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ABSTRACT

A theoretical model is derived to calculate the specific acoustic impedance of the

absorptive material covering the walls of a cavity. This model will allow the exper-

imental determination of the specific acoustic impedance from the measurement of the

reverberation time in a water-filled cavity. The model assumes a wall of low absorption,
It can not be used for rigid or pressure release walls and grazzing incidence is excluded.
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I. INTRODUCTION

A. MOTIVATION
The design of coating materials that reduce the reflection of water borne sound is

an important problem in underwater acoustics. Since it is difficult to theoretically predict

the complex reflection coefficient of such a material, the reflection properties must be

deternined experimentally.

At high frequencies it is possible to measure the reflection coetficient of a slab of

material by measuring the pressure after reflection of a narrow beam of sound incident
at a given angle. However, this method becomes more difficult to use as the frequency

of the sound is lowered.,

Determining the acoustic impedance of a material by measuring the standing wave

pattern in an "impedance tube", while the standard procedure in air borne sound, is very

difficult for water born sound, because of the impossibility of approaching "rigid condi-

tions" For the tube walls. This is because the "pc" for water is approximately 5,000 times

higher than that for air and is much closer to that of any wall material.

Therefore it is attractive to investigate the possibility of determining the acoustic

impedance of a mateial from measurements of the reverberation time in a water-filled

cavity with walls lined with the material.

B. OBJECTIVE
To derive a theoretical model which will allow the experimental measurement of

acoustical properties of absorption materials from measurements of re verberation time

in a water filled cavity with wall lined with material.

C. METHOD
The model is based on the normal mode theory in cavities.

It will be shown that the reverberation time in a cavity can be related to the

temporal absorption coefficient of an acoustic field. From this fact, a relation between

this coefficient and the complex specific acoustic impedance (resistance and reactance)

will then obtained, under several assumptions and linitations.

D. REMARKS
No referzlnces weze found using the proposed approach. In addition most of the

published articles in this field are for air as the medium in the cavit\,



11. LITERATURE REVIEW

This is a summary of published artcles which are, in one way or the other, related

to the subject. These summaries will give some idea about the accepted definitions and

approximations relevant to this problem.

A. CHAMBER FOR REVERBERANT ACOUSTIC POWER MEASUREMENTS IN
AIR AND WATER [REF.I]

This was the only paper found in the Journal of the Acoustics Society of America

where experiments made both in air and in water were reported, (in opinion corrob-

orated by the authors).

The motivation for this work was the interest in obtaining sound-power measure-

ments directly, and the idea that it might be possible with the help of a reverberant

acoustic chamber. It is stated that if the sound field consists of many randomly excited

modes (diffuse field), tle radiation impedance of the tank is not affected by the fluid re-

action, because the randomly phased fluid pressures cancel.

One of the major lessons to take out from this work is the fact that the reverberation

time in the water, in a similar enclosure, is smaller than that of the air by a factor often.

The author attributes this to the higher mean collision rate and higher sound speed in

water. It is also noticeable that the air chamber gives a more uniform sound speed. This

uniformity is important when the source radiation is concentrated ini narrow frequency

bands.

The fluid loading factor is given by y = poco/ph27rf, where po and c. are the density

and the sound speed in water, p, and h the density and the thickness of the wall, and f

the frequency. If yl, the panels are very massive (hard walls) and specularly reflective;

if ,>l, the walls are very soft and specularly reflect sound as free surfaces. When y ,"-

then the acoustic impedance of the wall is complex and the reflection is no longer

specular, this the resistive and reactive parts of the wall impedance are function of the

angle of incidence, this gives a more diffuse sound field.

B. REVERBERATION TIME, ABSORPTION, AND IMPEDANCE [REF.2]
Dowell presents a rigorous theoretical model to calculate reverberation time in a

room in terms of the impedance of absorption materials on the wall,



ttis approach is based on the coupling of the normal modes of a rigid wall roomi,
through the damping due to wall absorption.

The sound pressure in the room is given by the surmnation of the contribution of
each normal mode p = p.c YPF,1/M,, whcre p, and co are the medium density and speed

Il

of sound, respectively, P, the coefficients in a normal mode expansion for pressure, F&

for a rectangular room is cos(n~nix/L,,) cos(niry/L,) cos(nz-.z/L) and '!, = E.tyt (for

r= I for n = 0 and r, = 1/2 otherwise). 1, must satisfy the differential equation
N

P,,+ coP,,+ (AApoC2/ P') P,C,/, -=O with A. bcing the area covered with absorption

materials, w, the natural frequency of the mode and C. = fj(FoFz,) dAA/AA, and z, the

impedance of the material.,

From the assumption that the sound field is diffuse (i.e,, uniform all over the room),

the initial conditions forp, p, P,, and P, can be calculated. In this case if we assume large

impedance on the wills (z°/poc,>l), all the coupling between modes are weak, and as

P, = P, = 0 at t = 0 for all modes except n = 0, the calculations can be made only con-

sidering this mode. Other approximation can be made if we consider the initial potential

and kinetic energy on each mode as being the same, then we can find the initial condi-

tions for, respectively, P,, and P,.,

In the case of low absorption walls.i.e., large impedance, the damping coupling co-

efficient is small ( .,<1), Dowell found the modal reverberation time

7, = 6 In lO"Mf (F.z 0) dA.,poc , except for T, ifch value 's 1,2 of T,. If a single mode
dominates, the reverberation time is T,.

Dowell claims that in the standard literature "the reverberation time is related to a

random-absorption coefficient, the random absorption coefficient is related to the

normil.absorption coefficient, and, finali, the normal-absorption coefficient is related

to impedance" [Ref,. I:. p. 183], it does not consider room geometry, arid considers uni-

form absorption, lie considers his model as a generalization of the previous methods,

since it computes reverberation time directly from wall impedance and geometric factors.

C. SABINE REVERBERATION EQUATION AND SOUND POWER

CALCULATIONS [REF.31
Various experiments show that the reveiberation time changes with the amount and

distribution of the absorption material in the cavity., This conflicts with the assumption

commonly stated in the classical theory.

Young says the measurement of the decay time instead of the reverberation time is

easier and more direct. It is also ad~anta.geous Mhen several absorption materials are

3



tested on the same enclosure, because the results aie obtained by comparison and the

use of the decay time eliminates the eventual effects of any bulk absorption in the me-

dium.

In order to obtain a diffuse sound field, required for the measurements, one must

wait a while after the source is turned on, this is to give time for several reflections to

occur.

D. REVERBERATION TIME IN ENCLOSURES [REF.4]

In this paper, the effect of the dependence of the sound absorption coefficient on the

incident angle was tested.

They define ix, as the dependence of the absorption coefficient a on the angle of in-

cidence and it is given by c, = 1- I (Z/pc) cos 0-I/(Z/pc) cos 0+11 2, where Z and pc are

the acoustic impedance of the material and the medium, respectively, and 0 the angle

of incidence. Furthermore the average absorption coefficient is given by
a f1;'aa cos OdO.,

This is a simulation of a two-dimensional enclosure, although its results permit some

considerations about the physical problems connected to the teverberation phenomenon.

It supports the previous authors, who states that the reverberation time depends on the

distribution of absorption materials. Even in perfectly diffuse fields, the reverberation

time varies as much as 20% with respect to the Sabine's formula.

Conclusion is that the angular-dependent sound absorption coefficient (a increases

as the incidence angle increases) has influence on the presence of specular ,effections,

what points to the believing that the sound absorption coefficient possesses the same

property.

E. OTHER LITERATURE

All the other literature reviewed presented small or null interest for the problem.

Most of them refer to work in air only and the approximation method do riot consider

normal mode theory and their application to experimental techniques is not convenient.

From this literature the major points to take is the fact of the reverberation time of'

cavities with walls covered by absorption material be related to the acoustical impedance

of the walls. All the other physical properties of interest, reflection coefficient and ab-

sorption can be calculated from it. The article on the measurements of the reverberation

time in air and water gives some feeling for the numerical results that one may expect

from experiment

4



All the mathematics of the theories was intentionally omitted firom this short review

because it is of no intcrest For this work, all that we were looking for was the concepts

and the mechaniics of the problem,



111. THEORETICAL MODEL

A model for calculating the complex impedance of a low-absorption wall from
measured reverberation times will be developed. It is assumed that the reader is familiar
with normal modes in rectangular cavities; otherwise, section 9.7 of KFCS [Ref. 2:
pp.214-216] provides the necessary background to follow this development. All the sub-
scripts (1, m, n) are dropped from the equations for simplicity, but their constant presence
must not be forgotten.

The geometry of the problem is presented in Fig. 1.

z

Lt. L

LX

Figure 1. Coordinate system.

A. REVERBERATION IN CAVITIES
To measure the reverberation properties in a cavity, it needs to be completely filled

with sound, i.e., the sound field must be diffuse; the more normal modes excited, the

better, so that a standing wave pattern is not identifiable.

The number of normal modes N that are excited at a specific frequency f, is given

by Knudsen [Ref. 3: p.136]:

6



Here V is the volume of the cavity and c the speed of sound in the medium.

The equation governing the sound decay in this cavity with the sound turned off at

t=0 is

p2 = p2(O) e- [2]

where r, is the decay factor.

The reverberation time (7) is defined as the time required for the sound pressure

lecel to drop by 60 decibels (dB), so

/'

20 log = -60 [3]
P(O)

or

2

10 log -, = 10 log e- TT, -60 [4]
P2(0)

which ,ives us, after some algebraic manipulation

T= 13.8re [5]

B. DAMPED NORMAL MODES

1he loss, wave equation is

'2p 12 2c, [6]

where f is the complex acoustic pressure and g the complex speed of sound in the me-

dium, which turn out to be real since we will ignore losses on the medium (relaxation

time negligible).

The Euler equation is

-re = po [7]

where p, is the density of the medium and Li the particle velocity.

7



As a solution to (6) try

p = P cos(k-v+O,) cos(Ay+4y) cos(A,z+0) t  [8]
(I)

where A = c and the components of the complex wave number are:,

_-X = k,+jOC [9]

Ay = ky+jxy [10]

k. = k2+JCZ [11]

where k,, .k, are the propagation terms and oc, a, the absorption terms resulting from

the wall expressed as a bulk absorption., The complex frequency is written

J2 = C+jfi [12]

where P is the temporal absorption coefficient.

Substituting (8) into (6) gi\ es

2
2 + 4 2 L [13]

C

or equating real parts

2+A2+k42 22 ( ?))_( )2

"" 7-(I [14]

and imaginary parts

Xkx+o yky+ozkz ="-"[15]
C

The particle velocity can be found by substituting the value oft,, from (8) into (7).

Its components are:

P AX
u =" -~

P _. sin(A-kv+O,) cos(Ak y+oy) cos(kz+kz)e'2' [16]

i, =1 ~to G cos(_"x+ 0) sin(A,;J+ .y) cos(kZ+,i:)c'' [ 7]



P~ = c( ,,x+O~x) cos(_k jv+Oy) sin(Az+0p,)e/-'t 8

C. APPLICATION
Assume that there is no bulk absorption and the wal; at x = L, is the only lossy and

non-rigid wall.This implies 0,,=O and o = o, = 0.. Equation (15) simplifies to

k - C2  [19]

Assume that the physical property N hich determines the absorption characteristics

of the wall is the normal specific acoustic impedance, (there are no shear waves on the

walls) and let this be defined as

Zwal = (Yx +j~x)P0C [ 0

where ,, and n, are normal specific acoustic resistance and reactance coefficient.

The normal specifi- acoustic impedance at the wall (say at x = L,) is by definition,

the ratio of the acoustic pr-ssure (,) to the normal component of the particle velocity

vector (j,), both evaluated at the wall.

. -[21]

At the wall, the wave and the \ all impedances must match., This gives us the desired

boundary condition

= all [22]

or, substituting p (8), y, (16) and z (20)

ojAv , ctn(k L,)= (y,+jj)poc [23]

or rearranging,

0 f
tan[(kx+jo.x)L] =j 1 C T [24]

9



we have the fundamental relation for the physical quantities important to this problem.

The trigonometric identities

sin(a 4-b) = sin a cos b+ cos a sin b [25]

cos(a+b) = cos a cos b- sin a sin b [26]

and defining 00 = kL, and 3 = a,L' I casts equation (22) into the form

sin 0o cos(j5)+ cos 0o sin(j6)
tan(o+jb) = [27]

cos 0o cos(jc)- sin 0o sin(j6)

If 6<l (i.e., low absorption) use of(19), and manipulation gives

(_ ILi . -( f ,x = I+j3 ctn 0, [28]
J kXc(yx+jn'.) 1 A - ctn 0o-j 6

Working the right hand side separately, multiplying it by ( tan 0,/ tan 0.) and by the

complex conjugate of the denoinator

I +j 3 ctn 0, tan 0(l-6) 6(1+ tan20O) [29]

1-j 6 tan2
0  1+32 tan20o 1+62 tan20o

where, since 36..l the term ( 1,62 ) - .

For the left hand side of(28) multiply by the complex conjugate of the denominator

J kx(,' 0 :) 1 +-k- x  =
A(+ ) [± [30]

A to~+~ 'lx-Yx J+JL)'x+ 77iJ
No kitrdce xth inidnc angl (maue fo ohorml q

kxcos V~t =- [31]

From equation (19) and knowing that woc = k

kX - /k [32]

AC

10



Substituting in (f - kL

T-=-gF tan t'. [33]
Jx

So the right end side of(28) becomes (using the relation k, ="7" cosq',)
C

and equation (29) becomes

0 _2.__ _ E - --tan + 2, W '.X+ 77x L tan'i
o ( ' ± ) 2 Cos [35](r .)

tan 0o(1-62) 6(i+ tan 2 O) [35]

1+62 tan20 0 1+62 tan 2
00

1. SOLUTION (general)
Equating real and imaginary parts of(35), considering 6<1, and (30), we get two

equations for two unknowns /, and ?1,:,

"o , (ix4 tan2iiit) = 2 [36]
COS 0(- 12,Ix Wta0, 1+62 tan 20

and

_tan 2 01 ) - (1+ tan2 0)1 ( r/x-' "7 =[37]
cos 0'(),2+Y2) W 1+62 tanO0o

Equations (36) and (37) can be more useful if manipulated. First divide one by

the other and cross multiply

x- 6(1+ tan2O- tan 0, tan2 6  [38]
IL tan 00 +6 tan2',(l+ tan 20o)

The second equation can be obtained by the subtraction between (36) and (37);,

11



(1+62 tan 80)[lX( I- fl tan 0)_ X(+ 4 tan [39]
CS0(,2+?2

cos Xk(yx+,ix) [tan 0,-,5(1 tan2
0o)]

Now define a couple of parameters in order to simplify the expressions (38) and

(39) for further work (note that 1/tan 0, = ctn 0o)

4 tan2qi, [40]

q = 6( ctn 0o+ tan 0,)

As one may notice, "q" is mainly a function of the rigidness of the wall through

the 0. and "s" a function of the incidence angle 0,.

Remember that, so far, the only assumption made is "low absorption" of the

wall (6<1). Let us see what that say about fl/w. Start with equations (19) and (31)

L = L cos [1]

which, dividing both sides by co, multiplying the right end side by Lj/L,, and remember-

ing the definition of 5 = a L,, occonies

S- cos~ VJ [2]

Since cos 4,, < I , k and L,>6<I , is clear that fi/w.l

From this result we may induce that, if we avoid large values of 0,, than s< ,

i,e., the angle of incidence can not be close to grazing.

Fig. 2 shows that it is also acceptable to consider q as being of oider 6 if we

exclude extreme values of ( ctn 0,+ tan 0o), i.e., 0. can not be close to 0 (quasi-rigid wall

boundary condition) or to n (quasi-pressure release wall boundary condition).,

12



100 Plot of tan(x)+ctn(x)

I I

80

60

40

20

0
0 0.5 1 1.5

x (rod)

Figure 2. Value of "q".

It can also be shown that, with some exceptions, s < q , so that

-- tan20, < 6( ctn 00+ tan 0)

Using (42) and substituting k by co/c gives

-- CO S 

which when substituted in (43) and dividing both sides by 6 gives

C < ( ctn 00+ tan 0o)

Assuming that kL,>1 which excludes low frequencies (already excluded if we wish lots

of normal modes excited in order to get a diffuse sound field) and since

(ctn 0o+ tan 0o) > 2 (see Figure 2), the relation is true if we avoid grazing incidence (al-

ready excluded).

The assumptions and restrictions, so far, are:,

13



- low absorption at the wall (b<.1)

- exclude close to grazing incidence (', nr/2)

- avoid rigid or pressure release wall, (0o ; 0 and 0, ? ;/2)

- s<q~l.

Note that the validity of the last relation can be extended when the dimensions

of the cavity or the frequency are increased.

2. RESULTS

In this sub-section, expressions will be Found for the normal resistance and

reactance of the wall, using the normal incidence case as a check point., Insertion of the

parameters s and q into (38) and (39) yields

I/ X- q [46]
lix 1 +sq

,(-s)yx~~s) 2 2
Y1-s) = (,,,x+(lx) cos 01 tan 0,(1 - q) [47]

Since 6<I and tan 0, is not large, the term (1+62 tan'Oj"-l..

Applying the approximations s < q,<l, which implies (q-s),<l and sq<.1, it can

be seen that the denominator of(46) goes to 1 and that (l+s)L-(l-s) -(l-q)nl The ratio

y,/?Io is much less than 1. It also tells us that both the resistance and the reactance have

the same sign.

Equations (46) and (47) become:

31

j -q-s [48]

qX-Yo-(,) cos 01 tan 00 [49]

Taking the value for y. from (48) and substituting on (49) yields:

rcx[l-(q-s)] = [(q-s)2+ 12 COS Oi tan 0, [50]

Dividing both sides by il, and noticing that (q-s),K1 , we have an expression for ?1,:

lx = cos ,,, tan 00 [51]

14



Now substitute 1 from (51) into (47) and get y,

q-s

cos '1 tan 0 o

or, plugging back the values for the parameters s and q (39):

I ___ tan2'i
- co; 1  w(ctn2

0 +) cos [53]

The angle of inciden, e varies from 0 to n/2, so cos 0i, is always positive, 00 is a

function of the mode number and the "rigidness" of the wails, so it can take any value,

i.e., tan 0. can be either positive or negative. Under these arguments, looking to (51) and

(52), and remembering that (q-s) > 0 it is easy to verify that if tan 0, > 0, then both ;,,

and n, are positive and they are negative if tan 00 < 0., This is consistent with the expec-

tations stated earlier in this section.

Applying the relation k, = o/c cos 0, to 0, yields

0 Cos 0' [54]c

and a, can be related to Pt by (31)

S 155]

The temporal absorption coefficient P7 can be obtained from the reverberation

time T by direct comparison between equations (2) and (9) (on its maximum):

2- 2 (Oe-t - (O)e-I [56]

which leads to

- 2[57]
2Te

and with r, and T related by equation (5), we have

13.8
/ 1.8 [58]

21

15



So all the variables in (53) and (51) are known or can be found from measure-

ments, which permits the calculation of y, and il, of the wall.

3. CHECKS

a. Main assumption

First we can check the assumption 6<1, to do so we may solve (51) and (53)

for 6

6 = 17[59.
(ctn 0,+ tan 0,) c 2

owL, tan2

The denominator is always greater than 0 (except for grazing incidence) , and it is larger

than 1 because we assumed it when checking for s < q, since <I <1 our initial assump-

tion is verified.,

b. Normal incidence

We can start with (3S) and (39), considering again that (1+61 tan 20o)-! and

= 0. Without any other assumptions that 6<1 and 0,(n+l)In/2 or nn, equation (38)

becomes

, (5(1+ tan 20o)
=_ = q [60]

tal 0o

Substitution of , in (39) yields

,(-q) = ,[l+(1-q) 2 tan 00 [61]

dividing both siC"s by n, and noting that (l-q):-I we get

! =[62]
X tan 00

which, substituting in (60) gives

t = 6(ctn 0+1) [63]Yx=tan 0o

This results are the same as (52) and (53) if we set 0i, = 0.

16



c. Power reflection coeficient
The power reflection coeflicient (R) is given in KFCS [Ref., 2:. p. 139] by

equation (6.45)

(yx cos ,- I)2+,7 cos2 , [64]•R. =.Vc q/] [64]
9=2 2 2cos 01+ 1) +?2 cos 01

We want it to be close to one (low absorption), so, dividing everything by (cos 2o)

(Yx- 2 (y,( sec s0c CC,))2 +i12 [65]

This tells us that il, can take any value, and
2 SCC20_ 2, 2

-2yx s-c qil+ sec -,+2y, sec 01i+ sec2y"1 [66]

or

-Y' sec 01,--Yx sec [ [67]

which becomes

YX<< cos ij [68]

From this relation we find that /, despite of being much smaller than 1. has
to be small. Recalling equation (46) one may see that

_k = q-s ?jx< cos 01 [69]
1 +.sq

which, after some manipulation, and taking into account the approximations earlier
made, tells us that n, has to be also much smaller than ( cos ,,). So we expect, for low
attenuation at the walls, low resistance and low reactance,
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IV. CONCLUSIONS

Using normal mode theory in cavities it is possible to calculate tile normal acoustic

resistance and reactance as functions of the reverberation time, the frequency of the -

acoustic field, the speed of sound in the medium, the dimensions of the cavity, and the

incidence angle.

To measure the reverberation time, a difruse field is required, i.e., a fairly uniform

pressure is desired throughout the cavity. The reverberation time can be related to the

temporal absorption coefficient and it is expected to increase with the increasing di-

mensions of the cavity, the decreasing absorbtion of the walls, and the decreasing pc of

the medium.

Under the following limitations:

- low absorptive wall

- avoid rigid or pressure release walls

- exclude angles of incidence close to grazing

the results obtained as a function of determinable parameters are, from (53), the normal

specific acoustic resistance is

Ix = fl ctu "( cos ,' 4-1 - [70]
cos 2 cos 0, tan ( s L[

from (51), the normal specific acoustic reactance is

II.X,= (L-. [71]
cos 0tan( cos)7

It is noticeable that, under the mentioned limitations, the resistive part has to be

small and much smaller than the reactive part.

The exclusion of the "close to grazing" angles of incidence is assumed as not being

very important because, for a diffuse field, there ate many excited normal modes, so the

modes excluded by thi limitation are relatively few.

IS



Despite thc limitations on this model, it is a generalization of the theory Presented

in thc textbooks [Refs. 5, 6].
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