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ABSTRACT

Based on the hypothesis that both flexural and longitudinal

vibrational energy flow can be measured non-intrusively by an optical

technique which can be extended to broadband vibrations, a two-channel

laser vibrometer system is developed and evaluated for cross-spectral

power flow measurements. The cross-spectral power flow results from

tests on small resonant beams and rods are verified by comparison with

one-dimensional energetics and standing wave power flow results

(obtained with a single scanning laser beam of the two-channel

vibrometer). Among the contributions of the thesis are: development

and validation of the laser technique for measuring flexural power flow

in reverberant fields; introduction of a procedure to maximize phase

accuracy which eliminates phase bias error and coherent noise error; an

investigation into the differential Doppler method for measuring

longitudinal power flow including an analytical model of the effects of

bending on the longitudinal power flow measurements; studies of the

optical parameters which dictate the performance of the reference beam

method and differential Doppler method; and a quantification of how

physical and measurement parameters affect the accuracy of this non-

intrusive two-point vibrational power flow measurement. Also included

are literature surveys covering the measurement of vibration intensity, a

and the uses of laser vibrometery, and a section covering fundamental , A

principles of both the reference beam and differential Doppler method.-
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INTRODUCTION

The flow of vibration energy through a structure can occur in

several forms including flexural waves, longitudinal waves, and shear

waves. Introduced by Noiseux in 1970, the structural intensity method

is a technique which allows one to determine experimentally how this

vibration energy is transmitted or dissipated throughout a structure.

Most of the focus has been on the flow of energy due to flexural waves,

since these are typically dominant from a sound radiation standpoint.

However, the technique is equally applicable to longitudinal waves.

Cremer, Heckl and Ungar (1973) have illustrated how flexural and

longitudinal energy can interact at structural joints which makes

longitudinal intensity an important value from an energy balance

standpoint.

The measurement of vibrational "power flow" or structural

intensity can be accomplished in the flexural farfield by the use of two

closely spaced transducers and a finite difference approximation.

(NOTE: The use of the term "power flow" is widespread in the structural

intensity field despite its inaccuracy. It is actually an energy flux

or simply a power measurement. "Power flow" may be used in this thesis

where it is more correctly a "power" which is measured.) Two

accelerometers have been used in the past to accomplish this task.

Unfortunately, accelerometers can alter the dynamic behavior of the

vibrating structure. Additionally accelerometers cannot easily probe a

surface for the purpose of mapping the structural energy flow paths.
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These and other related considerations have hindered the practical

implementation of structural intensity measurements to date.

Consequently, there is a need for a technique which can measure

the real-time structural response simultaneously at two closely spaced

points without mass-loading the structure and without requiring the

repeated bonding of transducers to the surface. This thesis details the

development and evaluation of a two-channel laser Doppler vibrometer

system (TCV system) as a structural intensity probe. This device

focuses laser light to two spots on a vibrating surface and, by the use

of the Doppler shift in the backscattered light, determines the

direction and magnitude of the energy flow-rate by signal processing

methods which have been used for accelerometers. Theoretically, the

instrument can be used to quickly scan a surface to map out the

structural intensity due to surface-normal as well as in-plane waves so

that the energy flow due to three wave types (flexural, longitudinal,

and shear) can be monitored with the same instrument.

The basic concepts of structural intensity and a review of the

various methods which have been used to measure structural intensity to

date are discussed in Chapter I. This is a detailed literature survey

which includes references to many of the problems with the current

intensity measurement techniques.

Chapter II reviews the uses of laser Doppler vibrometry to date,

and presents a description of the TCV system constructed at the Applied

Research Laboratory at The Pennsylvania State University. Additionally,

it details the fundamental principles of vibrometry in the reference

beam mode (which is used for detection of surface-normal vibration) and
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vibrometry in the differential Doppler mode (which is used for detection

of in-plane vibration). Also discussed are noise sources in laser

vibrometry and related electro-optic parameters which can effect

structural intensity measurements when the TCV system is used. This

discussion is relatively brief and is meant to serve as a background to

the discussions related to intensity measurements.

The balance of the text is split into two major parts. The first

pertains to the measurement of flexural intensity using the TCV system

in the reference beam mode, while the second pertains to the measurement

of longitudinal intensity using the TCV system in the differential

Doppler mode.

Chapter III formulates the cross-spectral (two-point) flexural

intensity equation in terms of the TCV system output from basic

vibrometer principles. It also presents two alternate equations for

flexural intensity which are only applicable in a special case and which

are only used in this work for validation of the much more versatile

cross-spectral technique. The chapter then describes the experimental

setup and test procedure used for validation of the TCV cross-spectral

technique and presents the experimentally obtained flexural intensity by

way of the three approaches.

The remaining chapters on flexural intensity focus chiefly on the

optical and electronic aspects of the TCV system in the reference beam

mode. These aspects can greatly influence the measurement accuracy of

the s-,-stem in practical situations and hence they form the evaluation

portion of the thesis for flexural intensity. Chapter IV primarily

describes the electro-optical parameters which ultimately determine the
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vibrometer channel signal-to-noise ratio. This is an important quantity

in intensity measurements as it determines intensity random error.

Chapter V details and analyzes the influence of three potential sources

of intensity error due to TCV system characteristics when in the

reference beam mode. These sources include random error, bias error

(particularly phase bias error), and coherent noise. Phase bias and

coherent noise error are addressed at the same time since their

deleterious effects can be removed simultaneously by a technique

described in the chapter.

Chapter VI introduces the topic of longitudinal intensity. In a

manner similar to Chapter III, it derives the cross-spectral

longitudinal intensity and the two alternate longitudinal intensity

equations in terms of the TCV output. It also presents the longitudinal

intensity test results and a discussion.

Chapter VII then describes the parameters which influence the

signal-to-noise ratio in the differential Doppler technique. The

differential Doppler technique appears to be rarely used in xv'rometry,

compared to the reference beam technique and there is little theory

available on the differential Doppler technique. Therefore the

influence of some parameters on the signal-to-noise ratio is obtained

experimentally. Ultimately the chapter predicts vibrometer signal-to-

noise ratios as a function of both the optical conditions and the amount

of in-plane motion. This lays the foundation for longitudinal intensity

random error predictions.
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Chapter VIII presents predictions of random error as a function of

various optical conditions and longitudinal intensity. As explained in

the chapter, coherent noise is not a source of error in the differential

Doppler technique and so is not addressed. Phase bias error is not

addressed in this chapter since it is removed in the same fashion as it

is in flexural intensity measurements.

Chapter IX includes results of studies conducted on vibrometer

signal stability and speckle effects in combined flexural and

longitudinal fields.

Finally, Appendices A through C include mathematical derivations

which support points made in the text.

There are several original contributions of this thesis. First is

the development and implementation of an optical system which can

accurately measure flexural power flow by the cross-spectral method.

Flexural power flow can be measured by a single vibrometer if phase

information (from a shaker or an accelerometer) is available. But in

practical usage this approach either adds an extra source (the shaker)

or at least relies on an accelerometer (which can cause inaccuracies due

to phase errors or mass loading as explained in the thesis). This

thesis presents the first reliable truly "non-intrusive" optical

vibrational power flow measurement system which is inherntly amenable

to random vibration measurements where the sources of the power or their

locations are unknown.

A second original contribution is that the thesis ties the two

fields of structural intensity and laser vibrometry together by relating

the various optical parameters in vibrometry to random errors in
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intensity measurements. This is useful in practical conditions outside

the laboratory. Photodetector switching (although a carry-over from

conventional intensity techniques) is introduced for the first time as

an optical technique to optimize phase accuracy. Coherent noise and its

removal by photodetector switching is also a new consideration for phase

accuracy in two-channel optical systems which use a single laser.

To the author's knowledge, the use of the differential Doppler

method for vibration work is rare and its use in longitudinal intensity

measurement is entirely new. The sections on optical noise random error

and laser speckle in the differential Doppler method are also original

contributions.
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Chapter I

LrERATURE SURVEY OF STRUCTURAL INTENSnT
AND ITS MEASUREMENTS

The measurement of structural intensity was first introduced by

Noi .x in 1970. Recognizing the need for a technique to trace

vibrati-. propaation more simply thar. correlation techniques, he

developed an approach for measuring the flow of power due to flexural

waves. This approach was limited to the assumptions of negligible

material damping (real Young's modulus) and negligible rotational

inertia and shear deformation (classical plate theory).

The instantaneou. -tensity (power per unit width) can be defined

in some direction x as:

ix - + M.9. + M y) (1.1)

Where Q1 is the shear force ii e x-direction, M. is t ie x-directed

bending moment, M,, is the twisti:,. moment, is the no mal velocity and

6, and ay are the time rate of changE if slope in the x ind y directions

as shown in Figure 1.1.

Typically one is interested in the time-average intensity:

Hx - CQX>t + <M1 >t + <M OyO.. (1.2)

whic. Noiseux separated into a shear force component and a mo.nent

component -. that:

H x - rxf + H. (1.3)

In any case, a knowledge of -',e internal shear and bending moments is

required. However, they can be related to the normal displacement, E,

from elasticity theory by:
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Figure 1.1 Directions of Displacements, Slopes, Forces
and Moments (Source: Noiseux 1970)
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M.- - B ax2 + V ay2 (1.4)

a 2
M -- My x - B(l-v) axay (1.5)

a fa2 a2

B - B + (1.6)

where

YI
B - V 2

and Y is Young's modulus, v is Poisson's ratio and I is the moment of

inertia per unit width in the x-direction. Consequently, knowledge of

the material properties, geometry, and spatial and temporal derivatives

of the displacement at a point on the plate will provide the magnitude

of flexural power flow in the x direction. By switching subscripts x

and y in the preceding equations the intensity in the y direction can be

evaluated. The resultant intensity at the point is then the vector sum

of IIx and Il1 .
a

For a beam uniform in the x direction, - 0 and the twisting

moment, M,~, is zero so that the intensity becomes:

ix - <Qg>t + <MO.>t  (1.7)

where now Q. and Mx are reduced to:

8

Qx- - B (1.8)

a
M., - B a-2 (1.9)

and B - YI since Poisson's ratio no longer plays a role.
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For the plate, however, an exact measurement of the intensity at

any point requires that all of the parameters in Equation 1.2 be

evaluated. This is an extremely difficult procedure. Noiseux, in order

to make the measurement of intensity more feasible, noted two things.

First, he noted that the shear component <Q > ,' and total moment

component [<M19x>, + <M,,yy>t] of intensity were equal in the freefield

for simple harmonic waves. This permitted the measurement of only one

of the quantities, i.e. either flxf or TTm .

Second he noted that the total moment component II., could be

approximated in special cases by a modified moment component, flXZ,

formulated as:

ri, = (MX + my
XM ( (1.10)

This avoided the necessity of measuring M,,y which, according to Equation

1.5 requires the spatial rate of change in the x direction of the

surface slope in the y direction (or vice-versa). Equivalently, MY can

be written as:

MX[2B-(y 7"/YY (1.11)

where B and v are as defined previously, h is the plate thickness and

, is the shear strain which can be expressed as:

'
+  o- (1.12)

where . and y are the x and y displacements of the point. But

regardless of the form of My, it does present difficulty in its
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measurement and Noiseux developed the approximation in Equation 1.10 to

circumvent this for restricted cases.

For example, if the displacement field is such that:

a2c a2

+x2  y - k (1.13)

2m

where k4 - B and m is the plate surface density and w is the

circular frequency then the quantity (M. + MY) is easily measured.

This is because (M, + M.) can be writter

I 2'
(M, + My) - - B(11 (a-2 + ) (1.14)

so that

(M, + My) - - B(l + P)k 2  (1.15)

and therefore f'X would be:

H = (M  + - Bk2 <.x 0 (1.16)

This is a quantity which can be measured easily at a single point

(as will be described later).

The displacement field in Equation 1.13 occurs for plane harmonic

waves in the "freefield" (i.e. in a field not subject to exponential

decay of the vibration amplitude which occurs near boundaries for beams

and plates).

Summarizing the restrictions on measuring 1I by way of

Equation 1.16:
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(1) The measurement must be made in the freefield

so that Txf - H. and so that, therefore,

x - Hxf + Hl - 211.. This allows measurement

of the moment component only. ("xif o 1. in the

nearfield).

(2) Again, the measurement in the freefield allows

the use of 11' instead of 11. since these are

shown to be equivalent in this situation and

II' is easily measured.

Therefore the measurement of the x-directed intensity in the freefield

can be measured as:

Rx - 21' - 2Bk 2 < O> t  (1.17)

and in the y direction as:

fy- 2Bk 2 < 0 y>t (1.18)

and the resultant freefield flexural intensity is II - AIX 2 + fY2 .

Noiseux measured the freefield flexural intensity by two

accelerometers; one supplied the normal acceleration (and the normal

displacement by way of integration) and the other supplied the

rotational velocity at the point measured by positioning the

accelerometer mounted on its side. The combined "biaxial accelerometer"

is shown in Figure 1.2. The angular velocity is provided by:

faxdt
Ox d (1.19)
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X

Figure 1.2 The Biaxial Accelerometer (Source: Noiseux 1970)
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where d is the distance between the axis of the linear accelerometer and

the neutral plane of the plate and a. is the acceleration in the x-

direction.

After illustrating the above approximations in beam and plate

freefields and discussing the approximations in nearfields, Noiseux

presents experimental results obtained from using the "biaxial

accelerometer" for measuring the freefield flexural intensity on an

aluminum plate by way of the modified moment component.

The two accelerometers comprising the "biaxial accelerometer" were

housed in a cube which was internally threaded so that it could be

screwed into the plate through holes made at various measurement

locations. The accelerometer channels were phase matched to 1/20. One

third octave band noise was applied to the plate by way of a shaker

while the plate was suspended vertically by thin wires.

Turning the rotational accelerometer 900 allowed measurement of

riP after measuring I'.. Results showed that the intensity vectors

pointed away from the source and when the intensities were summed along

a line through the plate the total power was shown to be comparable to

the power input by the shaker. The intensities at the plate edges,

where the freefield assumption does not hold, showed vectors with poor

directionality as would be expected.

Two remaining points should be made regarding Noiseux's analysis.

First, although he does not directly formulate the case of random

excitation, he considers it as equivalent in the limit to many closely

spaced sinusoidal components, the total intensity being the sum of the

intensities for each of the component frequencies. Second, he
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illustrates how for a pure standing wave the intensity is zero. These

points are paraphrased below.

In the freefield of a uniform beam, for example, the displacement

field is given by (suppressing eiwt, a constant term in the equations):

(x,w) - [A(w)e - i kx + A'(w)eikx] (1.20)

where the two terms are right and left travelling waves. Note that

since k is real, material damping is considered negligible so that only

end losses are considered. Consequently, the amplitude of the reflected

wave, implies a certain reflection coefficient at the end of the

A' (w
beam, R(w) - A(w) The intensities for such a case are:

B
Hx) - H. - - 2 wk'(IA 12 IA' 12) (1.21)

So that if R - 1 then Rxf - 1. - 0 for zero material damping. For the

case of "j" simultaneous excitation frequencies:

Z [Aje-kJ x + ADeikixj (1.22)

B
11 - H -f - - Z wjk [IA(wj)1 2  - IA'(wj)I 2 ] (1.23)

After Noiseux's work on structural intensity there was apparently

little done in the field until 1976 when Pavic, also addressing flexural

vibrations (considering their efficiency in radiating sound), proposed

various metLads of measuring intensity in a plate by way of using finite

difference techniques.

Like Noiseux, Pavic also used simplified bending theory to relate

surface motions to internal shear forces and bending moments. He also

considered a material with negligible loss factor (real Young's modulus)
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and analyzed a flat uniform plate. The finite difference approximation

to the various spatial derivatives and the associated transducer

configurations and signal processing procedures for both nearfield and

farfield measurements are the primary contribution of the work.

In an expanded form of what was previously laid out by Noiseux (in

Equations 1.2 through 1.6) Pavic related the instantaneous intensity to

the surface normal displacement by:

IT (x,z, t) = B p. (V2 ) 9 - {a2 2 21

-(1 - Lax (1.

where B is the plate bending rigidity per unit width B = 12( - _)

v is Poison's ratio and V2 is the two-dimensional Laplace operator. The

first term in the brackets represents the shear component, the second

term the bending moment component, and the third term the twisting

moment component. It is these last two terms which Noiseux set equal to

his modified moment component in the flexural farfield and measured at a

single point to obtain the intensity.

For the general case (nearfield or farfield) of one-dimensional

flexural wave propagation (e.g: flexural vibration of a beam) Pavic

approximated the axially directed time average intensity, using Equation

1.24 and finite difference approximations, as:

1= B [ Q 24 3 - -'13)(1.25)
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The finite difference approximations to the spatial derivatives are:

I a 1
- ( 2 + E0) - - (E2 - 3)

a _x- = (El E2 - E3 + W4

a 3E

_x3  -T ( 3 + 3C3  - ) (1.26)

Here, A is the transducer spacing, n is the deflection at point n, En

is the velocity at point n in the transducer array shown in Figure 1.3

and it is the intensity at point x. which is being measured. Of course

the spacing A must be close enough for the finite difference

approximations to be accurate. (This paper does not address the choice

of A but Redman-White (1983) makes recommendations as noted later in

this review.) The analogue circuit diagram for processing the signals

as required by Equation 1.25 was also detailed in his paper.

For the special case of sinusoidal one-dimensional waves where

both right and left travelling propagating waves and right and left

nearfields exist (for a finite undamped beam), Pavic showed that the

expression for (t) yields an expression for the average intensity which

has a component du,; to the nearfield effects. However, this component

was evaluated to be typically an order of magnitude smaller than the

propagating wave components if the number of wavelengths along the beam

is at least one. Consequently he concluded that the nearfield

contribution can be neglected as a component of the measured power flow

if the beam contains at least one wavelength.
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Figure 1.3 Transducer Array for General 1-D Flexural
Wave Case (Source: Pavic 1976)
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Neglecting the nearfield component of intensity, he showed that

the expression for intensity becomes:

(Bm)
1 /2 ..

S - Af <(1.27)

where subscript "s" represents sinusoidal motion, A is the transducer

spacing, f is frequency, m is the mass per unit area, j is the

acceleration at location 1 and is the velocity at location 2.

Therefore only two transducers on a beam are necessary for intensity

measurements under this condition.

For other than single sinusoidal waves such as a composite wave

consisting of j frequency components Pavic derived:

II - B Z 2rfjk?(A.2 - A_2) - Z (1I) (1.28)
J

which states that the total intensity is simply the arithmetic sum of

the intensities contributed by the individual frequency components.

This is directly analogous to Noiseux's expression in Equation 1.23.

For narrowband noise with a center frequency of f. he obtained:

= Bn~2 ~[(2 7fo)2 2 - 2]>t (1.29)

(The positive direction defined from 2 towards 1). And for broadband

noise Pavic suggested a similar approach as for narrowband noise but

with the use of successive bandpass filtering. Finally, for one-

dimensional progressive flexural waves, Pavic showed that the total

intensity in the freefield can be approximated (by way of a finite

difference approximation) in terms of Fourier transforms of the

velocities at two closely spaced points, separated by a distance A as:
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where T - averaging interval, n is the Fourier transform of the

velocity at point N and the asterisk represents a complex conjugate and

B, and m are as defined previously.

Pavic's treatment of two-dimensional waves is less extensive; he

proposed an array of eight transducers for the general case as shown in

Figure 1.4 and developed the corresponding finite difference

approximations to Equation 1.24. The analog circuit diagram to perform

signal processing appropriate to Equation 1.24 is schematized. Pavic's

paper does not mention experimental results for either the beam or the

plate.

In 1980, Goyder and White published three consecutive papers using

the concept of power flow in the theoretical evaluation of the ability

of foundations and isolators to minimize the flow of power from a point

source to a structure and thus minimize the power available for

subsequent sound radiation. Although they did not address measurement

techniques, the paper derived relationships for power flow in simple

structures (rods, beams, and plates) of intinite extent which include

negligible and moderate damping, as well as relationships for power flow

in infinite beam-stiffened plates. Power flow expressions were also

developed for single and two stage isolation systems.

Also in 1980, Verheij advocated the usefulness of frequency domain

processing as opposed to time domain processing. This approach offers

the advantage of channel switching techniques for the elimination of
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Figure 1.4 Transducer Array for General 2-D Flexural
Wave Case (Source: Pavic 1976)
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errors caused by phase mismatch (Chung 1978). But its chief advantage

is in that an FFT analyzer can be used to process the signals.

For bending waves in a beam he shows that in the farfield, using a

finite difference approximation where A is the distance between two

accelerometers, the total power due to flexural wave motion is:

2(Bm) 1/2 Im G(a2,al,f)
I A 0 W2  df (1.31)

where G(a2,al,f) is the one-sided cross-spectral density function

between the two accelerometers and Im refers to the imaginary part.

This is similar to the expression in Equation 1.30 from Pavic, but is in

terms of accelerations rather than velocities.

For nearfields in beams, where Pavic proposed a finite difference

approach using four closely spaced accelerometers (separated by distance

A), Verheij developed the associated cross-spectral equivalence for the

total power based on Equation 1.25. This consists of three components

of integrated cross-spectra similar to Equation 1.31.

For longitudinal and torsional waves, when using closely spaced

accelerometers, the power expressions in terms of cross-spectra become

as follows. For longitudinal power flow:

-SY Im G(al,a 2 ,f)

F- 0 3 df (1.32)

and for torsional power flow:

-T y m G(a,a 2 ,f)
F0 -J3 df (1.33)
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where S is the cross-sectional area, Y the Young's modulus, T the

torsional stiffness, al,2 are linear or angular accelerations (as

appropriate) and II is the longitudinal or torsional power flow at the

measurement locations as shown in Figure 1.5.

For each of the two measurement locations in Figure 1.5 there are

two accelerometers and the input at the location involves a summation of

the signals. Verheij recommended summing the two signals at each

location in the time domain and continuing the remainder of the

processing in the frequency domain. This averaging of two signals for

each input then requires that the previous equations be altered; the

longitudinal power equation must be divided by four and the torsional

power equation must be divided by D2.

Rasmussen in 1983 reported measurements of the intensity of

flexural plane wav;es in a plate. He used Noiseux's method of measuring

the "modified moment" which for plane waves in a freefield is equal to

one half the total intensity. The appropriate expression for the total

power per unit width (the intensity) is:

= ( )t (1.34)

where 9X is the x-directed angular velocity and is the acceleration at

the measuring point. This "vibration intensity transducer" was

constructed as shown in Figure 1.6.

The acceleration at the measuring point was approximated as:

2 ( l + 2) (1.35)
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1 Accelerometers
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Figure 1.6 The Vibration Intensity Transducer
(Source: Rasmussen 1983)
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and the angular velocity was approximated as

X = 2- dt 
(1.36)

so that the approximation for the intensity was

2 yBi- ( I ( + 2) dt) (1.37)

where Ar was the distance between accelerometers.

Using this transducer, intensity measurements were made on an iron

plate excited by a shaker and damped at two points by viscous dampers.

At each excitation case (single frequency) there were three power levels

recorded. The first was the power delivered by the vibration exciter

found by simultaneously measuring the exciter force and cLive point

acceleration. This provided the input power 11input - Fsin

where 0 was the phase angle between the force and acceleration. The

second power level was measured by integrating the intensity at a number

of points around the source. The third power level was the power

absorbed by the viscous dampers as measured by integration of intensity

around these two points. The three levels agreed very closely

(typically within 3% of one another) for the set of single frequencies

tested. Furthermore the directionality of the intensity vectors

provided verification; the vectors typically pointed away from the

source and toward the two viscous dampers.

Rasmussen noted that the accuracy of the vibration intensity

method, in the high frequency range, is determined primarily by the

mass, the mounting resonance frequency, and by the mounting base area of
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the transducer; the mass must be small to prevent mass loading, and the

first resonance of the mounting base area saould cover less than one

quarter of the bending wavelength. The low frequency limit was due to

the requirement to be in the freefield, which for long flexural

wavelengths precluded any legitimate testing area on the plate.

Also in 1983, Redman-White published a paper dealing with the

experimental measurement of flexural intensity. He evaluated two

accelerometer techniques for measuring the power flow in the farfields

of uniform beams and a four linear accelerometer array technique for

measuring the power flow in the farfield of uniform plates.

First Redman-White illustrated that for one-dimensional waves, a

two-degree of freedom accelerometer which is sensitive to linear

acceleration as well as rotation at a point can serve to measure a

signal proportional to the shear force component of power flow and hence

(in the farfield) total flow. However, he cited problems with this

technique and continues by discussing the two linear accelerometer

finite difference technique.

The possible sources of error in this technique, according to

Redman-White, include: nearfield errors, finite difference errors,

bandwidth limitations, and instrumentation errors. Nearfield error,

which arises due to measuring only one power component (and assuming the

other component is equal) in the nearfield, can be shown to be +20% if

measurements are made as close as A/1O from discontinuities. He

suggested avoiding measurements within A/2 of discontinuities in the

structure.
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The error associated with the finite difference approximation to

the spatial derivatives in the intensity equations leads to an

underestimation of the actual power by the following relationship:

kA

lActual - UMeasured * sin (kA) (1.38)

where k is the wavenumber and A is the accelerometer separation. This

implies that A should be kept small but this correction can be applied

to the data, especially for pure tone excitation. (Redman-White

suggests keeping A between 0.15A and 0.20A).

Bandwidth limitations refer to errors in using the equations,

derived for single frequency excitation, for finite bandwidth excitation

such as the error due to the variation of kA with frequency. Redman-

White noted that a bandwidth ratio (Sf/f0 ) of 0.3 in the autospectrum of

the wave motion yields a measurement error of 3%. He notes, however,

that intensity patterns can change very rapidly with frequency.

Instrumentation errors include those associated with channel phase

errors (phase mismatch), with transducer placement accuracy, and errors

in the quadrature function (which he uses on one of the acceleration

signals to obtain the expression for the total power flow) for the one

accelerometer signal. The most important error, which is the "main

limitation of any intensity measurement system," is system phase

tolerances. A standing wave will have an erroneous power flow component

if a phase mismatch is present between the channels. This will have a

value:

YIk
2 wB2

horrr " 2- (sin [cos (kA - cos (2kx - k))]) (1.39)
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where 0 is the phase mismatch. In order to minimize this error he

suggested using as large a value of A as practical. For single

frequency excitation, the error due to a large value of A can be

corrected according to equation 1.38 but a large value of A causes the

details of the intensity to be lost.

He also discussed effects of phase errors in the quadrature

operation (which is required by his time-domain approach to obtaining

the power flow). Most of these same errors are applicable for two-

dimensional measurements. There is, however, an additional error due to

the angle which the wavefront makes with the axis of the

accelerometers - a trace wavenumber effect when four accelerometers are

used simultaneously to determine the vector. Redman-White plotted the

percent error in the power flow versus incident wave direction for

various accelerometer spacings. This is applicable to the accelerometer

measurement technique where simultaneous measurements of the intensity

components in two orthogonal directions are obtained by placing the

accelerometers symmetrically at a distance of A/2 from the measurement

point.

Beyond the points listed above Redmar.-White also cautioned that

the method of mounting accelerometers can adversely effect phase

tolerances. Additionally he emphasized the importance of dynamic range

capability in error reduction; with typical instrumentation, a standing-

to-propagating wave ratio of 20:1 will probably yield meaningless power

flow measurements.
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Researchers at the Naval Research Laboratory, published a paper

illustrating a non-contact technique for the measurement of

structureborne intensity in plates (Williams, Dardy, and Fink 1985).

The object of this approach was to measure structural intensity without

the use of accelerometers since these transducers can lead to problems

due to their transverse sensitivity, their weight and rotational

inertia, and due to the necessity of phase and amplitude matching of two

accelerometers for intensity purposes.

This technique, called SIMAP (atructural Intensity from the

measurement of acoustic pressure) uses a single hydrophone/microphone to

measure the pressure over a plane located as close as possible to the

vibrating plate. Using principles of nearfield acoustical holography,

the normal surface velocity on the plate is extracted from the pressure

measurement. Normal acoustic intensity at the plate surface is

available from SIMAP measurements also.

The measurement process involved scanning a hydrophone at 1089

points 1.3 cm from a submerged plate surface and recording the pressure

amplitude and phase with respect to the vibration generator. Since

SIMAP uses input from the "entire" surface, all of the various spatial

derivatives in the flexural intensity expression are available and no

structural nearfield restrictions are necessary. Spatial derivatives

were determined by two techniques. The first was a point-by-point

finite difference technique which (similar to Pavic's proposed finite

difference approaches) used data local to the point in question to

determine the spatial derivatives at the point. The second was a "full-

field" technique which evaluated spatial derivatives at a point by a
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Fourier transform technique which used the entire measured velocity

field and was considered more accurate.

Experimental results showed several interesting points. First,

the measured mechanical power radiating from the driver region was

typically fifteen percent lower for the finite difference approach

versus the full-field Fourier transform approach to finding spatial

derivatives (the exact finite difference algorithm used was not

specified). Second, the value of this power evaluated from impedance

head measurements was in close agreement with that calculated by the

Fourier transform approach. And third, although the power radiated into

the fluid from the driver region itself was typically only 5% of the

total mechanical power input, the power radiated by the entire plate

into the fluid was typically 40% of the mechanical power input.

Finally, results showed that structural intensity is a more

reliable approach to locating vibration sources than acoustic intensity.

Acoustic intensity according to the authors, generated psuedo-sources

whereas structural intensity correctly identified the real sources.

A second non-contact approach to measuring flexural structural

intensity was published in 1985 by Clark and Tucker. They used real-

time holographic interferometry of a vibrating plate by use of a

thermoplastic hologram recorder which develops in place. The

displacement of the plate could be viewed thtough the developed hologram

of the static object by means of interference fringes. The authors

pulsed the illumination in quadrature with the sinusoidal excitation and

observed fringes indicative of a travelling wave. (At quadrature with

the forcing function a pure standing wave would show zero displacement).
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The direction of the intensity vector is perpendicular to the

propagating wave fringes and the magnitude of the intensity is

determined from the spatial derivatives of the propagating wave

displacement field assuming sinusoidal time variation.

Also in 1985, Pavic published two consecutive papers concerning

the measurement of vibration with strain gages, preferred over

accelerometers for their virtually non-existent mass and thickness

and their relatively low price. In the first paper (1985A), Pavic

developed strain gage bridge configurations which supply the

acceleration (or velocity) at a point by way of finite difference

approximations to spatial derivatives. This is done for in-plane and

bending vibrations in plates and beams for both nearfield and farfield

conditions. (Farfield simplifications of the bridge configurations are

made by virtue of the approximation that the vibration in the farfield

is dominated by propagating waves which, within the small measurement

area, display the properties of plane waves). The number of gages can

be large (as many as ten are required for flexural nearfield in plates)

but in the farfield the number required are: four for in-plane plate

accelerations, two for flexural plate velocities and one for flexural

beam velocities.

Pavic (1985B) discussed the error in the first and second order

spatial derivatives due to the finite difference approximations. These

are a function of the gage spacing, the vibration field (i.e.:

frequency, for plane harmonic waves) and the wave propagation angle.

Additionally hc discussed the errors due to the measurement accuracy of

the various strain gage bridge configurations. (The error due to the
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finite gage length, for a gage spacing much smaller than the gage

length, is insignificant in comparison to the error of the finite

difference approximations).

Based on an expression for systematic errors in the strain gage

bridge configuration (caused by finite difference and bridge accuracy

errors) and based on an expression for statistically independent

instrumentation noise, Pavic (1985B) developed expressions for the

optimum gage spacing and minimum surface acceleration levels for certain

signal-to-noise ratios. These are developed as a function of frequency

and wave type (flexural or in-plane). For comparison, an analogous

development was made for accelerometers where expressions for optimum

mass and acceleration threshold are determined versus frequency for a

desired signal-to-noise ratio. These expressions are based on the

simple facts that for strain gages a small spacing yields low finite

difference and gage bridge errors but a small signal (since the strain

gage bridge signals result from strain gage differences). This occurs

in a fixed instrumentation noise background. In an analogous fashion

the systematic error in accelerometer measurements decreases as its mass

but then so does its signal in a fixed noise background.

Pavic (1985B) reported experimental results using the strain gage

bridge configurations for deriving acceleration at a point and compared

the resulting signals to accelerometer signals. For in-plane

accelerations of a plate, a bridge consisting of eight gages was used on

each side of the plate to subtract flexural wave signals. The output

compared favorably to accelerometer output except at higher frequencies

(approaching 4 kHz). Pavic explained that some of this was due to the
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transverse sensitivity of the accelerometers (arranged one on each side

to subtract flexural effects) which allowed for some of the flexural

signal to contaminate the longitudinal results.

For plate flexural accelerations a bridge of ten gages was

employed (for nearfield conditions), and for flexural velocities a

bridge consisting of two gages for farfield conditions was employed.

Good matching between bridge and accelerometer waveforms for four octave

bands (500 Hz, 1 kHz, 2 kHz, 4 kHz) were obtained.

Good waveform matching was also obtained with one-dimensional

longitudinal and flexural waves in a pipe where combinations of six

longitudinally oriented gages were used.

Pavic's development of systematic error in accelerometer

measurements, in Appendix II of his second paper (1985B), is of

interest. Pavic formulated the total systematic error due to

accelerometer resonance and due to mass loading purely in terms of its

mass as:

f 2M21 3  i2irfm
fb - HTOT(f) - 1 2 - (1.40)

where:

HTOT - the accelerometer frequency response function

f - the vibration frequency (Hz)

C - a constant of proportionally relating the accelerometer

resonant frequency to the cube root of its mass

i - 7

Z(f) - the complex impedance of the structure at the

accelerometer location

m - accelerometer mass
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This error is complex since the accelerometer output contains frequency

dependent deviations of both amplitude and phase from the true

acceleration.

Quinlan, in 1985, wrote an experimental thesis on the use of a

four-accelerometer probe in the flexural farfields of beams and plates.

Quinlan measured the "modified moment" component and multiplied by two

for the total intensity in the farfield (as did Noiseux). As in all the

previous work (and work to this date) the analysis applied only to

frequencies where the flexural wavelengths were large compared to cross-

sectional dimensions so that classical plate theory is assumed

(negligible rotational inertia effects and transverse shear

deformations).

Quinlan introduced the concepts of potential and kinetic energy

density which can be measured using the same apparatus. He also

defined, analogous to acoustical power flow, both active and reactive

intensity; the active intensity corresponds to the travelling wave

intensity and the reactive intensity (ignored by most researchers in

intensity measurements) corresponds to the standing wave intensity.

In order to increase the signal-to-noise ratio for his active

intensity measurements he used constrained damping layer material on

portions of the test structures to make power flow more detectable.

Using basic definitions of power flow, farfield assumptions,

finite difference approximations, and cross-spectral definitions he

showed that for single frequency excitation (to which he limited the

experimental work) the total power can be written as:
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X - oW2Ar Im(S21) + : A (S11 - S22) (1.41)

where

B - bending rigidity of the plate

m - mass per unit area of the plate

- circular frequency

Ar - accelerometer spacing

i -T --

S11, S22, a2l - auto and cross-spectra of the two accelerometer signals

The real part of the expression is the active or propagating intensity

and the imaginary part is the reactive or non-propagating part of the

intensity.

Quinlan did not use simultaneous input of all four accelerometers

but rather used each pair separately in Equation 1.41 to determine the

magnitude of the intensity vector in each of the two orthogonal

directions. The resultant intensity is the vector sum of these two

values.

The probe, which housed the four accelerometers, was positioned

automatically. Due to the use of four accelerometers, the probe did not

have to be rotated to locate the intensity vector direction. Only probe

translations, controlled by computer, were necessary.

Probe weight was considered in finding the frequency above which

the plate response would be down by at least 3 dB due to mass loading,

assuming that the test structure could be modeled as a lumped system at

the point of interest and assuming a fairly weak modal response. The

influence of sensor mass, under these assumptions is illustrated in
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Figure 1.7 reproduced from Quinlan's thesis. Effects of mass loading as

a function of spatial location on the plate were not investigated.

The accelerometers were in a single magnet which mounted to the

surface. Some consideration was given to mounting as it was known that

different mounting techniques could seriously affect accelerometer

performance.

Quinlan reviewed errors associated with channel gain and phase

mismatch. From Elko's work (Elko 1984) the normalized bias error for

the active intensity defined as:

Eb(W) -() (W) (1.42)

where 11(w) is the measured intensity and H(w) is the true intensity, is:

Eb(W) = IHO(w)IIHi(w)I[l + 6(w) cot 012(M)] - 1 (1.43)

where IH(w)I are the moduli of the frequency response functions of the

two channels, 6(w) is the phase mismatch in the two channels, and 412(w)

is the actual phase difference between the two points on the structure.

Consequently the magnitude of the gain in the channels plays a role in

the bias error, but for the case where the actual phase difference

0 12 (w) is very small the bias error can be very large even for a small

phase mismatch. For a fixed separation between the transducers, this

occurs at low frequencies.

If it is assumed that the gain in each channel is unity and that

channel mismatch is small, Equation 1.43 can be approximated as:

sin[6(w)] Re[S 12(w)]

Ib im[S 12(w) (1.44)
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where Re[S 12(M) ] and Im[S 12(w) ] correspond to the real and imaginary

parts of the cross-spectrum between the measuring points. This implies,

as noted by Quinlan, that measurements of active power flow in highly

reactive fields (strong-standing wave fields) can yield large bias

errors even for a small phase mismatch between the channels.

In order to minimize these effects Quinlan calibrated his probe to

effectively remove gain and phase mismatch errors. This was done by

first determining the gain values of each channel by normalizing the

accelerometer sensitivities to the accelerometer sensitivity of the

first channel. This provided relative gain values. Second, the phase

mismatch for each pair of accelerometers versus frequency was

determined. The measured cross-spectrum Go0'(w) could then be corrected

to obtain the "true" cross-spectrum G0(w) according to the following

equation:

GO,' (W)
01() -e - i ( )  (1.45)Co( -IHo(o) I Hi(o) e

Where :

IHO(w)I is the gain of Channel 0

IHi(w)l is the gain of Channel 1

and O(w) is the phase mismatch between the two channels.

This correction was made automatically during the data acquisition

process. Transfer functions and phase mismatch data were obtained by

setting the intensity probe on a uniformly excited piece of steel plate

and taking appropriate spectral quantities.

Qualitatively (with respect to relative vector amplitudes and

directions) the active intensity results were generally very good (for

example: the system was capable of detecting losses due to the presence
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of a patch of damping material as well as effects of a blocking mass).

A quantitative check of the data was obtained by comparing the power

input by the shaker to the line integral of intensity measured around

the shaker. This showed that over the complete frequency range tested

(from 300 Hz to 1000 Hz) the power difference ranged from 6.8 dB to 4.4

dB. Quinlan attributed the difference at some frequencies to a problem

with phase measurement between acceleration and force data in the

impedance head. At high frequencies he attributed the differences

possibly to accelerometer cable weight, probe weight, or probe

dimensions.

In a report to NASA entitled, "A Study of Methods to Predict and

Measure the Transmission of Sound Through the Walls of Lightweight

Aircraft", written in 1986, researchers at Purdue University reported on

the use of the two accelerometer implementation of structural intensity

(Bernhard et al. 1986). Limitations were discussed including those

fairly well-known such as farfield limitations, propagating wave-to-

standing-wave ratio limitations, probe sensitivity, finite difference

limitations, and limitations due to channel gain and phase mismatch.

However they also reported that for thin plate applications, the probe

inertia significantly affected the power input to the plate and when

uncompensated the intensity is not accurately measured. It was also

noted that this effect changes with damping.

Finite element modeling using ANSYS finite element software was

also used to calculate power flow and compared favorably with power flow

measurements in both one- and two-dimensional geometries.

The structural intensity portion of the report was a review of

Mickol's thesis (Mickol 1986). Mickol used a boundary value analysis to
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investigate the effects of accelerometer mass, rotational inertia and

position on the response of a beam and on the power input of a shaker

assuming a constant amplitude forcing function. As expected, for beams

with low moments of inertia these effects can be significant, especially

at natural frequencies.

As stated, Mickol used finite element modeling using ANSYS to

predict the intensity vector field. This was done for a flat plate with

a point damper and gave good qualitative results when the "moments

formulation" was used. He suggested that finite element analysis would

be a useful tool for predicting power flow in built-up structures.

The "intensity transducer" he used was a two-accelerometer probe

with the accelerometers mounted on the sides of an acrylic spacer. The

0.5-inch probe spacing allowed for a frequency range between 120 Hz

(which corresponds to A/20) and greater than 2000 Hz (for a A,

spacing). The intensity results were validated by comparing the power

input by the shaker (from a force gage and accelerometer) and the

contour integral of the intensity around the shaker. For plate

measurements, these compared fairly poorly (with a discrepancy of

20 dB).

For beam measurements, the two power calculations also agreed

poorly. However, it was found that the inconsistent mechanical power

flow due to the repositioning of the probe with each measurement is what

caused the problem. When the probe's effect was considered the

agreement was found to be much more favorable.

Mickol used the probe switching technique to null out the effects

of channel mismatch. This improved the agreement of the injected and

integrated powers by 7 dB in the high frequency range for tests on a
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one-inch wide beam. He concludes that power comparisons can be quite

favorable if several precautions are taken. These include having some

form of compensation for mismatch (like switching), using proper

excitation (i.e.: avoiding the shaker from inputting power in a form

which cannot be detected by the transducers), and accounting for the

probe's inertial properties. Also, as he later noted, the phase

mismatch between the force gage and accelerometer used in power

injection must be slight compared to the phase difference which actually

occurs.

Pavic, in 1987, proposed a novel concept for power flow in

structures called "structural surface intensity." The potential

advantages of this approach to viewing structural power flow would

include a capability to handle structures other than uniform beams and

plates (as previous experimental structural intensity work was limited

to) and a capability to cover more than simple longitudinal and flexural

vibration modes. This technique would be characterized by its

insensitivity to the geometry of the structure.

The components of surface intensity are defined such that:

ll - - <v> <vv >t  (1.46)

and

11- - ~ - <vr> t  (1.47)

where 14 and 1l are the x and y directed surface intensities, a. and ay

are surface normal stresses r and T are surface shear stresses, v.

and v. are surface velocities. (The minus sign is chosen to satisfy

established conventions on stress orientation so that the positive value

for an intensity component indicates that power is flowing in the
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positive direction of the coordinate axis). Since stresses cannot be

measured directly, Equations 1.46 and 1.47 must be cast in terms of

surface strains so that:

11 -(" G"~v~ 2 * + Y (1.48)

14 - ((, 5-)vY) (,1xyv 1~t ] (1.49)

where 0 is the material shear modulus and v is Poison's ratio. In terms

of cross-spectra, Equations 1.48 and 1.49 become:

1 =2 G Re f ( 12 "V S + V SCvx) + S.v,]f (1.50)

I = 2 GRef ( (SE'vY "vSev')• S2 Svef (1.51)

Only the real part of the spectra correspond to the net energy flow.

The imaginary part does not have a definite physical meaning; it does

not represent the "reactive" power (the difference between the absolute

instantaneous and net power flow.)

Measurement of surface intensity requires detection of surface

strains and in-plane velocities. Pavic noted that the requisite strains

(including the shear strain) can be obtained by a suitable strain gage

rosette (three gages positioned at 0O-450-900) and that the in-plane

velocities can be obtained by a variety of transducers, although he

stated that "normally available non-contact ones would be inadequate for

intensity application as these are insensitive to in-plane motion."

Pavic discussed possible limitations on the measurement accuracy

of this technique. These would be due to: transducer size, equipment
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noise, and signal processing averaging period. In regard to transducer

size he addressed the problems associated with using accelerometers to

measure in-plane motion and suggested a somewhat complicated procedure

using two accelerometers in order to cancel out spurious signals.

He noted that equipment noise would probably be dominated by

strain gage noise since the surface strains in structureborne sound are

typically low, thus providing a low S/N ratio. He suggested that the

lack of correlation in strain gage and accelerometer noise should

minimize the effects due to the multiplication-averaging process.

Fortunately this technique, according to Pavic, is not sensitive to

small phase mismatch in the instrumentation channels since the results

are a consequence of independent detection of two different physical

quantities (velocity and strain) which are multiplied.

Pavic then addressed the influence of finite sampling time, T, on

measurement accuracy for both deterministic and random stationary

processes and proposed guidelines for the duration of T in both cases.

After presenting some results of surface intensity measurement on

an elevator drive mechanism, he concluded that the technique has a well

founded physical meaning but requires a more efficient measuring

technique than one based on strain gages so that a large number of

measurements can be easily taken in order to fully exploit the

information contained in each reading.

White and Wilby at Astron Research and Engineering wrote a report

in 1987 to NASA regarding noise control in aircraft structures which

reviews various means of flexural structural intensity measurement and

outlines Astron's use of the two-accelerometer approach for broadband

random noise excitation.
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In their review of the various methods of measuring structural

intensity they first considered the two-accelerometer approach to

measuring farfield flexural intensity. They recommended as a general

rule a transducer spacing of less than A/4 for valid finite difference

approximations but greater than A/100 to allow for enough phase

difference to be measured. They also mentioned the possibility of

strain gages, referring to Pavic (1985A, 1985B) but noted that these

must be placed on both sides of the measurement surface to distinguish

between in-plane and bending waves. This is not always possible in

aircraft structures.

Also mentioned is the possibility of nearfield acoustical

holography (Williams, Dardy, and Fink 1985). As an extension of this,

White and Wilby also suggested the possibility of scanning a surface

with a single acceleration or velocity transducer (such as a laser

vibrometer) and forming the cross-spectrum among pairs of points all

across the surface. Proper data processing would provide an intensity

vector map. The authors also reviewed optical holography (Clark and

Tucker 1985) and finite element modeling as research tools in structural

intensity.

For their experimental investigation they excited a ribbed plate

with broadband random noise with the intent of measuring intensity.

This was freely suspended by a bungee cord. A conservative upper limit

of 2000 Hz was set on the frequency of excitation to prevent appreciable

mass loading by the accelerometers. The spacing was arranged to

maintain a travelling wave phase difference of at least ten degrees but

not more than ninety degrees.



46

Unfortunately, repeated tests of attaching and remounting the

accelerometers in the same location showed that there was in some cases

a random phase variation of as much as 80 when below 2000 Hz while using

beeswax mounting for ease of probe relocation.

Care was taken to allow for the analyzer sampling time to be

greater than the structure reverberation so that time-delay bias errors

would not adversely influence the results. Damping was applied both to

reduce reverberation time as well as to test the ability of the

technique to detect the resulting power flow changes. Coherence between

the transducers was checked as a means of verifying the reliability of

the intensity measurements.

As a result of these tests, White and Wilby concluded that it is

possible to measure the structural intensity in a structure driven by

broadband random noise (limited in frequency by transducer mass loading

and spacing considerations), and that the accelerometer technique could

give reliable intensity results as close as 0.4A from a structural

discontinuity for flexural wave motion.

Carroll (1987) researched the accuracy of farfield flexural

intensity measurements which can be obtained by using two

accelerometers. He reported that phase errors of several degrees can

exist at low frequencies due to cable induced strain associated with the

motion of the cable. To avoid this problem he used annular shear

accelerometers which demonstrated a phase accuracy of approximately

0.10. This amount of phase accuracy provided flexural intensity

measurements by the cross-spectral technique which agreed with classical

measurement methods to within 1 dB for loss factors greater than 0.006.
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The classical methods Carroll referred to include a standing wave

technique and an energetics technique. These are non-phase sensitive

intensity measurement methods which are applicable to power flow in

reverberant beams and rods. These two techniques, which form the basis

of verification for the laser Doppler cross-spectral techniques studied

in this thesis, are outlined in further detail in the chapters on

flexural and longitudinal intensity measurements.

A sampling of more recent work in structural intensity

measurements consists of three papers published in NOISE-CON 88

proceedings. Downing and Shepherd from NASA Langley Research Center

submitted a paper detailing their use of a five-accelerometer probe to

measure power flow in a beam. The intent was to illustrate an

accelerometer array which is capable of accurately measuring the

structural nearfield power flow in the beam. Central finite

differencing of the five equally spaced points occupied by the

accelerometers allowed all of the spatial derivatives in the flexural

power flow expression to.be estimated so that no farfield approximations

need to be made. The power flow at the central position was then

measured.

Determination of the net power flow was made by measuring the

various signal cross-spectra and using the following formulation

(according to the paper):

B

' 2x - 2 3W3  (Im[G 13  - 2G 23 + 2G13  - G 53] +

Im[G 2 2 - 2G32 + G42 - G24 + 2G34 - G4]) (1.52)

where
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fly- Axial power flow due to bending

B - Bending stiffness

A - Accelerometer spacing

- Circular frequency

(Although Im(G 22) and Im(G44) are zero since autospectra are real

quantities).

Downing and Shepherd tested the apparatus on a "semi-infinite"

beam (one end buried in the sand) with a blocking mass clamped to the

beam to present a structural nearfield. Broadband noise was applied to

one beam end (ranging from 200 Hz to 1000 Hz). Results showed that the

five-accelerometer probe was in close agreement with a two-accelerometer

probe for the farfield. Close to the blocking mass (2 cm away) however,

the two-accelerometer power measurements were lower by 6 dB (as would be

expected).

The authors concluded that this five-accelerometer probe yields

accurate results of power flow in the nearfield but that this method is

much more susceptible to phase errors than the two-accelerometer method.

A finite difference error analysis for this array is not given.

Kendig, from Westinghouse Research and Development Center,

verified the ability of intensity techniques to detect sources of

compressional and in-plane shear waves in bars and plates (Kendig 1988).

He first tested what is effectively the two-accelerometer technique for

compressional power flow in a rod. Two pairs of accelerometers were

mounted tangentially on the rod. The net signal from each pair of

diametrically opposed accelerometers (which canceled our opposite

components of longitudinal motion due to possible bending in the rod)
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was used for input to the two-accelerometer method. The intensity for

the compressional wave is measured as:

-SY FIm(+ ( .u dw

11 - 2 Jr mGul,u2,W) ) (1.53)

(Although G( ) is typically used to denote the one-sided spectrum which

does not exist from -- to 0). In the above equation Im(G(ul, u2 , W))

is the imaginary part of the cross-spectrum of u, and u2. Also, ui

and u2 are signal pairs of closely spaced, tangentially oriented

accelerometers. Additionally S, Y, A are the rod cross-sectional

area, Young's modulus and accelerometer pair spacing, respectively.

Similarly, Kendig noted that for in-plane intensity in plates the

appropriate cross-spectral formulation can be derived from the following

intensity expression:

\( 
= 
.. az)y + Gh[- + aK (1.54)

where T1, is the intensity in the x direction, Y and C are the Young's

modulus and shear modulus respectively, h is the plate thickness, . and

y are the x and y displacements and the overdot represents the time

derivative. The intensity in the y direction is formed in an analogous

manner. The first component is due to normal stress and the second is

due to shear stress.

Laboratory experiments were conducted for both a rod and a plate.

In both cases tangentially oriented accelerometers were used and were

paired up in the through-thickness direction to remove any signals due

to bending. The rod was excited from both ends: one signal was a pure

tone, the other was broadband noise. Results showed that the technique
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correctly identified the opposing direction of power flow for the pure

tone versus the noise.

The plate test was conducted in a similar fashion with two pairs

of accelerometers closely spaced relative to a wavelength and oriented

to respond primarily to axial motions. Results showed that the power

flow directions were also correct when shakers were used on opposite

edges with differing excitation frequency content. No quantitative

checks on power flow results appear to have been conducted.

Using an application of structural intensity measurements to

cylinders, Meyer presented a method to measure flexural waves in slender

cylinders (Meyer 1988). (This approach as with the flat plate

approaches, neglects rotational inertia and shear deformation). The

expressions for the axial (x directed) and tangential (0 directed)

flexural intensities (analogous to the flat plate expressions) are:

/8. iB "w I TE-( 2 w +V a2W a2W ) edn

- ll = ~Vw, E)L hea - + ~ ~ ~~ 2 benina(1.55)

zw
(B(l 14 f )t torsion

- = (BI(v) 1w r + -tbdi& 1

-a
B(I al I rew io

where

B - bending rigidity

r - radius of cylinder

x - axial direction

0 - tangential direction
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w - radial displacement

t - time

V - Poisson's ratio

ThX, 119 - intensity

< >t - time average of a quantity

shear, bending, torsion - the various components of intensity.

Using five accelerometers arranged in a "cross" shape with axes in

the axial and tangential directions and using finite difference

approximations with a displacement field for an infinite cylinder

excited by a harmonic force, the following spectral representations for

the axial and tangential intensities are derived:

-B 2k92

26xo3  24+ 1--j-I aM(S21) (S n)  
(1.57)

and

- r3A [-2' + (1 + V)kj] IImS2 4)

-B

rw 3(Ax) (1 - V)kO[S2 2 + S1- 2Re(S 21 )] (1.58)

where k. and ke are the axial and tangential wavenumbers, and S with

subscripts represent the spectra of acceleration signals as numbered in

Figure 1.8 (k. and ke are also obtained by formulations using the

appropriate spectra). Meyer also developed the relationship between

Pavic's structural surface intensity and intensity of bending waves in

cylinders. Using structural surface intensity transducers and the five

accelerometer array on a cylinder, tests showed good agreement of the

derived relationship in the axial direction.
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Chapter II

LASER VIBROMETRY

BACKGROUND AND USES TO DATE

The laser vibrometer is potentially an ideal instrument for

measuring structural intensity. It focusses laser light to a small spot

on the vibrating object and uses the backscattered light to provide the

surface velocity in "real time." Consequently the surface is not mass-

loaded or locally stiffened as it can be when a conventional transducer

is attached.

The advantages of using coherent light to detect surface velocity

were recognized early. It was not long after the invention of the laser

in the early nineteen sixties that experiments with the first laser

vibrometers were conducted (see Massey (1967) for example). This is not

surprising since the principles of coherent detection were already well

known. What was needed was a source of coherent light to make the

technique feasible.

A review of laser vibroweter literature since that time reveals

much activity and many applications. Although the laser vibrometer is

still not widely used, there have been efforts devoted to making it an

affordable, portable device which is not difficult to use (Massey and

Carter 1967; Buchave 1975; Halliwell 1979; Pickering, Halliwell, and

Wilmshurst 1986). Also on the practical side, papers have been

published on conversion of a laser velocimeter to a laser vibrometer

(Meynart 1984) and applications of laser vibrometry in engine diagnosis



54

and in process control (Halliwell, Pullen, and Baker 1983; Halliwell and

Eastwood 1984; Eastwood and Halliwell 1985). McDevitt and Stuart (1989)

have recently illustrated how the technique can be used for

characterization of the dynamic properties of elastomeric materials.

The sensitivity of the laser vibrometer (or heterodyne speckle

interferometer as it can also be called) is addressed in a number of

references. When the signal is only obscured by shot noise, micro-

vibrations down to one nanometer have been reported for frequencies in

the MHz range (Willemin and Dandliker 1983). Phase accuracy of 40 has

been reported (Dandliker and Willemin 1981), although the authors note

that this was essentially limited by the phase accuracy of the network

analyzer used. More serious phase accuracy wa3 not pursued. Angstrom

order displacement measurements transverse to the laser beam have also

been reported (Joyeux and Lowenthal 1971).

Laser vibrometry techniques have been used for detection of gated

harmonic surface waves on a steel block (Su 1980; Bouchard and Bogy

1985) where amplitudes down to 5 angstroms have been detected. The

scanning capability of a laser vibrometer has been used to its full

advantage in a computer controlled laser scanning system which can

reconstruct various participating mode shapes from a surface vibrating

in a stationary random fashion (Stoffregen 1984).

Applications where the non-contacting nature of the vibrometer is

useful have been reported such as in measuring tympanic membrane and

auditory organ vibrations (Buunen and Vlaming 1981; Willemin, Khanna,and

Dandliker 1987) and rotating flexible disk vibrations (Wlezien, Miu, and

Kibens 1984).
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Of course laser vibrometry is also amenable to fiber optic

applications where a normally optically inaccessible region can be

scanned to characterize the vibration response of an object. This is a

growing area in vibrometry with an increasing number of techniques

being reported (Cockson and Bandyopadhyay 1978; Thierry 1985; Lewin,

Kersey, and Jackson 1985; Waters and Mottier 1986).

POTENTIAL OF LASER VIBROMETRY AS
A STRUCTURAL INTENSITY TECHNIQUE

Practically all of the problems cited in Chapter I concerning

errors and limitations of current structural intensity measur!Lent

techniques could be circumvented by using a two-channel laser vibrometer

probe for these measurements. The vibrometer laser beam has none of the

disadvantages of accelerometers. There are no linear or rotational

inertia effects and no local stiffening effects to alter the dynamic

behavior of the object. There are no mounting effects to distort phase

information from the surface. Additionally the vibrometer allows a

smaller point from which data are taken on the surface so that the

separation distance between two points can be smaller if necessary than

is possible using accelerometers.

Probably the biggest advantage to using a two-point laser

technique for intensity measurements is the ease with which the

intensity can be mapped. The strength of intensity methods lies in

their ability to provide a mapping of power flow. Bonding

accelerometers or strain gages to the surface and doing this repeatedly

to obtain this energy flow map is inconsistent with the power of the
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intensity technique. Laser scanning would be a far simpler approach

yielding a much quicker mapping of power flow.

The two-channel laser Doppler approach appears to be superior to

other possible optical techniques for structural intensity measurements.

As compared to real time holography, it is much more sensitive, it does

not require a laboratory setup, and combined with the use of a spectrum

analyzer the two-channel vibrometer is a real time intensity technique

whereas holography is not.

Similarly the two-channel vibrometer would be a much more

sensitive technique than a two-probe Fotonic sensor (a white light fiber

optic displacement meter) would be. The vibrometer technique also

allows for large standoff distances from the vibrating object whereas a

Fotonic sensor probe would have to be typically a millimeter from the

object surface. This is a disadvantage in studies where there is fluid

flow around the object. Additionally, a Fotonic sensor cannot obtain a

good signal from a curved surface whereas the vibrometer can.

There are a few disadvantages associated with a two-point laser

approach to structural intensity measurement. The most obvious is the

expense. Two accelerometers can cost almost two orders of magnitude

less than the laser system proposed for these measurements. However, as

lasers and laser interferometers continue to gain popularity in

industry, the cost of such a system should decrease markedly.

Secondly, any optical interferometer requires vibration isolation

since it is riot the absolute vibration of the object but rather the

object vibration relative to the optics which is measured. This can be
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a disadvantage especially in situations where the ambient vibration

level is fairly high requiring a vibration isolation system.

Fortunately, however, the vibrometer optics can be designed for

long offsets between the optics and the vibrating object. Researchers

at ASTRON Research and Engineering for example have successfully used a

laser vibrometer at a distance of sixty meters from the object when

special collection optics were used. This permits the use of the

instrumentation far from the vibration source and greatly facilitates

vibration isolation of the optics.

Another disadvantage occurs in studies where object motions

transverse to the laser beam are greater than the illuminated spot size.

In this case a loss of signal can occur for brief periods which would

cause a distortion of the velocity time history depending on the

dynamics of the processor. Fortunately, this will not be a problem for

the study of flexural waves and it may not be a problem for the study of

longitudinal waves as long as the vibration amplitudes are not

excessive.

Finally, the laser vibrometer, since it is sensitive to velocity

rather than acceleration is not as sensitive as an accelerometer. The

background noise in the vibrometer prevents simply using the derivative

of the velocity signal for equivalent sensitivity. This situation can

make broadband excitation studies difficult if the excitation source

provides a flat object acceleration autospectrum since the corresponding

velocity autospectrum then falls off is 1/w2. However for single

frequency and narrowband analyses (which encompass nearly all of the

structural intensity studies to date) this broadband signal fall-off is

not a problem.
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THE TWO-CHANNEL LASER DOPPLER
VIBROMETER SYSTEM

The two-channel vibrometer (TCV) focuses laser light onto two

spots on a vibrating surface and by using the Doppler shift in the

backscattered light, yields the real-time surface velocities at these

points. Scanning capability allows information to be obtained at points

over the whole surface. The unit has the following capabilities: it

provides relatively high sensitivity (which is not limited to the laser

wavelength), it provides the relative amplitude and phase over the

surface even for random motions; it has a high frequency response

(theoretically up to the MHz range); it can provide any one of three

components of motion for the two points; it is readily adaptable to

laser Doppler velocimetry if necessary; it is readily adaptable to fibre

optic applications; it can be used on any diffuse surface; it has enough

optical power for submerged structure applications; and if desired, it

can be converted to a laser speckle interferometer for normal and

transverse displacements.

The only limitation of the TCV system as opposed to full-field

optical techniques is that it does require scanning and hence cannot

provide vibration information simultaneously over the entire surface.

However, this is only a limitation in the case of random vibration which

is non-stationary. If the random vibration is stationary, scanning the

surface provides statistical information which is just as useful and

"accurate" as full-field information. Fortunately, most random

vibrations of interest are stationary and hence scanning is not a

serious limitation.
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SETUP OF THE TCV SYSTEM

Laser Doppler vibrometry is effectively the same as "heterodyne

speckle interferometry," except the latter measures displacements and

the former, velocities. In an article by Dandliker and Willemin (1981),

they illustrate the two different optical setups in heterodyne speckle

interferometry which can be used to detect either normal or transverse

displacements. These are much the same as the different optical

arrangements in laser Doppler vibrometry. There is an optical

arrangement for surface-normal vibrations and a second optical

arrangement for transverse vibrations. These setups will be described

below. (Theory is explained in the next section.)

-he setup of a single laser vibrometer unit for detecting surface

normal vibrations is shown in Figure 2.1. The laser light is first

collimt.ted to allow for an optimum optical signal. The single beam is

then split by a beamsplitter which is adjusted to split the beams into a

ratio f approximately 99.5 to 0.5. The more powerful beam, the

"object" beam or "power" beam, continues through the remaining optics to

the bezn polarizer which allows for the rotation of the axis of

polarization for this beam. It then is focused onto the object by a

lens.

The weaker beam, the "reference" beam, is frequency shifted by

40 MHz by a Bragg Cell and then is returned along the optical axis by a

"vibrometer adaptor." This reference beam, then, never leaves the

optical system.

The object beam, upon backscattering from the target surface, is

collected by the lens (dashed line in Figure 2.1) and also is directed
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along the optical axis by the adaptor. The combined object and

reference beams are then focused onto the face of a photodetector where

they interfere. The electrical output of the photodetector, an FM

signal with a carrier of 40 MHz, is then "downmixed" (heterodyne

converted) to a more convenient carrier frequency of 50 kHz. This FM

signal with a 50 klz carrier is then demodulated by a phase-locked loop

(PLL) to provide a voltage which is proportional to the target normal

velocity.

Of course, since the actual system is a "dual" system there are

two parallel units of this type which are activated by a single 4-watt

argon-ion laser. At the ends of the vibrometers are the scanning

mirrors. A schematic appears in Figure 2.2.

The optical components in the system are manufactured

commercially. The mixers are commercially manufactured as well. The

phase-locked loop processors were designed and assembled at ARL Penn

State.

Scanning mirrors for the system are finely adjustable manual

control mirrors. Computer controlled motors for beam scanning were not

considered justifiable because of the high cost and the fact that the

fine positioning offered by computer control would have to be calibrated

when shooting through imperfect plexiglass windows and water.

The setup of the laser vibrometer for detecting transverse motions

is simpler than that for surface-normal motions and is optically

identical to that used for velocimetry. It is illustrated for a single

unit in Figure 2.3. Notice that this arrangement uses both beams as
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"object" beams rather than using one object beam and one reference beam.

Consequently, it does not require the vibrometer adaptor as does the

setup for surface-normal motions.

In the transverse motion arrangement both beams have the same

power and so the beamsplitter is adjusted to provide a splitting ratio

of 50-50. The polarization rotator, used in the surface-normal optical

setup, is not necessary in this setup. The two beams are focused onto

the target by the lens. The backscattered light of the combined beams

is collected by the same lens and focused onto the face of the

photodetector. As in the previous setup, the output from the

photodetector is an FM signal with a 40MHz carrier. This is downmixed

to a carrier of 50 kHz and demodulated by a PLL to provide a voltage

output which is proportional to the target transverse velocity.

The transverse velocity measured by this arrangement is the

velocity which is in the same plane as the two converging beams. The

two beams can be rotated in order to provide the transverse velocity at

a different orientation. Rotational increments of 45° are available.

Typically, only the transverse velocities in the horizontal and vertical

directions are of interest.
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FUNDAMENTALS OF OPERATION

The two optical arrangements referred to above, the surface-normal

vibration detection scheme and the in-plane vibration scheme, are

referred to as the "reference beam technique" and the "differential

Doppler technique," respectively, and in fact are both used in laser

Doppler velocimetry. Drain (1980) provides very illuminating

explanations of both of these techniques. These explanations are

primarily oriented towards velocimetrv (fluid velocities) rather than

vibrometry (solid vibrations), but the theory is fundamentally the same.

There are two major differences between using these optical

techniques for vibrometry rather than velocimetry. First, in vibrometry

the laser is focused onto a diffuse solid surface resulting in a large

number of "scatterers" whereas in velocimetry there are ordinarily only

a few scatterers passing through the focal region or "probe volume" at

any time. More specifically, the optical signal backscattered by a

diffuse solid surface consists of "laser speckle." This is a randomly

spotted pattern caused by the random constructive and destructive

interference through space of the backscattered coherent light and is

due to the surface roughness. These speckles represent the multiple

"scatterers" seen by the photodetector. Ennos (1978) provides useful

details on laser speckle and its applications to interferometry.

The second major difference in applying these optical techniques

to vibrometry rather than velocimetry is that the optical signal in

vibrometry is a continuous signal whereas in velocimetry it consists of

individual pedestaled pulses as the light scatterers pass through the

probe volume.
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The continuous optical signal in vibrometry is best processed by a

phase-locked loop (although gated rate meters, spectrum analyzers, and

counters have been used) whereas the discontinuous signals in

velocimetry are usually processed by counter processors.

Although there are many good references which explain the theory

behind the reference beam and differential Doppler techniques (such as

Massey 1967; Buchave 1975; Drain 1980) an explanation of the first

principles of the two techniques is presented here briefly for the

sake of completeness.

The Reference Beam Technique

This technique, which provides the velocity normal to the surface,

is fundamentally a Michelson interferometer setup. This is what will be

used to explain the basic principles.

Figure 2.4 shows a Michelson interferometer arrangement. Coherent

light emitted from the laser is split by the beamsplitter to form two

beam paths. The "reference beam" path travels from the beamsplitter to

the mirror, back through the beamsplitter and to the photodetector. The

"object beam" path travels from the beamsplitter to the object back to

the beamsplitter (by backscatter) and to the photodetector. The two

beams interfere at the surface of the photodetector. Depending on their

phase difference at the photodetector, they will present a dark or

bright image to the detector, thus causing a low or high electrical

output from the detector.
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Figure 2.4 Michelson Interferometer
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Assuming an initial phase difference of 0 between the beams when

the object is in position D, a displacement of the object of 6 causes a

relative phase difference of:

26

- - ± 0 (2.1)

at the face of the photodetector. Taking the time derivative leads to:

dO 2 d6

dt A dt

or

2
f - v (2.2)

A

where f is the frequency at which the interference fringes are sweeping

across the face of the detector and v is the surface velocity. In this

way the frequency of photocurrent issuing from the photodetector is

directly proportional to the surface velocity. Actually, it is

proportional to surface speed rather than velocity since motion of the

object either toward or away from the optics will cause the same

frequency; no directionality yet exists in the signal.

In order to impose directionality one of the beams (the reference

beam, for example) can be shifted in frequency by some value f,. The

resulting frequency observed by the photodetector is then:

2v
f - f. + (2.3)

At the expense of introducing a carrier frequency of f., directionality

is now provided; velocity of the object toward the optics increases the

frequency above f. while a velocity away from the optics decreases the
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frequency below f.. The signal from the photodetector is then a

frequency modulated signal with a carrier of f.. The frequency

deviations from the carrier are directly proportional to the surface

velocity.

There are some relatively unavoidable phenomena which degrade this

signal by way of amplitude modulations (which can be a problem in severe

cases) and frequency noise (which limits the resolution of the device).

Amplitude modulations are caused primarily by the laser speckle

emanating from a diffuse object. If they are severe they can cause

intermittent loss of signal by the processor. Frequency noise is

attributable to a number of things: laser speckle, photodetector shot

noise, and vibration of the optics to name a few. Noise in laser

vibrometry is considered in detail in a later section.

Principles illustrated by way of the Michelson interferometer are

easily applied to the actual setup of one vibrometer unit as illustrated

in Figure 2.1 except for the following details. These include focusing

by the lens, collimation, and polarization rotation as explained below.

Focusing of the object beam allows the vibrometer to be sensitive

only within the small depth of field located at the focal distance from

the lens. This has an advantage; one can concentrate on what is

happening at the focal "plane" without interference from any other

surfaces (such as windows) along the optical path. Focusing also has

several disadvantages; the vibration amplitude is limited to the depth

of field, re-focusing is required for surface scanning, and collimation

is required. Fortunately, limiting the vibration amplitude to the depth
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of field is rarely a problem; focusing is primarily an inconvenience,

and collimation is a simple one-time procedure.

Collimation ensures that the reference beam is planar and that the

object beam, as it converges to its waist at the lens' focal distance,

is also planar. The interference of two planar co-linear beams yields

the best signal at the detector. (Co-linearity of the reference and

object beams is assisted by the fact that the lens collects the

backscattered "spherical" wave and effectively re-collimates it.) The

adaptor then returns the two planar beams to the photodetector along the

same path.

In regard to focusing, the relationship between the frequency at

the photodetector and the surface-normal velocity is altered by the lens

angle 0 shown in Figure 2.1. When the object moves a distance d in the

2d
surface-normal direction the phase change is not simply - but

2d 6
- cos - so that the equation relating frequency to velocity becomes:

2v 0
f - - cos - (2.4)

A 2

Finally, if the velocity vector makes an angle of f with the

optical axis the net shift is:

2v" cos • cosO (2.5)
T 7

Also, as shown in Figure 2.1, the frequency shifting in the actual

unit is accomplished by an acousto-optic modulator or Bragg cell. In

the TCV system this shifts the reference beam frequency by 40MHz. This

is accomplished by diffraction of the entering beam into several orders

by passing it through a transparent medium experiencing acoustic waves
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at 40 MHz. Only the first diffraction order is kept and becomes the

"reference beam."

This is the least noisy way of shifting the reference beam. Other

approaches such as passing the beam through a rotating diffraction

grating or reflecting the beam off of a rotating wheel add a significant

amount of frequency noise to the system due to rotational velocity

variations and consequent shifting-frequency variations. These

approaches are, however, much less expensive than the cost of a Bragg

cell.

As a final difference between the Michelson setup (Figure 2.4) and

the actual vibrometer setup (Figure 2.1), the vibrometer includes a

polarization rotator. This enables one to rotate the (linear)

polarization of the object beam and thus to maximize the signal by

aligning the polarization of the reference and object beams for maximum

interference.

The Differential Doppler Technique

As noted previously, this technique allows for the detection of

transverse motions. The setup is illustrated in Figure 2.3. There are

several approaches to describing how transverse motions cause a

frequency shift in this arrangement. Probably the two simplest

approaches are the "fringe model" often used in explaining one component

velocimetry (see Drain (1980) for example) and the other is a path

length difference model as explained in Ennos (1978). Although these

essentially are the same, the path length difference approach will be

used here.
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Referring to Figure 2.5, the target surface is illuminated by two

plane waves coming in at equal angles to the surface normal. If the

surface moves "down" (in the figure) some amount 6, then every point on

the surface experiences an increase in path length relative to the
8

upper beam of: A,, - 6sin 2 Equally, every point on the surface
8

experiences a decrease in path length of AL - 6sin 2 relative to the

lower beam. The total change in path length experienced by every point

on the surface is AT - 26sin 2 The corresponding phase change (in

AT 2 0
cycles) is u - - - - 6sin - . Taking the time derivative yields:

do 2 d6 0 2v a
-- f - - sin - -s sin - (2.6)
dt )Ldt 2 )L 2

which relates the surface velocity to the fringe passing frequency at

the photodetector for the differential Doppler technique.

Unfortunately, both this explanation for the presence of a Doppler

signal as well as the fringe model explanation predict zero beat signal

for solid surfaces; the various points within the illuminated area

initially have a uniform phase distribution from 0 to 2x and when the

object moves there is a uniform phase shift at every point. This

results in no net change in backscattered intensity to the detector and

therefore no net beat signal. Drain (1980) refers to this situation and

notes that "experiment and more detailed theory show that the signal

does not completely disappear" as the number of particles in the probe

volume (in the case of LDV) becomes very large.

The presence of a beat signal for the differential Doppler

technique applied to solids lies in the fact that the intensity received

by the photodetector consists of a speckle pattern which, as noted
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previously, is characteristic of coherent light scattering from an

optically rough surface. However, individual speckles have an intensity

distribution which is not uniform but rather is skewed so that there is

some resultant bias for the entire illuminated area. For a strong

resultant intensity bias in thc backscattered speckle pattern, the beat

signal will be strong as the surface moves. For a weak resultant

intensity bias in the backscattered signal, the beat signal will weaken

with much more D.C. than A.C. optical return to the detector.

Skew in the intensity distribution of the speckle field is

illustrated by Ennos (1978). The random phase distribution of the

detected speckle field also accounts for some illuminated surface areas

yielding high Doppler signals and others low Doppler signals (both in

the differential Doppler technique as well as the reference beam

technique). This is addressed by Rothberg, Baker, and Halliwell (1989).

One can see that the sensitivity ratio of the differential Doppler

technique to the reference beam technique is:

8
sin - 9

2- - tan - (2.7)02o
2

For small lens angles (which are typical), the differential Doppler

technique is considerably less sensitive.

Referring now to Figure 2.3 for the actual setup, collimation is

again necessary to ensure that the converging beams are planar as they

converge at the surface. This yields maximum interference. A Bragg

cell is also used in this setup as it is in the reference beam setup for

directionality. The backscattered light is collected through the center



75

of the lens and focused onto the face of a photodetector. Issuing from

the detector is an FM signal which has a carrier frequency equal to the

Bragg cell shifting frequency and which is frequency modulated due to

the surface velocity in the relationship previously derived-.

Similar to the other arrangement a downmixer reduces the carrier

frequency to 50 kHz for processing by the phase-locked loops. The

"dual" configuration for this technique is also as shown in Figure 2.2.

The only changes required to move from the reference beam setup to the

differential Doppler setup are to: remove the vibrometer adaptor,

change the beamsplitters to a 50-50 ratio, rotate the beams depending on

the direction of transverse motion desired, and check the focus on the

object.

LASER VIBROMETER SIGNAL PROCESSING

As noted previously the current from the photodetector in the

laser vibrometer is a frequency modulated (FM) signal. It has a carrier

frequency which is modulated by the motion of the surface by an amount

(for surface normal motions):

= 2 v Cos[~ *Cos# (2.8)

The signal processor for the vibrometer must extract these

frequency deviations (Doppler shifts) and output a signal which is

linearly proportional to the Doppler shift. Massey (1967) who

constructed one of the first laser vibrometers used a phase-locked loop

(PLL) to perform this task. Many of the commercial vibrometers now
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entering the market use PLL processors (effectively FM receivers) to

perform signal demodulation.

A phase locked loop yields a DC voltage which is directly

proportional to the frequency difference between the input signal and an

internal signal. This frequency difference is the Doppler shift.

Consequently the output of the PLL is a DC voltage proportional to the

surface velocity.

A PLL is a feedback system, with the basic block diagram as shown

in Figure 2 6 (reproduced from Gardner (1979)).

The phase detector puts out a voltage, Vd, proportional to the

phase difference between the input signal and oscillator signal. This

voltage is filtered by the loop filter to suppress high frequency signal

components and noise. (The filter design also controls the dynamic

characteristics of the loop). Output from the loop filter is the

control voltage. The voltage controlled oscillator (VCO) increases the

control voltage by a gain of (K0) and changes its center frequency by

Aw - K0V0 . The output of the VCO is a phase angle which is the integral

of the VCO frequency. This phase angle is then fed back into the phase

detector. The output of the PLL is taken after the loop filter and is

the control voltage or filtered error signal.

As long as the changes of the input signal frequency are slow

enough to remain within the bandwidth of the loop and as long as the

signal remains sufficiently above the noise the PLL will remain "in

lock." More rapid input frequency changes or lower amplitudes would

cause the unit to lose tracking capability temporarily until it re-

acquires lock.
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The phase-locked loops used for this experiment have been designed

so that the VCO has a center frequency of 50 kHz. This was considered

high enough to be beyond the largest expected Doppler shift. The

maximum frequency deviation (Doppler shift) for the PLL's is

approximately ± 30 kHz. This corresponds to maximum velocities of

+ 0.78 cm/s for out-of-plane motion and + 23.4 cm/s for in-plane motion

assuming 750 mm focal length lenses are used (i.e. 8/2 - 1.910). These

values have been found to be sufficient for laboratory applications.

The maximum modulation rate is approximately 30 kHz. This

corresponds to the maximum vibration frequency which the loop can track

without losing lock.

The two PLL processors designed for this test have to be

calibrated for amplitude and checked for phase mismatch. This is

accomplished with the use of an FM signal generator and a spectrum

analyzer.

PLL amplitude sensitivity, i.e. the amount of frequency deviation

(Doppler shift) per volt of PLL output is determined by a well known

Bessel zero technique as explained by Waters and Mottier (1986). A

brief explanation follows.

The spectrum of an FM signal consists of a series of Bessel

function sidebands. The heights of these sidebands are related to the

peak frequency deviation in the FM signal. Using an FM signal

generator, the amount of frequency deviation can be altered to reduce

one of these sidebands to zero. Setting the corresponding Bessel

function equal to zero will then yield the exact peak-to-peak frequency

deviation in the FM signal. This is compared to the peak-to-peak
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deviation in the voltage out of the PLL (subject to the same FM signal).

The ratio of these gives the PLL sensitivity in Hz/volt at this

modulation frequency. This can be performed at various modulation

frequencies to find PLL sensitivity or gain factor as a function of

modulation (or vibration) frequency. Alternatively a carrier frequency

can be modulated by broadband noise to provide the PLL gain factor

variation over a wide frequency range. This signal can be obtained by

use of an FM signal generator and a random noise source.

Phase matching of the two PLL's has been checked by passing the

same FM signal through both units and checking for the phase difference

at their output by recording their output cross-spectrum using an FFT

spectrum analyzer. The phase difference versus frequency up to 10 kHz

is shown in Figure 2.7. Phase difference is large for low frequencies,

levels off to 2.5 degrees from 600 Hz to approximately 4 kHz, is

negligible from 4 kHz to 6.5 kHz, then slowly increases up to 10 kHz.

The amplitude and phase matching of the two PLL units can easily

be Lmproved. No strict tolerances were enforced on the design of these

first two units. However, for the purpose of this work, the amplitude

and phase data from these two PLL's are taken again at the specific

frequencies of the test to provide the maximum accuracy of the PLL

amplitude and phase data for each structural intensity test. This

allows for accurate comparison of the test results to measured power

inputs so that the feasibility of using the two-channel vibrometer for

structural intensity measurements can be ascertained.
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LASER VIBROMETER NOISE SOURCES

Characteristics of Laser Speckle

When coherent light is scattered by a rough surface a random

intensity pattern is generated in space. This is caused by the random

interference of the light due to each point on the surface acting as a

"source" with its own random phase and scattering angle. The resultant

complex amplitude of the scattered light at any point in space is the

coherent addition of all the sources each with its own random amplitude

and phase (a "random walk") relative to the point. This random

interference presents a high contrast grainy appearance called laser

speckle. Since laser vibrometry involves detection of the motion of

surfaces which are typically "rough" (relative to the wavelength of

laser light), speckle plays an important role in the quality of the

signal.

If a surface which is illuminated by a spot of coherent light

moves in a direction parallel to the illumination, so that the same spot

on the surface is always illuminated, the backscattered light (observed

on a screen for example) will contain a speckled intensity which will

not change appreciably with the object motion. The speckle pattern is

relatively insensitive to motion in this direction. However, if the

same object is moved transverse to the illumination, the speckle pattern

observed changes more significantly; an individual speckle will

translate along with the object motion momentarily, but then, as a

different population of scatters becomes illuminated on the surface, it

disappears. This phenomenon is referred to in the literature as



82

"speckle boiling." The different behavior of the backscattered speckle

for the two types of motions suggests separate evaluations of the

effects of normal and transverse motions.

A final general speckle "characteristic" should be noted before

considering the two separate motion effects mentioned above. This is

that the mean speckle size can be controlled if the speckle is focussed.

This requires a distinction between "objective speckle" and "subjective

speckle."

Objective speckle is the light pattern observed when coherent

light is backscattered from a rough surface and viewed directly on some

observation surface such as a screen. The mean speckle size in this

case is (Ennos 1978):

<a0> = 1.2 A L/d (2.9)

where:

A - laser wavelength

L - distance from scatterer to observation screen

d - diameter of the laser spot on the surface

Subjective speckle, on the other hand, is the light pattern

observed when the speckle has been imaged by an optical system onto an

observation screen. (This is the case in vibrometry since the speckle

is imaged onto the surface of a photodetector). The mean speckle size

in this situation is (Ennos 1978):

<o0> 1.2 A f.l./d (2.10)
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where A, is the laser wavelength and, f.l. is the lens focal length, and

d is the aperture. Consequently the size and, hence, number of speckles

received by the photodector can be controlled by the imaging system.

Speckle Noise Due to Normal Motion

For motion which is purely parallel to the optical axis there is

one minor consideration. Large vibration amplitudes will cause some

amplitude modulation of the FM signal. This is typically not a problem

since the velocity information is in the frequency modulation of the

signal.

The amplitude modulation in this case is caused by large

excursions of the object which act to change the makeup of the received

speckle field. However, the makeup of the speckle field does not change

significantly when the identical scatters are illuminated on the surface

since the contribution of each of the scatterers does not change

appreciably. If a very poor FM signal is received initially at the

surface (one reason for which will be explained in the next section)

then a slight amplitude modulation caused by large normal vibration

amplitude could cause a temporary loss of signal during the vibration

cycle. This is referred to as signal dropout. The effect of temporary

signal dropout depends on the dynamics of the processor. If a good FM

signal is available at the measuring point it is unlikely that typical

amplitude modulations would be enough to cause loss of the signal.
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Speckle Noise Due to Transverse Motion

Transverse object motion, which is the principal motion of

interest in the laser Doppler mode, but which can also be present to

some degree when observing normal motions, has two forms of speckle

noise associated with it. The first is the possibility of signal

dropout. The second is frequency noise or "Doppler broadening" due to

the motion of the speckles across the face of the photodetector.

Signal dropout occurs in vibrometer systems when the amplitude of

the FM or heterodyne signal falls below the background noise or at least

below some threshold at which the processor can no longer track the

signal. The amplitude fluctuations of the heterodyne signal from the

photodetector are a manifestation of the statistics of laser speckle.

Meynart (1984) assessed the influence of transverse motion on a

vibrometer setup for the reference beam mode in terms of the amplitude

modulations caused by laser speckle. For interference between a single

speckle and a uniphase reference beam he derives the probability density

function for the amplitude of the FM signal to be:

p(A) - (A/ 2 <IL>X)exp - A2/4<IL>. (2.11)

where A is the amplitude of the FM signal and <IL>. is Lhe ensemble

averaged light intensity over the scattering surface. The resulting

spatially averaged FM signal amplitude is:

<A>1 - W<IL>, (2.12)

and the ratio of the standard deviation to the mean is:

-A/<A>- .523 (2.13)
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This means that due to the random amplitude and phase variation of

the speckle as the laser spot moves across the surface, the amplitude of

the FM signal will vary. According to the above results, it will vary

by a fairly substantial amount so that appreciable dropout periods would

be expected for sampling over the entire surface. This occurs when a

single speckle is used at any given surface location.

Instead of using a single speckle, the aperture of the focussing

system can be enlarged to allow a greater number of speckles to fall on

the detector. In this case, however, Meynart shows by a similar

analysis that the amplitude fluctuations are, however, not suppressed by

the speckle averaging process.

Pickering, Halliwell and Wilmshurst (1986) have designed a

vibrometer which uses a rotating disc to shift the frequency of the

reference beam rather than a much more expensive but less noisy Bragg

cell. In this instrument the reference beam is always subject to

amplitude modulation due to the motion of the disk transverse to -he

beam so that signal dropout during disk rotation is very likel Their

processor, a gated rate meter, samples the frequency and hrcids the last

value of the Doppler frequency received when the FM amplitude drops into

the electronic noise. This results in "flats" in tb, output voltage

which they have adjusted by thresholding the amplitude to have a mean

duration of less than 0.25 x 10- seconds for a frequency response of 20

kHz.

However for the instrumentation used in this study, where

frequency shifting is accomplished by a Bragg cell, signal dropout is

not a problem. This is because the small amplitudes encountered in the
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study of longitudinal vibrations (where the motion is transverse to the

laser beam) do not appreciably change the speckle field received by the

photodetector so that signal amplitude fluctuations should be minimal.

Large amplitude motions however, which might be caused by not

securing the object would cause large signal amplitude modulations which

may cause temporary signal dropout. The effects of this on the

demodulated signal depend on the dynamics of the signal processor.

A final implication of these signal amplitude modulations is that

surface scanning of the laser beam is restricted, but only to the extent

that at some points on the surface the beam may have to be moved a small

amount in order to obtain a good signal.

Doppler Broadening

Another general category of signal degradation which can be due to

laser speckle is Doppler frequency broadening. Ideally an object moving

at a constant velocity transverse to the laser illumination should

provide a pure single Doppler frequency (for optics in the laser Doppler

mode); its spectrum is a delta function. However, as noted in

Pickering, Halliwell, and Wilmshurst (1986), the transverse object

motion causes the backscattered speckles to sweep across the face of the

detector possibly undergoing speckle boiling in the process. This

creates noise in the photodetector output which shows up as a broadening

of the Doppler frequency spectrum. This is referred to as finite

transit time broadening.

Except for very small detector areas, the initial translation of

the speckle across the detector can be ignored and the situation can be
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viewed as purely a speckle "boiling" case where the speckle changes its

phase as it moves across the photodetector. This is how Pickering,

Halliwell, and Wilmshurst (1986) approach the problem in order to derive

an expression for Doppler broadening due to finite transit time.

Through a straightforward analysis the authors calculate a standard

deviation in the Doppler signal of approximately 720 Hz due to this

effect for an object transverse velocity of 1 m/s and a laser spot size

of 0.5 mm. This represents a fairly negligible noise floor of

approximately 1.5 x 10' m/s. The effects of finite transit time

broadening for the proposed studies are expected to be negligible since

in this case the transverse motion will be due to small amplitude

vibrations so that the photodetector always "sees" approximately the

same speckle content.

Other sources of Doppler broadening exist in laser vibrometry

beyond that due to laser speckle. Even with an ideal specular reflector

these sources of noise exist. Velocity gradient broadening for example,

is a result of the laser spot illuminating an area on the object which

contains some variation in velocity so that more than a single Doppler

frequency is received by the detector. For example, for a point on a

standing wave where the displacement is:

u(x,t) - A cos wt * sin kx (2.14)

the velocity gradient is:

a 2u(x, t)

atax Akw cos kx * sin wt (2.15)
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For some point X0 and a laser spot size d, a variation of velocity

within d can be obtained. The maximum change in velocity within the

spot is approximately Akwd.

Doppler broadening can also occur due to the finite size of the

receiving aperture. Ideally signals received at various points on the

photodetector are perfectly in phase. However, for a finite detector

aperture there is some finite difference in the phase of the received

signal at different detector points due to the optical path length

differences between the various receiver points and the source.

Equivalently for a source moving with some constant velocity the

different parts of the receiver will detect slightly different Doppler

frequencies giving rise to a broadening of the Doppler spectrum. This

source of broadening should be negligible in the proposed

instrumentation since the object beam is effectively recollimated before

it is focussed on to the photodetector.

Laser linewidth broadening refers to the fluctuations in frequency

(or wavelength) of the emitted laser light. This can be caused internal

to the laser cavity or more seriously by noise or ripple in the laser

power supply or the electrical discharge (Pickering, Halliwell, and

Wilmshurst 1986). Since the Doppler shift from the vibrating object is

a function of wavelength, laser linewidth broadening will cause noise in

the velocity signal. This is a fairly unavoidable source of broadening

but it should not be a significant source of error, with the laser used

in the proposed apparatus.

Vibration of any of the optical components after the beams have

been split and before they interfere at the detector will induce an
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artificial vibration signal showing up as noise on the measured signal

which is considered a source of broadening. It is not difficult to

isolate the optical components from the source vibration in the

laboratory environment although this noise source can be particularly

detrimental to intensity measurements (as will be discussed later) and

must be checked with and without the source vibration. Additionally,

any "ambient" motion of the source relative to the optics in the

frequency range of interest will cause distortion of the measurements.

Two remaining sources of noise that can cause broadening of the

Doppler signal are Bragg cell frequency drift and "third mirror

feedback." Frequency drift in the Bragg cell can cause small drifts in

the carrier frequency which can result in the PLL processor yielding

small variations about the actual velocity. This type of noise can be

checked by taking an RF spectrum of the input to the Bragg cell and

checking the variation around the intended shift frequency. However,

the output of the Bragg cell depends on the frequency response of the

acoustic-optic element.

A more reliable approach to checking Bragg cell noise is to record

the vibrometer output spectrum for zero object motion. The output will

include several noise sources (including some discussed below) but an

indication of the severity of these sources can be obtained by this

method.

"Third mirror feedback" is a broadening source which occurs when

frequency shifted light (from the object) is allowed to reenter the

optical cavity of the laser. This can result in very large phase and

amplitude fluctuations in the vibrometer output for sinusoidal surface
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vibration (Cretin, Xie, Wang, Hauden 1988). When some means of optical

isolation is used this is not a problem. For the vibrometer system in

this test this problem should not occur due to the optical

setup.

Miscellaneous Noise Sources

The remaining noise sources are not considered as broadening

sources since they typically extend over a wide frequency range.

However, they are no less important. These include the following:

(i) Shot noise from the photodetector this is normally considered a

white noise source and is unavoidable. The electrical power of

shot noise is (Willemin, Dandliker, and Khanna 1988):

PSN 2 2~jebs~o (2.16)

where

CIO feedback resistance

- load resistance

e - electron charge

b - detector bandwidth

s - spectral sensitivity of the photodetector - ne/hy

- quantum efficiency of the detector

h - photon energy

P0 " average light power falling on the photodetector
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(ii) Thermal noise of the electronics ("Johnson noise"). This is

independent of the detected optical power. Willemin,

Dandliker, and Khanna note that for a reasonable reference

beam (-ImW) this can be ignored relative to shot noise.

(iii) Electro-magnetic pickup by the detector from the acoustic-

optic modulators. This is an unavoidable source of noise

with the setup in this experiment but it is expected to be

minor.

(iv) Laser intensity fluctuations. Depending on the amplitude and

frequency of these fluctuations they can appear as noise in the

Doppler signal. The fluctuation frequency can be over a large

range. A number of heterodyne systems use a balanced detection

scheme to remove this noise (see for example Stierlin, Battig,

Henchoz, and Weber 1986). This is an effective noise reduction

technique but is not used in these experiments.

(v) Wavefront misalignment noise. When beating two wavefronts

together the best signal is obtained when they have the same

polarization, are aligned, planar, and normally incident on

the detector. Aberrations in the imaging system can distort

one or both of the wavefronts and produce a noisy signal.

The result is a signal-to-noise ratio which is only a

fraction of the ideal system (shot-noise limited system)

signal-to-noise ratio. This fraction is the heterodyne

efficiency (Takenaka, Takenaka, Fukumitsu 1978). This can

be controlled by careful alignment of the optics and use of

high quality lenses. Polarization upon backscatter is not
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as easily controlled but application of a polarization

preserving paint to the object is helpful.

(vi) Laser mode noise. A high power laser with many longitudinal

modes can distort the vibrometer signal. This can be

avoided by using an etalon if a multi-mode laser is usea.

The etalon will suppress all but one longitudinal mode.

Three remaining sources of signal distortion yield bias errors

rather than noise in the demodulated signal. The first is the frequency

response of the photodetectors. This is important in balanced

heterodyne systems and is equally important in a two-channel vibrometer

for precise phase difference measurements. The gain factor of the

photodetectors is effectively "n" the quantum efficiency. These can

vary slightly between detectors, but detector gain differences will not

influence the output since amplitude differences in the Doppler signals

are of no consequence. Detector phase differences, however, could play

a role in altering demodulated signal phase differences.

The second bias error source is the frequency response of the

phase lock loop detectors. This will influence the amplitude and phase

of the demodulated signals. However, as noted previously, this is

easily calibrated by use of an FM signal generator.

Finally a phase bias can be introduced by unequal optical and

electrical paths in the two optical systems. However, for electrical or

optical signals a pathlength difference of several meters would induce a

phase difference approximating only one tenth of a degree. Therefore,

for this application, reasonably matched pathlengths are sufficient.
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POSSIBLE EFFECTS OF LASER VIBROMETER
NOISE SOURCES ON STRUCTURAL INTENSITY
MEASUREMENTS

The severity of the various noise sources has to be viewed in

light of their effect on the accuracy of the structural intensity

measurements. The preceding noise sources can be considered as noise

which is additive to the signal. For two measurement points we would

have two stationary signals defined as:

x(t) - u(t) + m(t)

and

y(t) - v(t) + n(t)

where

x(t), y(t) are the measured signals

u(t), v(t) are the true signals

m(t), n(t) are the additive noise signals.

It can easily be shown (Talbot 1975), that the measured cross-spectrum

is:

Gxy(f) - Guv(f) + Gun(f) + Gmv(f) + Gmn(f) (2.17)

This can be viewed as a vector summation in the complex plane as shown

in Figure 2.8.

Recall that the measured active structural intensity is

proportional to the imaginary part of the measured cross-spectrum. It

is easy to see the adverse effects of the noise related cross-spectra

when one compares the imaginary part of the measured cross-spectrum with

the imaginary part of the true cross-spectrum. For accuracy, the noise

related cross-spectra (Gun, Gmv, Gmn) must all be zero. Therefore the
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type of noise which will most adversely effect the structural intensity

measurements will be that which is correlated with itself (i.e., m and

n) or with the true signals.

The most likely causes of significant correlated noise in the

vibrometer setup used for this research are vibration of the optical

components and possibly laser noise. Transit time broadening, velocity

gradient broadening, and third mirror feedback can also be considered as

possible sources of correlated noise since they are all velocity

(signal) dependent. However for this apnlication these sources are

expected to be insignificant; transit time broadening will be negligible

for detection of surface normal motions as well as for small amplitude

zero mean transverse motions, velocity gradient broadening should be

negligible for the small spot size compared to the surface wavelengths

for this application, and "third-mirror" feedback as stated previously

is not a problem for this optical setup.

Vibration of the optics, if caused by the source, will result in

signals with noise components which correlate well with each other as

well as the two true signals so that spurious cross-spectra will be

nonzero and will distort the active intensity measurement.

Laser noise including intensity fluctuations, linewidth

broadening, and noise in the power supply can result in a nonzero value

of Gmn since the two laser Doppler channels use the same laser in this

apparatus. Consequently, these noise sources can also act to alter the

true value of the active intensity.
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Noise sources which are uncorrelated can also act to degrade the

quality of the measurements. These cause a random error in the measured

value given by Elko (1984):

r i 7Z 2 cos 2012 (2.18)

~ Y12(l - cos 2012)

where

r - the normalized random error

nd - the number of ensemble averages

012 - phase difference between sensors

2712 - the ordinary coherence measured between
the sensors

For a fixed number of averages the random error increases sharply

for phase differences of a few degrees when the coherence is less than

one. Therefore if the noise causes coherence to drop below one, a large

number of averages may be necessary in order to avoid appreciable random

errors if small phase differences are to be measured.

In laser vibrometry the potential noise sources which are

essentially uncorrelated and act only to induce this random error

include: thermal noise, shot noise, electro-magnetic pickup noise,

Bragg cell frequency drift noise (for independent Bragg cell drivers),

photodiode resistance fluctuation noise, and the noise associated with

less than unity heterodyne efficiency. Fortunately these sources are

(except for heterodyne efficiency) fairly insignificant in the present

apparatus. With proper alignment of the optics, heterodyne efficiency

can be high enough to suppress appreciable noise due to possible

wavefront misalignment.
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The final category of sources of signal distortion includes those

sources which alter the amplitude and/or phase of the demodulated

signal. These sources include: differences in the phase-lock loop-

frequency response functions, and differences in the electrical and

optical paths comprising the two sensors.

The last source has negligible effects for reasonably matched path

lengths but the different frequency responses of the PLL units and of

the detectors represent bias errors in the demodulated signals which can

diatort the measured active intensity. However, the photodetector gain

factor will not affect results since this only affects the amplitude of

the Doppler signal which is not important (as long as it is above the

threshold value for the PLL units).
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Chapter III

FLEXURAL INTENSITY MEASUREMENTS
USING THE TCV SYSTEM

The most difficult application for intensity measurements of any

type occurs in a reverberant field. Intensity measurements demand an

accurate measurement of phase difference. But in a reverberant field

the phase angle between two points can be diminished below the value of

kA (the product of the wavenumber and the point spacing) due to the

reflected waves. The prospects of accurately measuring this small phase

difference can be dim unless the transducers are perfectly phase-matched

or unless their phase bias can somehow be known with extremely high

precision. Therefore it was decided to have the TCV system measure

intensity on a reverberant beam as this would provide an excellent test

of system capability.

Equally important was that the results should be verifiable by

techniques which were not phase sensitive and hence were not subject to

potentially large errors themselves. Such techniques exist for a

reverberant beam which has damping predominantly at its ends and are

explained, as is the cross-spectral method, in this chapter.

FORMULATION OF THE APPROACH

For a beam which is lossless compared to the energy dissipation at

its ends, Carroll (1987) has shown that the vibrational power flowing

from a point of excitation to the ends of the beam can be calculated at

a resonance condition by measuring the farfield nodal and antinodal
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displacements. Using this information the power flow is determined by

two different approaches. The first is a standing wave technique

analogous to the acoustic case for a standing wave tube. Advantage is

taken of the fact that the expression for the power flow in the beam

contains a term equivalent to the product of the nodal and antinodal

displacements. Therefore once these displacements are found, the power

flow is calculated using these values with geometric and material

property constants.

The second approach is based on energetics. This approach

involves calculating the total kinetic and potential energy in the

resonant beam which is proportional to the sum of the squares of the

nodal and antinodal displacements. Knowledge of the total energy, the

in-situ beam loss factor (determined previously), and the frequency of

vibration, then permits a determination of the power dissipation or

equivalently the flow of power into the beam terminations from the point

of excitation.

These two methods of calculating power flow are particularly

useful for highly reverberant beams since they do not require phase

measurements. The more versatile two-point cross-spectral method for

determining power flow, on the other hand, does require phase

measurements, and the required phase accuracy becomes greater as the

beam becomes more reverberant (as the end losses decrease, in this

case). Consequently the standing wave and the energetics methods can

provide good checks on results of two-point cross-spectral

determinations of the power flow in highly reverberant beams.
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As detailed in Carroll (1987), the standing wave measurement

procedure requires knowledge of Y, the material Young's modulus, I the

flexural moment of inertia, f the excitation frequency, m', the mass per

unit length, and k, the flexural wavenumber (equal to (2wf)%(m'/YI)k),

N, the nodal rms displacement and, A the antinodal rms displacement.

The expression for energy flow by the standing wave method is:

HIsw - 2YI(2f)k3  NAN (3.1)

The energetics measurement procedure requires knowledge of ", the

system loss factor at frequency f, L the beam length, as well as f, m',

N and A. The expression for energy flow by the energetics approach

is:

1 (2wf) 3

1 - 2 m'L[N 2  + 2] (3.2)

Finally, the two-point cross-spectral intensity measurement

procedure requires Y, I, k, f, Ax, which is the separation distance

between the measuring points, and Im[G 12(f)] which represents the

imaginary part of the cross-spectrum between the two measured

accelerations (or velocities in this case).

The expression for energy flow (adapted from Carroll (1987) for

Alociry measurements) is:

2k2YI
1,ZP - Ax(2f) Im[G 12(f)] (3.3)

From Equation (1.38) this result has to be corrected for finite

difference error by multiplying it by the quantity

kAx

sin (kAx)
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The three preceding power flow equations, when adapted to the

laser vibrometer output, assume slightly different forms. The first two

equations are recast in terms of the rms voltages at the node and

antinode, VN and VAN, respectively, and the phase locked loop

sensitivity, K as described in Chapter II. The two-point power flow

equation, on the other hand, is recast in terms of either the imaginary

part of the voltage output cross-spectrum or the rms voltages and phase

angle for the two points. These different forms are discussed below.

In the standing wave and energetics expressions the rms

displacements are related to the voltage output values from the

vibrometer in the following manner. The Doppler shift associated with a

velocity v is (from Equation 2.5):

f= 2~ v Cos). cosfi (3.4)

For a velocity, v, in units of m/s and a laser wavelength of

- 514.5 nm (for the green line of the Argon Ion Laser) and for

cos (6/2) - I and cos - 1 the relationship becomes (in Hz):

= 3.89 . 106 v (3.5)

(i.e. the Doppler shift is 3.89 * 106 Hz per m/s of velocity.)

From Chapter II, the phase-locked loop (PLL) processor output

voltage for a given sensitivity of K (in units of Hz/volt) then will be

the Doppler shift for a velocity v divided by the sensitivity or:

V = 3.89 * 10v Hz (3.6)
K Hz/volt

The rms displacement in units of meters then becomes related to

the rms voltage output in the following manner:
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V-V ( K 1 (3.7)[2,rf).- 3. 89 •106

This result then yields the expression for the product of the

displacements which is used in the standing wave equation:

VN * VA • K2

()(AN) - [(2f)(3.89 * 106)12 (3.8)

where and V are rms displacement and voltage values respectively at

the node (for subscript N) and the antinode (for subscript AN). (It is

assumed that the same PLL is used to read both nodal and antinodal

velocities).

Now the standing wave equation can be written, by substituting

this result into equation (3.1), as:

1Sw = 2YI(2irf)k 3  V VAN K 2  (3.9)

(2 If)2 (3.89 1 06)2]

1 =2YIk3  VN • K2  1 (3.10)

(21f) (3.89 . 106)2

where for Y in N/m 2 (Pascals), I in M4 and k in radians/meter, IT

acquires an energy flow in units of watts.

By a similar approach the equation for the energetics method

becomes:

1K
2

E - m'L(2wf) (3.89 • 106) 2  [V2 + V] (3.11)

which has units of watts for m' in units of kg/m and L in meters.

Before deriving the appropriate expression for the two-point

technique, son-e useful results can be obtained from the preceding
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standing wave and energetics equations. For example, equating the

power flow in the two approaches, and assuming that V2 << V2 in the

energetics equation (true for low damping as in these tests) the two

equations yield the following ratio for nodal and antinodal rms voltages

(or displacements, etc.):

VN 17
-= - kL. (3.12)

VAN 4

Furthermore, by using this approximation, the vibrometer rms

voltage at the antinode becomes:

V A 21I2nf) (3.89 . 106)2 (3.13)
YIk

4nLK
2

These equations assume the units are in the MIKS system, that

damping is low, and that the angle the laser beam makes with the surface

normal, 6, is such that cos 8 - I. The voltage distribution along the

beam can then be expressed as: V(x) = IVL cos 2 kx + V; sinkx where V(x)

is the rms voltage at any point x measured from an antinode.

Remaining to be addressed are the expressions for the two-point

power flow method in terms of data obtained using the TCV system. From

Equation 3.3 the expression for power flow obtained from the two-point

method with the finite difference correction applied is

2k2yl kA

2P - (2f) Im[G 12(f)] sin (3.14)

At this point there are two approaches available which pertain to

removing phase bias error. The first approach is to use an averaged

value of Im[G 12(f)] directly obtained by switching the photodetectors as
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explained in Chapter V. The second approach is to break down Im[G 12(f)]

into amplitudes and a phase difference between the two points so that a

prerecorded phase bias error is removed from each reading before the

power flow is calculated.

In the first case the averaged value of Im[G 12 (f)] in units of

volts squared can be converted to units of velocity squared by use of

the relationship previously established between velocity and output

voltage. The velocity in units of m/s for a PLL sensitivity of

K Hz/volt becomes:

V • K
v - 3.89 • 106 (3.15)

where V is the PLL output voltage. Therefore the output voltage cross-

spectrum is converted to a velocity cross-spectrum by the relationship:

KjK2
[Gl2(f) ]VELOI - [G12(f)]VOLTAGE ' (3.89 * 106) 2  (3.16)

where K, and K2 are the two PLL sensitivities. The units of the

velocity cross-spectrum will be in (m/s)2 per Hz. This equation assumes

that the laser wavelength is 514.5 nm and that the angles between the

approaching laser beams and the surface normal is small. For any angles

01 and 02 between the two optical axes and the surface normal the

following relationship is used:

KjK 2
[G 1 2(f)] LOC ITY - [G12(f)]VOLTAGE ' (3.89 • 10 6 ) 2 (COS 0 1)(COS P2) (3.17)

Therefore, using the output from an FFT analyzer directly, the two-point

power flow becomes:
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2k2Yl KK 2  kA

12P - (2rf) - I[12(f) I (3.89 • 106)2(cos 1Xcos f 2) sin -A (3.18)

(For Y in N/m2, I in m' this equation yields H in units of watts.) For

correction of phase mismatch, 1m[G 12 (f)] is an averaged value obtained

as explained in Chapter V.

If a calibrated phase mismatch is to be subtracted in the

calculation of power flow, then Im[G 12] can be cast in terms of the rms

voltages and the corrected phase angle between the points:

Im[G 12 1 - V1 V2 sin(O - 4) (3.19)

where V, and V2 are the rms voltages, 0 is the measured phase angle and

0 is the calibrated phase bias between the two vibrometer units. This

expression is then substituted into the previous expression for power

flow.

EXPERIMENTAL SETUP AND PROCEDURE

For flexural power flow measurements, a beam was clamped at one

end leaving a 25.4 cm cantilevered length. At the free end the beam was

vibrated by a shaker connected to the beam by a small sting to minimize

twisting of the beam by the shaker. The mechanical setup and optical

setup of the flexural test are illustrated in Figure 3.1. For two-point

structural intensity readings, the two laser beams emanating from the

TCV are arranged so as to approach the test object parallel to one

another and be closely spaced.

The scanning mirror shown in the figure can move the laser beams

in parallel along the object surface to allow for a reading of power

flow by the two-point method anywhere along the beam length. Due to the
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scanning radius in this setup, there is a very slight change in the

laser beam separation distance as well as a slight sensitivity change

due to the increased angle as the beams scan the surface. These are

accounted for in the data. For measurements of the nodal and antinodal

velocities, either laser beam can be used to scan the length of the

object.

The overall measurement procedure consisted of the following.

First the damping at the desired frequency was determined by using the

output of a single laser beam focussed on the sample while the vibration

frequency was swept by use of a programmable signal generator. The loss

factor was then determined by a 3 dB down measurement at the antinode

about one of the resonance frequencies. Following this, the excitation

was fine-tuned to the resonance frequency, and the nodal and antinodal

rms velocities of the sample were found by scanning the surface with one

of the vibrometer beams. The distance between nodal points was also

recorded for validation of the theoretical wavenumber at this frequency.

Finally, a series of two-point intensity measurements were taken

by using both laser beams at a separation distance of approximately 0.2

times the bending wavelength (as suggested by Redman-White 1983) and

scanning the surface at various stations axially (while avoiding the

flexural nearfields at approximately one-half the bending wavelength

from the ends of the sample). The rms velocities and phase angle at the

two locations as well as the real and imaginary part of the cross-

spectrum were determined at each location by use of a two-channel FFT

spectrum analyzer. Coherence between the signals was also checked and

128 spectral averages were taken at each station. The angles the laser
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beams made with the sample at each station were calculated for use in

the two-point intensity equation.

The sample had been painted with retroreflective paint along its

length so that the back scattered light would provide a consistently

good Doppler signal over the surface. Unpainted metal proved to be too

reflective; the back scattered light would be too directional so that

large variations in signal strength occurred as the surface was scanned.

Once the paint was applied, in most positions the peak-to-peak value of

the Doppler signals was 0.1 volts or better (a good value for proper

functioning of the PLL processors). However, in some cases the laser

beam pair had to be moved very slightly from their intended axial

station to obtain at least 0.1 volts in both channels. This position

change was typically negligible.

Lenses used for this setup were 1500 mm focal length lenses.

These provided a depth of field of approximately two centimeters; this

is long enough to avoid the need for refocussing of the lenses when the

object was scanned. The laser beam spot size at the 1/e2 intensity

points was calculated to be approximately 0.5 mm (where e - 2.7183).

In initial tests, an aluminum sample which measured 30.48 cm long,

1.27 cm wide and 0.082 cm thick was clamped at one end leaving a

cantilevered length of 25.4 cm. "High" loss factors were induced at the

clamp by using several sheets of constrained damping layer between the

sample and the faces of the clamp.

As the damping was gradually removed to allow for testing in the

low loss factor range, it became increasingly apparent that the beam was

twisting during testing; vertical scans at a given axial station on the

beam yielded velocity amplitudes dependent on the vertical orientation.
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To better avoid twisting problems, a different sample was used for the

remaining low loss factor tests. This was a sample of key stock

material constructed of stainless steel with a square cross section of

3.24 mm on a side and a total length of 30.5 cm.

Two approaches were used during testing to correct for the phase

bias error in the PLL units. Initial tests used a correction to the

measured phase angle based on the calibrated PLL phase bias found by

using an FM signal generator. The intensity was found by using the two

rms values of velocity at the points and the appropriately corrected

phase angle.

A second approach, used during later testing, used a transducer

switching technique as detailed in Chung (1978). In this approach the

imaginary parts of the cross-spectrum were obtained with the two

photodetectors both in the "normal" and "switched" positions for each

axial station. The spectra were then effectively averaged. This

approach was employed to prevent possible problems occurring due to

inaccuracies in the determination of the actual PLL phase bias error and

is outlined in more detail in Chapter III. The process of switching the

detectors and obtaining a good signal in each system required only a few

minute's time at each axial station along the beam.

In either case the resulting power flow measurement from the two-

point approach was calculated by use of Equation 3.18. The value of Ax,

the laser beam separation, was checked at each station by using a scale

and a pair of green light filtering goggles which reduced the bright

beams to two pinpoints of light.
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RESULTS OF FLEXURAL INTENSITY TESTS

The first test on the aluminum beam was run at the beam's tenth

flexural mode at a frequency of 2520 Hz. Damping (predominantly induced

at the clamp) was measured yielding a loss factor of q - 0.013. (A

repeat of this measurement after the test yielded the same result). A

check of the distance between the nodal points indicated a spacing of

approximately 27 mm which results in a flexural wavelength of 54 mm.

This compares very well with the value of 54.6 mm calculated by using

the free-bending wavenumber equation. (The nodes present a much more

precise indication of wavelength than do the antinodes due to the shape

of the rms velocity distribution along the beam; the spatial velocity

gradient at the nodes is sharp while at the antinodes it is relatively

flat.)

The nodal and antinodal rms voltages were then recorded and the

two-point intensity values were taken at stations starting at

approximately a wavelength from the end of the beam with readings taken

at five stations spaced 10 mm apart. The laser beam separation was set

at 10 mm and checked at each station. Phase bias error in this case was

removed by cross-spectrum averaging after switching the photodetectors

at each station. The coherence at each station was recorded at 1.00, or

at a few stations 0.998.

Figure 3.2 shows a comparison of the power flow calculated by the

standing wave and energetics methods (at the bottom of the figure), as

well as the power flow at each of the five stations calculated by the

two-point method. There is a ten percent fluctuation in the two-point

results due to the high value at station one. (Station one was located



0- ---- 0 12p

rTE

rS
U'0_ 5.0
LU

i: M 4.0
Co2 3.0 -

< 2.0-

x 1.0 -
LU
- I I I I - I
U-

1 2 3 4 5

STATION NUMBER
(Axial Location)

Figure 3.2 Comparison of Flexural Power Flow Results

for n - 10, n - 0.013, f - 2520 Hz



112

so that the laser beam closest to the shaker was at an antinode one

wavelength from the excitation.) However, the two-point results agree

very well overall with the standing wave and energetics values.

A second test was run on the aluminum sample for approximately the

same damping but for the twelfth mode at a frequency of 3712 Hz. In

this case the nodal spacing was recorded as 21 mm giving a flexural

wavelength of 42 mm. This value compares fairly well with the

calculated value of 44.9 mm. Damping for this test was measured to be

n - 0.0126 at the start of testing. (A check of the damping after

testing indicated a value of n - 0.0118, a drop of 7 %). An average

value of n - 0.0122 was used for the energetics result. The results

appear in Figure 3.3.

The fluctuations in the data may be due to a few minor problems

occurring during the tests. First, the aluminum beam was twisting very

slightly during testing as evidence by slight variations (approximately

a five percent amplitude increase at the upper and lower edges) in the

vibrometer output for vertical scans at any station. This opened up the

possibility of errors in the readings for laser beam positions off of

the center of twist. Second, the signal generator used for these

initial tests was an analog device which demonstrated very slight

frequency drift during testing. For relatively low damping, such as in

these tests, even a drift of one half of one percent will have an

appreciable effect on the vibration amplitudes. Third, the slight

variability in the damping (observed in these tests and similar

preliminary tests) would also play a role in causing fluctuation of the

calculated power flow values.
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The relative success of these tests at "high" damping as well as

the problems incurred during these tests suggested several changes.

First, the thin, relatively wide aluminum sample was replaced by a

stainless steel sample of a small square cross section with dimensions

as noted previously. This was done to reduce the likelihood of torsion

in the sample. Second, all damping at the site of the clamp was removed

so that effectively only the significant frictional damping at the beam-

to-clamp interface remained. Two thin flat plates of aluminum were

placed between the beam and the vice grips to reduce this contact

friction due to the grips. Since the signal generator was not yet

replaced, it was decided to keep one laser beam fixed at the antinodal

location and the second beam fixed at a spacing of 0.2 X. With this

configuration a check of two-point results versus energetics results

(which for low damping only require the antinodal value) as a function

of time could then be made.

The steel beam was vibrated at 5650 Hz, its eighth mode. Nodal

spacing was measured to be 34 mm corresponding to a wavelength of 68 mm.

This compares well with the calculated value of 67.8 mm. Damping was

very repeatable and was measured to be q - 0.003. Laser beam separation

was set at 14 mm (approximately 0.2 A). The two point and energetics

results appear in Figure 3.4.

Typically the results compare well. It is apparent that the power

flow is changing appreciably in time (the readings were taken every five

minutes). This is most probably due to the oscillator frequency

fluctuation which for this low damping case has very adverse effects.

(For these readings none of the instrumentation settings were changed).
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For the two-point results, photodetector switching was not used to

remove the phase bias error in this case because of the possibility of

phase angle changes occurring between the switched and "unswitched"

readings at the point. Instead, the rms voltages and averaged phase

angle were taken for each reading and the PLL calibrated phase bias,

determined by using the FM signal generator, was subtracted from the

measured phase angle to obtain the corrected power flow value.

CONCLUSIONS

From this chapter it is evident that accurate flexural intensity

measurements can be obtained from the TCV system in the reference beam

mode. The argument could be made that the verification techniques used

(i.e. the standing wave and energetics approaches) were not completely

independent means of verification since they also depended on the

vibrometer accuracy. However these depended only on the amplitude

accuracy of the vibrometer which has been shown by this author and by

numerous others in the open literature to be very reliable for the case

of the reference beam mode and surface-normal vibration.

Despite the successful application outlined in this chapter, a

detailed evaluation of the system in this application must address such

considerations as the influence of the amount of optical backscatter on

the phase-locked loop performance and the vibrometer noise floor, random

error in flexural intensity using the TCV system, the possibility of

coherent noise in the system, and the influence of laser speckle. These

issues are addressed in the following chapters.
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Chapter IV

CHARACTERISTICS CONTROLUNG THE
SIGNAL-TO-NOISE RATIO IN

THE REFERENCE BEAM METHOD

INTRODUCTION

There are several parameters which control the velocity signal-to-

noise ratio (SNR) in a vibrometer output when the instrument is in the

reference beam mode. A true evaluation of the TCV system for flexural

intensity measurements must consider the effects of these parameters

since they ultimately control the quality of the intensity measurement

obtained. The noise floor of each vibrometer channel is controlled by

two major factors: the quality of the Doppler signal (FM signal)

entering the FM demodulator and the response of the demodulator to this

signal quality. These factors are reviewed in this chapter and

experimental data illustrating these effects are presented. The signal

level in each vibrometer channel, on the other hand, is also controlled

by several parameters. These are presented in the latter part of the

chapter. Knowledge of the noise floor parameters and the signal level

parameters then provide predictions of signal-to-noise ratios as a

function of optical and vibrational conditions. These, in turn, are

used to evaluate the accuracy of the intensity measurement in cases

where coherence is less than one (via random error analysis) in

Chapter V.
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CARRIER-TO-NOISE RATIO AND PLL PERFORMANCE
AS APPLIED TO THE REFERENCE BEAM METHOD

As is detailed in Chapter V, the accuracy of the TCV intensity

measurement depends on the signal-to-noise ratio in each of the

vibrometer channels. The signal-to-noise ratio (SNR) of the velocity

signal in each channel is controlled by both the quality of the FM

signal entering the FM demodulator from the photodetector and the PLL

processor's sensitivity to this signal quality. The first

consideration, FM signal quality, can be cast in terms of a carrier-to-

noise ratio (CNR) where the carrier is the heterodyne or beat signal

corresponding to zero object velocity (50 kHz for the TCV system used in

this study). The CNR is then a ratio of the carrier electrical power to

noise electrical power. The discussion below applies to the reference

beam method where the reference beam and object beam are two separate

entities.

The carrier or heterodyne signal electrical power exiting the

photodetector (Willemin, Dandliker and Khanna 1988) is given by:

Pc - 2[- ms 2PoBPRB (4.1)

where 00 is the feedback resistance and 0 the load resistance of the

detector amplifier, m is the heterodyne efficiency (equal to one for

optimum alignment and coherence) and s - ne/hv is the spectral

sensitivity of the photodetector determined by q the quantum efficiency,

e the electron charge, and hv the photon energy. Additionally, PoB and

PB are the optical powers of the object and reference beams striking

the photodetector.
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Equation 4.1 establishes practical limits on the maximum beat

signal obtainable due to the sensitivity and circuitry of the

photodetector/ amplifier system, the optical alignment for maximum

interference of the object and reference beams, and the intensity of the

object and reference beams. Furthermore, for optically rough, diffusely

scattering surfaces (which would ordinarily be the case in structural

intensity measurements) the back scattered object beam is made up of

laser speckle. This has the effect of reducing the backscattered object

beam power, POB, used for interference at the photodetector. The

effective value of POB for diffusely reflecting surfaces varies

significantly over the surface; a very slight repositioning of the

focused point (on the order of a millimeter) can cause as much as an

order of magnitude difference in the amplitude of the heterodyne signal

for the painted objects in these studies. This variability is a

function of the surface roughness.

However, it is not simply the strength of the carrier signal but

rather the CNR which governs the demodulated SNR. The broadband noise

electrical power in the FM signal consists of shot noise and thermal

noise from the detector. These sources extend evenly over the frequency

spectrum. Shot noise is directly related to the amount of light

incident on the photodetector whereas thermal noise (or Johnson noise)

is a background noise existing independently of the optical power at the

detector. The maximum CNR is obtained when shot noise is the dominant

noise source (yielding "shot-noise limited detection") and when the

reference beam intensity is much greater than the returning object beam

intensity (Willemin, Dandliker, Khanna 1988). In this case
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CNR - b (4.2)

In this equation, b is the detection bandwidth of the FM

demodulator and the heterodyne efficiency is assumed to be unity. The

value P0 must be reduced for speckle considerations. For these studies

the reference beam intensity at the photodetector was typically a couple

orders of magnitude greater than the backscattered object intensity at

the detector. In the apparatus used this could easily be discerned by

viewing the two oeams at the photodetector plane by use of an eyepiece

in place of the detector. The condition of shot noise limited

detection, on the other hand, was verified by ensuring that the FM noise

floor was higher with the reference and object beams striking the

photodetector (allowing both shot noise and thermal noise) than when the

beams were prevented from impinging on the detector (allowing thermal

noise only).

Figure 4.1 is an overlay of two spectra of the Doppler signals

from one vibrometer focused on a stationary object. The upper spectrum

shows the 50 kHz carrier signal and a noise floor which consists of the

shot noise and thermal noise (plus some small spurious peaks). The

lower spectrum is the result of blocking off the beams to the detector.

The noise floor in this case drops at least 10 dB to the thermal noise

level indicating that the detection is shot noise limited and that

Equation 4.2 can legitimately be used. (The thermal noise level may be

lower than the lower plot indicates since much of this spectrum consists

of analyzer self-noise and noise from the downmixing circuitry.)
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Equation 4.2 shows that the CNR is linearly related to the quantum

efficiency of the photodiode, q. For the instrumentation used in this

study the photodetectors were equipped with avalanche photodiodes type

NEC NDL 1102. A curve of detector quantum efficiency versus wavelength

for this photodiode shows a quantum efficiency of (c% at a wavelength of

633nm (helium neon laser light) but this falls off sharply to

approximately 35% for a wavelength of 514.5nm (green light) used in this

apparatus. For some vibrometer systems a quantum efficiency of 80% is

not uncommon at the operating wavelength. According to Equation 4.2,

there is approximately a 7 dB loss in the CNR due to the lower

efficiency of the photodiodes in the TCV apparatus compared to the more

efficient photodiodes.

The influence of laser power on the CNR of the FM signal appears

in Equation 4.2 in the form of P0g. For a fixed spot on the stationary

object the CNR should vary linearly with the laser power assuming that

the returning object beam power, PoB, varies in the same fashion.

Figure 4.2 is a spectral overlay of the Doppler signals from a

stationary object. The upper part of the plot corresponds to a "total"

laser power of 150 mW (of which approximately 50% is routed to the

single vibrometer used in the test) and the lower portion corresponds to

a reduction in total laser power down to 25 mW for otherwise identical

conditions. The drop in CNR values is approximately 12 dB for a

bandwidth of 250 Hz. Equation 4.2 predicts a reduction of 15.6 dB. The

difference here is primarily due to bandwidth changes; some of the power

exists in the nearby analyzer bins due to broadening of the Doppler

signal. The Doppler broadening for this situation is due to the finite
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bandwidth of the 40 MHz signal used to activate the Bragg Cell.

Ideally, if the 40 MHz carrier signal approximated a "pure" tone, then

the downmixed carrier of 50 kHz (assuming perfect electronic downmixing)

would have much narrower bandwidth. The values of the actual CNR values

versus the "total" laser power based on the spectral height of the bin

containing the 50 kHz carrier are shown in Table 4.1. A reduction in

Doppler broadening (or an integration over the bandwidth) would provide

higher values more compatible with Equation 4.2.

Table 4.1

Comparison of CNR Values for Various
Amounts of Total Laser Power
in the Reference Beam Mode

Total Laser Power* (mW) CNR (dB)

150 61.2
100 57.1
50 54.8

25 49.3

* Actual value for one vibrometer was approximately
one-half this value.

Referring to Figure 4.2 again, it is worth noting that the shot

noise increases as the laser intensity increases but not nearly to the

extent that the carrier signal does. This is because the shot noise is

proportional to the sum of the reference and object beam intensities

falling on the detector whereas the carrier signal is proportional to

their product. This is why "shot noise limited detection" yields the

optimum CNR. This condition can be obtained by using a certain minimum

reference beam power as outlined in Willemin, Dandliker and Khanna

(1988).
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In the time domain the broadbandedness of the carrier causes the

demodulated signal (the velocity signal) to obtain a degree of

uncertainty as detailed in Pickering, Halliwell and Wilmshurst (1986).

However, if the velocity signal is Fourier analyzed, the signal due to

the carrier jitter is decomposed into its constituent frequency

components, and if the source of jitter is a stationary source, these

components become a regular part of the instrumentation noise floor.

As discussed below, the CNR causes the demodulated noise floor to

vary; a high CNR causes a low noise floor while a low CNR causes a high

noise floor. However, the strength of the signal caused by carrier

jitter would stay constant in the demodulated spectrum regardless of the

CNR (although for low CNR values the noise floor may overcome these

signals). An investigation of possible carrier jitter noise in the TCV

system is discussed in Chapter V.

As stated previously, one of the parameters which govern the

Doppler CNR is the power of the backscattered object beam which in turn

is influenced strongly by laser speckle. Actually, the effect of laser

speckle is to alter the power of the carrier; the broadband noise floor

is effectively fixed by the much stronger reference beam. As an

example, Figure 4.3 is an overlay of two Doppler spectra for a

stationary object. The difference in the two signals is that the laser

beam's position on the object was moved very slightly (approximately one

mm). Due to laser speckle the change in carrier signal was fairly

substantial but the noise floor stayed constant. The surface was rough

due to an application of reflective paint. If the surface was to become

more of a specular reflector with a much smoother finish, the carrier
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signal would generally be higher and not have this degree of spatial

variability. The limiting case is that of perfectly flat surface where

no laser speckle would result.

In summary, there are a number of parameters influencing the

heterodyne CNR in the reference beam method. Assuming shot noise

limited detection conditions, the principal parameters include the

proper alignment of the optics, the quantum efficiency of the detector,

and the power of the backscattered object beam reaching the detector

which can be strongly altered by the position of the focused spot on a

diffusely scattering object or altered by the laser intensity.

However, it is not the CNR of the Doppler signal alone which

determines the SNR of the velocity signal. Because demodulation of the

FM signal is required to obtain the velocity signal, the way in which

the particular demodulator responds to the CNR also influences the final

SNR of the velocity signal and this response is a function of frequency.

Actually, it is the noise floor of the demodulated signal which is

influenced by the CNR of the FM signal entering the demodulator. This

influence, for one of the PLLs, was tested by focusing one of the

vibrometer beams at a point on the face of a shaker. The CNR of the

heterodyne signal was recorded first by disconnecting the shaker to

ensure a zero vibration condition and reading the 50 kHz signal and

broadband noise spectral levels from an FFT analyzer. Then the shaker

was actuated and the output signal from the PLL was recorded by the FFT.

This was done for several closely spaced spots on the shaker face which

yielded a varying CNR due to the speckle effect (this surface also had

been painted with retro-reflective paint). An overlay of the resulting
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spectra for a vibration signal at 4 kHz is shown in Figure 4.4 for five

different CNR values.

Referring to Figure 4.4, the velocity signal at 4 kHz is constant

for every case (all the curves reaching a value of -25 dB) but the

demodulated noise floor rises quickly with decreasing CNR. (The large

noise peaks below 2 kHz are constant in these plots. The source of

these spurious peaks is discussed in Chapter V.) Despite the presence

of the low frequency spurious peaks, one can see that for low

frequencies (e.g., roughly I kHz) the noise floor does not rise nearly

as rapidly with decreasing CNR as does the noise floor at 20 kHz. This

is certainly true down to a CNR value of 42 dB. At 37 dB, however, the

1 kHz noise value jumps by roughly the same amount as was undergone by

the 20 kHz noise. Willemin, Dandliker and Khanna (1988) illustrate this

using a Revox 8760 FM tuner and show that for a high frequency (25 kHz)

the noise level at the demodulated output increases linearly with

decreasing CNR over most of the practical CNR range whereas at a lower

frequency (500 Hz), the demodulated noise level is constant for CNR

values down to 40 dB after which it increases rapidly.

A closer look at what happens for lower frequencies was obtained by

operating the shaker at 400 Hz and using a total bandwidth of 2 kHz.

The results are shown in Figure 4.5. Although the highest CNR starts at

56 dB (as opposed to 61 dB of the previous figure) and although the

broadband noise floor is obscured somewhat by spurious noise peaks

(60 Hz noise and multiples as well as spurious humps near 750 Hz and

1300 Hz), the trend is very evident; at 2 kHz the increase in the noise

floor is slightly smaller than it is at higher frequencies but in the
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vicinity of I kHz and below, the increase in noise floor is not nearly

as severe.

For the instrumentation used in these tests typical values of CNR

with a painted sample and a total laser power (split between the two

vibrometer units) of 75 mW for 1500 mm focal length lenses (long

standoff distances will decrease the received object beam power) ranged

from roughly 61 dB to 42 dB which corresponds to roughly 0.30 to 0.05

peak-to-peak volts Doppler amplitude. With some searching on the

sample, a CNR of 61 dB was obtainable, and a spot yielding 57 dB was

easier to locate, but a conservative value of 51 dB for the CNR

(corresponding to roughly 0.1 volts peak-to-peak) is realistic. For the

painted surfaces in the structural intensity tests a value of at least

51 dB could be obtained for both units. Although in many cases one

vibrometer beam would be higher or lower in the CNR value than the

other, it takes very little displacement of the beam pair to find a

location where one beam has at least 51 dB CNR and the other beam had

the same or higher value. Therefore, for establishing the limits of the

TCV system, it will be assumed that both channels have a CNR of 51 dB.

This assumption results in a fairly high noise floor (10 dB above that

for 61 dB CNR) but, as stated, this is a very practical (if not

conservative) value for locating two beams on the specimen at a desired

location without requiring a time-consuming search for optimum signals.

The noise floor for the PLL in vibrometer 1 is slightly different;

the curve is roughly the same but PLL unit 1 was typically "noisier" by

several dB. (This is due to the difference in sensitivity of the two

units). The noise floors of the two PLL units for a CNR of 51 dB are
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illustrated Figure 4.6. These were generated by focussing the

vibrometer beams on a stationary object.

SIGNAL-TO-NOISE RATIOS OF THE VELOCITY
SIGNALS IN THE REFERENCE BEAM METHOD

The noise floors of the two units have been established using

typical values of the CNR which can be obtained easily on a surface

treated with retro-reflective paint. (For untreated surfaces the

surface plays an important role; smooth metallic surfaces can provide

much better CNR values whereas rough dark surfaces will provide much

smaller CNR values. In the case of smooth surfaces, it may be more

difficult to assign a spatially averaged CNR value since the amount of

backscattered light will depend greatly on the angle the laser beam

makes with the normal to the object surface. For the metal objects used

in these studies the paint on the surface provided a more consistent

value of CNR as the laser beams were scanned over the object.) In cases

where ease of scanning is important, the use of retro-reflective paint

provides the optimum condition.

If one uses the noise floors shown in Figure 4.6, the SNR of the

velocity signals can be determined if the velocity signal is known. The

rms voltage signal obtained from a vibrating object is determined by

using Equation 3.4 and converting the Doppler shift to a voltage by

dividing by K, the PLL sensitivity:

2, .Af
-r KA Cos1 2 (4.3)



133

0

I-

ow

N4 C

0 C
~41

SE0. X

- 0

-4

0 4-.

z ca

S110A 0"0L eJ

OP Ul 13A31 SWU



134

Here A is the displacement amplitude, f is the frequency in Hz, K

is the PLL sensitivity in units of Hz/volt, A is the laser wavelength

(514.5 nm for green light), and 0/2 is the lens half-angle. This is the

rms voltage obtained if the optical axis is normal to the object

surface. The term cos 0/2 arises in this situation due to the angle

imparted to the beam by the focusing lens. In more general terms 8/2 is

simply the angle the scanning beam makes with the normal to the object

surface (assuming surface-normal deflections are being measured). For

these studies two lenses with a focal length of 1500 mm were used. The

value of 0/2 associated with such a long focal length would normally

provide high sensitivity, although for the optical arrangement used in

these studies, 6/2 was dictated by the second of the two scanning

mirrors. (A more important advantage of the 1500 mm lenses is the large

depth of field which allowed for scanning over the length of the object

without refocusing.)

The PLL sensitivity, addressed in more detail in the next section

of this chapter entitled "Signal Related PLL Characteristics," varies

substantially with frequency. It ranges from approximately 3500 Hz per

volt at a frequency of 2 kHz down to 2200 Hz per volt at a frequency of

12 kHz. As long as these values are obtained accurately, the variation

with frequency does not present a problem as it becomes the calibration

curve which can be applied automatically to the data obtained for the

given vibrometer unit. It is in part the variation of K with frequency

which accounts for the shape of the noise floor.

Using Equation 4.3 and converting it to a dB level with the

appropriate reference voltage, signals for various vibration

acceleration amplitudes can be superimposed on the noise floors of the
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two PLLs to illustrate the SNR values which can be expected for a CNR of

approximately 51 dB. This is done in Figures 4.7 and 4.8. A condition

of normal incidence of the laser beam to the object is assumed (0/2 -

0*) and the values of the PLL sensitivity versus frequency are used from

the PLL sensitivity results found in the section on signal related PLL

characteristics.

Not appearing in the figures is the maximum signal which can be

obtained before the PLLs begin to lose lock and output a distorted

signal. This has an rms value of approximately minus 6.8 dB (re 10.0

volts). This was determined experimentally by using a signal from an FM

signal generator as input to the PLLs. Another upper limit is the depth

of field; the vibration amplitude must be such that the object remains

within the depth of field for the lens being used. For 1500 mm lenses

used in this setup, the depth of field was approximately two cm which is

large enough not to put any practical restrictions on the ability to

obtain a vibration signal.

The data in Figures 4.7 and 4.8 can be used to estimate the SNR

values in the two vibrometer units as a function of the vibration

amplitudes at two points on the object and the vibration frequency.

The two SNR values can then be used to calculate the random error in

the estimate of the imaginary part of the cross-spectrum used for the

structural intensity measurement. This is done in Chapter V.

SIGNAL RELATED PLL CHARACTERISTICS

PLL sensitivity in this study is defined as the ratio of the

amplitude of frequency deviation from the carrier frequency in the FM

signal (input to the PLL) divided by the amplitude of PLL voltage
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output. This sensitivity is denoted as K and has units of Hz/Volt. A

determination of the sensitivity of the two PLL processors was made by

inputting an FM signal to the units (from an FM signal generator) and,

for a prescribed amplitude of frequency deviation from the 50 kHz

carrier, measuring the amplitude of PLL voltage output (as described

previously). This procedure was followed in generating the PLL

sensitivity curves in Figures 4.9 and 4.10 (for higher frequencies) and

Figures 4.11 and 4.12 (for lower frequencies). The frequency on the

horizontal axis is the modulation frequency at which the amplitude

ratios were taken (this is equivalent to the vibration frequency of the

object). Appearing in each of the figures are four curves: one which

corresponds to a peak-to-peak frequency deviation of 3 kHz, and the

others corresponding to deviations of 5 kHz, 10 kHz and 20 kHz. These

are typical of the values occurring in the intensity studies.

In Figures 4.9 and 4.10 there is a large overall sensitivity to

modulation frequency whereas in Figures 4.11 and 4.12 (less than 2 kHz

modulation frequency), the overall sensitivity is fairly flat with

approximately 5% variation over the frequency range. The most important

point, however, is that the PLL sensitivity appears to show a slight

dependency on the amplitude of frequency deviation (corresponding to the

vibration amplitude of the object). These data would indicate a slight

nonlinearity in the PLLs which could act to cause small amplitude errors

in intensity readings or at least to make the calibration data more

complicated. However, it is more probable that these small differences

(of typically 3%) are at least in part, due to small errors in the data

acquisition process because of, for example, the bin size in the

analyzer used to determine the exact frequency deviation or the
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influence of the demodulated noise floor on the voltage reading of the

smaller amplitude signals.

Another parameter which can potentially influence PLL sensitivity

values is the amplitude of the Doppler signal (i.e. the amplitude of the

FM cairier signal) input to the PLL processors. PLL processors are

ideally insensitive to amplitude modulation and only sensitive to

frequency modulation. But in practice PLLs typically employ a means of

increasing the amplitude of the signal and "clipping" it to some fixed

value to prevent amplitude sensitivity. The PLL processors employed in

this apparatus did not make use of this process and, therefore, were

tested to investigate whether the Doppler amplitude might influence

sensitivity.

Doppler amplitudes typical of the range of amplitudes occurring

experimentally (0.4 volts and 0.05 volts peak-to-peak) were input to the

PLLs from the FM signal generator and the PLL sensitivity was determined

as previously described. Results showed negligible influence of the

Doppler amplitude on sensitivity for Doppler amplitudes in this range.

Examples are shown in Figures 4.13 and 4.14 for the two PLLs.

The phase bias in the two PLL processors is addressed in

Chapter II. The data show the overall PLL phase differences up to

20 kHz and the section explains how these data was obtained.

A final but important consideration was the concern that the phase

angle for signals output from the two PLLs might be subject to random

fluctuations due to thermal changes in the analog filters of the PLLs.

Equally, similar effects could occur due to the heating of the remaining

electronics in each vibrometer system. This randomness in the measured
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phase angle could have very adverse effects on the ability of the TCV

system to accurately measure the structural intensity, especially in

highly reverberant cases where phase angle measurements must be

extremely accurate to provide reliable results.

A series of three tests was conducted to check for this

possibility. For two tests the two vibrometer beams were focused on a

small, thin, square piece of aluminum glued to a shaker face. The

aluminum was painted with retro-reflective paint to insure a good

"Doppler amplitude" (CNR). The shaker was operated at a single

frequency and the phase angle between the two demodulated vibrometer

signals was obtained at the excitation frequency. For the third test

the FM signal was generated electronically and input directly to the two

PLLs. The phase angle reading was taken frequently during each test.

One test ran approximately ten hours, the other tests approximately two

hours. In every case the demodulated SNR values and the number of

spectral averages taken were such that SNR related random error was

negligible.

Results showed no variation of phase angle to within 0.1 degrees

beyond the first fifteen to twenty minutes of operation. Before this

time the data showed fluctuations in the phase difference of 0.2

degrees. (This was true for both the "optical" as well as "electronic"

tests.) Standard procedure then, for precise phase measurements,

requires a warm-up time for the electronics (particularly the PLL

processors) of twenty minutes. By that time the PLL phase bias error

reaches a steady value.
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Chapter V

SOURCES OF ERROR IN FLEXURAL
INTENSITY MEASUREMENTS DUE

TO TCV SYSTEM CHARACTERISTICS

INTRODUCTION

In the previous chapter, factors influencing signal-to-noise ratio

of each vibrometer channel as well as several remaining details covering

amplitude and phase integrity were addressed. The latter points were

shown not to be a problem for the flexural intensity tests but the

signal-to-noise ratio is always a consideration in intensity

measurements since it is related to random error. A second source of

error in intensity measurements is coherent noise. This is unusual in

structural intensity probes which use accelerometers but it has been

found to exist at certain frequencies in the TCV system. This chapter

addresses these sources of error. It illustrates the influence of the

FM signal carrier-to-noise ratio and the level of flexural intensity

itself can have on the random error. In the latter half of the chapter

a photodetector-switching technique is shown to remove the effects of

coherent noise. This technique is also shown to remove a more familiar

source of error in intensity measurements: namely phase bias error

which exists when there is a phase difference in the two vibrometer

signals caused by the vibrometer electronics, (A phase bias is known to

exist in the TCV PLL processors as noted in Chapter II.)
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RANDOM ERROR IN TCV FLEXURAL
INTENSITY MEASUREMENTS

In any intensity measurement system, background noise, which is

significant relative to the signals in the two transducer channels, can

cause a variability in the measured cross-spectrum. This causes the

measured cross-spectrum to asymptotically approach its true value only

as the number of ensemble averages increases. This is the case when the

background noise is uncorrelated between the channels. For this

situation Seybert (1981) has shown that the normalized random error in

the imaginary component (for situations where the phase angle between

the two points is very small and the coherence is less than unity) can

be expressed as

cot 412 1 - Y1 2(f) (5.1)

where 012 is the phase angle, nd is the number of spectral averages, and 7Y:

is the ordinary coherence between the two channels.

On a reverberant beam where both travelling and standing waves can

exist, the phase angle between points spaced Ax apart can be reduced

below kAx. If the two receivers straddle an antinode, for example, the

phase difference, 012, is such that the previous equation can be

approximated as (Carroll 1987)

2 cot kAx 1 - y2(f) (5.2)
[G(] Lk 2 Y2(f)

where L is the beam length and n is the loss factor.
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Due to the extraneous background noise present in each channel,

the coherence of each channel is reduced below unity by the relation

(Bendat, Piersol 1980)

2= Gn(f) (53)
G11(f)

where G.(f) and G1 1 (f) are the noise and signal autospectra

respectively. For two channels the coherence between the signals

becomes

S +G G (5.4)

where G. and G22 are the noise and signal autospectra in channel two.

The above equations assume that the system is a constant parameter

linear system, that the channel noise is uncorrelated with itself (and

with the signals), and that all unknown deviations from this ideal case

can be considered as uncorrelated background noise at the input.

The previous equations, as well as the TCV background noise levels

and equations predicting the vibrometer rms signal voltage distribution

on the reverberant beam, can all be used to illustrate the influence of

two parameters on the random error in the intensity measurements using

the TCV system. The first parameter influencing random error is the CNR

value. This is the "carrier to noise ratio" and pertains to the clarity

of the Doppler signal available for detection. A low CNR will produce a

high noise floor in the vibrometer output and conversely, a high CNR

will produce a low noise floor in the vibrometer output. (The CNR is

related linearly to the intensity of backscattered light, linearly to

the quantum efficiency of the detector, and related to the square of
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heterodyne efficiency). The second parameter influencing random error

is the structural power flow itself.

In the following two examples an allowable random error of 10%

will be assumed and the number of spectral averages, nd, required to

keep the maximum error at 10% will be calculated. From the previous

equations the required number of spectral averages can be expressed as:

no .[cot kAX1
2 ( - 2) (5.5)

nd 2

The noise-to-signal ratios required for calculating the values of 1 2

can be obtained from the experimentally determined noise floors as well

as the vibrometer signal strength. Signal strength in this application

is a function of the power flow (or power input) 11, the beam length, L,

the position on the beam, the damping, ", the frequency, f, wavenuiber,

k, the modulus and moment of inertia of the beam, Y and I, the Doppler

shift conversion equation, and finally the PLL sensitivity, K (see

Equation 3.13 and subsequent paragraph).

For example, for the aluminum beam discussed in Chapter III, in

the case where f - 2520 Hz, q - .013, the influence of the CNR can be

illustrated. Assume a laser beam separation of 0.1 A (which yields a

low phase angle for illustration purposes), a value of phase locked loop

(PLL) sensitivity of 3400 Hz/volt, and a laser beam angle such that

cos 0 - 1. Also note that the previous equations assume the center of

the laser beams to be positioned at the antinode. Table 5.1 shows the

resulting influence of the CNR (assuming it is the same in both

channels) on the number of samples necessary to obtain a maximum

normalized random error of 10% in the quadrature spectrum.
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Table 5.1

Influence of CNR on the Number of Samples
Required for 10% Random Error in Power Flow-
Measurement With the Reference Beam Mode

CNR(dB) 212-

61 .98 52
57 .96 107
51 .83 524
42 .65 1378

The variations in the CNR can be viewed as variations in the intensity

of backscattered light, variations in the photodetector quantum

efficiency, or variations in the square of the heterodyne efficiency as

in Equation 4.2.

For Table 5.1, it is also assumed that the power flow is

2.5 * 10-11 watts. Detecting this low power flow is possible because of

the fact that the signals are from the vicinity of the antinode where

maximum signal quality is obtainable. (The antinodal region was chosen

for this example since it is the region of minimum phase gradient on the

reverberant beam and consequently maximum random error). For higher

power flows the coherence quickly becomes unity (due to the signal

strength) and the CNR effects are much less influential.

If instead of varying the CNR it is kept fixed and the power flow is

varied, the influence of power flow on the random error in the TCV

system can be illustrated. For the same beam, damping and vibration

frequency, Table 5.2 relates the power flow to the required number of

averages for a maximum random error of 10% in the quadrature spectrum,

if the laser beams are positioned over the antinodal area and both
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channels are receiving a CNR value of 51 dB (which has been established

experimentally as a typical value for the system when targeting surfaces

coated with retro-reflective paint).

Table 5.2

Influence of Power Flow on the Number of Samples
Required for 10% Random Error in Power Flow-

Measurement With the Reference Beam Mode

IT (Watts) 2i-

2.5 e 10-10 .98 52
1.0 * 110 .95 135
5.0 * 10-11 .91 253
2.5 * 10-11 .83 524

1.0 0 10-11  .65 1378

(For << 2 the relationship between the power flow and the

required number of spectral averages is a simple inverse relationship.)

Random error in the measured flexural intensity using the TCV

system, then, can be a problem if the CNR value is small (providing a

high noise floor) and/or the power flow is small (providing a low signal

in the two channels). The previous examples are intended to indicate

the sensitivity of the random error to CNR and power flow. A rigorous

mathematical model linking all the optical and mechanical parameters to

random error could be established if the relationship between CNR and

the demodulated noise floor could be quantified for the two PLL

processors as a function of modulation frequency. This is most reliably

done on an experimental basis as indicated in Figures 4.4 and 4.5. Some
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experimental curves for a Revox B760 FM Tuner are illustrated in

Willemin, Dandliker, and Khanna (1988).

COHERENT NOISE

The source of the two spectral peaks consistently showing up in the

two vibrometer noise floors in the reference beam mode at approximately

750 and 1300 Hz was investigated. This noise can be due to a number of

possible sources including: vibration of the optics due to some common

source such as the laser head or laser power unit, FM noise in the Bragg

cell drivers or downmixers, noise in the PLL units, laser "intermode

beating" noise, laser intensity fluctuation noise, and possibly

photodetector noise. Before these possibilities were investigated, a

check on the coherence of these common spectral peaks was conducted.

The two laser beams were focused on a stationary object while the

coherence of the velocity signals was calculated and averaged with an

FFT analyzer. Results indicated zero coherence up to 20 kHz except at

the two spectral peaks where the coherence approached 0.95. (The

coherence between one of the vibrometers and an accelerometer on the

stationary object was zero at these frequencies indicating that the

"stationary" object was not the source of these signals.) The fact that

the noise in the two vibrometer systems is coherent can have a

potentially harmful effect on intensity measurements at these

frequencies.

The possible sources of these coherent noise peaks were then

investigated. Vibration of the optics due to airborne and

structureborne paths from the laser head as well as airborne paths from
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the laser power supply was excluded when accelerometer measurements of

these components provided zero coherence with the noise in the

vibrometer units. FM noise in the Bragg cell drivers could also give an

apparent vibration signal. However, the 40 MHz signal used to drive the

Bragg cells, when heterodyned directly down to 50 kHz and demodulated by

one of the PLLs, provided a noise floor with no peaks at these

frequencies. Considering this same result, noise in the PLLs which

might provide erroneous vibration peaks also was discarded as the cause.

Further evidence that the noise source was not in the electronics

was found when the Bragg Cell driver/downmixing box and one of the PLLs

were replaced by a commercial "vibrometer controller." This is a new

processor adaptable to this instrumentation. The spectrum of the

controller output also showed the identical spectral peaks in its noise

floor.

The most likely source of these noise peaks is the laser.

Unstabilized multi-frequency lasers can cause Doppler signals due to

heterodyning of the reference beam and unwanted light of a slightly

different frequency (Buchave 1975). However, an etalon was used in the

laser and a test for the presence of a single longitudinal mode, using

an optical spectrum analyzer, showed that all longitudinal modes but one

were successfully suppressed. This fact, combined with the fact that

the optical heterodyning referred to above would most likely cause a

D.C. vibration signal rather than peaks at certain frequencies (i.e. it

would not be a source of FM noise in the modulated signal) indicates

that optical beating from the laser was not the source of the two

spectral peaks. It should be noted that during those tests the laser
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tube was replaced. The spectral peaks were still present indicating

that the problem was not a characteristic of the particular tube.

Another possible source of the common noise peaks is laser

intensity fluctuations. These would appear as Doppler signals to the

electronics. However, the fluctuations would again have to be FM in

nature; a steady fluctuation, regardless of its frequency would cause

only a DC component in the demodulated signal. Consequently, FM noise

in the laser intensity remains the most probable cause of these peaks in

the modulated noise floor.

A very effective means of eliminating intensity noise is to use a

"balanced detection" arrangement (see, for example, Stierlin, Battig,

Henchoz, and Weber 1986). This effectively cancels out any noise

present in the reference beam. This technique would reduce both

intensity noise as well as optical beating noise described previously.

Later studies showed, however, that these coherent noise peaks do

not exist in the differential Doppler mode. This indicates that laser

intensity fluctuations are not the source of the coherent noise in the

reference beam setup nor in anything related to the electronics. The

noise is most likely optical in origin (i.e. it may be FM noise in the

laser). It may be that the path length differchcc, between the object

and reference beams accounts for this noise in the reference beam setup

as opposed to the differential Doppler setup. (It should be noted that

this problem was not a manifestation of light re-entering the laser

since use of an optical isolator did not influence these noise peaks).



156

REMOVAL OF COHERENT NOISE
AND PHASE BIAS EFFECTS

It has been shown that the two-channel vibrometer (TCV) system,

when set up in the reference beam mode (as used for flexural intensity

readings), contains fairly broad peaks in the noise floor in the

vicinity of 750 and 1300 Hz. This noise is random but stationary. The

coherence between these noise peaks, as computed on an FFT analyzer, is

nearly unity at these frequencies as shown in Figure 5.1. At these

frequencies and adjacent frequencies the measurement of the intensity

will be altered by this coherent noise and provide erroneous results if

left uncorrected.

The error stems from the addition of the noise cross-spectrum to

the true cross-spectrum as illustrated in the Argand diagram in

Figure 5.2. If the noise cross-spectrum, Gn, has some non-zero phase

angle, On, the imaginary part of the resultant (measured) cross-

spectrum, G, will not equal the imaginary part of the true cross-

spectrum, Guy, and a measurement error in the active intensity will

result. Both the relative magnitude as well as the phase of G. will

influence the severity of this error. Fcrtunately, photodetector

switching, normally employed to remove biar error due to phase mismatch

in intensity measurements will also serve to remove coherent noise for

the TCV system.

Regardless of the origin of these peaks and regardless of their

mutual phase angle, their effect can be removed by photodetector

switching. Removing the error entails the following: computing the

imaginary part of the measured cross-spectrum, switching the
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on the Measured Cross-Spectrum
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photodetectors and computing the imaginary part of the cross-spectrum

again. The corrected value is then the difference between the two

computed values divided by two. This approach is simple, and it is

valid to the extent that the cosine of the phase bias between the two

channels approximates unity. This result is illustrated below.

The process of instrument switching used in intensity measurements

is a vector averaging process; the vector average of the "unswitched"

cross-spectrum and the switched cross-spectrum, is equivalent to the

true cross-spectrum unbiased by phase mismatch.

For the case of propagating intensity (as opposed to reverberant

intensity) it is only necessary that the imaginary parts of the

corrected cross-spectrum and the true cross-spectrum are the same. The

influence of the phase bias angle, the noise phase angle, and the result

of photodetector switching on the cross-spectra are illustrated in the

Argand diagram of Figure 5.3.

In the first quadrant is vector OP with a magnitude of IGuvl and

phase angle of OA. This is the true cross-spectrum with an imaginary

part equal to IG,,1l * sin 4A. Also in the first quadrant is vector

OE. This is the original cross-spectrum with a magnitude of JGuvj but

it has been shifted by the phase bias angle, OB. Added to this is the

noise vector EA with a magnitude of IG.I and a phase angle of 0. At

frequencies where the coherence is close to unity (i.e. at 750 Hz and

1300 Hz) IGCI , the magnitude of the noise cross-spectrum, will

approximate the square root of the product of the noise autospectra,

. This is the maximum magnitude of EA. At nearby frequencies,

where the coherence is smaller than unity, the magnitude of the vector
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will drop below this value. In any event the resultant, OA, is the

measured cross-spectrum in the "unswitched" position.

Switching the photodetectors (but not the inputs to the FFT

analyzer) causes the measured cross-spectrum to be composed of vectors

in the fourth quadrant: vector OH which is the phase-biased version of

OG, the true cross-spectrum for the switched position, and vector HC the

noise cross-spectrum. The resultant, OC is the measured cross-spectrum

in the switched position.

If vector OG is negated to form OD, as illustrated in the second

quadrant, it can easily be shown that the algebraic average of the

imaginary part of OA and the imaginary part of OD is equal to the

imaginary part of the true ("unswitched") cross-spectral vector OP

if the cosine of OB - 1. Therefore, for "small" phase bias angles

(8 degrees or less for one percent error or less) the active intensity

without phase error or coherent noise error can be obtained by dividing

by two the sum of the "unswitched" quadrature spectrum and the negative

of the switched quadrature spectrum where "switching" in this case

refers only to the interchanging of the photodetectors.

As a final point, coherent noise, like incoherent noise, will also

act to reduce the measured coherence but to a slightly greater extent.

If the noise is assumed to be completely coherent with itself (nearly

the case for the noise peaks in the TCV system) and if the signals are

completely coherent then the overall coherence for the combined signals

becomes (Talbot 1975):
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9 2 G_ (5.6)
+ Z_

where G. and Gn are the noise autospectra and Guu and G, are the

corresponding signal autospectra. This contrasts with the case of

incoherent noise when the second term in the numerator is absent.

Figure 4.4, for curves corresponding to a CNR of greater than 37 dB,

illustrates the typical values of the noise autospectrum (the two peaks

below 2 kHz). These values are the same in both channels.

EFFECTS OF VIBRATION OF THE OPTICS

Another potential source of error in using TCV instrumentation for

intensity measurements is the vibration of the optics. If the optics

are excited by the same source as the object then the optical vibration

"noise" will be fully coherent with the true signals. The problem will

not be indicated by the measured signal coherence since this value, due

to the coherence between the optics vibration and the object vibration,

will show no reduction. The measured intensity will be in error due to

this signal contamination and the error will not be removable by

photodetector switching as it is in the case where the noise and signal

are incoherent.

However, if the optics can be properly isolated, or if the response

of the optics is negligible compared to the signals, then this

potential source of error is greatly reduced. With a long focal

distance in the reference beam mode and "high impedance" optical
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components (as opposed to using light weight optical elements) this

potential problem is made insignificant.

OPTIMIZATION OF TCV SYSTEM DESIGN
FOR MAXIMUM ACCURACY

The previous sections have addressed the influence which various

TCV system characteristics have on intensity measurements. It is

appropriate here to prioritize these characteristics in relation to

their importance in measurement accuracy and make recommendations, based

on these priorities, for effective design and operation of TCV systems

intended for intensity measurements.

Assuming the vibrometer channels themselves have been adequately

designed using basic vibrometer principles, the most important design

component from an intensity point of view is the provision for adequate

vibration isolation. As noted previously, if the source excites the

optics, the results will be erroneous and not correctable. Therefore,

the system should include lenses with focal lengths long enough to

preclude potential vibration of the components from the source. Optical

components themselves should not be highly resonant and should be

clamped to an isolation table. The admittance of the components should

be minimized.

For measurement situations where the coherence between the two

channels may be less than one (due to low surface velocities, for

example) the optical parameters which can influence random error by way

of their influence on the channel CNR should be addressed in the system

design. However, the more important subject is not the parameters which
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govern the CNR, but rather how the CNR influences the resultant

vibrometer noise floor. This is determined by the design of the

demodulators. For example, Willemin and Dandliker (1988) show that for

a Revox B760 tuner at 500 Hz, a CNR of 40 dB yields a demodulated noise

floor approximately 30 dB lower than the same CNR at 25 kHz. They

suggest, tor system improvement, the design of a new demodulator or the

use of a phase tracking system to avoid this frequency dependent

deterioration in FM demodulators. In intensity measurements a better

demodulator design would translate to less random error for a fixed

optical system in cases where coherence between the channels is less

than unity.

Once the signal processing has been optimized, the parameters

influencing the CNR should than be addressed. These include optical

power, quantum efficiency of the photodetectors, and the heterodyne

efficiency. Since the CNR varies as the square of the heterodyne

efficiency, the susceptibility to random error (for low coherence) can

be best reduced by optimizing the alignment of the reference beam and

object beam wavefronts (by use of precision optics and careful

collimation of the laser beam) and by optimizing the alignment of

reference beam and object beam polarizations. Polarization alignment

per se is easily accommodated by a "polarization rotator" (quarter wave

plate) along one of the two beam paths. More difficult is the task of

maintaining polarization of the object beam upon backscattering;

backscattering from a shiny metal surface will maintain the initial

polarization whereas backscattering from a diffuse non-metallic surface

will distribute it. In the latter case the use of a reflective,
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polarization preserving paint on the object surface will aid in

increasing the heterodyne efficiency.

Use of a photodetector which has optimum quantum efficiency at the

wavelength in use will also aid in increasing the CNR (and decreasing

the potential for random error in intensity measurements) since the

detector quantum efficiency is linearly related to the CNR. Similarly,

since the power of the object beam incident on the detector is linearly

related to the CNR, increased laser power will generally assist in

reducing the demodulated noise floor and decrease the random error.

However, this is not to say that a high powered laser is necessary.

High powered lasers present a greater safety hazard than lower powered

Helium Neon lasers for example. Nearly all current commercial

vibrometer systems are Helium Neon based and provide adequate signal-to-

noise ratios. For use of these systems at long distances (100 meters,

for example) collection optics have been used to substantially increase

the power of the backscattered beam on the detector (Corti, Marazzini,

Martinelli, and DeAgostini 1986).

Finally it should be noted that this discussion addresses only the

optical aspects which relate to measurement accuracy. There are

additional errors which can occur with cross-spectral power flow

measurements such as nearfield errors, finite difference errors, and

bandwidth limitation errors (see for example Redman-White 1983).
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Chapter VI

LONGITUDINAL INTENSITY MEASUREMENTS
USING THE TCV SYSTEM

INTRODUCTION

Measurement of in-plane vibrations by the differential Doppler

mode of laser vibrometry is considerably less practiced than is the

measurement of surface-normal motions in the reference beam mode. There

is a sparsity of literature available on this measurement technique.

One of the few known by the author is Dandliker and Willemin (1981) who

addressed the measurement of microvibrations and illustrated how both

surface-normal and in-plane vibrations could be monitored with the two

different optical setups. McDevitt and Stuart (1989) were successful in

using the technique for longitudinal vibrations at frequencies where

appreciable bending was not present in the object. The phase agreement

obtained between the TCV results and an accelerometer pair for the phase

difference at the ends of the sample, was not of the accuracy required

for intensity measurements in reverberant fields (it varied from zero to

2.2 degrees). This difference may have been due to the degree of phase-

matching in the accelerometers, small errors in the calculated value of

vibrometer channel phase bias, or mounting-related phase errors in the

accelerometers as noted in Chapter I. It was felt that this problem (if

it were due to inaccuracies in the vibrometer channel Phisc bias) could

be solved this time by photodetector switching.
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This chapter forms the theoretical basis for longitudinal

intensity measurements and presents the experimental setup, procedure,

and results. Included is development of the expressions for the two

verification techniques (the longitudinal standing wave and energetics

techniques) and the expression for the cross-spectral longitudinal

intensity measurement technique. The equations are derived in a fashion

analogous to the derivations for flexural intensity by Carroll (1987).

As with the flexural intensity equations, the equations are written in

variables attributable to the laser vibrometer.

FORMULATION OF THE APPROACH

The expressions for longitudinal power flow in a reverberant rod

can be derived by using the derivations of flexural power flow used by

Carroll (1987). For example, the standing wave expression for

longitudinal power flow is derived as follows.

Power flow due to longitudinal waves in terms of the spatial and

temporal derivatives of the axial displacement can be written as:

i = SY a (X, t) 8(x, t) (6.1)(6.1

where is the axial displacement, S is the cross-sectional area, Y is

Young's modulus and the brackets denote a time averaged value. If the

motion is harmonic, the displacement can be expressed as a complex

quantity, T(x,t). In this case the power flow can be written:

we = s tes d X~the (6.2)

where the asterisk denotes the complex conjugate. The expression for
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the complex longitudinal displacement can be written as:

(x,t) - A(e-ikx + Re kx)ei~oft (6.3)

This is the same expression as for the flexural displacement. If this

expression is substituted into the previous power flow equation and if

the equation relating the nodal and antinodal displacement amplitudes to

the original wave amplitude and reflection coefficient is utilized,

i.e.:

2(fi) * ( A) - 1A1 2 (I - 1R1 2) (6.4)

where N and A are nodal and antinodal rms displacements, IAI is the

magnitude of the incident wave and IRI is the magnitude of the complex

reflection coefficient, the following equation for longitudinal power

flow by the standing wave formulation results:

flsw - SY(2xf)k( N- ) (6.5)

In this equation k is the longitudinal wavenumber:

k = ) =- C

VTP Y, S(6.6)

The equation for the power flow via the energetics method can also

be derived by comparison with the flexural derivation. In this case the

same expression holds for the longitudinal power as for the flexural

power This is:

Y(2wf)3m'L

rE 2 N +  (6.7)

Finally, the longitudinal two-point power flow expression, can be

shown to be (refer to Appendix A):
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YS f Im[G 12 (f)]
12P - F f df (6.8)

where G12(f) is the velocity cross-spectrum between the two measuring

points spaced at a distance of A. However this has to be corrected for

finite difference error so that the corrected expression becomes:

r1P YS F0 Im[G12(f) I d (.9
1 1 2P- J0  df • in4 (6.9)

where k is the longitudinal wavenumber. For a single frequency, f0 , the

expression for power flow using the two-point cross-spectral method

becomes:

YS Im[G 12(f0 )] kA
112P - *(6.10)- irA f0  sin kA

where f0 is the frequency.

The three expressions for longitudinal power, when adapted to the

laser vibrometer output, will assume slightly different forms as in the

flexural case. However, the conversion to a vibrometer output format

will not be the same as it was in the flexural case since for

longitudinal tests the differential Doppler technique rather than the

reference beam technique is used. As derived in Chapter II, this

situation requires that the expression for the Doppler shift associated

with a velocity, v becomes:

fD = 2 v sin (6.11)

For a velocity in units of m/s and a laser wavelength of A - 514.5

rum (for the green line of the Argon Ion laser) the relationship becomes:
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[D3.89 . 06 si [7(1)]Hz (6.12)

where 0/2 is the lens half-angle. Note that use of the term sin 8/2 is

required if the transverse motion is in the same plane as the two

incident laser beams and is perpendicular to the bisector of the beams.

Because the differential Doppler technique is only sensitive to motion

which is in the same plane as the two incident laser beams and is

perpendicular to the beam bisector, an adjustment to the equation has to

be made for general motions or beam inclinations. Specifically, if the

surface velocity vector is denoted as v and the unit sensitivity vector

is denoted as j (i.e. the unit vector which falls in the same plane as

the beams and is perpendicular to their bisector) then the Doppler shift

becomes:

fD - [3.89 • 106 • sin.j 2 ( v jI] Hz (6.13)

(The sign of vector j will actually be determined by which of the two

incident laser beams is frequency shifted. For measuring intensity this

will not matter as long as corresponding beams in the two vibrometer

units are both shifted in the same way so that there is no confusion

regarding the phase difference between the units). The previous

equation can be written as:

fD- [3.89- 106 - sinf ] v cos (6.14)

where f is the angle between the velocity vector and the unit

sensitivity vector and 6/2 is the lens half-angle. This equation

illustrates the loss in sensitivity that the differential Doppler
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technique can suffer when lenses with small half-angles (i.e. long focal

length lenses) and beam inclinations at a glancing angle with the

velocity vector are used.

The PLL voltage output for a sensitivity of K (in units of

Hz/volt) then will be:

3.89 - 106 * sin{~ 2 v Cos f
v - K(6.15)K

The rms longitudinal displacement (in units of meters) is then

related to the rms voltage output in the following manner:

= .8 (6.16)
2f). 3.89 • 106 • sin(4] • cos

This equation then yields the expression for the product of the nodal

and antinodal rms displacements used in the standing wave equation:

VN VA • K2

( N) ( N) - (1(6.17)
[(2wf) • 3.89 • 106 - sin 2 cos #1

2

where and V are the rms displacement and voltage values respectively

at the node (subscript N) and the antinode (subscript AN). Here it has

been assumed that the same PLL is used to read both the nodal and

antinodal velocities.

The standing wave equation for the longitudinal case can now be

written, substituting the previous equation, as:

or
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U,, = SY(2nf)k V. •. V C (6.18)

SYk V. "V• K2  1
2f [3. 89 AN16 Si * CoBs6.9

where for Y in N/m2, S in M2 , and k in radians/m, n acquires an energy

flow in units of watts.

By a similar approach, the equation predicting the longitudinal

power flow via the energetics method and laser vibrometer output at a

node and antinode becomes:

1 K2

rlE - -m'L(2wf) [V2 + VA] (6.20)
[3.89 • l06 * sin(!) • cos #]

2

which has units of watts for m' in kg/m and L in units of m.

In a manner similar to that for the flexural case, some useful

equations for the vibrometer output on the rod can be developed at this

point. For example, equating the power flow in the standing wave and

energetics approaches, and assuming that V2 << V2 in the energetics

equation (true for low damping) the two equations yield the following

ratio for the longitudinal nodal and antinodal rms voltages (or

displacements, etc.):

VN n

- - kL (6.21)
VAM 2

This contrasts with the equivalent expression in the flexural case

(Equation 3.12); for that case the ratio is one half of this value.

By using Equation 6.21, the vibrometer rms voltage at the antinode

becomes:
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21427[f) [3.89 i0)siq)Cos 2  (6.22)
VAN SYk 2ii LK 2

(Note that this approximation assumes q, due to end losses, is

appreciably greater than the material loss factor. If n assumes a value

of zero, the antinodal value is undefined). The form of the voltage (or

velocity, displacement, etc.) distribution is the same as it is in the

flexural case since the motion is sinusoidal. This distribution is:

V(x) - !Vj cos 2 kx + V1 sin2 kx (6.23)

where V(x) is the rms voltage at any point x measured from an antinode.

Finally, to be considered is the expression for the two-point

longitudinal power flow in terms of the data obtained using the TCV

system. As in the flexural case, the value of Im[G1 21 can be averaged

by photodetector switching or can be calculated by using a corrected

phase angle in order to remove any phase bias error due to the PLL

processors. If one uses the same approach used for the flexural case,

in Chapter III, the power flow predicted by the two-point cross-spectral

method (Equation 6.10) becomes:

YS Im[G 12 (f)] kA KIK 2
112P - _ "r f "sin kA "[](.4

[3.89 . 106 sin 2 cos 0]2

EXPERIMENTAL SETUP AND PROCEDURE

Initially the experimental setup for longitudinal intensity

measurements was similar to the setup for flexural intensity

measurements; a shaker was used to excite longitudinally the free end of
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a long thin rod which was clamped at the other end as shown in

Figure 6.1. Damping was predominantly due to frictional losses in the

clamping fixture. However, this setup brought about bending motion

which was greqter than the longitudinal motion of interest. Under the

combined conditions of high bending motion and appreciable transverse

(longitudinal) motion the vibrometer output in the differential Doppler

mode was typically unstable. A study of this phenomenon was conducted

and is discussed in Chapter IX.

In order to reduce the flexural motion to some extent the original

longitudinal setup was changed; the rod was positioned inside a hollow

circular pipe and held in place at its ends by two very thin plastic

diaphragms which were fixed at the ends of the pipe. The pipe was

slotted to allow for readings along the rod using the laser vibrometer.

A shaker was again placed at one end to drive the rod longitudinally.

With this arrangement the ends of the rod were relatively free in the

longitudinal direction but practically fixed in the other two directions

due to the in-plane stiffness of the diaphragms. This decreased the

flexural motion of the rod but of course the pinned-pinned flexural

modes were still capable of existing. An aluminum rod with a length of

52.1 cm was chosen in order to provide a longitudinal resonance that did

not match a flexural resonance too closely. The rod cross-sectional

dimensions were 0.635 cm on each side.

The lenses used in this experiment had a focal length of 243 mm.

Lenses of a fairly short focal length were preferred in order to

maximize the longitudinal signal. However, as a result of using these

short focal length lenses there was little optical path available for
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use of scanning mirrors. Consequently it was decided to do without

scanning mirrors for this test and scan the object by moving the entire

assembly on a moveable track as portrayed in Figure 6.1. The two

vibrometers were spaced at 15.24 cm to provide a fixed laser beam

spacing on the object of less than half of the expected longitudinal

wavelength. The physical dimensions of the optical components prevented

a closer spacing of the two vibrometer beams.

The experimental procedure was identical to the procedure for

flexural intensity measurements: identify a resonance, find the damping

by a 3 dB down approach (i.e. by a half power point measurement using a

longitudinal antinode), find Lhe nodal and antinodal rms voltages at

resonance, then find the intensity by the cross-spectral technique at

five stations along the rod. These stations were spaced 10 mm apart for

these tests.

RESULTS OF LONGITUDINAL INTENSITY TESTS

The third longitudinal resonance was better separated from bending

resonances than the first two longitudinal resondnces and so was chosen

as the test resonance. The frequency was 13.8 kHz which provided a

theoretical longitudinal wavelength of 36.6 cm. The three nodal

positions located on the rod indicated a longitudinal wavelenguh of 36.3

cm. System damping, found by a 3 dB down approach, indicated a loss

factor of 0.014. The relatively low sensitivity provided by the

differential Doppler technique made reading the nodal values a difficult

procedure but a value much lower than that predicted by Equation 6.21

for this n was found. Values of antinodal voltages were very
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consistent. Results of 112p at the five stations scanned showed that

there was very good agreement with 11E (within 10%) for the first three

stations but very poor agreement for stations four and five. For these

stations the two-point intensity results fell off dramatically. lsw was

also of course low due to the low value of the nodal voltage.

Additional tests, with an expanded object scan of fifteen axial

stations, showed that 11E and 1,2p agreed well but only at several

stations and that 11sw was always relatively low. The value of the

cross-spectral intensity was repeatable at the various stations; a

"good" station always provided favorable results and a "bad" station

always provided poor results (in comparison with the energetics result).

It was decided to increase the phase difference between the two

points at the various stations to cover the possibility that the problem

at some of the stations might be due to too low a phase angle for

accurate measurement by the FFT analyzer. This was done by applying a

thin sealant compound on the diaphragm at the end opposite the shaker.

Application of the sealant increased the system loss factor to 0.04.

The resonance frequency changed slightly to 13.3 kHz. Ten stations were

scanned.

Again the energetics intensity compared well with the cross-

spectral intensity only at a few stations, the remainder falling below

the energetics prediction. The amplitude distribution of the

longitudinal voltages (velocities) versus axial position appeared to be

accurate; both curves (one for each vibrometer at each station) were

smooth up through the longitudinal antinode positions and back down.

However the longitudinal intensity results, not as consistent, are shown

in Figure 6.2
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Most apparent in the figure is the sinusoidal fashion in which the

cross-spectral intensity results vary with position. The distance

between stations -5 and +4, an approximate wavelength for the sinusoid

in the figure, is 80 mm. As illustrated in the next section, the out-

of-plane flexure of the rod was influencing the longitudinal results

with a severity that depended on the position of the two laser beams

relative to the position of the standing flexural wave. The presence of

a longitudinal velocity component induced by bending is well known and

should be accounted for (as by Kendig 1988) when taking longitudinal

intensity measurements. It was thought that the bending resonance close

to 13.3 kHz (a strong flexural resonance existing at 13.9 kHz) was not

playing a significant role in the results until this time.

An investigation into why the 1l2P curve varies in this fashion is

conducted in the next section but a brief explanation follows. Recall

the two vibrometer beams are separated a distance of 152.4 mm. This

represents approximately 2.25 bending wavelengths at this frequency and

the two channels as they scan the specimen alternately are in and out-

of-phase with each other. This pertains to the bending component of

longitudinal motion. The longitudinal motion due the longitudinal wave,

however, is always out-of-phase between the two channels for the entire

scan, since the two stations are spaced at approximately 42% of the

longitudinal wave length. Figure 6.3 aids in visualizing the role the

bending component of longitudinal motion plays in the resultant

longitudinal amplitudes and phase angles at a given station.

The condition at the first vibrometer beam location (subscripted

"A") is represented in the first quadrant while the condition at the
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second vibrometer beam location (subscripted "B") is represented in the

third quadrant. The component of longitudinal motion caused by the

bending waves is B, that caused by the longitudinal waves is L, and

their resultant longitudinal motion is R- If the bending resonance is

out-of-phase with the longitudinal resonance by some phase angle as

shown in the figure, then the phase angles of the resultants at the two

laser beam locations will be affected. Furthermore, if the bending

components are completely out-of-phase with each other, as shown in the

figure, the phase difference between the two locations may remain

relatively unaltered. However, if the bending components are in phase

with each other (so that one of the bending vectors in the figure is

negated) then the phase difference between the two locations becomes

altered to a significant extent especially if small phase differences

are important (as they are in intensity measurements in resonant

structures).

It is the relative station-to-station constancy of longitudinal

wave results, modified in a sinusoidal fashion by the bending-induced

component which causes the sinusoidal degradation of the cross-spectral

longitudinal intensity results.

The degree to which the amplitude and phase results are modified

depends on the amplitude of the bending-induced longitudinal motion.

This can be appreciable. Figure 6.4 shows the undeflected beam and the

deflected beam (exaggerated). Normal displacement of the neutral axis

for the flexural standing wave can be expressed as:

- A cos kx sin wt (6.25)

where A is the amplitude and k is the flexural wavenumber. The slope of

the neutral axis, 0 is:
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d
6 - - - Ak sin kx sin wt (6.26)

Then B is found (for small 6) by:

t t
B 2 ' sin (6) = 2 6 (6.27)

t
B 2 (-Ak sin kx • sin wt) (6.28)

(This same result is achieved if the strain distribution at the outer

fiber is integrated to find transverse displacement).

Therefore the longitudinal displacement due to a standing flexural

wave is zero at the bending antinodes (kx - 0, , 27r, ...) and maximum

at the bending nodes (kx - r/2, 37/2, 5w/2, ...). For the aluminum rod

in this study the actual bending wavenumber at 13.3 kHz was 0.98

radians/cm and the beam thickness was 0.635 cm. The ratio of the

bending-induced longitudinal amplitude at the flexural node to the

bending surface-normal amplitude at the flexural antinode becomes:

kt
amplitude ratio =- - 0.31 (6.29)

Therefore, if there is a flexural resonance present with an amplitude

comparable to the longitudinal wave motion, the results can be altered

significantly. Whether the longitudinal results are influenced more in

amplitude or phase depends on the phase difference between the bending

motion at the two points, as well as the phase difference between the

flexural and longitudinal resonances in the stru-ture.

If there is power flow due to the flexural waves then the

component of longitudinal motion due to the flexural travelling waves
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can also alter longitudinal results. As is illustrated in the next

section, the amplitude ratio in Equation 6.29 is also true for

travelling waves; the ratio of the amplitude of the travelling flexural

wave longitudinal component to the amplitude of the travelling flexural

wave is the same (although it is constant spatially). An investigation

of the aluminum rod at 13.3 kHz showed a damped flexural resonance at

this frequency with a loss factor of 0.05, a wavelength of approximately

64 mm and a nodal to antinodal velocity ratio of 0.40. This indicates

that a fairly strong flexural travelling wave is present and that

therefore the longitudinal amplitudes may be altered even at the

flexural antinodes. However, it was recognized that if bending

antinodes spaced one bending wavelength apart were used for the

determination of longitudinal power flow, the bending components would

be in-phase and the bending-induced longitudinal motion should not

interfere with the two-point measurement.

In order to investigate the possibility of obtaining reasonably

accurate longitudinal power flow results by using the flexural

antinodes, in a similar test the flexural antinodes were first located

on the beam by a scan of one vibrometer in the reference beam mode.

Since the flexural antinodal spacing at this frequency was much shorter

than the distance at which the two vibrometers could be spaced for this

setup, it was decided to scan the sample with only one unit in the

differential Doppler mode and use the shaker signal as a reference

phase. (This approach is more convenient than using two systems but it

does require phase information from artificial excitation. This would

not be practical for locating unknown energy sources or sinks in a

structure).
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The beam was scanned at its flexural antinodes and the

longitudinal amplitude and phase with respect to the excitation were

recorded. Additionally the longitudinal antinode was located and its

amplitude was recorded for purposes of calculating the longitudinal

energy flow by way of the energetics method. The longitudinal nodal

value was not recorded, but from previous tests it was known to be low

enough not to significantly add to the energetics result.

For this test, the power flow by the energetics method was

calculated to be 1.68 mW. However, the power flow measured by the

cross-spectral approach using antinodes spaced one bending wavelength

apart provided much lower but very consistent values; for four different

flexural antinode pairs at a spacing of one bcnding wavelength the

readings were: 0.70 mW, 0.73 mW, 0.72 mW, 0.71 mW. For two different

flexural antinode pairs at a spacing of two bending wavelengths the

readings were 0.74 mW, and 0.77 mW. These tests indicated that the

flexural antinodes provided consistent predictions of the longitudinal

power flow. But these were only 42% of the power flow predicted by the

energetics wethod. (Nodal data were not taken for this test for

standing wave results.)

The next section investigates the influence of bending waves on

longitudinal power flow results and attempts to explain the

discrepancies in the previous longitudinal data.
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ANALYSIS OF LONGITUDINAL POWER FLOW RESULTS

It has been noted that the probable cause of the sinusoidal nature

of the longitudinal power flow results plotted in Figure 6.2 is the

longitudinal component of motion due to bending waves present in the

sample. A study was conducted to verify whether the bending present in

the sample could have caused this variation in results. First, a

numerical model was constructed of the various longitudinal motions

possible in the sample (due to travelling and reflected longitudinal and

bending waves). Second, the imaginary part of the resultant cross-

spectrum was derived in terms of the separation between the two

stations, Ax and the midpoint between the two stations, x.. The

equation was then programmed on a personal computer, and using inputs

obtained from the experimental data, the results were then plotted as a

function of Ax and x0 . The following describes the procedure in detail.

The numerical model includes the effects of the longitudinal waves

and also the effects of the bending waves on the longitudinal power flow

reading. Bending waves yield a component of motion in the longitudinal

direction with a value of half the thickness times the instantaneous

slope. For a right travelling wave, for example, with an amplitude of A

the bending induced longitudinal motion is:

t V t-a[Ae '(t kBx)J
Lx (6.30)

= CkB [_iAei(wt-kBx)]

Therefore the component of bending-induced longitudinal motion has an

tkbamplitude of -- times the bending amplitude and a phase which lags the
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bending wave by n/2. For a left travelling wave the amplitude ratio is

the same but the phase of the longitudinal motion leads the phase of the

bending motion by ir/2.

With this as background, the longitudinal motion at stations one

and two due to the incident and reflected longitudinal waves and the

incident and reflected bending waves can be represented by the following

equations.

u = A(e - i k
Lx

l + RLe i k Lx l
) eilt (Longitudinal Signal At x,) (6.31)

v = A(e - i k Lx2 + RLeiktX2)e i
w

t (Longitudinal Signal At x2 ) (6.32)

M = tkB (e-i(kBxl x/2) + RBei(kBX1 +/
2 ))eiwt (Bending Induced

Motion At xj) (6.33)

n = tkB B(e - i(kBX2 - Or/2) + 'Be i(kBx2 + w12)) ei t (Bending Induced

Motion At x2). (6.34)

where A - complex longitudinal amplitude

RL - complex longitudinal reflection coefficient

kL - longitudinal wavenumber

t - thickness of rod (in measurement plane)

- complex bending amplitude

RB - compiex bending reflection coefficient

kB - bending wavenumber

x, - station one location

X2 - station two location

(xj - x?) - A, the station spacing

(x1 + x2 ) - 2x., where x. is the midpoint between stations
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The resultant signal at station one is x - u + m and the resultant

signal at station two is y - v + n. The cross-spectrum between the

fully coherent signals, is:

Gxy(f) - Guv(f) + Gun(f) + Gmv(f) + Gmn(f) (6.35)

Each term on the right hand side must be evaluated. This is done

by forming each of the cross-spectra using the complex expressions

previously listed and noting the following general relationship (derived

in Appendix C):

GA(f) = A'(t) • B(t) (6.36)

Here A*(t) is the complex conjugate of the complex form of the rms

signal at A and B(t) is the complex form of the rms signal at B. (Note:

to abbreviate the notation at this point, the dependency on frequency

will be understood so that Gun, tor example, represents Gun(f), etc.)

Evaluation of Guy:

Guy = AA*eikLxl + R• ikLx) (ikLX2 + - ikLX2 ±wt -jt

Guy = IAI~e ikL (X1 - x2) + RLeikLX2eikLxl + Rie-kLX e-ikLX2

+ ~e -ikLXl .RLe ikLX2) (6.38)

Guv = 1A1 2 (eikL(x l -%2) + 2RE(RLe kL(x2 ' X1)) + IRL1
2 e -ikL(xl 

-x 2 ))

Since x, - x 2 = Ax and since x 2 + x, = 2x.: (6.39)

Guy - JAl2 (e ikLAX + 2 RE {RLe ikL(2x0)} + IRL 12e- ikL&X) (6.40)



189

If one just focuses on the imaginary part (for active power flow):

IM[Guv] - A12 IM fe ALA + I RLI1 e-ikL&X} (6.41)

IM [ Guv A A12 (s inkLAX - I RtL2SinkLAX) (6.42)

Im[Guv] =jAj2 (sinkLAx) (1 - I2) (6.43)

Note that I RLI l* 1 This expression is proportional to the true

longitudinal power flow. This is not a function of x. for the loss free

beam. (Note that the quantity has to be multiplied by the appropriate

constants and finite difference correction terms in Equation 6.10 to be

an absolute power flow.)

Evaluation of Gmn:

Gmn =M*(t) *N(t)

-k B ("xl - Of/2) +~~l-i/)

tkB -I i(kBX2 - ff12) i (kBX2 + ff/2) X t i

(e + R~e )eiw eiI (6.44)

Gmn ftk B..2J 11 2 (e ikB(xl - X2) - RHe ikB(x1 + 2)

-- ikB(x -i X 2) - - X - X2I)kB 6.5-R~e- RB RB e (.5

tk I - 12 (ikB(hl - X2) - R{~ikB(%1 + 2)}+RB2 ek(1-2)

Since xi - x 2 = Ax and xi + x 2 =2x0: (6.46)

Gmn = k~ IjmI2 (e ikB&x - 2 R, {RB e ikB2xa} + IRBI12 e-ikB~) (6.47)

Using just the imaginary part:

Im[Gmrn] = tkbV 1B11 Im~e iB + -RJ'e kX (6.48)

Im[Gmrn] =1tk f 1B12 (s inkBAx) (I - I RB12) (6.49)
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Evaluation of Gun:

Gun = U*(t) * N(t) (6.50)

Gun = A (eikLX1 +i e- i~xl) e-iwt tkB i (e i(kBX2 - /2)

+ i(kBX2 - wf/2)) eiwt (.1

Gun = A* B tk ei(kLX1 -BX - 7r/ e i(kLX1 kBX2 - Pt2)

+R e' i(kLxl - kBX2 - 01/2) + LRe i(kx B2-ff/2)} (6.52)

No simplification appears possible here but using

e ir2= i and e-iff2 = -i to reduce the exponential terms:

Gu = A tkB .i(kLxl -kBx2) + i k~le k~x2)

-i e( i-kLxl -kBX2) + e e(-~x +kBx2)}

Gun =A* B i tkB (-~ei(kLxl - k~x2 ) +4 RB e i(kLX1 +kBX2)

-R e - k .l kBxZ) + R IkLx1 -kBXZ)J

Evaluation of Gmv:

Gmv = M*(t) * V(t) (6.55)

Gmv = tkB B- (e' (kBX1 f12) + R ei(kBX1 + Pf/2))ew

*e A~ikLX2 + RLe L2) e ict (6.56)

Gmv = 2k e ~ + iR*l.r2- 2 + e-

+ RLe i~kBX1 + Pf/2 - kLX2) + RLR; e -i~BX1 .ff/2 - kLx2)} (6.57)

Using e ill 2 = i and e-i,1 2 = -i obtain:

Gmv =B tkB fie i(kBxl - kLx2) e -i(kBxl - k~x2)

+ IRL e' (kEzI - kLx2) - iRLR; e -'(kBXI -kLx2)} (6.58)

Gmv =AB i tk {ei(kBX1 kLx2) - R~e i(k~l LI2

+ RLe i~~l-LX2' RLR~e ~~l -kLx2)} (6.59)
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The exponents of Gun(f) and Gmv(f) can be related to xO and Ax if

one uses the following forms:

x, = 2x0 +Ax (6.60)

Xz- 2 (6.61)

Substitution of these equations into the exponents with some

simplification yields expressions for Gun and Gmv such that their sum

becomes:

Gun + Gmv A*B itkB e e -- kL)

+ e -x(ke (k - kL)

-i{t (kB- kL) } ixo(kS - kL+ RB e 7 )e

- ei{ kB - 
kL)} -ixo(kB +kL)- e7 ) e

+ RL ei{ (kE + kL)} ei(kB -kL)

+R e fz Ie

ti-X(Lk - kL)

e f7 e -i{(kB kLI e -ix(k} (6.62)

An inspection of this equation shows that the comparable terms of Gun

and Gmv are complex conjugates except for the following points; they are

both multiplied by "i", one is negated (i.e., multiplied by eir), and

then both vectors are rotated through multiplication by some ei*. If

one considers the corresponding terms initially as complex conjugates

(so that the two vectors reflect about the real axis), and steps through
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these operations, it can be shown that the imaginary part of the sum of

any pair of the corresponding terms is equal to the resultant (after the

one vector is negated) times the sine of the rotation angle k. This

leads to the following simplification for the imaginary part of Gun and

Gmv:

Im[Gun + Gmv] = 2RE f tkB eixo(kB-kL)} sin{ (kB + kL)}

* 2RE-Bi tkB R e iXC(kB kL)} sin{ A(kB - kL)}

+ 2RE4.fBi e ixo(kB kL}' sin{x(kB - kL)}

RRE e xo(kB -kL)l . Ax
24RBi ir L I -sin. (k B + kL)J (6.63)

The total measured longitudinal power flow is then proportional

to:

Im[Gxy] = Im[Guv + Gun + Gmv + Gmn] (6.64)

which represents the sum of Equations 6.43, 6.63, and 6.49.

The next task is to evaluate all of the coefficients in the

previous equations, namely A, B, RL, and RB. These values can be

obtained from the experimental data, and from the boundary conditions.

First to be noted is that since the initial longitudinal travelling wave

and bending travelling wave have their origin at the shaker they must

both be in phase at this point. Therefore the complex constants A and

B both have the same phase value and consequently the product A'B or

AB* must be a real quantity.
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Examination of the longitudinal data relating to Figure 6.2 yields

an antinodal value of 0.924 volts (rms) and a nodal value of

approximately 0.085 volts (rms). This provides an incident wave

amplitude of 0.505 volts and a reflected wave amplitude of 0.420 volts.

The magnitude of the reflection coefficient is then the ratio of the

previous values or approximately 0.83. Finally the node closest to the

termination diaphragm was located 37 mm away from it. Using Equation

6.22 of Kinsler and Frey (1962) the phase angle of the reflection

coefficient is:

OL = -r - 2kLx (6.65)

Oh = -7 - 2 c73 )(-3.7cm) (6.66)

OL = -1.86 radians (6.67)

Examination of the bending data yields a recorded value of the

nodal to antinodal voltage equal to 0.40. This is the inverse of the

standing wave ratio in Kinsler and Frey so that Equation 6.21a of this

reference yields a magnitude of the bending reflection coefficient of

0.43. The bending antinodal voltage was 2.11 volts rms. However, this

has to be reduced to an equivalent value considering the difference in

sensitivities of the reference beam and differential Doppler techniques.

The lens was a 243 mm lens with a half-angle of approximately 5.9

degrees so that the above value should be multiplied by the tangent of

this angle or 0.103. Therefore the bending antinodal voltage, corrected

for sensitivity, is 0.22 volts rms. Consequently, the nodal voltage is

(0.40 • 0.22 volts) or 0.088 volts rms. Knowledge of the bending nodal
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and antinodal voltages provides a bending incident wave amplitude of

0.154 volts rms.

Finally to be determined is the phase angle of the bending

reflection coefficient. A bending node was recorded to be at

approximately 318 mm from the diaphragm. If one uses the recorded

bending wavelength of 64 mm there are approximately five wavelengths

(4.97) between this node and the diaphragm. This indicates that a

bending node occurs at the diaphragm. This agrees with the fact that

the diaphragms should be preventing transverse motion. For a bending

node at the diaphragm, the phase angle of the bending reflection

coefficient is OB - -r radians.

In summary, the coefficients which should be entered into the

program are for longitudinal data:

A - 0.505 volts rms (incident wave amplitude)

RL " 0.83 e i c ' z . 8 6 )

and for bending data:

B - 0.154 volts rms

RB " 0.43 eic *
)

Additionally, other relevant input includes:

Ax - 15.24 cm (laser beam separation)

kL - 0.173 radians/cm (longitudinal wavenumber)

kB - 0.98 radians/cm (bending wavenumber)

t - 0.635 cm (beam thickness)

Results from the theoretical model are then multiplied by the

constants in Equation 6.10 to convert to a power flow. These results
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have been superimposed on experimental results in Figure 6.5 through

Figure 6.9. Figure 6.5 illustrates the theoretical data for the input

previously cited. The data from the model shows the same sinusoidal

nature and nearly the same wavenumber as the experimental data although

the amplitudes and phase are mismatched somewhat. Nevertheless the most

important point here is that the bending-induced longitudinal motion can

indeed induce a high amplitude periodicity in the measured power flow

data. The theoretical "truie" value of the longitudinal power flow

(i.e., the value obtained from the model when the bending amplitude is

zero) is 1.21 mW which compares very well with the experimental standing

wave result of 1.23 mW shown in Figure 6.5. The energetics result

(2.30 mW) is also shown.

A brief investigation into the influence of the angle of the

reflection coefficient on the results was also conducted. Figure 6.6

illustrates an example of what occurs to the predictions from the model

if this reflection angle is zero. In this case the theoretical and

experimental two-point data begin to compare quite well in amplitude and

phase.

In the previous section it was speculated that using a laser beam

separation equal to the bending wavelength and positioning the two laser

beams on the bending antinodes might provide a reasonably unaffected

longitudinal power flow measurement. To investigate this possibility

the program was run with this laser beam separation (with a

corresponding adjustment in the finite difference correction factor).

Figure 6.7 illustrates the result for a reflection angle of zero

radians. The theoretical two-point data is considerably less periodic
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Figure 6.5 Comparison of Longitudinal Power Flow
Experimental Results and Theoretical
Results (Ax - 15.24 cm, OL - -1.86 radians)
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than it was for the previous separation distance. Markers on the

theoretical data represent axial locations of the laser beam midpoint

such that both laser beams would be positioned on bending antinodes.

These are the bending antinodal locations as estimated from the

experimental data. The figure indicates that using the antinodes would

not provide results consistent with the theoretical true value. However

if one allows for the possibility that the experimental antinodal

locations may be slightly in error, and allows for a shift of

approximately 0.67 cm, one obtains the results illustrated in

Figure 6.8. These marked positions indicate that the antinodal

technique provides data consistently very close to the theoretical true

value.

For the reflection angle of -1.86 radians, as obtained

experimentally, Figure 6.9 again shows a general grouping at these

points toward the "true" value of the longitudinal power flow. The

majority of the points are within approximately ten percent of the true

value.

Due to the relatively high value of power flow predicted by the

energetics equation, an investigation was also conducted into its

applicability in this low longitudinal mode number test. Equation 6.7

actually incorporates an integration of the square of the velocity over

the beam length which is found to be equal to:

o [v(x)] dx v 1_2 + Ivi2 L (6.68)
Jo 2

(Here vN is the nodal velocity and vA is the antinodal velocity). This

is an approximation in the flexural case since it ignores the nearfields
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although for all but the lowest modes it is sufficient. In the

longitudinal case, no nearfields are present but for very low order

modes the integral will depend on the boundary conditions. For the

third longitudinal mode as in this test, the integral will provide the

result in Equation 6.68 if the ends are true antinodes. However, if the

reflection coefficient is not real but complex (as indicated by the

data) then the mode shape is altered and the integration may not be

exact. The data indicates a first longitudinal node at approximately

9.8 cm from the shaker, the second spaced an additional 19.0 cm and the

third spaced an additional 19.5 cm leaving 3.7 cm to the end diaphragm.

This implies that the end diaphragm may not be a true antinode. This

would result in an overprediction of the longitudinal power flow by use

of Equation 6.7 but the difference would only be on the order of ten to

fifteen percent.

Other potential errors which may account for the high value of 11E

include measurements of the loss factor, the mass per unit length, the

Young's modulus, the beam length, and the longitudinal antinodal value

itself. Of these, the loss factor and antinodal voltage measurements

have the most potential for error. It is well known that in constrained

beams (such as in the termination of the beam in these tests), the loss

factors for bending waves are higher than the loss factors for

longitudinal waves. Therefore, the bending waves induced in the beam

may have produced a loss factor measured for longitudinal waves that was

higher than the true loss factor for longitudinal waves. This would

result in an erroneously higher value of HE as indicated in

Equation 6.7. Since the determination of the standing wave power flow
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does not depend on the loss factor for longitudinal waves, it is

expected to be more accurate. Agreement between the two-point power

flow measurements, corrected for bending-induced longitudinal motion,

and the standing wave power flow measurements indicates that corrections

can be made for the bending-induced longitudinal motion to obtain

accurate measurements for the pure longitudinal wave power flow.

CONCLUSIONS

Results from this chapter indicat- at an important optical

problem has to be solved bef-i, Ctie differential Doppler technique can

reliably be used for general longitudinal power flow measurements. This

problem is the instability of the technique in the presence of high

bending amplitudes. One solution, as will be demonstrated in

Chapter IX, lies in using an "appropriately sized" aperture but this

technique requires considerable study and quantification.

If this speckle-related problem can in general be solved then the

effects of bending-induced longitudinal motion must somehow be addressed

so that true longitudinal power flows can be measured. The modelling of

the effects of the bending induced longitudinal motion on the power flow

was successful for this simple case but for two-dimensional motion this

modelling may be extremely difficult. For the cancellation of such

bending effects one may be forced to use one vibrometer beam on opposite

sides of the structure. This may be difficult for plates and cylinders.

The computer model of the influence of bending on longitudinal

power flow readings illustrates how even a moderate degree of bending

(approximately thirty percent of the longitudinal motion in this case)



204

can produce high fluctuations in the measured longitudinal power flow if

both laser beams illuminate the object on the same surface. Also shown

by the mor4cl is that the procedure of spacing the laser beams one

bending wavelength apart and positioning the beams on bending antinodes

may provide accurate (to within approximately 10%) longitudinal power

flow measurements.

Finally, although the longitudinal power flow results are

generally acceptable considering the agreement between the computer

model results and the experimental standing wave and two-point results,

the disparity in the energetics result (which is approximately twice the

standing wave result) can not be quantitatively reconciled. It is

suspected that the influence of nearby damped bending modes on the

longitudinal loss factor result may have been the problem. One also has

to keep in mind that the experimental longitudinal values input to the

computer model are also "tainted" in that they too contain some degree

of bending-induced longitudinal motion in them. Considering these

points, the longitudinal technique, although it appears to be promising,

should undergo further verification before general use. The

verification technique must be one in which the speckle instability

problem can be suppressed if it is present, and one in which the

presence of bending does not interfere with verification.
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Chapter VII

CHARACTERISTICS CONTROLUNG THE
SIGNAL-TO-NOISE RATIO IN THE

DIFFERENTIAL DOPPLER METHOD

INTRODUCTION

This chapter is analogous to Chapter V for flexural intensity (for

the reference beam method). The objective of the chapter is ultimately

to establish the noise floor in each channel as a function of optical

parameters such as the carrier-to-noise ratio. This chapter does not

have the detail that Chapter II has, principally because there is no

known documentation of the influence of optical parameters on the CNR n

differential Doppler vibrometry. However, the noise floors of the

vibrometers are established experimentally as a function of the CNR.

The establishment of these noise floors assumes that the presence of the

longitudinal motion does not alter the noise floors. This has been

found to be true for moderate longitudinal motion in the differential

Doppler technique. The introduction of large amplitude longitudinal

motion or motion other than longitudinal motion may, in some cases,

alter both the signal and the noise floor due to speckle effects. This

phenomenon is addressed in the Chapter IX.

The latter part of this chapter addresses the signal associated

with longitudinal motion so that vibrometer signal-to-noise ratios can

be presented as a function of the CNR and the amount of longitudinal

motion. Phase-locked loop characteristics are not addressed in this
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chapter since these remain the same (as in Chapter V) despite the

difference in the optical mode being used.

CARRIER-TO-NOISE RATIO AND PLL
PERFORMANCE AS APPLIED TO THE
DIFFERENTIAL DOPPLER METHOD

As with the reference beam method, the signal-to-noise ratio of

the velocity signal in the differential Doppler method is also

influenced by both the quality of the FM signal and the sensitivity of

the PLL processor to the quality of the FM signal. Recall from Chapter

II that the quality of the FM signal is characterized by the carrier-to-

noise ratio (CNR). Unfortunately there is little available in the

literature regarding the theoretical prediction of the CNR for the

differential Doppler technique as applied to vibrations of solids.

Consequently this section considers the experimentally determined

influence of such parameters as laser power, and laser spot position on

the object in order to establish practical limits of a two-channel

differential Doppler technique in the study of longitudinal power flow.

For experimental studies of the carrier-to-noise ratio and the

signal-to-noise ratio, both channels of the TCV system were setup in the

differential Doppler mode; the vibrometer adaptor was removed from both

channels and the beam splitter in each channel was switched to allow for

a 50-50 intensity split in the two beams (rather than the 99.5 - 0.5

split in the reference beam method). This resulted in an

interferometric sensitivity in the horizontal direction as the two equal

intensity beams in each channel were focussed in a horizontal plane when

they emerged from the respective lenses. The beams from each channel
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were focussed on two spots on a stationary object located on the optical

(vibration isolated) table. Only one vibrometer was needed for studies

concerning the FM signal quality. Both vibrometers were used only in

the test for coherent noise. The results are reviewed below.

The noise floor in the FM signal is associated with the detector

shot noise and is above the thermal or "Johnson noise" of the detector.

This is illustrated by the spectral overlay shown in Figure 7.1. The

upper spectrum is, for the vibrometer, in regular operation with the

beams focussed onto the stationary object; the 50 kHz carrier in this

case is more than 50 dB above the noise. The lower spectrum is for the

beams blocked off to the photodetector. One can see that the broadband

noise drops off when the detector is receiving no input. A test on the

makeup of this lower spectrum revealed that it consists only of the

self-noise of the analyzer combined with some noise spikes generated by

the electronic downmixer; the thermal noise is below these levels.

Nevertheless the detection can be said to be "shot noise limited" in the

differential Doppler technique as it was for the reference beam

technique.

The influence of laser power on the FM signal for a fixed point on

the object was tested next. Laser power (total power into both

channels) was set at 25 mW, and advanced to 50, 100, 150 mW while the FM

spectrum in each case was recorded after 128 linear averages. As the

laser power increased, the FM noise floor continually decreased (while

the 50 kHz signal increased) with a cumulative drop of 7 dB from the 25

mW laser power case to the 150 mW power case. At 150 mW the FM noise

floor was at a level of minus 72 dB relative to an rms voltage of



208

CLC

0

1 0 I-
0-0

C.)) 4

(4.4

-- 0

cJ 0

- - 0

Sil1OA ova SJ
SP Ul 13A31 SV4U



209

0.1 volts which is approximately the noise floor of the analyzer itself.

This drop in the FM noise floor with laser power was repeatable. But

why the noise floor should decrease rather than increase somewhat with

laser power (as in the reference beam case) at first was not fully

understood. (Later it was found that the beam moved slightly with laser

power inducing a speckle related effect.) Table 7.1 shows a listirig of

laser power (total laser power in both channels) versus the carrier-to-

noise ratio obtained from these differential Doppler tests. (Note that

these results are for an arbitrary point on the object surface; the

absolute values are not as important as the trends.)

Table 7.1

Comparison of CNR Values for Various Amounts of
Total Laser Power in the Differential Doppler Mode

Total Laser Power (mW)* CNR (dB)

150 65.5
100 59.6
50 55.7
25 52.6

" Actual value for one vibrometer was approximately
one-half this value.

As was done in the case of the reference beam approach, a test was

run to determine the influence of the focussed spot location on the FM

signal quality (a result of laser speckle). A comparison of the spectra

resulting from an optimum spot versus a "less optimum" spot for a fixed

laser power shows that only the FM signal amplitude is altered while the

noise floor remains constant. Figure 7.2 illustrates these results.
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(The actual amplitude of the signal in the upper spectrum was minus

5.6 dB but the vertical scale had to be chosen so as to illustrate the

noise.) This figure upon comparison with Figure 4.3 (a comparison of

optimum and "non-optimum" points using the reference beam technique),

shows an interesting characteristic of the FM noise floor for the

differential Doppler technique; it is at least 7 dB lower than the noise

floor in the FM spectrum for the reference beam technique.

The noise floor in Figure 7.2 is approximately the value of the

analyzer noise floor (which occurs for a total laser power of 150 mW as

noted previously) so that the true FM noise floor for tle differential

Doppler case at 150 mW may be more than 7 dB below that of the reference

beam technique.

The next tests examined the effects of different CN values on the

demodulated noise floor. For these tests the laser spot was moved

slightly on the object in each case to provide a varying amplitude of

the Doppler (FM carrier) signal while the total laser power was constant

at 150 mW. Figure 7.3 is an overlay of the noise spectra at five

different values of CNR. These values span the realistic range of

obtainable Doppler signals for a differential Doppler setup.

Most notable in Figure 7.3 is the absence of the spurious spectral

peaks at approximately 750 Hz and 1300 Hz which were always present in

the demodulated noise floors for the reference beam technique. Their

absence in this technique indicates several things; the spurious peaks

in the reference beam technique are not caused by instability in the

Bragg cell shifting frequency nor are they caused by laser intensity

fluctuations (since those problems would be expected to show up in the

differential
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Doppler technique), and they are not caused by any of the electronics

(since the electronics are the same for both techniques).

The remaining potential sources of the spectral peaks are

vibration of the optics (which has not been detected using an

accelerometer) and possibly a pathlength difference related problem.

Neither of these two problems would yield spurious peaks in the

differential Doppler mode. The pathlength difference in the reference

beam mode was set to an integer multiple of the laser cavity length even

though an etalon w- sed. But the pathlength matching in the

differential D.p -er mode is inherently exact due to the setup. It

should alsr be noted that the replacement of the laser tube did not

resolvc this problem nor did the exchanging of the etalon card which

actively controls the heating of the etalon to ensure single line

operation. Consequently the origin of spurious peaks in the reference

beam technique is suspected to be due to laser FM noise which is not

canceled out by perfect pathlength matching as in the ditferential

Doppler technique.

The absence of the spurious spectral peaks in the differential

Doppler mode indicates that there is no coherent noise between the

channels for this technique. A test of the coherence between the two

systems for both channels focussed on a stationary object verified that

there is zero coherence across the whole spectrum extending up to 20 kHz

for this method.

As can be noted from Figure 7.3, the noise floor is reduced at the

same rate at which the CNR is increased. The CNR values in Figure 7.3

are lower than those plotted for the comparable reference beam case
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because of the lower FM noise floor in the differential Doppler

technique. An examination of typical signals obtained from a surface

treated with retro-reflective paint indicated that a CNR of

approximately 60 dB was a conservative value of the average CNR to be

expected in the differential Doppler technique for such a surface. This

value corresponds to a peak-to-peak Doppler voltage of 0.1 volt for this

system. The CNR in this technique is approximately 9 dB higher than the

corresponding typical CNR in the reference beam technique which results

in a noise floor nearly 10 dB lower than for the typical signal in the

reference beam technique.

The lower sensitivity of the PLL processor to CNR at low

frequencies is also illustrated by Figure 7.3. Below approximately 2

kHz the drop in noise floor due to an increase in the CNR is less

appreciable than it is above 2 kHz. This same property ef the PLL

processors was addressed in the reference beam section. Figure 7.4

illustrates the decreasing influence of the CNR on the noise floor below

2 kHz; except for spurious low frequency peaks (60 Hz and multiples),

the two spectra at CNR values of 55 dB and 70 dB show a larger

difference in noise starting from approximately 200 Hz and increasing to

2 kHz.

Figure 7.5 is a comparison of the two PLL processor noise floors

for the "typical" CNR of 60 dB in the differential Doppler mode. As was

noted in Chapter IV, one processor in the TCV system is from 2 to 4 dB

quieter than the other for the same input signal (although this is at

least in part due to the difference in their sensitivities).
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SIGNAL-TO-NOISE RATIOS OF THE
VELOCITY SIGNALS IN THE
DIFFERENTIAL DOPPLER METHOD

If the noise floors in Figure 7.5 are used, the SNR of the

velocity signals for a characteristic case can be determined if the

velocity signal is known. The rms voltage signal obtained from an

object vibrating transverse to the beams is determined by:

v 22rAf sin {e (7.1)

where A is the displacement amplitude, f is the frequency in Hz, K is

the PLL sensitivity in units of Hz/volt, A is the laser wavelength

(514.5 nm for green right), and 0/2 is the lens half angle. This

equation assumes that the vibration is in a direction perpendicular to

the bisector of the two beams. For other cases the right hand side is

multiplied by the factor sin 0 where 0 is the angle between the beam

bisector and the vibration velocity vector.

If the rms voltage obtained for a given acceleration amplitude of

the surface is calculated by this equation and (assuming - 0)

converted to a dB level relative to 5.0 volts, the signal level

compatible with the noise floor plots can then be calculated by using

the PLL sensitivity at any desired frequency. Figures 7.6 and 7.7 are

plots of the signal and noise levels for the two PLL processors for

different acceleration amplitudes. The noise floor in these plots are

those corresponding to the average CNR of 60 dB and the signals are

those for a value of (8/2) of 5.9 degrees (for 243 mm focal length

lenses). From these figures the SNR for various acceleration amplitudes

can be estimated.
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Chapter VIII

SOURCES OF ERROR IN LONGITUDINAL
INTENSITY MEASUREMENTS DUE TO

TCV SYSTEM CHARACTERISTICS

INTRODUCTION

This chapter, the longitudinal counterpart to Chapter V, addresses

random error in the longitudinal intensity measurements for a coherence

less than one based on the vibrometer signal-to-noise ratios developed

in Chapter VII. Examples covering the effects of the CNR, the

longitudinal intensity level itself, and the lens focal length on the

random error in longitudinal intensity measurements are illustrated.

Coherent noise phase bias errors are not discussed in this chapter

since the photodetector switching technique detailed in Chapter V would

also eliminate these errors in the differential Doppler technique.

Coherent noise error was found not to exist in the differential Doppler

mode as has been noted in Chapter VII.

RANDOM ERROR IN TCV LONGITUDINAL
INTENSITY MEASUREMENTS

Longitudinal intensity measurements, like flexural intensity

measurements, can also be tainted by random error due to the presence of

extraneous background noise in each channel. The lower sensitivity

which the differential Doppler technique typically exhibits compared to

the reference beam technique can result in lower signal-to-noise ratios

and, consequently, can make random error a greater problem in

longitudinal intensity than in flexural intensity measurements when the
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TCV instrumentation is used. In the case of a reverberant beam, where

the energy loss is predominantly at the end, the phase angle difference,

0, across an antinode can be approximated such that (refer to

Appendix B)

2 cot kAx
cot Lk (8.1)

This approximation, good for kAx < 0.2w, was used previously in

the expression for an example of random error in flexural intensity

measurements. In the longitudinal case, however, the phase angle

approximation at the antinode becomes (refer to Appendix A)

cot kAx
cot ' Lk (8.2)

The expression for coherence between the two channels and the

general expression for random error as a function of phase angle are the

same as in the flexural case so that the final expression for the

required number of spectral averages, allowing a maximum random error of

10%, is

cot=kFx1 (c o t )] (8.3)

Noise-to-signal ratios required for calculating the coherence can

be obtained from the experimentally determined noise floors at the

various CNR levels and from the vibrometer signal strength in the

differential Doppler mode. The signal strengths are a function of the

power flow (or power input) H, the beam length L, the position on the

beam, the loss factor n, frequency f, wavenumber k, the modulus and

cross-sectional area of the beam Y and S, the Doppler shift conversion,
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PLL sensitivity K, and finally the lens half-angle as noted in

Equations 6.22 and 6.23.

For example, for an aluminum rod 6.35 millimeters in diameter,

0.525 meters long, assuming q - .01 and a resonance at 7.5 kHz and also

using K - 2700 Hz/volt (the value at 7.5 kHz) and a lens half-angle of

5.88 degrees with a laser beam separation of 0.1A with the beams

centered over the antinode, the influence of the CNR (in the

differential Doppler mode) on random error can be illustrated.

Table 8.1 shows the influence of the CNR (assuming it is the same in

both channels) on the number of spectral averages, nd, necessary to

obtain a maximum normalized random error of 10% in the quadrature

spectrum.

Table 8.1

Influence of CNR on Number of Samples Required
for 10% Random Error in Poyer-Flow Measurement

With the Differential Doppler Mode

CNR (dB) 2

70 .993 30
65 .986 60
60 .966 153

54 .851 751
50 .728 1603

Here, the power flow has been assumed to be 1 * 10-6 watts for

illustration purposes. For much higher power flows, the coherence

quickly becomes unity and CNR effects are much less influential.

Assuming the same relationship as in the reference beam mode, variations

in the CNR can be viewed as variations in the backscattered
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intensity,variations in the photodetector quantum efficiency, or

variations in the square of the heterodyne efficiency.

If instead of varying the CNR, it is kept fixed and the power flow

is varied, the influence of power flow on the random error in the

differential Doppler mode can be illustrated. For the same conditions,

if a CNR value of 60 dB is chosen (which has been established

experimentally as a typical value for this mode when targeting surfaces

coated with retro-reflective paint) the results shown in Table 8.2 are

obtained.

Table 8.2

Influence of CNR on Number of Samples Required
for 10% Random Error in Power Flow Measurement

With the Differential Doppler Mode

II (watts) 2
-212- ___.m _

1.0 10-6 .996 153

0.5 10-6 .993 301

0.25 10-6 .986 611
0.1 10-6 .966 1530

(For cases where the square of the noise-to-signal autospectrum ratio is

much less than twice the ratio, as is the case above, the relationship

between power flow and the required number of spectral averages is a

simple inverse relationship).

It should be noted here that these examples are for the case (used

in the experiments) of a "lossless" rod at resonance with power input az

one end; a portion of this power is absorbed at the termination and the

rermainder is reflected back. The magnitude of the reflection

coefficient at the "receiving end" is fixed by the values of loss
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factor, resonance wavenumber, and rod length (as noted in Appendix B).

Consequently, for each value of active power flow listed in the table

(due to propagating waves) there exists a certain corresponding value of

reactive power flow (due to reflected waves) and a fixed value of

coherence (for a given CNR). The coherence and random error for active

power flows with greater or less reactive power (i.e: different values

of reflection coefficients) will vary from the values in the tables.

For example, comparable tables can be established for a semi-infinite

rod by setting JRI equal to zero in the equation for H in Appendix B,

finding the displacement amplitude, using the vibrometer conversions,

and setting cot 0 - cot kAx in the expression for random error.

The influence of the focussing lens power on random error is also

of interest. In this example a power flow of 1.0 * 10-6 watts and a CNR

of 60 dB are assumed with all other conditions the same as in the

previous examples. Table 8.3 illustrates the number of spectral

averages required when various focal length lenses are used and a

maximum random error of 10% is to be maintained.

TABLE 8.3

Influence of Lens Focal Length on the Number of
Samples Required for 10% Random Error in Power

Flow Measurement With the Differential Doppler Mode

Lens Focal
Length (mm) 2

243 .996 153
500 .986 620
750 .967 1485

1500 .879 5991
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Chapter IX

SPECKLE DYNAMICS AND SIGNAL
DETECTION IN THE REFERENCE BEAM
AND DIFFERENTIAL DOPPLER MODES

INTRODUCTION

As noted in Chapter II, laser speckle can play an important role

in vibrometry signal detection. In the reference beam mode, when the

surface is vibrating predominantly in the direction of the illuminating

object beam, there is negligible change in the backscattered speckle

pattern during the vibration cycle. Consequently the reference beam

interferes with a well behaved backscattered object beam and a clean

interferometric signal results. This situation is what accounts for the

success of the reference beam technique in measuring structural

intensity for flexural motion.

However, in the reference beam mode, if significant motion which

is perpendicular to the object beam is present, then the speckle in the

backscattered object beam may undergo translation and possibly speckle

boiling during the vibration cycle. For periodic excitation this

situation can cause the output of the vibrometer to contain spurious

spectral peaks at harmonics of the excitation frequency. This has been

reported recently and is reviewed in this chapter.

The differential Doppler mode on the other hand has somewhat

different characteristics in regard to speckle dynamics. These

characteristics are unreported in the literature since there has been so

little activity to date in differential Doppler laser vibrometry.
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However, they are addressed in this chapter due to the importance of

signal quality in longitudinal intensity measurements.

This chapter has the ultimate objective of addressing whether the

reference beam mode can provide reliable flexural intensity measurements

and whether the differential Doppler mode can provide reliable

longitudinal intensity measurements in a vibration field which is

composed of both surface-normal and in-plane motion. This question has

to be approached from the aspect of speckle dynamics. The chapter

attempts to answer these issues primarily from an experimental

standpoint since a full statistical treatment of the makeup of the

backscattered speckle at the photodetector as a function of the surface

motion, the imaging lenses, the apertures, and the surface roughness are

beyond the scope of the thesis.

The chapter includes discussion on the effects of speckle dynamics

in the reference beam mode, and to a larger degree the effects of

speckle dynamics in the differential Doppler mode, as well as the

response of the phase-locked loop processors to simulated speckle

effects.

SPECKLE DYNAMICS IN THE REFERENCE BEAM MODE

For motions which change the backscattered speckle makeup,

Rothberg, Baker, and Halliwell (1989) report that periodic excitation

can result in spurious peaks which are harmonics of the excitation

frequency. This motion can be either tilt, rotation, or in-plane

motion. The argument for these effects begins on a mathematical basis

(with the influence of the changing speckle population on the net
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amplitude and phase at the photodetector), but the authors revert to an

empirical argument and actual data. According to the authors, spurious

harmonics of the excitation frequency appear in the output spectrum and

additionally some (unspecified) spurious component exists in the "true"

(excitation frequency) signal as well.

An investigation into this effect was conducted by using one unit

of the TCV in the reference beam mode and using as a target a rod which

was excited longitudinally at one end and clamped at the other end. The

reference beam signal showed that appreciable bending was induced in the

rod as well as the longitudinal motion. In this case harmonics of the

excitation frequency (which was 9 kHz) did appear in the reference beam

signal. The ratio of surface-normal to in-plane motion (determined by

the differential Doppler mode) was approximately 1.3 to 1.0. (The value

for the differential Doppler mode was somewhat unsteady but was averaged

for this result). The reference beam signal harmonics were low; the

highest was the second harmonic at 18.0 kHz which was 30 dB below the

true signal. Decreasing the shaker input reduced these spurious

harmonics to a value below the noise floor.

A "worst case" test was run by targeting the side of a small

aluminum disk excited by a shaker. Motion was predominantly transverse

to the illuminating laser beam but the shaker did output some motion in

the direction of the illuminating beam. Use of a low frequency (100 Hz)

and large shaker input provided enough vibration amplitude to cause

appreciable harmonics in the reference beam signal spectrum; the value

at 300 Hz was only 6 dB lower than the signal at the excitation

frequency. At this time the ratio of surface-normal to in-plane motion
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was approximately 0.40. As the shaker input was reduced, the output

harmonics (as well as the severity of the speckle-induced amplitude

modulations of the Doppler signal) were also reduced.

These tests, and other similar tests, indicated that the amplitude

,-,f anv_-s motion in the reference beam mode had to be very

significant before the spurious harmonics became significant. In the

reference beam mode tests, these spurious harmonics were few in number,

and transverse motion never destabilized the signal. A small aperture

can be used to increase the speckle size at the photodetector to

eliminate these harmonics. This was done for the differential Doppler

mode (as is discussed below).

SPECKLE DYNAMICS IN THE DIFFERENTIAL
DOPPLER MODE

More susceptible to signal deterioration by speckle dynamics is

the differential Doppler mode. In this case in-plane motion (with its

associated speckle motion and possible speckle boiling) is what

comprises the desired signal. Initial tests in attempting to use the

differential Doppler mode on a free-fixed rod excited longitudinally

showed that at certain frequencies and at certain points of focus the

demodulated signal was highly unstable and erratic for steady sinusoidal

excitation. This was found to be due to the presence of high out-of-

plane (flexural) motion combined with the in-plane (longitudinal)

motion. Additionally it was found that the instability could be reduced

in many cases by slightly refocussing the lens, by using an aperture in
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front of the receiving optics, or by letting the "fixed" end free to

slide (thus reducing the induced bending in the rod).

The instability appears to be due to combined speckle translation

and speckle "boiling" at the photodetector. Refocussing of the lens

would change the speckle makeup at the detector in some cases so that

the problem was not as severe. Additionally, a smaller aperture would

increase the speckle size at the detector which may decrease the

sensitivity to transverse speckle motion. (Evidence of this is shown

later). Why the instability is erratic under steady state conditions is

not entirely understood but the phase-locked loop processor dynamics

will have a significant influence on the demodulated output when the

input FM signal has phase ramps and phase jumps caused by speckle

transverse motion and speckle "boiling." PLL response may be very

nonlinear in such cases.

As noted in Chapter VI, the flexural motion of the sample was

reduced by revising the original setup design (a fixed-free rod driven

longitudinally at the free end) to a design which would prevent out-of-

plane motion at the rod ends. This design involved a rod which was held

in place by screws at its ends which screwed through thin plastic

diaphragms. The diaphragms were then fixed at the ends of a cylinder so

that the rod ends were flexible in the direction of longitudinal motion

but were very stiff in the out-of-plane direction. A shaker then

excited the rod longitudinally at one end of the cylinder.

This arrangement reduced the high amplitude bending motion (at

least at the sample ends) which was caused by the shaker in the previous

setup. However, the pinned-pinned bending modes in the rod were still
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very capable of being excited as was evident from reference beam tsts

on this setup. Nevertheless the bending motion, even when at the

frequency of the first (and strongest) bending mode, was reduced to the

point where the instability present in the differential Doppler signal

was no longer present. However, there was enough bending to alter the

output spectrum.

For example, the sample was excited longitudinally at 350 Hz which

was its first bending resonance. The differential Doppler signal

contained a very steady value at 350 Hz but also many spurious harmonics

and a noise hump at approximately 10 kHz as shown in Figure 9.1. The

signal was greatly improved however, by use of a small (5 mm) aperture

in front of the collection optics. This is also illustrated in

Figure 9.1. For this situation the noise floor shows its characteristic

curve and the harmonics are gone. Consequently, when the bending motion

is not severe the proper choice of aperture (used to increase the

speckle size at the detector) can provide a much cleaner output.

It should be noted that the center of the noise hump found at

approximately 10 kHz increased in frequency as the amplitude of motion

increased and decreased for decreased motion. Later tests showed that

pure bending causes these noise floor humps in the differential Doppler

method and that their location in the spectrum is a function of the

bending amplitude (and probably also a function of the wavenumber makeup

of the speckled intensity pattern as it impinges on the detector).

However, for bending at a single frequency, negligible signal was

present at that frequency in the differential Doppler spectrum.
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In order to minimize out-of-plane motion, a test was conducted on

a small mass attached to a shaker. An accelerometer was placed at the

front face of the mass and a vibrometer in the differential Doppler mode

was focussed on the side of the mass. Test results showed very

consistent agreement between the accelerometer and vibrometer results.

For extremely high motion the differential Doppler output did contain

very low amplitude harmonics but the true signal was unaffected by their

presence.

The harmonics in the spectrum are caused by severe amplitude

modulation of the FM signal due to speckle translation. This amplitude

modulation can be reduced (and the harmonics eliminated) by

repositioning the photodetector on its mount (which changes the speckle

makeup) or by using an aperture (which changes the speckle size).

Tests using an FM signal generator with the PLL processors also

showed that appreciable amplitude modulation in the FM signal can cause

low level harmonics of the modulation frequency to appear in the

demodulated spectrum.

CONCLUSIONS

Transverse motions in the reference beam mode can cause harmonics

of the vibration frequency to show up in the output spectrum but the

transverse motion must be very significant before the amplitude of the

harmonics is appreciable. Except in rare cases flexural intensity

results should not be adversely affected.



233

The differential Doppler mode is subject to instability in the

presence of combined out-of-plane and in-plane motions of high

amplitude. For slightly less out-of-plane motion the differential

Doppler mode provides high amplitude harmonics but these can be

eliminated by choosing a proper aperture. For moderate out-of-plane

motion the output spectrum is unaltered and a good signal is obtained.
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Chapter X

CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER STUDY

An optical system has been developed which can accurately measure

flexural power flow by the cross-spectral method. This is the first

reliable optical vibrational power flow measurement system which is

inherently amenable to random vibration measurements. The importance of

developing optical techniques for vibrational power flow has been

stressed very recently by numerous authors including F. J. Fahy and

R. G. White (1990). The accuracy of the two-channel laser Doppler

system for intensity measurements has been shown to be increased by a

novel optical technique - photodetector switching.

Investigations into the electro-optical characteristics of the

system show that the signal-to-noise ratio (and ultimately the random

error in the measured intensity) is a function of the carrier-to-noise

ratio as well as the PLL response. A characteristic of the PLLs is that

the noise in their output is less sensitive to the CNR at low

frequencies so that for a given Doppler signal strength the noise floor

is lower at lower frequencies.

In the differential Doppler mode, the optical system provides

longitudinal intensity results which can be influenced appreciably by

the presence of bending. (This problem will occur with accelerometers

if used in the same fashion.) A computer model of the influence of

bending on the measured longitudinal intensity illustrated that the

longitudinal data obtained from the laser system may be correct.
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Standing wave longitudinal data also align well with the computer

predictions but the energetics power flow data is approximately twice

the standing wave data. This difference cannot be fully reconciled,

although the longitudinal loss factor measurement is suspect due to the

interference of nearby bending resonances. Therefore the longitudinal

measurement capability of the system should be subject to verification

in the absence of bending. This should be done with a non-resonant

technique such as at a very low frequency with verification by a force

gage and accelerometer.

The differential Doppler mode is subject to signal instability in

the presence of longitudinal and "high" bending motion. This must be

investigated and a solution obtained if the technique is ever going to

be applicable to general use. Chapter IX demonstrated one solution to

this problem (using an "appropriately sized" aperture), but this

solution needs to be studied and quantified. The previous problems

should not be approached without addressing this signal instability

problem. The reference beam mode does not suffer from signal

instability but in cases of high amplitude transverse motion it does

provide spurious harmonics. However, these are typically at an

insignificant amplitude. These harmonics can arise due to amplitude

modulation of the carrier signal at a frequency equal to the modulation

frequency.
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Recommendations for further study, beyond those previously

mentioned, include:

a Determining the absolute phase accuracy of the system (these

studies have indicated a phase accuracy of at least 0.2

degrees).

* Applying the technique to flat plates.

* Investigating the accuracy of the technique in situations

where the object is illuminated at an appreciable angle so

that flexural and longitudinal cross-talk exists.

* Applying the technique to broadband excitation.

* Investigating an improved processor that would provide

minimum "tuner noise" and allow the CNR to be less at higher

frequencies.

* Expanding the technique to nearfield measurements and

ultimately to measurement of "surface intensity" as

developed by Pavic (1987).

* Applying the techniques for measuring bending and

longitudinal wave power flow to measuring power flow through

junctions of beams or plates where coupling between bending

and longitudinal waves occur.

* Applying the techniques for measuring bending and

longitudinal wave power flow to measuring power flow in

curved structures, such as cylindrical shells, where the

curvature couples bending and in-plane waves.
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Appendix A

DERIVATION OF CROSS-SPECTRAL
EXPRESSIONS FOR POWER FLOW

LONGITUDINAL POWER FLOW

If 0 and A are the displacements at two points along the rod

and A is their separation distance, then the longitudinal strain at

the midpoin: can be approximated as:

f = (A .1 )

Additionally, if the velocities at the two points are v0 and vA, the

velocity at the midpoint can be approximated as:

V 0 + V A

V = 2 (A.2)

The power flow is:

II- <f 0 v> (A.3)

where < > represents time average and f is the force existing at the

midpoint. For a rod with a modulus of Y and a cross-sectional area

of S this can be written as:

II - <YSE * v> (A.4)

or

______ t irvo -vA1 (A.5)

or

YS
H 2 < Ovo - Av° + %vA - va> (A. 6)
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The terms in the bracket represent the zero time-delay cross-

correlation function between the respective quantities so that the

equation can be written as:

YS
II - [R o(0) - R 0(0) + R0v(0) - R v(0)] (A.7)

However, since velocity is the time derivative of displacement and

since Rxx(0) - 0 then only the cross terms remain. (If the "self"

terms are left intact, they become the reactive, non-propagating

intensity). Continuing:

YS
II - [-R ,o(0) + Ro,(0)] (A.8)

But Rxy(O) - f1 Sxy(w)dw, therefore:

YS
1 = - [- J.: St (w) ) + fJ S (w)dw] (A.9)

Also since:

Sv,, ° (w)
S -AV0) iW (A.10)

and since:

S,0, (w)

S0a(w) " i. (A.11)

then:

J1 YS[J SVAVO (()dw j SVOv6(w) dw] (A. 12)
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But S,*A0 G) = SvAvo( w) (where * denotes the complex conjugate) so

that:

IT - - p(-) Svo ( ) ] (A.13)AS f-i,. ° - _ d

In terms of the one sided cross-spectrum:

YS i vd_, (A. 14)

H YS i 2i mG O A 1 d , (A .15)

-YS Imtvicd)i dw (A. 16)
A

_-YS pw ImG12(w)] d (A.17)

(since Gvov&(w) is the same as G1 2 (w)). Since G12 (w) = G12 (f)/2r then

-YS f-" I[G 12 (f)] 2df (A.18)
L, 2 N(2rf)

-YS f-- 14G12 (f)] df = YS f.. I[G21(f) df (A.19)
2irZ Jo F 2A Jo t

This is then corrected for finite difference error by multiplying by

sink

FLEXURAL POWER FLOW

II, -<Fx >t + <MXz> t + <M y >t (A.20)

rFX xTM

where:

x - a- + YF ay(A.21)
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y- O ; x (A. 22)

ay a x
az

M - B(1 - v) axay (A.23)

a [82 a2()
F0 -- B J (A. 24)ax axZ+ay2

Substituting into the last two terms of A.20:

-- K- B fa2 + a2 ) + (B( - L,) a 2 a )t (A.2 5

From Noiseux:

r~(MI +my] 6 X) (A.26)

B' fa2f + a2f] a2f~1 (A.27)

and

IT' Mx = ~x  (A.28)

In the vibration farfield:

a2 2 a 2
ax- + --y - k2  (A.29)

where

k -- (A. 30)

Substituting into Equation A.27:

= xc4 ]] (A.3)

In the farfield:

1Fx - rLM, (A. 32)
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Since:

lix - F x + lim (A.33)

then from Equation A.28:

'Ix = [F x + r'Mx (A.34)

x = 211' Mx  (A.35)

lx = 2 fBm w aZ > (A.36)

FINITE DIFFERENCE APPROXIMATION

a2 a a a V2 VI
8xt - (v) = (A. 37)axat -ax at "ax A (.7

where A is the separation distance between points one and two. And

2 (A.38)

11. 2 IBm c V2 V1 . 616 (A. 39)

rix II2<;l + v2 2 - vM 1 - v1 2>t (A.40)

Zi. [Rv2 (0) + Rv, (0) Rv q(0) - Rv (0) ]  (A.41)

Since R (O) - 0 then RV2(0) - 0 and R,1-(0) 0. This leaves:

r. -A (Rv 2 1  - Rv (0)] A.42)

Since RPy(0) - ft Sr,(o)dw; then:

I A 2(1 S 2 (Wd - fdw Sv1 2 (w) d w] (A.43)
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In order to use velocity cross-spectra it is noted that:

Sv2( ) S,1v2 (W)
S, (w) " i and S, (W) -

Therefore

But Sv2 v1 (c) = therefore:

flZV. Liw[ .1[ () - S (W) Ij~ J (A.45)
[6 : _. 1U]12 VV

If the two-sided spectrum is replaced with the one-sided spectrum:

II -___ 0 (GW ) - C (W d, (A.46)

[fc ( 1 A.4)

2"_____ *0 Im[GV1 V2 (W)]dW. (A.48)
A JoW

For single frequency excitation at w:

GVIV () - -(W W) , V (W)

and

J mG 1V2 (W W-UJ w- V1V2 (W](A.49)

Therefore at frequency u),:

f -2 B__mw1 lG1v 2 ( ' I  (A.50)
A Wl
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11.= - I4mlGv2) (A. 51)

This has to be corrected for finite difference error so that:

=mG~~ -2 k = 2vrB- Iu4C (c" 1 kA (A.52)ri I4Vlv2j) sin Lvs1 in-A
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Appendix B

PHASE ANGLE BETWEEN TWO POINTS SEPARATED
BY Ax ON A RESONANT BEAM (AND ROD) WITH

WAVENUMBER k AND MIDPOINT OVER THE ANTINODE

For a reverberant one-dimensional structure vibrating with

wavenumber k, the cross-spectrum between two transducers spaced Ax apart

with a midpoint of x0 is (from Carroll 1987):

G21 - (27rf) 4 A12[e' a + 21RIcos 2kx0 + [R 2 e - i ] (B.1)

This, if expanded and separated into its real and imaginary parts

provides:

Im[G21 ] - (2xf)'IA1 2sin kAx(l - IR1 2) (B.2)

and

Re[G21 ] - (21rf)41A1 2 (cos kAx + 21Rlcos 2kx0 + IR1 2cos kAx) (B.3)

Therefore, the phase angle, 0 is such that:

.eT 1 .2 cos k &x + 2 1R I  cos 2kx0  + IR 12  cos k x)

This is the general expression for a reflection coefficient of

JRI. For the examples associated with random error it is desired to

situate the transducers where the phase difference, 4, is the smallest

i.e.: where their midpoint is at an antinode. Yet it is desired to

maintain a simple relationship between the phase difference and

parameters such as n, k, and L. This is done by approximating the phase

difference at the antinode as one half the phase difference at the

midpoint between a node and antinode (where the expression is a simple

one). This is performed below.
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At a point half-way between the node and antinode cos 2kx. - 0

(since at the antinodes kx0 - 0, r, 2m ... etc.) so that:

tan = sin kAx (1- 1R1 2) 1 (B.5)
Cos kAX(l + IRi2)

Therefore at the antinode the phase difference is approximated as:

[ (1+ IRI2) (

The approximation is a good one for kAx s .2r and 0.7 S IRI s 1.

Ho'4ever, since the measurement of n is typically simpler than the

measurement of IRI, the equation is cast in terms of q. The process of

r~lating IRI to q depends on whether flexural waves or longitudinal

w-ves are being addressed.

FLEXURAL CASE

For flexural power flow (from Carroll 1987):

I - YI(2wf)k 3 IA12 (l RI 2) (B.7)

s, that

(1 - -R 
)  3 (B.8)
1R1) T(2-Kf)k IAI2

Also for the total energy (which is twice the kinetic energy):

<E> - m'(27rf) 2 IA1 2 (l + 1R1 2)L (B.9)

(This is obtained by integrating the kinetic energy over the

reverberating beam length and multiplying by two).

So that:

<E>
(1 + IRI2) - m,(27f)2lAj2L (B.10)
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Then:

(1 - JRI
2 ) I/YI(2irf)k 3 jA12  II m'(27rf)L

(1 + 1R12 ) - <E>/m'(2,rf) 2 IA12 L - <E> YIk 3  (B. ll)

but

< * 2xf (B. 12)

Therefore:

(1 - IRI 2) m'(2wf)L

(1 + IRI 2) - .9 2rf o YIk 3  (B.13)

and, since for flexural waves:

m'

k4 - (2?rf) 2  - (B.16)

then:

(1 IRI 2 )

(1 + IRI2 ) - Y7kL (B.15)

This relates the loss factor to reflection coefficient for the flexural

waves, where the losses all occur at the end of the beam. Now the phase

difference at the antinode for this case becomes:

YkL
tan -2 o tan kAx (B.16)

(Note: This derivation is composed from Carroll (1987), but is

included here in a more succinct form. It also closely parallels the

longitudinal case, illustrated next, which is not included in Carroll.)

LONGITUDINAL CASE

For longitudinal power flow the power flow expression, analogous

to the flexural case, is:
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JA1 2 (l IR 1 2)
II - SY(2wf)k 2 (B.17)

so that:

211
(1 - IR1 2 ) - SY(27rf)klAl 2  (B.18)

From the energy equation (which is the same as in the flexural case):

<E>

(I + IR1 2 ) - m'(2 f) 2 1A1 2L (B.19)

Therefore:

(1 - IR12) 211/SY(2wf)k A 12

(1 + 1R1 2) - <E>/m'(2wf) 2 1A1 2L (B.20)

or

(I - IR1 2 ) 211 m' (21f)L

(1 + IRI2) - <E> (B.21)

For longitudinal waves

me

k 2 - (2wf)2 - (B.22)

and since

< " 2wf (B.23)

obtained for the longitudinal case is:

(1 - IR1 2 )

(1 + 1R1 2) - 2 nkL (B.24)

Therefore in the longitudinal case the phase angle difference at the

antinode is:

tan 0 = qkL * tan kAx (B.25)

This is twice the phase angle found in the flexural case for transducers

centered over the antinode at a spacing of Ax. The previous phase
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difference expressions at the antinode were used in the examples for

random error where it was assumed that Ax - 0.1 X which satisfies

kAx < .2w for approximation purposes.
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Appendix C

RELATIONSHIP BETWEEN THE CROSS-SPECTRUM
AND THE COMPLEX FORMS OF TWO SINUSOIDAL SIGNALS

To show that Gxy(f) - [X'(t) - Y(t)/2] 6(f - f) where X(t) and Y(t) are

complex forms of the single frequency signals at x and y, and the

asterisk represents the complex conjugate, first define:

x(t) = A cos wt = Re JAeiwt} = Re {X(t)) (C.1)

y(t) = B cos (wt + = Re {BeI(wt .)} - Re {kt)} (C.2)

Therefore:

[X'Y(t)] ABe i# (C.3)

The value Gxy(f) can be obtained by finding Rxy(r), the cross-

correlation function between the signals, and then Fourier transforming

to find the cross-spectrum:

Rxy(r) -l1im T- 1 AB cos(21rfot) cos(21rfo (t + r) + O)dt (C.4)

Using trigonometric identities for the cosine products this can be

integrated to obtain:

Rxy(r) - AB cos(21f o r + 0) (C.5)

Sxyf) - Rxyr) e "i zxfr dr (C.6)
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But

cos(21rfot + = 4 [e ' ei n fOt + e - i' e -iZ~fot] (C.7)

Therefore Equation (C.6) yields:

Sxy(f) = A. f 4,- [ei" ei291(fO - f)? + e-i e i2 ff(fa *).d (C.8)

Sxy(f) = AB [eiO 6(f. - f) + e-' 6(f. + f)] (C.9)

However;

Gxy~f) = 2Sxy(f); f 2: 0} (G.10)

Therefore

Gxy(f) = AB eO 6(f. - f) = AB e iO (f- f) [X(t)Yt)] (f- f.)Gxf T ((. Qi

Rather than use the complex "amplitudes" the division by two can be

removed if X(t) and Y(t) represent complex root mean square values.

Also, the text drops the use of the delta function. In practice, when

single frequency excitation is used, the output from the FFT analyzer

will be the integrated result within the resolution binwidth. This will

yield the total vibrational energy flux occurring at fo, the excitation

frequency. Some FFT analyzers, however, will divide this result by the

bin width in which case the value must be multiplied by this binwidth

for the total energy flux at f0.


