
P, s?)
2, UNLIMITED

AD-A242 616
~ ~ 'RSR

~ .~EMO~NbUI No.45Q1

i-u,

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,

z RSRE MALVERN,

z

0

U)

UNLIMITED

0110616 ~ CONDITIONS OF RELEASE 353

......... RICU

COPYRIGHT (c)
19088
COMPI OL[[ER
HIMIE0 LONO0ON

.............. DRICY

Reports quroted are not neceswrly avaiabi, to o'-obo of [he PolrlrC or to commrrercial
orrtarrrslofls

Royal Signals and Radar Establishment

Memorandum 4515

Title: Using ELLA for High Level Design:

Modelling the Motorola 6800 Microprocessor.

Author: A R Huggett '(Student Engineer ,

Date: 5 September 1991

Summary

This document starts bv providing a brief overview of the ELLA languiage The majority of the
document describes the design and development of an abstract high level ELLA model oT a Motoroli 6800
Microprocessor, including all of the 197 codes which make up the 6800 instruction set

P**.A- i

Copyright
Q c.i

Controller HMSO London
1991

91-1482,3

Disclaimer.

The author gives no guarantee that the model herein described is a fully accurate and error free description
of the Motorola 6800

The views represented within this report are those of the author alone and do not necessarily
represent the views of the Ministry of Defence nor the Defence Research Agency

Notices:

Throughout the text the symbol & is used to indicate a hexadecimal number. However, in the ELLA
language this is replaced by 16r, thus address &e000 becomes ad/16re00 in ELLA

Variables and Types which occur within the 6800 model are indicated by bold type.

Words in the glossary are indicated in italics.

References to the Bibliography are indicated thus

t2

Contenis:

The ELLA Language 4

The Motorola 6800 Model 5

Specification....................... 5

Variable Type Selection....................

Initial Design 6

Development 7

Testing................................... 8

Conclusions 9

Appendix A.- The ELLA Description 10

Variable Type Definitions 10

Bit Tester............. ... 10

Arithmetic and Logical Unit. 11

Decision Logic .
. 17

Instruction Decoder........... 19

Counting and Type-Swapping Functions . 23

Main Microprocessor Control Logic . 24

External Memory and Test Harness . 35

Appendix B: Programs . .36

Initialise 36

Monitor .
7

Testprogl 38

Testprog2 39

Testprog3 401

Tesiprog4l 41

Testprogs 43

Tesiprog6 45

Testprog7 47

Appendix C- The Motorola 6800 Instruction 3et 48

Accumulator and Memorv Instructions 48

Index Register and Stack Manipulation Instructions 48

Jump and Branch instructions .49

Dunmy Mnemonics Added to Simplify ELLA Program 49

Condition Code Register Manipulation Operations .49

Glossary .
50

Bibliography .
52

The ELLA Language

ELLA is a Textual Language for describing digital hardware designs. The language is designed so
that ELLA circuit descriptions are always realisable in hardware.

The components of a circuit are described in ELLA by functions. A function definition declares the
number and types of inputs and outputs. The function body is composed of a number of constructs, which
describe how the inputs map to the outputs

Before any functions may be written in ELLA it is necessary to define the variable types which they
will use Tis is achieved by means of the TYPE statement, e.g.

TYPE count = NEW co/(0..12)
TYPE addrmode = NEW (immed: direct I index:I extnd i implied: relative)

The first statement defines TYPE count to be an integer in the range 0. 12. The co/ tag is necessary to
distinguish that type from any other integer type The second statement defines TYPE addrmode as a six
valued enumerated type, with posnble values of immed, direct, index, extnd, implied and relative

ELLA supports a wide variety of high level constructs such as ARITH which performs integer
arithmetic, DELAY which delays information between its input and output and provides a means of
feedback from one clock cycle to the next

The language is strongly typed in order to nmmise the chances of the user introducing a design
fault. It has a hierarchial functional structure similar to PASCAL.

The main difference between ELLA and conventional programming languages such as C, PASCAL
etc is that it is a parallel rather than a sequential language This is necessary to describe logic circuits
However since it is a parallel language, to try and express

LET a = da/5
LETa = da/4

is illegal since the compiler tries to unpement both of these statements in parallel A variable defined by
LET is therefore static once assigned Aithin a tunestep its value cannot be changed within that tiniestep
although it can be used as an input to other functions The value of a static variable can be changed on a
different trestep however

For some applications, however, it is more convement to program sequentially, particularly for
complex high level descriptions The SEQ construct allows sequential programming, with two types of
dynamic variables, which must be defined before they can be used, but once defined may be assigned to
many times within the sequence The first of these is VAR VARs are mitialised to a predefined value every
timestep. The other type is PVAR (or STATE VAR) These are initialised at tume 0 but retain the latest
assigned value from one tmestep to the next until they are reassigned They are very useful for making
registers. Sequential constructs can be directly transformed into parallel ones using a set of assembler tools

Care must be taken to ensure that the same instantiation of the function is being used if the old
value of the PVAR is required hi practice this means that functions which contain constructs such as VAR,
PVAR, or RAM and DELAY functions become wrapped up inside parallel fPnctions which allow explicit
instantiation by using the MAKE and JOIN constructs

For a complete description of the ELLA Language refer to the ELLA Manual'

4

The Motorola 6800 Model: Specification

My model of the Motorola 6800 was developed frcm a very limited amount of information I had
the instruction set, the assembler mnemonics, number of bytes, number of clock cycles required and effect
of the function2 I did not know anything of the order in which internal subfunctions are carned out within
the microprocessor My knowledge of and information on the condition codes register was also less than ideal

Since I had no information about the internal operations of the 6800 1 decided that my model should
fulfil three criteria

i) It should perform the correct instruction for the appropriate instruction code.

ii) It should take the correct number of clock cycles to complete each instruction.

iii) All 197 valid op-codes should be implemented.

In addition I wished the model to have what ! hoped was a realistic internal architecture

The Motorola 6800 Model: Variable Type Selection

Nine different variable types are used within the ELLA description (see Appendix A)
The reason for this is as follows

The Motorola 6800 is an eight-bit microprocessor Therefore all data conng into and out of the
microprocessor is eight bits wide and TYPE data provides this The choice of TYPE data to be positic in
the range 0.255 rather than signed -128 to 127 was made for two reasons.
i) The mathematics of instructions such as rola become easier to implement
i) Logic synthesis is often easier if there are no negative numbers

Since the address space of the 6800 is 0 65535 (&ffff) it was clear that a sixteen bit type,
TYPE address was needed This time it was obvious that the numbers should be positive

A four bit type, TYPE halibyte proved useful within the instruction decoding functions, because the
more significant four bits of an op-code always refers to the addressing mode and the less significant to the
unstruction

TYPE flag is a two state boolean which is useful in CASE clauses

TYPE bltint is the integer equivalent of TYPE flag, ia is used in some ARITH statements as the
carry bit

TYPE addrmode and TYPE mnemonic are enumerated types which represent the addressing mode
and mnemomc of an op-code in a user-friendly way

TYPE count is used in the microprocessor's internal structure to determine how far through thL
instruction it is Since the longest instruction takes 12 cycles the maxmum value of TYPE count is 12

TYPE result is the 9-bit answer of the main ARITH functions within FN ALU It is necessary
because the 9th bit is important for setting the c4. register

5

The Motorola 6800 Model: Initial Design

The Motorola 6800 is a simple 8-bit Von-Neumann microprocessor which has two 8-bit accumulator,
a and b, an mdex register x, a stack pointer sp and a conditon codes register cc. It also has a program
counter pc. In addition I found it useful to create an address buffer addrbuf which I now know is not
present on the real chip.

I originally had to decide whether it would be better to build a model which interpreted 6800
assembler code or hexadecimal op-codes. I decided that using the memory to store mnemonics as a separate
type from data was too far away from reality, and too difficult to implement. Therefore I opted for a memory
interface which just used 8-bit data. However, in order to make the design easier to program and to
understand I decided that instructions should be stored within the microprocessor as an assembler mnemonic
plus an addressing mode. Thus FN MNEMONIC and FN ADMODE are used to extract this information
when the incoming data word is an instruction (see Appendix A).

Studying the data I found that with one exception (which I erroneously took to be a printing error),
the addressing mode affected the number of cycles required to perform an instruction as follows.

Impl .d +0
Immediate + 1
Dire~t +2
Relative/Extended + 3
Indexed +4

I deduced that the microprocessor must have some way of knowing how far through an instruction
It has proceeded since all instructions take between 2 and 12 tinesteps. I therefore created the model with
an internal counter (intercount) wich operates as follows

If Intercount is zero then the incoming byte on the databus is treated as an instruction, and the
functions ADMODE and MNEMONIC are used to change the instruction byte into an addressing mode
and a mnemonic From these the function HOWLONG calculates how many clock cyces the mnemonic
should take, plus an offset for the addressing mode Intercount is then set to the value returned from FN
HOWLONG In order to facilitate future logic synthesis I have avoided the use of n-.gattve numbers Thus
FN COMPARECOUNT always returns a positive value or zero if the second input is greater than or equal
to the first F'] COMPARECOUNT is then called to see how far into the addressing mode cycle the
microprocessor has proceeded, by comparing intercount with the number of cycles required to perform the
instruction if there were no addressing steps, and the appropriate addressing step is carried out If the value
returned from FN COMPARECOUNT is zero then the comparison is repeated with the inputs reversed so
as to provide a result wLch might be positive or zero, and the appropriate instruction step carried out

In order to test the ncroprocessor it is necessary to connect it to a memory, so I created FN
MAKERA.M and FN HARNESS which provide this plus a reset line

The first instructions to be implemented were adda, Idaa, suba, beq, Jimp and staa (see Appendix
C) These were tested by means of two test programs, TESTPROG1 and TESTPROG2 (see appendix B)

The Motorola 6800 Model: Development

Having got the memory and the first six instructions working to my satisfaction I began increasing
the instruction set After some time it became apparent that the length of the main program loop was getting
too big to be easily understood, and furthermore, was beginning to get unrealistic with 16 bit adders creeping
in that do not exist in the real 6800 I therefore decided to change the way in which arithmezsc and logical
functions were being implemented. I created FN ALU (Arithmetic and Logical Unit) which had basic
functions defined. These were FN ADDBYTE, FN ORBYTE, FN NOTBYTE, FN ANDBYTE and FN
SRBYTE. (ADDBYTE performs binary add, SRBYTE binary shift right with wraparound, ORBYTE binary
OR etc.) There were also several functions for such things as truncating 9-bit results (FN CHOPDATA) and
condition codes register handling. Later I added a sixth main instruction, FN DAABYTE which performs
a decimal adjust on accumulator a.

In order to implement 16-bit operations such as Inx (see Appendix C) I found it necessary to pass
infcrmation as to which part of an instruction was to be executed by the ALU I achieved this without
increasing the number of inputs by utilising the two most significant bits of the condition codes register,,
which the data sheet defines as both being true at all times, and therefore redundant

The text was tidied by using functions such as FN BRANCH to wrap up functions of similar type
The functions which take up a lot of space are those such as Jsr and swl (see Appendix C) which take many
timesteps and are fairly unique. A lot of expansion to FN ALU was also required

Finally I implemented the interrupt request, non-maskable interrupt and halt lines into the
microprocessor These are separate level =ensttive lines which are inverted, i.e a logic false causes an
interrupt to occur or the microprocessor zo cease all operation accordingly. The handling of these interrupts
is virtually identical to the s' r..truction. I therefore decided that by far the easiest way to implement the
interrupt was to have two dummy mnemonics, lrq and nmi.

I also memory mapped three inputs into the computer and three outputs from it Locations &f000
to &f002 if read from by the microprocessor return the three data inputs to FN HARNESS Similarly
locati 3ns &eOOO to &e002 if written to change the output of FN HARNESS This arrangement can be
thought of as being equivalent to a set of three input registers which can be loaded by using a keypad or
other means, and six hexadecimal output digits.

With the microprocessor now theoretically fully fncttcnal I wrote an initialisation program which
clears all the registers to definite values, and a monitor program which is called by a non_maskable interrupt

7

The Motorola 6800 Model: Testing

The development of the model was a repetitive cycLe of adding more instructions, removing
compilation errors and then testing by means of test progrems (Appendix B). These were called into the
simulator as ELLA instruction (*.ei) files which imtialsed the ram to the values required The majority of
programs perform the same function: they calculate the first ten numbers in the Fibonacci series which are
calculated by adding the previous two terms in the series to get the current one. Assembler mnemonics are
provided as comments in the programs to assist the reader.

Due to the large number of instructions (197 valid op-codes, 2 other interrupt functions, a reset
function and a halt line), it was not possible to test every instruction in the time available. hc vever I believe
that the instructions contained within the test programs represent a good cross section The complex
instructions such as Jmp, swi, lrq, nml, rta, rts, jsr and bsr have all been tested, however some simple
mathematical functions such as addb arr assumed because adda works and addb is a direct copy (see
Apnendix A)

The Motnrola 6800 Model: Conclusions

My model of a Motorola 6800 microprocessor ful the 3 specification requirements set out above
However there may be some errors in the condition codes register; these could definitely be found and fixed
with some more testing time.

The internal architecture is quite unlike the real 6800 The Motorola data sheet
3

became available
very late in the development stage when I was implementing interrupts. With a few days work, however, I
believe that the prograza could be modified to give it a much better resemblance to the 6800 internally

Given the same project again I would implement the timing of addressing mode operations
differently, and would try and mimic the two phase clock required by the 6800 (my current model has only
a single phase). There would be no addrbuf register and all internal registers would be 8-bits wide With the
use of the Motorola data sheet I could ensure that every register contained the right information on every
cycle (the current model is only correct at the end of each instruction).

The development of my model was largely based upon a very limited amount of information This
lack of information lead to a number of differences between it and the real 6800. However I believe that
this model demonstrates that a fully functional ELLA description can be obtained with limited information
and minimal difficulty which, when viewed from outside the microprcessor/memory system behaves
identically to the real thing

Appendix &- The ELLA Description

The ELLA description below is arranged mn a compilable order i e declare before use Thus the
main microprocessor function FN UP6800 is towards the end of the listing

#Variable Ty'pe Definitions#
TYPE data = NEW dai(16r00 16rffO,

address = NEW ad/(16r000..l6rffff),
result = NEW rc/(16r000..16rlff),
bitint = NEW hi/CO 1),
flag = NEW (h 11),
count = NEW co/(O..12),
addrmode = NEW (immned: direct 1 index:1 extnd: implied:I relative),
halfbyte, = NEW hb/(16r0 16rf),
mncr~onic = NEW

(adca adda nda 1bta 1cira:cmpa coma:deca 1 oraca:oraa:psha!pshb pulb pula 1rola
: rora Iasla: aara 1 ara: nega! ldaa! suba taa! abc: tta 1cpx 1dex des inx:n: Idx: ds 1
atx a tal 1 xa tsx 1bra: bcc: bcs : beq 1bge :bgt bhi : ble I h~s: bit:I bess: bne : bvc 1bvs : bpl : bsr
jmp 1jsr nop: addb lsdcblsndb: bitb crb cmpb comsb dcb eorbldab 1incbnegb orab
rolb:rorb sslb asrb: Isrb: bcb Isubb tstb stab ba tab:sbs!cbs dsahsba:clr:dec inc
1 com: neg: rol: ror asl as sr: tst: rsi rts: si: wi Ic c: civsec
: sei: sev: tap tpa I irq loni)

#Bit Tester#

EN TRUEBIT = (data input control) -> flag
ARITH IF (input LAND control) = control

,HEN 1 #h
ELSE2#1

F1

t0

#Arithmetic and Logcall Unit#

FN ALUI - (mnemonic: inst, data: usputi input2 ceeg) - > [2]data:

BEGIN SEQ

FN ADDBYTE = (data ipli p2, bitintip3) - > result- ARITH (ipi + ip2 + ip3),

FN ANDBYT'! = (data-ipli p2) -> result- ARITH ipi LAND ip2,

FN ORBYTE =(data ipli p2) -> result ARITH ipi IOR ip2,

FN NOTBYTE -(dataipl), > result ARITH (INOT ipi) iAND
16rltff;

FN CHOPDATA - (result ipi) - > data -ARITH ipl LAND 16rtf;

FN SRBYTE - (result ipi) - > result ARITH (ipi SR 1)
+ -2 56

(ipl lAND 1);
FN DAABYTE - (data ipl ccreg) - > result.

ARITH ipi +. IF ((ipi lAND 16rf) >9)
OR ((ccreg lAND 16r20) =16r2O)
THEN IF (ipl LAND IWO1) - 16r90 THEN 16r66 ELSE 6 Fl
ELSE IF (ipt LAND 16M1) > 16r90 THEN 16r60 ELSE 0 Fl

Fl,

FN HALFCARRY = (data ipI 'p
2

ccreg, bitint jp3) - > data
ARITH (ccreg lAN"D 16rdf)+
IF ((ipt LAND ttr0l) - (ip2 lAND tIWO + p3) > tbrOf THEN 16r2U ELSE 0 Fl,

FN ACARRY = (reSUlt ipt, data CLreg) > dt
ARITH (Lcreg lAND t6rfe) - IF ipt > 25S THEN I ELSE 0 Fl,

FN SCARRY = (result ipt, data ccreg) - > data
ARITH (ccreg LAND ttrrfe) ,- IF ipt > 255 THEN U ELSE I Ft,

FN OCARRY = (result .pl, data CrCg > data
ARITH ccreg lOR IF ipt > 255 THEN 16r0I ELSE 0 Fl,

FN OVERFLOW1 -(data ipt tp2 output ecreg) -> data
ARITH (ccreg LAND 16rfd) ,IF ((ipl VlND 16r8l) -(sp2 LAND 16r80))

AND ((ipl LAND 16MR))!= (outpitt iAND IWO8))
THEN l6r02
ELSE 0

171,

FN OVERFLOW2 = (data: ipi ip2
output ccreg) - > data-

ARITH (ccreg IAND 16rfd) + IF'~ ((ipi LAND 16r80) = (((INOT ip2) + 1) LAND 16680))
AND ((ipi LAND 16r80) /= (output LAND 16680))
THEN 16r02
ELSE 0

Fl,

FN OVERPLOW3 - (data cceg) - > data: APJTH (ccreg LAND 16rfd),

FN OVERFLOW4 = (result:ipl,data ccreg) -> data-
AITH (cceg lAND l6rfd) +

IF (((Qpl LAND 16rI00) SR 1) LAND (ipi LAND 16680))
(((ipi LAND l6r100) SR 1) IOR (ipl 1AND 16680)) THEN 0 ELSE 2 Fl;

FN OVERFLOWS = (data'ipi ccreg) - > data
ARITH (ccreg LAND 16rfd) + IF ipl = 16r80 THEN 2 ELSE 0 F],

FN ZERO = (data- ipi ccreg -> data
ARITH (ccrcg LAND 16dfb) + IF ipi = 0 THEN 4 ELSE 0 Fl,

FN NEGO = (data ipt ccreg) -*> data
ARITH (ccrcg lAND 16rt7) + IF ipt > 127 THEN 8 ELSE 0 Fl;

FN CCCOUNT - (data ecreg) -> data
ARITH (ccrcg + l6r40) LkND l6rff,

FN CCRESET -(data ccreg) -*> data
ARITH ccreg IOR l6rcC,

VAR answer = re/C,
output - da'10,
newcc = ccreg,

12

CASE inst
OF adda addb: aba (answer- - ADDBYTE(inputl,input2, bNO);

output: = CHOPDATA answer),
adca I adeb (answer = ADDBYTE(inpull, input2, CASE TRUEBIT(ccregdl)

OF h bi
ELSE bilO

ESAC),output - CHOPOATA answer),
anda Iandb: (answer :-ANBYTE (inputi, snpuL2);output: - CHOPDATA answer),
bita Ibitb: (answer .- ANDEYTE (usputi, input2);output: = inputl),
elm ebc~b 1 dr (answer =re/O;output . da/0),
empa: cmpb: cpx 1 cba wer = ADDBYTE (inputl, CHOPDATA NOTBYTE input2, bill);

output: - CHOPDATA answer),
coma 1comsb 1corn: (answer =NOTBYTE inputl, output. - CHOPDATA answer),
daa: (answer := DAABYTE (isputl,ccreg), output: - CHOPDATA answer),
nega 1negb 1 neg- (answer --ADDBYTE (CHOPDATA NOTBYTE inputl,daC,bil);

output: - CHOPDATA answer),
deca: decbl dec: (answer.- ADDEYTE (inputl, da1255, biO);output, -CHOPDATA answer),
cora 1 eorb (answer : - ANDBYTE (CHOPDATA ORBYTE (inputilinput2),

CHOPDATA NOTBYTE CHOPDATA ANDBYTE (inputl,iput2)),
output- = CHOPDATA answer),

inca 1incb: ic (answ-r = ADDBYTE (inputl, da/l, bibO);output :CHOPDATA answer).
ldaa 1staa l dab istab l dx i six: Ids sts: tab 1 tba.

(answer -ADDBYTE(da/O,input2,bbO);output = input2),
oraa 1 orab (answer -ORBYTE (inputi, input2),output -CHOPDATA answer),
rola: roib 1rol (answer =ADDBYTE (inputS, inputlCASE TRUEBIT(ccreg,dall)

OF h.bi/l
ELSE bi/)

ESAC),output - CHOPDATA answer),
cora:rorb'ror (answer =SRBYTE ADDBYTE (input 1, CASE TRUEBIT(ccreg,da/1)

OF h daZ2S
ELSE dalO

ESAC,
CASE TRLUEBIT(ccrcg,da/1),

OFbh bo
ELSE Mi/

ESAC),output = CHOPDATA answer),
asla: aslb! asi (answer =ADDBYTE (inputl,inputl, bill),output = CHOPDATA answer),
asra; asrb: asr (answer SRBYTE ADDBYTE (inputl, CASE TRUEBIT(ccreg,da.11)

OF hs da/255
ELLE da/O

ESAC,
CASE TRUEBIT(ccreg,da/11)

OF h b~l
ELSE bilO

ESAC),output = CHOPDATA aniswer),,
Lsras Isrb: tsr (answer = SRBYTE ADDBYTE (ioputl, da/0, bi/0),

output -CHOPDATA answer),
suba~subb! sba (answer =ADDBYTE (suputl, CHOPOATA NOTBYTE input2, btl),

output = CHOPDATA answer),

13

Vr
sbca 1sbcb. (answer:= ADDBYTE (inputi, CHOPDATA NOTBYTE mput2,

CASE TRUEBIT(ccreg,da/l)
OF h-bi/O
ELSE bVI

ESAC);output: = CHOPDATA answer),
tsta tstb 1 tt (answer =ADDBYTE (inputi, da/O, bM),

output-= CHOPDATA answer),
dex: des (answer =CASE TRUEBIT (ccregdafl6r4O)

OF h: ADDBYTE (inputi, daW25, bM),
1: CASE input2

OF da/l6rff ADDBYTE(inputl,da255,b/O)
ELSE ADDBYTE (usputi, da/0, btbO)

ESAC
ESAC; output -= CHOPDATA answer),

inxhins (answer --CASE TRUEBIT (ccreg,dabl6rcO)
OF It. ADDEYTE (inputi, da/i, bi/D),

I CASE input2
OF da/16r00 ADDBYTE(unput,dal,ib)

ELSE ADDBYTE(inputl,daObi/Q)
ESAC

ESAC, output =CHOPDATA answer),
ESAC,

newcc - CASE nut
OF adds: addb: sba HALECARRY (inputl,input2, newcc, bib0),

adca 'adcb. HALFCARRY (inputl,input2, newcc, CASE TRUEBIT(ccreg,da'1)
OF It bi'l
ELSE bi/O

ESAC)
ELSE newcc

ESAC,

newcc = CASE inst
OF idda: addb ba 'adca 'adcb Icra'cirb comd:comnb:negaI

negb rold: rolb rot a rorb: asli!aslb:asra: asrb Isra: Isrb
t d: tstb crcom:nesg 1 o]:ror:asl asr; Isr tst

ACARRY (answer,sewcc),
daa DCARRY (answer,newcc),
cuspa; cspb:cbs: subb: sbca sbcb sub : sba SCARRY (anssvrr,ncwcc)

ELSE newcc
ESAC,

newcc: CASE Inst
OF adda 1adca, adcb 1addb Iaba 1daa*OVERFLOW1 (input,nput2,output,newec).

inca Inmcb Imc OVERFLOWI (inputl,da/l,outputnewcc),
suba 1subb 1 sbca; sbcb 1cmpai1 cmpb 1cba I sba-OVERFLOW2 (inputl,input2,

CHOPDATA answernewec),

deca 1decb 1dec OVERFLOW 2 (mpuil,dal,output,lCwcc),
anda 1andb: bita Ibitb: cira 1ciI bcoma c4mb I ora eorb I alIldab 1tab

tba 1oraas orab Istaas stab Itsta 1tstb Idr: com: tst
OVERLOW3s=wcc),

rola Irolb 1rora 1rorb Iasla I aslb t asra I asrb: Isra: Isrb.OVERFLOW4 (answer,newc),

nega 1 negb: roll wetr ad llasrlIlsr Ineg: OVERFLOWS (outputncwcc),
cpx CASE TRUE.BIT(cceg~da/16r40)

OF I OVERFLOW2 (inpltl,inputZCI-OPDATA answernewcc)
ELSE newcc

ESAC
ELSE newcc

ESAC;

ncwcc =CASE inst
OF cpx Idesxllx dx Ilds 1stx lsts

CASE TRUEBIT (ccreg,dall6O)
OF h. ZERO (output, flCwcc),

I- CASE TRUEBIT (ccrcg,dsaMrO4)
Of h. ZERO (outputncwcc)
ELSE newcc

ESAC
ESAC,

desis newc
El-SE ZERO (output,newcc)

ESAC,

isewcc . -CASE inst
OF dex des inm 1nx newer,,

cpx 1ldx: Ids 1stx! its CASE TRUEBIT (ccreg,dailor4O)
OF h NEG (output,newcc)
ELSE newc

ESAC
ELSE NEG (outputnewec)

ESAC,

newc-c = CASE inst
OF cdc CHOPDATA ANDBYTE (ccrcg, daIl6rfe),

ch CHOPDATrA ANDBYTE (ccreg, da'l16ref),

civ CHOPDATA ANDBYTE (ccreg, da/16rfd),

lec- CHOPDATA ORBYTE (ccrcg, dail6rOl),
sci CHOPDATA ORB'-"E (ccreg, dall6e10),
sev. CHOPDATA ORB i .'E (ccrcg, dallbrO2),

tap CHOPDATA ORBYzTE (tnputl, da'l6rcO),
ELSE newcc

ESAC,

15

newcc =CASE inst
OF cpx I dex:I des Imx:I ins 1 Idx; Ids: stx! sts

CASE TRUEBIT (ccregdall6rcO)
OF h. CCCOUNT(newcc),

1: CCRESET(newcc)
ESAC

ELSE newcc
ESAC;

OUTPUT (CASE inst
OF cmpacm=pb 1cpx inputi,

tpa newcc
ELSE output

ESAC, newcc)
END

16

#Decdsion Logic#

FN BRANCH = (mnemonic-inst,address.addrbuf pcdata-cc) - > address:
CASE inst

OF bra- addrbuf,
bcc CASE TRUEBIT(cc,da/16rOl)

OF I- addrbuf
ELSE PC

ESAC,
bcs: CASE TRUEBIT(ccrda/16rOI)

OF h addrbuf
ELSE pc

ESAC,
beq CASE TRUEBIT(cc,dall6rO4)

OF hi addrbuf
ELSE pc

ESAC,
bge CASE (TRUEBIT(ccda/16r08),TRUEBIT(ccrda/6rO2))

OF (hh): (L,1). addrbuf
ELSE pc

ESAC,
bgt CASE (TRUEBIT(cc,da/16rO4),TRUEBIT(c,da/6rO8),TRUEIT(cc,da16rO2))

OF (i,h,h): (1,1,) addrbuf
ELSE pc

ESAC,
bhi CASE (TRtJEBIT(cc,da/16r04).TRUEBiT(cc,da/16r01))

OF (]I) addrbuf
ELSE pc

ESAC,
bic CASE (TRUEBIT(ccd&'16r04),TRUEBIT(cc,da'1&r08),TRUEBiT(cc,da'16r02))

OF (I,h,h) (III,) pc
ELSE addrbuf

ESAC,
bis CASE (TRUEBIT(cc,da/16rO4),TRUEBIT~cc,da16rOl))

OF (1,I) pc
ELSE addrbuf

ESAC,
bit CASE (TRUEBIT(rc,da'1rQSJ,TRUEBIT(cc,da'116r02)),

OF (hil)! (i,h) addrbuf
ELSE pc

ESAC,
bini CASE TRUEBIT(c,da16rO8)

OF ii addrbuf
ELSE p-

ESAC,
bnc CASE TRtJEBIT(cc,dd/1hrO4)

OF I addrbuf
ELSE pc

ESAC,

17

bvc- CASE TRUEB!T(ccda/16T02)
OF 1: addrbuf
ELSE pc

ESAC,
bvs- CASE TRUEBIT(cc,da/16r02),

OF h. addrbuf
ELSE pc

ESAC,
bpl: CASE TRUEBIT(cc,da/16r08)

OF 1: addrbuf
ELSE pc

ESAC
ESAC.

18

#Instructioii Decoder#

1'N ADMODE = (halibye input) - > addrmode
CASE input

OF hb/16r0 1 hb/16r1 hb/l6r3i hb/l6r4 hb/16r5 implied,
hb/l6r2, relative,
bb/16r6! hb/l6rajhb/l6re index,
WIWIr7 hb/16rb 1 hb/16rf. extod,
bb/16r8 ! bb!16rc: imied,
hb/16r9l bb/l6rd direct

ESAC

FN MNEMONIC - (haiyte: input, halibyte- mode).-> (mnemonic)
CASE input

OF bb/l6r0: CASE mode
OF hb/16rl sba,

hb/l6r2. bra,
Wb16r3 tin,
hb/l6r4 nega.
bb/16r5 negb.
hb/(16r6 16r7) neg,
hbl(16r8. l6rb) suba,
b/6rc 16rf) sulbb

ESAC,

hb/16r1- CASE mode
OF hb/16rl eba,

bb/(l6r8 16rb). empa,
hb/(16rc 16rf) cmph

ESAC,

hb/16r2 CASE mode
OF hb!16r0 nop,

hb,116r2 blu,
bb/16r3 P5

14,
hbl(16r8 16rb) sbu,i
b'(16rc 16rf) sbeb

ESAC.

hb/t6r3 CASE mode
OF hb/l6r2 bis.

hb,'16r3 pisib,
hb/l6r4 coma,
bb/16r5 comb,
hb/(16r6 160) coin

ESAC,

hb/16r4. CASE mode
OF hb/16r2 bee,

hb/116r3 des,
hb/16r4 Isra,
hb/16r5 Isrb,
hb/(16r0..16r7) Isr,
hb/(16r8..16rb) anda,
bb/(l6rc..16rf) aetdb

ESAC,

hb/16r5 CASE mode
OF hb/16r2- bcs,

b/,16r3: tie,
hb/(16r8..16rb). bita,
bb/(16rc..l6rf) bitb

ESAC,

hb/16r6 CASE mode
OF b/l6e tap,

hb/16rl tab,
hbfl6t2- bee,
hb/16r3 psisa,
hb:'16r4 fora,
bb'16r5 werb,
hb/(16r6 16r7) ror,
hb')16r8 16rb) Idaa,
hb/(16rc 16ff) Idab

ESAC,

hb,/16r7 CASE mode
Or bb'116r0 tpa,

bb,'16rl tbd,
hb,'16r2 bcq,
hb'6r3 pshb,
hb/l6r4 asra,
hb/16rS asrb,
hb/(16r6 16r7) as(,
hb.'(16r9 16rb) staa,
hbb'(6rd 16rf) stab

ESAC,

hb/16r8 CASE mode
OF bb,'16rO U L"

bb/16r2 bvc,
hbul6r4 asia,
hb,'16r5 asib,
bb/(16r6 1607) asl,
hb/l6r8 16rb) cora,
bbl(1brc l6ef) eorb

ESAC,,

20

hb/16r9. CASE mode

OF hb/16rO: dex,
hb/16rl dlaa,
WWI6r2 bvs,
hb/16r3: its,
hb/16r4. rola,
MAW6r: roib,
hb/(16r6 .16r7): roL,
bb/(16r8 .l6rb): adca,
bb/(16rc..16ro0 adcb

ESAC,

hb/16ra CASE mode

OF hb/16r0 CIV,
hb/16r2: bpi,
bb/16r4: deca,
itb/16r5- dccb,
hb/(16r6. 16r7) dec,
hb/(16r8 .16rb) oraa,
bb/(I6rc I6rf) crab

ESAC,

bb/16rb CASE mode
OF hb/l6r0 scv,

iib/16ri aba,
bb/16r2 beti,
b!16r3- i,

hb/(16r8..16rb) adda,
hb/(I6rc 16ro addb

ESAC,

bb.'16re CASE mnode
OF bb'i6r) ck,

hb'16r2 br,;c
b'16r4 'n~a,
bui6rS Ifncb,
hb'(i6r6 16r-t) inc,
hb'(16r8 i6rb) cpx

ESAC,

hb'l16rd CASE mode
OF hb/i6x() sec,

hb/l6r2 bit,
hb/16r4 Iata,
bb/16r5 tstb,
hb/(16r6 160?) tst,
hb/16r8 bsr,
hb/(16ra .16rb) jsr

ESAC,

hb/16re CASE mode
OF bb/16r0- cli,

hb/16r2- bg,
bb/16T3: wal,
hb/(16r6..16r7). jmp,
hb/(16r8..16rb). Ids,
hb/(l6rc. 16rf) Idx

ESAC,

bb/16rf. CASE mode
OF hb/16r0. sci,

hb/'16r2- ble,
hb/16r3 swi,
hb/16r4. cdes,
hb/16r5 clrb,
bb/(16r6..16r7)- cli,
b(16r9 .16rb)- sts,
hb/(l6Td 16rf) stx
ESAC

ESAC

22

#Counting and Type-Swappng Functions#
P1N COUNTSET =(count: a b) - > count:ARITH a+ b

FN HOWLONG = (mnnemonic function, addrmode mode) - > count.

COUNTSET (CASE funtction
OF imp co/O,

Iaba:cbadaa:nopciciclilcivec:si~sevitapitpa co/2,

clloie~cln~o~o~s~sls~s co/3,
psa sb1pl:pl e e a s1W1tx i co/4,
bsr:rtq co/5,
jsr: CASE mode OF extod co/6 ELSE eo/4 ESAC,
wai co/9,
eli- co/10,
swi: nmu: tq. co/12
ELSE co/i

ESAC,
CASE mode

OF immed coil,
direct co/2,
index co/4,
extd: relative co/i
ELSE co!Q

ESAC)

FN COUNTDOWN = (count iput) - count ARITH input-I

P1N COMPARECOUNT = (count inputi input).-> count

ARITH IF (inputl-Lnput2) >0 THEN input - input2 ELSE 0OFl

FN INCADDR =(address mp1 ut) -*> address ARITH IF input =65535 THEN 0 ELSE input ,-I Ft

FN HINYBBLE (data input) -> h4llb>ie ARITH (input LAND IWO1) SR 4

FN LONYBBLE =(data input) -> halfbyte ARITH (input LAND IWI)

P1N MAXEADDRESS - (data inputi nput2), - >- address ARITH 256input1 + input2

FIN MAXEDATA -(bailbyte inputl input2) - > data ARITH l6*inputl + input2

FN HIBYTE =(address, input) -> data ARITH (inpui LAND 16eff00) SR 8

FN LOBYTE =(address input) -> ddta ARITH (input lAND i~rOMf)

23

fMain Microprocessor Control Logic#
FN UP6800 =(data inputsfiag reset birq bnmi halt).-> (dataaddrcss,flag)
BEGIN SEQ
PVAR a:: ?data,

b =?data,

x =?address,

sp =?address,

pc ?address,
cc. ?data,
writeenable.: = ?flag,
addebus .= ?address,
addrbuf -: ?address,
databus = ?data,
intercotent - ?c-ount,
admode - ?addrnsode,
inst :: - ?mnemonic;

CASE halt

.-------------- reset ctrcull..........................

CASE reset
OF I (pc,admode,inst,intercount,ccj

- (ad/t6rfffe,extndjnpco/4,da/16rdO)
ESAC,

.-------------- housekeeping...................---------
databus = input,
writeenable - 1

intercount . -COUNTDOWN intercount,

.--------------hardware interrupt................--------
CASE mtercount

OF co/D (CASE bni
OF I (inst = nm, intercount = co,'12)

ESAC,
CASE (birq,TRUEBIT (cc,da/16))

OF (1,1) (inst = irq, itcrcount - co/12)
ESAC),

eu/i CASE ins
OF vai (CASE bumi

OF 1. (inst - nm; intercouni = co/4)
ESAC,
CASE (biq,TRUEBIT (cc,da/16))

OF (LI1) (inst = irq; intercount = coI4)
E-SAC)

ESAC
ESAC,

24

----------- at databus as next instruction...............#

(inst,admode) = CASE intercount
OF CO/O(MNEMOMIC (LONYBBLE databus ,HINYBBLE

InPUt),ADMODE H-INYBBLE databus)
ELSE (inst,admode)

ESAC;

(intceountpc) : CASE intercount
OF codO: (HOWLONG(nst,admode),INCADDR addebus)
ELSE (Intcrcount,pc)

ESAC;

-----------------MAIN PROCEDURE...- ----------- #

CASE COMPARECOUNT (intercount, HOWLONG (inst, implied))
0OF co/4

CASE admode
OF index:(addrbus -pc;pc = INCADDR addrbus),

ESAC,
cof3

CASE adniode
OF exted (addrbus = pc, pc INCADDR INCADDR addibus),

index addrbuf - ,
relative (addrbus pc, pc INCADDR addrbus)

ESAC,
co/2

CASE adniode
OF direct (addebus -pc, pc INCADDR addebus),

index addehuf
MAXEADDRESS(HIBY1'E x.(ALU(addiLOBYTE xdatibus, di'O))(tJ),
extnd (addrbufaddrbus)=

(MAKEADDRESS (daidbus,dayO),INCADDR addrbus),
relative addrbuf

ESACES &U(AUadadaau,LOYTE pc, da/0))(11)
co/l

CASE adniode
OF unmcd (addebus = pc, pc - INCAIJOR addebus),

direct addrbus =MAKEADDRESS (da.tbrU,databus),
index (addebuf

MAKEADDRESS ((ALU (adca, HIBYTE %.
CASE TRUEBIT (databus,da'16r80),

OF b da/l6rff
ELSE da'160

ESAC,
(ALU (ddda,databus,LOBYrE x, da/0)) 2))! 1],

LOBYTE addrb,iddrbus = addebul),
extid addybus - MAKEADDRESS (HIBYTE addrbuf, databus),

25

relative- addrbuf
MAKEADDRESS ((ALU (adca, HIBYTE pc,

CASE TRUEBIT (databus,da/16r80)
OF It. da/16rff
ELSE da/16rOO

ESAC,
(ALU (adda,databus,LOBYTE pcda/O))j2]))[I],

LOBYTE addrb4f
ESAC

co/O CASE COMPARECOUNT (HOWLONG (lest, implied),intercount)
OF co/b
CASE

inst
OF adda: adca:anda: bita 1clia cmpa 1coma 1deca: ora: Iraa: tpa:
iaca 1nega! oraa 1rola 1 ora aI aa:ara I Ira:sbca Idaa 1 uba tsta:

(a, cc, addrbus) -
BEGIN

LET accl = ALU(mnt, a, databus, cc)
OUTPUT (accl[1],acclI2],pc)

END,
staa (databus, cc writeenable)=

BEGIN
LET acc2 - ALU(inst, databus, a, cc)
OUTPUT (acc2ll],acc2I2J,h)

END,
addb : adcb : andb 1bitb: clrb 1cmpb I comb: dccb: corb I Idab:
rncb negb: orabrob rorbalbasrb Irb scb subb: tstb

(b, cc, addrbus)
BEGIN

LET bccl =ALU(inst, b, databus, ccj
OUTPUT (bccljl],bccl[2],pc)

END,
stab (databas, cc ,sTteflable)

BEGIN
LET bec-7 ALU(ist, datibus, b, cc)
OUTPUT (bcc2ilJ,bcc.i2J,b)

END,
aba cbdi:tba (a~cc)

BEGIN
LET acc3 =ALU (ist, a, b, cc)
OUTPUT (act.3ltJ,ac312])

END,
tab. (b,cc)=

BEGIN
LET acc4 -ALU (iest, b,a, cc)
OUTPUT] (,.cc4[l],acc4I2])

END,

26

tst 1 cr corn: neg: dec 1 md rol 1ror I asl 1asr; Isr:
(jatabus, cc, writeenable)

BEGIN
LET dbccl = ALU~inat, a, databus, cc).
OUTPUT (dbecl[1],dbccl[2],h)

END,
c 1cI cIIv: see 1sei:sev 1tap.

cc := (ALU(nstadatabus,cc))[2],
bra ibeec1bcs 1beq 1bge 1bgt I:bhi Ible: bls 1bit: brni 1bne 1bvc 1bvs 1
bpi. addrbus =BRANCH (inst,&ddrbufpc,cc),
CPx.

(addrbus --INCADDR addrbus,
pc :=INCADDR pc,
cc - (AIX (cpx, HIBYTE x, databus, cc))[2]),

Idx-
(addibus:= INCADDR addrbus,
pc = CASE admode

OF inmed- INCADDR pc
ELSE pc

ESAC,
(x,cc) =

BEGIN
LET xcc = ALU(inst,daO,databus,cc)
OUTPUT (MAKEADDRSS(xcc11, da/O),xrc[21)

END),

(x'cc)
=

BEGIN
LET xccl = ALU(lnst,LOBYTE x&dalabus,cc)
OUTPUT (MAKEADDRESS(HIBYI'E) xr cl),xccl[21)

END,
ms: des:

(sp,cc)
BEGIN

LET spccl - ALU(i,LOBYTE sp,databus,cc)

OUTPUT(MAKEADDRESS(HIBYTE sp, spccl[l]),spcc1I21)
END,

I(addrbus = INCADDR addrbus,
pc -=INCADDR pc,
(sp,cc) =

BEGIN
LET spcc2 = ALU(inst,da/0,databus,cc)
OUTPUT (MAKEADDRESS(spcc211,diO)spcc2[

2 1)

END),
stx.((databus, cc)

BEGIN
LET xcc4 = ALU(stx, databus,HIBYTE x cc)
OUTPUT (xcc4l1,xcc4L21)

END, wrueenable h i),

27

sts:((databus, cc)
BEGIN

LET spcc3 =ALU(sts, databus,HIBYTE sp 'cc)
OUTPUT (spcc3[l],spcc3[2])

END, writeenable = I),
tsx

BEGIN
LET xcc6 - ALU~ins, LOBYTE sp,databus,cc).
OUTPUT(MAKEADDRESS(HIBYTE sp, xcc6[1]),xcc6[2])

USEND,

Osp.c) =

BEGIN
LET xcc? - ALU(dcs, LOB'rTE xdatabus,cc).
OUTPUT(MAXEADDRESS(HIBYTE x, xcc7[ID,xrc7[2])

END,
psha (databus,addrbus,writeenable) .- (a,sp,h),
pshb: (databus,addrbus,w. iteenable), = (b,sp,h),
pula: puib' (sp,cc)

BEGIN
LET spcc4 =ALU(ins,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp, spcc4[I]),spcc4[21)

END,
js:bsr(addrbuf - pc;

pc -addrbus, addrbus -sp, databus
LOBYTE (addrbuo, writeenable
(sp,cc)
BEGIN

LET speds - ALU(dcs.LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp, spccsll]),spccS[2])

END),
awl: ixq: a= waj

(addrbuf = pc, addrbus = sp, databus
LOBYTE (addrbuo, writeenable = h,
(sp,cc)=
BEGIN
LET spcc42 -ALU(des,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp, spcc42f 1]),spcc42[2])

END),
rtsarti: (addebus. = sp, (sp,cc)=

BEGIN
LET spcc6 = ALU(insLOBYTE sp,databus cc).
OUTPUT(NiAKEADDRESS(HIBYTE sp,spco611),spcc6[2J)

END)
ESAC,

co/l
CASE inst

OF stx Ists:addrbus INCADDR addrbus,
c~ra 1cIrb 1coma 1comb nega inegb Ideca Idecb Iinca Imcb Irola I
rolb Irora: rorb: asla:aslb: asra 1asrb IIsra IIsrb I sta Itstb Iaba
I daa Itba: tab Icba: clc 1ch 1 clv see cieisev 1 ap: tpa 1nop:
addrbus =p,

cpx I Idxc
(addrbus =pc;

(,-c) =

BEGIN
LET xcc2 = ALU(inst,LOBYTE- xdatabus,cc).
OUTPUT (MAKEADDRESS(HIBYTE x, xcc2[l]),xcc2[21)

END),
Ids

(addrbus =pc,

(sp'cc) =
BEGIN
LET spcc7 = ALU (mst,LOBYI E sp,databus,cc).
OUTPUT(MAKEADDRESS(HIBYTE sp, spcc7[I]),spcc7[2])

END).
psba pshb (sp,cc)

BEGIN
LET spcc8 - ALU(des,LOBYTE sp,databus,ec)
OUTPUT(MAKEADDRESS(HIBYTE sp, spcS[l]),spcc8[2])

END,
Pula: pulb
((sp,cc) =

BEGIN
LET spcc9 - ALU(ins,HIBYTE sp,LOBYTE sp,cc).
OUTPUT (MAKEADDRESS(spcc9[l],LOBYI'E sp),spcc9[21)

END, addrbus .-sp),

(xccl
BEGIN

LET xcc3 = ALU(inst,HIBYTE xLOBYTE xcc)
OUTPUT (MAKEADDRESS(xcc3l 1,LOBYTE x),xcc3I2])

END,
des: ins
(sp'cc)

BEGIN
LET spccll - ALU(inst,HI8YTE spLOBYTE sp,cc).
OLUTPUT(MAKEADDRESS(spclO 1],LOBYTE sp),spcc11)

END,

BEGIN
LET xcc8 = ALU(sns,HIBYTE sp, LOBYTE xcc5
OUTrPUTr(MAKEADDRESS(xcc8[lJ,LOBYTE x),=81S21)

END,

29

txs
(sp, cc)

BEGIN
LET xcc9 = ALU(des,HIBYTE x, LOBYTE spocc).
OUTPUT(MAKEADDRESS(XCC9[1],LOBYT'E sp),xcc9[2])

END,
staa: stab addrbus .= pc,
jsr 1bsr 1swi Iirq 1nmi 1war ((sp,cc)

BEGIN
LET spccll - ALU(des,HYBYTE sp,LOBYTE sp,cc).
OUTPUT(MAXEADDRESS(spccll[],LOBYTE sp),spccll[21)

END;
addrbus -sp; databus: - HIBYTE addrbufl;
writeenable h;

(sp'cc)
BEGIN

LET spccl2 = ALU(des,LOBYTE sp,databas,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spcc12[l]),spccl2[2])

END),
rtsirt: ((sp,cc)

BEGIN
LET spccl3 = ALU(ins,HIBYTE spLOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spccl3[1],LOBYTE sp),spccl3[2J)

END, addrbus - sp, (sp,cc)
BEGIN

LET spu.14 = ALU(ins,LOBYTE sp,databus,cc).
OUTPUT(MAKEADDRESS(HIBYTE sp,spcc14[I]),spccl4j2j)

END)
ESAC,

30

co/2-
CASE inst

OF stx:((databus, cc)
BEGIN

LET xcc5 = AILU(smx databus,LOBYTE x ,cc).
OUTPUT (xcc5Il],xccs[2])

END; wrtenable -=)
ts:clr: corn1 neg 1 dcl Inc r OllI ror: asi: aSr:1 Isr

addebus : pc,
psha: pshb: (sp,cc)

BEGIN
LET spccl5 = ALU(des,HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spccl51],LOBYTE sp),spccl5[21)

END,
pula: a. - databus,
pulb: b- - databus,
isr 1 bsr: (sp,cc)

BEGIN
LET spccl6 -ALU(des,HIBYTE spLOBYTE sp,cc)
OUTrPUT(MAKEADDRESS(spccl6[l],LOBYTE sp),spccl6I2])

END,
rts ((sp,cc)

BEGIN
LET spccl7 - ALU(mn,HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spccl7[l],LOBYTE sp),spccl7[2])

END; addebus :- sp;
pc:- MAKEADDRESS(databus,da/O)),

sw iq s' oni wai
((Specc)
BEGIN

LET spccI8 -ALU(des,HIBYTE spLOBYTE sp,cc)
OUTPUT(IMAKEADDRESS(spcc1811J,LOB YTE sp),spccI821)

END,
addebus -sp, databus = LOBYTE x,
writeenable = h
(sp~cc)=
BEGIN

LET spcc19 = ALU(des,LOBYTE sp,databus,cc)
OUTPUT(N4AKEADDRESS(HI BYTE sp,spcc19jIj),spccl9[2])

END),
rti ((spec)

BEGIN
LET spcc2fl - ALU(sns,HIBYTE sp,LOBYTE specc)
OUTPUT(MvAKEADDRESS(spcc2O[l],LOBYTE sp),spcc2O[21)

END, addybus = sp,
c- databus,
(spec)
BEGIN

LET spcc2l = ALU(ins,LOBYTE sp~databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spcc21l)),spcc2I[2j)

END)
ESAC,

31

co/h:
CASE ;-st

OF i s1sx1ph ua1ph:pl e e x sts s
addrbus = pc,
Mt: pc - MAKEADDRESS(HIBYTE pc,databus),

jar: bsr: addrbus- = pc,
swi 1irq 1nmi 1wai ((sp,cc)

BEGIN
LET spcc22 = ALU(des,HIBYrE sp,LOBYTE sp,cc).
OtJTPUT(MAKEADDRESS(spcc2211,LOBY'rE sp),spcc22[2])

END, addrbus :=sp; databus. = HIBYTE xqwriteenable -= h; (sp,cc)
BEGIN

LET spcc23 =ALU(des,LOBYTE sp,databus,cc).
OUTPtIT(MAKEADDRESS(HIBYTE Sp,Spcc23[1]),spcc22)

END),
ri. ((sp,cc) .

BEGIN
LET spcc24 = ALU(ms,HIBYTE spLOBYTE sp,cc).
OUTPUT(MAKFAD)DRESS(spcc24[11,LOBYTE sp),spcc24[21)

END; addrbus . - sp; b =databus, (sp,cc):
BEGIN

LET spcc25 - ALU(ms,LOBYTE sp,databus,ce)
OUTPUT(MAKEADDRESS(HIBYTE sp,spcc25[l]),spcc25f2])

END),
ESAC,

co!4
CASE inst

OF rts- addrbus, - pc,
syn: rq: namwi ((sp,cc)

BEGIN
LET spcc26 - ALU(des,HIBYTE spLOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spcc26[1],LOBYTE sp),spcc2612I)

END,
addybus - sp, databus- = a,
writecuable = h

(sp'cc)
BEGIN

LET spcc27 = ALU(des,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spcc27l 1]),spcc27[2j)

END),
ni ((sp,cc)

BEGIN
LET spcc28 = ALU(uis,HIBYrE spLOBYTE sp,ccl
OUTPUT(MAKEADDRESS(spcc2811],LOBYTE sp),spcc2812])

END, addrbus - sp,
a = dalabus,
(sp,cc)
BEGIN

LET spcc29 - ALU(ins,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spcc29[1]),spcc29j2])

END)
-S A C,

32

C015.
CASE inst

OF swi 1 rq 1nmhi1wai'
((SP'cc)
BEGIN

LET spcc3O =ALU(des,HIBYTE sp,LOBYTE sp,cc).

OUTPUT(MAKEAflDRSSCspcc3Ot1,LBYE sp),spcc3O[
2])

END,
addrbus -sp; databus- - b; wnteenable h,

(sp,cc)
BEGIN

LET spcc3l = ALLJ(dmsLOBYTE sp,databus,cc)

OUTPtJT(MAICEADDRESS(IBYTE sp,spcc3l1]),spcc
3l[

2
])

END),
rdi: ((Sp,cc)

BEGIN
LET spcc32 - ALU(insHIBYTE spLOBYTE sp,cc)

OUTrPUT(MAKEADDRESS(spcC32[l,LOB'Y'E sp),spec32[21)

END; addrbus =sp, x - MAKEADDRESS(databus,d./O);
(sp,cc) =

BEGIN
LET spcc33 - ALU(ins,LOBYTE sp,databus,cc).

OUTPUT(MAKEADDRESS(HIBYTE sp,spcc33j1]),spcc33I
2
l)

END)
ESAC,

co/6
CASE inst

OF sw I irq 1 =i: wai
((sp,C-C)
BEGIN

LET spcc34 - ALU(des,HIBYTE spLOBYTE sp,cc)

OUTPUT'(MAKEADDRESS(spcc3411lILOBYTE sp),spcc3412J)

END,
add.bus - sp, databus = cc,
writecnabl hs,

(sp,cc) .=
BEGIN

LET spcc35 ALU(des,LOBYTE sp,databus,cc)

OUJTPUIT(MAKEADDRESS(HIBYTE sp,spcc35[l]),spcc35L
2I)

END),
r6i ((sp,cc)=

BEGIN
LET spcc36 - ALtJ(us,HIBY1E sp,LOBYTE sp,cc).

OUTPUT(MAKEADDRESS(pCC36[1],LOBYTE sp),spcc36[2J)

END, addcbus -sp,
x - MAKEADDRESS(HIBYTE xdatabus),

(sp,cc)=
BEGIN

LET spcc37 - ALU(ins,LOBYTE sp,databus,cc)

OUJTPUT(MAKEADDRESS(HIBYTE sp,spcc37Il]),spcc3?[
2
])

END)
-S A C,

33

con:
CASE inst

OF swiirq Inniiwai.
((Sp,cc)*=
BEGIN

LET spcc38 = ALU(des,HIBYTE sp,LOBYrE sp,cc).
OUTPUT(MAKEADDRESS(spcc38[l],LOBYTE sp),spcc38[21)

END; -c - (ALU(se~da/O,da/O,cc))[2]),
Iti: ((Sp,cc)=

BEGIN
LET spcc39 - ALU(ins,HIBYTE spLOBYTE sp,cc).
OUTrPLT(MAKEADDRESS(spcc39jl],LOBYTE sp),spcc39[2])

END, addrbus := sp,
pc - MAKEADDRESS (databus,da/O))

ESAC,
co/B

CASE inst
OF swi addrbus = ad/16rfffa,

irq addxbus = ad/16rfff8,
nms addrbus: = ad/16rfffc,
rti pc - MAKEADDRESS (HIBYTE pcdatabus),
wai Intercount = Co/2

ESAC,
co/9.

CASE wst
OF swi:(pc. = MAKEADDRESS(databus,da/O), addrbus. -ad/16rfffb),

irq:(pc - MAKEADDRESS(databusda/), addxbus- - ad/16rfff9),
flos (pc - MAKEADDRESS(databus,da/O), addrbus - ad/16rfffd),
ru addibus = pc

ESAC,
co/1O

CASE inst
OF sm!isrq nfm pc MAKEADDRESS(HI BYTE pc,databus)

ESAC,
co/li

addrbus = pc
ESAC

ESAC)
ESAC,

OUTPUT (databus,addrbus,wnteenable)
END

34

#External Memory and Test lHrness#

FN MAKERAM = (dataaddress,address,flag) - > data RAM (da/16r0).

FN DEL - (data).-> data: DELAY (da/l6rO,1)

FN HARNESS = (flag-reset bfrq bnmi, data henf000 hexfool hexfo)2-> f3]data-
BEGIN
MAKE UP6800: rnicproc,

DEL delay olatchi olatch2 olatch3,
MAKERAM: ram

JOIN reset - > micproc[2],
CASE micproc[2]

OF adfl6rf0OO hexfOW,
ad/l6rf001: hexfOO1,
ad/16n'002: hexM02

ELSE ram
ESAC.-> delay,
delay.-> micprocl1],
(njcproc[Il~mjcproc[2j.zmcprocp21ricproc[3)- > ram,
birq.-> mlcproc!3], i$irq#
bnmi.-> rmcproc[41, #nmi#
h -> imiprocS], #halt#
CASE nucproc[2]

OF ad,116reOO. mjcprocl]
ELSE olatchi

ESAC.-> olatchi,
CASE mzcproc[2]

OF ad/ltirO00 mjcproc~l]
ELSE olatch2

ESAC -> olatch2,
CASE micproc[2J

OF ad/l6reOO2 miicproc[l]
ELSE olatch3

ESAC.-> olatch3

OUTPUT (olatchl,olatcbh2,olatch3)
END

35

Appendix B: Programs

The following programs all work on my ELLA description of the 6800 microprocessor.
They are held on disk by the ELLIA group at DRA Malvern To run any program the programs initialise
and monitor must be stored as 16800]microinit eh and [6800]monitor.eli since all the other
programs cal these prgashv

Note- i) co is a simulator command for comment I have left them in for comnpleteness

ii) Thesepomaae been modsfied slighttly from when they were originally written because
of changes to the reset circuitry. They run on the model described above

ifi) If you wish to see the microprocessor operating the following node names are useful to
monitor:

mcproc pc program counter
micproc.admode addressing mode
mieprccust instruction mnemonic
miCProc.databus value on the data bus
micproc; addrbus value on the address bus
micproc.a accumulator a
micproc.b accumulator b
mlcproc.x index register
mieproc sp stack pointer
nurproc cc condition code register

Initiallse
co Tis program performs a reset by setting parameter I low for 1 timestep, clears the a, b and s, i egisters,
co sets the stack pointer to &7fff, clears the condition codes register and jumps to location &000d
simulatefs HARNESS
ep I h h da/0 da/O da/O
iramn ram 116r8000] da/16.-4f, co reset cira
tramn ram [16r800t1] da/l6r5f, co curb
iram ram [16r80021 da/t6r8e, co Ids #&7fff
tramn ram [16r80031 da/t6r7f,
train ram [t6680041 da/16rfI,
.! - - r ai" 16r8OO)5] dalirce, co Idx #&O0000
tramn ram 116r80)061 da,'16r00,
ieamn ram 116r6007] dit/l6rOO,
iram ram J16r8OO8] da./16r06, co tap
ieans ram 116r6009] da/16r7e, co jmp &000a
iram ram [16r800a] da,/16rOO
hram ram [16r800b] da/16rOa
iram ram [l6rfffe] da./16r80, co define address to jump to on reset
iram ram 116rffff] da/16r00
t +1
cp [1]h

36

Monitor
co This program allows the online changig of a program by performing an emico (make input [3] low for 1 cycle with inputs [4.6] holding the appropriate
co values). Input [4] controls the function as follows:
co da/O advance counter and display with contents of that location
co dali change contents of location to value of input [5]
on da4 load counter with contents of input [5..6]
o da/3 extecute your program starting at location defined by counter

on Thus to call the monitor type (from the simulator) ep [3 .6] 1 da/2 da/ < addressh > da/ < address, >,ti + 7,co cp[3] h. + 1.

in [6800]microinit
iram ram [16r9000] da/16rb6, on monitor ldaa &fOOO
iram ram [16r9001] da/16rfO)
iram ram [1609002] dali6rOO
iram ram 116r9003] da/16r84, o anda #&Of
iram ram [16r9OD4] da/l6rOf
iram ram [16r9005] da/16r81, o cmpa *&03
iram ram [16r9006] da/16r03
iram ram [16r9007] da/16r23, o bls valid
iram ram [16090081 da/l6r01
iram ram 116r0009] da!16r3b, o Mt
ita ram jl6r900a] da/16r~e, o valid Ids #4&7fff
ham ram 1160900b] da/16r7f
tram ram 116r900cj da/16rff
tram ram j16r900d] ds./16r81, co emps #&Ql
tram ram [16r900c] dall6rOl
irnm r=m [16r900f] da/16r26, co bne nochange
iram ram j16r9OI0] dall6rO3
iram ram [16r90l]j da/l6rbd, co jsr change
iram am [l6r9Ol2] da/16r9I
iran rain [16r0013] da/16r00
iram ram 116r0l141 da/16r8l, o nochange cmnpa #&O1
tramn ram [16r9015] dall6rOl
iram ram [l6r9016] da/16r22, co bhi noad%
iram ram [16r00171 da/l6rOl
tramn ram [16r9OlS] da/16r08, co ins
tramn ram [16r9019] da/16r8l o noads cmpa #&02
tram ram 116r001a) dall6rO2
tramn ram [16r901b] dail16r26, o bne olds
iram ram [16r901c] da/l6r03
iram ram [16r901d] 0tI'6rfe, co ldx M0O0l
tram ram [16r901e] da/16r,1l
tramn ram [1609011] da/16r01
iram ram [16090201 da,116r8I, ro .oldx cmps #&03
iram ram 11609021] da/16r03
iram ram [1600O221 da/16r26, o bine print
iram ram [16r90231 da/l6r02
iram ram 116r002A] da,/16r6e, o jmp &O0, x
iram ram [16r9025] da/l6r)O0
iram ram [16r9026] dall6re6, o print Idab &00, s
iram ram [16r9027] da/l6rOO
tram ram [16r9028] da/16rf7 o stab &e002
ta ram [16r90291 da/16reO
iramn ram 116r902a] da/l6r02
tram ram [16r902b) dalifrff, o stx &eOO

37

iram ram [16r902c] da/l6reO
tram ram [16r9O2d] da/16r00
iram ram [16r902e] da/16r3e, co was
iram ram [16r9l00] da/16rf6, co .change Idab &ft)0
iram ram [16r9101] da/l6rft)
iram ram [1669102) da/16r01
iram ram [16r0103] da/16re7, co stab &00,x
iram ram [16r9104] da/16r00
iram ram (16T91051 da/16r9, co rts
iram ram [l6rfffc] da/16r90, co define flos address
iram ram [16rfffd] da/16e00

Testprogl

cc This is a very simple program which prints out the numbers 1,4,7, by adding 3 to the previous number
co etc.

in [6800]monitor
iram ram [101 da/16r86, cc start Idaa #&01
iram ram [11] da/16r01
iramt ram [12] dsa'16r8b, co adds #&03
tram ram [13] da/l6rO3
ream ram [14] dall6rb7, co stas &eQOOO
iram ram [151 da/16reO
iram ram 116] da/l6r00
iram ram 117] da/16r7e, co jmp &OOOC
seam ram [18] da/l6rOO
iram ram [19] dsf16r~c
tabulated
mc

Testprog2

co This program is the first in a series of Fibonacci sequence programs It
co uses only the a register and only direct, extended and relative addressing
co It was written to run on the early model which only had six instructions
in [6800]monitor
iram ram [10] da/16r86, co .start Idaa #&00
iram ram [11] da/16r00
iram ram [12] dal16r97, co staa &00
iram ram [13] da16r00
iram ram [14] da/16r97, co loop staa &03
iram ram [15] da/16r03
iram ram [16] da/16r86, co ldaa #&01
iram ram [17] da!16r01
iram ram [181 da/16r97, co staa #&01
ram ram [19] da/16r01
iram ram [20] da/16r96, co Idaa &01
ram ram [21] da/16r00
tram ram [22] da/16r9b, co adda
iram ram [23] da/16rO1
iram ram [24] da/16r97, co stja &02
iram ram [25] da/16r02
tram ram [26] da/16rb7, co staa &eOO
iram ram [27] da/16reO
ram ram [28] da!16r00
iram ram [29] da/16r96, co Ida. &01
iram ram [30] da/16rO1
iram ram [31] d!116r97, co staa &00
iram ram [32] da!16r00
iram ram [33] da/16r96, co Idaa &02
iram am [34] da/16r02
ram ram [35] da/16r97, co stab &O1
am ram [36] da.16rO1
ram ram [37] da'16rQ6, co Idai &01
tram ram [38] d4.'16r03
tram ram [39] d'lor8b, co auda #&O1
iram ram [40] da/16rOl
iram ram [41] da16r97, co staa &03
iram ram [42] d&'16r03
iram ram [43] da/l6r8U, oc subd #&Od
ram ram [44] d,116rOa
iram ram [45] da,'16r27, co bne skip
iram ram [46] d&,'16r03
ram ram [47] da/16r7e, co imp loop
iram ram [48] ddilbrOO
ram ram [49] da/16r14
iram ram [50] da/16r7e, cc jmp start
iram ram [51] da/16r0
iram ram [52] da/16rOa
tabulated
mc

39

Testprog3

co This Fibonnacci program uses indexed addressing

in [6800]initor
iram ram [10] da/16r86, co start ldaa #&00
iram ram 111] da/16r00,
iramt ram [12] da/16r97, co staa &00
iram ram [13] da/l6rOO,
iram ram [14] da/16r97, co staa &03
iram ram [11] da/16r03,
iram ram [16] da/16r86, co Idaa #&01
iram ram [17] da/16r01,
iram ram [18] da/16r97, co staa &01
iraM ram [19] da/16T01,
iram ram [20] da/16rc6, co Idab #&Oa

iram ram [21) datl6rOa,
iram ram [22] da/16r96, co main Idaa &OD
hram ram [23] da/l6rOO,
iram ram [24] da/lbr9b, co adda &01

hram ram [25] da./16r01,
iam ram [261 da/16r97, co staa &02
hram ram [27] da/'16rO2,
hram ram [28] da/16rb7, co staa &rOOO
hram ram [29] da/16rcO,
hram ramn [30] da/16rOO,
hram ram [31] da/l6rcc, co Ids #&0001t
hram ram [32[da/16rOO,
hram ram [33] da/16r01,
iam ram [34] da/16ra6, co loop ldaa &00,x
ham ram [35] da/16t00,
hram ram [36] da/16r09, co dcx
hram ram [37] dla/16ta7, co sisa &00,x
hram ram [38] d&'16r00,
itra ram [391 d4'116r08, co inn
hram ram [401 da'116r08, co ins

tram ram [41] da/116r8c, co cpx &0003
tram ram [42] da16rOO,
siam ram [431 di'l6r03,
hram ram [44] it*/W626, cc bnc loop
hram ram [45] da.16rf4,
tram ram [46] da/16r0a, co dccb

tram ram [47] da/16r26, co bnr main
itam ram [48] dVfl6rc5,
tram ram [49] daL/16r7e, co jmp start

itra ram [50] da/l6rOO,
tram ram [51] da/16rOa,
tabuad
mc uae

40

Testprog4

co This program tests the x register and stack pointer, it places the ten Fibonnacc
co numbers generated on the stack and outputs thenm in reverse order.
in [6800]monitor
initialiseram ram [10] da/16r86, co start Idaa #&00
initialiserani ram [11) da(16r00,
instialiseram ram [12] da/16r97, co staa &00
initialiserani ram [13] dall6rOO,
initialiserani ram [14] da/16r97, co staa &03
initialiseram, ram [151 da/16i03,
initialiseram ram [16] da/16r8e, co Ids #&D403
initialiseram ram [17] da/16r04.
iniialiseram ram [18] dall6rO3,
initialiseram ram [19] da/16r86, co Idaa #&01
initiajiseram ram [20] da/16r01,
initialiseram ram [21] da/16r97, co staa &01
initialiseram ram [22] da/16YO1,
initialiseram ram [23] da,116rc6, co]dab &Oa
initialiseram ram [24] da/16r~a,
initialiseram ram [25] da/16r96, co main Idaa &00
snatialiseram ram [26] da/16r00,
snitialiseramn ram [27] da/16r9b, co adds &01
anitialiseramn ram [28] da/16r01,
initialiseram ram [29] da/16r97, co stas &02
initialiseram ram [30] da,16r02,
inatialiseram ram [31] da~16r36, co psha
isaliseram ram [32] da/16rce, co ldx #&O01
itfialiseram ram 133] da/16r00,

instialiseram ram 134] da/16r01,
initialiseram ram 135] da/16ra6, co loop Idaa &00,x
insijabseram ram [36] dafl6rOO,
anstialiseram ram [37] da/16r09, o. dex
instialiseram ram [38] &4/6Wa, co staa &00,x
mitialaseram rain [39] da'16r00,
mtialaseram ram [40] ds/16r08, co Ui
initialiseram ram [41] da/16r08, co max
initialiseram ram [42] da/16r8c, co cps &0003
initialiseram ram [43] dA/16rO0,
initialiseram ram [44] da/16r03,
insassram ram [45]l da/16r26, co bnr loop
initsahacram ram [46] da/l6rf4,
initiabseram ram [47] dall6r~a. co decb
inisaliseram ram [48] da/16r26, co bnr main
iitaliseram ram [49] da./16re7,,
iiialiseram ram [50] da/16rce, co Idx #&000a

initialiseram ram [51] da/16r00,
initialiseram ramn [52] da/16rOa,
initiabseram ram [53] da/16r32, co loop? pula
initialiseram ram [54] d~l6rb7, co sa &eOLO
witialueram ram [55] dall6re0,
initialiseram ram 156] da/16r00,
initilisseramn ram [57] da,116rO9, co dex
initialsseramn ram [58] dsa'l6r26, co bee loop?
instialiseramn ram [59] da/16rf9,
initialasram ram [60] da/16r7e, co Imp start

41

mniialiseram ram [61] da/16r00,
initialiscram ram [62] da.'l6rOa,
tabulated

42

TestprogS

co This is another Fibonacci program which tests the jsr instruction

in [6800]monitor
initialiseram ram [10] da/16r86, co start Idaa #&00
initialiseram ram 11]) da/16r00,
initialiseram ram [121 da(16r97, co staa &00
initialiscram, ram [13] da/16r00,
initialiseram ram [14] dal16r97, co staa &03
initialiseram ram [15 da/16r03,
initiajiseram ram [16] da/16r8e, co Ids #&0401
initialiseramo ram [17] da/16rG4,
inittaliseram ram [18] da./16r01,
initialiseram ram 1191 dat 16r86, co Idaa #&01
ussliabseram ram [20] da/16r01,
iitsaliseram ram [21] dat 16r97, co staa &01
initaliseram ram [22] da/16r01,
initialiseramt ram [23] da/16rc:, co Idab &Od
mnitiaisseram ram [24] da/16roa,
initialiseram ram [25] da/16r96, co ream ldaa &00
initialiseram ram [261 da/16r00,
instiajiseram ram [27] da/16r9b, co adds &0I
snitialiseramt ram [28] da/16rOl,
initialiseram ram [29] da/16r97, co stas &02
initialiseramt ram [30] da/16r02,
insialiseram ram [31] dail6rb7, co stas &c000
initialiseram ram [32] da/16re0,
instialiseram ram [33] da,16.OO,
inssialsseram ram [34] da/16r36, co psha
sitialiseram ram [35] da/l6rbd, co jsr swap
itiaisseram ram [36] da/16r00,

instialiseram ram [37] da/16r35,
initialiacram ram [38] da1l6r~a, co dccb
initialiacram ram [39] daiL16r26s, co brie rsin
'itiaisseram ram [40] da&'l6rfO,
snitialsacram ram [41] da/'16rce, co ldx #&O00a
tattraisseram ram [421 da/116r00,
instialiscram ram [43] da/16r04 ,
snitiascram ram [44] d4i/16r32, co) loop pua
rnstiabsaeram ram [45] da116r97, co stad &02
instialisaram ram [46] da/l6r02,
uuutaliscram ram [47] da./16rO9, co dex
italsacram ram [48] dal16r26, co brie loop2

iniLscram ram [491 dall6rfa,
instialiscram ram [50] da/16r7e, co Imp start
inutsalseram ram [51] da/16r0o
ittalsacram ram [52] da/16roa,

uitiaLserasn ram [53] da.l6rce, co swap Idx #&0000
snittaliacram ram [54] da/16r00,
initialiseram ram [55] da/16r00,
snitiasram ram [56] da/16ra6, co loop Idaa &01, x
insttialtseraso ram [57] da/16r01,
intualiseram ram [58] da/l6ra7, co stas &DO, x
initialscram ram [59J da/16r00,
itialiseram ram [60] da/16rK8 co ins

43

initialiscram ram [61] da/l6r~c, co cpx &0002
initialiseram ram [62] da/16r00,
initialiseram ram [63] da/16r02,
initialieram ram [64] dal16r26, co brie loop
initialiseram ram [65] da/16rf6,
initialiseram ram [66] da/16r39, co rts
tabulated
mc

44

Testprog6i

co This is yet another Fibonacci program, which uses a software interrupt (awl)
co instead of the jar in the last program (testprogs)

in [6800]monitor
initialiseram ram [10] da/16r86, co satart ldaa #&00
initialiseramn ram [11] da/161)0,
ifialiseram ram [12] da/16r97, co staa &00

initialiseram ram [13] da/16r00,
initsaliaeram ram [14] dal16r97, co ataa &03
initialiseram ram [15] da/16r03,
initialiseram tamn [16] da/l6r~e, co Ids #&0401
initialianram ram [17] da/16r04,
initiaaisram ram [18] ca/16rOl,
initialiseramn ram [19] da./16r86, co ldaa #&01
initialiseram ram [20] da/16r~tl,
inifialiseram ram [21] da/16r97, co ataai &0I
initiakseram ram [22] da/16r01,
initialiseram ram [23] da/16rc6, co Idab &Oa
initialiacram ram [24] da/l6r0a,
inifialiseram ram [25] da/16r96, co nmsin Idaa &00
itialiseram ram 1261 d-.flrTl

initiahiscram ram [27] da/I6r9b, co adds &01
itiab~seramn ram [28] da'16r01,

initialiseramn ram [29] da/16r97, co aa &02
initialiseram ram [30] da/16r02,
initialiseram ram [31] da/16rb7, co stadt &eOOO
initialiseram ram [32] da/16reQ,
initialiseramn ram [33] da/16r00,
initial scram ram [34] da/16r36, co psha
initialiseram ram [35] dall6r3f, co s,','
initiabseram ram [36] da/16r5a, co decb
initialiscram ram [37] da/16r26, co bnr main
initialiseram ram [38] da/16rf2,
initialiseram ram [39] da/16rce, co ldx #&0004
itsalisram ram [40] d&116rD0,
itiabiseram ram [41] da/l6r~a,

initialiserarn ram [42] da116r32, co loop2 psia
initsabseram ram [43] da/16r97, co staa &02
initialiseram ram [44] da/l6rO2,
initiahaceramii ram [45] da/16rO9, co dex
initialiseram ram [46] da/16r26, co bne loop?
initialiseram ram [47] da/l16rta,
initialiseram ram [48] da/l6rle, co jinp start
initiahseram ram [49] da/16r00,
initialiseramn ram [50] da/16rOa,
initialiseram ram [51] da/16rce, co swap Idx #&0000
initassram ram [52] da!116r00,
initialiseram ram [53] da/l6rOO,
initiaiseram ram [54] da/16ra6, co loop Idaa &01, x
istialiseram ram [55] da/16r01,
ingialsram ram [56] da./16ra7, co staa &00, x
initialiseramn ram [57] da/16rOO,
initialiseram ram 158] da/16r08, , o in
iialseram ram [591 da/l6r8c, Lo cpx &0002

45

initialiseram ram [60] da/116r00,
initialiseram raM [61] da/16r02,
initialiseram ram [62] da./16r26, co bne loop
initialiseram ram [63] da/16rf6,
inktialiseram ram [64] da/16r3b, co rti
Wntiieram ram (16rfffa] da/16r00, co define s~i address
initialiseram ram [l6rfffb] da/16r33, co sawap
tabulated
mc

Testprog?
co This is an 19 byte program which generates the first 11 l'ibonaci numbers It operates by clearing One
co location on the stack to zero, then loading the a register with &01 and z with &000b. Accumulator b is
co then pulled from the stack, then a is pushed to it. Register a is added to b with the result in a. x is
o decremented. If x is not zero then b is pulled from the stack, a is pushed to it etc. Otherwise the program

co waits for an interrupt. it is short because it was written to be efficient rathet than to test specific
co instructions. However Testprog2 performs an identical function and I believe is optimised for the first
co 6 instructions implemented (see The Motorola 6800 Model. initial design) but is twice as long This
co demonstrates that more complex operations are useful on a microprocessor

in [6800]monitor
iram ram (16rOOOa] da/16r34, co start des
iram ram [16rOOOb] dall6r3O, co tsx
hram ram [16r000c] da/16r6f, co drT &00 'x
iram ram [16rOO~dJ da/I6r00
iram ram [16r000e] da/l6rce, co Idx #&000b
hram ram [16r000f) da/16ro0
hram ram [16r0010] da/16rob
hram ram [16r0011] dat16r86, co tdss #&O1
iram ram [16t0012) da/16r01
hram ram [16r00131 da/16r33, co loop puib
hram ram [16r0014] da/16r36, co psha
hram ram [1660015] da/16rlb, co abs
hram ram [16r6016] da/16rb7, co stas &eOOO
hram ram [16r00171 da,/16rrO
iram ram 116r0018] da/16rOO
iram ram [16r0019) da/1609, co dex
uam ram [I6rO0laJ ds/16r26, co bee loop
iram ram 116rO0lb] da/lbrf7
iran ram 11601~c) da/l6r3e, do wai
tabulated
Inc

4-7

Appendix C: The Motorola 6800 Instruction Set

Provided here ia a brief hast of the 6800 assembler mnemonics and their functions It ia not intended
to provide programming information, which may be obtained from The Motorola Data Sheet (see
Bibliography)

Accumulator and Memory Instructions:

adda -:Add. a=a+in
addb Add- b=b+m
aba Add accumulators a =a +b
adca :Add ith carry: a-a+m+c
adcb ,Add wth carry: b-b+m+c
anda/andb And a-aANDin/b=b AND in
bita/bitb Bit test a AND in bAND i
clr/clra/clrb Clear m=0/a=0/b=0
cmpa/cmpb Compare s-in / b-in
cbs Compare accumulators a-b
com/comaicomb I's complement. m=&ff-m / a=&ff-a / b=&ff-b
neg/nega/negb 2's complement (negate) m = -in / a = 0-s b= 0-b
dlaa decimal adjusta
clec/deca/decb decrement in=m-I I a=a-lI b=b-l
COraleorb exclusive or a XOR mn / b XQR in
inc/tncslincb increment m=ms-1/a=a+l/b=bs-
Idas/Idab load accumulator a=m /b-m
oraa/orab inclusive or a a OR mn / b-=b OR mn
psha/pshb push a /b to stack (LIFO)
pula/pulb pull a /b from stack
rol/rola/rolb rotate left mn / a / b
ror/rora/Trb rotate right mn / a / b
aallasla/aslb arithmetic shift left mn / a / b
asr/asra/asrb -arithmetic shift right mn / a Ib
Isr/lsra'tsrb logic shift right in / a / b
staa/stab store accumulator mn= a /m= b
SubaL/ssbb subtract a=a-m / b=b-n.
sba subtract accumulators a = a-b
sbca/sbcb subtract swith carry a = a-in-c / b = b-in-c
tab/thu transfer accumui~siors b =a a b
tat/tsta/tstb test, zero or minus m-0 /a-0 / b-0

Index Register and Stack Manipulation Instructions

cpx compare x to in, in-+-1
des/des decrement s=s-l sp-sp-i
Inis incremen: x=x+ / sp=ap+ I
ldxA/da load register X,=m,);=(M+ 1-) / Sp,=m1, sp,=(Mn-1)
st/sts store register mn=ts,, (in + 1) =xY / mn=sp", (Ms + 1) = sp,

oiatsxtransfer registers ap= s-i / x = sp+ -I

Jump and Branch Instructions:

bra ,: branch always
bee +: branch if carry clear

bcs branch if carry set
beq branch if equals zero
bg. branch if greater than or equals zero
bgt branch if greater than zero
bhi : branch if higher
ble branch if less than or equals zero
bls branch if lower or same
bit branch if less than zero
bmi: branch if minus
bne branch if not equal zero
bvc branch if overflow clear
bvs branch if overflow set
bpl branch if plus
bsr branch to subroutine
imp jump
jsr jump to subroutine
hop no operation (takes a small amount of time)
rti return from interrupt
rts return from subroutine
swi software interrupt
wai wait for interrupt

Dummy Mnemonics Added to Simplify ELLA Program:

srq interrupt request
nil non-maskable interrupt

Condition Code Register Manipulation Operations:

clc clear carry flag
ch clear interupt mask
clv clear overflow flag
sec set carry flag
sei set interrupt mask
sev set overflow
tap transfer accumulator a into cc register
tpa transfer cc register into accumulator a

a accumulator a b : accumulator b in contents of memory location
(in + 1) contents of next memory location after in x : x register sp -stack pointer
,: high byte . low byte

N.1 Many Mnemonics can have more than one addressing mode associated with them There are altogether
197 valid mnemonic/adressing mode combinatious plus srq and nmi, although there are only 107 such
mnem)mics listed (plus 2 dummy mnemonics),

49

Glossary.

Accumulator- An accumulator is a register on which a large number of arithmetic and logical
operations may be carried out.

Addressing mode. The addressing mode tells the microprocessor where to get the data for its next
operation Six addressing modes are implemented on the Motorola 6800. These are
immediate, direct, ideed, intended, implied and relative

Assembler code. Low level language which is made up of mnemonics plus other symbols to indicate
the addressmg mode.

Condition codes
register: A register which is affected by most arithmetic and logical functions, and also by

interrupts. On the 6800 it is made up of 6 flags, which indicate when true (bit 5 first,
bit 0 last) that: a half carry from bit 3 has occurred, interrupt requests are to be
ignored, the result was negative, the result was zero, the operation caused a 2's
complement overflow and the operation caused a carry.

Direct addressing The address of the data is given by the value in the next location after the op-code,
(therefore it is in the range &0000 &00ff).

Extended adctressmg The address of the data is in the next two locations after the op-code (high byte
first)

Immediate addressing The data comes from the next memory location after the op-code

Implied addressing No data is necessary e.g lra

Indexed addressing The address of the data is the index register plus an offset whch is in the next
location after the op-code

Interrupt An interrupt causes the microprocessor to stop what it is doing after finishing the
current instruction, and to jump to a location which is defined at a particular
lccation in memory When the routine s finished (with an rti) it jumps back to
where it was when the interrupt occurred, with the same values in all the registers
as before the interrupt This is achieved by dumping all the registers on the stack
as the interrupt is initiated, and reading them back as the interrupt routine
terminates There are three ways of initlating an interrupt on the 6800, a software
interrupt (swi), and two hardware interrupts

Interrupt request If the interrupt mask bit in the condtion codes register is zero, a zero on the
interrupt request line causes an interrupt to occur.

Mnemonic A maemonic is a three or four letter word which defines the operation to be
performed by the microprocessor The words are chosen to be user friendly and
must be converted into op-codes before they can be stored in memory or used by
the microprocessor

Non-maskable interrupt A non-maskable interrupt causes an interrupt whatever the state of the condition
codes register

50

Op-code' Hexadecimal representation of an 8-bit number which is an instruction to a
microprocessor. An op-code is unique, defining both the addressing mode and the
mnemonic.

Register: A register is a store for information on the microprocessor A limited number of
arithmetic and iogical functions are possible such as increment, decrement, or
setting particular bits to be true or false.

Relative addressing- The address to branch to is the start of the next instruction plus an offset which
comes from the location after the current op-code.

Software interrupt. A particular op-code is used from within the program to call the inteupt routine

Stack. A stack is an area of memory used for storing data, which is accessed by the stack
pointer. The stack pointer (sp) always points to the first available unused location
When a piece of data is pushed to the stack it is placed at the memory location
ap, and sp is then decremented. When a piece of data is pulled from the stack
the stack pointer is first incremented, then the data is read The location deifned
by sp is now free for new data to be pushed, but still contains the old data The
stack is therefore a last-in first-out (LIFO) store

Von Neumann
microprocessor' A microprocessor in which the program and data share a common address

space

51

Blbllographr.

I... Ile ELLA User Manual Computer General ED

2 .. Microprocessor Data, Cambridge University Engineering Dept.

3 .. Motorola Microprocessor, Microcontroller and Peripheral Data Volume 1, Motorola Limited

52

REPORT DOCUMENTATION PAGE DRC Reerene Nuber (If nown).......................

(As 'or as poss~ie this alheet shoaMl contain only undnilfed Informtion. If ft Is necessay to enter da&ste Information, the field concerned
'mist be mutred to Indices fe oesojflcejtkn eg (R), (C) or (S).
oiginsios Reierenoe/Re.ps,1 No. Month Year

MEMO 4515 AUGUST 1991

Orgntr Nam and Looatn
RISRE, St Andrews Road
Malvem, Worcs WR14 3PS

Monitoring Agency Namre and Location

TWO

USING ELLA FOR HIGH LEVEL DESIGN:
MODELLING THE MOTOROLA 6800 MICROPROCESSOR

Report Seatirity Clasuificaion Tile Claselttoftion (U, R. C or S)
UNCLASSIFIED U

Foreign Language Thle (in the cose of nrsleions)

Conference Details

HUGGETI, A R 5

Abstract

This document starts by providing a brief overview of the ELLA language The majority of the document
describes the design and development of an abstract high level ELLA model of a Motorola 6800
Microprocessor, including all ot the 197 codes which make up the 6800 instruction set

Wbtrc Classification liJ,RC or S)
U

Descrptors

Disinbjfon Statemet (Enter, anry liniftahons on thre osrouton 0f the docurnfnt)

UNLIMITED

