
7,11

AD-Aft242 9817 " 'II

~[in

Et ELECT I
keI DEC & 1991

Di~t $PeeV RES EARCH REPORT

ERL-0571-RRIIDECOMPILING WI byINT CLAUSE GRAMMARS

I 111 by

S. T. Hoo

4

UNLASIIE



DSIOA
ELECTRONICS RESEARCH LABORATORY

Information

!L

Technology
Division

, ,AU,,STRAbIA ,y Cod"

Dist Spegial
RESEARCH REPORT

DECOMPILING WITH DEFINITE CLAUSE GRAMMARS

by

S. T. Hood

C-

SUMMARY 'l'

Decompiling is the process of deriving a computer program in a high-level language from
one in machine-code or assembly language. Defence applications of d; 'iipiling include
maintenance of obsolescent equipment, production of scientific and teU iical intelligence )__
and assessment of systems for hazards to safety or security. 1T..s P. per describes an
approach to the rapid generation of dlecompilers through the u-- of Definite Clause
Gramnmars., a class of abstract grammars which can be executed as P *. programs. The
approach is illustrated using "toy" languages. An environmer. ,1-h permits the
integration of diverse sources of knowledge relevant to the decompita on problem and
provides a graphical interface is described.
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V ,
I INTODUCTION

The emerging discipline of software engineering envisages computer software being developed
from a staternent of requirements, through several stages of formal specification, coding and
testing. There are, however, situations which demand the assessment and possible
modification of the final products of the development process, for example executable
machine code, in the absence of any other descriptions of the system. The process of
(re)creating higher level, that is, more abstract, descriptions of the system, which may only
have existed in the original designer's mind, is called reverse engineering.

Recent references to the need for reverse engineering of software include bringing large bodies
of existing code under the umbrella of computer-aided software eng.neering (CASE) ststems
[Bachman 19881. For many enterprises, the body of existing coie represents a large inv .stment
and may embody corporate knowledge not recorded elsewl.ere. This has spawned a
significant industry providing tools and contracted expertise supporting activities such as the
transformation of "spaghetti code" into well-structured programs and the translation of
programs in old languages into ones which are supported on modern systems [Kotik and
Markosian 19891. While some of this work has been concerned with assembly languages, for
example on IBM mainframes, most has concerned higher-level languages such as FORTRAN.

A problem closer to the subject of this paper, namely the recovery of a higher-level language
program from executable machine code, was that tackled by several groups in the United
States in determining the behaviour and structure of the notorious "Internet Worm" program
[Spafford 19881. This work was done without the aid of any automated tools, apart from the
use of the UNIX C compiler for checking hypotheses (Eugene Spafford, private
communication).

Defence, with the longevity of its equipment, non-standard embedded processors and
requirements for rapid modifications in response to new threats, countermeasures or operating
environments, has a particular interest in reverse engineering tools and techniques. Reverse
engineering of software is also relevant to the production of scientific and technical
intelligence and to the assessment of otherwise "black box' systems for hazards to safety or
security. The requirements for quick reaction and secrecy raised by many of these applications
argues for powerful tools which can be rapidly customised to suit the problem at hand and
which permit the job to be completed by a small number of analysts.

We also note, without comment, the increasingly common practice of proscribing reverse
engineering of licensed software, exemplified in the following quotation from the "License
and limited warranty agreement" printed in the reference manual for a personal computer
electronic mail system: "You may not ... reverse engineer, disassemble, decompile, or make
any attempt to discover the source code to the software" [CE Software 19861.

Decompiling is the process of transforming a program expressed in assembly language or
machine code into a description in a high-level language such as Ada or C which, with the
aid of a suitable compiler, can be transformed into the original code. This paper describes
some experiments in using the language Prolog for the rapid construction of decompilers.
Familiarity with Prolog notation is assumed and the reader is referred to a textbook such as
Sterling and Shapiro [19861. Sufficient Prolog code is included to permit the reader to
experiment with and extend the examples discussed.
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2. LANGUAGE PROCESSING WIrH PROLOG

Prolog was originally developed as a tool for implementing natural-language understanding
systems [Colmerauer 1975). The reader is referred to the paper by Pereira and Warren [19801
or any Prolog textbook [Sterling and Shapiro 19861 for an introduction to the topic. In general,
the construction of useful natural-language processing systems is still largely a research
activity, with Prolog being the tool of choice for some major current projects [Alshawi, Moore,
Moran and Pulman 19881. In general, programming languages are considerably simpler than
natural languages, so that the construction of compilers in Prolog is quite straightforward
[Warren 1980, Cohen and Hickey 19871.

Most programming languages produced after Algol-60 have their syntax defined by a formal
context-free grammar, normally expressed in a notation called Backus-Naur Form (BNF) [Aho
and Ulman 19771. The power of Prolog for language processing is conveyed by the fact that it
allows a notational-variant of BNF, called "grammar rules", to be simply transformed into a
Prolog program which, when executed, accepts syntactically correct programs (or, in general,
"sentences"). Prolog grammar rules actually define an extension of context-free grammars
called definite-clause grammars (DCGs), with the descriptive power of a general purpose
computer. In practice, most commercial compilers of Prolog are themselves written in Prolog.

Grammar rules have a single Prolog term, representing a non-terminal symbol of the grammar
on the left hand side of the arrow, while the right-hand side contains terms representing
other non-terminals, Prolog lists representing sequences of terminal symbols and arbitrary
Prolog code enclosed in braces used to apply constraints or '"-lement side-effects. Grammar
rules are normally translated into executable Prolog by augmenting non-terminal symbols
with additional arguments representing the input list o$ symbols and the list following the
recognised symbol, while terminal symbols are translated into a format wherein they appear
at the head of the input list [Pereira and Warren 19801. Prolog code enclosed in braces is
unchanged in translation. Most Prolog interpreters or compilers recognise and translate
grammar-rules interspersed with clauses in standard notation. Others may provide a library
procedure for the purpose. For example, the rule:

nontermin&ll (Attribute) -->

nonterminal2 (Attribute), (terminal], (constraint (Attribute) i,

which may be read as:

"nonterminal I (Attribute) can replace nonterminal_2 (Attribute) followed by the
symbol 'terminal', provided that constraint (Attribute) is satisfied",

might be translated into:

nonterminal-l(Attribute,X,Y')
nonterminal_2 (Attribute, X, Z),
'C' (Z,terminal,Y),
constraint (Attribute).

where the system predicate 'c' (for "connects") is defined by:

'C' ((XIS],X,S).

DCGs are executed top-down mu.h like a recursive-descent parser for a context-free grammar.
The above rule would be invoked with variable X bound to a list of symbols. If the rule is
successfully applied, variable Y would become bound to the list of symbols following those I')'

subsumed by nonterminalI (Attribute).

2 UNCLASSIFIED
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(1 2.1 A Toy Compiler f
Sterling and Shapiro 1986 provide the complete Prolog code implementing a multi-
pass compiler for a toy language, PL, with a syntax similar to a subset of Pascal [Jensen
and Wirth 19751 into a fictitious machine instruction set. Their example is based on one
due to Warren 11980. Their machine instruction set provides a single accumulator with
both immediate and direct memory addressing and conditional branch instructions. The
compiler of Sterling and Shopiro has been extended to accept source code from a file and
to generate assembly code formatted for the convenience of the decompiler, as
explained below. The compiler comprises a tokeniser, code-generator and assembler, in
addition to the DCG parser shown in Figure 1. Figure 2 shows an example of the input
and Figure 3 the invocation of the compiler with the resulting absolute machine code
and symbol table.

2.2 A Toy Decompiler

Figure 4 shows a DCC parser which accepts the output of the above compiler, building
in the process a description of the software as a Prolog term containing Pascal-hke
control structures. The non-terminals associated with arithmetic operations
(arithexp and arich op) take as their third arguments terms of the form:

X -> Y.

where x and Y unify with the content of the accumulator before and after the relevant
operation respectively. This notation is readily extended to a more complex processor
by providing arguments to represent additional registers or flags. The information
needed to construct the decompiler was obtained through inspection of the compiler.

The parsing of standard contro, structures often requires the recognition of a jump to the
next instruction following the parsed sequence. While DCGs are quite capable of
performing caiculations on addresses, it is more elegant to incorporate in each assembler
instruction its address and the address of the location following the instruction. This
allows control structures to be recognized using only unification (so that symbolic labels
can be used if desired) and permits instructions of varying lengths. The program
requires its input in the form of a Prolog list. Producing the required format from
standard assembly listings would be a trivial task using Prolog or standard UNIX data-
manipulation tools [Bourne 19831.

Figure 5 shows the structure built by this "decompiler" when given the code from Figure
3 and the results of formatting this according to the syntax of PL using a simple pretty-
printer. Ibis output can be successfully recompiled. The decompiler handles all of the
constructs allowed in the PL language.
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parse (Tokens, Structure)-
Structure represents the successfully parsed list
of Tokens.

parse (Source, Structure)-
plprogram(Struct.,re, Source, I]).

plyprogram(S) -- > (program), identifier(X), [1,11, statement(S).

statement((S;Ss)) -- >

[begin], statement CS), rest statements (Ss).
statement(assign(X,V)) -- >

identifier(X), C:',expreSion1(V).
statement(if(T,Sl,S2)) -- >

(if], test(T), (then], statement(Sl), (else), statement-(S2).
statement(while(T,S)) -- >

(while], test(T), (do], statement(S).
statement(read(X)) -- >

[read], identifier(X)
suatement(write(X)) -- >

[write], expression(X).

rest statements((S:Ss)) -- > (1;1], stater'.3nt(S), rest statement4 'Ss).
rest statements(void) -- > (end],

expression(X) -- > pl constant(X).
expression (expr (Op,X,'Y)) -- >

pl-constant(X), arithmetic-op(Op), expression(Y).

arithmetic-op('+') ->(f]

arithmetic-op('-') ->(-3

arithmetic-op(I*') . 1

arithmetic_op('/') ->(I]

p1_constant(name(X)) -- > identifier(X).
plconstant(number(X)) -- > plinteger(X).

identifier(XM - (X], latom(X)I.
plinteger(X) ->(X], (integer(X)).

test(compare(Op,X,Y)) -- >
expre3sion(X), comparison op(Op), expression(Y).

comparison op('-'l-- '-]
comparison Op('>') ->(>]

comparison op('<') (<1

comparison op('>-') ->(>'

comparison op('-<')->(''.

Figure 1. A DCG parser for the PL language (Sterling and Shapiro 1986).

r\
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program factorial;
begin

read value;
count : 1;
result :- 1;
while count < value do

begin
count : count + 1;
result - result count

end;
write result

end.

Figure 2. A PL program

[ ?- cfile {factozial~p)

((value, 18),(count, 19), (result,20)]

(0,1,read, 18],
[1,2,loadc, l],
(2,3,store, 191,
(3,4,loadc, l],
(4,5,store,20],
(5,6,load, 19],
(6,7,sub, 18],
(7,8, jumpge, 15],
[8,9, load, 19],
(9,10,addc, l],
[10,1l,store, 19],
(11,12,load, 20],
[12, 13,mul, 19],
(13,14,store,20],
(14,15, jump,5J,
(15,16,load, 20],
(16,17,write, O],
(17, 18,halt,O]
]. yes

C Figure 3 Script of a Prolog session (user input in italics) showing the invocation of the
PL compiler with the file factorial pl containing the code shown in Figure 2. The output

comprises the symbol table followed by the assembled object code.

UNCLASSIFIED 5
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?oo'~oC, Kfx. :,opCZ:o, yfx', (->fl, ap(9On, ty, not), opdl3c, fx, vat).

oeo~-(~ce.Pt. pprcg(^- ,1 PL, Code,2.

plpr.;CP, Q, pro-g(Xfl --> plfrag(P, ?I, X), :P., Q, halt, 3:1

P f raq)?, ^., X) -- > szmt a, 0, X) .

sttP, 0, :eao(var(A))) -- > ?, 0, read, A,;.

U:P? Pl. load, A!, iP1, 0, write, On!.
stmt IP, I , noop) -- > U P. 9. noop, -11.
s"c.t (, 0, whie(Test, Do) -->

branch if not4_ -, est, 0).
pifrag)_, _, Do),

stint)?, 0, if(rest, Then, Else))--
branch f not(_, _, Test, PI),
pif:ag(_, _, Then),

::,-, Jump, 01,
plifrag(PI, 0, Else).

st 0( , 0 if (Test. Then)) -- >
branch -if -not(_, _, Test, 0),
plifrag (, Q, The.) .

stint)?, Q, Asgrns) -- >
arith-exp)P, P1, -- > X), assign seojPl, 0, Asqns, X).

assignseqfP, Q. var(A) 3, X) -- >
r1P, P!, store, A)!, assigr seqiPl, 0, B, X).

assiq,.seq)P, Q, var(A) :-X, X) -- > UP?, Q, store, A;).

=ranchIf not)?, ^0, Test, R) -- >
aritnexp)P, _, _ -> A), arith op) , _, A -> A-B),

cmpar-sonocooeComp, j.;mpOp), f.ncargs)Test, Comp, A, B1 1
Q, _,:%n-pCp, R1U.

aritnexp(P, 0, A) -- > ar~thop(P, 0, A).
art1n exp)P, Q, A -> C) -- >

ar:o~,P1, A -> B), arlthexplPi, 0, B -> C).

a3r.tncp1P. , Q. > A) 0 U , loadc, All.

dr-tncopP. Q, - var(A)) -- > UIP, 0, loao, All.
aQQ(P , A ->E) -- >

.?, 0, op. a;],
.itraloperationSym, Op), tuncargs)E, Sym, A, B) )

ar.-r~up(P. Q, A -> E)--
::P, 0. op, B11,
i memoryoperation)Sym, Op), fulcargs)E, Sym, A, var(B)) )

ci parisonop.;ode( -', jwpne). compariscn opcode) ', jumple).
cc.TparisonopcodePl>-' Juniplt) . comparison opcode1'<', Jumpqe).
c*-parisonopcod@('-<', 'umpg0.

:iteraloperationI ',',addc). literal operation( -',subc).
.iteral operator.)*,mujlc). literal operatlone/',d~vc).

?emory eperetion('.',add) , memory operation) -',sub).
mremory operationQI,mul) . memory operaion'/'.div).

I access components of Term - Functo,(Arql, Arq?) (more efficient than
funcargs)Term, Functor, Argl, Arq2)

functor)Fact, F~.nctor, 2),
arg)1, Fact, Argi),
argi?, Fact, ArgZ).

F*Mur 4 A DCC parser for decompiling the output of the PL compiler

'I -6 UNCLASSIFIEDI
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prcg((read(var 18);
(var 19 : 1;
(var 20 :- 1,
(while(var 19 < var 1,

(var 19 : var 19 + 1;
var 20 var 20 * var 19));

write(var 20))))))

(a) The structure created duM!rg the decompilation of code of Figure 3
using the grammar of Figure 4.

program th.ng;
begin

read varl8;
varl9 := 1;
var20 : 1;
while varl9<var!8 do begin

varl9 varl9+1;
var20 var2O*varl9

end ,
write var20

end.

(b) The above term pretty-printed in a format acceptable to the PL
compiler.

Figure 5

2.3 Compiler Optimisations

One of the problems real decompilers will face is the handling of compiler
optimisations. This is illustrated by a simple case which is handled by our toy
decompiler. The compiler described above translates the PL sequence:

a : b;
c b

into the assembler sequence:

load b
store a
load b
store c

An optirmsing compiler would recognise that the second load is redundant and would
remove it. The rule for recognising assignment statements in the decompiler accepts the
"optimised" code:

load b
store a
store C

UNCLASSIFIED 7
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and translates it into the form:

c := a := b

which could, if desired, be transformed into two separate assignments to match PL
syntax rules.

A full discussion of the decompilation of optimised code is beyond the scope ot this
paper.

3. DECOMPILING "SMALL-C" FOR THE INTEL 8085

The instruction set used in the above example is, unfortunately, rather different from those ot
typical microprocessors. In order to provide a more realistic evaluation, the Intel 8085 8-bit
microprocessor (Intel 19771 was chosen. A convenent high-level language was provided by
the public domain Small-C compiler,, which iccepts a large subset of the C language
lKernighan and Ritchie 19781. We describe below the construction of decompilers for two
suh,;ts of Small-C including while and if-then-else control structures and assignment
statements with arithmetic expressions. The iist employs only static integer variables
(variables are assigned addresses in memory), the second oniy automatic variables (variables
are assigned on the system stack so that storage for them is created and destroyed on
procedure entry and exit). A full decompiler for the language would include rules for both
classes of variables as well as character and pointer data-types, more complex expressions
and the remaining control structures.

3.1 Static Variables

Figure 6 shows a C version of the factorial program (without the read and write
commands for simphaty) and a fragment of the 8085 assembly language generated by
the Small-C compiler. One noticeable difference from the toy instruction set is that the
store step in an assignment statement is now delocalised, with the address calculated
and pushed onto the stack prior to evaluation of the expression whence it is
subsequently popped for use.

Figure 8 shows the input and output. The assembly language was formatted manually
using a text editor. Arbitrary numerical addresses, which are only used for unification
so they could be any unique symbols, have been used tn the address fields, while labels
for variable locations and run-time routines have been left in their original form by
declaring "?" as a prefix operator. It is, perhaps, interesting to note that Pascal-like
code has been produced by decompiling the output of a C compiler (although the subset
of C we have chosen is easily mapped into Pascal).

8 UNCLASSIFIED
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main ()

static nt value, count, result,
value = 10,
ccunt = 1;
result = 1,
while (count < value)

count - count + 1;
result - result * count;

I

(a) A Small-C program using static variables

Small C 8080,
Coder (2.4,84/11/27)
Front End (2.7,84/11/28)
extern ?pint

cseg
main,,

Allocate storage for variables in data segment.

dseg
72.:' ds 2

cseg
dseg

?3:, s 2
cseg
dseg

74: ds 2
cseg

Load HL register-pair with address of variable.
and save it on the stack.

lxI h,?2
push h

Load HL register-pair with value 10.

lxi h,10

Load DE register-pair with address of variable
and call run-time routine to store an integer.

pop d
call ?pint

(b) 8085 assembly language produced by the Small-C compiler from the program of (a),
up to the end of the first assignment statement (coupt u 10). Added comments are
shown in italics.

Figure 6

U
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Figure 7 shows the grammar rules of the decompiter. In this implementation of C, the
HL register assumes the role of accum::iator ia:..iithmetic op~erations.

aecc-P(Cce, '-. - 11 _pr-g)_ _, P'-. Cde,

fla~g(?. C X) -- > str~zP, Q, X).
I 3),~ ~I - ~(,C X), P. faqC. P, Y).

-n. eagP>zP ,;G))

Or1C, lfnp P.,e:,T.er 3Xsfl 0).

r0, fra p C

or..n .1nt? ?I,~~ Cst P3),

C vfagiA, P2, '.hen)
P, P3 r, 0.,

a exp~,'. P -e, t, ),

it-tt , va , X): -->
P: 'ex;I, n,. A ,

::2, psn, r:

3 llnexp(P2, P3, - -

P3, P4, d , P4j S a~ 0>

P 6 ^ o, ca!, -Pnt, PPca.,PC z J

c-aop<' 7es, )

P: , A) 2, > ariho? ., A).
a.-:7._expcP, ?3, A B ) -

3.hpP, coo, A N P5 alhxP C

3~Z4P Q -- A -> C,,-xI, i'(.e, AopA.B

P. "l v, a, h], C, c , zith

e.1)l , , op op ' ' ?It).

P4:: -, =*T. (njW,,.e

-, A)p -->,aiho( ,M
ar. -_e r. (P nQpA ), C -->,

ooart-_cp, Q A0) -- > UjP, Q, oad, h, A].
oar.npP 0 va-' ) -- > P0.cl,?u.

o rtf oPt, 'x, n, A],UP C call', ?lntl.

P.S.I. n:;
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exa-c.e u
r. 5 nx , n,

3. 4, .x , % ' ,

4, 5, pop, o,
6, call., ?pint,

.6. , ..x., .", 33 ,

" 8, p.,S', h

9, Z0, pop, 0,
ca., ?pntl

2 3,P ?,4
.,13 13, p x .1 n l ,

:23,.24,, vpop, a,
154 75, ca !' pintl
5 X 'x: r.,? 31,

.e:, ca 1, ?gint,
9, 9 p~sn, l

29, 20, xi, ,?2,
230, 21, =a _ ?g nt ,
21, 23, pop, a,

'22, 23, ca 1. ?i

[23, 24, mcv, a,

24, 25, ora, a,
25, 26, z , ?6 j,
'26, 2 , 'xi, n'?3g .
2', 44, posn h3,
,;8, 29, IX., t,? 3 ,
29, 3 ' -a.., ?g9 n t
30, 3:, p~' n;,
3:, 32, "x, n, : ,

32, 334, pop, a',
33, 34, ad, a!,
34, 35 Pop, o1,

3bg 36, cal, i?n t

var72 31 10;-' ;

3- , 38, pusn' n!,

3v , 39 ; ,
39, 4C, ca,!, ?glnt],
.400, 41, P';S h, hi,

4,, 42, xi, h, ?3,
42, 43, ca. 1, ?bntI

,43, 44, pop. ci!
,44, 45, call. ?rral I
,45, 46,, pop, d: ,
' 46, 4-7, call, ?pintJ

en d.,6., imp, ?5!,
:76, 48. ret) 1).

(a) 8085 assembly language from the omplaeon of the Small-C program of Figure 6.
formatted for decompiling using the program of Figure 7.

program thing;
begin

var(?2) :-10;

var(?3) U ID;
va$(?4) 1;
while var(?3)<var(?2) do begin

vat(?3) :=var(?3)+I;
var(?4) :-var(?4)*var(?3)

end
end,
(b) Formatted output gener&tW by the decompiler of Figure 7 from (a).

Figue 8
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3.2 Automatic Variables
Automatic variables are accessed by calculating an offset from the current value of the stack
pointer (a register known as SP in the case of the 8085). The decompiler grammar is
complicated by the need to account for changes in SP as the stack is used for temporary storage
during expression evaluation, as shown in the annotated assembly code in Figure 9. It is
apparent that the number of pushes during a C statement is balanced by the number of pops, so
it is sufficient to include an extra variable in the non-terminals used in arithmetic expressions
(Figure 10) to record SP decrements (by 2 with each push) to decide which vanable is being
accessed.

* Small C 8080;
* Coder (2.4,84/11/27)

Front End (2.7,84/11/28)
extern ?pint

cseg

main:

; Establish a stack frame for 3 integer variables,

push b
push b
push b

; Calculate variable address as offset from current
; stack-pointer (SP) and save it on the stack.,

lxi h,4
dad ap
push h

; Load HL register-pair with value 10

lxi h,10

; Load DE register-pair with address of variable
; and call run-time routine to store an integer.

pop d
call ?pint

Figure 9 8085 assembly language produced by the Small-C compiler from the program
of Figure 6a, (but with variables declared int , rather than static int) up to the end of the

first assignment statement (count = 10). Added comments are shown in italics.

Formatting the code of Figure 9 as a Prolog list in the manner of Figure 8a, and
employing the grammar of Figure 10 in the decompiler, we obtain a listing identical
(apart from the names of variables) to that of Figure 8b.

12 UNCLASSIFIED
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?gel.art~epi, .A, rLi Siel

pops(?. 1 2 ) arith,.0piP,, A, S).

?1. ~. et. *,ar_,hexp(P, C.A.C, Si)-

var n). '. arit _OpiP, F1, A - . i

aritnlexpIP11, 0. C, z"

f:AP.,( .iXY 
-.h -~t' ap)2. Q., " A. S -

st-iP.C. i. (P,0. xj, h, A:..

. a I, . -I arioh pP, 0, -> varil, 5)
p__ IX4, ., X!.

C. i~e1, c~i -- ~ , dad, spi.

?2, "O p, ;: ar t p , .s A 2, S M --

P., :est, ?3i,rt'Gi.. 
>3,5,

qtraq(?*. ;2, :-fe '-ari.ep _

p2 p '. pop, al,
P2,~~~Q 030P. 

* -Ci

C o. rigeso. CaM~ -~.'t rgsiE, Op. A. 31.

or 3r c 0Z (P Cest, ,

Z.~aq?.,C ei d*_arito ~op)2. a,

2K l1a, sM, I0 at P p, 0. Si-t

2 .X 23, ,, 1.doa pP c._

?4, 2-,, pop, al, ~ ~ OP? ,'i-

n~ot(P, 0, Test, R)i-- pushes(P. , NO, N)

3i._viexpiP, PI, - .> A. 0). 1 tp, ?1. pi.s)h, bi.

jrtth expiP
2 , P3,-*3, 2). 1 plus (NI , . %) r.

iLP3, 24, Pop, d). pushesiP, Q, N. 4)->

[P4, p5, call, Subrfl, ppt,',N,'

c^.n~pCmSubri, jp, pl, pop, b _

f~nc args(Test, ^omp, A, B) POPS*?, rd, 1,4, N1.,

* P, 6, rncv, a,.'j pcpsi?, . N N) -

.p6, P1, cra, I!,

figupre 10 A "decomnpiler' for 808 assembly language generated by the 'SnflC'

comrpiler using only automatic variables. Decompilation results in a "generic" block-

structured representation which can~ be formatted to produce a language of choice (es Pascal).
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4. INTERACTIVE DECOM]ILIG

4.1 Using the Prolog Database

The standard approach to translating DCG rules into executable Prolog, which has been
used in the examples thus far, requires the input assembler code to be represented as a
Prolog list. While this normally provides faster execution than other approaches
[Pereira and Warren 19801, it has some disadvantages.

We have not considered here many of the processes which might be required prior to
decompilation, such as the separation of code from data [Horspool and Marovac 19801,
or the determination of the semantics of run-time procedures not part of the available
code. It is suggested that the reverse-engineering of a large program will require
significant interaction with a human analyst over a considerable period and that more
rapid progress will be made on some sections of the code than on others.

The reasoning applied by a human analyst might be sometimes bottom-up, or data-
driven:

"that small procedure has two 8-bit XOR instructions; it probably is doing a 16-bit

XOR",

and at other times top-down or hypothesis-driven:

"let's assume this was written in PLIM-80".

The model of the reverse-engineering process which we have in mind appears to be a
close fit to the so-called Blackboard Model which had its origins in computer
understanding of speech [Nii 1986A, 1986B].

Pereira and Warren 11980 note that lists are not the only way of representing sequences
of symbols in implementing DCG parsers. In particular, if individual instructions are
stored as facts in the Prolog database, any rule of a decompiler grammar to be applied
starting at any instruction, allowing a combination of top-down and bottom-up parsing.
Further, as pointed out by Pereira and Warren, when a rule has been successfully
applied we can add a fact containing the recognised structure to the database so that it
can be considered by other rules without repeating the computation required in its
recognition. Parsers which employ such tables (or charts) of already recognised well-
formed substrings are often cal:ed chart-parsers (Winograd 19831.

Figure 1I is an interpreter for a DCG grammar which expects input symbols to appear as
facts in a ternary relation e (standing for "edge": chart-parsing jargon), referred to
here as the chart. In order to avoid confusion, a different arrow symbol has been used in
the grammar-rules. Note that this interpreter inspects the chart for a required
structure before looking for a rule. Recognised PL statements are added to the database,
but smaller fragments are not. This appears to be a reasonable approach, given the
relative expense of the assert operation. These assertions of deduced results into the
database are within the spirit of logic programming as they do not change the meaning
of the program.

14 UNCLASSIFIED ,
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substr(P, 0, (A, As))
substr(P, P1, A),
substr(P1, Q, As).

sLbstr(P, P, (]).
substr(P, P, (X!) :-X,
iubstr(P, Q, e(P, Q, T)) substr(P, Q, T),
substr(P, Q, T) e(P, Q, T),
substr(P, Q, T)

(T -> A),
substr(P, Q, A),
(T - stMt(S) -> new edge(elP, 0, T)) true).

new edge(E) :-£, .
newedge (E)

asserta (E),
write (E),
nl.

Figure 11 Chart-parser implemented as an interpreter of DCGs.

The DCGs employed in the previous examples required each non-terminal contain
parameters representing the current and next "address". As this is information is now
included in the chart, it need only appear in rules when it is necessary for recognising
control structures. In such cases, direct reference is made to the chart representation.
Generally rules are less cluttered than in the previous notation.

Figure 12 shows the grammar of Figure 10 in the new format. Figure 13 shows the
assembly code in the format for use with the chart parser. Note that, as with the list-
based representation, the arguments (I, J) which link successive facts e (I, j,
Instruction) are used only for unification so they can be any unique terms. Figure 14
shows a script of a Prolog session in an environment containing the clauses of Figures 11,
12, 4b and 13. Running this example (with the printing of messages disabled) on an
Apple Macintosh-Plus under Advanced Al Systems Prolog requires 4.08 seconds of CPU
time. If no recognised structures are saved in the chart, the time increases to 7.35
seconds. For comparison, the time taken for the equivalent problem using the list-based
representation (Figure 10) is 2.1 seconds. Execution speed using the chart representation
could be substantially improved by "compiling' grammar rules into equivalent Prolog
clauses, as is done for the list-based representation. For our present purposes, the use of
an interpreter facilitates experimentation.

C(
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p._frag( (X;Y)) -> Stat(S), Plifrag~y).

ba ci.1OtretRI

P.,

orarcf' otiest, P),
e. C. pa !raqen)

.xP, 1, A*,!rad, Q.i, Eizule, i

crar.C.. ff - O~e t (Tst Q)
e(_,~xp -, A

x h.a, A, ad p,!uhh:
ar'.thexpl_ -> X, 21,

pop, al, Ical., S~zr!,

comp op(Czop, Si~on,
f.I-cargs(Test, Comp, A, 3)

Co-pOp .> 4)
Co'rpOPe)-V ,e .O
:o-pO >p., ?go).

a3'1tnexplA, 5) -- arli'opjA, SI.
arl.-%expJA -> C, S) -->

ar'.opiA -> B, SI, arithoexp(B . C, SI.

a t p- ,A, 3) -> -.Xl, h, A].
arit1"_pl_ -,ar (A), SI -- >

.-Xi, S. X;, (dad, aPI. (call, 'ginti,
plis ( A, S, mX

a r pA-> 1, SI)-
(Push, h],
pllsS, 2, Si1l,
aratn ex B, Si),

rpop, 0!,
dlo arltS op lop),

!.CaqlOp, A, 8HI.

doart-.:I-~I--0call, ?Subj.

1o arithSpIl-. call, ?mil.

Pult.*S(NO, NI ) 'Ps, 0,, pUShes(NO, NI), jpluslNi, 1, N4l).
P~alh*SN, NI -0 .

popsN, S)I .>pop, 0I, popls(N, NIl) lli , NHl.

popslii, NI) !1.

Figure 12 The grammar of Figure 10 re-cast for use with the chart-parsing interpreter of
Figure 11.
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0(l, 2, [push, bi). e(33, 34, (jz, 73]).
e(2, 3, [push, b]). e(34, 35, [lxi, h,2]).
e(3, 4, (push, hi). e(35, 36, [dad, spi).
e(4. 5, [lxi, h,41). e(36, 37, [push, h]).
e(5, 6, (dad, apI). e(37, 38, (lxi, h,41).
e(6, 7, [push, hl). e(38, 39, (dad, BpI).
e(7, 8, (lxi, h,101). e(39, 40, [call, ?gint]),.
e(8, 9, [pop , d]). e(40, 41, [push, h]).
e(9, 10, [call, ?pint]). e(41, 42, [lxi, h,l).
e(l0, 11, [lxi, h,23). e(42, 43, [pop, d]).
e(ll, 12, [dad, Spi). e(43, 44, [dad, d)).
e(12, 13, [push, hi). e(44, 45, [pop, d)).
e(13, 14, rlxi, h,11), e(45, 46, [call, ?pint)).
e(14, 15, (pop, di). e(46, 47, [lxi, h,0]).
e(15, 16, [call, ?pint]). e(47, 48, [dad, BpI).
e(16, 17, [lxi, h,03). e(48, 49, [push, hi).
e(17, 18, [dad, SpI). e(49, 50, [lxi, h,21).
e(18, 19, [push, hi). e(50, 51, [Oad, BpI).
e(19, 20, [lxi, h,l]) . e(51, 52, [call, ?gintI)
e(20, 21, [pop, di). e(52, 53, [push, hi).
e(21, ?2, [call, ?pint]). e(53, 54, [Ixi, h,6i).
e(?2, 23, [Ixi, h,2]). e(54, 55, [dad, sp]).
e(23, 24, [dad, Bpi). e(55, 56, [call, ?gint]).
e(24, 25, [call, ?ginti). e(56, 57, [pop, di).
e(25, 26, [push, hi), e(57, 58, [call, ?mul]).
e(26, 27, (lxi, h,61). e(58, 59, [pop, d]).
e(27, 28, (dad, api). e(59, 60, [call, 7pinti).
e(28, 29, [call, ?gint]). e(60, ?3, [imp, ?22.
e(29, 30, [pop, d]). e(?3, 62, (pop, b!).
e(30, 31, (call, ?it]). e(62, 63, (pop, b]).
e(31, 32, [mov, a,h]). e(63, 64, [pop, bi).
e(32, 33, [ora, 1]). e(64, 65, [ret]).

Figure 13 8085 assembly instructions from the Small-C compiler formatted as prolog
facts for application of the chart parser of Figure 11 and the grammar ,f Figure 12

1
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7- substr(l, -, pl.prog(S)), pprint(S).
e (4, 10, stmt (var4 :=10)
e(i0, 16,stmt(var2:-1) )
e (16, ?2, stmt (varO :1))
e (34, 46, stnt (var2 :-var2 1))
e(46, 60, stmt (v&rO:=varO*var2))
e(?2,?3,stmt (while (var2<var4, (var2:=var2+l;varO:-varO*var2))))
number of automatic variables-3
program thing;
begin

var4 10;
var2 : 1;
varO : 1;
while var2<var4 do begin

var2 :- var2+1;
varO := varO*var2

end
end.

S = prog((var 4 :1 10;
(var 2 1;
(var 0 :- 1;
while(var 2 < var 4,

(var 2 var 2 + 1;
var 0 var 0 * var 2))))))

Figure 14 Script of a prolog .ession (user input in italics) showing the invocation of the
chart-parser. Recognised structures are printed as they are asserted in the database.

Interactive decompilation would be greatly assisted by the analyst being able to
indicate graphically the point in the assembly or machine code at which
decompilation should start and, perhaps to select the prngr.m construct to be recognised
from a menu. Figure 15 shows a prototype interactive decompilation environment
written in Quintus MacProlog on an Apple Macintosh II compL ter. Apart from code
concerned with the user interface, the Prolog program is that of the chart-parser
described above. The window labelled "ASM-80" displays in conventional format the
8085 assembly language represented internally as in Figure 13. The window labelled
"Grammar" displays the grammar of Figure 12 for browsing and, when appropriate,
refinement and extension. The analyst has placed the cursor on the line labelled "4" to
indicate the start point for an attempted decompilation and has selected "stmt(-)" (see
Figure 12) as the syntactic category to be recognised. The successfully recognised PL
structure, in this case an assignment statement, is displayed in the window labelled "PL
Statement" and the assembly code which it spans is highlighted in the "ASM-80"
window. The "Summary" window displays the current results of decompilation.

18 UNCLASSIFIED 1
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4.2 Application Domain Semantics - The Symbol Table

The design of a computer program is only partially captured in the structure of its source
code. In order to make it understandable, it must be related to the application domain.
This is typically provided by the choice of meaningful names for variables and by the
insertion of comments. The interactive environment proposed provides for this.
Variable%: and labels derived during the decompilation can be assigned meaningful
symbols by the analyst asserting facts of the form:

symrbol(var(i), count).
symbol(l, start).

Comments can likewise be attached to segments of code by the analyst specifying the
"address" range:

connent(l, 2, 'initialise count').

Many programming languages allow constants to be represented by symbolic names,
with the actual value defined at one place in the code. This simplifies modification of
the program as well as making it more easily understood. Replacement of the symbol
with its numerical equivalent is a trivial operation for the compiler. The reversal of
this process is in general difficult and requires understanding of the meaning of the
program in the application domain. Unusual (so-called magic numbers) or recurring
values might be brought to the attention of the analyst for possible replacement by
symbolic constants. The recognition of constants with prosaic values which might also
arise from many unrelated causes (for example the values 0 or 1) would require deep
understanding of the program's domain semantics and is unlikely to be achieved
automatically. A mechanism for replacing numerical values with symbols requires a
means of refermng to the values to be replaced. The simplest approach is to edit the
assembly or machine code then re-run the decompiler over the modified structures.

The prototype interactive environment descibod above permits the user to assign
symbolic names to variables. These are stored n a snnbol table and used when PL code
is displayed. Figure 16 shows the Macintos'h "Dialog Box" for editing the symbol
table. Arbitrary names for variables in the "Summary" window (Figure 15) have been
replaced by tpresumably) meaningful symbols. Currently a one-to-one correspondence
between variables and symbols is required.
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editing facility. See text for details.
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The above arrangement can handle static variables and automatic variables (that is, thoss.,
for which storage is allocated on the stack) from a single context (procedure or block). In
general automatic variables must be be labelled with their context, for example var (main,
2). This requires that the grammar-rules c3ncemed be augmented with variables to record
the context whenever a new stack-frame is established.

4.3 Recovering Data Types

In addition to recovering the control structures, the decompilation process should
attempt to recover data type information. Simple (scalar) data types include those
directly supported by machine instructions, for example in the case of the 8085, 8 bit
bytes which may be interpreted as characters or integers and 16-bit words representing
addresses or signed or unsigned integers, extended precision integers, floating point
numbers of varying precision, ranges of integers, enumerated types (such as days of the
week) and sets, typically represented as bit-maps. Complex data types include
character strings, records (or structures) and arrays of the afforementioned simple and
complex types. Modern languages, particularly those claiming to be object-oriented,
allow the programmer to define a rich hierarchy of types (usually called classes) to
represent concepts in the problem domain. We shall not consider such languages here;
rather discussion will be confined to the data types provided for in languages such as
Pascal.

While the problem of recovering type definitions is somewhat orthogonal to the use of
DCGs, it is relevant to the question of the practicability of decompilation and we
suggest here a general approach which involves, for scalar types, the following
processzs:

a. the recognition of the storage class of variables (number of bytes occupied,
alignment) from the instructions used to access it.

b. assigning attributes to the type of the variable according to the operations
which are performed on it (integer or floating point arithmetic, comparisons, bit-
wise logical operations).

c. assigning variables to the same class where they are used in operations
together and where attributes already assigned are compatible.

d. defining a class of variables as the transitive closure of the same-class
relation defined by process c.

The blackboard model, referred to in scction 4, provides a suitable framework for the
application of such heuristics encoded as Prolog procedures. Attributes of variables can
be asserted into the database as they are recognised. Examples of attribute assertions
include:

size(var(I), 21.
size (var(2), 1).
participates_in(var(1), int_arith).
participatesin(var(2), byte compare).
assigned value(var(2), 1).
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Recognised type compatibilaies can be asserted thus:

sametype(var(i), var(3)).

These can be summarised as type declarations whenever a decompiled listing is
requested.

In a strongly-typed language such as Pascal, integer subrange types might be recognised
from run-time bounds-checks while enumerated types might be inferred from the set of
constants assigned to variables of the type. Samples of values assigned to variables
obtained from the run-time environment or data files would be of considerable benefit in
determining the range and type of data, although relating external representations to
internal values would require a deep understanding of input/output procedures.

In the absence of knowledge of the application domain, it is not possible to
differentiate an integer subrange type [D .. 71 from an enumerated type [sun, mon, tue,
wed, thu, fri, sat] which may have been used by the original programmer. Such
semantics may in some cases be provided as hints in an application domain knowledge
base (for example, in an application dealing with dates, enumerated types days of the
week and months of the year might be expected, as well as subrange types 1I .. 311 for
days of the month, etc.. However, as with the assigning meaningful variable names,
significant interaction with the analyst will be required. Assertions of correspondence
between numeric and symbolic values for enumerated types might take the form:

symbolicvalue(var(2), 1, monday).

The comments in the previous section regarding automatic variables from multiple
contexts apply equally the recording of facts relating to type as they do do symbolic
names. In addition it is desirable to minimise the scope of static variables in
reconstructing declarations, even though program semantics may be the same with
variables having global scope

5. CONSTRUCTING DECOMPIMNG GRAMMARS

The grammars for decompiling 8085 assembly code presented here have been discovered by
examining the code generated by the Small-C compiler from known fragments of source code.
In addition, run-time procedures were identified with the help of mnemonic labels. In fact
these latter were generally quite short and their functions easy to determine. Automating the
semantic analysis of such simple run-time procedures should not be difficult.

There will be some cases in practice where the compiler used to generate the program of
interest will be known or can be guessed at. Software for embedded microprocessors is often
compiled on development systems using languages provided by the chip manufacturer or by a
major software vendor. Application programs on general purpose computers may be written
using the standard system progranming tools (for example, C under UNIX).

Further expenmentation will be needed to determine the difficulty of constructing a
decompiler when the source language and compiler are unknown and the extent to which this
process might be automated. An even more difficult question is whether it is practicable to
decompile to a high-level language, code which was actually written in assembly language
or which has undergone intensive optimisation. It does seem likely that a language such as C,
with its many constructs directly reflecting machine operations, would be a more promising
target in this case than, say, Pascal.
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6. DISCUSSION

This paper has described techniques for the construction of decompilers using definite clause
grammars compiled or interpreted as Prolog programs. The principles have been illustrated
using subsets of C compiled for the 8085 microprocessor. These experiments demonstrate that
the use of DCGs and Prolog is a viable approach. In particular, the use. of the Prolog database
to store the initial assembly (or machine) code and recognised syntactic structures in the
manner of a chart-parser supports an interactive approach and the application of additional
knowledge. While the work described has not been carried through to the completion of a
decompiler for a complete real-world programming language, Brushe [19901 describes a Prolog
decompiler for a significant subset of PLM-80.

Avenues for further research include studies of different combinations of languages, compilers
and target hardware, methods for handling compiler optimisation, the possibility of
recognising high-level constructs such as loops and if-then-else statements in hand-written
assembly code, and the use of heuristic knowledge of both the programming process and the
application domain. Efficient implementation may be an issue for larger problems.

Finally we note that other approaches to the rapid construction of reverse engineering tools
apart from the use of Prolog are possible. Other symbol manipulation languages such as Lisp
could be chosen as a starting point, but generally would require significantly more work by the
system builder. Kotik and Markosian [19891 describe the application of the REFINE
programming language and environment to software re-engineering problems. REFINE
provides tools for the construction of parsers and pretty-printers from context-free grammars,
and a rule-based programming style for semantic processing of the resulting abstract syntax
tree, however its purchase cost is many times that of the Prolog systems used in the current
work, it demands a powerful workstation with a copious supply of memory and is less
portable than Prolog.

f)
2
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