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1. Introduction

The incorporation of rare-earth ions into III-V semiconductor compounds has
recently generated a great deal of interest, motivated primarily by potential
applications in optoelectronic devices. Many groups have reported
photoluminescence and photoluminescence excitation measurements of rare-
earth ions in these systems. The systems for which the most published data are
available are Yb 3 :InP, Er3+:GaAs, and Nd 3 :GaP (we provide bibliogra-
phies for each of these). In addition, two review articles have been written
[1,2], and some work has been done on theory [3].

The symmetry of the site occupied by the rare-earth ion depends on the growth
conditions. For the samples listed above, the sample preparation has been
optimized to minimize the number of lines seen in the spectrum. It is assumed
that under favorable growth conditions, the rare-earth ion substitutes for a
cation. For unfavorable growth conditions, it has been speculated that the
rare-earth ion occupies an interstitial site or defect site instead of substituting
for a cation. The location of the rare-earth ion in a III-V lattice is discussed
by Kozanecki et al [4,5]. Because Yb is the smaallest rare-earth ion and In is
larger than Ga or Al, Yb3+:InP grows relatively easily with Yb substituting
for indium in the InP lattice. For the other systems considered, the optimum
conditions for sample growth are still under investigation, but many of the
spectral features can be explained assuming cubic symmetry.

The starting point for each sample considered is a simple point-charge model
with full valence charges (±3) for the constituent ions. Variations of the
simple point-charge model are considered that give improved agreement to
the experimental data. The irreducible representations are obtained from
group theory, assuming Td symmetry of the rare-earth site. Varying the
effective ionic charge changes the relative splitting of the levels but not the
ordering of the irreducible representations. Introducing self-induced contri-
butions to the simple point-charge model allows the relative ordering of the
irreducible representations to be changed, as well as the magnitude of the
level splittings.

Physically reasonable values for the material parameters (the effective charge
and the dipole and quadrupole polarizabilities) are discussed in section 2. For
each of the three systems considered, the parameters Q = 3, aD = 2 A3, and

Q =45 provide a good starting point for interpreting experimental data, and
the results of the calculations using these parameters are presented in sections
3 to 5. For Er3+:GaAs, sufficient experimental data are available so that we
can deviate from this parameter combination to improve agreement with the
data. For all the systems considered, the identification of the levels is
uncertain because of the presence of extra lines, and further optimization of
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the model may be more profitable after more experimental work is done. As
a complement to the energy level calculation, the relative intensities of
transitions measured in fluorescence are also calculated directly from the
theoretical model. The intensity calculations were done at 6 K to correspond
to experimental fluorescence measurements. At this temperature, essentially
all transitions originate at the lowest level of the upper multiplet. These
calculations are compared directly with the photoluminescence spectra and
provide a further check on the model.

2. Material Properties

2.1 Crystallographic Data
The III-V semiconductor compounds considered in this report crystallize in
the zinc-blende structure, which belongs to space group F43m, 216 in the
International tables for x-ray crystallography [6]. The lattice is described in
Wyckoff [7] with two sites, the cation and anion sites, each having Td
symmetry. The crystallographic information is summarized in table 1. The
lattice parameters for these compounds are also given by Wyckoff as 5.6537
A for GaAs, 5.8687 A for InP, and 5.4505 A for GaP.

Table 1. Fractional positions of atoms in unit cell
Site Symmetry x y z Charge Dipole Quadrupole

polarizability polarizability
Cation site (Ga, In) Td 0 0 0 +Q aD(+) a4 +)
Anion site (As, P) Td 0.25 0.25 0.25 -Q cD(-) a4-)
Interstitial sites Td 0.50 0.50 0.50 - -

Td 0.75 0.75 0.75 - - -

2.2 Effective Charges

To maintain charge neutrality, the effective cation charge, Q, is balanced by
an anion charge, -Q, giving only one free parameter for the effective charge.
Various models have been developed to describe the effective charge in Ill-V
compounds [8,91. In the simplest approximation, the static effective charge
can be written Q* = -AQ + 4p, where 0 < p < 1, and AQ = I for Ill-V
compounds. Forp = 1, the effective cation charge is the full valence charge
of +3 (in units of the electronic charge). The models predict an effective cation
charge somewhat smaller than the full valence charge Q = 3, but not a great
deal smaller. The effective charges calculated from a band-structure model
[9] range from 2.0 to 2.5.

In Td symmetry, there are four nonzero even-k crystal-field components, but
only B40 and B60 are independent; B44 = (5/14)1/2 B40 and B64 = -(7/2)1 /2

B60. If dipole and quadrupole polarizabilities as well as the effective charge
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are allowed to vary, there are more free parameters in the model than
independent crystal-field components. For this reason, the effective charge
was fixed at Q = 3. A point-charge model with effective charge Q = 3 and no
self-induced terms is subsequently referred to as a simple point-charge model.

2.3 Polarizabilities

In sites with cubic symmetry, there are no point-dipole or point-quadrupole
contributions because of the high symmetry of the lattice [101. However, the
cubic symmetry does not prevent self-induced effects. We have calculated
these effects following Morrison et al [ 11]. Table 2 lists the contributions to
the crystal-field components, Akq, for each ion from the monopole, self-
induced dipole, and self-induced quadrupole terms, with unit charge and unit
polarizabilities for all ionic species. The contributions are multiplied by the
parameters Q, cxD, and oXQ for each species and added to compute the total
crystal field. Very nearly all the self-induced contributions come from the
anion, and to a good approximation, the cation contributions to the self-
induced fields can be neglected, even though the calculated polarizabilities
for the cations are larger than for the anions. This gives two parameters for the
anion polarizabilities, aD and aQ2, in addition to the effective charge, Q, for
each compound.

Dipole polarizabilities have been computed by Pandey et al [12] for several
III-V compounds and are given in table 3. They used the Clausius-Mossotti
relation, which is of questionable applicability to III-V compounds. It should
be possible to repeat these calculations with an effective electric field
appropriate to semiconductors [ 13]. Theoretical dipole ionic polarizabilities
for positive ions can be calculated from Hartree-Fock theory and have been
tabulated by Fraga, Karwowski, and Saxena [ 14]. However, since the positive
ionic contributions to the self-induced fields are not significant, we have not
made use of these values. Dipole and quadrupole polarizabilities for several
ions are given by Schmidt et al [ 151. Although neither p3- nor As 3- is included
in this study, N3- is, and one may assume that the values for the othercolumn-
V elements are comparable. For N3-, cxD = 2.65 A3 and aQ = 12.12 A5. These
values are large, and in light of previous experience [Il], we reduced these
values in simulating the experimental data. The splittings produced by these
parameters for each o' the compounds considered are described in the
following sections.

If the formulas in the paper by Morrison et al [111 are used, the higher order
multipoles could also be included, but there are no reliable estimates of
polarizabilities for higher order multipoles. The quality of the fluorescence
data at this time does not warrant the determination of polarizabilities from
spectral analysis, so estimates of the magnitude of the muhipolar polarizabili-
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ties need to come from other measurements. It is expected that the contribu-
tions from higher order multipoles will become progressively weaker, al-
though we have no data to substantiate this claim.

Table 2. Multipole contributions to crystal-field components, Akq
These contributions are multiplied by the parameters Q, GD, and aQ, respectively, for each ionic species
and added to compute the total crystal field.

a. In site in InP

Akq Monopole Self-induced dipole Self-induced quadrupole

(cm-i/Ak) In P In P In P

Im A32 - 0 -5492 0 -848.9 0 -331.3
A40 125.9 1659 8.65 428.4 1.58 199.7
A44 75.3 992 5.17 256.0 0.94 119.3
A60  12.9 -151 1.58 -78.3 0.37 -48.5
A64 -24.1 283 -2.95 146.5 -0.69 90.7

Im A72  0 86.2 0 57.6 0 40.1
Im A7 6  0 79.3 0 53.0 0 36.9

b. Ga site in GaAs
Akq Monopole Self-induced dipole Self-induced quadrupole

(cm- 1/A') Ga As Ga As Ga As
Im A3 2  0 -6376.4 0 -1102.4 0 -463.5

A4 0  151.8 1999.7 11.7 577.4 2.29 290.0
A44  90.7 1195.0 6.97 345.1 1.37 173.3
A60  16.8 -196.2 2.29 -113.7 0.58 -75.9
A64 -31.3 367.0 -4.28 212.7 -1.08 141.9

Im A7 2  0 116.2 0 86.9 0 65.1
Im A76 0 106.9 0 79.9 0 59.9

c. Ga site in GaP

Akq Monopole Self-induced dipole Self-induced quadrupole

(cm-I/Ak) Ga P Ga P Ga P
Im A32  0 -7381.8 0 -1424.3 0 -644.4

A40 181.9 2400.9 15.63 773.9 3.30 418.2
A44 108.7 1434.8 9.34 462.5 1.97 249.9
A60  21.6 -253.5 3.30 -163.9 0.89 -117.7
A64  -40.5 474.2 -6.18 306.8 -1.67 220.2

Im A72  0 155.7 0 129.9 0 104.8
Im A76 0 143.2 0 119.5 0 96.4

Table 3. Dipole ionic Ion aD (, 3)
polarizabilities deduced Ga 4.435
from experimental In 6.489
measurements of P 2.659
dielectric constant As 3.786
(Pandey et al [121)
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2.4 Index of Refraction

The index of refraction is not included in the lattice model and is not necessary
for calculating energy levels. It is used in the branching ratio calculations to
evaluate the Lorentz inner-field correction:

Xij= n,(n2 + 29 for electric dipole transitions, and

9

X= n for magnetic dipole transitions.

Empirical fits were made to the index of refraction data from the CRC
Handbook of Laser Science and Technology [16] to the following Sellmeier

dispersion relation: n2 =A + BX'-2
)LI _ C

For A not equal to one, the equation is only valid for restricted wavelength
range, and the wavelength range of the input data is given in table 4 with the
resulting parameter values.

Table 4. Best-fit Sellmeier coefficients Wavclength range
Sellmeier coefficients Compound A B C (gim 2) (A±m)
for specified wavelength GaAs 7.14 3.78 0.27 1.13-1.65
range InP 5.74 3.75 0.299 0.925-2.0

GaP 5.29 3.79 0.142 0.8-3.8

3. Yb 3+:InP

The simple point-charge model predicts the irreducible representation of the
ground state of Yb 3+:InP to be F6. This determination is substantiated by
electron paramagnetic resonance (EPR) measurements of an isotropic g-
value for the ground state by Masterov et al [171 of g = 3.29. In pure cubic
symmetry with no J-mixing, the g-values for the ground state doublets are F 7
= 2.666 and F6 = 3.4. In order to reconcile the experimental and calculated g-
value for a F6 doublet, we can include an orbital reduction factor k < I in
calculating the J = 7/2 Lande g-factor 1 181. It is impossible to reconcile a F7
ground state with the experimental measurement of the g-value. Combina-
tions of parameters that give a F7 or F8 ground state have therefore been ruled
out. Because of the large energy separation of the 2F7/2 and 2F 5/2 and the
small crystal-field splitting, the J-mixing by the crystal field has a negligible
effect on the g-factors.
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The contributions of the monopole and self-induced terms to the crystal-field
parameters for Yb 3+:InP are given in table 5. The crystal-field parameters,
Bkq, are related to the crystal-field components, Akq, by Bkq = pkAkq. Values
of pk for Yb3+ (P4 = 0.3938 and p6 = 0.912) are given by Morrison and Leavitt
[191. All the nonzero tensor components, Akq and Bkq, are listed in table 5 for
the sake of completeness, even though they are not all independent. The
theoretical energies and irreducible representations corresponding to these
crystal-field parameters are given in table 6 and depicted schematically in
figure 1.

The first point of comparison with the experimental data is the ordering of the
irreducible representations. As mentioned above, theory and EPR measure-
ments both give 176 as the ground state. Several papers [20-231 have identified
the lowest state in the upper multiplet as a r8 quartet. This is stated most
explicitly by Aszodi et al [221, where two different sets of crystal-field
parameters are used to describe the upper and lower multiplets. Using the
present approach, we cannot justify the use of the two sets of parameters from
a microscopic point of view. For all parameter combinations that give a F6

ground state, the lowest level in the 2F5/2 multiplet is also a r 6 doublet. The
present results suggest that the line chosen for Zeeman analysis was not the
line corresponding to a transition from the lowest 2F5/2 level to the ground
state, as assumed by the authors.

Table 5. Crystal-field parameters for Yb3+:InP with Q(In) = +3, and Q(P) = -3, and
phosphorus polarizabilities aD = 2.0 A3 and aQ = 4.0 AS

Akq Monopole Self-induced Self-induced Total crystal Bkq
(cm-I/Ak) dipole quadrupole field (cm- 1)

ImA 3 2 16,476.3 -1697.8 -1325.2 13,453.3 -
A40 -4,599.9 856.7 798.6 -2,944.5 -1159.5
A44 -2,749.0 512.0 477.3 -1,759.7 -693.0
A60 491.9 -156.6 -193.9 141.4 128.9
A64  -920.3 292.9 362.8 -264.5 -241.2

Im A7 2  -258.6 115.3 160.4 17.1 -
Im A76 -237.9 106.0 147.6 15.7 -

Table 6. Energy levels for Yb3 :[nP computed using crystal-field parameters of table 5
2S+ ILJ Level r, Theoretical energy Theoretical energy Experimental energy

(centroid) (cm- 1) shifted by 10,338 cm- 1  (cm- 1)

2F712  i 6 0.1 -10,338 -
(294.7) 2 8 348 -9,990 -9,990

3 7 475 -9,863 -9,921

2F712 4 6 10,338 0 0
(10,553.4) 5 8 10,665 327 -
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Figure 1. Energy level Td symmetry
diagram ror Yb3 +:InP. T
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The second point of comparison is the magnitude of the crystal-field splittings.
The strongest lines in the spectrum are seen at 9990 and 9921 cm-1 , yielding
a splitting between the second and third lines in the lower multiplet of 69
cm- 1 [20-221. A peak is seen 35 cm - 1 below the strong peak at 9990 cm- 1 in
photoluminescence measurements 120-221 and was identified as the transi-
tion to the ground state. However, the theoretical calculation places the
ground state 348 cm- 1 below the F8 level. The transition to the ground state
connects two F6 states, and since this transition is not allowed by electric
dipole selection rules, it is expected to be weak. A line at a higher frequency
was reported by Kozanecki et al 1231 and shown (on a scale expanded by a
factor of 15) together with the strong transitions at 9921 and 9990 cm- 1.
Kozanecki et al did not report a numerical value for the energy, but from the
plot of their data, the line is at approximately 10,135 cm-1 , and the line at this
energy is a possible candidate for the transition connecting the two F6 states.
Because the transition to the ground state is expected to be very weak, it is
easily confused with other extra lines in the spectra and may be difficult to
identify experimentally.
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The centroid for the 2F5/2 multiplet is adjusted in table 6 to reproduce , e
splitting at 9990 cm- 1. This raises the center of gravity of the upper multplet
by around 100 cm- 1 from what was reported elsewhere [20-22], bringing it
into closer agreement with the center of gravity for this multiplet in other
insulating crystals (see, for example, the review article in Gschneidner and
Eyring [24]). Since the host material, rather than the atomic parameters,
should have the largest influence on the crystal-field splittings, the higher
placement of the centroid has more credibility.

Figure 2 shows branching ratios for Yb3 :InP calculated using the odd-fold
crystal-fieldcomponents given in table 5. The strongest transition is predicted
as the transition from F6 (J = 5/2) to a 178 (J = 7/2) at 9990 cm- 1. Experimen-
tally, the line at 9990 cm- 1 is strong, but the line at 9921 cm- 1 is almost as
strong and has structure. No detailed quantitative comparison is made with
the experimental luminescence spectra at this time.

4. Er3+:GaAs

The simple point-charge model predicts the irreducible representation of the
ground state of Er3+:GaAs to be 16. However, EPR measurements of
Er3 :GaAs [251 indicate that the g-value of the ground state is isotropic (gl =
g_= 5.92 1) and corresponds well with the value appropriate for a 1-7 state in
Td symmetry (g(F7) = 6.0 and g(Fr6) = 6.8 for perfect cubic symmetry). EPR
measurements of Er3 :InP [26] also indicate a 177 ground state (gil = 5.699 +
0.005 and g_L= 5.954 ± 0.005). The anisotropy was attributed to a slight axial
distortion of the s,'mmetry of the Er 3+ site. One of the most successful aspects
of this model is that when self-induced effects are included in the theory, the
177 state is predicted to be the lowest state in the ground multiplet.

Figure 2. Branching
ratios for Yb 3 +:Inp at F5/2 8

6 K calculated using 6
electric and magnetic
dipole transition
probabilities.

7
2F72 0.43% 8

94.73%
6

4.83%
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The various contributions for the monopole and self-induced terms for two
different parameter sets are given in table 7. The crystal-field parameters, Bkq,
are related to the crystal-field components, Akq, by Bkq = PkAkq. Values of Pk
for Er3  (P4 = 0 4126 and p6 = 0.9826) are given by Morrison and Leavitt ( 191.
In table 7, all the nonzero tensor components are listed for the sake of
completeness, even though they are not all independent. The theoretical
energies and irreducible representations of the 4115/2 and 4113/2 multiplets of
Ei + corresponding to the crystal-field parameters of table 7b are compared
with experimental splittings in table 8, and a schematic diagram of the energy
levels is shown in figure 3.

Experimental lines for the 4115/2 multiplet were measured by photo-
luminescence by Ennen et al [27]. More lines are observed in emission than
expected for Er3  in a cubic site. We have assumed that some of the lines are
due to Er 3+ ions in cubic sites. Extra lines may be due to ions in minority sites
and phonon sidebands, especially the lines that replicate splittings observed
in the upper manifold. Values for levels belonging to the 4J15/2 multiplet not
included in our calculation are 112.3, 178, 217.3, 427.9, and 449.9 cm- 1. A
line around 30 cm- 1 that is predicted by the model was not reported by Ennen
et al [271. Another group (Zhao et al [28]) has reported values for some of the
smallerpeaks with smaller splittings at 15,448, 15,482, 15,547, 15,647, and
15,685 A. Their most intense line is the second, at 15,482 A, which should
correspond to the transition to the ground state. If splittings are measured from

Table 7. Crystal-field parameters for Er 3+:GaAs, for Q(Ga) = +3, and Q(As) = -3

a. Arsenic polarizabilities aD = 2 A3 and aQ = 4 A5

Akq M,.,opole Self-induced Self-induced Total crystal Bkq

(cm-I/Ak) dipole quadrupole field (cm_1)
Im A32 19,129.2 -2204.7 -1854.2 15,070.3 -

A40  -5,543.7 1154.9 1159.9 -3,228.9 -1332.2
A44 -3,313.0 690.2 693.2 -1,929.6 -796.2
A60  638.8 -227.4 -303.5 107.9 106.0
A64 -1,195.1 425.5 567.8 -201.8 -198.3

Im A72  -348.6 173.8 260.6 85.8 -
Im A76  -320.6 159.8 239.7 78.9 -

b. Arsenic polarizabilities aD = 1.7 A3 and aa = 3.4 A5

Akq Monopole Self-induced Self-induced Total crystal Bkq
(cm-I/Ak) dipole quadrupole field (cm- 1)

Im A32  19,129.2 -1874.0 -1576.1 15,679.1 -
A40  -5,543.7 981.7 986.0 -3,576.1 -1475.5
A44 -3,313.0 586.7 589.2 -2,137.1 -881.8
A60  638.8 -193 3 -258.0 187.5 184.2
A64  -1,195.1 361.6 482.6 -350.8 -344.7

lm A72  -348.6 147.7 221.5 20.6 -
lm A76  -320.6 135.9 203.7 19.0

13



Table 8. Energy levels 23+ 1LI  Level rn Theoretical energy Experimental energy
for Er3+:GaAs computed (centroid) (cm- 1) (cm- 1)
using crystal-field strongest lines
parameters of table 7b

4115/2 1 7 0.0 0
(162.8) 2 8 29.0

3 6 71 69.4
4 8 265 268.5
5 8 301

4113/2 6 8 6501 6500.7
(6610.8) 7 6 6528 6569.0

8 6 6639 6627.3
9 8 6679 6680.5

10 7 6708 6715.0

Figure 3. Energy level 400 Td symmetry
diagram for Er 3+:GaAs. . r 7
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this line, the next three lines are at 26,68, and 83 cm- 1.These peaks are visible
in the spectrum of Ennen et al, but were not labelled as erbium peaks. If their
three lowest levels (0, 69, and 112 cm- 1) are fit assuming cubic symmetry, the
parameter values again correspond to ionic charges larger than ±3. In general,
it is more difficult to fit data measured in emission than in absorption, and it
is hard to conclude anything from the emission spectrum alone.

Experimental lines for the 4113/2 multiplet were measured by photo-
luminescence excitation spectroscopy by Ennen et al [27]. The weak pair of
levels at 6840.4 and 6854.3 cm- 1 was not included in table 8. Splitting the
upper manifold this strongly, assuming cubic symmetry, would require a
point-charge model with ionic charges larger than ±3. The other levels in the
upper multiplet correlate reasonably well with the levels predicted by the
model.

Branching ratios for Er3+:GaAs are given in figure 4. In agreement with
experiment, the model predicts the strongest intensity at low temperatures in
the transition from the lowest state of the upper multiplet to the ground state.

Figure 4. Branching 7
ratios for Er3+:GaAs at 8
6 K calculated using 8
electric and magnetic 4113/2 6
dipole transition 6
probabilities.

8

8

41,5/2 -7% 6
8

21%
7%7

39%
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5. Nd3+:GaP

Of the three systems described in this report, the least amount of experimental
work has been published for Nd 3+:GaP. In computing the theoretical levels,
the same parameter values giving reasonable results for the other two ions
were used in the lattice sum for GaP: Q = 3.0, aD = 2.0/A3, and aq = 4.0 A5;
the results are presented in table 9. The crystal-field calculation based on these
parameters is given in table 10. No EPR data were found for this systcm.
Photoluminescence data have been reported by Miller et al [29] and Donegan
[30]. Muller et al have reported that two sets of lines are evident in the
spectrum, but one set decreases in intensity upon annealing. The values of the
more prominent set are given in table 10 (labelled as levels from the A
complex), and the strongest lines from this set are compared with the theory.

Multiplet branching ratios for Nd 3+:GaP were computed for electric dipole
transitions only, and the results are shown in figure 5. These results are
remarkably similar to the corresponding results for the cubic material LaOF
[31]. No quantitative measurements of integrated intensities are available, but
one can get a qualitative estimate of the branching ratios from the photo-
luminescence spectra of MUller et al. The fluorescence to the 419/2 multiplet
is stronger than the fluorescence to the 4j1 1/2 multiplet, in agreement with the
calculations. Until the origin of the extra lines is better understood, it is hard
to draw any strong conclusions, but the experimental results so far are
consistent with a model assuming cubic symmetry.

Table 9. Crystal-field parameters for Nd 3 +:GaP with Q(Ga) = +3 and Q(P) = -3, and phosphorus
polarizabilities aD = 2 A3 and aQ = 4 A5

Akq Monopole Self-induced Self-induced Total crystal Bk
(cr- /Ak) dipole quadrupole field (cm-)

Im A32  22,145.4 -2848.7 -2577.6 16,719.1 -
A40  -6,657.0 1547.8 1672.6 -3,436.6 -1985.0
A44  -3,978.3 925.0 999.6 -2,053.8 -1186.3
A6o 825.3 -327.9 -470.9 26.5 42.1
A64 -1,544.1 613.5 881.0 -49.6 -78.8

ImA7 2  -467.2 259.9 419.4 212.1 -
lm A76  -429.7 239.1 385.7 195.1 -

Table 10. Energy levels for Nd 3+:GaP computed using crystal-field parameters from table 9
2 +1Lj Level 17 Theoretical energy Experimental energy Experimental energy
(centroids) (cm- 1) A complex (cr - 1) (cm- 1)

419/2 1 8 0.1 0 0
(160.3) 2 8 198.1 174,204 174

3 7 335.3 372,409 372

41112 4 7 1894 1894 1894
(2022.3) 5 8 1941.5 2058, 2069 2069

6 6 2052.8 2144 -
7 8 2128.2 2211,2277
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Figure 5. Multiplet 4F3-2
branching ratios for
NdI:GaP calculated
using electric dipole
transition probabilities
only.

4115/2

<1%

4113/2
<1%

41,11/2

30%

419/2 
-

69%

6. Conclusions

The salient experimental features that need to be explained by any crystal-
field model are (1) the ordering of levels according to symmetry labels,
particularly correct identification of the ground state, (2) the magnitude of the
crystal-field splittings, and (3) the intensities of transitions between 4fstates.

The magnitude of the crystal-field splittings in all rare-earth ions in III-V
semiconductor compounds examined so far is smaller than that produced by
a point-charge model with the full valence charges. The reduced splitting can
be achieved by reducing the effective ionic charges of ions in the lattice or by
including self-induced contributions to the total crystal field. We have shown
that the second method can better explain the experimental data and gives a
more complete model of the semiconductor compounds. The rare-earth
impurity ions can be used in this way as a probe to study the host in which they
are embedded.

Our primary objective has been to find physically reasonable values of the
parameters that accurately predict the ordering of the Stark levels. We have
found that Q = 3, a j = 2 A3, and cQ = 4 A5 give reasonable results for all
compounds considered here, and the crystal-field splittings calculated from
this set of starting parameters give a good starting place for analyzing
experimental data. This has worked particularly well for Er3+:GaAs, where

17



this parameter set predicts a F7 ground state in agreement with experimental
EPR measurements. A point-charge model alone does not predict the correct
ground state for Er 3 .In order to get a 1-7 ground state without the self-induced
quadrupole contribution, one must use unreasonably large values of the
dipole polarizability. With physically reasonable values of dipole and qua-
drupole polarizabilities, the correct ground state for Er 3  is obtained.

More work needs to be done on the intensities, but this cannot be done until
the theoretical and experimental energies are in better agreement. Several
ions have shown a hypersensitivity of the optical transitions to their crystal-
line environment [32,33]. The theoretical intensities are not reconciled here
with experimental observations, but it is noted that the intensities calculated
for electric dipole transitions are sensitive to the A72 and A76 crystal-field
components as well as the A32 component, making a complete description of
the crystal field necessary.
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