it with water.(2).

- Figure 5 shows the amount of ﬁbn‘n_bgen adsorbed to SAMs containing a mixture 6:‘ two
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‘ Figure 4. A schematic representation of {niied SAM¢ of 4 and Se. (Reproduced with
permission from ref. 2. Copyright 1991 American Association for the Advancement
of Science.) - C

coadsorbed thiolates (“‘mixed SAMs") prepared from various mixtares of 4 and 5. The thicknesses

of the adsorbed films of protein, d, were determined by ellipsometry. The values of X represent the

S5a n=0

5h n=1
CH4(CHy)10SH RO(CH,CH;0),(CH2)1;1SH S¢c n=2 R=H
4 5 5d n=4 '
' Se n=6

. ‘ 5f ngve=17 —=R=CH;
surface mole fraction of § in the SAM, as determined by XPS. Each datum rei)rcscnts the average
of three measurements takcri on one SAM. The szatter i each average fzlls within the size of the
symbol used .to represent it. The results ate réproducible: the cﬁrvcs forn =0, 2, 4, and 6 represent
two independent sets of cxperim:nfs eacl;. The daﬁ have been offset in increments of 20 A for
clarity} The dashed lines §n the right sxdc of the graph represent the location of d = 0 A for each set

~ of experiments; the symbols to the right of the dashed lines indicate to which set of data each zero.

line applies.
Twoobservationscan be made from these data: First, there isaqualitative difference between

the adsorptinn of fibrinogen to SAMs containing hydroxyl- or moho(ethy}ene glycol)-tenninated

chains and to SAMs containing di(cthylene glycol)- or oligo(ethyler:e glycol)-terminated chains. '

Theadvancing contactanglesof waterupon SAMs formed from 5a,5b,5¢,and oligo(cthylené glycol)-
terminated alkanethiols are 0°(34), 20°, 27¢, and 33° (3), réspectively (unpublished results ﬁqless

 otherwise noted). We do not ye: know whedhier or how thess two sets of obse,rv’atioﬁs are related.
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Figure 5 Adsorgtion of fibrinogen to SAMs foxmcd from mixtures of 4 and S.

Second, adsorpnon of fibrinogen to mixed SAMs containing chains terminated by shorter ohgomers
of ethylene glycol '(n = 2-6) reaches a minimum value within experimental error of the same _
concentration of oligo(ethylene elycol) chains in the SAM (3 = 0.65). This observation suggests the

possibility that 'a uniform, nonavsorbent interfacial structure is reached By all these SAMs around
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x = 0.65, aﬁd that the thickness of this structure is not an important parameter in determining the
adsorption of pxb‘tcin 10 thé SAM. These data suggest that the elimination of protein adsorption on
polymer surfaces by cndpgraftcd poly(ethylene glycol) chains depends more upon the grafting
density than upon the length of the grafted chain (37, 38).

These SAMs are models for polymer surfacés. Thcy_ should make it possible to analyze thc
rclétivc importance of the effects at the solid-water interface influencing protein adsorpdoxi, and

perhaps in time, to develop materials with selective adsorptivities for use in vivo.

Self-Assemblyin Threg Dimensions: New Classes of Non-Covalent Macromolecules. Hydrogen
bonding is a principal source of the enthalpic driving forcg used both for moiecular recognition apd
for self-assembly in bidlogical_.systcms. Perhaps the best-known example is the pairing of the bases
_ in polynucleotides. : B | ’ .

In an analogous non-biological systém, aremarkably stable, solid, 1:1 complex of melamine

(M, 6) and cyar.uric aéid (CA, 7) forms spontaxieously when aqueous solutions of the two compo-

| H
H,N. N .NH; o 1'q (o}
R ¢
NN N._N.
Y H Y H
'NH, 0
6 -7

 nents are mixed together (39-41). Figure 6shows anidealized sectionof the polymeric network that
is produced; the structure shown is not proven unequivocally. For comparison, the inset shows the
adenine~uracil base pair. . | ,

We have been developing this Mdmenﬁonﬂ -self-assembiing system into two new
classes of compounds. The first is a series of ribbon-like polymers prepared from derivatives of 6
and 7 where one or more of the N-H bonds is replaced with an N-alkyl bond (¢). The alkyl sub-
stituents strongly affect the solid-state structure of these ribbons. Figure 7 shows the X-ray structure

of diphenylmelamine~diethyl barbmmc acid (8-9) complex. We are currently attempting to obtain
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" Figure 6. Anidealized structure of the 1:1 complex between melaminé and cyanuric
acid (6-7). The inset shows the adenine-uracil base pair. -
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Figure 7. An X-ray crystal structure of the polymeﬁcvdiphenyl' melarhine-diethyl
_barbituric acid (8-9) complex. L o
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a predictive correlation between the structure of the alkyl substituent and the solid-state structure of

the hyé-ogen-bordcd polymer. For other approaches to the design of the solid state, see referencss

4244,

ll’h Ph
HN\I/’NI NH (o)
NSF N__N
' wy s
NH, o]
8 9.

" Thesecondsystem involvesihcfomxationof smallerhydrogen-bohded complexesofasingle
structure (3, 6). (For other supramolecular complexes, see references 45—47.) Using molecular
m‘odels, we predicted that the compounag we call hbubM3 (10) and R(CA)z (11) would self-assemble
into a discrete 2:3 comglex (Figure 8). We synthesized hubM3 and R(CA); and found that the
- product that resulted from their mixture was, indeed, the 2:3 complex. Figure 9 shows an NMR
titration of hubM3 with R(CA)2: as R(CA); is added, the three broad peaks arising from hubM3
disappearand are replaced by sharp peaks arising from the complex. Exchange between the complex
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R(CA), 11

and hﬁbM3 in solution s slow onthe NMR time sjcalc. Webelieve thatthe small peaks inthe baseline
of the upper spectrurﬁ correspord to conformational isomers of the 2:3 compllcx. These rﬁihor peaks
are not imburiﬁcs in either of the individual components. R(CA)2 alone is 100 insoluble to give a
detectable spectrum at saturation (< 0.1 mM) in CDCl3 at the instrument gain used here. The NOE
spectra, ul&aviolet titrations, and molecular wclights obtained from vapor-pressure .osrhomeuy are

all consistent with the formation of a 2:3 complex.

2 hubMj, 10
3 R(CAY, 11
(hubMy);(R(CAY )y

Figure 8. A schematic representation of the sclf-assembly of hubM3 (10) with R(C.A)z
(11) to give a supramolecular complex. (Adapted from ref. 6. Copynght 1991
American Chemxcal Society.)
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F’ igure 9. lH NMR ftitration of hubM3 (10, 500 MHz, 10 mM in CDCl3) with
R(CA)z (11). The peak assignments are shown at the top of thq figure and
correspond to the labeis on the structures of 10 and 11 shown in the text.
(Reproduced with pa'mnssxon fromref. 6. Copyright 1991 Amencan Chemi-
cal Socxcty)

' Cohclusion

- Studies of molecullar recognition and of synthetic polymers combine iﬁ a number of ﬁscfui
approaches to new. analytical tools, to drug desigh, and to new material#. Polymers permit the
inweractions provided by the structural elcment: used for molecular rec‘ognitior; to be localized,
" addressed, and amplified through cooperativity or polyvalency The synthetic methodologies

avulable from polymer science provide convenient routes t0 complex, mulufuncnonal substances;
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molecular recognition and self-assembly provide new strategies for the synthesis of high molecular

weight assemblies.
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