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SUMMARY

Lithiated vanadium oxide (LVO), y-lithium vanadium bronze (y-LiV20s) and vanadium dioxide
(VO3) have been compared as potential cathode materials for high temperature thermal batteries by
electrochemical discharges in a laboratory single cell tester. The three materials showed similar

performance though LVO may be superior at the highest current density (1A/cm2). VO3 has the
advantage of being commercially available.
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1 INTRODUCTION

Thermal batteries are high temperature reserve batteries, predominantly used in missiles.
Modem designs use a lithium (or lithium-alloy) anode, an immobilised molter: sali ¢lectrolyte and an
iron-disulphide cathodel-5. These batteries have many advantages: high reliability, long storage iife
without maintenance, wide temperature range of operation and, sometimes, high power. However, the
energy density is rather low and this could be improved if the individual cell voltage could be raised
above the present 2.2 V/cell open-circuit-voltage for the lithium/iron-disulphide couple. A new cathode
material, lithiated vanadium oxide (LVO), has been invented at RAE with the advantage of the much
higher open-circuit-voltage of 2.6 V/cell versus lithium6.7. The properties of LVO have been
investigated and it has been shown that LVO consists of vanadium dioxide as the major component
with a small proportion of y-lithium vanadium bronze as the minor electroactive component. Some
lithium bromide is also present8. Thermal batteries have been made using LVO as the cathode material
and these have shown successful discharges9.

LVO is made by heating the vanadium oxide VgOj3 with lithium bromide. The reaction
proceeds according to the equation8

V6013 + LiBr — LiV70s5+4VO; + %2Br

and so LVO is expected to contain VO; and LiV205 in a 4:1 molar ratio. LVO usually also contains
some residual lithium bromide from the reaction. This synthesis has the disadvantages (i) that VgO13
is difficult to make pure as it is normally made by the thermal decomposition of ammonium
metavanadate in an inert atmosphere and this reaction needs careful control to avoid production of VO,
as an impurity and (ii) that the reaction of VgOj3 with LiBr produces bromine, which is highly toxic.
Li1V205 can however be made pure by a simple synthesis. VO, is available commercially. None of
these materials will be as cheap as iron disulphide, which they are intended to replace, as that can be
mined as a mineral, without the need for chemical synthesis.

Electrochemical discharges in a single cell tester have shown that the vanadium compounds in
LVO are reduced by lithium to the trivalent state8. LVO, LiV20s and VO, therefore react
electrochemically with lithium according to the equations:

VO +Li — LiVO,

LiV2Os +3Li - 2LiVO; +Lip0O
LVO(=LiV205 +4V0Oy) + 7Li — 6LiVO; + LinO .
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According to these equations, the theoretical Coulombic capacities for VO3, LiV,05 and LVO are
1160, 1530 and 1300 C/g, respectively. These capacities are for the complete reduction of the various
materials to trivalent vanadium; the practical capacities obtainable at useful cut-off voltages will be less.
The actual capacities from these materials have been measured experimentally in single cell tests at 500
and 580°C and at current densities of 0.1 to 1.0 A cm2,

2 EXPERIMENTAL
2.1 Materials

The LVO was made under contract to RAE according to the above method. All the LVO used
in these experiments was designated "Bx6". Its bromide content was 13.4%.

The vanadium dioxide was bought from Aldrich (Catalogue number 21582-1, batch number
00818TWAX). X-ray diffraction analysis showed it to be the stable, low-temperature monoclinic form
(see Fig 1). Some early experiments using vanadium dioxide8 are included here; these used either
Aldrich gold label VO3 or VO; made by J. Knight at RAE by heating together vanadium trioxide
(V203) and vanadium pentoxide (V20s) in either 1:1 or 1.1:1 proportions (see Appendix A.3 of
Ref 8).

The y-lithium vanadium bronze (y-LiV20s) was made by the same procedure as used in earlier
work (see Appendices A.1 and A.2 of Ref 8) which was based on the published method of Murphy
et all0. 26.68 g of lithium iodide were added slowly to 64 g acetonitrile, taking care that the solution
did not overheat. 15.03 g vanadium pentoxide were then added to the solution of lithium iodide in
acetonitrile. The colour of the vanadium pentoxide immediately changed from orange to dark brown.
The mixture was then left to react for 72 hours while the solution was stirred with a magnetic stirrer.
After completion of the reaction, the product (8-LiV20s), which was now a finely divided black
powder, was quantitatively filtered off and was washed with acetonitrile until the washings were
colourless. The solid was dried by heating it in a vacuum at 80°C. The product was dried to constant
weight (15.724 g) giving quantitative conversion of the vanadium pentoxide into 8-lithium vanadium
bronze. This was then heated in a tube furnace in an argon atmosphere at 10°C/min to 600°C and then
held at 600°C for 3 hours to convert the 3-lithium vanadium bronze to the y-form. After baking, the
product was still a relatively free-flowing powder. It was characterised by X-ray diffraction which
confirmed that y-LiV20s was the product obtained (see Fig 2) and by thermal analysis (simultaneous
thermogravimetric analysis, TGA, and differential thermal analysis, DTA, see Fig 3). This showed a
transition (presumably solid-state) at 591°C and a second transition at 751°C. The first peak is in good
agreement with a differential scanning calorimetry (DSC) test on material made by J. Knight and used
in the work described in Ref 8 (see Fig 4). The additional DSC peaks in Fig 4 at 50-120°C are
probably evolution of water absorbed in storage. The second DTA peak in Fig 3 (751°C) is the melting
of the LiV2Os (literature melting point 772°C11),




Temary eutectic (lithium chloride-lithium fluoride-lithium bromide) was added to the cathode
materials to improve the cathode conductivity. For the experiments using LVO or LiV0s the
proportions were 70 wt% LVO or LiV,0s: 30 wt% ternary eutectic as these proportions had been
established as standard in earlier work8. For the experiments using VO, the VOs:ternary proportions
were varied somewhat to obtain an optimum mixture.

The electrolyte was ternary electrolyte containing 70 wt% ternary eutectic immobilised on
30 wt% magnesium oxide which acts as a binder to keep the molten ternary eutectic in place during the
single cell tests.

The anode material was 24 wt% lithium aluminium alloy.
In all the single cell tests, the current collectors were made of iron.
2.2 Experimental procedures

The cathode material was ground with the chosen amount of ternary eutectic to form a
homogeneous mixture. For some of the experiments using VO», the VOo/tenary mixtures were fused
together. Details of the various batches of these mixtures are given in Table 1. 0.3 g of cathode
mixture was weighed out and loaded into the press. 0.15 to 0.3 g of ternary electrolyte was weighed
into the press and a two-layer cathode-electrolyte pellet was pressed at a force of 6 tonnes
(3 tonnes/cm?2 for the 16 mm diameter, 2.0 cm?2 pellets used). Anode pellets were 0.3 g 24 wt%
lithium-aluminium alloy, pressed at 10 tonnes (5 tonnes/cm2). All pellets were pressed inside a dry air
glove box (about 10 ppm water vapour) as the ternary eutectic is extremely hygroscopic (see Fig 5 for
a photograph of the press in the dry air glove box). Except for LVO run number 211, which was
carried out in a dry air box flushed with argon, all the single cell tests were carried out in an argon
glove box. Fig 6 shows the single cell tester inside the argon glove box and Fig 7 shows a close-up of
the single cell tester. The operation of the single cell tester can best be understood from the simplified
diagram in Fig 8. The anode and bi-layer cathode/electrolyte pellets were transferred in sealed
containers from the dry air glove box containing the press to the argon glove box and loaded into the
single cell tester with the anode pellet on the lower current collector, the electrolyte over the anode with
the cathode layer on top underneath the upper current collector. The boron nitride platens were heated
to the chosen temperature and then the hydraulic rams were operated to clamp the cell firmly together,
normally at a force of 6 kg. Heat rapidly diffused from the platens into the cell components, melting
the electrolyte and activating the single electrochemical cell. After a short wait to establish a stable
open-circuit potential, a constant current load was applied and the discharge was recorded down to
0 V. All voltages are referred to 24 wt% lithium-aluminium alloy. The discharge curves were
recorded using a chart recorder. The recorder traces were measured, recalculated into absolute units
(voltage versus electrochemical capacity) and stored in a computer. All the discharges illustrated here

are plotted from the computer using an interpolation routine to draw a smooth curve between the
measured points.
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3 RESULTS

The results for single cell tests of LVO and LiV70j5 are listed in Table 2 and for VO3 in
Table 3. The results for LVO and LiV205 at 580°C are plotted in Figs 9 and 10 respectively. It can be
seen that better discharges are obtained using the thinner electrolyte pellets (0.15 g ¢f 0.3 g),
particularly at the higher current densities where the IR drop due to the internal resistance of the
electrolyte is greater. Similarly, better discharges are obtained at the lower currents. Discharges for
LVO and LiV70s5 at 500°C are plotted in Figs 11 and 12, respectively. As at 580°C, the achievable
capacities are lower at the higher currents, indicating significant internal resistance, and no useful
capacity was obtained from the 2 A discharge for LiV20s. The discharge curves for VO; are plotted in
Figs 13 to 20. It is clear that the later batches of the VOo/ternary eutectic, which were fused together
and had higher proportions of ternary eutectic in them, gave better discharges than the earlier
experiments in which the VO, and ternary eutectic were simply ground together and not fused. The
best results were obtained for batch 5 in which the VO, was sieved below 38 pm both before and after
fusing with ternary eutectic. Electrolyte weights for each test are given in Table 3.

The present results for LVO can be compared with results obtained during previous laboratory
studies using the single-cell tester, whenever comparable results exist. At 580°C and 200, 1000 and
2000 mA there are comparable results (runs 577, 637 and 638 of the early work and runs 109, 110 and
115 of the present series). The results are plotted in Fig 21 and it can be seen that both sets of results
are quite similar except that there is a lower voltage (higher internal resistance) in the present work at
the highest current (2 A).

The present results for LiV20s5 can be compared with results obtained earlier (Ref 8). Fig 22
compares results at 580°C and 1 and 2 A. The older results (runs number 515 and 516) were for
3-LiV20s5 which gave the best discharges in the earlier work. It can be seen that the present work
agrees very well with earlier results, which were not carried out over such a wide range of
temperatures and current densities.

Similarly, present and earlier work with VO, can be compared. Fig 23 shows similar results
between present and earlier work at 580°C and 0.8/1.0 A and Fig 24 shows a similar comparison at
580°C and 2 A for one recent run with three older ones. Again, recent results are similar to earlier
ones, where experiments at comparable conditions exist.

4 DISCUSSION

Discharge curves for LVO, LiV205 and VO; are plotted in Figs 25 to 32 for comparison. The
curves for LVO and LiV20s are for 0.15 g electrolyte; the VO, curves are for batch 5 material, except
in one case (580°C, 2000 mA) where the batch 5 material gave a very poor discharge and a curve for
batch 4 is included also. All three materials showed very similar discharges with insufficient grounds
for ranking them in a particular order due to statistical variations. On the basis of one test at each
condition, the only case where LVO was superior to LiV205 and VO, was at 500°C and 2 A. It was
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however better than VO, at 580°C and 2 A, though, in this case, it was inferior to LiV20Os. These
results indicate that LiV2Os or VO3 are probably preferable to LVO, except at the highest current
densities though the differences are small and a larger number of experiments would be needed to
obtain statistical quantification of the differences.

A simple means of quantitative comparison of the different materials is to compare the
Coulombic capacities obtainable to realistic cut-off voltages, as it is this parameter which is used when
designing thermal batteries to decide the amount of cathode material needed. The cathode capacities for
LVO, LiV205 and VO, t0 2.0 V and 1.75 V are compared in Table 4 and they are plotted in Fig 33 (for
results at 500°C) and in Fig 34 (for results at 580°C). The available capacities are always lower at the
higher current densities as the voltages are lower due to the higher IR drop. There are no significant
differences in the practical capacities achieved for the different materials, notwithstanding the
differences in capacities theoretically available (see Introduction) except that LVO tended to have the
greatest capacity at the highest current density (1 A/cm?) particularly at 580°C. As most of the previous
work (Ref 8) was done at 580°C and 1 A/cm?2, this accounts for the previous conclusion that LVO had
better discharges than LiV20s or VO3. In practice, thermal batteries typically operate at current
densities of 0.1 to 0.5 A/cm?2 with 1 A/cm? only rarely being needed, and also many battery discharges
would not experience temperatures as high as 580°C, at least for any significant time.

Of the three materials tested here, LVO is a new invention and so not available commercially,
neither is there a commercial supply of LiV20s. VO is a simple chemical compound, readily available
commercially in the crystalline form used here. As its electrochemical properties are at least as good as
LVO (or LiV2Os) except possibly at very high current densities (over 1 A/cm?2), it is recommended that
it should be tested in prototype thermal batteries.

5 CONCLUSIONS

LVO, LiV70s and VO, have been compared as thermal battery cathode materials in isothermal
single cell tests at 500 and 580°C and at 100, 250, 500 and 1000 mA/cm?2 current density. Little
difference was found between these materials, though LVO may be the best at the highest current

density (1 A/cm?2). Optimisation of cathode material:salt eutectic in the cathode pellet made significant
differences to the discharges for VO;. Selection of VO; with a particle size below 38 pum further

improved the VO, discharges and optimisation of the particle size distribution is clearly worthwhile.

It is recommended that prototype thermal batteries with VO, cathode material should be built as
this is a readily available commerical material with equally good electrochemical discharge properties,
and could well be less costly to use than LVO.
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Table 1
VANADIUM DIOXIDE/TERNARY EUTECTIC CATHODE MIXTURES

Batch 1 Vanadium dioxide and ternary eutectic weighed out individually and ground together
for each cathode pellet. Actual weights of vanadium dioxide and ternary eutectic used
for each experiment listed in Table 3.

Batch 2 Vanadium dioxide 2009 g (71.1%)
Ternary eutectic 0817¢ (28.9%)
Total 2826 ¢

The mixture was baked at 460°C under argon, ground and sieved through a 212 um
sieve. Sieve analysis of the product was as follows:-

>212 um Nil 0.0%
>150 ym 381 mg 14.2%
106-150 um 537 mg 19.9%
38-106 pm 1275 mg 47.4%
<38 um 499 mg 18.5%
Total recovered 2092 mg (95.3% of starting material)
Batch 3 Vanadium dioxide 1987 g (65.9%)
Temary eutectic 1027 ¢ (34.1%)
Total 30l4¢g
Mixture baked under argon at 460°C. Weight recovered after baking was 2.929 g
(97.2% of material).
Bat~h 4 Vanadium dioxide 200g (62.5%)
Temary eutectic 120¢g (37.5%)
Total 3208

Mixture baked under argon at 460°C. Weight recovered after baking was 3.09 g
(96.6% of starting material). Product sieved through 212 um sieve.

Batch 5 Vanadium dioxide 2075 g (63.3%)

Temary eutectic 1203 g (36.7%)
Total 3.218¢

The vanadium dioxide was sieved through a 38 um sieve, mixed with the ternary
eutectic and baked at 460°C under argon. The weight after baking was 3.156 g
(96.3% of starting material). The product was sieved through a 38 um sieve
before use.




Table 2
SINGLE CELL TEST RESULTS FOR LiV205 AND LVO

Run Electrolyte Capacity (C/g) to
number | Cathode Weight Temperature Current
(® O (mA) 20V 175V

211 LVO 0.27 580 200 607 672
101 LiV20s 0.3 580 200 540 691
102 LiV20s 0.3 580 S00 511 667
103 LVO 0.3 580 500 433 567
104 LiV20s 0.3 580 1000 393 543
105 LVO 0.3 580 1000 348 533
106 LiV20s 0.3 580 2000 76 238
107 LVO 0.3 580 2000 119 283
108 LiV20s 0.15 580 1000 469 633
109 LVO 0.15 580 1000 386 593
110 LVO 0.15 580 200 457 706
111 LiV20s 0.15 580 200 600 640
112 LVO 0.15 580 500 583 640
113 LiV20s 0.15 580 500 348 488
114 LiV20s 0. 580 2000 3. 524
115 LVO 0.15 580 2000 273 471
116 LiV20s 0.15 500 200 486 643
117 LVO 0.15 500 200 337 514
118 LiV20s 0.15 500 500 457 636
119 LVO 0.15 500 500 386 531
120 LiV20s 0.15 500 2000 0 0
121 LVO 0.15 500 2000 236 395
122 LiV20s 0.15 500 2000 0 255
125 LVO 0.15 500 1000 290 457
126 LiV20s5 0.15 500 1000 371 543
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Table 4
COULOMBIC CAPACITIES FOR LVO, LiV,05 AND VO,

Capacity (C/g) to
Temperature Current Material
O (mA) 20V 1.75V
LVO 457 706
200 LiV70s5 600 640
VO, 594 692
LVO 583 640
500 LiV70s 348 488
VO, 484 710
580
LVO 386 593
1000 LiV,0s5 469 633
VO, 432 643
LVO 233 471
2000 LiV705 398 524
VO3 batch 5 25 126
VO, batch 4 125 313
LVO 337 514
200 LiV705 486 643
VO, 429 624
LVO 386 531
500 LiV205 457 636
VO, 281 403
500
LVO 290 457
1000 LiV70s 371 543
VO, 304 462
LVO 236 395
2000 LiV705 0 255%
VO, 116 271

* Run number 122, no useful capacity obtained in run
number 120 under same conditions
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Fig §

Fig$5 Dry-air box and press




Fig 6

Fig 6 Argon glove box, plus electronics
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Fig 7

Fig 7 The single cell tester
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Cathode pellet
Electrolyte pellet
Anode pellet

& 5 Iron current collecting discs
Current output lead
Voltage output lead

8 &9 Boron nitride platens

NO A WN =

10 & 11 Pneumatic rams @ pressure ~ 3kg cm™2

12 & 13 Electrical cartridge heaters

8 —

Fig 8 Simplified dlagram of the single cell tester
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Fig 9
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Fig 12
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Fig 13
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Fig 16
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Fig 17
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