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ABSTRACT

A theoretical model is derived to calculate the specific acoustic impedance of the
absorptive material covering the walls of a cavity. This model will allow the exper-
imental determination of the specific acoustic impedance from the measurement of the
reverberation time in a water-filled cavity. The model assumes a wall of low absorption,
It can not be used for rigid or pressure release walls and grazzing incidence is excluded.
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1. INTRODUCTION

A. MOTIVATION

The design of coating materials that reduce the reflection of water borne sound is
an important problem in underwater acoustics. Since it is difficult to theoretically predict
the complex reflection coeflicient of such a material, the reflection properties must be
determined experimentally.

At high frequencics it is possible to measure the reflection coefficient of a slab of
material by measuring the pressure after reflection of a narrow beam of sound incident
at a given anglc. However, this method becomes more difficult to use as the frequency
of the sound is lowered.

Determining the acoustic impedance of a material by measuring the standing wave
pattern in an "impedance tube”, while the standard procedure in air borne sound, is very
difficult for water born sound, because of the impossibility of approaching “rigid condi-
tions” for the tube walls. This is because the “pc” for water is approximately 5,000 times
higher than that for air and is much closer to that of any wall material.

Therefore it is attractive to investigate the possibility of determining the acoustic
impedance of a material from measurements of the reverberation time in a water-filled
cavity with walls lined with the material,

R. OBIECTIVE

To derive a theoretical model which will allow the experimental measurement of
acoustical properties of absorption materials from measurements of reverberation time
in a water filled cavity with wall lined with material.

C. METHOD

The model is based on the normal mode theory in cavities.

It will be shown that the reverberation time in a cavity can be related to the
temporal absorption coefficient of an acoustic field. From this fact, a relation between
this coefficient and the complex specific acoustic impedance (resistance and reactance)
will then obtained, under several assumptions and limitations.

D. REMARKS
No references were found using the proposed approach. In addition most of the
published articles in tlus field are for air as the medium in the cavity.




II. LITERATURE REVIEW

This is a summary of published articles which arc, in one way or the other, related
to the subject. These summaries will give some idea about the accepted definitions and
approximations relevant to this problem.

A, CHAMBER FOR REVERBERANT ACOUSTIC POWER MEASUREMENTS IN
AIR AND WATER [REF.1}

This was the only paper found in the Journal of the Acoustics Society of America
where experiments made both in air and in water were reported, (in opinion corrob-
orated by the authors).

The motivation for this work was the interest in obtaining sound-power measure-
ments directly, and the idea that it might be possible with the help of a reverberant
acoustic chamber. It is stated that if the sound field consists of many randomly excited
modes (difTuse field), the radiation impedance of the tank is not afTected by the fluid re-
action, because the randomly phased fluid pressures cancel.

One of the major lessons to take out from this work is the fact that the reverberation
time in the water, in a similar enclosure, is smaller than that of the air by a factor of ten.
The author attributes this to the higher mean collision rate and higher sound speed in
weter. It is also noticeable that the air chamber gives a more uniform sound speed. This
uniformity is important when the source radiation is concentrated in narrow frequency
bands.

The fluid loading factor is given by y = p,c,/p,h2rf, where p, and c, arc the density
and the sound speed in water, p, and h the density and the thickness of the wall, and f
the frequency. If y<1, the panels are very massive (hard walls) and specularly reflective;
if y>1, the walls are very soft and specularly reflect sound as free surfaces. When y=1
then the acoustic impedance of the wall is complex and the reflection is no longer
specular, this the resistive and reactive parts of the wall impedance are function of the

angle of incidence, this gives a more diffuse sound field.

B. REVERBERATION TIME, ABSORPTION, AND IMPEDANCE [REF.2}
Dowell presents a rigorous theoretical model to calculate reverberation time in a

room in termus of the impedance of absorption materials on the wall,

to




His approach is based on the coupling of the normal modes of a rigid wall room,
through the damping due to wall absorption.

The sound pressure in the room is given by the summation of the contributicn of
each normal modc p = p,c2 ¥ P, F,[A,, where p, and ¢, are the medium density and speed
of sound, respectively, P, t};e coefficients in a normal mode expansion for pressure, F,
for a rectangular room is cos(nnx/L,) cos(nmy/L,) cos(nzaz/L,) and M,=c¢ce, (for
&=1 for n=0 and ¢,=1/2 otherwise). P, must satisfy the differential equation
Pt P+ (A0,64V) éP,C,,,/Ar!,-—-O with A4, beng the area covered with absorption
materials, w, the natrfx‘;al frequency of the mode and C, = f (F,F|z,)dA, /A, and z, the
impedance of the material.

From the assumption that the sound field is diffuse (i.e., uniform all over the room),
the initial conditions for p, p, P,and P, can be calculated. In this case if we assume large
impedance on the wlls (z,/p,c,>1), all the coupling between modes are weak, and as
P =P =0 at t=0 {or all modes except n= 0, the calculations can be made only con-
sidering this mode. Other approximation can be made if we consider the initial potential
and kinetic encrgv on each mode as being the same, then we can find the initial condi-
tions for, respectively, P, and P,.

In the case of low absorption walls.i.e., large impedance, the damping coupling co-
efficient is small ({,<l), Dowell found the modal reverberation time
T,=6In 10VM,[(F,/2) dd,p,c2, except for T,, which value is 1,2 of T,. If a single mode
dominates, the reverberation time is 7,

Dowell claims that in the standard literature “the reverberation time is related to a
random-absorption coeflicient, the random absorption coeflicient is related to the
normal-absorption cocfficient, and, finally, the normal-absorption coefficient is related
to impedance” [Ref., 1; p. 183}, it does not consider room geometry, and considers uni-
form absorption. e considers his model as a generalization of the previous methods,
since it computes reverberation time directly from wall impedance and geometric factors.

C. SABINE REVERBERATION EQUATION AND SOUND POWER
CALCULATIONS (REF.3]

Various experiments show that the reverberation time changes with the amount and
distribution of the absorption material in the cavity. This conflicts with the assumption
commonly stated in the classical theory,

Young says the measurement of the decay time instead of the reverberation time is

easier and more direct. It is also advantageous when several absorption materials are




tested on the same enclosure, because the results are obtained by comparison and the
use of the decay time eliminates the eventual eflects of any bulk absorption in the me-
dium.

In order to obtain a diffuse sound field, required for the measurements, one must
wait a while after the source is turned on, this is to give time for several reflections to
occur,

D. REVERBERATION TIME IN ENCLOSURES [REF.4]

In this paper, the effect of the dependence of the sound absorption coefficient on the
incident angle was tested.

They define a, as the dependence of the absorption coeflicient & on the angle of in-
cidence and it is given by a, = 1—|(Z/pc) cos 0-1/(Z/pc) cos 0412, where Z and pc are
the acoustic impedance of the material and the medium, respectively, and 6 the angle
of incidence. Furthermore the average absorption coefficient is given by
a=f ~italy cos 0df.

This 1s a simulation of a two-dimensional enclosure, although its results permit some
considerations about the physical problems connected to the 1everberation phenomenon.
It supports the previous authors, who states that the reverberation time depends on the
distribution of absorption materials. Even in perfectly difTfuse fields, the reverberation
time varies as much as 20% with respect to the Sabine’s formula.

Conclusion is that the angular-dependent sound absorption coeflicient (a, increases
as the incidence angle increases) has influence on the presence of specular .eflections,
what points to the believing that the sound absorption coefficient possesses the same
property.

E. OTHER LITERATURE

All the other literature reviewed presented small or null interest for the problem.
Most of them refer to work in air only and the approximation method do niot consider
normal mode theory and their application to experimental techniques is not convenient.

From this literature the major points to take is the fact of the reverberation time of
cavities with walls covered by absorption material be related to the acoustical impedance
of the walls. All the other physical properties of interest, reflection coeflicient and ab-
sorption can be calculated from it. The article on the measurements of the reverberation
time in air and water gives some feeling for the nunierical results that one may expect
from experiment



All the mathematics of the theories was intentionally omitted {rom this short review
because it is of no interest for this work, all that we were looking for was the concepts

and the mechanics of the problem.




II. THEORETICAL MODEL

A model for calculating the complex impedance of a low-absorption wall from
measured reverberation times will be developed. It is assumed that the reader is familiar
with normal modes in rectangular cavities; otherwise, section 9.7 of KFCS [Ref. 2:
pp.214-216} provides the necessary background to follow this development. All the sub-
scripts (I, m, n) are dropped from the equations for simplicity, but their constant presence
must not be forgotten,

The geometry of the problem is presented in Fig. 1.

4

Figure 1. Coordinate system.

A. REVERBERATION IN CAVITIES

To measure the reverberation properties in a cavity, it needs to be completely filled
with sound, i.e., the sound field must be diffuse; the more normal modes excited, the
better, so that a standing wave pattern is not identifiable.

The number of normal modes N that are excited at a specific frequency £, is given
by Knudsen [Ref. 3: p.136}:




N=4r<-fg-)’ [1]

Here I is the volume of the cavity and ¢ the speed of sound in the medium.

The equation governing the sound decay in this cavity with the sound turned off at
t=01is

2 2 -1z,

pr=p0)e" [2]
where 7, is the decay factor.

The reverberation time (7) is defined as the time required for the sound pressure
level to drop by 60 decibels (dB), so

1)
20 log === -0 3
p0) - 13
or
I’2 T
10log ——=10loge™ "™ = —60 (4]
e g

which gives us, after some algebraic manipulation

T= 1387, (5]
B. DAMPED NORMAL MODES
The lossy wave equation is
L &
Vo=t (]
¢t oot

where p is the complex acoustic pressure and ¢ the complex speed of sound in the me-
dium, which turn out to be real since we will ignore losses on the medium (relaxation
time negligible).
The Euler equation is
du

_VE =Po 2 (7]

cl

where p, is the density of the medium and « the particle velocity.,



As a solution to (6) try
L= P cos(f,x+¢,) Cos(£,uV+¢’y) COS(.’izZ"rd’z)eiw 8]

w
where & = ==~ and the components of the complex wave number are;,

Ky = kytjoy (9]
k, = ktjo, [10]
k= ktjo, [11]

where &,k k, are the propagation terms and o, o, a, the absorption terms resulting from
the wall expressed as a bulk absorption. The complex frequency is written

w = wtjp [12]

where f is the temporal absorption coeflicient.
Substituting (8) into (6) gives

B4R +4} == [13]
C

or cquating real parts

- ) )'
ki kI 4k =(ol+ui+ol) = (—“;’-)?—(/7>2 [14]
and imaginary parts
aghetak ok, =20 [15]
c

The particle velocity can be found by substituting the value of p , from (8) into (7).
Its components are:

L @
u, =j—£— < Sin&x+o,) cos(Av+o,) cos(kz+p,)e'? [16]

k, ,
u, .—_.,'7}.-)—- —-—3,— cos(k X+ ) sin(ky+¢,) cos(kz+¢ ) (17]

(7]




) k’ . fay
ly = e COS(A, v by Ok y+hy) sin(lz+ )™ [18]

C. AFPPLICATION
Assume that there is no bulk absorption and the wal at x = [ is the only lossy and
non-rigid wall.This implies ¢,=0 and o, = o, = 0. Lquation (15) simplifies to

wp

k=L [19]
C

Assume that the physical property which determines the absorption characteristics
of the wall is the normal specific acoustic impedance, (there are no shear waves on the
walls) and let this be defined as

Lwall = (yx+j ’7x)/ o€ [20]

where y, and », are normal specific acoustic resistance and reactance coefTicient.

The normal specifi- acoustic impedance at the wall (say at x = L,) is by definition,
the ratio of the acoustic pressure (p) to the normal component of the particle velocity
vector (1), both evaluated at the wall,

‘;Irvs

(21]

1l
L]

=
=

At the wall, the wave and the wall impedances must match. This gives us the desired
boundary condition

or, substituting p (8), &, (16) and z,,, (20)

Jo—4

ctn(k, Lx) = (Vx+j’7x)PoC [23]

Po K=oy

or rearranging,

[ ﬁ
1 T HT

tanf(A+jo )L = YxTlx Atz

[24]



we have the fundamental relation for the physical quantities important to this problem.
The trigonometric identities

sin(a+b) = sin a cos b+ cos asin b [25]
cos(a+b) = cos acos b— sinasin b [76]
and defining 6, = ,L, and 6 = oc,L; , casts equation (22) into the form

sin 8, cos(jé)+ cos 4, sin(jd)

tan(f,+0) = cos 8, cos(j&)— sin 6, sin(jé) 27

If 6<1 (i.e., low absorption) use of (19), and manipulation gives

. © (B o \| I+jdcind,
J kxc(yx"}'jﬂ.x) [l tl( w kx >} - ctn 00-—j6 [28]

Working the right hand side separately, multiplying it by (tan 8,/ tan 6,) and by the
complex conjugate of the denominator

1+jdcmf, tan 0,(1-8") " 6(l+tan260)

= cyuniar R [29]
I—jétan’d, 1+ tan’0, ~ 1+6°tan’e,

where, since 6<1 the term (1-6%) ~ 1,

For the left hand side of (28) multiply by the complex conjugate of the denominator

, ) [ B o\
———ereeee | |4l ——— ] | =
/ k.rc(}'x+J Nx) [ J( w Ky )]
[30]
—w ), _y<_ﬁ__zx_>+j - (l‘___°Lx_>
kxc(yi+n§) R W PO W O kg

Now introduce the incidence angle (measured from the normal) ¥,

Ky
cos Y, = e (311

From equation (19) and knowing that wfc = k

o, =

i% [32]

A

A



Substituting «, in < -% - %L )

fox B
-J——Z:—=3)—tan’¢,. [33]

So the right end side of (28) becomes (using the relation &, = -%’- cos y,)

i oG fun(Eem)]|} o

and equation (29) becomes

) B 2 \ ) /i 2
— Y (-—,— tan W)]%—J —-———-———-[:y +7 (—-—tan g&)] =
cos !//i(\/'i+'];;) |: X X\ i cos '1/;(‘2 2) X X\ w i

YAt
2 2 ' [35]
tan 8,(1-46°)  4(1+tan’0,)

146 tan’0, / 1+6% tan’0,

I. SOLUTION (general)
Equating real and imaginary parts of (35), considering d<1, and (30), we get two

equations for two unknowns y, and »,:

tan @,

B .
He—¥x T tan‘y ) == — (36]
cos Y212 ( e l 1+6 tan0,
and
2
] B o(1+ tan‘d,)
—— (ﬂx“/x"J tan2w,) = d (371
cos Yi(nx+vy) 14+6° tan‘d,

Equations (36) and (37) can be more useful if manipulated. First divide one by
the other and cross multiply

1x

29y B 2
v ={: 8(1+ tan"6,)— - tan 6, tan"y, ] 0383

i
tan 0,+6 ’E tan’y (14 tan’0,)

The second equation can be obtained by the subtraction between (36) and (37).




(146 tanzeo)[”x(l_ 'g' tanztl/,)—*/x(+ -% tanzz//,-):l =

cos Y (y2+12) [ tan 0,~5(1+ 1an’6,)]

(39]

Now define a couple of parameters in order to simplify the expressions (38) and
(39) for further work (note that 1/ tan 0, =ctn 8,)

B .
§=-—tan"y; [40]
g=0d(ctnf,+tan@,)

As one may notice, “q” is mainly a function of the rigidness of the wall through
the 6, and “s” a function of the incidence angle ¥, .

Remember that, so far, the only assumption made is “low absorption” of the
wall (0<1). Let us sce what that say about f/w. Start with equations (19) and (31)

f=——=2cosy [41]

which, dividing both sides by w, multiplyving the right end side by L,/L,, and remember-
ing the definition of § = «,L, , becomcs

f__$

Char

cos y, [42]

~

‘X

Since cos ¥, < |, k and L,>8<1 , is clear that flw<]

From this result we may induce that, if we avoid large values of ¢, than s<1
l.e., the angle of incidence can not be close to grazing.

Fig. 2 shows that it is also acceptable to consider ¢ as being of order 6 if we
exclude extreme values of (ctn 0.+ tan 8,) , i.e., 6, can not be close to 0 (quasi-rigid wall
boundary condition) or to = (quasi-pressure release wall boundary condition).

12
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100 P|olt of ton(x)+<':tn(x)

80 |+ -

40 H .

x (rad)

Figure 2. Value of “q".

It can also be shown that, with some exceptions, s < g , so that

-—f;- tan’y, < 8( ctn 8,+ tan §,,)

Using (42) and substituting & by w/c gives

which when substituted in (43) and dividing both sides by ¢ gives

¢
wl,

< (ctnf,+tand,)

Assuming that kL,>1 which excludes low frequencics (already excluded if we wish lots
of normal modes excited in order to get a diffuse sound field) and since
(ctn 0,+ tan 0,) > 2 (see Figure 2), the relation is true if we avoid grazing incidence (al-
ready excluded).

The assumptions and restrictions, so far, are;

13




- Jow absorption at the wall (6<1)
- exclude close to grazing incidence (i, % n/2)
- avoid rigid or pressure release wall, (A, % 0 and 0, % =/2)

- s < g<l.

Note that the validity of the last rclation can be extended when the dimensions
of the cavity or the frequency are increased.
2. RESULTS
In this sub-section, expressions will be found for the normal resistance and
reactance of the wall, using the normal incidence case as a check point. Insertion of the
parameters s and ¢ into (38) and (39) yields

RASSENL St
Nx ~ l+sq

(46]

Nal1=5) = vx(14s) = (v2+n2) cos ¥, tan 8,(1 — ¢) [47]

Since 6«1 and tan 6, is not large, the term (14+6? tan’0,)~1.

Applying the approximations s < g<1, which implies (¢—s)<1 and sg<l1, it can
be scen that the denominator of (46) goes to 1 and that (1+s)~(1—s)~(1—¢)21 The ratio
Y./", is much less than 1. It also tells us that both the resistance and the reactance have
the same sign.

Lquations (46) and (47) become:

Vx
T (48]
M—Yo=(ya+n) cos Y, tan 6, [49]

Taking the value for y, from (48) and substituting on (49) yields:
nx[1-(g=5)] = [(g—s)41]n; cos ¥, tan 6, [50]
Dividing both sides by #, and noticing that (g—s)<1 , we have an expression for 7,

1
cos ¥, tan 6,

[51]

Ny =

14



Now substitute 3, from (51) into (47) and get y,

g—s
cosy;tand,

‘/'x =

or, plugging back the values for the parameters s and ¢ (39):

2
__ 0 2 B tan"y,
7%= Cos ¥, (cnOotl)=5 cosy,tan @, (53]

The angle of inciden: e varies from 0 to /2, so cos ¥, is always positive, 8, is a
function of the mode number and the “rigidness” of the wails, so it can take any value,
i.e., tan 8, can be cither positive or negative. Under these arguments, looking to (51) and
(52), and remembering that (¢—s) > 0 it is easy to verifv that if tan 6, > 0 , then both y,
and n, arc positive and they are negative if tan 8, < 0. This is consistent with the expec-
tations stated earlicr in this section.

Applying the relation 4, = w/c cos ¥, to 8, yiclds

l‘x(“
0, =—¢—cosy, [54]
and «, can be related to £ by (31)
B
- 5
%= oy Y, (53]

The temporal absorption coeflicient f can be obtained from the reverberation

time 7T by direct comparison between equations (2) and {9) (on its maximum):
rp=Pp0)e ™ = pp(0)e™"* [56]
which leads to

1
= 3 [57]

and with 7, and T related by equation (5), we have

‘2

= ]“18 [58]

r2




So all the variables in (53) and (51) are known or can be found from measurc-
ments, which permits the calculation of y, and #, of the wall
3. CHECKS
a. Main assumption
First we can check the assumption 6«1, to do so we may solve (51) and (52)
for &

5= Vxlilx
(ctn 6,+ tan 6,)—

= [59]

wlL, tanzt//,

The denominator is always greater than 0 (except for grazing incidence) , and it is larger
than 1 because we assumed it when checking for s < g, since -;'7:- <1 our initial assump-
tion is verified.
b. Normal incidence
We can start with (38) and (39), considering again that (1+62 tan?0,)~1 and
¥, = 0. Without any other assumptions that é<1 and 0,2(n+1)n/2 or nr, equation (38)

becomes

o 8(1+tan’6,)

Jx . tan 8, 60}
Substitution of y, in (39) yiclds
ny(1-q) = n3{1+(1=¢)’] tan 6, [61]
dividing both sic~s by 5, and noting that (1—q)~1 we get
which, substituting in (60) gives
=t = o ctn’6,+1) [63]

This results are the same as (52) and (53) if we set ¢, = 0.

16
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c. Power reflection coefficient
The power reflection coeflicient (R,) is given in KFCS [Ref. 2: p. 139] by
equation (6.45)

(v €08 Yr=1) 2472 costy,

(vx cOS ¥+ l)2+ui coszz//, [64]
We want it to be close to one (low absorption), so, dividing evervthing by (cos?y)
(v sec Y +iax(ych sec )+ [65]
This tells us that #, can take any value, and
yi-2yx sec Y+ seczwlzyiﬂyx sec ¥+ scczn//, [66]
or
—¥x S€C Y, =y, sec y; [67]
which becomes
7x<€ cos ¥, (68]

I'rom this relation we find that y, despite of being much smaller than #, has
to be small. Recalling cquation (46) one may see that

-—.s

q X
V= 1$59 <€ COS Y, [69]

which, after some manipulation, and taking into account the approximations earlicr
made, tells us that #, has to be also much smaller than (cos ). So we expect, for low
attenuation at the walls, low resistance and low reactance.



1V. CONCLUSIONS

Using normal mode theory in cavities it is possible to calculate the normal acoustic
resistance and reactance as functions of the reverberation time, the frequency of the
acoustic field, the speed of sound in the medium, the dimensions of the cavity, and the
incidence angle.

To measure the reverberation time, a difTuse ficld is required, 1.c., a fairly uniform
pressure is desired throughout the cavity. The reverberation time can be related to the
temporal absorption coeflicient and it is expected to increase with the increasing di-
mensions of the cavity, the decreasing absorbtion of the walls, and the decreasing pc of
the medium.

Under the following limitations:

- low absorptive wall
- avoid rigid or pressure release walls

- exclude angles of incidence close to grazing

the results obtained as a function of determinable parameters are: from (53), the normal

specific acoustic resistance is

<f Lw lan:
Vx = -—-ﬁ-;-—— [ C[ll.( z (o8} Q,[h) +- l:l“' _({)i' ‘lll [70]
¢ cos'y, cos ¥, tan e
! CCos y,

from (51), the normal specific acoustic reactance is

[71]

Ny =

L.
cos ¥, tzm( : ¢os Vf;)

It is noticeable that, under the mentioned limitations, the resistive part has to be
small and much smaller than the reactive part.

The exclusion of the “close to grazing” angles of incidence is assumned as not being
very important because, for a difluse ficld, there aie many excited normal modes, so the

modes excluded by this limitation are relatively few.
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Despite the limitations on this modcl, it is a generalization of the theory presented
in the textbooks [Refs. 5, 6].
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