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EXECUTIVE SUMMARY

This report describes a body of research directed toward improving
automatic speech recognition (ASR) systems that operate in noisy and stressful
environments. Several basic issues were addressed in this effort including
(a) noise reduction, (b) robust recognition, (c) stress characterization, and
(d) stress compensation for ASR. Also, an extensive stressed speech data base
was compiled. The major results of the project are as follow:

1. Noise Reduction. A class of constrained iterative filtering
algorithms was developed that displayed the following:

a. Better signal-to-noise ratios (SNRs) were observed than in
other previously reported systems.

b. Improved numerical behavior was observed.
c¢. Improved automation was accomplished.
d. Objective quality measures were improved.

e. Consistent improvement across all manners of speech articula-
tion (nasals, glides, vowels, etc.) was observed.

f. Subjective quality (informal tests) was significantly
improved.

g. Significantly better ASR performance was observed when the
speech was first processed by the system.

2. Recognition of Speech in Noise. Three systems were investigated:

a. Improved performance was observed when an ASR system was given
as input to the speech processed as above.

b. A state space model of speech in noise and an ASR system
designed specifically for this model (a continuous transition hidden Markov
model [HMM]) were developed with significant performance improvement for short
duration consonant identification resulting.

¢. A projection-based distance function for ASR was investigated.
Dramatic improvement was observed in even low SNRs, and at only a modest
computational cost.

3. Stress Characterization. Descriptors for various stress styles were
developed.

a. Prosodic features (e.g., intensity, pitch) were investigated
and shown to be reliable indicators.

b. Spectral features (e.g., formants, spectral tilt) were inves-
tigated and were shown to display consistent features.

c. Glottal wave forms were extracted across a wide range of
stress styles and were shown to be extremely consistent across different
speakers, different vowels, and different utterances. For this task, a novel
method of glottal extraction was developed.




4., Compensation. Modifications of ASR systems were made to improve
performance in noisy and stressed conditions.

a. Noise~reduction techniques were shown to work on stressed
speech.

b. Large improvements were observed in ASR performance with the
assumption that the stress style could be identified--something that
undoubtedly would be possible given the positive results of the
characterization reported above.

5. Data Base. A large hand-segmented and labeled digital data base was
compiled that included the Massachusetts Institute of Technology (MIT) Lincoln
Labs multi-style data base, psychiatric patient recordings, recordings of
speech in single and multiple tasking environments, and recordings of scripts
spoken while in roller coaster and free fall conditions.

Although the reported project results are extremely useful in and of
themselves, they have opened a number of doors suitable for future
investigation.




AUTOMATIC RECOGNITION OF SPEECH IN STRESSFUL ENVIRONMENTS

INTRODUCTION

Although much effort has been expended in the task of automatic speech
recognition (ASR), full acceptance of its implementation to solve practical
problems has yet to be achieved. One of the main reasons for this current
situation is the lack of robustness observed when high levels of interference
(e.g., background noise, music, talking) are present or when the talker's tone
of voice 1is changed. The terms "robust™ and "robustness" refer to systems
whose performance is not sensitive to small perturbations or adverse
conditions. This latter condition is called stress. It is not difficult to
imagine situations when a talker exhibits stress by talking louder, faster, or
slower than usual while angry, during a heavy work load, and so forth. If an
ASR device is to function successfully in an environment such as a helicopter
cockpit, it will need to work in an environment with high noise levels whose
characteristics may change substantially over time. It will also have to
accept speech from a pilot who will be hearing the background noise, who will
be under a high task load, who will sometimes be expressing fear and other
emotions. This research project addressed many of the basic issues that must
be better understood before adequate solutions would be possible. In
particular, we have examined

1. Techniques for noise reduction. Here, a novel set of procedures
that clean up noise-corrupted speech have been developed.

2. Robust recognition. Three novel techniques that aid in the
automatic recognition of noise-corrupted speech have been developed.

3. Compilation of a stress data base. An existing data base has been
substantially augmented to include speech from a large variety of speaking
styles, stress conditions, and environmental situations.

4. Stress characterization. Many aspects of stressed speech have been
examined including prosodics, spectral characteristics, and glottal wave
forms. This last aspect required development of a novel extraction algorithm
specifically tailored to stressed speech.

5. Compenrsation of stressed speech. The knowledge gained from the
characterization aspect was used to improve ASR of stressed speech. The
knowledge gained from the noise-treatment portions of the research was also
combined into the algorithm for additional gains.

This document discusses the results of the research program, which has
produced to date eight papers appearing in conferences in which the abstracts
are reviewed (four photo-reduced mat pages each) (Hansen & Clements, 1987;
Hansen & Clements, 1988; Hansen & Clements, 1989a; Hansen & Clements, 1989b;
Carlson & Clements, 1990; Cummings & Clements, 1990; Cummings, Clements, &
Hansen, 1989; Clements & Lim, 1987); one paper accepted for publication in a
journal (Lim & Clements, 1990 (32 pages]); one paper to be submitted to a
journal (Hansen & Clements, 1990 [14 pages]); and one Ph.D. thesis (Hansen,
1988 [430 pages]). Naturally, the discussion of the results in this report
must be greatly compressed, and supporting documentation 1is heavily
referenced.




ENHANCEMENT OF NOISY SPEECH

The success of a speech enhancement algorithm depends on the objectives
made in deriving an approach. Assumptions made in this environment include
(a) the noise distortion is additive; (b) only the degraded speech signal is
available; and (c) the noise and speech signals are uncorrelated. The basis
of the original unconstrained iterative enhancement approach is noncausal
Wiener filters (Lim & Oppenheim, 1979). This approach tries to solve for the
maximum likelihood estimate of a speech wave form in additive white gaussian
noise with the requirement that the signal is the response from an all-pole
process. Crucial to the success of this approach is the accuracy of the
estimates of the all-pole parameters at each iteration. The algorithm is
formulated by considering the case when all unknowns ({(all-pole speech
parameters a, noise-free speech S,;) are random with a priori gaussian

probability density functions. The basic procedure used is a maximum a
posteriori (MAP) estimator that maximizes the probability density function of
the unknown parameters given the noisy observations. After some

simplification, it can be shown that the resulting equations for the joint MAP
estimate of a and Sy become nonlinear, involving partial derivatives with
respect to a. Lim and Oppenheim (1979) considered a suboptimal solution
employing a sequential two-step approach based on MAP estimation of Sg
followed by MAP estimation of a given Sop,ji, in which Sy, ; is the result of the
first estimation. This sequential estimation procedure is linear at each
iteration and continues until some convergence criterion is satisfied. After
further simplifying assumptions, it can be shown that the MAP estimation of S,
is equivalent to a minimum mean squared error (MMSE) estimate. In addition,
as the observation window increases, the procedure for obtaining an MMSE
estimate approaches a noncausal Wiener filter.

Although successful in a mathematical sense, this technique has received
little application because of several factors. First, the scheme is iterative
with sizable computational requirements. Second and most important is that
although the original sequential MAP estimation technique was shown to
increase the joint likelihood of the speech wave form and all-pole parameters,
an heuristic convergence criterion had to be employed. This is a serious
drawback if the approach is to be used in environments requiring automatic
speech enhancement. After an extensive investigation (Hansen & Clements,
1985), this approach produced significant levels of enhancement for white
gaussian noise in three to four iterations. Some interesting anomalies were
noted that helped motivate development of the constrained approaches. First,
as additional iterations were performed, individual formants of the s<sreech
decreased in bandwidth and shifted in location. Second, frame-to-frame pole
jitter was observed across time. Both effects contributed to unnatural
sounding speech. The goal, therefore, was to formulate a new set of
ennancement algorithms that impose constraints on pole locations across time
(inter-frame) and iterations (intra-frame). Spectral constraints are applied
to the all-pole parameters &j, which ensure that (a) the all-pole speech model
is stable, (b) it possesses speech-like characteristics (e.g., poles are not
too close to the unit circle causing narrow bandwidths), and (c) the vocal
tract characteristics do not vary wildly from frame to frame when speech is
present. Because of the constraints imposed, improved estimates of &3+
result. Given this new estimate, the second MAP estimation of Sp can be made.
To increase numerical accuracy, reduce computational requirements, and
eliminate inconsistencies in pole ordering across frames, the line spectral
pair (LSP) transformation was used to implement most of the constraint
requirements.




Th- LSP transformation can be viewed as an alternate representation of
the LPC spectrum. The LSP coefficients are obtained from the 1linear
predictive coder (LPC) prediction coefficients by combining the forward and
backward predictor polynomials as follows:

P(z) = A(z) + B(z), Q(z) = A(z) — B(z2) (1)

The vocal tract transfer function is given by g/A(z), and M is the order of
the LPC speech model. The resulting polynomials, P(z) and Q(z), axe
symmetrical and anti-symmetrical, respectively, with a root of P(z) at z = +1
and a root of Q(z) at z = —1. The remainder of the roots of P and Q lie on
the unit circle. Since the roots occur in conjugate pairs, the original
polynomial can be represented by M real numbers. The angles of the roots,
(wj,i =1,2,...,M), are called the line spectrum pairs.

The LSPs possess several important properties that make them attractive
for use in applying spectral constraints. One important characteristic is
that if the vocal tract polynomial A(z) has all its roots inside the unit
circle (i.e., a stable filter), the roots of P and Q will alternate around the
unit circle (Crosmer, 1985). If two adjacent LSP frequencies are identical,
it indicates that a root of A(z) lies on the unit circle.

In addition to their attractive representation of the LPC spectrum, the
LSP coefficients offer the possibility of a more direct representation of
perceptually important infcrmation. Specifically, there is a firm statistical
relationship between the locations and bandwidths of the speech formants and
the locations of the roots of P and Q, respectively. Since roots of the P
polynomial correspond approximately to locations of formant center frequencies
(when a formant is present), the P polynomials' LSP coefficients are termed

position coefficients. 1t can be shown that the closer two LSP coefficients
are together, the narrower the bandwidth of the corresponding pole of the
vocal tract filter. Therefore, formants are indicated when two LSP
coefficients are close together. When LSP coefficients are far apart, they

indicate poles that contribute only to the overall spectral shape. Because of
their relationship to the presence or absence of a formant by their nearness
to a position coefficient, the coefficients of Q are termed difference
coefficients. Given the LSP coefficients, the position coefficients are
simply the odd index LSP coefficients, (P; = ®;,-1,i = 1,2,...M/2). The
difference coefficients are given as follows:

{ldjl = MIN [|wy;,3 — @23l), i =1, 2,...,M/2) j =-1,1 (2)

in which the sign of dj is positive if ®;; is closer to ®;;.; and otherwise is
negative. With this interpretation, a new enhancement technique based on
Wiener filtering is now possible by imposing constraints on the LSP
coefficients,.

Figure 1 illustrates the framework for the constrained enhancement
algorithms.

Results

Speech degraded by additive white gaussian noise was processed using
various configurations of the new constrained enhancement algorithm. Energy
thresholds for inter-frame constraints were obtained from frame energy
histograms at each SNR. Excellent enhancement resulted for a wide range of
threshold values. 1Intra-frame constraints were applied across two to three
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iterations. Informal 1listening tests indicated noticeable gquality
improvement, although no intelligibility testing has been performed. However,
extensive work has been performed in the area of objective speech quality
measures (Quackenbush, Barnwell, & Clements, 1988). Good correlation has been
shown to exist between subjective quality and objective measures. Therefore,
objective measures including the Itakura-Saito likelihood ratio, log area
ratio, and weighted spectral slope measure were used for evaluation.

Figure 2 illustrates a comparison of typical results for the various
constraint approaches. The Itakura-Saito measure is plotted versus SNR for a
white noise distortion. Plot a represents the original distorted speech.
Plots b through e represent combinations of inter-frame constraints (both
fixed and variable rate) and intra-frame constraints (applied to position
coefficients-auto-correlation lags). All configurations examined showed
significant improvement in Itakura-Saito measures. Threshold settings for the
variable frame rate inter—frame constraint were somewhat sensitive to varying
noise levels. However, the fixed frame approach by itself and with either
auto-correlation or position intra-frame constraints, gave impressive results
with little sensitivity to varying levels of SNR. To determine a limit of the
level of enhancement, the original undistorted predictor coefficients, a, were
used in the unconstrained algorithm. In essence, the two-step MAP estimation
approach is now reduced to a single MAP estimate of Sy and therefore
represents the theoretical limit for enhancement using Wiener filtering. Plot
f indicates this 1limic. Although only Itakura-Saito measures are shown,
similar improvement was also observed for log area ratios and weighted
spectral slope measures. Figure 3 compares the new approach to existing
techniques. Plot b shows results from spectral subtraction as formulated by
Boll (1979). An evaluation was performed for both half and full wave
rectification, along with one to five frames of magnitude averaging, in which
these points represent the best results. Plot ¢ is from the unconstrained
Wiener filtering technique. Plots d and e are typical values for the inter-
frame constraint (fixed frame rate), and inter- plus intra-frame constraints
(fixed frame and auto-correlation lags). Again, f indicates the limit for the
Wiener filtering approaches.

Performance evaluation over sound classes was accomplished by hand-
partitioning speech into segments. Entire sentences were processed, and
objective measures from each class were computed. Table 1 summarizes this
comparison between the unconstrained Lim-Oppenheim technique to that of the
inter and intra-frame constraint approach. Measures for the theoretical limit
using undistorted LPC predictor coefficients, a, are also indicated.

Improvement 1is indicated for all types of speech. In addition, the
constrained approach produced superior objective measures of quality across
all speech classes at the same iteration. These results clearly indicate

improvement over the unconstrained approach as well as spectral subtraction
for additive white gaussian noise.
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Table 1

Comparison of Unconstrained (Lim-Oppenheim) and Inter- and Intra-frame
Constrained (Hansen-Clements) Algorithms Over Sound Types for
White Gaussian Noise (SNR = +5 dB)

Sound Itakura-Saito likelihood measure
type Original Lim-Oppenheim Hansen-Clements True LPC
Silence 1.634 1.649 0.842 0.319
Vowel 4.020 3.299 1.651 0.582
Nasal 19.814 17.656 3.968 0.324
Stop 7.261 3.979 1.099 0.435
Fricative 3.739 3.509 1.766 0.649
Glide 1.525 1.442 1.131 0.705
Liquid 9.597 4.545 0.998 0.303
Affricate 3.924 2.702 2.229 0.323
Voiced and

unvoiced 5.838 4.293 1.761 0.519
Total 4.022 3.151 1.364 0.433

As mentioned, the iterative enhancement algorithms must be suspended at
some iteration. To determine a terminating iteration, a criterion must be
must be selected to evaluate levels of improvement as the iterative scheme
progresses. The criterion chosen is based on objective speech quality
measures. Such measures are formed by a weighted comparison of actual and
resulting estimated LPC predictor coefficients found during enhancement. The
obvious problem with such a criterion is that except for simulation, the
actual speech is unknown during the procedure. If, however, simulation were
to show a consistent value for the best iteration in terms of this criterion,
a convenient stopping condition would exist. Previous results based on
objective quality measures indicate the unconstrained approach to produce
maximum objective quality at different iterations for different classes of
speech. Table 2 illustrates this behavior over the indicated sound classes.
As this table shows, maximum overall speech quality is obtained at the third
iteration, with considerable variation across sound types. For example,
glides required two iterations, with nasals, liquids, and affricates requiring
between five and six. Therefore, depending on sound class concentration, the
optimal iteration (in terms of minimum distance) would vary considerably.
This result indicates the inability to determine in advance a terminating
iteration for the unconstrained approach since it is highly dependent on sound
class and to a lesser degree on SNR.

The new constrained enhancement algorithms appear to solve this problem
of sound class dependency. Table 3 presents results from an equivalent
evaluation for one of the constrained enhancement algorithms (FF-
LSP:T,Auto:1). A comparison between Tables 2 and 3 shows that the constrained
approach produces superior quality measures across all speech classes at the
same iteration. This improvement surpasses even combined individual maximum
quality measures across the unconstrained approach. Thus, the constrained
enhancement algorithm does more than simply impose a constraint to adjust the
rate of improvement: the constrained approaches consistently result in
superior objective speech quality at the same iteration over all sound

12




classes, independent of SNR. Table 4 summarizes optimum terminating points in

terms of objective quality for the enhancement algorithms. Techniques
employing only inter-frame constraints consistently resulted (93% occurrence)
in maximum quality at the third iteration. Techniques employing inter- and

intra-frame constraints had a 97% occurrence of maximum quality at the seventh
iteration. 1In addition, adjacent iterations differ only slightly in objective
quality for the constrained techniques. This contrasts sharply with the large
variations in adjacent iterations for the unconstrained technique. Therefore,
if the iterative scheme were allowed to continue or halted one iteration
before optimal, only minor differences in speech quality would result. The
results consistently suggested that the constrained enhancement algorithms
reach a maximum level of speech quality at the same iteration, independent of
SNR and sound class concentrations.

The unconstrained Wiener filtering-all-pole modeling approach was
previously generalized for colored aircraft noise (Hansen & Clements, 1990).
In that study, an extensive investigation was performed using variois spectral
estimation techniques (MEM, MLM, Burg, Bartlett, Pisarenko, Periodogram) for
securing estimates of colored background noise, along with varying SNR (-20 dB
to +20 dB). Results indicated that Bartlett's method produced spectral
estimates that resulted in highest quality improvement for this particular
distortion.

Table 2

Lim-Oppenheim Unconstrained Speech Enhancement for AWGN, STR=+5dB
(Optimum perceived quality for a particular speech class is indicated by a &.)

Sound —Itakura-Saito likeljhood measure (across iterations)
type Original No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7
Silence 1.634 1.615 #1.608 1.649 1.933 3.756 20.360 49.884
Vowel 4.020 3.721 3.445 #3.299 3.720 8.319 121.82 _——
Nasal 19.814 19.154 18.416 17.656 17.009 16.593 &15.192 15.697
Stop 7.261 6.114 4.926 3.979 &#3.822 6.889 25.515 29.694
Fricative 3.739 3.637 3.532 #3.509 3.902 7.658 47.829 94.106
Glide 1.525 1.414 &1.333 1.442 2.231 4.300 8.391 15.561
Liquid 9.597 8.241 6.546 4.545 2.606 #1.676 6.381 30.001
Affricate 3.924 3.609 3.213 2.702 2.091 &1.552 2.911 2.975
Voiced and

unvoiced 5.838 5.321 4.767 4,293 #4.289 7.346 61.865 -
Total 4.022 3.720 3.402 &#3.151 3.271 5.795 43.457 -
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Table 3

Hansen~Clements Inter- and Intra-frame Constrained Speech Enhancement for AWGN,
SR=+5dB (Optimum perceived quality for a particular speech class
is indicated by a #.)

Sound — Itakura-Saito likelihood measure (across jterations)
type Original No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No.
Silence 1.634 1.551 1.351 1.155 1.036 0.979 0.929 #0.884 0.901
Vowel 4.020 3.319 2.865 2.394 1.863 1.677 1.571 #1.565 1.828
Nasal 19.814 16.490 12.397 10.523 8.682 6.840 4.929 &#3.789 5.548
Stop 7.261 6.246 4.840 3.492 2.668 1.812 1.383 #1.129 1.435
Fricative 3.739 3.432 3.027 2.612 2.245 1.948 1.729 #1.615 1.844
Glide 1.525 1.389 1.275 1.232 1.219 1.189 1.161 #1.153 1.217
Liquid 9.597 6.481 3.382 2.243 1.612 1.209 0.943 #0.926 1.211
Affricate 3.924 3.722 3.447 3.117 2.806 2.598 2.472 #2.368 3.966
Voiced and
unvoiced 5.838 4,642 3.658 3.006 2.501 2.131 1.865 #1.740 1.953
Total 4.022 3.026 2.441 2.069 1.801 1.611 1.457 #1.381 1.498
Table 4
Summary of Optimal Terminating Iteration Across SNR for AWGN
Additive white gaussian noise SNR
-5 dB -0 dB +5 dB +10 dB
Constrained QOptimal iteration using Itakura-Saito likelihood measure  OVERALL
enhancement Iter. Freq. Iter. Freq. Iter. Freq. Iter. Freq. Iter. Freq.
algorithm (%) (%) (%) (%) (%)
FF-LSP:T 3 100 3 87 3 87 3 100 3 93
4 13 4 13 4 7
VF~LSP:T 3 90 3 85 3 94 3 100 3 94
4 10 4 15 4 6 4 6
FF~LSP:T, 7 100 7 100 7 100 7 88 7 97
Auto:I 6 12 6 3
FF-LSP:T, 4 100 4 100 4 100 4 100 4 100
LSP:I
VE~-LSP:T, 4 100 4 100 4 100 4 100 4 100
LSP:1I
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Noise recorded from a Lockheed C-130 aircraft interior was used to
degrade noise free utterances. For these simulations, two Bartlett spectral
estimates from the original noise wave form (to avoid complications in silence
detection) were used across each sentence. The noise was both colored and
non-stationary, so increasing the number of spectral estimates across the
utterance should improve enhancement performance. An analysis.as performed
for an inter-frame (FF-LSP:T) and a combined inter- and intra-frame (FF-
LSP:T,Auto:I) approach. Informal listening tests indicated noticeable quality

improvement . Figure 4 illustrates results from this study. All
configurations examined-showed significant improvement in Itakura-Saito
measures. Plot a shows Itakura-Saito measures for the original distorted

speech. Plot b is from the unconstrained Wiener filtering technique. Plots ¢
and d are typical values for the inter-frame constraint (FF-LSP:T), and inter-
plus intra-frame constraint (FF-LSP:T, Auto:I) approaches. To determine
limits of the level of enhancement, the original undistorted predictor
coefficients were used in the unconstrained algorithm. 1In essence, the two-
step MAP estimation approach is now reduced to a single MAP estimate of Sg,
and therefore represents the theoretical limit for enhancement using Wiener
filtering. Plot e indicates this limit. BAlthough only Itakura-Saito measures
are shown, similar improvement was observed for log area ratio and weighted
spectral slope distance measures. As this figure indicates, significant
levels of enhancement result for the constrained enhancement algorithms.

These results show that the constraint algorithms outperform the
unconstrained approach for a colored distortion. However, it is possible that
the constrained techniques are improving only particular speech classes which
may have high concentrations in the test utterances. Therefore, a performance
evaluation over sound classes was performed by hand-partitioning speech into
segments, enhancing entire sentences, and computing objective measures from

each class. Table 5 summarizes this comparison between the unconstrained
technique to that of the inter- and intra-frame constraint approach (FF-
LSP:T,Auto:I). Measures for the theoretical limit using undistorted LPC

coefficients are also indicated. It should be noted that voiced plus unvoiced
measures give a better indication of quality improvement because of the time-
varying nature of the interfering background nocise. Improvement is indicated
for all types of speech. This shows that the constrained techniques are
enhancing all aspects of the speech signal.

RECOGNITION OF SPEECH IN NOISE

Three approaches were investigated for recognition of speech in noise.
In the first, the enhancement algorithms of Section I were directly applied to
the noisy speech, and then input to an ASR module. In the second, a signal
detection approach based on Kalman filter and a pseudo-continuous hidden
Markov model (HMM) were used. In the third, a front end and distance measures
were used, which in themselves do not enhance speech, but nevertheless improve
performance because of the statistical properties of speech in noise.

15




Distance

Figure 4.

ITAKURA-SAITO LIKELIHOOD MEASURE

6 6
5T 15
a4t 14
N\
N\ ., Q
371 N ° 3 S
AL 1° =
\\ ')
<N
\t -
\\\.c
2+ *d 12
1+ +1
€ e __
——-— L.
0 . ! i i 0
-5 0 5 10

Signal-to-noise Ratio

Comparison of inter- and intra-frame constrained enhancement
algorithms for colored aircraft noise over SNR.

a.

b.

Original distorted speech
Generalized unconstrained Wiener filtering
Hansen-Clements: employing inter-frame constraints (FF-LSP:T)

Hansen-Clements: employing inter- and intra-frame constraints
(FF-LSP:T,Auto:I)

_’
Theoretical limit: wusing undistorted LPC coefficients a.

16




Table 5

Comparison of Unconstrained (Lim-Oppenheim) and Inter- and Intra-Frame
Constrained (Hansen-Clements) Algorithms Over Sound Types
for Slowly Varying Colored Noise (SR=+5dB)

Sound Itakura-Saito likelihcod measure
type Original Lim~Oppenheim Hansen-Clements True LPC
Silence 6.63 6.33 4.32 2.03
Vowel 3.23 2.54 1.44 0.53
Nasal 4.03 3.26 2.13 0.45
Stop 1.58 1.29 0.66 0.61
Fricative 1.37 1.09 0.85 0.65
Glide 1.14 1.04 0.52 0.51
Liquid 1.22 0.55 0.22 0.18
Affricate 0.90 0.51 0.33 0.16
Voiced and

unvoiced 2.27 1.76 1.08 0.52
Total 4.15 3.86 2.74 1.17

Enhancement Followed by Recognition

The utility of the previously described enhancement procedures for
helping an unmodified .SR module was tested. A fairly standard, isolated
word, discrete observation HMM recognition system was used for evaluation.
This system was LPC-based and had no embellishments. In all experiments, a
five-state, left-to-right model was used. The system dictionary consisted of
20 highly confusable words used by Texas Instruments and MIT Lincoln Labs to
evaluate recognition systems. Subsets include {go, oh, no, hello} and {six,
fix}). Twelve examples of each word were used, six for training, six for
recognition (i.e., all tests fully open). A vector quantizer was used to
generate a 64-state codebook using 2 minutes of noise-free training data. The
20 models employed by the HMM recognizer were trained using the forward-
backward algorithm. Table 6 presents results from five scenarios using a
noise-free codebook and noise-free trained system. Spectral subtraction
preprocessing employed three frames of magnitude averaging. The unconstrained
Lim-Oppenheim approach was terminated at the third iteration. The constrained
Hansen-Clements (FF-LSP:T,Auto:I) was terminated at the seventh. As these
results indicate, recognition was reduced to chance for noisy, spectral
subtraction, and Lim-Oppenheim (-5,0,5 dB) speech. The constrained approach
resulted in improved recognition across all SNRs considered, which is quite
remarkable in light of the severe levels of noise and the difficulty of
dictionary employed. However, reliable recognition in such a hostile
environment may require more than merely extending existing techniques. As a
final comparison, three tests were performed using noisy and enhanced speech
(SNR=+10 dB). For the noisy case, speech was coded using a noisy codebook,
and reccgnition performed using a noisy trained HMM recognizer. Similar tests
were performed for two enhancement techniques (i.e., enhanced words coded
using enhanced codebook, and tested using enhanced speech trained HMM
recognizer) . Forty percent of the errors recognized were caused by
misclassification of leading consonants (especially fricatives).
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Table 6

Recognition of Performance Using Enhancement Pre-processing in AWGN
{tSNR=+10dB)

RECOGNITION RESULTS

Condition Signal-to-noise ratio
(noise-free Original -5 dB -0 dB +5 dB +10 dB +20 dB +30 dB
training) (%) (%) (%) (%) (%) (%) (%)
Noise free 88
Noisy 5 5 6.7 5 8 49
Spectral

subtraction 5.8 7.1 5 5.4 20 55
Lim~-Oppenheim 5.4 5.8 7.5 12.5 41 64
Hansen-Clements 15 14 19.5 34.5 59 83

. , {ze in t] .

Noise free Noisy t Hansen-Clements t Lim-Oppenheim t

88% 90% 77% 23%

The constrained algorithms have shown improvement as a preprocessor for
speech recognition, although their ability to improve performance to an
acceptable level in SNRs as low as those considered is questionable. Although
the enhancement procedures improved LPC parameter estimation substantially,
LPC-based strategies may simply be inappropriate for SNRs of roughly O dB.
Further work in this SNR range will require as a minimum, di;fferent front end
processing.

Recognition of Speech in Noise

In this section, a set of techniques based on linear least squares
estimation theory is described. The basic idea is that the speech signal (in
quiet or in noise) carries information about the system that produced it. By
using optimal estimation and system identification, presumably one could
improve ASR.

The motivation for the current study came from observations that
although general performance of a recognizer may not depend highly on the
exact placement of frames, the detailed error patterns often do. The methods
explored try to eliminate the apparent framing artifacts by essentially
extracting a set of parameters for every sample of the digital speech. The
recognition algorithm can then be considered a close approximation of a
continuous transition HMM. This approach would not be feasible were it not
for the efficient algorithms formulated for this specific problem.

In this section, the aspects of HMMs, which are conducive to this

strategy and issues involved in training, and recognition are discussed.
Three parameter extraction methods, one of which relies on a novel use of

18




Kalman filtering, and others (two involving more classical procedures) are
described. Experimental results are described.

The Hidden Markov Model
Definitions

Consider a discrete state discrete transition HMM for each
pattern to be recognized. Assume the observations are drawn from a finite
alphabet of size M, and a new observation is made for every sample of the
digital speech. This would imply some form of vector quantizer continuously
outputting a code word sequence. Although the form and implementation of this
process are described in detail in the Recognition System section for all
systems considered, enough memory existed in the analysis to produce 1long
sequences of the same code word in a segment of an utterance. The importance
of this result will become apparent below. Denote the number of states in a
model by n.

% = probability the model starts in state i,

Of = my, n2, ..., %

A transition probability matrix, in which

[l

probability of transition from state i to state j
in one trial; i, j =1, 2,...,n.

alj

B = observation probability matrix in which

bk = probability of observing code word k
given state j.

o(t)

code word observed at time t, 1 £ t < F

R(t) observation matrix, consisting of
R(t) = diag[bi(0{t}),...,bp(0{t})]
For a given model M, and observations 0(1), 0(2),...,0(F), define

aT(t) = (ay(t),...,an(t))

ai (t) = prob(0f1],...,0[t]; state i at t)

BT (t) (Bi(t), ..., Bn(t)]

Bi(t) prob(O(t + 1],...,0[F]; state i at t)

The probability that the sequence from the mcdel is observed is
n

Pr{O(1l),...,0(F)] = X aj(t)Bj(t) (3)
i=1
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ai{t), B(t), and Equation (1) can be rewritten in matrix form so that

Pr(O(l),...,0(F)] = OTR(1)AR(2)A...AR(F)B(F) (4)
aT(t) = OTR(1)AR(2)...AR(t) (5)
BT(t) = AR(t + 1)AR(t + 2)...AR(F)B(f) (6)

If the model is constrained to be left to right, A will be upper
triangular. If the model demands the system to start in state 1 and end in
state n, then

HT = [lror---r()] (7)
BT(F) = 10,...,0,1]
Recognition

For a given model, one needs to compute the probability of
the observations. This can be accomplished by evaluating the above equations.
In this system, F is normally such a large number that the direct evaluations
would require an inordinate amount of computation. To reduce this
computational burden, the fact that usually long runs of the same code words
occur is employed to make the above equations a sequence of the same matrix
multiplications. The constraint that the model be left to right that makes A
upper triangular. Assume that the code words at time t + 1 through t + m are
the same. The partial product for the period of time is

[AR(t + L)AR(t + 2)...AR(t + m)],
and is equal to
[AR(t + m) )™

Since the matrix A is upper triangular and R{(t + m) is
diagonal, the product, [AR(t + m)]™ is an upper triangular matrix. The upper
triangular matrix has the property that it can be diagonalized if the diagonal
elements are distinct. In this case, if the diagonal elements of AR(t + m)
are assumed to be distinct, it can be diagonalized in such a form that

AR(t + m) = ppp-! (8)
in which D is diagonal with its elements the same as the diagonal elements of
AR(t + m); P is upper triangular with its diagonal elements equal to 1.
Therefore,

[AR(t + m)]™ = ppmp-l (9)

And g(t + m) can be computed directly from g(t) without computing
intermediate gs at t + 1, t + 2,..., and t + m - 1. That is,

a(t + m) = g(t) [AR(t + m)]™
(10)
= g(t)pD"P"1

It seems that obtaining the matrices, P and P~!, would
require time-consuming computation, especially when the dimension of the

20




matrix is large. This, however, is not so in this case, since efficient
methods exist when [AR(t + m)] is upper triangular.

Traihing Algorithms

In the previous section, an efficient way of computing Qs
without computing the intermediate values when a long run of the same
codewords are observed, was shown. [s can also be computed in the same way.
In this section, two different training methods are introduced in which the
same method is employed to efficiently perform the re-estimation. The first
one, denoted as "Algorithm 1," is strictly based on the Baum-Welch re-
estimation algorithm, while the second one, denoted as "Algorithm 2," is a
slightly different version that performs better.

Algorithm 1

In the Baum-Welch re-estimation algorithm, the estimates of

ajj and by(v), denoted as dij and Bj(v) respectively, are updated at each
iteration based on the previous estimates as follows:

Y..
1
Y
N )y K@ (DB (t)
B (v) = tEo (L) 3 J (12)
F a.(t)f. (t)
t=1 J J
in which
F-1
Yiy = 1/p 2 aj(t)éiij(O[t + 11)Bj(t + 1) (13)
t=1
n
Yi = Yij (14)
j=1
Consider the computation of yij. If O(k + 1) = O(k + 2) =...= O(k + m), then

bj(O[k + 1]) = bj(O[k + 2]) =...= bj(O[k + m}). Thus the partial summation of
Equation (13) for k < t < k + m — 1, denoted as Yij(k, X + m — 1), can be
written as

k+m-1
Yij = 1/p [ajjbj(0{k + 1})) }E aj (t)Bj(t + 1) (15)

t=k

Computation of Equation (16) directly requires aj(t) and Bj(t + 1) to be
computed at t = k, Xk + 1,..., k + m - 1. With a different strategy, which is
shown below, great gains in efficiency can be achieved, especially when m is
large. First express g(t) and B(t + 1) for k <t < k + m — 1 in terms of
@(k) and B(k + m) as follows:

aT(t) = aT(x) [AR(k + 1))t~k (16)
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B(t + 1) = [AR(k + 1)]™t*k=1 B(k + m) (17)

It follows that

k+m-1 k+m-1
t=k @i (t)By(t + 1) = t=k  [gt)fT(t + iy (18)
k+m~-1

t=k  [({AR}EF)T @) BT (k + m) ((AR}"-Erk-1) Ty 4 g
in which (*)ij denotes i-j component of matrix (*) and R = R(k+l) for

simplicity. As shown in the previous section, AR can be decomposed so that AR
= pDP™!. Then Equation (19) can be rewritten as follows:

k+m-1
X ai(t)Byle + 1)

k+m-1
2k [e-Tpt-keTq (k)BT (k + m) e~ Tpm-t+k-1pTy, (19)

1

k+m-1
[P_T(Z =k Dt-kPTﬁ{k}ﬁT{k + m}P—TDm-t+k—l)PT]ij

If
a (k) = PTg(k) (20)

BTxx +m = BT(k + mp~T (21)

then Equation (20) can be written more neatly so that

k+m-1
z ai (£)Bj(t + 1) = [(p7TMpT); (22)
t=k
in which
k+m-1
M = ~t=k pt-kpTg (k)BT (k + m)p~Tpm-t+k-1 (23)
k+m-1

= t=k Dt_kd(k) ﬁT(k + m)Dm-t+k-1

Now consider the computation of M. The (i - j)t® component of M, Mj 4, can be
expressed as

k+m-1
Mjg = &tk dit % aj(k) By(k + mydymtrkd (24)
. m-t+k-1
= (Gilk}Bj{k + m}H) bIpN djt-kgqm-trk-l

Si'ce it was assumed that di # dj if i # j,the summation can be reduced so
that
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k+m-1 a-a"
j i . .
— for i # 3
z dit-kdjm—t+k—1 = ( dy -d; (25)
t=k
m(di)m_1 for i = j
Thus
aP-amM
=2 t‘ii(k)Bj (k + m) for i # j
Mij = dy-dj (26)
m(d,)™ ! &i(k)ﬂj (k +m) for i = 3
1
In summary,
Yijl,k +m - 1) = 1/pP"TM@T] (a3bj(0(k + 1) }) (27

It is worth noting that only the upper triangular portion of M must be
computed, since only yij(k,k + m — 1) is needed for i < j, and the matrices,

P~T and PT, are lower triangular.
Second, consider the numerator of Equation (12) for the re-estimation of
bj(v). Under the same assumption that O(k + 1) = O(k + 2) =...= 0(k + m) = v,

the partial summation of the numerator, XZte€O(t)=v ai(t)Bj(t), for k + 1 <t <
k + m can be expressed in terms of Q(k) and ﬁ(k + m),

k+m k+m
Et=k+1 aj(t)Bj(t) = Zt=k+1 (Q[t]ﬁT[t])jj (28)

ZX‘H’“
= [p-T t=k+1 (Dt_kPT a{k}ﬁT{k + m}P"TDk+m—t)PT]jj

Equation (26) is not unlike Equation (20) and can be evaluated similarly. 1In
fact, if
k+m
K - X ptxpTg (k)BT (k + mp~Tpkem-t (29)
k+1

It can be observed that M is the product of D and M, that is,
M = DM (30)

Hence, once M is obtained to compute yij(k,k + m — 1), Equation (26) can be
computed with only a few more operations as follows:

k+m

L aBye) = p-ToweT) (31)
t=k+1

It should also be noted that in the partial summations involved for the re-
estimations of ajj and bj(v), @s and fs are not required to be computed at
every time unit. For example, if we consider the assumption given above that
O(t + 1) =0(t +2) =...= 0(t +m), only g(k) and B(k + m) are required in the
partial summations, that is, all the intermediate gs and fBs do not have to be
computed.
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Algorithm 2

The algorithm presented here can be considered as a sampled
version of Baum-Welch re-estimation algorithm, Unlike the Baum-Welch
algorithm, which is formulated by Equations (l11) and (12), in the new
algorithm, only samples of yij are used. Equation (13) can be rewritten as
follows:

F-1
iy = & Yij(0) (32)
t=1
in which
Yi5(t) = 1/p ai(t) 3j3bj(0lt + 1Pyt + 1) (33)
The re-estimation equations (11) and (12) can also be written in terms of
Yij(t)
F-1
- Et=1 Yi5(0)
2ij = n F-1 (34)
Z j=1 (E t=1 Yij(t))
n
_ Ztso(t)=v (E i=1 Yij(t'l))
b (v) F (35)
j n
IR | YR Yij(t‘l))
In the new algorithm, Yyij(t) is sampled at every k! time unit. This is
similar to assuming that
vij(1) = ¥ij(2) =...= yij(k)
Yij(k + 1) = vij(k + 2) = = yij (2k) (36)
Yij2k + 1) = yij(2k + 2) =...= ¥ij(3k)

Using this and the assumption that F = mk for some integer m, Equation (31)
becomes

m-1
Y reo Vi 4(TK+1)

a:ss: =
i3 n m-1 . . (tk+
Ej:l Zr:o ‘YlJ(Tk b

(37)

Although this algorithm is not guaranteed mathematically to converge, it has
never been observed in practice to be a problem. Not only is it
computationally simpler than Algorithm 1, but it also resulted in improved
performance.

Front End Analysis

The approach adopted is based on a linear model of speech that is
time-invariant over short intervals. This is the traditional model often used
in speech recognition and coding applications. However, natural smooth
changes occurring in the system, as well as additive uncorrelated noise, that
are allowed for the linear model may also have explicit modeling of time-
varying system parameters. Since many phonemes are characterized by a
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particular evolution in time rather than by steady state or target spectra,
this model is more powerful than more traditional ones. 1In particular

X(k) = O&(k)X(k — 1) + I'(k)w(k)

(38)
s(k) = BIX(k) + v(k)

in which the vector X(k) = [x(k)x(k - 1)...x(k - p + 1)]T, x(k) is the speech
without noise, w(k) the noise input and I'(k) its gain, HT = (1,0,0,...,01,
v(k) the additive noise, and ®(k) characterizes the time-varying vocal tract
filter.

Systems similar to this have been used to model many varied
signals arising in sonar, heart monitoring, aircraft control, and so forth.
In the linear prediction synthesis, model ®(k) remains constant over 10- to
30-millisecond intervals, and v(k) is zero. 1In the LPC analysis model, v(k)
is generally assumed to be zero so that ®(k) can be estimated every 10 to 30
milliseconds. Recursive linear least squares estimation based on the model
falls within the general area of Kalman filtering, which allows one to
efficiently compute the least squares estimate of X(k) from the least squares
estimate of X(k — 1) and s(k). If the system has been modeled correctly, the
property to exploit is the prediction error, €(k), which would be white, and
it should have a predictable ratio of its power to the unfiltered signal's
power. If there are L possible models from which the observed signals were
generated, this idea can be used for computing the relative likelihood of each
model, given the observed signal. 1In the following, the front end process is
explained in detail on the Kalman filtering process followed by the decision-
making process.

Kalman Filtering

In the Kalman filtering process, there are L distinct
competing models, each of which has the form

X(k) = ®X(k — 1) + I'(k)w(k)
(39)
s(k) = HX(k) + v(k)

a(l) a(2) ... a(p)

1 0 ... 0

in which b = 0 _1 ~er 0
_0 0 0 i

H=-=1(1,0,0,...,0]

E(v(k)] = 0, E[v(k)v(1)] = O2 (k)&
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E(w(k)] = [0,0,...,0]7

(1 0 ee. 0
E[w(k)]w(l) = ° f’ ? &1
| 0 0 0 ]
T g(k) 0 0]
ra = | ° 0 0
|0 0 cee 0
and a(l),a(2),...,a(p) are linear prediction coefficients that characterize
the model. This model results in the following time-recursive formula which
gives the 1linear least squares estimate of X(k) given s(kx - 1),
stk — 2),...,8(0).
£(k) = s(k) — HX (k|k — 1) (40)
o2 2
e (k) = HP(klk — 1)HT + O (k) (41)
M(k) = 1/6, P(k|k — 1)HT (42)
X(klk) = X(kik — 1) + M(k)€(k) (43)
X(k + 11k) = ®X (k|k) (44)
P(klk) = P(klk - 1)M(k)uT(k)05 (45)
P(k + 11k) = ®P(k|k)®T + I'(x)IrT(x) (46)

2
in which €(k) is the innovations sequence, og(k) the variance of the
innovations, M(k) the Kalman gain, and P(kir) the covariance of the estimate

error X(k) — X(k|r). The initial condition is given as follows:

xT(010) = [s(0)s(-1)...8(-p + 1))
(47)

P(010) =02 (0)1

With the innovations sequence obtained from each model, a
likelihood test is performed in a recursive manner. If €i(k) is denoted the
innovation produced by model i at time k and pi(k) the probability that model
i generates s(k), then

2
N k], o [k])p, (k-1)

(48)

pj (k) = L 2
pd _lN(ej[k],Gej[k])pj(k-l)
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2
(¢
in which ¢ j(k) is the variance of €5(k) when model 3 is correct, and N(a,b)
represents the gaussian density of zero mean with the variance b evaluated at
a. The model with the largest p is then chosen.

Experiments

A set of recognition experiments was performed with clean speech,
noisy speech of SNR = 26 dB, and of SNR = 20 dB. The isolated words used in
the experiments are "break," "change," degree," "eight," "eighty," "enter,"”
"fifty," "fix," six," "go."™ Each word has 12 utterances, 6 of which were used
for training the HMMs. Each utterance was passed through the Kalman-filtering
process with three different levels of white gaussian noises as stated above,
which produced three different sets of code words, one for clean speech, one
for the noisy speech of SNR = 26dB, and one for the noisy speech of SNR =
20dB. In the Kalman-filtering process, the variances of the generating noise
and the additive noise were updated every 80 samples, and the initial
conditions were reset accordingly at the same time. The filter order was 14
for each of the 64 different filters.

1. With clean speech: two errors of 120 = 1.7%
One error from the set used for training: "six" recognized as "fix"
One error from the set not used for training: "eight" recognized as
"eighty"”
2. With noisy speech of SNR = 26dB: eight errors of 120 = 6.7%
Zero errors from the set used for training,
Eight errors from the set not used for training: "eight" recognized

as "eighty" (4), "fix" recognized as "six" (1), "six" recognized as "fix" (3)

3. With noisy speech of SNR = 26dB and clean speech: the recognition
of noisy speech. Six errors of 120 = 5%

Zero errors from the set used for training
Six errors from the set not used for training: "eight" recognized
as "eighty" (3), "fix" recognized as "six" (1), "six" recognized as "fix" (2);

the recognition of clean speech: seven errors of 120 = 5.8%

Two errors from the set used for training: "“eight" recognized as
"eighty,"™ and "six" recognized as "fix"
Five errors from the set not used for training: "eight" recognized

as "eighty" (5)

It is interesting to note that the models trained with both clean
and noisy speech give higher recognition rates for noisy speech (compare the
results of 2 and 3) than the ones trained with only noisy speech, while giving
a lower recognition rate for clean speech (compare the results of 1 and 3)
than the ones trained with only clean speech. It may be interpreted as clean
speech giving positive information for the training of noisy speech models,
and noisy speech giving negative information for the training clean speech
models. This behavior has been observed on several occasions. This method
has a base line performance better than that of the previous section.
Although it will not operate at really low SNRs, if it is in the range of 20
dB, excellent performance results.
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Recognition of Speech in Noise Using Front End and Distance Measures

In this portion of the study, no enhancement of the speech was performed
before recognition. Instead, a front end and a distance measure, which were
more robust in noise than conventional methods, were examined. The front end
was based on (mel)cepstral and delta-(mel)cepstral parameters. The distances
were based on a projection measure designed to minimize noise.

The class of projection measures used in this study is based on
theoretical and empirical observations found by Mansour and Juang (1988).
From a theoretical investigation of several speech models, including the
additive power spectrum, constrained autoregressive moving average (ARMA), and
pole displacement models for speech plus noise, it was shown that the norms of
truncated cepstral sequences were reduced in the presence of white gaussian
noise. In addition, from studying histograms, Mansour and Juang (1988) made
three important observations:

1. For a given SNR, cepstral vectors with larger norms were less
affected than vectors with lower norms.

2. Lower order cepstral coefficients were affected more than
higher ones.

3. The direction of the cepstral vector was less affected by
noise contamination than the vector norm (never exceeding 90°).

From these observations, a family of distortion measures was formulated
and used in a dynamic time warping (DTW) recognition scheme for recognition of
noisy speech, In the present study, this set of distortion measures is
further developed for use in a continuous density HMM recognition system, 1In
addition, the measure is used with an augmented feature vector consisting of
not only the cepstral coefficients but also a set of time differential (delta)
coefficients.

Projection Measure Computation

To compensate for the norm degradation observed, an equalization
factor is needed to account for the shrinkage in the norms. Such a scale
factor would effectively remove the cepstral norms from the distance
computation. This results in a Euclidean distance measure between test and

reference speech spectra, ft(ejm) and fr(ejw), respectively, of the following
form:
dguclidean(fy, £,) = (C, — AC)T (¢, — AC)) (49)

in which C. and C, are the N'' order cepstral vectors of the test and
reference speech signals, respectively, and A is the equalization factor which
is an implicit function of the SNR. The optimal value of A which minimizes
the above distance can easily be found by applying the orthogonality principle
and is equivalent to the projection of C, onto C, is

T
CeC
tor (50)

Aopt =
T
C.C,

Hence, the compensated distance measure becomes the Euclidean distance between
the test (noise-degraded speech) cepstral vector, C,, and its projection onto

the reference (noise-free speech) cepstral vector, C.:
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doroj (£, £,) = (Ct — P,.C)T(C, — P,Cy) (51)
in which P, is the projection operation matrix to the vector space C,:
T
Cr Cr

cre;

P, =

(52)

In this project, the projection measure was extended to be used in
an HMM speech recognition system. 1In the context of a continuous observation
HMM recognizer, the Euclidean distance is weighted by the inverse covariance
matrix of each state density, called the inverse covariance-weighted Euclidean
distance:

dstand(f,, £,) = xTc"lx - bTc b (53)

in which f.(eJ®) is the test spectrum, f, (eJ®) is the probability density of
the HMM state, x is the cepstral coefficient vector of the test observation, b
is the HMM state density mean vector, and C is the state covariance matrix.
Modifying this weighted Euclidean measure, the weighted projection measure for
use in an HMM recognition system becomes

Tm-1,,.T ~"1
dproj(ft'fr) = xTc-1x - X°C 'bb"C "x (54)
T -1
b'C b
in which the variables are as described above and the second term is the
projection of the test x onto b weighted by the inverse covariance matrix C-1.
This was the measure used in this study and was compared with the standard

weighted Euclidean distance described in Equation (53) in recognition
experiments.

Recognition System
Feature Extraction

This study used the MIT Lincoln Labs speech data base with
one general American male speaker and a confusable vocabulary of 34 words
("eight", "eighty"; "wide","wide"; "go","no","oh"; etc.). Five noise-free
tokens are used for training the HMMs, while five noise-degraded tokens of
each word are used for testing. The data base was recorded at a sampling rate
of 16 kHz ard then filtered and down-sampled to 8 kHz. An B8th order LPC
analysis was performed on frames of speech 45 msec long with a Hamming window
every 15 msec, producing an overlap of 66%. The words were endpointed by
applying an appropriate energy threshold. From the LPC filter coefficients,
two types of coefficients were computed, the cepstral and melcepstral
coefficients. 1In addition, a set of time differential coefficients were used
to describe the time-varying characteristics of the speech wave form. Various
numbers of coefficients were tried, with 12 to 16 coefficients performing
equally well in recognition tasks. Hence, a 32nd order feature vector
consisting of 16 coefficients and 16 delta-coefficients was used for each
frame of speech data.

1. Cepstral Coefficients

Sixteen coefficients (excluding the c(0) term) were recursively
computed from the 8th order LPC filter coefficients:
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j=1
e —3al3) = X (5 - 1)e(d - datd), §=1,2,...,16, (55)

i=1

in which the c(j)s are the cepstral coefficients, the a(j)s are the LPC filter
coefficients, and a(j) = O for i > p is assumed. A set of 16 time
differential (delta) coefficients is computed from a 7-point Parks-McClellan
finite impulse response (FIR) differentiator filter (with less than 5% maximum
deviation).

2. Melcepstral Coefficients

Sixteen coefficients (excluding the 0th term) were computed from the
25-point LPC power spectrum filtered by a bank of 24 triangular windows spaced
linearly below 1 kHz and logarithmically from 1 kHz to 4 kHz:

nfilt
mfcec (i) = }E log Xx cos [i(k - 1/2) n/nfilt] (56)
k=1
in which nfilt is the number of mel-spaced filters, i = (1,2,...,16), and Xk

is the energy output of the kth filter. As with the cepstral coefficients, a
set of 16 delta-melcepstral coefficients is also computed.

The motivation for using the melcepstral coefficients is
that they are perceptually based, modeling the frequency resolution of the
human ear derived from tuning curves, which tend to be linear below 1 kHz and
logarithmic above 1 kHz. This suggests tha: they would be superior for speech
recognition in noise, since humans have little trouble discerning speech from
background noise. In addition, they are close to the principal component
decomposition of the speech spectrum (Pols, van der Kamp, & Plomp, 1969) and
have been found to be well correlated with perceptual judgment data (Pols,
1971) .

Several numbers of mel-spaced windows were tried, ranging
from 12 to 24 windows. Above roughly 20 windows, performance was not
significantly improved with each added window. Hence, the value of 24 windows
was settled upon as a reasonable number needed to capture the perceptually
significant energy bands. The same number of mel-spaced or critically spaced
windows has been suggested by O'Shaughnessy (1987) to model the human hearing
to a first order.

Unlike the <cepstral coefficients, the melcepstral
coefficients did not show norm degradation at very low SNRs (typically
affecting the fricatives). This is because of the over-emphasis on the higher
frequencies by the 1log-spaced windows in the melcepstral coefficient
computation. To compensate for this over-weighting, various weightings were
tried. One such method is normalizing each mel-spaced window energy output by
the area of the window or effectively just the window length. This results in
a set of normed melcepstral coefficients which are also investigated:

nfilt

mfcc_norm(i) = 2: log Xx/Lx cos [i(k - 1/2) n/nfilt] (57
k=1
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in which Xx is the energy output of the kth mel-spaced filter and Lk is its
length. Like the other coefficients used, a set of delta coefficients was
used with the normed melcepstral coefficients. Note that such a normalization
does not affect the Euclidean distance between two speech signals since the
constants involving the Lks will cancel. However, this is not the case with
the projection measure and thus, such a normalization is used.

HMM Recognition System

A discrete state, continuous density HMM recognition system
was used. The forward-backward training algorithm was used to generate the 10
state left-to-right (with no skip transitions) models for each word described
by the probabilistic parameter set (n, A, B). The initial state probability
vector ® determines the starting state in the model and was set to & =
(1,0,...,0), allowing only starting in state 1. The transition matrix A was
initialized with diagonal terms (self transitions) set to 0. and the off-
diagonal (transitions to the next adjacent state set to 0.2, with all other
transitions prohibited. The matrix is randomly perturbed so each model was
begun at a different point.

The B parameter set represents the probability density
function in each state of the model. The B densities were initialized for the
algorithm by segmenting each training token into 10 equal parts and having
this be the initial estimate of the state sequence. From this estimate, a
(mel)cepstral mean vector and covariance matrix were extracted to describe the
gaussian observation probability function in each state. In addition, the
mean and covariance matrix for a set of delta-(mel)cepstral vectors was also
determined. Because of problems of inefficient training data (only five
tokens per word model), the pooled or grand variance matrix of all the
training data was used for each state density and a large number of states
(10) was needed.

With the probabilistic set (x, A, B) initialized as
described above, the forward-backward algorithm was then used to rain the
HMMs . At each iteration, the algorithm determined the probability of all
possible state paths through the current model estimate using the set of
training tokens. From these probabilities, the transition matrix A was re-
estimated. However, the initial state vector m was not re-estimated. Also,
these probabilities were used to weight he present observation parameter
vectors as they were averaged together to form the new estimate of the state
mean vectors. Since the covariance matrix was assumed to be universal, it was
not re-estimated in the procedure. Typically, three to four iterations were
needed to achieve model convergence,

It is important to note that all HMM training was done on
the noise-free speech and only the covariance-weighted Euclidean distance was
used, not the projection measure. Two sets of training were done: one with
both the (mel)cepstral and delta coefficients used together as the feature
vector for each frame of speech and the other with only the (mel)cepstral
coefficients used as the feature vector.

For recognition, the 'Viterbi algorithm was used to
determine the most probable path through the word models. A white gaussian
noise generator was used to add noise to five tokens of each vocabulary word
for wvarious SNRs. These noise-degraded words were then tested using the
recognition system trained on the noise-free speech. Both the new projection
measure and the standard inverse covariance-weighted Euclidean distance were
used in the comparison stage.
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Recognition Results

Recognition experiments were conducted to evaluate the
effectiveness of three factors: the projection measure, the inclusion of
delta-parameters, and the melcepstral representation. Tables 7 and 8 report
experimental recognition results for various levels of added white gaussian
noise obtained using the cepstral coefficients, melcepstral coefficients, and
a set of melcepstral coefficients computed by normalizing the energy output of
each triangular window by its window length. Experiments were conducted for
feature observations with and without augmenting the feature vector with
delta-coefficients. Table 7 lists results using the inverse covariance-
weighted Euclidean distance, while Table 8 lists results using the inverse
covariance weighted projection measure.

Table 7

Recognition Results Using the Inverse Covariance-weighted Euclidean Distance
(Results are given for feature vector without delta coefficients [nd]
and with delta coefficients [d]. Units are in percentages.)

Type of Noise

coefficients free 20 dB 15 dB 10 dB 5 dB
cep/nd 97.1 70 41.8 24.7 13.5
mel/nd 95.3 54.1 25.9 11.2 4.1
norm-mel/nd 95.3 54.1 25.9 11.2 4.1
cep/d 97.1 82.4 59.4 35.9 17.1
mel/d 97.7 68.8 49 .4 21.8 5.9
norm-mel/d 97 7 68.8 49 .4 21.8 5.9

As can be seen from Tables 7 and 8, the weighted projection
measure significantly improved recognition performance for all parameter
representations and over all SNRs. Even at a low SNR of 5 dB, improvements
from only 5.9% recognition accuracy (basically chance) to a respectable 51.2%
accuracy were achieved. In addition, the inclusion of delta-parameters also
noticeably improved recognition accuracy, with increases of 10 to 23
percentage points. Such results indicate the value of time-differential
features for speech recognition in noise.
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Table 8

Recognition Results Using the Weighted Projection Measure
(Results are given for feature vector without delta coefficients
(nd) and with delta coefficients (d). Units are in percentages.)

Type of Noise

coefficients free 20 dB 15 dB 10 dB S dB
cep/nd 96.5 86.5 76.5 57.6 32.4
mel/nd 95.3 85.6 76.5 59.4 35.3
norm-mel/nd 95.6 87.1 76.5 57.6 40.0
cep/d 95.3 95.3 90.0 70.6 45.3
mel/d 97.1 96.5 88.8 75.3 44.1
norm-mel/d 97.1 97.1 93.5 80.0 51.2

While not performing well using the weighted Euclidean distance,
the melcepstral representation showed the greatest improvement in performance
using the projection measure. The normed melcepstral representation
consistently out-performed the cepstral representation. It also out-performed
the un-normalized melcepstral representation suggesting that the window energy
normalization helps lessen the effects of broadband noise in the higher
frequency bands. Such results suggest further that the projection measure
somehow de-emphasizes this greater mismatch that is found in the higher
frequency bands in the melcepstral representation.

Conclusions

As shown, three factors were found to enhance recognition accuracy
in the presence of white noise:

1. Using the projection measure instead of the standard Euclidean
distance.

2. Augmenting the feature vector with a set of time differential
parameters.

3. Using a melcepstral instead of a cepstral representation for
the speech (with the projection measure).

The projection measure is desirable for it can easily be
incorporated into an HMM recognition system within the probability
calculations. The measure is inherently independent of the type of noise
used, so an estimate of the noise spectrum is not needed. This is an
important consideration when training the system in noise-free environments
and using the system in environments with varying degrees and types of noise
where measures robust to noise are needed.
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SPEECH IN STRESS

This portion of the report describes the data base compiled for the
research, how the speech is characterized under various conditions, and how
recognition can be improved using these data.

Data Base

A comprehensive stress data base, which has already been established at
Georgia Tech, is partitioned into five domains encompassing a wide variety of
stresses and emotions. A total of 32 speakers (13 female, 19 male), with ages
ranging from 22 to 76 were employed to generate more than 16,000 utterances.
Table 9 illustrates the various domains of the data base. Each domain is
discussed separately. The reasons for including a particular domain along
with its contributions are also indicated.

Table 9

The Georgia Tech Speech Under Stress Data Base

Speech Under Stress Data Base
Georgia Institute of Technology, School of Electrical Engineering

TYpe of stress Number of Number of

Domain or emotion speakers utterances Source
Psychiatric Depression six female 600 Emory University
analysis Fear two male (at present) School of Medicine
Anxiety age ranges Dept. of Psychiatry
Anger 34 to 76
Talking Slow all male 8,820 MIT Lincoln Labs
style Fast 3 General (total) Boston, MA
Soft 3 New York 35 aircraft
Loud 3 Boston communication words
Angry
Clear
Question
Single Work load all male 1,890 MIT Lincoln Labs
tracking (moderate) (total) calibrated work load
task (high) tracking task
Lombard
Dual Work load four female 4,320 Georgia Tech
tracking (moderate) four male (total) acquisition tracking
task {(high) compensatory tracking
Subject G-force three female 400 Georgia Tech
motion Lombard four male (total) controlled motion
fear Noise noisy environment
tasks Fear
Anxiety
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The analysis and identification of emotion is speech is an i _.riant
facet for psychiatric analysis. A psychiatrist must be able to determine
quickly and reliably the emotional state of a patient. The task of educating
new psychiatrists to identify the emotional state of a patient is quite
difficult. Therefore, researchers in this field have expressed the desire to
possibly develop a systematic set of recordings which student psychiatrists
could use to better understand how emotion is relayed. Another aim for this
portion is the development of an objective measure of stress or emotion based
on a set of composite parameters. Patients from Emory Medical University's
Department of Psychiatry who underwent psychiatric analysis were recorded
using a high quality microphone and tape recorder in a natural doctor-patient
environment. Recordings from eight patients (six female, two male) were
obtained. Each recording consists of approximately 1 hour of doctor-patient
discussion. After the first few moments during an analysis session, all
patients tended to disregard the microphone and continued without any
inhibitions because of the recording egquipment. Although the overriding
emotion found during the recordings was mild to severe depression, brief
passages of fear, anxiety, and/or anger have also been identified. The
analysis of each recording involved subjectively marking phrases or individual
words as being under stress. Each utterance was then low-pass filtered at 3.7
kHz and sampled at 8 kHz. For the first six recordings excellent examples
were found of mild to severely depressed speech (in some cases, patients were
even crying). Although the determination of each utterance was a subjective
decision, the choice was usually quite clear. Cne slight problem is that
direct comparison of phrases under stress and neutral conditions would not
always be possible. This was solved by requesting that during the following
analysis session, the patient would be instructed to repeat these words
several times in a natural, relaxed frame, allowing for a more reliable
analysis in the next section. A vocabulary of more than 600 words or phrases
was collected.

The second portion of the Georgia Tech stress data base involved speech

under various speaking styles. In an earlier investigation, Lippmann, Mack
and Paul (1986) considered a multi-style training procedure for a traditional
HMM, speaker-dependent, isolated work recognition system. By employing

utterances spoken using various speaking styles, a larger sample space results
for each utterance. Thus, when a word is presented to the recognition system,
it has a higher probability of falling into the correct sample space since
multi~style training will account for larger speech variations. For the
system of Lippmann et al. (1986), overall recognition errors decreased form
20.7% to 9.8% using multi-style training. The data from this earlier
investigation were obtained from MIT Lincoln Labs through personal contact
with Richard Lippmann and Clifford Weinstein. This portion contains
utterances under eight speaking styles (normal, slow, fast, soft, loud,
question, clear enunciation, angry). The vocabulary includes 35 aircraft
communication words containing a number of subsets that are difficult for
recognition systems. These subsets include {go, hello, on, no}, {six, fix},
{white, wide, point}, {degree, three, thirty, freeze}, and {eight, eighty,
gain, change}. The 35 words comprise a subset of 105 words presently used by
Texas Instruments to evaluate recognition systems. The words were produced by
nine male talkers sampling three major dialects (General American, Boston, New
York). Each word was produced 28 times by each subject for a total of 8,820
words. 1In the present research effort, only the General American speakers
will be considered; variations because of dialects will be addressed in future
work. These words are already used and are well accepted in recognition
research, In addition, the utterances were all produced in a quiet
surrounding with little background interference.
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The third and fourth portions involved speech produced while the subject
was performing some task as a means of inducing work load. The purpose of
speech recognition is to free the user so that outside tasks may be reformed.
As indicated in the previous section, many researchers have tried to construct
tasks ranging from timed mathematical tests to mild electrical shock as a way
of generating stress. The intentions here are to focus on the types of stress
associated in a speech recognition environment. Thus, in order to formulate
this portion, the types of stress and work load tasks that might simulate the
stress must first be discussed. As an example, speech recognition in a noisy
aircraft cockpit might help a pilot better perform his duties. The particular
stress experienced during flight are three-fold. The first of these is
physical stress. This consists of abnormal conditions of air pressure, oxygen
content low temperature, g-force, vibration, and so forth, that affect the
pilot from the moment he leaves the ground in an unprotected cockpit. Such
physical stress has already been recognized and investigated from previous
research as a means for screening pilots from flying stress (Hanson & Wong,
1984). A second type of stress associated with such an environment is called
cognitive stress. Cognitive refers to those intellectual processes of the
brain concerned with information. This includes input from reality-based
information (such as the pilot's surroundings), as well as that retrieved from
memory files or created internally by fantasy. Cognitive stress in a flying
situation is wusually related to cockpit work load. When this becomes
excessive, it affects the neurological state of the pilot (Nakatsui & Suzuki,
1970) and consequently his operational efficiency (Hanson & Wong, 1984).
Finally, affective stress is produced whenever the input to consciousness
(whether it be from an immediate awareness of external event, or a
recollection of personally significant events of the past) is seen as
threatening to the individual's safety, self esteem, or satisfaction of
desires. Affective stress, in its initial phase, is not always harmful. For
example, anxiety aroused by a sudden emergency can actually be beneficial in
alerting the brain to optimal function. Intense affective stress, however,
can seriously impair operational efficiency and can lead to severe mental or
physical disablement in the form of psychoneurotic or psychosomatic disorders.
The simulation of either physical or intense affective stress in a laboratory
environment is not possible. However, some forms of cognitive or mild
affective stress are possible with the help of interactive work load computer
tasks.

The basic task of maintaining controlled flight requires several levels
of psychomotor control. For example, a typical low altitude air-to-ground
mission calls for the pilot to fly close to the terrain while navigating to a
predetermined point, ascend to a higher altitude, acquire and track the
intended target, take appropriate action, and finally to descend again close
to the terrain for egress. During the time at high altitude, the aircraft is
highly vulnerable to detection. Therefore, it is desirable that simulations
mimic the tasks which are of great importance in target acquisition and
tracking (the highly precise and coordinated manual aspects of flight control,
and the relatively simple manual tasks involved in aiding the automated
acquisition and tracking functions). The fact that in a single-seat aircraft,
the p.lot may be required to perform these tasks simultaneously is of
particular concern in the generation of a suitable speech data base for the
purposes of recognition in such an environment.

As indicated, the two types of tracking tasks considered are acquisition
tracking and compensatory tracking. Acquisition or step tracking is a task
where a sudden discrepancy between the target stimulus and a response marker
must be nulled by the operator. Here, total acquisition time is typically
divided into three segments: (1) reaction time--the time from the onset of
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the discrepancy to the initiation of a control movement; (2) primary movement
time--the duration of the first control movement, which usually nulls most of
the discrepancy between the target and the marker; and (3) correction time--
the time from the end of primary movement until the target and marker are in
stable alignment. The second type of tacking task considered is compensatory.
Compensatory tracking is a task where the response marker remains in a fixed
position on the display. The target stimulus moves about in accordance with
some input function which creates a discrepancy between the positions of the
marker and the target. Thus, the term compensatory literally refers to the
nature of the display. With a compensatory display, no preview of the to-be-
tracked function 1is possible, although if the function is predictable,
anticipation of the correct response may be possible. One problem with such a
task is that the operator cannot readily distinguish between discrepancies
that result from the input function and those that result from incorrect
control movements unless the input function is fully predictable.

The third portion of the stress data base uses a work load task for
stimulating stress originally proposed by Jex (1979). Jex formulated a set of
standardized sub-critical tasks for tracking work load calibration. The
important aspect of this work was that graded levels of mental work load were
possible. 1In this approach, a single tracking task is developed which is the
response of a marginally stable, single-pole system. The operator views a
display of the error between the command input and plant output and corrects
these with opposite pressure on a control stick. The degree of instability
may be adjusted for varying degrees of difficulty. Two levels of work 1load
difficulty were used in this section, Subjective ratings, performance data,
and heart rate data indicated that the high work load (A = 70%) was
significantly more difficult than the moderate level (A = 50%). This portion
uses the same nine male talkers as in portion two of the data base, with a
total of 1,890 words comprising this section. Again, only General American
speakers were used.

In the fourth portion, the method proposed by Jex was initially
considered in developing a dual task work load for induced stress. However,
this approach represents a single compensatory tracking task, and in an
environment such as an aircraft cockpit, the operator's responsibility would
be much more demanding. Therefore, a dual tracking task that addresses
pilots' two key goals (flight control and target acquisition) was considered.
Task difficulty may be controlled by time constraints for completion or by
increasing resource competition or motivation. By employing such a dual
technique, it is now feasible to employ tasks that closely reflect the basic
goals of the pilot. In this portion, a dual tracking task is considered which
is similar to one previously developed by Folds, Garth, and Engelman (1986)
for the United States Air Force (USAF) School of Aerospace Medicine. The
primary tracking task is a pursuit task in which the input signal is
determined by the sum of two sine functions. A constant is added and
subtracted from the function to form two parallel sinusoids which are
displayed, giving the appearance of a winding road which is scrolled down a
computer screen over time. The response marker (output signal) is a small
circle. The vertical position of the circle is fixed at the center of the
display; the horizontal position is determined by the movement of a control
stick in its X-axis. As the roadway moves downward, the operator's task is to
move the control stick to position the circle as close to the center of the
road as possible. After 20 seconds, a target acquisition task appears on the
left portion of the screen. Here, two narrowly spaced vertical lines are
drawn along with a small triangle. The vertical position of the triangle is
fixed at the center of the display. A gaussian distributed random value is
added to the triangle's horizontal position which moves it to the left or
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right. The operator uses the X—-axis movement of a second control stick to
move the triangle back to the center of the two lines. These noise values are
added at fixed times to the triangle's position, so the operator is not
certain if movement at any time is a result of his actions or random
movements. This represents the noise associated with an automatic target
acquisition system which must be corrected by the pilot. After 40 seconds of
performing both tasks, the primary compensatory task is disabled, leaving the
secondary target task active for the final 20 seconds. Several parameters are
available for increased task difficulty, the simplest being the overall time
allowed to perform the task. Other possibilities exist, but variation in
overall time constraint was chosen in order to keep the basic task structure
similar to the previously used and accepted work load procedure.

To facilitate an organized manner for collection of an operator’s
speech, randomized words from the 35-word list used in portion two of the data
base were displayed on the screen during the above three stages. Each word
appeared in the same position, and the operator was instructed to read them
quickly while performing the dual tracking task. Operators wore a high
quality head-mounted directional microphone for recording. When a new word
appeared on the screen, a low frequency tone was emitted. In some cases, a
variation in the length of timeé a word remained on the screen was also used in
order to generate higher stress levels. For the moderate stress level, every
three-stage test lasted for 80 seconds. Each operator performed the three-
stage dual work load task nine times, each with a different type of gaussian
variation for the target acquisition task. A weighted root mean square (RMS)
error was found for each task individually and combined. This was displayed
between tests so that operators could observe how well they performed the
tasks. Operators were instructed to give equal emphasis to all three tasks
(pursuit task, target acquisition, and word entry). For the high work load
case, the operators were required to perform all three tasks in half the time
(40 seconds). A coimparison of RMS errors indicated that the high work load
case was significantly more taxing than the moderate case.

Portions 3 and 4 of the data base also include a small portion about
speech produced in noise. It is known that talkers vary their speech
characteristics when speaking in a noisy environment. For example, overall
speech level as a function of external noise level has been shown to rise at
the rate of 0.3 dB/dB noise to 1.0 dB/dB noise, depending on noise level and
the specific task assigned to the speaker (Paul, 1987). This phenomenon,
called the Lombard effect, was first noted in 1911 (Lippmann, Martin, & Paul,
1987) . Speakers also tend to vary those factors related to speech clarity
when presented with external noise. In both portions, noise was presented
biaurally at an overall level of 85 dB sound pressure level (SPL).

The last portion of the stress data base uses two types of subject

motion tasks. To simulate the sudden change in altitude or direction that
might be experienced in an aircraft cockpit, two types of motion tasks were
considered. (Originally, an aircraft flight simulator was considered.

However, securing access and obtaining students knowledgeable in flight
simulators or pilots willing to devote the time necessary to perform this
proved futile.) Therefore, tasks had to be chosen which required little or no
training, yet generated the type of stress (fear or anxiety) which might be
experienced in an emergency situation. Two rides from Six Flags Over Georgia
were chosen as suitable, the Scream Machine and Free Fall. The Free Fall ride
lasts for about 60 seconds, with the free fall portion comprising about 10
seconds. Four seated passengers are strapped in an upright position into a
car which is raised vertically to approximately 130 feet (10 stories). The
car moves forward where it pauses for several seconds and then is released.




It drops vertically downward for about 100 feet, before rolling onto a
horizontal portion of the track for deceleration. During the free fall
portion, talkers repeated several prechosen words from the 35 word list (used
in portions two through four of the data base). Speech was recorded using a
high quality head-mounted directional microphone and cassette recording unit
strapped to the talker's body.

The second motion task considered was the Scream Machine. This is a
typical wooden frame roller-coaster which seats about 30 to 36 passengers.
Because of the large number of passengers, higher levels of background
screaming can be heard for those recordings. The overall ride consists of
large vertical movements with small amounts of lateral movement during calm
periods between drops. Initial tests gave little indication of variation in
tape speed because of the motion of the recording equipment.

The entire ride lasts about 90 seconds. Talkers were instructed to say
the word top when their car reached the top of a hill. Speakers repeated
words from a word list card held in their hands (35 words from sections 2
through 4. Each speaker performed the task twice. Because of the increased
task time for this ride, larger amounts of stressed utterances could be

obtained. The speaker's location during the ride was identified based on
timing and background noise. Only speech uttered during plunges in the ride
were extracted for analysis. Figure 5 gives an overview of the ride and

illustrates how each recording was partitioned and subjectively marked for
stress with respect to time and position during the task. The chosen subjects
were all native speakers of American English from the Georgia Tech community
with no apparent speech deficiencies. Each talker (three female, four male)
performed both subject motion tasks twice. A total of 400 utterances were
identified as being under stress. In each subject motion task, at least four
factors contributed to the type of speech recorded: g-force, background
noise, Lombard effect, fear ard/or anxiety.

The entire data base was collected with a clear expectation that only a
portion of it could be analyzed during the course of the project. It is
available, however, to any laboratory that desires it, and it will serve as a
valuable tool for years to come.

Characterization of Speech in Stress

In this section, the various characteristics of stressed speech are

described. The discussion 1is broken into two major categories:
characteristics of the observed speech and characteristics of the glottal
waveform, Some of the first set of characterizations are related to

prosodics, which in many cases are the first indicators of stress, emphasis,
or higher order meaning. The major components or this aspect include pitch,
speaking rates, vowel durations, and intensity, as well as the variability of
all the above. Another characterization relates to the formants, bandwidths,
and their variabilities. The second set of characteristics is more subtle and
more difficuit to analyze. As discussed, a novel method of glottal extraction
had to be developed to reach a satisfactory solution.
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Figure 5.

Profile of the scream machine motion task.

(The position of utter-

ances was marked based on timing, and those under stress were

extracted for analysis.)
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Non-glottal measures
Pitch

Measures of pitch and pitch variability were analyzed across
the utterances in the data base. Table 10 describes the results. After
statistical measures of significance (both parametric and non-parametric) were
used, the following conclusions were made:

1. The position of mean pitch from highest to lowest versus
speaking style is shown below. Results from both word lists and one of the
many probe studies performed are included (sig. = significance with respect to
neutral) .

Shift in mean pitch
Word List No. 2 Word List No. 1 Probe Study

385 utterances 385 utterances 55 utterances
Pitch Condition (percent) {percent) (percent)
Highest Angry +99 sig. +73 sig. +64 sig.
Loud +47 sig. +48 sig. +49 sig.
Question +44 sig. +42 siqg. +42 sig.
Lombard +15 sig. +10 siq. +10 sig.
Clear +5 sig. +4 sig. +4
Fast +5 sig. +6 sig. +5
Neutral
Slow -2 +1 -2
Task Condition 70% 0 -2 -3
Task condition 50% -2 -3 -2
Lowest Soft -5 sig. -5 sig. -6 sig.

Analysis of fundamental frequency for Word List 1 over various peaking styles
and stress conditions.

2. Mean pitch values may be used as significant indicators
for speech in soft, fast, clear, Lombard, question, angry, or loud styles =-.
been compared to neutral conditions.

3. Loud, angry, question, and Lombard mean pitch are all
significantly different from all other styles considered.

4. Mean pitch was not a significant indicator for moderate
versus high task workload conditions.

5. Speech produced under the Lombard effect gave mean pitch
values most closely associated with pitch from fast and clear conditions.

6. Variation in mean pitch appears to be a consistent and
reliable stress indicator over a wide variety of conditions. The
discriminating ability of mean pitch is clearly indicated in the Student's t-
test significance tables.
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Table

10

Analysis of Fundamental Frequency for Word List No. 1
Over Various Speaking Styles and Stress Conditions

Stress Number Mean Max. Min. Average Standard

condition points value value value deviation deviation Variation Skew. Kurtosis
Neutral 405 145.74 195.12 108.11 13.45 15.67 245.60 0.148 -0.770
Slow 759 147.57 195.12 105.26 16.19 18.67 348.63 0.087 -1.024
Fast 302 152,16 205.13 121.21 13.42 15.98 255.24 0.193 -0.578
Soft 390 138.81 266.67 119.40 6.76 11.23 126.04 4.964 46.501
Loud 593 216,31 307.69 97.56 42.15 49,02 2403.22 -0.509 -0.987
Anger 671 252.69 421.05 62.02 84.94 95.02 9028.02 0.122 -1.325
Clear 509 154,13 235.29 101.27 21.60 24.88 619.04 0.261 -0.910
Question 461 207.44 307.69 123.08 51.45 56.16 3153.75 0.231 -1.499
Cond50 379 141.46 200.00 112.68 13.56 16.13 260.33 0.414 -0.195
Cond70 384 142.49 186.05 105.26 13.64 15.96 254.61 0.151 -0.901
Lombard 506 160.49 242.42 00 21.10 24.36 593,20 -0.142 -0.796

100.

versus speaking style is shown below.
the many probe studies performed are included

Pitch Variability

1.

respect to neutral).

Word List No.

385 utterances

(sig.

Shift in mean pitch
2 Word List No.
385 utterances

The position of pitch variability from highest to lowest
Results from both word lists and one of

significance with

1

Probe Study
55 utterances

Pitch Condition (percent) (percent) (percent)

Highest Angry +506 sig. +265 sig. +527 sigq.
Question +258 sigq. +264 sig. +254 sig.
Loud +213 sigq. +186 sig. +175 siqg.
Lombard +55 sig. +60 sig. +50 sig.
Clear +59 sig. +43 sig. +49 sig.
Slow +19 sigq. -6 +3
Fast +2 -9 +1
Task Condition 50% +3 +5 -4
Task condition 70% +2 +6 -5
Neutral

Lowest Soft -28 sig. -38 sig. -58 sig.

2. Variance of pitch values may be used as significant

stress indicators for speech in soft, loud, angry, clear, question, or Lombard
styles when compared to neutral conditions.

3.

from all styles considered.
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4. Pitch variance was not significantly different for
moderate versus high task work load conditions.

S. Pitch variance was unreliable for slow and fast stress
conditions.

6. Pitch variance for clear and Lombard conditions are
similar but different from all other styles considered.

Duration

Measures of duration and duration variability were analyzed
across the utterances in the data base. Tables 11 and 12 describe the
results.

Table 11

Average Word and Speech Class Duration Using Word List No. 1 (35 words/style,
11 styles = 385 words) Over Various Speaking Styles and
Stress Conditions (in msec)

Stress Average duration (msec)
condition Neutral Slow Fast Soft Loud Anger Clear Question Cond50 Cond70 Lombard

Word 478 827 353 509 650 662 666 526 482 501 572

Vowel ic0 294 115 147 253 271 202 180 148 147 198

Consonant /1 107 52 87 73 62 128 74 79 86 73

Semi-vowel 60 126 57 71 76 85 83 84 71 68 97

Diphthong 192 374 147 210 294 315 199 209 176 178 249
Table 12

Variance of Average Word and Speech Class Duration Using Word List No. 1
(35 words/style, 11 styles = 385 words) Over Various Speaking Styles and
Stress Conditions (in msec)

Stress Variance of average duration (msec)
condition Neutral Slow Fast Soft Loud Anger Clear Question Cond50 Cond70 Lombard

word 18.0 49.0 12.0 16.0 28.0 41.0 40.0 16.0 16.0 14.0 24.0
Vowel 7.9 21.0 3.6 6.2 19.0 23.0 17.0 9.0 7.6 7.6 13.0
Consonant 1.8 7.1 1.1 2.9 3.7 3.3 10. 2.9 2.5 3.3 2.6
Semi-vowel 0.7 7.1 1.0 1.3 2.9 7.8 3.2 2.1 1.7 1.4 4.3
Diphthong 3.3 14.0 1.0 1.1 5.6 7.0 3.3 4.4 2.4 3.4 3.5

After statistical measures of significance (both parametric and non-
parametric) were used, the following conclusions were made:

1. The position of mean duration from highest to lowest

versus speaking style is shown below. Results from all speech classes using
word list No. 1 are shown (* = significant with respect to neutral).
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Shift in mean duration

Word Vowel Consonant Semivowel Dipthong
385 utterances 429 phonemes 759 phonemes 121 phonemes 88 phonemes
(percent) (percent) (percent) (percent) (pexrcent)
SL * +73 ST o+ +84 c * +84 SL * +112 SL * +94
c * +39 A * +69 SL * +52 LM * +63 A * +64
A * +38 L * +58 SO +24 A +42 L * +53
L * +36 ] +26 c7 +22 (o] +40 LM +30
LM * +20 M +24 C5 +12 o +39 Q +9
Q +10 Q +13 Q +5 L +27 SO +9
so +7 N M +4 C5 +20 (o +4
c7 +5 SO -8 L +3 SO +19 N

C5 +1 C5 -8 N Cc7 +14 Cc7 -7
N c? -8 A -12 N C5 -8
F * -26 F * -28 F * =27 F =27 F -27
2. Mean word duration values may be used as significant

indicators for speech in slow,

clear,

angry,

loud,

Lombard,

or fast styles

when compared to neutral conditions.

3. Slow and fast mean word duration are all significantly
different from all styles considered .

4, Clear mean consonant duration was 3ignificantly
different from all styles except slow.
5. Word and phoneme class duration are not significant

indicators for moderate versus high task work load conditions.

Duration Variability
1. The position of duration variance from highest to lowest
versus speaking style is shown below. Results from all speech classes using
word list No. 1 are shown (* = significant with respect to neutral).

Shift in duration variance

Word Vowel Consonant Semivowel Dipthong
385 utterances 429 phonemes 759 phonemes 121 phonemes 88 phonemes
(percent) (percent) (pexcent) (percent) (percent)
SL * +173 A * +191 c x* +456 A * +1045 SL * +324
A * +128 SL * +166 SL * +294 LM * +531 A +112
cC * +122 L * +141 L * +106 IM * +531 L +70
L +56 c * +115 A * +83 c * +370 Q +33
LM +32 M +65 C7 * +78 L * +326 LM +6
N Q +14 SO * +63 Q * +296 c? +3
SO -11 N Q +61 C5 +150 C +1
Q -11 CS -4 LM +44 C7 +106 N
C5 -11 c? -4 C5 +39 SO +91 CS -27
oy} ~22 50 -22 N F +45 SO -66
F -33 F * -54 F * -39 N F -70




2. Duration variance increased for all domains (word,
vowel, consonant, semivowel, diphthong) under slow stress condition.

3. Duration variance decreased for most domains under fast
stress condition.

4, Duration variance significantly increased for angry
speech.

5. Duration variance generally increased for loud speech
but was mixed for soft speech.

6. Clear consonant duration variance was significantly
different from all styles.

7. Duration variance is not a significant indicator for
moderate versus high task work load conditions.

Intensity
Measures of intensity and intensity variability were
analyzed across the utterances in the data base. Tables 13 and 14 describe
the results.
Table 13
Average Word and Speech Class Intensity Using Word List No. 1

(35 words/style, 11 styles = 385 words) Over Various Speaking
Styles and Stress Conditions (RMS values)

Stress Average duration (msec)
condition Neutral Slow Fast Soft Loud Anger Clear Question Cond50 Cond70 Lombard

Word 7663 7982 7812 7277 10561 11307 7067 8110 7075 6934 8286

Vowel 9610 9692 9404 9326 12002 12700 9786 10172 8857 8996 9699

Consonant 1394 1481 1425 1866 1164 1562 1287 1602 1592 1715 1401

Semi-vowel 10032 9323 9983 10072 9443 11629 8272 10043 8498 8353 8322

Diphthong 10125 9989 10460 9393 14800 14724 10394 10478 9807 9742 10913
Table 14

Variance of Average Word and Speech Class Intensity Using Word List No. 1
(35 words/style, 11 styles = 385 words) Over Various Speaking Styles and
Stress Conditions (RMS variance x105)

Stress Variance of average duration (msec)
condition Neutral Slow Fast Soft Loud Anger Clear Question Cond50 Cond70 Lombard

Word 12.3 8.5 10.1 16.0 31.2 50.7 6.5 17.1 9.2 8.3 16.8

Vowel 93.3 76.5 93.4 63.6 116.0 193.0 109.0 45.3 92.2 101.0 80.4

Consonant 21.8 32.1 20.1 35.8 26.0 33.6 24.9 32.9 24.1 33.1 23.9

Semi ‘vowel 128.0 106.0 136.0 102.0 231.0 571.0 15.7 109.0 162.0 187.0 152.0

Diphthong 38.7 1.6 29.0 22.1 17.3 19.5 23.6 11.5 23.2 30.8 8.4
45
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After statistical measures of significance (both parametric and non-
parametric) were used, the following conclusions were made:

1. The position of mean RMS intensity from highest to
lowest versus speaking style is shown below. Results from all speech classes
are based on word list No. 1 (* = significant with respect to neutral).

Shift of average RMS intensity

Word Vowel Consonant Semivowel Dipthong
385 utterances 429 phonemes 759 phonemes 121 phonemes 88 phonemes
(percent) (percent) (percent) (percent) (percent)
A * +48 A * +32 so +33 A +16 L * +46
L * +38 L * +25 c? +23 Q 0 A * +45
M +8 Q +6 Q +15 SO 0 M +8
Q +6 o} +2 C5 +14 F 0 Q +4
SL +4 LM +1 A +12 N C +3
F +2 SL +1 SL +3 L -6 F +3
N N F +2 SL -7 N
so -5 F -2 LM +1 C5S -15 SL -1
C -8 SO -3 N c7 -17 C5 -3
o} -8 c7 -6 C -8 M -17 c7 -4
Cc?7 * -10 C5 -8 L -17 C -18 e -7
2. Average RMS word intensity values may be used as

significant indicators for speech in angry, loud, and high work load task
styles when compared to neutral conditions.

3. Loud and angry average RMS word intensity are
significantly different from all other styles considered.

4. Loud and angry average RMS vowel and diphthong
intensities were significantly different from all other styles considered.

5. Average RMS consonant and semivowel intensity are not
significant stress indicators for any of the styles considered.

6. Average RMS intensity is not a significant indicator for
moderate versus high task work load conditions.

Intensity Variability
1. The position of average RMS intensity variance from
highest to lowest versus speaking style is shown below. Results from all

speech classes are based on word list No. 1 (* = significant with respect to
neutral).
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Shift in the variance of average RMS intensity

Word Vowel Consonant Semivowel Dipthong
385 utterances 429 phonemes 759 phonemes 121 phonemes 88 phonemes
(percent) (percent) (percent) (percent) (percent)
A * +312 A * +107 SO * +64 A +346 N
L * +154 L +25 A +54 L +80 c7 -20
Q +39 o +17 c7 +52 Cc? +46 F =25
LM +37 o} +8 Q +51 CS +27 Cc -39
SO +30 F 0 SL +47 LM +19 C5 -40
N N L +19 F +6 {e] -43
F -18 CS -1 C +14 N A -50
CS =25 1M -14 Cc5 +11 Q -15 L -55
SL -31 SL -18 LM +10 SL -17 SL -62
Cc7 -33 so -32 N so -20 Q ~70
c ~-47 0 =52 E =8 C —-41 IM ~78
2. Variance of average RMS word intensity values may be

used as significant indicators for speech in angry and loud styles when
compared to neutral conditions.

3. Variance of loud and angry average RMS word intensity is
significantly different from most styles considered.

4, Variance of angry average RMS vowel and semivowel
intensities were significantly different from most styles considered (15/20).

5. The variance of average RMS consonant and diphthong
intensity were not significant stress indicators for most styles considered.

6. The variance of average RIS intensity (for word or
phoneme class) was not a significant indicator for moderate versus high task
work load conditions.

Table 15

Average Formant Frequencies for Phoneme /1Y/

Stress Number —Average formant frequencies phopeme: IYX

condition frames F1l F2 F3 F4

Neutral 117 411 1970 2607 3368
Slow 228 393 2000 2660 3375
Fast 80 415 2021 2582 3385
Soft 102 404 1955 2617 3444
Loud 236 431 2071 2686 3414
Anger 247 586 2078 2661 3357
Clear 149 387 2086 2667 3379
Question 167 428 2064 2615 3489
Cond50 121 413 2042 2642 3360
Cond70 118 421 2044 2622 3367
Lombard 146 412 2006 2644 3376
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Formants

Measures of formant frequencies, their variabilities,
formant bandwidths, and their variabilities were analyzed across the
utterances in the data base. Tables 15, 16, 17, and 18 describe the results
for the vowel /i/ (as in beet).

Based on results from /i/, formant location and bandwidth
appear to be reasonable indicators of stress. However, this discriminating
ability may not hold for other phonemes. Therefore, an evaluation for another
five phonemes was also performed. The results were quite successful. Of the
400 student t~tests, 166 were statistically different from neutral. most of
these involved loud, angry, or Lombard formant information. In addition, a
majority of the significant comparisons involved formant locations and
bandwidths for Fl and F2. Of all the stress conditions, average formant
information for 1loud and angry were the most consistent across the six
phonemes.

The next area of interest is to determine if variability in
formant location or bandwidth are valid stress indicators. As seen in Table
17, the variance of formant location showed large shifts in only limited
cases. Formant bandwidth values from Table 18, however, showed much higher
levels of change. Also, caution should be exercised in the use of variance as
a stress relayer for F3, since corresponding pole-pairs may not represent true
resonance, Statistical tests showed that variance of formant location was
significantly different from neutral for exactly half of the styles and
formants considered, with higher discriminating ability for F3 and F4. An
interesting point can also be made between mean and variance of formant
location. Half of the cases of significantly different means coincided with
cases in which the variance was also significantly different. This indicates
that styles that vary formant location, will also increase formant variability
in conveying that stress condition. This was even more pronounced for formant
bandwidths. ©Of the 28 significantly different bandwidth variance comparisons
(with neutral), 24 coincided with mean bandwidth. Thus, if a talker varies
the mean of a formant bandwidth, there is a high degree of certainty that
bandwidth variability will also increase. Formant bandwidth variance for Fl
and F2 showed a high degree discriminating ability (15/20). Significance in
bandwidth variance was high for loud, angry, clear, questions, high task
condition, and Lombard effect styles. The results show that variance of
formant location and bandwidth is fair to good in differentiating stress
parameters (47/80); pairwise comparisons are statistically different. This
was also true for the other vowels considered. Bandwidth variance for
Lombard, loud, and angry styles was predominantly different from neutral.
Three other phonemes (/oU/, /N/, /R/) also showed significant variations in
the variance of formant location and bandwidth. Similarity between styles
that possessed significantly different means and variances from neutral was
also demonstrated. Of a possible 71 coinciding significant comparisons of the
mean and variance of formant location, 45 overlapped. For formant bandwidth,
58 of 81 significant comparisons overlapped. Thus, the previous findings of a
high degree of correlation between variation in formant mean and formant
variance for both location and bandwidth were supported.
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Table 16

Average Formant Bandwidths for Phoneme /1Y/

Stress Number —Average formant bandwidths phoneme: IY
condition frames Bl B2 B3 B4
Neutral 117 52 222 496 366
Slow 228 81 298 451 358
Fast 80 102 358 498 524
Soft 102 180 327 483 518
Loud 236 86 174 355 219
Anger 247 102 166 464 392
Clear 149 1905 356 613 831
Question 167 62 423 436 855
Cond50 121 110 193 270 291
Cond70 118 111 182 218 296
Lombard 146 73 139 250 185
Table 17

Variance of Formant Frequencies for Phoneme /Y/

Stress Number —Variance of formant frequencies phoneme: IX

condition frames Fl F2 F3 F4

Neutral 117 1149 10822 38876 6814
Slow 228 827 9039 13383 7621
Fast 80 1168 11288 24476 25655
Soft 102 1930 10779 17860 8103
Loud 236 5267 10032 12233 4249
Anger 247 2985 15425 13460 10926
Clear 149 2108 20012 28449 27657
Question 167 15548 18264 33559 58478
Cond50 121 1804 16260 13284 8508
Cond70 118 1149 9676 16252 9004
Lombard 146 980 9902 11621 4207

49




Table 18

Variance of Formant Bandwidths for Phoneme /1Y/

Stress Number _Variance of formant bandwidths phoneme: IY

condition frames Bl B2 B3 B4

Neutral 117 1001 30067 89893 64002
Slow 228 3068 38426 84537 41609
Fast 80 7699 56580 104689 179823
Soft 102 29146 28356 77665 134411
Loud 236 1639 36476 23483 9599
Anger 247 9657 16425 42033 58077
Clear 149 9379 155603 178626 339158
Question 167 2963 171664 114890 279899
Cond50 121 11280 22796 47982 58466
Cond70 118 7583 9889 13027 36425
Lombard 146 1474 8172 15544 5180

For a full discussion of the statistical tests and the results
(more than 200 pages), refer to Hansen (1988).

Glottal measurements of Speech in Stress

In this portion of the report, the glottal wave form measurement
techniques and the resulting analyses are described.

Accurate modelling of the glottal source has long been a subject
of great interest in speech processing. There are many applications for
glottal modelling including speech coding (Bergstrom & Hedelin, 1989),
synthesis (Carlson, Fant, Gobl, Karlsson, & Lin, 1989), and recognition
(Hansen & Clements, 198%a). The goal of this research has been to describe
the characteristics of the glottal wave forms of 11 types of stressed speech
and to use this knowledge to improve automatic recognition of stressed speech.
This improvement could be made either by directly incorporating glottal
effects into the recognition process or by identifying the speech style with
its glottal wave form and choosing an appropriate recognition-compensation
algorithm.

It is generally believed that one of the major conveyors of stress
is the manner of glottal excitation (i.e., the glottal source wave form). If
one wishes to study how stress and speaking style affect speech, it is
important to be able to examine the glottal source wave form. Unfortunately,
most existing analysis methods do not allow for convenient separation of the
glottal and vocal tract effects; hence, reliable information about changes in
the glottal wave form caused by stress is difficult to obtain. BAdditionally,
extracting the glottal wave forms from stressed speech presents specific
difficulties. The most significant difficulty derives from the fact that the
pitch period and other characteristics vary across speech styles. For
example, in angry and loud speech, both the pitch period and the interval of
glottal closure are very short. Further, question exhibits a pitch period
that rapidly changes during an utterance. The vocal tract can also be very
difficult to model under certain stress conditions such as 50 tasking and 70
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tasking. Because it is important to maintain consistency in the method of
extraction over the styles of speech, all the differences in the stressed
speech must be accounted for in the design of the extraction method.

In this report, a method for extracting the glottal wave form from
a segment of voiced speech is presented. This method is based on a procedure
suggested by Wong, Markel, and Gray (1979) which has been specifically
tailored for this application. The glottal wave forms for the 11 types of
stressed speech contained in the MIT Lincoln Labs multi-style speech data base
(normal, angry, 1loud, soft, slow, fast, clear, question, 50% tasking, 70%
tasking, and Lombard) have been extracted from utterances of the vowel /I/ in
fix" and "six"™ and the vowel /&/ in "destination.™ These glottal wave forms
have been analyzed statistically and qualitatively to identify glottal
characteristics that are unique to a given stress style.

Theory

In the standard speech model, we assume

S(z) = G(z)V(2)R(z), (58)
in which
S(z) = z-Transform of speech wave form, s(n)
G(z) = z-Transform of glottal source wave form, g(n)
Therefore,
V(z) = vocal tract filter
R(z) = radiation impedance at the lips
S{z)
G(z) = V(z)R(z) (59)
Thus, g{n) can be obtained by inverse filtering s(n) by v(n) and r(n). For

the voiced non-nasalized phonemes used in this research, the vocal tract can
be modelled as an all-pole filter.

Radiation impedance at the lips has often been modelled as a
filter consisting of one or two zeroes. Based on the work of Barnwell,
Schafer, and Bush (1977), this radiation is modelled as a zero pair and a pole
pair. 1In Barnwell's research, it was hypothesized that one difference between
LPC synthesized speech and natural speech is a result of the glottal pulse

being non-minimum phase. This can be compensated by using a fixed second
order pre-emphasis filter (i.e., two zeroes) and a 10-pole vocal tract model
(for 8-kHz sampled speech). These results were incorporated by modelling the

effects of the radiation at the lips impedance as a pole pair and a zero pair.

Covariance LPC analysis minimizes the error, e(n), in which

e(n) = s(n) + Zxa(k)s(n - k) (60)

If the coefficients, a(k), model the vocal tract perfectly and the radiation
impedance at the lips has been compensated, e(n) would equal the gloital
source, g(n). The estimation of the vocal tract parameters is most accurate
during the period of glottal closure since at this time, s(n) is theoretically
a freely decaying oscillation affected only b, the vocal tract and radiation
at the lips. Therefore, an all-pole model for s(n) is a good assumption
during glottal closure and produces a relatively accurate model of v(n). 1In
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this procedure, covariance LPC analysis is performed over windows no longer
than the expected period of glottal closure of s(n), shifted by one sample at
a time. When the error wave form corresponding to this analysis is examined,
glottal closure is assumed to exist over the segment for which e(n) is close
to zero. Since the vocal tract has constraints on how rapidly it can change,
the model found during the identified glottal closure is used to inverse
filter an interval long enough to include four pitch periods of s{n)--the
output being four periods of g(n).

Method

To compare and draw conclusions about changes in the glottal
wave form caused by stress and speaking style, it is important that the
extractions be performed under the same conditions in each case. The actual
modelling of the vocal tract must be done over the same portion of a glottal
period to minimize differences between the glottal wave forms of different
speaking styles caused by differences in the modelling technique. This poses
a particular problem because of the variability of the pitch period for
different types of stressed speech. Such styles as angry and loud have pitch
periods which are so short that the vocal tract cannot be accurately modelled
with the samples comprising glottal closure. There is, therefore, a tradeoff
between using the ideal segment (glottal closure) and maintaining consistency
across the speaking styles by using the same length segment of a glottal
period for each extraction. To maximize the number of samples in the vocal
tract model, to maintain the accuracy of the model, and to maintain
consistency across the stress styles, the extractions were performed over
segments slightly longer than the apparent glottal closure.

The first step in the extraction of the glottal source wave
form from a given utterance is computing e(n) using covariance LPC analysis.
The LPC analysis is performed over a segment of windowed speech using a 10-
pole filter (four pole pairs for the vocal tract and one pole pair for
radiation at the lips). This window is shifted by one sample at a time, and
e(n) is computed for each window of modelled speech. The error wave form is
then examined and a starting point is chosen where e(n) is close to zero for a
number of samples. The vocal tract is again modelled at this point, and this
model is used to inverse filter four pitch periods of the speech wave form,
s{n). This result is integrated twice to account for the previously described
zero pair in radiation at the lips to produce the glottal source wave form,
g(n). The analysis window is then shifted by one sample, the vocal tract is
modelled again, and the inverse filtering and integration are repeated to
produce a new g(n). This is done five to ten times and the best g(n) is
chosen. In general, the extracted waveforms are extremely similar in shape
and form. These iterations are conducted to find the best g(n) for those
stress styles which are more difficult to model (e.g., 50% tasking, 70%
tasking, and Lombard). After careful study, a period of a glottal wave form

is described by six parameters: opening slope, closing slope, opening
duration, top duration, closing duration, and closed duration. These
parameters are illustrated in Figure 6. The four duration parameters are

measured as the number of samples between the endpoints and including one
endpoint. The two slope parameters are measured as the slope at the onset of
opening and the offset of closing.

At this point, the amplitude of g(n) depends only on the
error, e(n), at the point where the inverse filter was computed. This error
can be affected by many things. To make accurate comparisons of the areas and
slopes of the various styles of glottal wave forms, all the amplitudes were
normalized with respect to normal. First, all glottal wave forms are
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normalized to have the same maximum amplitude. Each wave form is then
multiplied by a factor of (given stress intensity)/(normal intensity) and
divided by (given stress open-closed ratio)/(normal open-closed ratio). The
intensity figures used are from previous research (Hansen, 1988) and the open-
closed ratios (ratio of open part of glottal pulse to closed part of glottal
pulse) used are from this research. In this way, the amplitudes compared to
normal are meaningful and comparisons between the styles are valid.

This process was performed on six to eight utterances for
each of the 11 stress styles resulting in S50 to 100 pitch periods of glottal
source for each style of speech. Both the /I/ and /e¢/ contexts were used to
ensure that the results were not vowel-specific. Furthermore, the glottal
wave forms from a second speaker were examined to ensure that the results were
not speaker-dependent. Each pitch period of glottal source was hand-marked to
extract the six parameters, producing 66 distributions--one for every stress
style for each parameter.

€o

2 : : . .

Error Signal
xR0

Number of Samples

Figure 6. Error wave form for normal speech.

Several statistical tests were performed on these
distributions. The Kolmogorov Smirnoff (K-S) test, which is a non-parametric
test that compares two distributions to decide if the distributions are not
significantly different, was used in two ways. First, the K-S test was
performed on each pairwise comparison of the 66 distributions. Secondly, the
K-S test was used to compare each of the 66 distributions to its respective
best fit gaussian distribution. This was done to ascertain whether the
assumption that the distributions were gaussian was a fair assumption. To
confirm the results of the second set of K-S tests, a chi-square goodness-of-
fit test was also performed, comparing each of the 66 distributions to its
best fit gaussian. On the basis of the results of these two tests, the best
fit gaussian mean and variance were computed for each of the 66 distributions.

Results

Example glottal wave forms for each of the 11 speaking
styles are presented in Figure 7. The K-S test versus a gaussian and the chi-
square goodness-of-fit test for a gaussian both showed that the assumption
that these distributions are gaussian is not a bad one. The best fit gaussian
means are provided in Table 19. The most interesting results obtained from
examining the statistics in Table 19 are presented in Table 20. An important
result is that, except for question, the percentage of the pitch period during
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Figure 7. Example extracted glottal wave forms from the 11 types of stressed
speech. (All horizontal axes are in samples; speech has been
sampled at 8 kHz. All amplitudes are normalized.)
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Table 19

Best Fit Gaussian Means

Closing Opening Closed Closing Opening Top
slope slope duration duration duration duration
Normal -4798 2643 17.7 10.2 15.6 9.9
Slow -4786 2692 16.9 10.2 15.5 8.7
Fast -392 2376 15.5 11.0 16.0 8.4
Soft ~-2632 1921 17.7 14.7 18.6 9.9
Loud -9298 3532 6.3 6.9 17.0 2.9
Angry -9910 9198 9.1 6.3 6.9 2.0
Clear -5011 2686 15.8 9.5 16.0 6.9
Question -4831 3034 14.0 9.4 14.9 7.0
50% -4522 2321 17.3 11.1 16.0 9.8
70% -4100 2138 16.7 10.7 15.7 9.9
Lombard -5430 2871 15.2 9.3 15.2 7.6
Table 20

Results Generated Using Best Fit Gaussian Means

Closing versus Closing versus Percent pitch
opening slope opening duration period closed

Normal 1.8 .65 31
Slow 1.8 .66 30
Fast 1.7 .69 29
Soft 1.4 .79 30
Loud 2.6 .40 23
Angry 1.1 .92 31
Clear 1.9 .60 30
Question 1.6 .63 36
50% 2.0 .69 30
70% 1.9 .68 30
Lombard 1.9 .60 31

which the glottis is closed is fairly constant across the speaking styles.
More significant are the variations across the speaking styles of the ratios
of closing to opening slope and closing to opening duration. These ratios are
different enough that they may be used to identify a speaking style.
Considering the ratio of closing to opening slope, angry, fast, 1loud,
question, and soft are significantly different from each of the other speaking
styles. Similarly, angry, loud, and soft have quite different closing to
opening duration ratios.

The results from the pairwise K-S tests are important for

the task of identifying a speaking style with its glottal wave form if a
Bayesian classifier is used. For this to work, the distributions must be
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significantly different for each speaking style using a linear combination of
the six parameters. The results from the K-S pairwise tests show that the
parameters that contain the most information about a speaking style are
closing slope, opening slope, and closed duration. This is as expected since
the slopes of glottal opening and closing provide most of the control over the
amount of acoustic energy produced. Furthermore, since the duration of
glottal closure is approximately a constant percentage of the pitch period for
a given speaking style, the closed duration parameter directly reflects the
length of the pitch period. It is well accepted that one important conveyor
of stress is the length of the pitch period. Further examination of statistics
from the tests indicate that each speaking style is significantly different
from each of the other ten using combinations of the six parameters.

Qualitative Observations
Normal

The glottal wave shape in normally spoken speech is
characterized by a slope of opening that is slower than the slope of closing.
The pulse has a distinct closed period that is about 1/3 of a pitch period.
The transition from opening to closing is slow (i.e., the pulse has a flat
top) .

Clear

The glottal wave shape of clear speech 1is not
drastically different from the normal wave shape. In the case of clear, the
transitions from closing to closed and from closed to opening are more abrupt
than in normal. As in the case of normal, clear exhibits a period of distinct
closure and an opening slope that is slower than the slope of closing. The
top of the pulse is more "peaky" in clear.

50% Tasking

Speech that has been produced under 50 tasking
conditions also is not extremely different from normal speech. It is,
however, much more difficult to model the vocal tract in this case. The
glottal wave shape exhibits a slower slope of opening than of closing,
although this difference is not as distinct as it is in the case of normal.
The pulse, like normal, has a distinct closed period and smooth transitions
from closing to closed and from closed to opening. The transition from
opening to closing is smooth but not as fat as in normal speech.

70% Tasking

The glottal wave shape in the case of 70% tasking is
very much like that in 50% tasking. The major difference, which is that the
width of the pulse is smaller in the 70% tasking, is mainly because the pitch
period is smaller in the case of 70% tasking.

Lombard

Lombard speech, which is produced when the speaker is
in a noisy environment, is more like clear than like loud. This implies that
the speaker does not merely try to speak more loudly than the noise; he tries
to make the speech distinct and clear. The glottal wave shape in the case of
Lombard speech has a distinct closed phase, slower opening than closing, and a
fairly "peaky" top.

56




Angry

The angry glottal wave shape, as is expected, is
significantly different from the normal wave shape. Angry is the condition in
which the glottis is the most completely closed. The pulse shape is very
"peaky, "™ marking an abrupt change from opening to closing. The amplitude of
the pulses is very high. The slopes of opening and closing are steep and are
not significantly different. The transitions from closing to closed and from
closed to opening are abrupt. This is expected since the acoustic energy
generated is maximized with extremely sharp glottal closure.

Loud

The loud glottal wave shape is also very different
from normal. It is not, however, much like the angry wave shape except in
that the amplitude is very high. Loud glottal wave shapes are characterized by
a short period of glottal closure, very steep slopes, and extremely abrupt
transitions. Again, glottal closure occurs abruptly to maximize the acoustic
energy produced.

Soft

Soft speech, which approaches breathy or whispering,
speech, has a glottal wave shape that is characterized by very smooth
transitions and slow opening and closing. The wave form is almost sinusoidal
in nature. The glottis does not fully close. This condition is the opposite
of loud. Here, less acoustic energy is generated because of the slow and
incomplete glottal closure.

Fast

The fast glottal wave shape opens at about the same
rate as it closes. The top of the pulse is flat. Glottal closure is distinct
and flat. This would indicate an effort to make the speech clear and to
generate acoustic energy efficiently.

Slow

The glottal wave shape in the case of slow speech is
most significantly different from that in fast speech in that the transitions
to and from glottal closure are much less distinct and more smooth. The
flattening at the top is smaller, making the overall pulse shape almost
continuously smooth.

Question

The most significant characteristics of the glottal
wave shape in the case of question occur over the length of the vowel (20+

pitch periods). The amplitude of the pulses and the pitch period are
constantly decreasing. These two facts are most likely the reason that the
pulse shape in question deviates from normal. The two types of wave shape

differ in that the slopes of opening and closing in question are not
significantly different. Further, in the case of question, the pulse shape
tends to be more peaky.
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Conclusion

This method of extracting glottal wave forms using inverse
filtering, while time-consuming, gives reasonable results. Because the
extraction process is extremely sensitive to the point at which the modelling
is begun and the length of data over which the speech is modelled, most of
this process must be interactive.

The extracted wave forms are consistent across utterances,
and changes in the glottal wave shape that theoretically should occur under
different stress conditions are present in the extracted glottal wave forms.
Although not enough utterances were employed to compute precise statistical
descriptions of the wave forms, this method, if used on a sufficient number of
wave forms, would establish statistically significant trends. These results
would make it possible to parameterize the glottal wave form for application
to robust automatic speech recognition.

The results of this researca show that each of the 11 styles
of glottal wave forms has a unique profile based on the six parameters:
closing slope, opening slope, opening duration, top duration, closing
duration, and closed duration. This is not a profile that depends on the
vowel spoken. Furthermore, examination of the glottal wave forms of a second
speaker suggests that the results are not speaker-dependent. Once the glottal
extraction procedure has been automated, these statistical profiles can be
used to identify the style of a yiven utterance of speech from a voiced

segment of that utterance. Once the speaking style is known, automatic
recognition of the speech can be improved by choosing a specifically designed
enhancement algorithm or a specifically trained codebook. These results

should allow for significant improvement of automatic recognition of stressed
and otherwise style-variant speech. Another possibly useful application would
be that of changing one speaking style into another by LPC synthesis using
appropriately modified excitation wave forms.

Stress Compensation Algorithms

The motivation for the analysis of speech under stress was to uncover
those acoustically correlated parameters that vary during stressful
conditions. Variation in these parameters may suggest a possible explanation
for adverse recognition performance in diverse environments. The previous
investigation explored areas of speech production which traditionally have not
been associated with present day recognition algorithms. The reasons for this
are twofold. First, it may be possible to improve existing recognition
algorithms by allowing preprocessors to reduce or eliminate parameters that
are affected by stress. Although the effects of some parameters (i.e., pitch,
duration, intensity) are somewhat mitigated in many recognition procedures,
severe variations do adversely affect recognition performance (e.g., HMM
recognizers have certain "time constants” which tolerate only a limited degree
of duration variability). Other stress analysis parameters such as
characteristics of glottal source spectrum (spectral tilt, energy
distribution) and vocal tract (formant center frequencies, bandwidths,
spectral tilt, and the variability of these) have direct consequences in
recognition performance. Second, other stress-relaying parameters not used
for recognition may be used to reliably identify when an utterance is stressed
30 that appropriate stress compensation can be employed.
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A set of stress compensation algorithms was formulated based on results
from three stress analysis domains. These approaches assume the stress
condition (e.g., loud, angry, clear, etc.) to have already been identified.
The algorithms are based on obtaining a table of compensation factors for all
phonemes, for each stress condition. The three possible processing steps
include compensating for (a) average formant location (F1,F2,F3,F4), (b)
average formant bandwidth (B1,B2,B3,Bl), and (c) overall word intensity. To
calculate formant location and bandwidth values, root 3solving and pole
ordering of the LPC polynomial for each speech frame was performed. To reduce
the variance of average formant location and bandwidth estimates, a smoothing
operation was performed before average formant values were calculated. This
served to improve the estimation of average values by reducing the effects of
outlying values caused by misclassification during ordering. Formant
compensation factors were obtained by taking the ratio of average formant
values between neutral and stressed conditions. Parametric and non-parametric
statistical tests were used to verify significance of variation in formant

characteristics. Table 21 presents sample compensation factors for average
formant location and bandwidth used for the angry stressed condition. As an
example, consider the compensation for the vowel /e/. The term F1 (= 0.63)
was used to decrease all first formant locations for phoneme /e/ under angry
conditions. The average first formant location will then have the same
average value as that found in neutral conditions. This process was repeated
for each formant location and bandwidth. A similar table was obtained for

each of the ten stress conditions. Once the compensation tables are known,
preprocessing stress compensation algorithms were implemented. Two additional
points are necessary. First, unlike the fully automated constrained speech
enhancement algorithms summarized previously, the stress compensation
algorithms require both knowledge of the type of stress and phoneme boundaries
in order to apply compensation factors. Further research is underway to
incorporate general stress compensation within the constrained enhancement
algorithms, thereby removing this requirement. Second, as demonstrated in
Hansen and Clements (1987), such compensation schemes could be easily be
extended to LSP parameters, and therefore integrated within the speech
enhancement algorithms. This particular approach was chosen since
computational requirements were not an issue, and shifts in formant location
and bandwidth gave a more intuitive feel for how the vocal tract spectrum was
being adjusted.

Recognition Framework and Results

Advances made in the analysis of speech under stress and speech
enhancement domains are joined to address the final goal of recognition in
noisy stressful environments.

A fairly standard, isolated word, discrete observation HMM
recognition system was used for evaluation. This system was LPC-based and had
no embellishments. 1In all experiments, a five-state, left-to-right model was
used. The system dictionary consisted of 20 highly confusable words from the
second and third domains of the speech under stress data base. These words
are also used by Texas Instruments and MIT Lincoln Labs to evaluate
recognition systems. Subsets include {go, oh, no}, {six, fix}, and ({wide,
white}). Thirty-two examples of each word were used in the evaluation, six
neutral examples for recognition, and two examples for each of the ten
stressed speaking styles (i.e., soft, loud, etc.) for recognition (i.e., all
tests fully open employing neutral training data). The 20 models employed by
the HMM recognizer were trained using the forward-backward algorithm.
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Figure 8 illustrates the recognition scenarios in the evaluation.
Results from each are summarized in Figure 9. The first four evaluations
establish base line recognition scores for neutral, stressful, noisy neutral,
and noisy stressful speech conditions. The recognition rate of noise free
neutral speech (88) confirms the confusability of the chosen vocabulary.
Independent evaluations of this system with distinct vocabularies resulted in
recognition rates of 100 (Hansen, 1988). Base line scores indicate that
stress, with and without background noise, has a profound effect on
recognition performance. Recognition rates dropped by an average 31% for
stressful speech, with an additional 19% for noisy stressful speech, thus
indicating that recognition degrades rapidly whether a speaker is undergoing
stress, in noise, or a combination.

The fifth recognition scenarioc employed enhancement pre-processing
of noisy neutral speech. In a study by Hansen and Clements (1988), the
constrained enhancement algorithms were shown to be superior to
implementations of past enhancement techniques (e.g., spectral subtraction,
noncausal Wiener filtering) in preprocessing for recognition of noisy neutral
speech. Therefore, only the constrained enhancement techniques are considered
here. The constrained enhancement algorithm used (FF-LSP:T,Auto:I) was based
on fixed frame constraints applied across time, and constraints applied to
auto-correlation lags across iterations (see Hansen & Clements, 1988, and
Hansen, 1988, for further discussion). The noise degradation was additive
white gaussian, with SNRs determined over entire utterances. A 34% increase
in recognition was observed for enhanced neutral speech. For the sixth
recognition scenario, the same enhancement pre-processing was employed for
noisy, stressful speech. Recognition rates significantly increased for all
types of stress (an average +17.8%). It should also be noted that SNRs in low
energy non-sonorant portions which discriminate confusable pairs (e.g., go -
oh - no) may well be 20 dB lower than global SNR measurements. The
enhancement preprocessors are therefore successful in reducing background
noise as well as reducing some vocal tract variations caused by stress.

Next, stress compensation pre-processing of noise-free stressful
speech was considered. Three stress compensation algorithms were evaluated:
{(a) average formant location compensation (FL), (b) average formant bandwidth
compensation (FB), and (c) combined formant location and bandwidth
compensation (FL+FB). All compensators included intensity compensation.
rigure 9, presents results from these evaluations. Collectively, nine of the
ten stressed conditions benefited from stress compensation. FL+FB is
preferable for varying vocal effort (soft,loud) and angry speech (half of all
recognition errors were eliminated). Stress compensation did not improve
recognition performance for the clear speaking style, thereby suggesting that
cther stress factors (beside formant  location and bandwidth) should be
considered. Finally, for speech under the Lombard effect, FB compensation
provided the best recognition improvement (+13%). Overall recognition
performance was consistent across varying stres: styles, indicating the
success in reducing effects caused by stress.

The final recognition evaluation combined enhancement and stress
compensation pre-processing. In half of the noisy stressful conditions,
compensation did not appreciably raise recognition rates over enhancement pre-
processing alone, thus suggesting that either enhancement pre-processing has
the preformed necessary sStress compensation, or that other forms of
compensation are required. Improvement was observed in several key stress
styles (e.g., loud, angry, Lombard). Increased recognition ranged from +22%
to +27% over enhancement pre-processing alone, and +35% to +43% over original
noisy stressful speech.
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Table 21

Compensation Factors for Average Formant Location (Fl,F2,F3,F4)
and Bandwidth (Bl1,B2,B3,B) of 25 Phonemes for Angry Speech

FORMANT COMPENSATION FACTORS

Category Phoneme Fl F2 F3 F4 Bl B2 B3 B4
Consonants
Nasals /N/ 0.74 1.04 0.99 1.01 0.71 1.32 1.41 1.39
Stops
Voiced /D/ 0.92 0.96 1.02 0.98 1.26 0.81 0.65 0.93
/G/ 1.11 0.80 0.96 0.98 1.70 0.73 1.05 1.10
Unvoiced /T/ 0.81 0.94 1.02 1.00 0.78 0.93 0.90 0.95
/K/ 0.96 0.99 1.02 1.02 0.84 0.53 0.87 0.60
Whisper /8/ 0.85 0.95 0.95 1.04 0.97 0.66 1.25 0.67
Affricates /TSH/ 1.27 0.93 1.02 1.01 0.96 1.06 1.02 1.08
Fricatives
Voiced /TH/ 1.24 1.05 1.05 1.02 1.03 1.10 0.76 1.01
/z/ 0.63 0.84 1.03 1.02 0.89 1.47 1.45 1.14
/ZH/ 1.32 0.95 1.08 0.99 1.85 1.64 0.98 0.74
Unvoiced /F/ 0.63 0.78 0.85 0.98 0.67 0.83 1.18 0.65
/THE/ 0.96 0.91 1.00 1.00 0.89 1.39 0.63 1.28
/s/ 0.88 0.93 1.01 1.07 1.28 0.72 0.96 0.93
Vowels
Front /1Y/ 0.70 0.93 0.96 0.98 0.60 1.38 1.09 0.92
/1/ 0.69 0.97 0.96 1.00 0.73 0.89 0.96 0.89
/E/ 0.74 0.77 0.99 0.99 0.65 1.26 0.41 1.32
/RE/ 0.63 0.96 0.96 1.03 0.84 1.42 1.25 0.73
Mid /ER/ 0.77 0.61 0.95 0.98 0.87 0.78 0.59 0.95
/e/ 0.63 0.92 0.97 0.95 0.61 0.96 0.68 1.19
Diphthongs
/A1/ 0.60 0.77 0.90 0.98 0.60 0.37 1.28 1.00
/E1/ 0.68 0.81 1.03 1.05 1.40 1.09 0.88 0.78
/ou/ 0.60 0.94 1.00 1.01 0.96 1.36 1.49 1.13
Semi-vowels
Liquid /w/ 1.02 1.51 1.05 1.00 1.26 1.35 1.12 0.93
/L/ 0.65 0.90 0.92 0.97 0.36 0.31 0.76 0.35
Glide /R/ 0.71 0.83 0.82 0.96 1.25 2.09 0.99 0.78
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RECOGNITION OF STRESS-COMPENSATED SPEECH IN NOISE

[} HANSEN: CONSTRAINED + COMPENSATION
NOISY, STRESSFUL SPEECH
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ENHANCEMENT & STRESS COMPENSATION RECOGNITION RESULTS IN PERCENT}

Condition Neutral Slow Fast Soft Loud Angry Clear <Question €50 C70 Lombard
Stressful, noisy 49 45 28 33 18 15 40 28 35 33 28
FF-LSP:T, Auto:l 83 57 53 43 35 28 58 55 58 53 38
plus ccompensator FL 50 47 53 50 45 47 35 50 55 55
plus compensator FB 56 37 53 56 25 58 56 55 55 70
plus compensator FL+FB 61 53 53 61 50 53 56 55 55 65

Figure 9.

Auto:1I)

algorithms:

Auto:I + FL+FB.
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Recognition performance of noisy stressful speech, noisy stressful
speech with constrained enhancement pre-processing

(FF-LSP: T,
and three combined speech enhancement-stress compensation
FF-LSP:T,Auto:I + FL,FF-LSP:T,Auto:I + FB,FF-LSP:T,
(The bar graph illustrates the best recognition
improvement possible employing stress compensation techniques.
tAdditive white gaussian noise, SNR = +30dB)




These results are encouraging since recognition in loud, angry,
and Lombard conditions are most closely associated with speech from actual
noisy stressful environments (such as an aircraft cockpit). The graph in
Figure 9 summarizes the best combined enhancement, stress compensation pre-
processing results. An inspection reveals consist recognition performance
over varying noisy stress conditions, thereby indicating the effectiveness of
pre-processing robust speech recognition,

Conclusions

The problem of speech recognition in noisy, stressful environments
has been addressed in this report. A series of speech enhancement and stress
compensation pre-processing algorithms was formulated that produce speech or
recognition features which are less sensitive to varying factors caused by
stress and noise. Previous results have shown the constrained enhancement
algorithms to improve recognition performance for neutral speech over past
enhancement techniques for a wide range of SNRs. Enhancement pre-processing
also results in marked increases in recognition under noisy stressful
conditions. Stress compensation techniques (based on formant 1location,
bandwidth, and intensity) have been shown to reduce the effects of stress
present in changing vocal tract characteristics, thereby improving recognition
of noise-free stressful speech. Finally, combined stress compensation, speech
enhancement pre-processing increased recognition rates by an average +?7%
(e.g., +43% 1loudly spoken speech, +42% speech spoken under the Lombard
effect). In conclusion, combined speech enhancement and stress compensation
pre-processing has been shown to be extremely effective in reducing the
effects caused by stress and noise for robust automatic recognition.
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