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"-->of hydrogen bonds to generat'e new classes of non-covalently assembled organic

materials, both in solution and in crystals.

This paper summarizes research ;n two areas of molecular recognition: affinity polymers and

molecular self-assembly. We illustrute these artas by examples drawn frozr affinity gel electro-

phoresis, soluble syrithetic macromolecular inhibitors of binding of influenza virus to erythrocytes

(1), brotein adsorption on stlf-asser,,bled monolayers f),, and self-assembling hydrogen-bonded

molecular aggregates. (4-.6).)
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This paper summarizes research in two areas of molecular recognition: affinity polymers and

molecularse!f-assembly. We illustrate these areas by examples drawn from affinity gel electro-

phor-ests, soluble synthetic macromolecular inhibitors of binding of influenza virus to erythrocytes

(1), protein adsorption on self-assembled monolayers (2,3), and self-a.;sembling hydrogen-bonded

molecular aggregates (4-6).

Affinity Polymers: Molecular Recognition in Gels

Affinity gel electrophoresis (AGE) uses the biospecific equilibrium binding of a protein to an

immobilized ligand to reduce the electrophoretic mobility of that protein selectively. AGE is a useful

technique for studying receptor-ligand interactions (7). It combines the selectivity of affinity

chromatography with the high sensitivity of gel electrophoresis. AGE allows both the qualitative

examination of the specificity of binding between protein and covalently immobilized ligand and the

quantitative determination of the dissociation constant of the protein-ligand complex. By observing

how the dissociation constant changes with the structure of the ligand, it is possible to probe the

chemical characteristics and topology of the ligand-binding site.

We chose carbonic anhydrase 3 (CAB, E.C.4.2.1.1) as a model protein for our initial studies

of AGE. CAB is awell-charaterized protein (8-11). Itis inhibited y anumberofaryl sulfonamides,

with dissociation constants ranging fromn 10 to IO M(W). The acdve site o 'he enzyme is known

from X-ray crystallography and can be described qualitatively as being I6cated at the bottom of a

conical pocket approximately 15 A deep and 15 A wide.

In order to test the sensitivity of AGE to the topology of a binding pocket, we prepared the

series of glycyl-linked monomers 1 and formed gels by copolym rizing them in different concen-

la n=O
NH2  lb n=I

0 H - $lcn=
N le n=40 Id n-3N Ný .s 1i n-4

It n-5
n 1 g n=6

Slhn n7
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trations with acrylamide and crosslinking agent. These gels were used as the stationary phase in

electrophoresis experiments. The retention ratio, Rf, of CAB on elecL-ophoresis in these gels was a

function of the concentration of immobilized sulfonamide in the gel, [L], as illustrated in Figure 1

for gels based on poly(If-co-acrylamide). The retention ratio is related to the dissoci 4tion constant,

K-d, by equation 1 (7). When [L]Rfis plotted as a function ofRf, both the slope and the [L]R-intercept

[L]Rf= Kd - (I)

give the value of Kd. Figure 2 shows the measured values of Kd for the affinity ligands 1, as a function

of the number of glycine residues in the spacer. From these data, we conclude that the binding pocket

of CAB is insensitive to linking chains longer than three glycine residues. Use of alinkerconnecting

the sulfonamide to the polymer backbone shorter than (gly)4 gives an apparent Kd that is larger than

the solution value, reflecting (we presume) unfavorable steric interactions between the protein and

the backbone. This value is in agreement with our estimate from the crystallographic dimensions of

the binding pocket.

Affinity-Polymer Inhibition of Influenza-Induced Agglutination of Erythrocytes. We have also

begun to design soluble, polymeric affinity ligands to interact with proteins on biological surfaces.

We have explored the inhibition of the agglutination of erythrocytes induced by influenza virus in

[10, pM

0i0 5.7 11.5 23.0 34.6 46.0g -X31 BRA

~ CAB

Figure 1. Affinity electrophoresis of bovine carbonic anhydrase B (CAB) on
polyacrylamide slab gelscontaining various conrentrations ofaffinityligand If. Bovine
pancreatic trypsin inhibitor (BPTI) and the bromenlan-released hemagglutinin of
influenza virus X-31 (X31 BHA) were used as internal standards.
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Figure 2. Dependence of the dissociation constants, Kd, of complexes of bovine
carbonic anhydrase B (CAB) and immobilized (filled circles) or soluble (hollow
circles) affinity ligands I on the number of glycine residues, n, in the ligand.

greatest detail. Hemagglutinin (HA) present on the viral surface binds to sialic acid (SA) residues

on glycoproteins and glycolipi.ds located at the surface of the cell (12-14). Unlike the tight-binding

(Kd = 10"6-10.8 M) CAB-sulfonamide system, the HA-SA complex is weakly bound (Kd =2 mM)

(15). Although thcre is no coresponding value for the binding of virus to erythrocyte, the binding

of genetically altered f'rbroblasts expressing HA on their surface to erydthres has a substantially

lower dissociation constant (Kd-z 7 x 10.10 M) (16). We and others believe that the difference in

strength between the interactions of HA with sialic acid and of influenza virus with e,.ythrocyte can

be traced to the polyvalency of the latter(17-20). We wished to test the hypothesis that an appropriate

polyvalent molecule presenting many sialic acid residues to the virus would, b , an effective inhibitor

of the binding of influenza to erythrcyte!L
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The naturally occurring hemagglutination inhibitors are stucturally complex glycoproteins

(21, 22), and rather than attempting to mimicý these proteins (23), we chose to include sialic acid

residues in acrylamide-derived polymers. We hoped that the flexibility of the acrylamide backbone

Would allow multiple sialic acid residues per polymer chain to bind to the surface of the virus particle,

and that this multipoint attachment would result in strong inhibition of the binding of virus to

erythrocytes. Acrylamide-derived polymers are well suited for this purpose, since they can be

prepared easily, their structures can be varied readily, and they are water-soluble.

We synthesized monomer 2 and copolymerized it with'a number of acrylamide monomers

(3a-g). Figure 3 shows the inhibition constant of the soluble polymer, Ki, determined by a hemag-

OH 2 0

O(C2 4O(CH2)3NH
AcN

"HOHHO

2

0 3a R = 3e R = NH(CH2)30(CH 2)40-"I-lc
S 3b R =NHCH20H 3f R - N•(CH2)30(CH2) 3 CO2-

'~ 3c R = N(CH 3)2  3g R = NH(CH 2)6NH%

3 3d R = NHC(CO2-H) 3

glutination assay, as a function of the mole fraction, X.t& of in the mixture of 2 and 3a used to form

the polymer (1). The values of Ki were calcilated on the basis of sialic acid groups in solution.

Polymers having values of Ki > 0.625 mM (the horizon line in Figure 3) were not examined

quantitatively; the hollow points represent upper limits. Tie values of Ki forproteins and analogs

of sialic acid were obtained from the literature and are sho on the right. The strongest inhibition

occurred over a broad range of X (0.2-0.6) and was in an order of magnitude of the best

naturally occurring inhibitors. Copolymers derived from th other co-monomers (3b-g) showed little

difference in inhibition but were less water-soluble than thos ýe derived from 3a. Copolymers derived

from analogs of 2 containing shorter spacers, however, showed significantly lower inhibition

constants. We do not yet understand why sialic acid residue| bound to short spacers are less efficient
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Figure 3. Inhibition of hemagglutination of erythrocytes by poly(2-co-acrylamide).
(Reproduced with permission from ref. 1. Copyright 1991, American Chemical
Society.)

•zhibitors than those linked to long spacers, but the X-ray structure of hemagglutinin shows that the

binding site is not in a pocket. This observation suggests that the changet in inhibition with the length

of the spacer may arise from changes in the structure of the affinity polymeritself, or from interaction

bet'ieen the HA and the polymer backbone. Similar results were found by other groups (24,25). We

are currently working to optimize the perfonnance of these polymers and to determine the

relationship berween their structures and their inhibition constants.

Self-Assembly: Molecular Recognition in Monolayers and Solids

The term "self-assembly" is used to describe a variety of processes, all of which involve the

spontaneous organization of dispersed molecules into an ensemble with a defined structure. Self-

assembled structures are -ibiquitous in nature: the double helix of DNA. many multi-unit enzymes,

sructurcl proteins, ribosomes, and viruses assemble spontaneously into their native suictures from
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solutiors of t.eir constituent parts (26).

Self-asss±mbly is also a practical synthetic st'atery in =he laboratory (lbeit at a simpler level

thwA in nature!). For example, long-chain surfactants with terminal groups capable of bonding to

solid surfaces (head groups) self-assemble into ordered, oriented monomolecular films when

scluilons of &.- surfactants contact the solid surfaces. Such sei-asserabled monrolyers (SAMs) are

known for alkanoic acids on a variety of metal cxides (27); tr:chlorcsilanes o,.t oxide surfaces (28),

wuch as silica (29-32) and alumina (33); alkanethiols, dialkyl suifides, ard diaikyl disulfides on gold,

silver, ana copper (34); and alkyl isonitriles on platinum (35). The monolayer.-airinterface ofa SAM

ccrnprises principally an ordered array of the tail group (the end of the molecule opposite from the

Au-S ir;terfacc). By synthetic variation in the tail groups, SAMs can be pizpared that exhibit a wide

vzriety of properties (36).

In this section, we describe first the use of SAMs as model systems forstudying the adsorption

of pruteins on organic surfaces. We then turn to an example of a different strategy for self-assembly:

the ".zse of hydrogen-bonded networks to prepare !arge, self-asse-nbling complexes.

Self-Assembled Monolayerm as Substrates for Studying the Mechanisms of Adsorption of

Proteins to Man-Made Surfaces. SAMs formed by the adsorption of alkanethiols onto gold have

received considerable attention in our laboratories,(34). Two art, ..ctive features of this form of SAM,

ar the vw.vaety of polar functional groups that are compatible with Au-S binding and the ease of

prepa.ing SAMs containing mixtures of tail groups from solutions containing mixtures of different

a ii•.ýthiols (36).

"We have used mixed SAMs to model polymer surfaces that contain poly(ethyiene glycol) and

dIfferent amounts cf hydrophobic materi,.l (3). Figure 4 suggests schematically the structure othe

monolayer-water interface of one of the SAMs. The tail group is flexible and drawn roughly to scale.

We immerse the SAMs in solutions of proteins and observe (by elipsornetry and X-ray photoelectron

spectroscopy) the amount of protein that is retained on the SAM aftr rinsing it with water (2).

Figure 5 shows the amount of fibrinogen adsorbed to SAMs containing a mixture of two
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J..

permission from ref. 2. Copyright 1991 American Association for the Advancement

coadsorbed thiolates ("mixed SAMs'" prepared from various mixtuires of 4 and S. The thicknesses

of the adsorbed films of protein, d, were determined by ellipsoinetry. The values of X represent the

Sa n=O
Sb' n =1

CH3(CH2)I0SH RO(CH2CH2O),(CH2)IISH Sc n=2 -R=H
4 Sd n-4

Sf nlave= 17 -R 'CH3
surface mole fraction of S in the SAM, as determined by XPS. Each datum represents the average

of three measurements taken on one SAM. The :catter in each average falls within the size of the

symbol used tomrpresent it. The results awe reproducible: the curves for n -0, 2.4, and 6mrpresent

two independent sets of. experiments each. The data have been offset in increments of 20 A for

clarity. The dashed lines ont the right side of the graph represent the location of d -i0 A for each set

Of experiments; the symbols to the right of the dashed lines indicate to which set of data each zero.

line applies.

Two observations can be -.rade fr-om these data:' First, there is a qualitative difference between

the adsorpti',n of fibrinogen to SAMs containing hydroxyl- or moho(ethylene glycol)-tenninated

chains -and to SAMs containing di(ethylene glycol)- or oligo(ethyler.e glycol)-terminated chains.'

The advancing contact angles of waterupon SAMs formed from Sa,5b, Sc, and oligo(ethylene glycol).

terminated alkanethiol's ame 0*(34), 20% 27% and 330 (3), respectively (unpublished results unless

otherwise noted). We do not yet know whether or how these two sets of observatioins are related.
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50- 0 0

40 .00 00 * * a
o n=O

d, A30- C 4 4, 5b
20- E3 n=1

O 13 ...9.0.,,$ ... .. .. ,_

n=1

10 E3 * 3

0.0 0.2 0.4 0.6 0.8 1.0c

: %surface
ROt•H2CH2O)(CH2)n SH

Figure'5. Adsorption of fibrinogen to SAMs formed from mixtures of 4 and $.

Second, adsorption of fibrinogen to mixed SAMs containing chains truminated by shorter oligomers

of ethylene' glycol '(n l= 2--6) reaches a minimum value within experimental error of the same

concentration of oligo(ethylene elycol) chains in the SAM Q - 0.65). Tiis observation suggests the

possibility that a uniform, nonaosorbent interfacial structure' is reached by all these SAMs around

***** *



Prime. Chu, Schmid. Sew, Chen, Spaltenswin, Zerkowski, and Whitesides Page 10

X = 0.65, and that the thickness of this structure is not an important parameter in determining the

adsorption of protein to the SAM. These data suggest that the elimination of protein adsorption on

polymer surfaces by end-grafted poly(ethylene glycol) chains depends more upon the grafting

density than upon the length of the grafted chain (37,38).

These SAMs are models for polymer surfaces. They should make it possible to analyze the

relative importance of the effects at the solid-water interface influencing protein adsorption, and

perhaps in time, to develop materials with selective adsorptivities for use in vivo.

Self-Assembly in Three Dimensions: New Classes of Non-Covalent Macromolecules. Hydrogen

bonding is a principal source of the enthalpic driving force used both for mozecular recognition and

for self-assembly in biological systems. Perhaps the best-known example is the pairing of the bases

in polynucleotides.

In an analogous non-biological system, a remarkably stable, solid, 1:1 complex of melamine

(M, 6) and cyaruric acid (CA, 7) forms spontaneously when aqueous solutions of the two compo-

H
H214 N NH2  0 N 0

N NN N N,.

NH2  0

6 .7
nents arm mixed together (39-41). Figure 6 shows an idealized section of the polymeric network that

is produced; the structure shown is not proven unequivocally. For comparison, the-inset shows the

adenine-uracil base pair.

We have been developing this three-dimensional self-assembling system into two new

classes of compounds. The first is a series of ribbon-like polymers prepared from derivatives of 6

and 7 where one or more of the N-H bonds is replaced with an N-alkyl bond (4). The alkyl sub-

stituents strongly affect the solid-state smicmre of these ribbons. Figure 7 shows the X-ray strocture

of diphenylmelamine-diethyl barbituric acid (8-9) complex. We are currently attempting to obtain
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: H H H
%%O.0 .. N 00Q,0 _, 0 . N •0%,, .0 .. •N 0. ,

H1' "**H. I N ,SN HN• .0 0 "
H ,, W N N oN ��N"H N0N N %H

"H o 'N OAN" sN).~

I I : I
H : H H g H
: I

.Ht•. N'%tO.,. H, 0÷,.e N ,f04 ##

\NN0, N#IO N "'HNN N N N

H 1 NN4N %lH0 H~N N OH#*Ný6H H

1 I : I I =
H H H : H H H

H"H~0 .......
"'H .1 Z N--- N

.,.N N ... N NIN--
H '.r\H H aN N-(u H~,

N)ý 0to" N- Hu.

H H IH : H

Figure 6. An idealized structure of the 1:1 complex between melamine and cyanuric
acid (6-7). The inset shows the adenine-uracil base pal*

JHJ

Figure 7. An X-ray crystal structure of the polymeric diphenyl melgmine-diethyl
barbitu'ic acid (8-9) complex. .
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a predictive correlation between the stucture of the alkyl substituent and the solid-state structure of

the hyd ogen-bondr-d polymer. For other approaches to the design of the solid state, see referenc-s

42-44.

Ph PhI I

HN NN NH

NH2  0

8. 9.

The second system involves the formation of smaller hydrogen-bohded complexes of a single

structure (5, 6). (For other supramolecular complexes, see references 45-47.) Using molecular

models, we predicted that the compounds we call bubM3 (10) and R(CA)2 (11) would self-assemble

into a discrete 2:3 complex (Figure 8). We synthesized hubM3 and R(CA)2 and found that the

product that resulted from their mixture was, indeed, the 2:3 complex. Figure 9 shows an NMR

titration of hubM 3 with R(CA)2 : as R(CA)2 is added, the three broad peaks arising from hubM3

disappear and are replaced by sharp peaks arising from the complex. Exchange between the complex

RH H

N 'N N.o

N.N N~~ n Y r•R ,,

kN, NN

h MN.1

hubMjj 10 .
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w XX U•N

tI H

NZ H

R(CA)2, 11

and hubM3 in solution is slow on the NMR timne scale. We believe that the small peaks in the baseline

of the upper spectrum correspoid to conformational isomers of the 2:3 complex. These minor peaks

are not impurities in either of the individual components. R(CA)2 alone is too insoluble to give a

detectable spectrum at saturation (< 0.1 mM) in CDC13 at the instrument gain used here. The NOE

spectra, ultraviolet titrations, and molecular weights obtained from vapor-pressure osmometry are

all consistent with the formation of a 2:3 complex.

2 hubM3, 10

R(CA)2, 11

(hubM3)2(R(CA)2)3

Figure &.A schematic representation of the self-assembly ofhubM3 (10) with R(CA)2
(U) to give a supramolecular complex. (Adapted from ref. 6. Copyright 1991
American Chemical Society.)
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Ratio
hubM3:R(CA)2

W'jS

I,: h 
w

-Y' b k H 20 rr*

dceug x 9 vqq

SI l _J _ _,_, . ,, , _ 2 :1
TMS

'CHCI3

2:0

15 9 8 7 6 5 4 -3 2 1 0
PPM

Figure 9. IH NMR titration of hubM3 (10,500 MHz, 10 mM in CDCI3) with
R(CA)2 (H). The peak assignments are shown at the top of the figure and
correspond to the labeis on the sructures of 10 and U shown in the text.
(Reproduced with permission from ref. 6. Copyright 1991 American Chemi-
cal Society.)

Conclusion

Studies of molecular recognition and of synthetic polymers combine in a number of useful

approaches to new analytical tools, to drug design, and to new materials. Polymers permit the

interactions provided by the structural elements used for molecular recognition to be localized,

-addressed, and amplified through cooperativity or polyvalency. The synthetic methodologies

available from polymer science provide convenient routes to complex, multifunctional substances;
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molecular reccgnition and self-assembly provide new strategies for the synihesis of high molecular

weight assemblies.
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