Implementation and Experimentation with Motion Planning Algorithms

Annual Report for the Period 1 Oct 90 – 30 Sep 91
submitted to
The Office of Naval Research

September 1991
1 Numerical Productivity Measures

Refereed papers submitted but not yet published: 16; 10 others in preparation.
Refereed papers published: 0 (9 'older' papers published during the contract period).
Unrefereed reports and articles: 0
Books or parts thereof submitted but not yet published: 0
Books or parts thereof published: 0
Patents filed but not yet granted: 0
Patents granted: 0
Invited presentations: 4
Contributed presentations: 10
Honors received (fellowships, technical society appointments, conference committee role, editorship, etc.): no new honors
Prizes or awards received (Nobel, Japan, Turing, etc.): 0
Promotions obtained: 0
Graduate students supported: 0
Post-docs supported: 0
Minorities supported: 0

Statement A per telecon
Dr. Teresa McMullin ONR/Code 1133
Arlington, VA 22217-5000

WW 11/18/91
2 Detailed Summary of Technical Results

2.1 Overview and Background

The main charter of this contract is the implementation and experimentation with motion planning algorithms that emphasize the exact combinatorial and purely geometric approach.

Motion planning is considered to be one of the major research areas in robotics, and is one of the main stages in the design and implementation of autonomous intelligent systems, which is an important long-range goal in robotics research. Motion planning is one of the basic capabilities that such a system must possess. In purely geometric terms, the simplest version of the problem can be stated as follows. The system is given complete information about the geometry of the environment in which it is to operate (and of its own structure), and has to process it so that, when commanded to move from its current position to some target position, it can determine whether it can do so without colliding with any of the obstacles around it, and if so plan (and execute) such a motion.

There are many variants of the problem. A few of those are: motion planning in environments that are only partially known to the system, compliant motion planning that allows contact with obstacles, which might be unavoidable due to measurement errors, optimal motion planning, motion planning with "kino-dynamic" constraints, and motion planning amidst moving obstacles. Still, even the simplest, static, and purely geometric version stated above is far from being simple, and poses serious challenges in the design of efficient and robust algorithms.

Theoretical studies of motion planning have been abundant in the past decade, and the Principal Investigator has been involved with many of them. It was shown that the main parameter that controls the computational complexity of the problem is the number k of degrees of freedom of the system. When k is arbitrarily large (e.g. in coordinated motion planning of many independent bodies), the problem usually becomes computationally intractable [9,10]. There are several general techniques (one by Schwartz and Sharir [17] and a more recent and more efficient one by Canny [5]) that have been derived for solving the problem for arbitrary systems, but their worst case running time is exponential in k, and even for available commercial systems with $k = 6$ degrees of freedom, these algorithms are very complex and unacceptably inefficient for practical use.

This situation has caused subsequent research to proceed in two divergent directions. One was to abandon the exact algorithmic approach and design heuristic and approximating techniques in which the geometry of the space of available placements of the system is not computed accurately but only coarsely approximated, or is "bypassed" by other heuristic techniques. The resulting systems are generally not robust — they might miss free motions and declare incorrectly the desired destination as unreachable. Moreover, even with the
heuristic shortcuts, these systems are still inefficient, and most of them perform well (within the above mentioned limitations) only on 'toy' examples consisting of only a few obstacles.

The other approach was to continue to cling to the exact combinatorial algorithmic paradigm, but begin by attacking problems with a small number of degrees of freedom, analyze them thoroughly, and develop efficient algorithms whose worst-case running time is even better than that of the general technique of Canny. This approach, which is the one followed in our research, is a 'bottom-up' approach, that aims to solve simpler systems first, in the hope that these solutions will be usable as routines in the solutions of more general problems. Moreover, this approach leads to better understanding of the combinatorial structure of the space of free system placements, and can therefore result in solutions that are faster than those yielded by heuristic techniques.

Although many motion planning problems with very few degrees of freedom are not very realistic, some of them do correspond to problems that can arise in practice. For example, the problem involving a rigid polygonal object moving in the plane amidst a collection of polygonal obstacles is actually the problem of navigating a robot vehicle, and has only three degrees of freedom. Navigating a circular robot has only two degrees of freedom. These problems have been successfully attacked by the exact algorithmic technique, and a battery of efficient techniques for their solutions has been developed (see [16], [11], [14], [12], [8]). Some of these solutions have in fact been implemented and tested (see e.g. [13], and also [4]), although no real production system has resulted from these experiments, as far as we know.

In the present research we have chosen another class of problems involving three degrees of freedom and have the potential of being applicable in real-life problems. This class involves a rigid object flying through 3-dimensional space, by translation only, amidst a collection of polyhedral obstacles (which are static, and whose geometry is known to the system, as in our basic assumptions made above). In full generality, the flying motion of a rigid object in 3-space involves 6 degrees of freedom (with rotation) and is too complex, in the present state of the field, for exact and practical algorithmic solution. The case of allowing only translations can still be used in practice in several ways: (i) If the size of the moving object is much smaller than the sizes of the obstacles, we can approximate the object by a point, which has only the three degrees of freedom of translation. (ii) If the moving object has a generally rounded shape, we can approximate it by a moving ball, again with only three degrees of freedom. (iii) We can use the solution for translational motion planning to obtain an approximate solution of the general problem, by discretizing over the range of available orientations, solve the purely translational problem for each orientation, and look for purely rotational passages between adjacent orientations; this technique has been recently proposed for planar motions in [1], and it seems applicable to 3-dimensional problems as well.

This problem has already been discussed in a pioneering paper on algorithmic motion planning [15] 11 years ago. However, no analysis, nor even any consideration of algorithmic efficiency, has been provided there. Recently the problem has been studied and analyzed in several papers. The case of a moving point has been studied in [6]. It was shown there that if the polyhedral obstacles consist of n faces and r convex edges (that is reflex edges from the point of view of free space), then the free space can be decomposed into $O(n + r^2)$ tetrahedra, in time $O(nr + r^2 \log n)$. Having this decomposition available in the form of a 'connectivity graph', whose vertices are these tetrahedra and whose edges connect
pairs of adjacent tetrahedra, facilitates a reduction of the motion planning problem to a simple (and discrete) path searching problem in that graph. The solution given in [6] is slightly complicated and requires the use of a few sophisticated algorithmic techniques. A generalization of the problem to the case of an arbitrary translating polyhedral object has been studied in [2], which showed that the complexity of a single connected component of the free configuration space is at most $O(n^{7/3})$, which is a significant improvement over the naive (and worst-case tight) $O(n^3)$ bound on the complexity of the entire configuration space. A major theoretical breakthrough of our research in the past year is an improvement of this bound to $O(n^2 \log^2 n)$ [3]. Note that a single component of the free configuration space, namely the one that contains the starting position of the robot, is all we need, because all placements reachable from this starting position must necessarily lie in that component. The paper [2] also presents a randomized algorithm to compute a single component in time that is close to $O(n^{7/3})$. By plugging our improved complexity bound into this algorithm, one can show that its running time drops down to close to $O(n^2)$, which constitutes a significant and near-optimal result, since in the worst case the complexity of a single cell can indeed be quadratic.

2.2 System Description

The implementation of our 3-d motion planning system is being carried out by a full-time programmer (Ms. Estarose Wolfson) at the Robotics Lab of the Courant Institute at New York University. Currently, the implementation of the simple case of a moving point has been completed, and testing of it is nearly complete. In the few months ahead we plan to perform extensive experimentation with the system, and interface it to receive input directly from commercial CAD systems, and to develop a nice graphics interface for its output. We hope to bring it to the level that it can be used commercially (at least in a prototypical sense) in various applications. With the availability of additional support (currently pending), we hope to continue with the more advanced versions of the system, for more complex moving objects, as mentioned above.

A major principle in the system design was to implement a system whose worst case running time matches the best available theoretical solutions (in our case, that of [6]), but to trade sophisticated algorithmic techniques by simpler methods whenever possible (without hurting the overall asymptotic running time). To underscore this point, it should be noted that implementing geometric algorithms for 3-d problems is a fairly tedious task. Several basic problems that arise have been given efficient theoretical solutions, but their implementation is very complicated and troublesome. As an illustration, consider the spatial point location problem, which arises a lot in our implementation. A simple version of the problem asks to determine, for an arbitrary query point, the obstacle face it 'sees' directly above it. There are several recent efficient techniques for solving this problem, but they are very cumbersome to implement. In our system we have used a simpler solution that proceeds by traversing faces of the obstacles in a certain order until the one lying directly above the point is found. This method is very simple to implement, and its total cost turns out in our case to be within the allowed theoretical bound. This policy has been followed in all other steps of our algorithm.

Here is a brief sketch of the structure of our system (similar to last year's report).

OBJECTIVES and TERMINOLOGY: Given any two points in \mathbb{R}-space and a set of
polyhedral obstacles having a total of \(N \) faces, we wish to determine whether there is a path between these points (avoiding intersections with the obstacles) and if so find one such path. This is the motion planning problem of moving a point through a three dimensional space consisting of non-overlapping obstacles. To do this, the complementary space of the obstacles (with respect to some large imaginary enclosing box), called the free space, is decomposed into convex units (cells), which form the nodes of a connectivity graph whose edges connect pairs of adjacent cells. These cells have walls consisting of \(z \)-vertical planar faces and top and bottom 'covers' each consisting of facets from a unique obstacle. Thus these basic cell units and the connectivity among them will allow us to travel through free space to reach our destination, provided it lies in the same connected component of free space as our initial position (which is the same as belonging to the same connected component of the connectivity graph). Our program will be later extended to include the case of a moving ball and an arbitrary 3-D polyhedral object moving (by translation only) through the environment.

The general technique, as developed in [6], [2], and others, is to construct a vertical cell decomposition of the free space. Such a decomposition is obtained by erecting vertical walls up and down from each reflex obstacle edge (i.e. an edge whose dihedral angle within the free space is greater than 180 degrees). These walls are extended until they hit other obstacle faces (or, failing this, to infinity). Collectively, they partition free space into convex subcells of the form discussed above, and their adjacency through the vertical walls gives us the desired connectivity graph.

We have modified this method so that walls are erected only from full reflex edges, which are edges \(e \) with the property that the vertical plane passing through \(e \) is such that the obstacle containing \(e \) lies (locally) only on one side of the plane. This coarser decomposition yields cells that are only "\(z \)-convex", meaning that any \(z \)-vertical line intersects such a cell in a connected segment. It is still relatively easy to navigate through such a cell, and in practice the saving in this coarser scheme is expected to be significant. We denote by \(r \) the total number of reflex edges and by \(R \) the number of full reflex and inverse reflex edges (defined in analogy to reflex edges except that the free space lies locally on one side of the vertical plane through the edge). As an illustration, suppose we have a spherical obstacle, which we approximate as a convex polyhedron with \(k \) edges. In this case we have \(r = k \) (every edge is reflex), but \(R \) is only proportional to \(\sqrt{k} \). This indicates that our coarse decomposition can be expected to be much more efficient in practice.

A key concept in our method is that of obstacle silhouettes. Informally, these are loci of points on the obstacle boundaries where the \(z \)-vertical cross section of the obstacle has a discontinuity. Such a silhouette consists of a connected closed cycle of full reflex obstacle edges, inverse reflex edges, or a combination of such edges; see Figure 1.

The silhouettes contain most of the information necessary to achieve our coarse cell decomposition, and the total size of all silhouettes is only proportional to \(R \) and not to \(N \), again implying significant savings in practice (and theory).

In addition, we use the notion of half reflex edges, which are all the remaining reflex edges, whose two adjacent faces lie on opposite sides of the vertical plane passing through the edge. Thus, if we were to erect vertical walls from such an edge (which we do not), the wall would extend only upwards or only downwards into free space. Half reflex edges are used in the later stages of the program to plan passages through the resulting cells.
Figure 1: An example of the two silhouettes generated by an object with a hole. Thick solid lines are the full reflex edges; thick dashed lines are the inverse reflex edges; and the thin solid lines are the remaining edges of the object. The image has been rotated to provide a coherent view.

The input to the system consists of the obstacles. These are arbitrarily complex 3-d polyhedra, that may have holes, tunnels, handles, etc. We assume that they are given by their boundary representation, where each face is already triangulated, and comes with its outward-directed normal vector. The next stage of our implementation will obtain the input directly from CAD data bases or other large data bases through appropriate interfaces.

METHOD and PROGRAM:

For lack of space, we only give a very brief outline of the system.

(1) We calculate the obstacle silhouettes by a breadth first search on the vertices and edges of each obstacle, and connect them locally into appropriate lists.

(2) We next find the “critical points” of the silhouette interactions by performing a planar sweep along the z direction on the xy-projections of the silhouettes. The critical points are the z minimum and maximum points of the branches of the silhouettes, the midpoints where tunnel holes change from being inside to outside the obstacle (inverse to reflex edges of silhouette) and vice-versa, and the intersection points of two projected silhouettes whose obstacles are adjacent in the z-direction of 3-space. The running time of this stage is $O(N + (R + S) \log X)$, where $X < R$ is the number of chains and $S < R^2$ is the number of intersections between them.

During the sweep we need to compute the z coordinate of a point on some surface whose x, y coordinates are specified. This is a step that is usually accomplished by point location techniques that have been recently developed (see e.g. [7]). Since these techniques are rather involved, we replaced them by a simpler tumbling technique, which finds the desired
Figure 2: Example of the top and bottom cover of the cell generated by tumbling from one critical point to another along the central object’s outer silhouette. The thick solid lines are the etchings on the covers; the thin solid and dashed lines are the triangulated objects.

point by tracing a path along the surface from a known point (on its silhouette) towards the desired point, crossing the triangular faces of the surfaces in order until the desired point is reached. Tumbling appears to be expensive, but is actually required only for locating z-minimum critical points of cells (the first points of the x-monotone chains), which makes its cost lie well within the allowed theoretical bound. The cost of this step is $O(NX)$ in the worst case.

(3) For each cell silhouette we complete the construction of the z-vertical walls erected from the silhouette edges. For this we need to find their top and bottom intersections with the obstacles by ‘tumbling’ along the path of the chain of edges of the silhouette from one critical point to another, knowing that between any two critical points the z neighbor above (and below) the edge will remain on the same obstacle patch; see Figure 2. The cost of this step is at most $O(H + S)$.

(4) We are now in a position to actually construct our cells and the connectivity between them. We split each chain of reflex edges at its critical points, and then recombine the resulting chain fragments (and the vertical walls attached to them) to form the contours of new coherent cells. The recombination is done locally around each critical point, by attaching chain fragments and their walls to adjacent fragments-and-walls meeting them at this point, and by determining locally the geometry of the resulting incident cells; see Figure 3. The step is implemented as a simple traversal of the split chains with appropriate ‘jumps’ between them at the critical points, and its cost is shown to be $O(NR)$.

(5) The cells just produced are “z-convex” — any vertical line intersects such a cell in a connected interval, but their xy-projections can still have an arbitrary polygonal shape. The
Figure 3: Example of a reconstructed cell generated by the hole in the object with covers on a surrounding object. The thick solid lines are the top and bottom covers; the thick dotted lines outline the z-vertical walls of the cell. Again the object has been rotated to afford a better view.

next step decomposes our cells further into "more convex" subcells, each being z-convex and having a convex xy projection. This is achieved by an appropriate planar sweep through the xy projection of each cell, and can be done in total time $O(NR)$.

(6) Next we find certain actual paths through the cells. These paths connect some center point within each cell to entry / exit points on the vertical walls separating the cell from adjacent ones. To do this, we pass a vertical plane through the center point p and some entry/exit point q, and trace the intersections of this plane with the top and bottom covers simultaneously, using our tumbling method. Our strategy is to remain always at mid-height between the current top and bottom faces. We thus obtain a polygonal path whose xy-projection is a straight segment. We collect all these paths and store them in a data file, to be used by the final motion planning phase. With some care, the cost of this step can also be made $O(NR)$.

(7) The Motion planning phase: Finally, given a source point p and a target point q, we want to determine whether there exists a free path between p and q, and, if so, produce such a path. For each of the points p, q we find the cell containing the point or indicate that the point is not in free space (in which case no motion planning has to be done). For points in free space, let c_1, c_2 denote the cells containing p and q respectively. We also find the path from p to the center of c_1 and from the center of c_2 to q. We next test if these two cells are in the same connected component of our connectivity graph. If this is the case, we find a path in the graph connecting c_1 and c_2 by a simple breadth first search. We then construct the actual path from p to q by concatenating the subpaths from p to the center of c_1, from the center of each cell to an exit point on the vertical wall separating it from the
next cell, from that point to the center of the next cell, and finally from the center of \(c_2 \) to \(q \). The output of this phase is simply a sequence of points, given by their coordinates, so that between any two consecutive points the path proceeds along a straight segment. The running time of this step, and the size of the output path, are both \(O(N + R^2) \).

2.3 Supplemental Theoretical Research

Besides work on the system proper, we have also continued to work on related problems in motion planning and in computational geometry. Some parts of this work are closely relevant to the research project, while other parts cover more basic problems in computational geometry. The main result related to the research project is the improved bound, already mentioned above, on the complexity of a single cell in an arrangement of triangles in 3-space, which in turn leads to an efficient algorithm for motion planning of the type we study in the project (see item [20] in the list of publications in Section 3). Among our other results that are more relevant to robotics, we mention: improved bounds and efficient algorithms for certain motion planning problems with three degrees of freedom (items [3, 21] in the list of publications in Section 3), analysis of the complexity of the union of polyhedra in space, upper envelopes of Voronoi surfaces and their applications in pattern recognition [7], optimal placement problems of polygons in a polygonal environment [11], computing a single face in an arrangement of line segments [4] and some extensions of this algorithm [16], a note on an earlier motion planning algorithm [28], and miscellaneous results in computational geometry, including efficient techniques for ray and circle shooting in polygonal regions [1], improved techniques for output-sensitive hidden surface removal [12], geometric location and other optimization problems [5, 6, 23, 24, 26], and applications of a new space partitioning technique [8]. A bibliography of the publications that acknowledge support by the grant (in which these references appear) is given in Section 3 below.

References

[2] B. Aronov and M. Sharir, Triangles in space, or building (and analyzing) castles in the air, *Combinatorica* 10 (2) (1990), 21-70.

3 Lists of Publications, Presentations, Reports, and Honors

3.1 Publications

Includes papers listed in last year's report whose status has changed

2. M. Sharir, k-sets and random hulls, accepted for Combinatorica.

5. P.K. Agarwal and M. Sharir, Off-line dynamic maintenance of the width of a planar point set, accepted for Computational Geometry, Theory and Appl.

16. N. Miller and M. Sharir, Efficient randomized algorithms for constructing the union of fat triangles and of pseudodiscs, submitted to *Algorithmica*.

Conference Proceedings

Invited Presentations

4 Description of Research Transitions and DoD Interactions

None so far.
5 Description of Software and Hardware Prototypes

Please see Section 2 for a detailed description of the system being implemented. It is our hope that the system could be commercialized. Likely ‘customers’ might be the space industry (for programming flying robots), and CAD and related systems (enhancing such a system with navigation capabilities through 3-D scenes).