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1. INTRODUCTION

A considerable amount of information has been published conceming the mechanisms and
products of the thermal decomposition of the nitramines cyclotrimethylene trinitramine (RDX)
and cyclotetramethylene tetranitramine (HMX). Fifer (1984) and Schroeder (1985, 1988) are
useful revie'ws of the literature. Until recently, these studies primarily involved measurement
only of the permanent gases (CO,, NO,, NO, CH,0, HCN, N,O, N,, etc.) in the products, or
involved mass spectral studies under vacuum conditions where it is difficult to distinguish
pyrolysis from ionization-induced fragmentation of vaporized nitramine molecules. During the
last several years, two developments have led to the identitication of larger fragments in the
pyrolysis products. One is the application of fused silica capillary column gas chromatography
(GC) techniques (Fifer et al. 1986; Schroeder 1987). The other involves new mass spectral
techniques involving time-of-flight measurements to determine the parent peak leading to each
ion fragment (Behrens 1987; Zhoa, Hintsa, and Lee 1988) or employing atmospheric pressure
chemical ionization and tandem mass spectrometric techniques to minimize vaporization and
provide information on the structures of observed product masses (Snyder et al. 1990).

The majority of the published studies have concentrated on the development of
mechanisms to expiain the formation of the observed decomposition products. There have
been very few attempts to correlate pyrolysis product distributions with large-scale
performance tests such as ignitability, impact sensitivity, or burn rate. Since definitive
mechanistic information has not been forthcoming for the nitramines and nitramine propellants,
the search for correlations may be a more fruitful approach. Mechanisms are not required,
only a correlation of one or more features in the pyrolysis product distributions with the
performance property of interest. Once such a correlation is found, the pyrolysis
measurement becomes a small-scale screening test for the desired performance property, one
that perhaps does not require fabrication on a large scale, or that might require only
unprocessed mixtures of potential ingredients. Also, the correlation may suggest rules that
can be used in expert systems for computer assisted formulations design and properties
prediction (Morris and Fifer 1990). Correlating pyrolysis product distributions with performance
is analogous to reported correlations between Low Vulnerability Ammunitions (LOVA)
propellant sensitivity with binder/acid DSC decompositi~n temperature (Wise and Rocchio
1981; Salo 1988). The information content in a product distribution measurement, where




perhaps 15 or 20 products are measured, is much greater than in a thermokinetic
measurement where only a single property (e.g., decomposition temperature) is measured, so
there should be an even greater likelihood of finding a useable correlation.

The principle reason why pyrolysis-performance correlations have not been attempted is
that a suitable series of systematically varied propellant formulations, with properly
documented performance measurements, has not been available. Such a LOVA formulation
series has been developed at the Naval Weapons Center (NWC), China Lake, CA, by
Dr. Rena Yee (1985; 1988; 1987) who provided both samples and performance test data for
this study. In the formulation series, oxidizer and binder were systematically varied.
Performance test resuits include bumn rate, impact sensitivity, and time-to-ignition for radiative
heating (CO, laser, 10.6 um). This formulation series contains either RDX or HMX as the
oxidizer and one of the following polymers: hydroxy-terminated polybutadiene (HTPB),
glycidyl azide polymer (GAP), 3,3-bis-azidomethyl oxetane/tetrahydrofuran (BAMO/THF)
copolymer, or 3,3-bis-azidomethyl oxetane/3,3-bis-azidomethyl-3-methyl oxetane
(BAMO/AMMO) copolymer. The azido polymers were plasticized with either trimethyiolethane
trinitrate (TMETN) or 1,2,4-butane trinitrate (BTTN). The composition of each formulation is
given in Table 1. Samples of HMX, RDX, GAP, HTPB, and plasticizers were also analyzed.

Although the initial purpose of this investigation was to identify correlations between
pyrolysis product distributions and ignition times (Shaw and Fifer 1988), several other trends
related to propeliant formulation were observed and will also be discussed in this report. The
sample set provided the opportunity to observe not only the correlations of pyrolysis product
distribution with radiative ignition time, but also the effect of formulation on pyrolysis product
distribution. It is hoped that the resulits of this investigation will be useful to those interested in
propellent design and performance prediction.

2. EXPERIMENTAL

All samples were pyrolyzed using a Chemical Data Systems (CDS) Model 122 Pyroprobe
connected via a heated interface chamber to the injector of a Hewlett-Packard 5965 GC-FTIR
equipped with a capillary column and liquid nitrogen cooled Mercury Cadmium Telluride (MCT)
detector (Hewlett-Packard Model 5365A infrared detector).




Table 1. Composition of Propellant Formulations (in weight-percent)

Plasticizer

74.8 0.0 6.3 GAP 18.9 TMETN

68.4 0.0 31.6 GAP 0.0 -

65.9 0.0 11.5 GAP 22.6 BTTN
14 0.0 69.7 30.3 GAP 0.0 -
15 0.0 0.0 50.0 GAP 50.0 BTTN
16 75.0 0.0 25.0 HTPB 0.0 -
17 0.0 76.0 24.0 HTPB 0.0 -
18 0.0 0.0 50.0 GAP 50.0 TMETN
19 65.0 0.0 17.5 GAP 17.5 BTTN
20 0.0 66.3 16.8 GAP 16.9 BTTN
21 0.0 67.6 16.2 BAMO/THF 16.2 BTTN
22 0.0 68.2 15.9 BAMO/AMMO 15.9 TMETN
23 0.0 68.6 15.7 BAMO/THF 15.7 TMETN
24 0.0 68.3 15.8 GAP 15.9 TMETN
25 67.1 0.0 16.5 GAP 16.4 TMETN

*Includes curing agent.

The pyrolysis sample (ca. 1 mg) was placed in a quartz tube and held in place with glass
wool. The tube was then inserted into a coil-type Pyroprobe. The probe was inserted into the
heated interface which was continuously being swept with carrier gas. Once enough time had
elapsed to allow the carrier gas to sweep all air from the interface compartment and to allow
the sample to reach thermal equilibrium, the sample was flash heated to the pyrolysis
temperature and held at that temperature for 20 s. The pyrolysis products then passed
through the splitless injector into the capillary column, which separated the products for
detection and identification. As each component eluted from the capillary column, it passed
through a light pipe in the beam of an interferometer for spectroscopic analysis by Fourier
transform infrared (FTIR) spectroscopy. Table 2 lists the pyrolytic, chromatographic, and
spectroscopic conditions for the experiments. Figure 1 shows a schematic representation of
the apparatus.




Table 2. Pyrolytic, Chromatographic, and Spectrographic Conditions

Pyroprobe and interface parameters:

interface temperature 100° C

pyrolysis temperature 400° C, 500° C, 1,000°

heating mode °C flash heating

heating time 20s

sample size ca.1mg

configuration quartz sample tube
in coil-type probe

GC oven/column parameters:

initial temperature 50° C

initial hoid time 3 min

heating rate 10 deg/min

final temperature 200°C

final hold time 5 min

injection port temperature 200° C

light pipe temperature 250° C

transfer line temperature 250° C

column 032 mmx25m
OV-17, 3-um film
Quadrex Corp.

FTIR parameters:

detector MCT, narrow band

resolution 3 cm’

scan rate 3 scans/s

Each of the samples was pyrolyzed at both a low and high temperature. For the low
temperature experiments, RDX formulations and formulations of GAP/plasticizer
(samples 15 and 18) were pyrolyzed at 400° C, while HMX formulations were pyrolyzed at
500° C. For the high temperature experiments, all samples were pyrolyzed at 1,000° C. Low
temperature experiments were not carried out for GAP and HTPB because of their thermal
stability. Thermocouple measurements indicated that the actual temperatures experienced by
samples in the quartz tubes were 150-200° C lower than the pyroprobe set temperatures.
The low temperature experiments were, therefore, just above the meiting points of RDX and
HMX (204° C and 280° C, respectively). Three experiments were carried out for each of the
samples at each of the two temperatures to insure reproducibility.
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Figure 1. Schematic Representation of GC-FTIR Apparatus.

Gas chromatograms were generated by application of the Gram-Schmidt algorithm to the
FTIR detector output (Griffiths and Haseth 1986). Peaks were then identified by examination
of the associated FTIR spectra. A small fraction of the peaks was directly identified by an
automated search of the Environmental Protection Agency (EPA) library of vapor phase
spectra. Software for this search was provided by the manufacturer.

Retention times were corrected to give the permanent gas peak at 0.0 min. Quantification
of pyrolysis products was based on GC peak areas and is reported in area percent in
Tables 3, 4, 5, and 6. Exceptions to this are the individual permanent gas products which are
not readily quantified by GC peak area because they elute within a few seconds of each other
and appear as a single GC peak. For this reason, individual permanent gas quantities were
calculated from FTIR absorbance and are given in normalized absorbance units (Tables 7
and 8). To calculate these normalized absorbance values, all FTIR spectra under the
permanent gas GC peak were first summed to yield a single spectrum. The absorbance of
the largest band for each permanent gas in this spectrum was then divided by the sum of the
absorbances of the largest band for each gas. The bands chosen for each gas are given as
follows: CH,, 3,016 cm”; CH,0, 2,084 cm™; CO,, 2,363 cm™; N,0, 2,238 cm™;
CO, 2,111 cm™; and NO, 1,912 cm™. A typical permanent gas FTIR spectrum is given in
Figure 2.



N0

20001 2
-
15001 023
3 a
% 1 266 '20 '2° ~
sael a P
™ “
Q Yl 3
4000 3000 2000 1260

WRVENUMBER (cm-1{?

Figure 2. Typical FTIR Spectrum of Permanent Gas Pyrolysis Products.

it must be stressed that all reported values are uncalibrated, relative quantities that are
only used to identify variations in pyrolysis product distributions. Magnitudes of absorbance,
as well as GC peak areas, for different compounds are not comparable due to differences in
infrared absorption coefficients.

Although the data reported here represent one of the most comprehensive investigations
of pyrolysis product distribution for propellant formuiations to date, several products are
notably absent. Most of these products reacted before reaching the light pipe, and, therefore,
could not be detected. These include highly reactive species such as NO,, radicals, and ions.
Other species such as N, and H, do not absorb in the infrared region, and, therefore, were not
detected. In spite of this drawback, pyrolysis GC-FTIR is superior to the more commonly
used GC-MS methods, with which no analysis of the permanent gases wouid be possibie with
normal unit mass resolution (uniess multiple column techniques were used to permit
separation of the permanent gases, as well as the larger fragments). The reason for this is
that there are a number of unfortunate coincidences in the ion fragment patterns for many of
the commonly observed permanent gases. For example, m/z 28 could be CO or N,, m/z 30
could be CH,O or NO, m/z 44 could be N,O or CO,, etc. With GC-FTIR this is not a problem;
most of the gases have more than one absorption band, and for each gas there is at least
one IR band for which there is no interference from other species.




3. RESULTS

3.1 Pyrolysis Product Distributions. The primary experimental data obtained from these
experiments are GC peak areas. Retention times and FTIR spectra aid in the identification of
pyrolysis products. A typical GC chromatogram and accompanying FTIR spectrum for one of
the peaks in the chromatogram are given in Figures 3 and 4, respectively. Based on such
information, product distributions for 15 different propellant formulations and 4 of the pure
components (RDX, HMX, GAP, and HTPB) have been determined. Pyrolysis products have
been divided into several catagories, i.e., permanent gases (CO,, N,O, CO, NO, CH,0, CH,),
HCN, water, carbonyl compounds (amides, ketones, aldehydes, designated simply as "C=0")},
carboxylic acids (RCOOH), nitrates (RNO,), nitro compounds (RNO,), and isocyanates
(HNCO, RNCO). Permanent gases and other moiecules such as acetone, acrolein,
acetaldehyde, acetic acid, formic acid, and triazine were identified from their FTIR spectra.
Other less readily identifiable products are classified in this report by their functionalities.
Tables 3 and 4 summarize the P-GC-FTIR results for low and high temperature experiments,
respectively. The tables are arranged with formulation numbers across the top of the tables
and retention times down the sides of the tables. To simplify the table, retention times have
been rounded off to the nearest 0.5 min. Values appearing beside each product indicate the
associated GC percent-peak area.

By far, the most abundant pyrolysis products for all formulations are the permanent gases.
The remainder of the products are generated by most or some of the formulations. These
products are carbonyl compounds, triazine, nitro compounds, nitrates, and isocyanates.
Triazine results from incomplete pyrolysis of oxidizer (HMX and RDX). Nitrates are derived
from the energetic plasticizers (BTTN and TMETN). Isocyanates, other than HNCO, are likely
generated from the curing agents isopherone diisocyanate and N-100, which are used to
cross-link HTPB and GAP, respectively.

Pyrolysis experiments were run at two different temperatures, 400/500° C and 1,000° C,
which hereafter will be referred to as low temperature and high temperature pyrolysis,
respectively. Tables 5§ and 6 summarize GC area-percent values for all low and high
temperature pyrolysis products except individual permanent gas products, which are given in
normalized absorbance units in Tables 7 and 8, respectively.
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Table 5. Pyrolysis Products for Low Temperature Experiments

Sample | PG, HCN RNCO and
No. and H,0 Triazine RNO, RNO, RCOOH HNCO C=0°
(GC area-percent)

4 79.8 0.0 0.0 11.3 26 1.6 34
46.7 21.2 0.0 0.0 7.0 4.0 21.2

81.0 0.0 73 04 0.4 14 7.6

14* 56.2 1.4 7.9 0.0 0.0 0.0 25.8
15 85.0 0.0 0.0 0.0 46 15 8.6
16 50.6 14.6 5.6 0.0 0.5 0.0 28.8
17 69.2 5.7 5.1 0.0 0.0 0.0 20.0
18 67.1 0.0 1.9 0.0 57 52 20.2
19 90.6 0.0 0.0 45 0.0 29 1.3
20 80.7 14 0.0 0.0 0.8 0.0 17.2
21 85.0 0.3 0.0 0.0 24 0.0 13.3
22 70.0 6.9 04 0.0 0.0 0.0 22.0
23 57.2 3.2 0.0 0.0 8.5 0.0 31.1
24 71.3 25 0.4 8.2 7.3 0.0 10.6
25 8238 0.0 0.0 9.7 0.0 5.7 1.8
RDX 29.9 8.1 8.0 0.0 46 0.0 495

HMX 92.1 23 0.0 00 | 00 0_.0 57

*Also gave 7% ether.

®Amides, ketones, and aldehydes.
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Table 6. Pyrolysis Products for High Temperature Experiments

Sample | PG, HON ANCO
No. and H,O Triazine  RNO, RNO, RCOOH and C=0"
HNCO
(GC area-percent)
4 88.9 8.9 0.0 0.0 0.0 0.6 1.6
69.8 6.3 3.6 0.0 0.0 0.6 19.8
85.9 3.6 0.0 0.0 0.1 14 9.0
14 79.1 22 0.0 0.0 15 0.2 16.5
15 59.6 0.0 0.0 0.0 45 89 26.9
16 91.6 5.7 02 0.0 0.0 0.0 20
17 61.4 20 48 0.0 0.2 0.0 32.8
18 43.7 0.0 4.1 0.0 9.3 8.2 35.1
19 84.2 9.0 0.0 0.0 0.0 1.6 52
20 59.4 2.1 0.6 0.0 12.7 0.2 24.3
21 72.8 4.0 0.6 0.0 6.0 0.0 16.4
22 71.0 25 0.0 0.0 7.0 0.0 18.8
23 62.8 33 1.7 0.0 9.6 0.0 23.2
24 748 15 0.0 15 40 0.0 17.7
25 72.7 74 0.0 0.0 0.2 0.5 17.2
RDX 26.4 6.3 3.1 0.0 0.0 24.2 40.0
HMX | 444 13 0.0 0.0 2.9 32 | 482
GAP 38.7 0.0 0.0 0.0 0.0 7.0 51.0
HTPB* 10.6 0.0 0.0 0.0 0.0 13.6 0.0

‘Also gave 22.7% butadiene monomer, 14.4% butadiene dimer, 2.3% unidentified alkane, 33.2% unidentitied
alkene, 3.0% unidentified aromatic.

®Amides, ketones, and aldehydes.
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Table 7. Individual Permanent Gas Pyrolysis Products for Low Temperature Experiments

Fga;};‘."" CH, CH,0 co, N,O co NO
Normalized IR Absorbance

4 0.00 0.14 0.45 0.25 0.01 0.03
0.03 0.00 0.43 0.38 0.06 0.09

14 0.06 0.00 0.37 0.43 0.06 0.08
17 0.03 0.00 0.38 0.45 0.04 0.09
19 0.00 0.07 0.45 0.34 0.03 0.05
20 0.05 0.00 0.39 0.41 0.07 0.09
21 0.04 0.00 0.40 0.40 0.07 0.09
22 0.07 0.00 0.38 0.41 0.06 0.09
24 0.06 0.00 0.39 0.42 0.06 0.08
25 0.00 L 0.16 0.32 0.32 0=.02 0.05

NOTE: Permanent gas data tabulated only for those samples for which ignition data were available.

Table 8. Individual Permanent Gas Pyrolysis Products for High Temperature Experiments

Sample CH, CH,0 co, N,O co NO
Normalized IR Absorbance _

4 0.05 0.00 0.39 0.40 0.07 0.12
0.03 0.00 0.43 0.40 0.06 0.08

14 0.08 0.00 0.38 0.47 0.07 0.09
17 0.13 0.00 0.40 0.34 0.05 0.09
19 0.07 0.00 0.40 0.37 0.07 0.10
20 0.06 0.00 0.45 0.33 0.07 0.09
21 0.06 0.00 0.41 0.35 0.07 0.10
22 0.08 0.00 0.39 0.37 0.07 0.10
24 0.08 0.00 0.40 0.33 0.08 0.11
25 0.06 0.00 0.41 0.37 0.07 0.09

NOTE: Permanent gas data tabulated only for those samples for which ignition data were available.
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Figure 3. Example of a GC-FTIR Chromatogram. Sample 18 Pyrolyzed at 1,000° C.
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Figure 4. Example of an FTIR Spectrum Used to Identify Pyrolysis Products. Sample 18

Pyrolyzed at 1,000° C; Corrected Retention Time = 1 min; Peak Assignment:
Acetaldehyde.
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Observed trends in pyrolysis product distributions are listed as follows:

In low temperature pyrolysis experiments:

(1)

(2)

3)

(4)

©)

(6)

(7)

C)

(9)

(10)

RDX-based formulations generally gave larger yields of CO, and smaller yields of
N,O, CO, NO, and CH, than HMX-based formulations.

Formaldehyde was observed only for plasticized RDX formulations. Those same
RDX formulations yielded no CH,.

Formulations composed of only GA.P and plasticizer (samples 15 and 18) did not
generate formaldehyde.

HMX and all HMX formulations yielded HCN, but neither RDX nor any of the RDX
formulations did.

All samples except 8, 15, and 18 gave water as a pyrolysis product.

Unplasticized formulations had the lowest permanent gas yields (samples 8, 14,
16, and 17).

Samples plasticized with BTTN (9, 19, 20, and 21) had larger permanent gas yields
than those plasticized with TMETN.

Samples with large yields of permanent gases were found to have low yields of
carbonyl compounds.

Nitrates appeared as pyrolysis products for only sample 24 (HMX/GAP/TMETN)
and the four plasticized RDX/GAP formulations (samples 4, 9, 19, and 25).

Plasticized RDX/GAP formulations were the only samples that gave no triazine
(except for samples 15 and 18 which contained no oxidizer and were not expected
to give triazine).
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(1)

(12)

Isocyanate products did not appear for any HMX based formulations. All but one
RDX-based formulation (sample 16, RDX/HTPB) gave isocyanate pyrolysis
products.

Samples of pure RDX and HMX pyrolyzed at 400° C and 500° C, respectively,
gave strikingly different amounts of permanent gases, i.e., RDX ~30 area-percent
and HMX ~90 area-percent.

In high temperature pyrolysis experiments:

(1)

(2)

3)

(4)

(©)

(6)

(7)

(8)

(9)

Formulation appeared to have little effect on yields of individual permanent gases.

Plasticized RDX formulations (4, 9, 19, and 25) produced HCN, but unplasticized
RDX formulations (8 and 16) did not.

HCN was produced for all HMX formulations except 17, 21, and 23.

Yields of carboxylic acids and isocyanates were generally larger than in low
temperature experiments.

As in the low temperature experiments, there was an inverse relationship between
the yields of permanent gases and carbonyl compounds.

Nitrates were observed only for sample 24 (HMX/GAP/TMETN).

RDX and HMX both generated a relatively low yield of permanent gas.

RDX and HMX differed greatly in the amount of HNCO produced, i.e., 24.2 and 3.2
area-percent, respectively.

GAP yielded small amounts of total permanent gas, but large amounts of carbonyl
compounds, the majority of which were acetaldehyde and acetone.
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(10)

(1)

(12)

(13)

(14)

(15)

Most carbonyl products for RDX had retention times of 5 to 9 min. For HMX, most
had times of 11 to 18 min.

The distribution for HTPB consisted primarily of alkenes, including butadiene
monomer, dimer, and several monounsaturated compounds.

For unplasticized samples (8, 14, and 16) levels of permanent gases, including
HCN and H,O, were higher than in low temperature experiments.

The permanent gas level for samples 15 and 18 (50% GAP/50% piasticizer) were
much lower than for low temperature experiments.

For plasticized samples (with an oxidizer), the permanent gas level in high and low
temperature experiments generally differed by less than 10 area-percent.

All samples containing either RDX or HMX generated triazine as a pyrolysis
product.

3.2 Selection of Performance Data for Correlation With Pyrolysis Products. The
performance test results provided by NWC are given in Table 9. They consist of impact

sensitivity and burn rate measurements as well as "first light® and "go/no-go” ignition times.
First light measurements indicate initial emission whereas go/no-go measurements indicate
the time of laser stimulus necessary for 50% of the samples to sustain combustion after
removal of the stimulus. Theoretical specific impulse was also provided. Plots of burn rate
and impact sensitivity vs. specific impulse (Figures 5 and 6, respectively) indicate a strong
correlation and suggest that these two measurements are thermodynamically controlled. First
light and go/no-go ignition times (Figures 7 and 8, respectively) do not show such a correla-
tion and are therefore not believed to be thermodynamically controlied, making them suitable
choices for possible correlations with pyrolysis product distributions.

18




1sd 0G2 ie peinseew ‘(s,uyjed) xnj) Jese)| peyeds 1e sew! uolyub |y,

‘1sd 000'} le peinsesiy, (sg61) @0A :02iN0S
‘esindw) oyoeds [eoyiesosy) - *, e|gejieAe jou = BN
68s | 02 | 26€ | oos ¢ez | vorz | coer | voor | vo €1z | 882 2 __
6L | w2 | oy | eve roz |oser | esoz |oewt | 99 90z | 16+2 vz |
eN eN eN EN eN eN eN eN EN 602 | 91¥2 €2
ier | sie | 60s | ez |1zes | reee | osoz | esst | 69 oLt | Veve 22
wir |8z |sogv |2z [ooer Joss | s S | v2 981 | e9vz 12
gt ez |wee [er9 [ocar |esor | ez |rzor | 6¢ 612 | €162 02
860 |822 |9¢ |29 luies | 12w sy | 128 ) 622 | 0152 6!
eN eN eN eN eN eN eN eN EN eIs | L912 8l
o't |22 |26y |18z | o | v | voee | evez | of rsz | 9w L\
eN eN eN eN eN N eN EN eN oIy | 6¢€12 9l
eN eN eN EN eN eN EN eN eN 6€e | ¥122 Sl
gt | 292 |z6e | e |evos |9cos | 9eos | voer | 12 vez | @'6ee vl
90 St 2y 68 19 v'e 1'g 6'6 9L 9L | 0252 6
eN eN eN eN eN eN eN eN 99 20e | ¥9eg )
Sl 2 1S eor | 08 Ly 8's s | 62 9clL | 8152 b
002 080 00 .09 | 002 06k  00L .09 Aw%.% .hwn__o_w__ Aw.% oN
(sw) W67 1S4 (sw) 0p-oN/oD wng eidwes
sewn) uopuby

synsey ise) eduewsoped OMN ‘6 8iqel

19




Burn rote ot 100 psi (mm/s)

50X Impact Height (cm)

78

6.5

S5

4.3

3.8

o o
ﬂ n
o
a o

7 -]
i o a

o
.
-1

o
[ i ¢ 1 LR T T 1 L

210 220 230 240 250 260

Theoretical specific impuise (1/3)
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3.3 Correlation of Pyrolysis Products and Ignition Data. To identify correlations, several
techniques and tools were used. These include simple visual examination of P-GC-FTIR data

in formats similar to those used for Tables 3 and 4, as well as a multitude of plots generated
by a spreadsheet program (Symphony) and two multivariate analysis packages (Ein“Sight and
Minitab). Possible correlations for all pyrolysis products vs. all ignition data were explored.
Plots of percent pyrolysis product for total permanent gases and carbonyl compounds vs.
ignition time (flux: 60 cal/m®s) are given in Figures 9 and 10, respectively. The best
correlation is observed for total permanent gases (low temperature products) vs. low flux

(60 cal/m?s) go/no-go ignition times. Fairly good correlations with go/no-go times are also
observed for the carbonyl compounds. The most general explanation for these resuits is that
cleaner burning samples produce more small decomposition products (like permanent gases)
than large fragments (such as carbonyl compounds), resulting in shorter go/no-go ignition
times due to higher surface temperatures.

Correlation of total permanent gases production with go/no-go ignition times at laser fluxes
>60 cal/m?s were also observed, but were not as good as that for the lowest laser flux
presumably due to ablation and/or overdriven ignition (Cosgrove and Owen 1974), at the
higher fluxes. No significant correlations were observed for any of the high temperature
pyrolysis products when plotted against either go/no-go or first light ignition times, nor were
any observed for low temperature products when plotted against first light ignition times.
Differences between high and low temperature pyrolysis product distributions are discussed
above, but do not explain the lack of correlation with first light ignition times.

4. DISCUSSION

There are several striking differences in the low temperature pyrolysis product distributions
for RDX and HMX formulations. Most are likely due to differences in reaction temperature.
All RDX-based formulations were pyrolyzed at a set temperature that was 100° C lower than
for HMX formulations. This was done to compensate for the difference in oxidizer meiting
points (204° C and 280° C for RDX and HMX, respectively). Since HMX and RDX rapidly
decompose at their melting points, HMX is at a temperature almost 100° C higher than RDX
when it actually melts. This could explain the large difference in permament gas yields
between RDX and HMX, i.e., 29.9 and 92.1 area-percent, respectively. Based on the notion
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that N-N bond rupture dominates at higher temperatures and that C-N rupture dominates at
lower temperatures, this may aiso explain why in low temperature pyrolysis experiments RDX
formulations generate formaldehyde while HMX formuiations do not, and simifarly why HMX
formulations generate HCN while RDX formufations do not.

Examination of go/no-go ignition times as a function of laser flux suggests that samples
can be divided into three groups (see Figures 11-13). Group | (samples 14, 22, 25, and 24)
exhibits increasing go/no-go times with increasing flux. Group !l (samples 20, 21, 4, 9,
and 19) has ignition times that first decrease and then increase with increasing flux. (lgnition
times at a flux of 200 cal/m?s for HMX formulations increase to values larger than those at
60 cal/m?s while ignition times at 200 cal/m?s for the RDX formulations in this group increase
to values smaller than those at 60 cal/m?s). Group Ill is composed only of sample 17 (the
unplasticized sample formulated with HTPB) and exhibits go/no-go ignition times that
decrease with increasing laser flux. Observations described below suggest that differences in
ignition behavior exhibited by these groups are related to ablation and/or overdriven ignition at
high laser fluxes, as well as to the ability of plasticizer and/or plasticizer decomposition
products to catalyze propellant decompaosition. Pyrolysis GC-FTIR investigation of BTTN and
TMETN decomposition at 400° C reveals the production of permanent gases, including a
relatively large amount of formaldehyde, as well as several nitrate ester fragments. Which, if
any, of these products may serve as catalysts has not been determined, though formaldehyde
has been reported to catalyze the thermal decomposition of RDX (Batten 1971a, 1971b;
Liebman et al. 1987). Further evidence of catalysis by plasticizer and/or plasticizer
decomposition products is the observation that while triazine is produced for HMX formulations
and unplasticized RDX formulations in low temperature experiments, as well as for all HMX
and RDX formulations in high temperature experiments, no triazine is produced for piasticized
RJX formulations at low temperature. Based on a comparison of the amount of nitrate
fragments produced as a resuit of low and high temperature pyrolysis ("RNO," in Tables 5
and 6), it appears that plasticizer decomposition is more complete for high temperature
pyrolysis. Other than sample 24 (HMX/GAP/TMETN), the only samples giving nitrate
decomposition products are the plasticized RDX formulations (4, 9, 19, and 25), and they do
so only when pyrolyzed at low temperature. These same formulations happen to be the same
samples that do not give triazine. These observations seem to suggest catalytic properties of
nitrates (see Scheme 1). In a related study that examined the thermal decomposition of RDX
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with GC-MS (Liebman et al. 1987), it was found that the presence of borohydride catalysts
eliminated both triazine oxide and NO, from the decomposition products.

It is observed that Group | contains an unplasticized formulation (sample 14) and TMETN
plasticized formulations, but no BTTN plasticized formulations. Group 1l is composed almost
exclusively of BTTN plasticized formulations (the one TMETN plasticized sample in Group i,
sample 4, differs from other TMETN samples in that it is formulated with only about one-third
the amount of GAP).

Although both BTTN and TMETN are both energetic plasticizers, BTTN is the more
sensitive of the two as evidenced by the impact sensitivities for samples 15 (GAP/BTTN)
and 18 (GAP/TMETN), i.e., 33.9 and 51.3 cm, respectively (Table 9). it is conceivabie that
since BTTN is the more sensitive plasticizer, it will decompose more readily at lower laser
fluxes than will TMETN. Its decomposition products will then be available to catalyze
decomposition of the rest of the sample. At high laser fluxes, increased temperatures
encourage more rapid, but perhaps less efficient, decomposition of the entire formuiation. At
sufficient flux, material will ablate from the sample and remove heat from the reaction zone,
resulting in the increased ignition times observed for Group | at all fluxes and Group |l at high
fluxes.

Similar reasoning may explain the production of acetaldehyde (CH,CHO) by samples 15,
18 and GAP in high temperature experiments (Table 8), retention time: 1.5 min), but by only
sample 18 in low temperature experiments (Table 7), note that GAP was not pyrolyzed at low
temperature. In the low temperature experiment, sampie 15 (GAP/BTTN) produces large
amounts of permanent gases, but no acetaldehyde, indicating more complete decomposition
of GAP than for sample 18 (GAP/TMETN) which produces a significant amount of
acetaldehyde and almost 20% less permanent gases. In high temperature experiments,
where decomposition is probably instantaneous, plasticizer does not have the opportunity to
catalyze GAP decomposition. The result is that samples 15 and 18 decompose less efficiently
and generate almost as much acetaldehyde as unplasticized GAP (22.4, 15.5, and 28.1%,
respectively for samples 15, 18, and GAP). Samples 15 and 18 also generate relatively small
amounts of permanent gases, though more than does unplasticized GAP (59.6, 43.7, and
38.7%, respectively for samples 15, 18, and GAP).
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The observation that samples plasticized with BTTN tend to have shorter first light times
than unplasticized formulations or those plasticized with TMETN (Table 9) may lend further
support to the ideas proposed here.

Sample 17 does not fit into either Group | or . It is the only sample that demonstrates
decreasing ignition times with increasing flux. This suggests that abiation is not a problem for
this unplasticized, HTPB-bound formulation. Two additional unplasticized, HTPB-bound
samples (Yee, private communication) prepared along with those in this study, but not
examined by us, show a similar trend and indicate that the behavior is not unique to
sample 17, but rather is a characteristic of HTPB-bound formulations.

5. CONCLUSION

The primary objective of this investigation was to identify correlations between ignition
times and pyrolysis product distributions. Such correlations have been found for go/no-go
ignition times, but not for first light ignition times. The reason for lack of correlation with first
light measurements is not clear. An explanation is not necessary for a non-mechanistic study
such as this, but would contribute to a more compiete understanding of the systems being
examined. The correlations that have been identified, namely those of total permanent gases
and carbonyl compounds, provide a means for predicting go/no-go ignition times and may be
used for small scale screenings of new formulations.

Several trends in pyrolysis product distribution as a function of propellant composition have
been observed. Most of these trends are believed to be related to the ability of BTTN and
TMETN to catalyze decomposition. Although not directly applicable to performance
prediction, the trends and observations reported here are expected to be of interest for those
interested in formulation design or propellant decomposition.
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APPENDIX:
GC-FTIR DATA FOR UNIDENTIFIED PYROLYSIS PRODUCTS
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As discussed in the body of this report, many pyrolysis products could not be identified
and are described only by their functionality (i.e., nitro and carbonyl compounds, nitrates,
isocyanates). To provide more complete information for future reference, spectra of
unidentified products are presented in this appendix. Tables summarizing spectra and
associated samples are also given.
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Spectrum 36 is typical of the isocyanates produced by this propellant series. In many
cases, the RNCO band overlaps with other bands, in this case with formic acid. identification
of the compound is further complicated by the spectral similarities of different isocyanates.
The three model isocyanate spectra below illustrate this point.

Spectrum 36 201 ' {
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Table A-1. Summary of Samples Having Carbonyl Pyrolysis
Spectra Presented in the Appendix

Retention
Time
(min)

2 Unknown RDX 400/500 34
25 1,000 14.7
3 Unknown RDX 400/500 3.6
14 12.3
16 9.0
RDX 1,000 3.7
GAP 11.7
19 45
23 14.7
4 Unknown RDX 400/500 45
16 4.6
RDX 1,000 42
15 25
17 6.3
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Table A-1. Summary of Samples Having Carbonyl Pyrolysis
Spectra Presented in the Appendix (continued)

40

Retenﬁon
Time |

(min)

Unknown

7 Unknown | RDX | 400/500 6.8
22 1,000 9.0

24 10.4
8 Unknown | RDX | 400/500 80 |
9 Unknown | RDX | 400/500 8.7
9 9.4, 13.0

14 6.0

22 10.0

10 | Acetamide? | GAP 1,000 12.1
17 8.4

20 9.0

21 8.5

22 8.6

23 8.8

11 Unknown 20 1,000 15.3
22 13.0

23 13.1

12 Triacetin? 4 400/500 | 6.0,9.5
15 10.4

16 115

18 | sa
M




Table A-1. Summary of Samples Having Carbonyl Pyrolysis
Spectra Presented in the Appendix (continued)

Retention
Time
(min)

Triacetin?
4.7
9 1,000 10.0
14 Unknown 17 400/500 12.3
16 59
21 1,000 75
22 8.0
23 8.1 i

24 7.3
15 Unknown 16 400/500 6.9
9 1,000 12.5
16 1.4
16 Unknown 15 400/500 12.6
20 12.1

21 1,000 9.5, 14.7

23 96, 12.2

II 17 Unknown 21 400/500 10.8, 12.0
9 1,000 95
21 10.5
18 Unknown HMX 1,000 20.3
17 13.0
18 8.0
21 13.3

24 8.1,17.4
19 Unknown 17 1,000 14.2
18 11.0
20 10.5
23 10.2
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Table A-2. Summary of Spectra of Carbonyl Pyrolysis Products for Propellant Samples

Sample Low Temperature High Temperature

No. Pyrolysis Spectra Pyrolysis Spectra
4 12 1
8 13 20
9 9 13, 15, 20

14 1,2,9 |

15 12, 16 4

16 2,4,12, 14,15 1,15

17 1, 14 1, 4,10, 18, 19
18 12.... 12, 18, 19

19 1 1,2

20 1, 16 1,5, 11,19

21 17 10, 14, 16, 17, 18.
22 1,9 7,11, 14

23 1 2,9, 11,12, 14, 16, 19
24 T reeettteeeessscsasensesssncsssonsessansessassasanas 1,7, 12, 14, 18
25 B eietrneeneernsnnnsasasaenssssssnsaensnnsnsnaneas 6

RDX 1,2,3,4,5,6,7,8,9..cccecvveunees 1,2,3,4

HMX o rcrcrsntnsnsnisssnnecsnessssannees 1,6, 18

GAP eeesssenteessssannesessennnsssssresnasserentsnesans 2,10

HTPB mececcerccencncnscnnssnessnaesnessssneneas -
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Table A-3. Summary of Spectra of Nitro (RNO,) Pyrolysis Products for Propellant Samples

Pyrolysis Retention
Temperature Time
(°C)

22 Nitromethane RDX 400/500 6.0
9 4.0

14 5.0

18 5.0

22 5.0

24 45

18 1,000 5.0

23 Nitroformamine? 9 400/500 13.5
14 16.5

16 8.0

17 16.5

8 1,000 10.5

17 10.5

20 11.5

21 10.5

23 115

24 Unknown RDX 400/500 1.0
RDX 1,000 1.0

16 3.5

25 Unknown 18 1,000

Unknown

Unknown

Unknown 19
Unknown 19
Unknown 24
Unknown 25
Unknown 25

43

Pyrolysis Retention
Temperature Time
(°C) (min)
400/500 7.5
400/500 11.9
400/500 5.2
400/500 5.9
400/500 125
400/500 40
400/500 5.5
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BAMO/AMMO
BAMO/THF
BTTN

GAP

GC

HMX

HTPB

sp

LOVA

MCT

m/z

N-100

NWC
P-GC-FTIR
RDX

TMETN

LIST OF ABBREVIATIONS

3,3-bis(azidomethyl)oxetane/3-azidomethyi-3-methyl oxetane copolymer
3,3-bis(azidomethyl)oxetane/tetrahydrofuran copolymer
1,2,4-butane trinitrate

glycidyl azide polymer

gas chromatography

cyclotetramethylenetetranitramine

hydroxy-terminated polybutadiene

specific impulse

low vulnerability ammunition
mercury-cadmiume-teliuride (infrared detector)

mass to charge ratio (in mass spectrometry)

trade designation for a polyfunctional isocyanate, manufactured by
Mobay

Naval Weapons Center
pyrolysis-gas chromatography-Fourier transform infrared
cyclotrimethylenetrinitramine

trimethlyolethane trinitrate

Pyrolysis product notation (used in Tables 3 through 6):

C=0

PG
RCH=NH
RCOOH
RNCO

compound containing a carbonyl functional group (includes aldehydes,
amides, and ketones)

permanent gases (includes CH,, CH,0O, CO, CO,, NO, and N,O)
compound containing an imine functional group
compound containing a carboxylic acid functional group

compound containing an isocyanate functional group
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RNO, compound containing a nitrate functional group
RNO, compound containing a nitro functional group
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