I ——— T A VT T T em——mm—m—eeem e

Ve "‘Z:f::ﬁ(‘ A
) i’ 7
%

AD-A242 616
QLS

£

i' ‘g%%\é S

~f§<§§§ sl
= ME

%;:;&‘:- 2 M‘w

e

- :SINGELLAFOR HIGH LEVEL DESIGN:
' MODELLI[!G&T HE,MQTORQL?N«SVBOO MICROPROCESSOR

Author: A R Huggett

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,
RSRE MALVERN,
WORCS.

N
i 2 {
' - .
N v [PV
N FI R E
} 1o atrbeton Unfrued i
T wratm i ot s

ASRKRE MEMORANDUM No. 4515

UNLIMITED

CONDITIONS CF RELEASE
! 0110616 305232

PanaAREAR AN kR sk s s hn DRIC U

COPYRIGHT (c)

1988

CCHTROLLER

HMEO LONDON
Neerranartsdnretaaatataass DRIC Y

Reports quoted are not necessanly avaidable to mombers of the pubhe or 1o commerciat
orgamsations

Royal Signals and Radar Establishment

Memorandum 4515

Title: Using ELLA for High Level Design:

Modelling the Motorola 6800 Microprocessor,
Author: A R Huggett {Student Engineer)

Date: 5 September 1991

summary
This document starts by providing a brief overview of the ELLA language The majonity of the

document describes the design and development of an abstract hugh level ELLA mode! oi a2 Motorola 6800
Microprocessor, inclucding all of the 197 codes which make up the 6800 instruction set

1

3 suda.va Fer
[TFY YN h 8

e Te i,
o ” Pvaa 1.
e Vaales ol o~ .
LT - . -
S Ve . o
Copynight Lo b -
© e, LY caen
Controtier HMSO London Tarw b rsnser T
1991 v epeial

91-14823 S T —
Ty .

Disclaimer:

The author gives no guarantee that the model berewn described 1s a fully accurate and error free descniption
of the Motorola 6800

The views represented withun this report are those of the author alone and do not necessarily
represent the views of the Muustry of Defence nor the Defence Research Agency
Notices:

Throughout the text the symbol & is used to indicate a hexadecimal number. However, in the ELLA
language thus s replaced by 16r, thus address &e000 becomes ad/16re000 in ELLA

Variables and Types which occur within the 6800 mode! are indicated by bold type.
Words mn the glossary are indicated n italics.

References to the Bibliography are indicated thus '

o

Contents:

The ELLA Language .

The Motorola 6800 Model
Specification
Variable Type Sclccuon .
Initial Design . R .
Development N oo ..
Testng
Conclusions A

Appendix A: The ELLA Description
Varnable Type Defimtions
Bat Tester
Anthmetc and Log;cal Um!
Decision Logic .
Instruction Dccoder .
Counting and Type-Swapping Funcuons
Main Microprocessor Control Logic
External Memory and Test Harness

Appendix B: Programs
Intiabse .
Mounitor
Testprogl
Testprog2
Testprog3
Testprog4
Testprogs
Testprogd
Testprog?

Appendis C* The Motorola 6800 Instruction Set
Accumulator and Memory Instructions
Index Regster and Stack Manipulation Instructions
Jump and Branch instructions
Dummy Maemonics Added to Sumplify ELLA Program
Condition Code Register Manipulation Operations

Glossary

Bibliography

The ELLA Language

ELLA is a Textual Language for describing digital hardware designs. The language is de<igned so
that ELLA circuit descriptions are always realisable in hardware.

‘The components of a circuit are described in ELLA by functions. A function definition declares the
number and types of inputs and outputs. The function body is composed of a number of constructs, which
descnibe how the inputs map to the outputs

Before any functions may be written in ELLA it 1s necessary to define the variable types whuch they
will use Tht is achicved by means of the TYPE statement, ¢.g.

TYPE count = NEW co/(0..12)
TYPE sddrmode = NEW (immed)direct|index| extnd |implied | relative)

The first statement defines TYPE count to be an integer in the range 0.12. The co/ tag is necessary to
distinguish that type from any other wteger type The second statement defices TYPE addrmode as a six
valued enumerated type, with possible values of immed, direct, index, extnd, implied and relative

ELLA supports a wide varicty of high level constructs such as ARITH which performs integer
anthmetic, DELAY which delays information between its input and output and provides a means of
feedback from one clock cycle to the next

The language 1s strongly typed i order to mummuse the chances of the user itroducing a design
fault. It has a luerarchial functional structure simular to PASCAL.

The main difference between ELLA and conventional programming languages such as C, PASCAL
ctc is that 1t 1s a paralle] rather than a sequential language This is necessary to describe logic circuits
However since 1t 15 a parallel language, to try and express

LET a = da/5
LET a = da/4

is Wlegal since the compuler tries to mmplement both of these statements in parallel A vaniable defined by
LET is therefore static once assigned withun a timestep its value cannot be charged within that tmsestep
although it can be used as an wnput to other functions The value of a static variable can be changed on a
different timesiep however

For some apphcations, however, it 1s more convenuent to program sequentially, particularly for
complex high level descniptions The SEQ construct allows sequential programming, with two types of
dynamic vanables, which must be defined before they can be used, but once defined may be assigned to
many umes within the sequence The first of these 1s VAR VARSs are initialised to a predefined value every
timestep. The other type 1s PYAR (or STATE VAR) These are initialised at ume 0 but retain the latest
assigned value from one tumestep to ihe next untl they are reassigned They are very useful for making
regusters, Sequential constructs can be directly transformed 1nto parallel ones using a set of assembler tools

Care must be taken to ensure that the same nstantiation of the function 1s being used if the old
value of the PVAR is required In practice this means that functions which contain constructs such as VAR,
PVAR, or RAM and DELAY functions become wrapped up mside paraliel fiunctions which allow explicat
wstantiation by using the MAKE and JOIN constructs

For a complete description of the ELLA Laoguage refer to the ELLA Manual'

The Motorola 6800 Model: Specification

My model of the Mctorola 6800 was developed from a very limited amount of information 1 had
the instruction set, the assembler mnemonics, number of bytes, number of clock cycles required and effect
of the function® 1 did not know anything of the order m which internal subfunctions are carnied out withm
the microprocessor My knowledge of and information on the condition codes register was also less than ideal

Since | had no information about the internal operations of the 6800 ! decided that my model should
fulfil three critena:

i) It should perform the correct instruction for the appropriate instruction code.
if) It should take the correct number of clock cycles to complete each mstruction.
i) All 197 valid op-codes should be implemented.

In addition I wished the model to bave what ¥ hoped was a reahstic internal architecture

The Motorola 6800 Model: Variable Type Selection

Nine different variable tvpes are used within the ELLA descniption (see Appendix A)
The reason for this 1s as follows

The Motorola 6800 is an exght-bit microprocessor Therefore all data comung into and out of the
mucroprocessor 1s cight bits wide and TYPE data provides this The choice of TYPE data to be positive in
the range 0.255 rather than signed -128 1o 127 was made for two reasons.
1) The mataematics of wstructions such as rola become easier to implement
i) Logic synthesis 1s often easier f there are o negative numbers

Since the address space of the 6800 15 O 65535 (&ffff) 1t was clear that 2 sixteen bit type,
TYPE address was needed This time 1t was obvious that the aumbers should be posiive

A four bt type, TYPE halfbyte proved useful within the instruction decoding functions, because the
more sigmficant four bits of an op-code always refers to the addressing mode and the Jess sigmficant 10 the
wmstruction

TYPE flag 1s a two state boolean wihich is useful in CASE clauses

TYPE bitint 1s the :mteger equivalent of TYPE flag, n is used 1z some ARITH statements as the
carry bit

TYPE addrmode and TYPE mnemonic are enumerated types which represert the addressing mode
and mnemonsc of an op-code 1 a user-friendly way

TYPE count 1s used in the mcroprocessor’s internal structure to determune how far through the
mstruction 1t 1s Since the longest struction takes 12 cycles the maxamum value of TYPE count 15 12

TYPE resuit 15 the 9-bit answer of the main ARITH functions witlun FN ALU It 1s necessary
because the 9th bit 1s important for setting the cc register

s

The Motorola 6800 Model: Initial Design

The Motorola 6800 is a simple 8-bit Von-Neumnann microprocessor which has two 8-bit accumulators,
a and b, an index register x, a stack pointer sp and a condition codes register cc. It also has a program
counter pe. In addition I found it useful to create an address buffer addrbuf which I now know is not
present on the real chip.

I originally had to decide whether 1t would be better to build a model which interpreted 6800
assembler code or hexadecimal op-codes. 1 decided that using the memory to store maemonics as a separate
type from data was too far away from reality, and too dfficult to implement. Therefore I opted fer a memory
interface whach just used 8-bit data. However, 1n order 1o make the design easier to program and to
understand I decided that instructions should be stored within the microprocessor as an assembler mnemonic
plus an addressing mode. Thus FN MNEMONIC and FN ADMODE are used to extract this information
when the incoming data word is an instruction (see Appendix A).

Studywing the data I found that with one exception (which I erroneously took to be a printing error),
the addressing mode affected the number of cycles required to perform an instruction as follows.

Impl 2d +0
Immediate +1
Direct +2
Relanve/Extended +3
Indexed +4

1 deduced that the microprocessor must have some way of keowing how far through an instruction
1t has proceeded since all instructions take between 2 and 12 timesteps. I therefore created the model with
an internal counter (imercount) which operates as follows

If intercount is zero then the incoming byte on the databus is treated as an wstruction, and the
fenctions ADMODE and MNEMONIC are used to change the instruction byte into an addressing mode
and a mnemonic From these the function HOWLONG calculates how many clock cycles the mnemonic
should take, plus an offset for the addressing mode Intercount is then set to the value returned from FN
HOWLONG I order to faciltate future logic synthesis 1 have avoided the use of negative numbers Thus
FN COMPARECOUNT always returns a positive value or zero if the second mnput 15 greater than or equal
to the first FN COMPARECOUNT 15 then called to see how far into the addressing mode cycle the
mucroprocessor has proceeded, by comparing intercount with the sumber of cycles required to perform the
instruction if there were no addressing steps, and the appropriate addressing step 1s carnied out If the value
returned from FN COMPARECOUNT 1s zero then the comparison 1s repeated with the inputs reversed so
as to provide a result wh.ch mught be positive or zero, and the appropriate instruction step carried out

In order to test the microprocessor 1t 1s necessary to connect 1t to a memory, so 1 created FN
MAKERAM and FN HARNESS which provide thus plus a reset hne

The first instructions to be implemented were adda, 1daa, suba, beg, jmp and staa (see Appendi
C) These were tested by means of two test programs, TESTPROG1 and TESTPROG2 (see appendix B)

The Motorola 6800 Model: Development

Having got the memory and the first six mstructions working to my satisfaction I began increasing
the instruction set After some time it became apparent that the length of the main program loop was getting
100 big to be easily understood, and furthermore, was beginning to get unrealistic with 16 bit adders creeping
in that do not exist in the real 6800 I therefore decided to change the way in which arithmeiic and logical
functions were being implemented. I created FN ALU (Anthmetic and Logical Unit) which had basic
functions defined. These were FN ADDBYTE, FN ORBYTE, FN NOTBYTE, FN ANDBYTE and FN
SRBYTE. (ADDBYTE performs binary add, SRBYTE binary shift right with wraparound, ORBYTE binary
OR etc.) There were also several functions for such things as truncating 9-bit results (FN CHOPDATA) and
condition codes register handling. Later I added a sixth main instruction, FN DAABYTE which performs
a decirnal adjust on accumulator a.

In order to implement 16-bit operations such as bnx (sce Appendix C) I found it necessary to pass
infermation as to which part of an instruction was to be exccuted by the ALU I achieved this without
increasing the number of inputs by utilising the two most significaut bits of the condition codes regster,
which the data sheet defines as both being true at all times, and therefore redundant

The text was tidied by using functions such as FN BRANCH to wrap up functions of similar type
The functions which take up a lot of space are those sucb as jsr and swi (see Appendix C) which take many
timesteps and are fairly umique. A ot of expansion to FN ALU was also required

Finally 1 wumplemented the wntenupt request, non-maskable interrupt and halt knes into the
microprocessor These are separate level sensitive Lines which are inverted, ie a logic false causes an
nterrupt to occur or the microprocessor io cease all operation accordingly. The handhing of these interrupts
is virtually identical to the s» wstruction. I therefore decided that by far the easiest way to implement the
interrupt was to have two dummy mnemonics, frq and nmi,

1 also memory mapped three nputs wnto the computer and three outputs from 1t Locations &f000
to &f002 if read from by the mucroprocessor return the three data iputs to FN HARNESS Simularly
locations &e000 to &e002 if written to change the output of FN HARNESS This arrangement can be
thought of as being equivalent to a set of three wput registers which can be loaded by using a keypad or
other means, and six hexadecimal output digits.

With the microprocessor now theoretically fully functicnal I wrote an imtialisation program whuch
clears all the registers to defimte values, and a monitor program which is called by a non_maskatle wterrupt

b e

The Motorola 6800 Model: Testing

The development of the model was a repetitive cycie of adding more instructions, removing
compilation errors and then tesung by means of test programs (Appeadix B). These were called into the
simulator as ELLA instruction (*.eh) files which imtiabsed the ram to the values required The majority of
programs perform the same function: they calculate the first ten numbers in the Fibonac series which are
calculated by adding the previous two terms 1n the series to get the current one. Assembler mnemonucs are
provided as comments in the programs to assist the reader.

Due to the large number of instructions (197 valid op-codes, 2 other interrupt functions, a reset
function and a balt line), 1t was not possible to test every instruction 1n the time available. he vever I believe
that the instructions contaed within the test programs represent a good cross section The complex
instructions such as jmp, swi, irq, nmi, rti, rts, jsr and bsr have all been tested, however some simple
mathematical functions such as addb arc assumed because adda works and addb 1s a direct copy (sce
Appendix A)

The Motnrola 6800 Model: Conclusions

My mode! of a Motorola 6800 microprocessor fulfils the 3 specification requirements set out ahove
However there may be some errors in the condition codes register; these could definitely be found and fixed
with some more testing time.

The internal architecture is quite unlike the real 6800 The Motorola data sheet® became availabie
very late 1 the development stage when I was implementing interrupts. With a few days work, however, 1
believe that the prograw could be modified to give it a much betier resemblance to the 6800 mternally

Given the same project again I would implement the timing of addressing mode operations
differently, and would try and mimic the two pbase clock required by the 6800 (my current model has only
& single phasc). There would be no addrbuf register and all internal registers would be 8-bits wide With the
use of the Motorola data sheet 1 could ensure that everv register contained the right information on every
cycle (the current model is only correct at the end of each instruction).

The development of my model was largely based upon a very limited amount of information This
lack of information lcad to a number of differences between 1t and the real 6800. However 1 believe that
this model demonstrates that a fully funcuional ELLA description can be obtained with hmited mformation
and minimal difficulty which, when viewed from outside the micropracessor/memory system behaves
identically to the real thung

Appendix A: The ELLA Description

The ELLA description below is arranged m a compilable order ie declare before use Thus the
main microprocessor function FN UP6800 1s towards the end of the listing

#Variable Type Definitions#
TYPE data = NEW da/(16r00 16rff),

address = NEW ad/(16r0000..16rffff),

result = NEW re/(16r000..16r1ff),

bitint = NEW bi/(0 1),

flag = NEW (h!l),

count = NEW ¢0/(0..12),

addrmode = NEW (immed) direct!index| extnd | implied | relative),

halfbyte = NEW hb/(16r0 16rf),

mner.onic = NEW
(adcaladda)anda)bita!clra}cmpa) coma!deca)eora)mca! oraa! psha' pshb!pulb!pula|rola
‘roralasla)asrallsra) nega)ldaa)suba!staa!sbea!tstal cpx! dex!des!inx|ns|Idx}1ds}
stx)stsitxs | tsx| bra}bee) bes!beq ! bge | bgt ! bhitble! blsblt | b bne |bve]bvs|bpl bsr}
jmp!jsrinop!addb;adcb! andb bitb)clrb! cmpb|comb!decb|eorb|ldab]nchinegb;orab;
rolb|rorb!aslbiasrb!lstb ! sbcb!subb tsth!stab!tba|tab;aba!cba! daa!sba!clr)decinc
\com|neg!roliroriasliasr)lsritst)rtrts)swi)war)cleich)clvisec
Ise1{sevitap)tpalirq i nmi)

#Bit Tester#

FN TRUEBIT = (data input coatrol) - > flag
ARITH IF (1nput IAND control) = control
THEN 1 #h#
ELSE 2 #1#
Fl1

#Arithmetic and Logical Unit#
FN ALU = (mnemonic: inst, data: mputl input2 ccreg) -> [2]data:
BEGIN SEQ

FN ADDBYTE = (data1pl 1p2, utint.ip3) -> result ARITH (ip1 +ip2 +ip3),

FN ANDBYTE = (data1pl 1p2) -> result: ARITH ipl IAND ip2,

FN ORBYTE = (dataipl 1p2) -> result ARITH ipl1 IOR 1p2,

FN NOTBYTE = (data.pl) -> result ARITH (INOT 1pl) iAND
16r1ff;

FN CHOPDATA = (result ipl) -> data ' ARITH ipl IAND 16rff;

FN SRBYTE = (resultipl) -> result ARITH (1p1 SR 1)

+256*(1p1 LAND 1);
FN DAABYTE = (data 1pl ccreg) - > result,
ARITH ip1 +IF ((1p1 IAND 16rf)>9)
OR ((ccreg IAND 16r20) = 16120)
THEN IF (1ip1 IAND 16rf0) = 16r90 THEN 16166 ELSE 6 F1
ELSE IF (1p1 1AND 16rf0) > 16r30 THEN 16r60 ELSE 0 Fl

FN HALFCARRY = (data 1p! 1p2 ccreg, biint 1p3) -> data
ARITH (ccreg LAND 161df) +
IF ((1p1 LIAND 1610f) + 1p2 IAND 16r0f) +1p3) > 1010f THEN 16r20 ELSE 0 FI,

FN ACARRY = (resultipl, data cereg) -> data
ARITH (ccreg JAND 16rfc) +1F 1p1 > 255 THEN 1 ELSE 0 F],

FN SCARRY = (resultpl, data ccreg) - > data
ARITH (ccreg LAND lorfe) + IF 1p1> 255 THEN 0 ELSE 1 Fl,

FN DCARRY = (result pl, datacereg) > data
ARITH ccreg IOR 1F 1p1 > 255 THEN 16r01 ELSE 0 Fl,

FN OVERFLOW]1 =(data 1p! 1p2 output ccreg) - > data
ARITH (ccreg LAND 16rfd) + IF ((1p? LAND 16r80) = (1p2 LAND 16180))
AND ((1p1 LAND 16180) /= (outpwt IAND 16r80))
THEN 16502
ELSE 0
H,

FN OVERFLOW2 =(data: ipl 1p2 output ccreg) -> data’ '
ARITH (ccreg IAND 161fd) +IF ({(1p1 LAND 16r80) = (((INOT ip2) + 1) LAND 16r80))
AND ((ip1 LAND 16180) /= (output IAND 16r80))
THEN 16:02
ELSE 0
FI,

FN OVERFLOWS3 =(data ccreg) -> data: ARITH (ccreg IAND 16rfd),

FN OVERFLOW4 = (result:ipl,data ccreg) -> data
ARITH (ccreg IAND 16rfd) +
IF (((1p1 LAND 16r100) SR 1) IAND (ip1 IAND 16180)) =
(((1p1 IAND 16r100) SR 1) IOR (ipl LAND 16r80)) THEN 0 ELSE 2 FI,

FN OVERFLOWS = (data'ipl ccreg) -> data
ARITH (ccreg IAND 16rfd) +IF 1p1 = 16r80 THEN 2 ELSE 0 FI,

FN ZERO = (data' 1pl ccreg) -> data
ARITH (ccreg LAND 16rfb) +IF 1pl =0 THEN 4 ELSE 0 FI,

FN NEG = (data ip? ccreg) -> data
ARITH (ccreg IAND 16rf7) +IF 1p1> 127 THEN 8 ELSE 0 FI;

FN CCCOUNT = (data ccreg) -> data
ARITH (ccreg + 16r40) LAND 16rff,

FN CCRESET = (data ccreg) -> data
ARITH ccreg IOR 1610,

VAR answer = re/Q,

output = da/0,
newee = ccreg,

CASE st

OF adda}addb)aba (answer: = ADDBYTE(inputl,input2, by/0);
output: = CHOPDATA answer),
adcaladch (answer = ADDBYTE(inputl, input2, CASE TRUEBIT(ccreg,da/1)
OF hbv1
ELSE bi/0
ESAC),output = CHOPDATA answer),
anda}andb: (answer := ANDBYTE (inputl, wput2);output: = CHOPDATA answer),
bita}bitb: (answer .= ANDBYTE (mnputl, input2);output: = inputl),
clralclrb|clr (answer := re/Q;output .= da/0),
cmpa)cmpbicpxicba (wer = ADDBYTE (uoputl, CHOPDATA NOTBYTE wmput2, byl);
output: =CHOPDATA answer),
comaj comb|com: (answer := NOTBYTE mputl, output.= CHOPDATA answer),
daa: (answer := DAABYTE (inputl,ccreg), output := CHOPDATA answer),
pega}neghbineg: (answer = ADDBYTE (CHOPDATA NOTBYTE input1,da/0,bi/1);
output: = CHOPDATA answer),
decaidech|dec: (answer - = ADDBYTE (inputl, da/255, bi/0);outpat, = CHOPDATA answer),
coralcorb (answer := ANDBYTE (CHOPDATA ORBYTE (inputl,input2),
CHOPDATA NOTBYTE CHOPDATA ANDBYTE (inputl,iaput2)),
output'= CHOPDATA answer),
inca!incblinc (amswsr = ADDBYTE (inputl, da/1, bi/0);output : = CHOPDATA answer),
ldaa!staa!ldab!stab!ldx|stx]lds|sts)tab/tba.
(answer = ADDBYTE(da/0,input2,bi/0);output: =input2),
oraalorab (answer = ORBYTE (inputl, input2),output = CHOPDATA answer),
rolajrolbirol (answer = ADDBYTE (inputl, inputl,CASE TRUEBIT(ccreg,da/1)
OF h.bv1
ELSE by
ESAC),output = CHOPDATA answer),
sorairorblror (answer = SRBYTE ADDBYTE (wnputl, CASE TRUEBIT(ccreg,da/1)
OF h das255
ELSE da/0
ESAC,
CASE TRUEBIT(ccreg,da/l)
OF h bt
ELSE by
ESAC),output = CHOPDATA answer),
asla)asibjasl (amswer = ADDBYTE (uputlunputl, by0),output = CHOPDATA answer),
asrajastbiasr (answer = SRBYTE ADDBYTE (unputl, CASE TRUEBIT(ccreg,da/l)
OF h daf255
ELSE da/0
ESAC,
CASE TRUEBIT(ccreg,da/1)
OF h bi1
ELSE by0
ESAC),output = CHOPDATA answer),
Isra}lsrb;lsr (answer = SRBYTE ADDBYTE (uputl, da/0, b0),
output = CHOPDATA answer),
subaisubbisba (answer = ADDBYTE (inputl, CHOPDATA NOTBYTE input2, bi'l),
output = CHOPDATA answer),

13

sbca!sbeb. (answer := ADDBYTE (inputl, CHOPDATA NOTBYTE input2,
CASE TRUEBIT(ccreg,da/1)
OF h:bi/0
ELSE bi/1
ESAC);output: = CHOPDATA answer),
tsta)tstb!tst- (answer := ADDBYTE (inputl, da/0, bi/0),
output' = CHOPDATA answer),
dex|des (answer :=CASE TRUEBIT (ccreg,da/16r40)
OF h: ADDBYTE (inputl, da/255, bi/0),
I CASE input2
OF da/16rff ADDBYTE(input1,da/255,b1/0)
ELSE ADDBYTE (mnputl, da/0, by0)
ESAC
ESAC; output ‘= CHOPDATA answer),
inx}ins (answer *=CASE TRUEBIT (ccreg,da/16rc0)
OF h. ADDBYTE (iputl, da/1, bi/0),
1 CASE input2
OF da/16r00 ADDBYTE(inputl,da/1,bi/0)
ELSE ADDBYTE(inputl,da/0,bi/0)
ESAC
ESAC, output = CHOPDATA answer)
ESAC,

newce = CASE st
OF adda|addb!aba HALFCARRY (inputl,mnput2, newce, by/0),
adca'adchb. HALFCARRY (wputlanput?, newee, CASE TRUEBIT(ccreg,da/l)

OF b bu1
ELSE b0
ESAC)
ELSE newcc
ESAC,

newce = CASE mst
OF adda)addb;aba}adcaadcb clra’clrbicoma) comb nega!
negb rola)ro'b rotalrorb)asla!aslb asra; asrblsra;lsrb
!1sta;tsth) clr i com ! negrol)ror! asl|asrilsr tst
ACARRY (answer,newcc),
daa DCARRY (answer,newcc),
cmpa; cmpb | cba)subb sbea | sbeb)suba)sba SCARRY (answer,newce)
ELSE newcc
ESAC,

-+

newce := CASE inst
OF adda!adca!adcb!addb|aba}daaOVERFLOW1 (inputl,mput2,output,newcc),
incancbimnc OVERFLOW1 (mput1,da/l,output,aewcc),
suba! subb}sbca! sbeb! cmpa| cmpb| cba! sba*OVERFLOW? (inputl,input2,
CHOPDATA answer,newcc),
deca!decb!dec OVERFLOW2 (1npuil,da/l,output,newcc),
anda! andb:bxta:bnb:clra:clrb{coma{comb'.cora:eorb:ldaaildab:tab
Itba!oraa}orab!staa!stab]tsta|tsth| clr|com|tst
OVERFLOW3(newce),
rola!rolb|rora!rorb}asla) aslb|asra]asrb)lsra} 1stb.OVERFLOW4 (answer,newcc),
nega{negb!roliror|asljasr}lsrineg: OVERFLOWS5 (output,newcc),
cpx: CASE TRUEBIT(ccreg,da/16r40)
OF | OVERFLOW? (input1,input2, CHOPDATA answer,newcc)
ELSE newce
ESAC
ELSE newce
ESAC;

newce 1= CASE inst
OF cpx!dex|inx; ldx;1ds stx sts
CASE TRUEBIT (ccreg,da/16r¢0)
OF h. ZERO (outpui, newcc),
I CASE TRUEBIT (ccreg,da/16104)
OF h. ZERO (output,newce)
ELSE newce
ESAC
ESAC,
des'ins pewce
ELSE ZERO (output,newec)
ESAC,

newce .= CASE st
OF dex|desiinsjnx newce,
cpx!ldx!ids!stx!sts CASE TRUEBIT (cereg,dastordd)
OF h NEG (output,newcc)
ELSE newcc
ESAC
ELSE NEG (output,newcc)
ESAC,

pewce = CASE st

OF clc CHOPDATA ANDBYTE (ccreg, da/16rfe),
ch CHOPDATA ANDBYTE (ccreg, da/l6ref),
clv CHOPDATA ANDBYTE (ccreg, da/16rfd),
sec CHOPDATA ORBYTE (ccreg, da/16r01),
se1 CHOPDATA ORBYTE (ccreg, da/16r10),
sev. CHOPDATA ORB 1 E {ccreg, da/16r02),
tap CHOPDATA ORBYTE (inputl, da’16rc0)

ELSE newcc

' ESAC,

newcc = CASE inst

OF cpx|dex!des|inx!ins}ldx}lds!stx!sts

CASE TRUEBIT (ccreg,da/16rc)
OF b. CCCOUNT (newcc),
1: CCRESET (newcc)

ESAC

ELSE newce

ESAC;

OUTPUT (CASE inst
OF cmpa|cmpb | cpx: inputl,
tpa newee
ELSE output
ESAC, newcc)
END

16

g

#Decision Logic#

FN BRANCH = (mnemonic'inst,address.addrbuf pe,data-cc) -> address:
CASE inst
OF bra addrbuf,
bec CASE TRUEBIT(cc,da/16r01)
OF I' addrbuf
ELSE pc
ESAC,
bes: CASE TRUEBIT(cc,da/16r01)
OF b addrbuf
ELSE pc
ESAC,
beq CASE TRUEBIT(cc,da/16r04)
OF h addrbuf
ELSE pc
ESAC,
bge CASE (TRUEBIT(cc,da/16r08), TRUEBIT cc,da/16r02))
OF (h,b)! (L}). addrbuf
ELSE pc
ESAC,
bgt CASE (TRUEBIT(ce,da/16r04), TRUEBIT(cc,da/16r08), TRUEBIT(cc,da/16102))
OF (Lh,b)! (L1} addrbuf
ELSE pc
ESAC,
bhi CASE (TRUEBIT(cc,da/16r04), TRUEBIT(cc,da/16r01))
OF () addrbuf
ELSE pc
ESAC,
ble CASE (TRUEBIT(cc,da/16r04), TRUEBIT (¢¢,d4'16r08), TRUEBIT(cc,da16r02))
OF (Lh,h) (LLY) pc
ELSE addrbuf
ESAC,
bls CASE (TRUEBIT(cc,da/16r04), TRUEBIT(<¢,da/16r01))
OF (L1} pc
ELSE addrbuf
ESAC,
blt CASE (TRUEBIT(¢c,da16r08), TRUEBIT(cc,da’16r02))
OF (b))} (Lb) addrbuf
ELSE pe
ESAC,
bmi CASE TRUEBIT(cc,da/16r08)
OF b addrbuf
ELSE p:
ESAC,
boe CASE TRUEBIT(cc,da/16r04)
OF | addrbuf
ELSE pc
ESAC,

17

bve: CASE TRUEBIT(cc,da/16r02)
OF 1: addrbuf
ELSE pc
ESAC,
bvs: CASE TRUEBIT(cc,da/16r02)
OF h. addrbuf
ELSE pc
ESAC,
bpl: CASE TRUEBIT (cc,da/16r08)
OF 1: addrbuf
ELSE pc
ESAC

ESAC.

1%

#Instruction Decoder#

FN ADMODE = (balfbyte wput) -> addrmode
CASE input
OF hb/16r0} hb/16r1! hb/16r3 | hb/16r4 | hb/16r5 mplied,
hb/16r2 relative,
hb/16r6 | hb/16ra|hb/16re 1ndex,
bb/16r7, hb/16rb} hb/16xf. extnd,
hb/16r8! bb/16r¢: immed,
hb/16r9}hb/16rd direct
ESAC

FN MNEMONIC = (halfbyte: input, balfbyte mode) - > (mnemonic)
CASE input

OF bb/16r0: CASE mode

OF hb/16r1 sha,
hb/1612. bra,
hb/1673 tsx,
hb/16r4 nega,
hb/16r5 negh,

bb/(16r6 16r7) neg,
hb/(16r8. 161b) suba,
hbs(16rc 16rf) subb

ESAC,
hb/16r1* CASE mode
OF hb/16r1 cba,
hb/16r3: ms,

bb/(16r8 16rb). cmpa,
hb/(16rc i6rf) cmph

ESAC,
hb/16r2 CASE mode
OF hb/16r0 nop,
hb/16r2 bhy,
bb/16r3 pula,

hb/(16r8 16rb) sbea,
hb/(16r¢ 16rf) sbeb

ESAC,
hb/16r3 CASE mode
OF hb/16r2 bls,
bb/16r3 pulb,
hb/16ra coma,
hb/16r5 comb,
hb/(16r6 16r7) com
ESAC,

1%

hb/16r4. CASE mode

OF hb/16r2 bee,
. hb/1613 des,
i hb/16r4 Isra,
hb/16r5 Isrb,

bb/(1676..16r7) lsr,
hb/(16r8..16rb) anda,
bb/(16rc..16rf) ardb

ESAC,
hb/16r5 CASE mode
OF hb/16r2: bes,
hb/161r3: txs,

hb/(1618..16rb). bita,
hb/(16rc..161f) bitb

ESAC,
bb/16r6 CASE mode

OF bb/1610 tap,
hb/16r1 tab,
bb/16r2: boe,
hb/16r3 psha,
hb/16r4 rora,
hb'16r5 rorb,

hb/(16r6 1617) ror,
hb/(16r8 16rb) ldag,
hb/(16rc 16rf) 1dab

ESAC,
hb/16r7 CASE mode

OF bb/16r0 pa,
hb/16r1 tba,
hb16r2 beg,
hbi6r3 pshb,
hb/16r4 asra,
hb/1615 asth,

hb/(16r6 1617) asr,
hb/(1619 16rb) staa,
hb/(16rd 161f) stab

ESAC,
hb/16r8 CASE mode
OF hb/16r0 nx,
hb/1612 bve,
hb/1614 asla,
hb/1615 aslb,

hb/(1616 16:7) asl,

hb/(16:8 16rb) cora,

hb/(16rc 16rf) eorb
ESAC,

20

hb/16r9. CASE mode

OF hb/1610: dex,
hb/16r1 daa,
hb/16r2: bvs,
hb/16r3: rts,
hb/16r4, rola,
hb/1615: rolb,

hb/(16r6 .16r7): rol,
hb/(16r8 .16rb): adca,
bb/(16rc..16rf): adch

ESAC,
hb/t6ra CASE mode
OF hb/16r0 clv,
hb/16r2; bpl,
bb/16r4: deca,
hb/16r5 dech,

hb/(1616. 16r7) dec,
bb/(16r8 .161b) oraa,
hb/(16rc 16¢f) orab

ESAC,
bb/16rb CASE mode
OF hb/1610 sev,
hb/16r1 aba,
hb/16r2 bo,
bb11613: m,

bb/(16r8..16rb) a:‘lda,
hb/(16rc 161f) addb

ESAC,
bb/l6rc CASE mode
OF hb'16r0) cle,
hb16r2 bre,
hb16ra mea,
hb/16rs inch,

bb/(1616 16r7) 1nc,
hb/(16:8 16rb) cpy

ESAC,
hb/16rd CASE mode
OF bb/1610) sec,
hb/1612 blt,
hb/i6ra (sta,
hb/16r5 tstb,
bb/(1616 16:7) tst,
bb/1618 bsr,
bb/(16ra .16rb) jsr
ESAC,

bb/16re CASE mode

OF bb/16r0 cli,
bb/i6r2: bat,
hb/16r3: wai,

hb/(1616..16:7). jmp,

hb/(16r8..16b). 1ds,
hb/(16rc. 16rf) ldx
ESAC,

hb/16rf. CASE mode

OF bb/1610. s,
hb/16r2: ble,
hh/16r3 sW,
hb/16r4, clra,
hb/16r5 clrb,
Bb/(1616..16r7)- clr,
hb/(16r9 16rb) sts,
bb/(16rd 161f) stx
ESAC

ESAC

#Counting and Type-Swapping Functions#
FN COUNTSET = (count: a b) -> count:ARITH a+b

FN HOWLONG = (mnemon:c function, addrmode mode) - > count.
COUNTSET (CASE function

OF jmp co0/0,
staa:stab:clra:clrb:comalcomb:ncga:ncgb:dcca:decb:mca:incb:rola:rolb:
rora!rorb!asla aslb|asra}asrb!lsra}lsrb} tsta|tstb | cpx;ldx}lds!tbatab
1aba!cbaldaa!nop!clc!cliiclvisec)serlsevitapitpa co/2,
clr:com:ncg:dcc'.inc:rol:ror:asl:asr:lsr:tst co/3,
psha!pshb!pula!pulb!dexides!mx! s} txstaxsx co/4,
bsrirts co/s,
jsr: CASE mode OF extnd co/6 ELSE co/4 ESAC,
wai co/9,
it c0/10,
sw1)nmi}rq, co/12
ELSE co/l

ESAC,

CASE mode
OF immed co/l,
direct co/2,
index co/4,
extad | relative co/3
ELSE co/0

ESAC)

FN COUNTDOWN = (count nput) -> count ARITH nput-1

FN COMPARECOUNT = (count mputl inputl) -> count
ARITH IF (snputl-nput2) >0 THEN wputl - input2 ELSE 0 F1

FN INCADDR = (address wput) -> address ARITH IF wmput = 65533 THEN 0 ELSE wmput +1 F}
FN HINYBBLE = {data wput) -> halfbyte ARITH (nput IAND 16rf0) SR 4

FN LONYBBLE = (data wpul) -> halfbyte ARITH (nput IAND 16r0f)

FN MAKEADDRESS = (data mput! mput2) - > address ARITH 256*imputl + input2

FN MAKEDATA. = (balfbyte wputl mput2) - > data ARITH 16*1nputl +mput2

FN HIBYTE = (address. input) -> data ARITH (input LAND 16rff00) SR &

FN LOBYTE = (address wput) -> data ARITH (nput 1AND 16r00ff)

FN UP6800 =
BEGIN SEQ
PVAR a::= ?2data,

#Main Microprocessor Control Logic#

b= 2data,

x = address,

sp: = 7address,

pe = ?address,

cc. = 7data,
writeenable.: = flag,
addrbus :. = 2address,
addrbuf :: = ?address,
databus * = 2data,
intercount ::= ?count,
admode * = ?addrmode,
inst ;1= ?mnemonic;

CASE halt

OF h

(data input,flag reset birq bami halt) - > (data,address,flag)

TCSCl circuit

(CASE reset

OF | (p¢,admode, inst,intercount,cc)
* = (ad/16rfffe,extnd ymp,co/d,da/16rd0)
ESAC,

3*

housckeeping
databus = nput,
writeenable = |

intercount . = COUNTDOWN mtercount,

CASE itercount

OF co/0 (CASE bnmi
OF | (st = nmi, intercount = co/12)
ESAC,
CASE (birq,TRUEBIT (cc,da/16))
OF (1) (st =irq, itercount = co/12)
ESAQ),
¢o/1' CASE st
OF a1 (CASE bnm
OF 1. (st = nmy; intercount = co/4)
ESAC,
CASE (bwq,TRUEBIT (cc,da/16))
OF (LI) (nst =1rq; mtercount = co/d)
ESAC)
ESAC

ESAC,

(inst,admode) := CASE intercount
OF ¢0/0(MNEMONIC (LONYBBLE databus JHINYBBLE

nput), ADMODE HINYBBLE databus)
ELSE (inst,admodc)
C.

(intercount,pc) : = CASE mtercount

OF co/0: (HOWLONG (nst,admode),INCADDR addrbus)
ELSE (intercouat,pc)
ESAC;

MAIN PROCEDURE

*

CASE COMPARECOUNT (wtercount, HOWLONG (inst, implied))
OF co/4

CASE admode

OF index:(addrbus = pe;pe = INCADDR addrbus)
ESAC,
co/3

CASE admode

OF extod (addrbus = pe, pe = INCADDR INCADDR add:bus),
index addrbuf = x,

relaive (addrbus = p¢, pc = INCADDR addrbus)
ESAC,
(2773

CASE admode

OF duect (addrbus = pe, pc = INCADER addrbus),
wdex addrbuf =

MAKEADDRESS(HIBYTE x(ALU(adda LOBYTE x,databus, da’ NP,
extnd (addrbuf,addrbus) =

(MAKEADDRESS (databus,da/0),INCADDR addrbus),
relative addrbuf =
MAKEADDRESS(da’O,(ALU(adda\da!abus,LOBYTE pe, da0))(1])
ESAC,
co/l
CASE admode

OF immed (addrbus = pe, pc = INCADDR addrbus),
direct addrbus = MAKEADDRESS (da'16r0,databus),
mdex (addrbuf =

MAKEADDRESS ((ALU (adca, HIBYTE x,

CASE TRUEBIT (databus.da‘lérsﬂ)
OF h da/161ff
ELSE da/16r00

ESAC,

(ALU (adda,databus, LOBYTE x, da/0)){2)))[1),
LOBYTL addrbuf),addrbus = addrbu),
extod addrbus = MAKEADDRESS (HIBYTE addrbuf, databus),

relative: addrbuf - =
MAKEADDRESS ((ALU (adca, HIBYTE pc,
CASE TRUEBIT (databus,da/16r80)

OF h. da/16rff
ELSE da/16r00
ESAC,
(ALU (adda,databus, LOBYTE pe,da/0))[2]))[1},
LOBYTE addrbuf)
ESAT
co/) CASE COMPARECOUNT (HOWLONG (1nst, implied),intercount)
OF co/0
CASE
inst

OF adda|adca)anda|bita/clra} cmpa! coma|deca!eoraldaa)tpa)
inca)nega)oraarolalrora)asla)asralsra)sbea)daa)subatsta:
(a, cc, addrbus) =
BEGIN
LET accl = ALU(mst, a, databus, cc)
OUTPUT (accl[1],acc1|2],pc)
END,
staa (databus, cc ,writeenable) =
BEGIN
LET acc2 = ALU(inst, databus, a, cc)
OUTPUT (acc2[1],acc2[2),b)
END,
addb|adcb | andbibitb ! clrb!cmpb ! comb) dech | eorb!idab)
wincb | negb | orabirolb rorb)aslb) asrb}lsrb|sbeb subbtstb
(b, cc, addrbus) =
BEGIN
LET becl = ALU(inst, b, databus, cc)
OUTPUT (becl{l),becl|2],pe)
END,
stab (databus, cc wrieenable) =
BEGIN
LET bec? = ALUQnst, databus, b, cc)
OUTPUT (bee2f1],bee{2),h)
END,
abaicbaitba (acc) =
BEGIN
LET acc3 = ALU (inst, a, b, cc)
OQUTPUT (acc3|1),acc3|2))
END,
tab. (bcc) =
BEGIN
LET acc4 = ALU (inst, b, a, cc)
OUTPUT (acc4{1},acc4|2])
END,

13

tst! clr! com!neg! dec!inc|rol}ror|asl|asr}lsr:
(Jatabus, cc, writeenable) 1=
BEGIN
LET dbcel = ALU(inst, a, databus, cc).
OUTPUT (dbecl{1},dbecl[2),h)
END,
clcicli} clvisec!sei)sevitap.
cc:= (ALU(ust,a,databus,ce))f2],
bra:boc:bu:beq}bgc:bgt:bhi:ble:b]s:blt:bmi:bne{bvc‘.bvs}
bpl. addrbus := BRANCH (inst,addrbuf,pe,cc),
X.
(addrbus -= INCADDR addrbus,
pc := INCADDR pc;
c¢ *= (ALU (cpx, HIBYTE x, databus, cc))[2]),
Idx-
(addrbus : = INCADDR addrbus,
pc = CASE admode
OF immed' INCADDR pc
ELSE pc
ESAC,
(xcc) =
BEGIN
LET xcc = ALU(inst,da/0,databus,cc)
OUTPUT (MAKEADDRESS(xcc(1], da/0)xec[2])
END),
nx; dex
(xec) =
BEGIN
LET xccl = ALU(Qnst,LOBYTE xdatabus,cc)
OUTPUT (MAKEADDRESS(HIBYTE x, xcc1{1}),xec1{2])
END,
s ! des:
(spice) .=
BEGIN
LET speel = ALU(unst LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp, specl(1]),specif2])
END,
1ds
(addrbus = INCADDR addrbus,
pc = INCADDR pe,
(sp.cc) =
BEGIN
LET spec2 = ALU(wnst,da/0,databus,cc)
OUTPUT (MAKEADDRESS(spcc2{1],da/0),spee2(2])
END),
stx.((databus, cc) =
BEGIN
LET xccd = ALU(sx, databus, HIBYTE x ,cc)
OUTPUT (xccd|1}xccd[2])
END, writeenable . = b),

sts:((databus, cc) =

BEGIN
LET spcee3 = ALU(sts, databus HIBYTE sp ,cc)
OUTPUT (spcc3{i),spec3[2))
END, writeenable .= h),
tsx
(x,cc) 1=
BEGIN
LET xcc6 = ALU(ins, LOBYTE sp,databus,cc).
OUTPUT(MAKEADDRESS(HIBYTE sp, xcc6[1]),xcct[2])
END,
xs
(spiec) * =
BEGIN

LET xcc7 = ALU(des, LOBYTE x,databus,cc).
OUTPUT(MAKEADDRESS(HIBYTE x, xcc7]1]),xec7[2])
END,
psha (databus,addrbus,writeenable) .= (a,sp,b),
pshb: (databus,addrbus,writeenable) ‘= (b,sp,b),
pula|pulb (sp,cc) :=
BEGIN
LET spced = ALU(ins,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp, spccd{1]),specd[2])
END,
jsribsr'(addrbuf =pc;
pc =addrbus, addrbus =sp, databus =
LOBYTE (addrbuf), writeenable =4,
(sp,cc) =
BEGIN
LET specS = ALU(des,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp, specS|1]),specS|2])
END),
SWIiirq ! nmi| wat
(addrbuf =pc, addrbus =sp, databus =
LOBYTE (addrbuf), writeenable =h,
(spicc) =
BEGIN
LET specd2 = ALU(des LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp, spccd2[1]),specd?[2])
END),
rtsrte (addrbus. = sp, (sp,ec) =
BEGIN
LET spect = ALU(ins, LOBYTE sp,databus cc).
OUTPUT(MAKEADDRESS(HIBYTE sp,spect|1]),specs|2])
END)
ESAC,

co/1

CASE inst

OF stx|sts:addrbus := INCADDR addrbus,
clra}clrb)coma! comb|negainegbidecadecb!inca}ncb!}rola!
rolb)rora)rorb!asla)aslb)asral asrb!lsra!lsrb)tstal tstbiaba
{daa!tbatab!cba)clc!ch!clv!secisei!sev!tap)tpa)nop:
addrbus = pe,
cpx}ldx:
(addrbus : = pc;
(xee) =
BEGIN
LET xcc2 = ALU(inst, LOBYTE x,databus,cc).
OUTPUT (MAKEADDRESS(HIBYTE x, xcc2[1])xcc2[2])
END),
Ids
(addrbus ' = pc,
(SP,CC) =
BEGIN
LET spcc7? = ALU(inst, LOBYTE sp,databus,cc).
OUTPUT(MAKEADDRESS(HIBYTE sp, spec7[1]),spec7|2])
END),
pshaipshb (sp,cc) =
BEGIN
LET spcc8 = ALU(des, LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp, spcc8[1]),spcc8[2])
END,
pula! puib
((sp,ec) =
BEGIN
LET spec9 = ALU(ns,HIBYTE sp,LOBYTE sp,cc).
OUTPUT (MAKEADDRESS(spcc9[1),LOBYTE sp),spcc9|2])
END, addrbus . = sp),
dex!nx
(xcc) =
BEGIN
LET xc¢3 = ALU(inst, HIBYTE x,LOBYTE x,cc)
OUTPUT (MAKEADDRESS(xcc3|1}LOBYTE x),xcc3|2))
END,
des|ins
(spice) *=
BEGIN
LET specl0 = ALUGinst, HIBYTE sp,LOBYTE sp,cc).
OUTPUT(MAKEADDRESS(spcc10{1],LOBYTE sp),spect0[2])
END,
tsx
(xec) =
BEGIN
LET xcc8 = ALU(ins,HIBYTE sp, LOBYTE x,cc)
OUTPUT(MAKEADDRESS(xcc8[1),LOBYTE x),xcc8[2])
END,

29

—

s
(sp, cc) 1=
BECIN
LET xcc® = ALU(des,HIBYTE x, LOBYTE sp,cc).
OUTPUT(MAKEADDRESS(xcc9{1,LOBYTE sp),xcc9(2])
END,
staajstab addrbus .= pc,
jstibsriswilirg) nm{war ((sp,ec) :=
BEGIN
LET speell = ALU(desHIBYTE sp LOBYTE sp,cc).
OUTPUT(MAKEADDRESS(spec11{1],LOBYTE sp),specll(2])

addrbus = sp; databus: = HIBYTE addrbuf;

writeenable : = h;

(spiee) :=

BEGIN
LET spcc12 = ALU(des LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spcci2[1]),spee12[2])

END),

rts)rte ((sp,ec) =

BEGIN
LET specl3 = ALU(ns,HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spcc13{1],LOBYTE sp),speel3|2))

END, addrbus = sp, (sp,cc) =

BEGIN
LET spccld = ALU(ins, LOBYTE sp,databus,cc).
OUTPUT(MAKEADDRESS(HIBYTE sp,spccl4{1]),spec14(2))

END)

ESAC,

co/2
CASE inst
OF stx:((databus, cc) : =
BEGIN
LET xcc5 = ALU(stx, databus,LOBYTE x ,cc).
OUTPUT (xcc5|1}xce5[2])
END; writeenable - = b),
tst!clr}com!neg!dec)ncirolroraslasr!lsr
addrbus := pc,
psha|pshb: (sp,cc) 1=
BEGIN
LET specl5 = ALU(des,HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spcc15{1],LOBYTE sp),spccl5f2})
END,
pula: a* = databus,
pulb: b = databus,
jsribsr: (sp,cc) =
BEGIN
LET speci6 = ALU(des,HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spccl6]1],LOBYTE sp),spccl6f2])
END,
s ((spec) =
BEGIN
LET spccl7 = ALU(ins HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spcc17(1),LOBYTE sp),spcc17(2])
END,; addrbus : = sp;
pc := MAKEADDRESS(databus,da/0)),
SW1{irq | am | wai
((spicc) =
BEGIN
LET spect8 = ALU(des HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spcc18{1], LOBYTE sp),spccl8|2))
END,
addrbus = sp, databus = LOBYTE x,
writeenable = h,
(sp.cc) =
BEGIN
LET spccl9 = ALU(des,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spccl9{1]),spec19f2))
END),
i ((sp.ec) =
BEGIN
LET spcc20 = ALU(uns,HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spcc20{1),LOBYTE sp),spcc20{2])
END, addrbus = sp,
cc = databus,
(spiec) =
BEGIN
LET spcc2t = ALU(ins,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spcc2i{1])),spec21{2])
END)
ESAC,

31

co/3:

CASE i=st
OF «ts|stx| psha! pula| pshb! pulb! dex! des!1nx!1ns | txs ! tsx:
addrbus := pc,

rts: pc := MAKEADDRESS(HIBYTE pc,databus),
jsribsr: addrbus = pc,
swi}irq|nmi}wai ((sp,cc) :=
BEGIN
LET spcc22 = ALU(desHIBYTE sp,LOBYTE sp,cc).
OUTPUT(MAKEADDRESS(spcc22[1},LOBYTE sp),spec22[2])
END, addrbus : = sp; databus. = HIBYTE xwritecnable - = b; (sp,cc) =
BEGIN
LET spce23 = ALU(des,LOBYTE sp,databus,cc).
. OUTPUT(MAKEADDRESS(HIBYTE sp,spee23(1]),spec23(2])
END),
((spicc) .=
BEGIN
LET spcc24 = ALU(ins,HIBYTE sp,LOBYTE sp,Cc).
OUTPUT(MAKFADDRESS(spcc24[1),LOBYTE sp),spee24(2])
END; addrbus .= sp; b = databus, (sp,cc) :=
BEGIN
LET spcc25 = ALU(ins,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spec25[1]),spec25[2))
END)

.

ESAC,
co/4
CASE st
OF rts' addrbus, = pc,
swiirqinmi‘ wai ((sp,cc) =
BEGIN
LET spcc26 = ALU(des,HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spcc%[l],LOBYTE 5p),spec26[2])
END,
addrbus = sp, databus' = a,
writecnable = b,
(spice) =
BEGIN
LET spcc2] = ALU(des,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE spspec2(1)),spec27f2))
END),
. ({sp.cc) =
BEGIN
LET spcc28 = ALU(insHIBYTE sp,LOBYTE sp,ec)
OUTPUT(MAKEADDRESS (spcc28(1),LOBYTE sp),spce28(2])
END, addrbus = sp,
a = databus,
(spec) =
BEGIN
LET spcc29 = ALU(ins, LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE $p,spce29]1)),spec29]2))
END)
ESAC,

co/S.
CASE inst
OF swiirq | nou| wai'
((spsec) =
BEGIN
LET spec30 = ALU(desHIBYTE sp,LOBYTE sp,cc).
OUTPUT(MAKEADDRESS(spcc30{1}, LOBYTE sp),spee30[2))
END,
addrbus := sp; databus'= b; writeenable := b,
(sp,cc) i =
BEGIN
LET spec3! = ALU(des,LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spec31[1]),spec31{2})
END),
rti: ((sp,cc) 1=
BEGIN
LET spee32 = ALU(ins, HIBYTE spLOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spcc32({1),LOBYTE sp),spec32[2])
END; addrbus : = sp, x:= MAKEADDRESS(databus,da/0);
(SP»CC) =
BEGIN
LET spce33 = ALU(ins,LOBYTE sp,databus,cc).
OUTPUT(MAKEADDRESS(HIBYTE sp,spec33f1]),spec33|2])
END)
ESAC,
co/6
CASE st
OF swiirq| nmi; wai
((spiec) =
BEGIN
LET spec34 = ALU(des, HIBYTE sp,LOBYTE sp,cc)
OUTPUT(MAKEADDRESS(spce34{1},LOBYTE sp),spee34|2])
END,
addrbus = sp, databus = cc,
wniteenable = h,
(spicc) . =
BEGIN
LET spce3s = ALU(des, LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spee3S[1]),spec3s|2))
END),
i ((spec) =
BEGIN
LET spcc36 = ALU(uns HIBYTE sp,LOBYTE sp,cc).
OUTPUT(MAKEADDRESS(spec36[1},LOBYTE sp),spcc36(2))
END, addrbus = sp,
x.= MAKEADDRESS(HIBYTE x,databus),
(sp,cc) =
BEGIN
LET spec3? = ALU(ins LOBYTE sp,databus,cc)
OUTPUT(MAKEADDRESS(HIBYTE sp,spec3?[1]).spec3?(2])
END)
ESAC,

33

ESAC)
ESAC,

END

cof7:
CASE inst
OF swi}irq)nmi}wai
((spice) *=
BEGIN
LET spcc38 = ALU(des,HIBYTE sp,LOBYTE sp,cc).
OUTPUT(MAKEADDRESS(spcc38[1,LOBYTE sp),spcc38{2])
END; cc:= (ALU(sei,da/0,da/0,cc))[2]),
rti: ((spec) i=
BEGIN
LET spcc39 = ALU(insHIBYTE sp,LOBYTE sp,cc).
OUTPUT(MAKEADDRESS(spcc39{1},LOBYTE sp),spcc39[2])
END, addrbus : = sp,
pc = MAKEADDRESS (databus,da/0))
ESAC,
co/8
CASE inst
OF sw1 addrbus = ad/16rfffa,
irq addrbus = ad/16rfff8,
am: addrbus: = ad/16rfffc,
i pc = MAKEADDRESS (HIBYTE pc,databus),
wai ntercount = co/2
ESAC,
co/9’
CASE st
OF swi:(pc. = MAKEADDRESS(databus,da/0), addrbus. = ad/16rfffb),
rq:(pc = MAKEADDRESS(databus,da/0), addrbus' = ad/16r£ff9),
nmu (pc = MAKEADDRESS(databus,da/0), addrbus =ad/16xfffd),
rtr addrbus =pc
ESAC,
co/10
CASE inst
OF swilirqinm pc = MAKEADDREMS(HIBYTE pe,databus)
ESAC,
co/ll
addrbus = pc

ESAC

OUTPUT (databus,addrbus,wniteenable)

#External Memory and Test Harness#
FN MAKERAM = (data,address,address,flag) - > data RAM (da/16r0).
FN DEL = (data) -> data: DELAY (das1610,1)

FN HARNESS = (flagreset birq bnmy, data hexf000 hexf01 hexf002) - > [3)data:
BEGIN
MAKE UP6800: micproc,

DEL: delay olatch? olatch2 olatch3,

MAKERAM: ram

JOIN reset -> micproc[2],
CASE micproc|2]

OF ad/16:f000" hexf000,
d/16rf001: hexf001,
ad/16rf002: hexf002

ELSE ram
ESAC -> delay,
delay - > micproc|1),
(mcproc[1],mxcproc[2].m1cproc[2],mcproc[3])- >ram,
birg -> micproc(3), #iq#
bomu -> mucproc(d), #nmi#
h - > micproc3), #halt#
CASE micproc(2)
OF ad/16re000. micproc|1]
ELSE olatchl
ESAC -> olatchl,
CASE micproc[2)
OF ad/16r¢001 mucproc(1]
ELSE olatch2
ESAC - > olatch2,
CASE micproc[2)
OF ad/16re002 micproc(1]
ELSE olatch3
ESAC -> olatch3

OUTPUT (olatch,olatch2,olatch3)
END

35

Z Appendix B: Programs
The following programs all work on my ELLA description of the 6800 microprocessor.
They are held on disk by the ELLA group at DRA Malvern To run any program the programs initialise
and monitor must be stored as [6800]microinit el and [6800}monitor.eli since all the other
programs call these
Note: i) co is a simulator command for comment 1 have left them in for completeness

1) These programs have been modified shghtly from when they were originally wnitten because
of changes to the reset arcuitry. They run on the model described above

iif) If you wish to see the microprocessor operating the following node names are useful to

monitor:

micproc pc program counter
micproc.admode addressing mode
micproc.inst Istruction mnemonic
mucproc.databus value on the data bus
micproc addrbus value on the address bus
mICproc.a accumulator a
micproc.b accumulator b
mICProc.x index register

micproc sp stack pomter

micproc cc condition code regster

Initiahse

co This program performs a reset by setting parameter 1low for 1 umestep, clears the a, b and x, 1egisters,
co sets the stack pomnter to & 7fff, clears the condition codes register and jumps to location &0004
simulatefn HARNESS

cp1h b da/0 da/0 da/0

wam ram [16r8000] da/1674f, co reset clra

wam ram [16r8001) da/16r5[, co clrb

iram ram [16r8002] da/16r8e, co Ids #&7fff

wam ram [16r8003] da/16r7f,

wram ram {1678004] da/16rft,

sam raw 116:8005) da/lorce, co ldx #&0000

1ram ram {16:8006] da/16r00,

iram ram {16r8007] da/16r00,

iram ram [16r8008] da/16r06, co tap

irars ram [16r8009) das16r7¢, co Jymp &000a

iram ram [16r800a) da/16r00

iram ram [16r800b] da/16r0a

iram ram [16rfffe] da/16r80, co define address to jump to on reset
iram ram [16¢£fff] da/16r00

6 +1

o [1b

Monitor

¢o This program allows the onhine changing of a program by performing an nmi

co (make input {3] low for 1 cycle with mputs (4. 6] holding the appropniate

co values). Input {4] controls the function as follows:

co da/0 advance counter and display with contents of that location

co da/l change contents of location to value of input [5]

co da/2 load counter with contents of input [5.6)

co da/3 execute your program starting at location defined by counter

o Thus to call the monitor typs (from the simulator) cp [3 .6} 1 da/2 da/< address, > da/<address;> ti +7,
cocp [31 b, ti +10.

in [6800]microinit

iram ram [16r9000] da/16rb6, co .memtor Idaa &f000
iram ram [16r9001] da/16rf0

iram ram [16r9002) da/16100

iram ram [16r9003) da/16r84, co anda #&0f
iram ram [16r9004] da/16r0f

iram ram {16r9005) da/16r81, co cmpa #&03
iram ram [16r9006] da/16r03

iram ram [16r9007) da/16123, co bls .valid
iram ram [16r9008} da/16r01

iram ram [16r9009) da/1613b, co Y

ram ram [16r900a] da/16r8¢, co vahd Ids #&7fif
iram ram [16r900b) da/16r7f

iram ram [16r900c] da/16:ff

iram ram [16r900d] da/16r81, co cmpa #4801
iram ram [16r900¢] da/16r01

irsm ram [16r900f] da/16r26, co bnc nochange
iram ram [16r9010] da/16r03

iram ram [16r9011] da/16rbd, co jsr .change

iram am [16r9012] da/16r91
iram ram [16r9013] da/16r00
iram ram [16r9014] da/16181, co nochange cmpa #&01

ram ram [16r9015) da/16r01

iram ram [16r9016] da/16r22, co bhi .noads
iram ram [16r9017} da/16101

iram ram [16r9018] da/16108, co nx

iram ram [16r9019] da/16181, co noads cmpa #&02
wam ram {16r901a) da/16r02

ram ram {16r901b] da/161r26, co bae oldx
iram ram [16r901c} da/16r03
iram ram [16r901d) d./16rfe, co ldx &f001

iram ram (16r501¢] da/16r'D
ram ram {16r901f] da/16r01
iram ram [16r9020] da/16r81, co .oldx cmpa #&03
iram ram {16r9021) da/16r03

iram ram [16r9022] da/16126, co boe print
iram ram {16r9023] da/16r02

iram ram [16r9024) da/16r6e, co jmp &00, x
iram ram [16r9025) da/16100

iram ram {16r9026] da/16re6, co print Idab &00, x
iram ram [16r9027) da/16r00

wram ram [16r9028] da/16rf7, co stab &e002

ram ram {16r9029] da/16re0
iram ram {16r902a) da/16r02
tram ram {16r902bj da/16rff, co stx &e000

37

iram ram {16r902c] da/16re0

wam ram [16r902d] da/16r00

iram ram [16r902¢] da/1613e, co wal

iram ram [16r9100] da/16rf6, co .change Idab &f001
iram ram [16r9101} da/16rf0

iram ram [16r9102} da/16r01

iram ram [16r9103] da/16re7, co stab &00,x
iram ram [16r9104] da/16r00
iram ram [16r9105] da/16r39, co Tts

iram ram {16rfffc] da/16r90, co define nmu address
iram ram {16rfffd) da/16r00

Testprogl

co This is a very simple program which prints out the numbers 1,4,7, by adding 3 to the previous number
co etc.

in [6800]moritor
iram ram [10] da/16:86, co .start ldaa #&01
iram ram (11} da/16:01

iram ram [12] da/16r8b, co adda #&03
wram ram {13} da/16r03
wam ram {14] da/16rb7, co staa &e000

iram ram {15] da/16re0

iram ram {16] das16r00

iram ram [17] da/16r7e, co jmp &000c
iram ram [18] da/16r00

iram ram [19] da/16r0c

tabulated

mc

Testprog2

co This program is the first n a series of Fibonacci sequence programs It
o uses only the a register and only direct, extended and relative addressing
co It was written to run ot the early model which only had six mstructions
in {6800)momitor

iram ram [10) da/16r86, co .start Idaa #&00

iram ram {11] da/16r00

iram ram [12} da/16r97, co staa &00

iram ram [13] da/16r00

iram ram [14) da/16r97, co .loop staa &03

iram ram {15] da/16r03 i
iram ram [16] da/16186, co Idaa #&01 '
iram ram [17} da/16r01

iram ram (18] da/16r97, co staa #&01

iram ram [19] da/16r01

iram ram [20] da/16r96, co ldaa &01 !
iram ram [21) da/16r00 '
iram ram [22] da/16r9b, co adda

iram ram [23] da/16r01

iram ram {24] da/16r97, co staa &02
iram ram [25] da/16r02
iram ram [26] da/16rb7, co staa &e000

iram ram [27)] da/16r¢0
wram ram [28] da/16:00
iram ram [29] da/16r96, co idas &01
iram ram [30] da/16r01

iram ram [31] da/16r97, co staa &00

wam ram [32] da/16r00

iram ram (33] da/16r96, co Idaa &02

ram am [34] da/16r02

wam ram [35] da/16r97, co staa &01

ram ram [36} da’/16r01

wram ram [37} da/'16r%, co ldaa &03

wram ram {38} da/16r03

wram ram {39] da/1or8b, co adds #&01

iram ram [40) da/16r01

wram ram [41] da/16r97, co staa &03

iram ram {42] da/16r03

wram ram {43] da/16r8U, cc suba #&0a 1
wram ram {44) da/16r0a |
iram ram [45) da/16r27, co bne skip

iram ram [46] da/16r03

wramn ram {47) da/16r7¢, co jmp loop

wram ram [48] da/16r00 i
wram ram {49] da/16r14

iram ram [50] da/16r7¢, co Jmp start
iram ram [51} da/16r00

iram ram [52] da/16r0a

tabulated

me

Testprog3
co This Fibonnacc: program uses ndexed addressing
in [6800}monitor

iram ram [10] da/16186, co start ldaa #&00
iram ram {11} da/16r00,

iram ram [12] da/16r97, co staa &00
iram ram {13} da/16100,

iram ram [14] da/16r97, co staa &03
iram ram {15) da/16r03,

iram ram [16] da/16186, co 1daa #&01
iram ram {17} da/16r01,

iram ram [18] da/16r97, co staa &01
iram ram [19] da/16r01,

iram ram [20] da/16rc6, co 1dab #&0a
iram ram {21] da/16r0a,

iram ram [22] da/16r96, co .main ldaa &00
iram ram (23} da/16r00,

wam ram [24] da/l6r9b, co adda &01
iram ram [25] da/16r01,

wam ram [26) da/16r97, co staa &02
iram ram {27] da/16r02,

iram ram [28} da/16rb7, co staa &¢000

iram ram [29) da/16re0,
iram ram [30} da/16r00,
iram ram [31) da/l6rce, co ldx #&0001
iram ram (32} da/16r00,
iram ram [33] da/16r01,
wram ram [34) da/16ra6, co Joop Idaa &00x
iram ram {35] da/16r00,

iram ram [36) da/16r09, co dex

iram ram [37) da/16ra7, co staa &00x
iram ram [38] da16r00,

wam ram [39] da'16108, co inx

iram ram (40} da/16r08, co na

ram ram {41) da/16:8¢, co cpx &0003

wram ram [42] da/16r00,

wam ram {43] d+'16:03,

iram ram [44] da/16r26, co bne loop
iram ram {45) da’16rf4,

wram ram [46) da/16r>a, co decb

wam ram {47} da/16r26, co bne .mamn
wram ram [48) da/16reS5,

wam ram (49} da/16r7e, co ymp start
wam ram [S0] da/16r00,

wam ram {51} da/16r0a,

tabulated

mc

Teatprogd

co This program tests the x register and stack pomter, it places the ten Fibonnaca
¢o numbers generated on the stack and outputs them 1n reverse order.

in [6800}monitor

initiabseram ram [10] da/16r86, co .start Idaa #&00

initialiseram ram [11] da/16r00,

instialiseram ram [12] da/16197, co staa &00
initialiseram ram [13) da/16r00,

initialiseram ram [14] da/16r97, co staa &03
initialiseram ram [15] da/16103,

initialiseram ram [16] da/16r8e, co Ids #&0403
initialiseram ram [17] da/16r04,

initialiseram ram [18) da/16r03,

initialiseram ram [19] da/16r86, co Idaa #&01
initialiseram ram [20] da/16r01,

initialiseram ram (21) da/16r97, co staa &01
initialiseram ram [22] da/16101,

initialiscram ram [23) da/16rc6, co Idab &0a

initialiseram ram [24] da/16r0a,
initialiseram ram [25) da/16r96, co .pain ldaa &00
mitialiseram ram {26] da/16r00,

initialiseram ram [27] da/16r9b, co adda &01
witialiseram ram [28) da/16r01,

initialiscram ram [29) da/16197, co staa &02
initiahseram ram {30] da/16102,

imtialiseram ram [31] da/16r36, co psha
witialiseram ram [32] da/16rce, co Idx #&0001

instialiseram ram [33] da/16r00,
initaliseram ram |34] da/16r01,
initialiseram ram {35] da/16ra6, co loop Idaa &00x
itialiscram ram [36] da/16r00,

mtiabseram ram [37) da/16r0Y, o dex
instialiseram ram [38] da/16ra7, co staa &00,x
utialiseram ram {39] da/16r00,

untiahseram ram [40) da/16r08, co 10X
witialiseram ram [41] da/16r08, co nx
initialsseram ram {42] da/16r8c¢, co cpx &0003
imstialiseram ram [43] da/16r00,

initiabseram ram [44] da/16103,

imualiseram ram [45) da/16r26, co bne loop
inittabseram ram {46) da/16rf4,

initiahseram ram (47} da/16rSa, co decb
imtialiseram ram [48] da/16r26, co boe man
witialiseram ram {49 da/16re7,

mitialiseram ram [50) das16ree, co ldx #&000a

initialiseram ram (51) da/16r00,

imtialiseram ram {52} da/16r0a,

imtiahseram ram {53] da/16r32, co loop2 pula
initialiscram ram {54] da/16rb7, co staa &e000
witiahseram ram [55] da/16re0,

witialiscram ram [56] da/16r00,

witiahseram ram (57) da/16r09, co dex
iniuahseram ram [58] da’16126, co bae loop?
instiahseram ram [59] da/16rf9,

witahseram ram [60] da/1617¢, co ymp start

41

mitialiseram ram [61] da/16r00,
initialiseram ram [62) da/1610a,
tabulated

me

4

Testprogs :
¢o This is another Fibonact: program which tests the jsr nstruction
in [6800)monitor

initialiseram ram (10] da/16r86, co start Idaa #&00
initialiseram ram [11] da/16r00,

initialiseram ram [12} da/16r97, co staa &00
initialiseram ram {13] da/16100,

initialiseram ram [14] da/16197, co staa &03
initialiseram ram [15) da/16:03,

initialiseram ram [16] da/1618e, co Ids #&0401

initialiseram ram {17} da/16:04,
initialiseram ram [18] da/16r01,

intialiseram ram [19] da/16186, co Idaa #&01
imtiahseram ram [20] da/16r01,

initialiseram ram [21] da/16r97, co staa &01
initialiseram ram [22] da/16r01,

initialiseram ram [23] da/16rc6, co Idab &0a

initiahseram ram {24} da/16:0a,
initialiseram ram [25) da/16r96, co mam ldaa &00
initiahseram ram [26] da/16r00,

mtiahseram ram [27) da/1619b, co adda &01
witialiseram ram (28] da/16r01,

initialiseram ram [29) da/16r97, co staa &02
initialiseram ram [30] da/16r02,

imtiahseram ram {31] da/16rb7, co staa &¢000

imtialiseram ram [32] da/16re0,

inttighseram ram [33] da/1¢:00,

imstiahseram ram [34) da/16r36, co psha
imtiahiseram ram {35) das16rbd, co JsT swap
wmitialiseram ram {36] da/16r00,

uetiabseram ram {37} da/16r35,

wnitialiseram ram [38) da/16rSa, co dech
ininaliseram ram {39] da/16r26, co bne mann
iniualiseram ram [40) da/16:f0,

witiabseram ram (41) da/16ree, co Idx #%0004
wutiahseram ram [42] da’16r00,

wntialiseram ram [43) da/16r0a,

uutiahseram ram [44] de/16r32, co loop2 pula

o

imtrabiseram ram {45) da/16r97, co staa &02
imaliseram ram [46] da/16r02,

wutaliseram ram {47) da/16r09, co dex
witaliseram ram [48) da/16r26, co bne loop2
initaliseram ram [49] da/16rfa,

initsaliseram ram [50] da/1617e, co jmp start

imtaliseram ram [51} da/16r00

witialiseram ram [52) das16r0a,

imitiabserain ram [53] da/16ree, co swap ldx #&0000
wnitialiseram ram [54) da/16r00,

witiahseram ram [55) da/16r00,

witialiseram ram [56] da/16ra6, co loop Idaa &01, x
instiabiserac ram [57) da/16101,

imaliseram ram (58] da/16ra7, co staa &00, x
witialiseram ram {59] da/16r00,
mbaliseram ram [60) da/16r08, co nx

43

M

initiabseram ram {61} da/16r8c, co cpx &0002
initialiseram ram [62] da/16r00,
initialiseram ram [63) da/16r02,

initialiseram ram [64] da/16r26, co bone loop
initialiseram ram [65] da/16rf6,

initialiseram ram {66] da/16r39, co rts
tabulated

mc

Testprogt

co This is yet another Fibopace: program, which uses a software mterrupt (swi)
co 1nstead of the jsr 1n the last program (testprogs)

m [6800]monitor
initialiseram ram {10} da/16r86, co .start ldaa #&00
initialiseram ram [11] da/16r00,

witialiseram ram [12] da/16r97, co staa &00
initialiseram ram {13] da/16r00,

initialiseram ram [14] da/16r97, co staa &03
initialiscram ram {15} da/16r03,

initialiseram 1am [16] da/16r8¢, co Ids #&0401
initialiseram ram [17) da/16r04,

initialiseram ram [18] da/16r01,

initialiseram ram [19) da/16r86, co Idaa #&01
initialiseram ram [20] da/16101,

initialiseram ram [21] da/16r97, co staa &01
initiahseram ram [22] da/16r01,

initialiseram ram [23) da/16rc6, co Idab &0a

initialiscram ram [24] da/16r0a,
initialiseram ram [25] da/16r96, co .man Idaa &00
mtighiseram ram [26] da/16r0,

initialiscram ram [27] da/16r9b, co adda &01
mitiahseram ram [28} da’16r01,

injtsahseram ram [29] da/16197, co staa &02
initialiseram ram (30} da/16r02,

imstiahseram ram [31] da/161b7, co staa &e000

initialiseram ram [32) da/16re0,
initialiseram ram [33] da/16r00,

initial seram ram (34} da/16136, co psha
inivaliseram ram [35] da/16r3f, co sw
uutiahseram ram (36) da/1615a, co decb
imtraliseram ram [37] da/16126, co boe .main
witialiseram ram [38) da/16rf2,

initialiseram ram [39] da/16ree, co Idx #&000a

witialiscram ram [40) da/16r00,
witiahseram ram [41] da/1610a,
iniialiseram ram {42] da/16r32, co loop2 pula

initialiseram ram [43] da/16r97, co staa &02
initiahseram ram {44] da/16r02,

inttialiseram ram [45) da/16r09, co dex
initiabseram ram [46] da/16r26, co boe loop2
initiahseram ram [47] da/16rfa,

initialiseram ram [48] da/16r7, co Jmp start

initiabiseram ram [49] da/16r00,

witialiseram ram [50] da/16r0a,

initiahseram ram [51} da/16rce, co swap Jdx #&0000
initialiseram ram {52] da/16r00,

wmitialiseram ram [53) da/16r00,

initialiseram ram [54] da/16ra6, co oo Idaa &01, x
imtiahseram ram [S5] da/16r01,

uutialiseram ram {56} da/16ra7, co staa &00, x
witiahseram ram [S7] da/16100,

inttiabseram ram {58) da/16r08, « n nx
mitabiseram ram [59] da/16r8c, co cpx &0002

45

initialiseram ram [60] da/16r00,
initialiseram ram [61] da/16r02,

initialiseram ram [62] da/16r26, co boe .Joop
initialiseram ram [63) da/16rf6,
initialiseram ram {64] da/16r3b, co rti

initialiseram ram (16rfffa) da/16100, co define swi address
initialiseram ram [16rfifb] da/16r33, co .swap

tabulated

mc

Testprog?

co Thus is an 19 byte program which generates the first 11 Fibonaci numbers It operates by clearing one
co location on the stack to zero, then loading the a register with &01 and x with &000b. Accumulator b 1s
co then pulied from the stack, then a is pushed to it. Register a is added to b with the result in a. x is

co decremented. If x is not zero then b is pulled from the stack, a is pushed to it etc. Otherwase the program
co waits for an interrupt. It is short because it was written to be efficient rather than to test specific

co instructions, However Testprog2 performs an identical function and I believe is optimised for the first
o 6 instructions implemented (see The Motorola 6800 Model. initial design) but is twice as long This
co demonstrates that more complex operations are useful on a microprocessor

in {6800}monitor

iram ram (16r000a] da/16r34, co
iram ram [16r000b)] da/16r30, co
iram ram (16r000c] da/16r6f, co
iram ram [16r000d) da/16:00
iram ram [16r000¢} da/16rce, co
iram ram [16r000f] da/16r00
iram ram [16r0010] da/16r0b
iram ram [16r0011] da/16r86, co
iram ram {16r0012) da/16r01
iram ram {16r0013} da/16r33, co
iram ram [16r0014] da/16r36, co
iram ram [16r0015) da/16r1b, co
iram ram [16r0016) da/16rb7, co
iram ram [16r0017} da/16re0
wram ram [16r0018] da/16r00
fram ram [16r0019) da/16r09, co
nam ram [16r001a) da/16r26, co
iram rara [16r001b] da/16rf7
irata ram [16r001c] da/16r3e, co
tabulated

mc

start

Joop

des
tsx
clr &00 x

ldx #&000b

Idaa #&01
pulb
psha

aba
staa &¢000

dex
bne .loop

way

37

Appendix C: The Motorola 6800 Instruction Set

Provided here is a brief hst of the 6800 assembler mnemonics and their functions It 1s not intended
to provide programmung information, which may be obtamned from The Motorola Data Sheet (sce

Biblography)

Accumulator and Memory Instructions:

adda

addb

aba

adca

adcb
anda/andb
bita/bitb
clr/clra/clrb
cmpa/cmpb
cba
com/coma/comb
neg/nega/negb
daa
dec/decasdech
cora/eorb
inc/hnca/inch
Idaa/ldab
oraa/orab
psha/pshb
pula/pulb
rol/rola/rotb
ror/rora/rorb
asl/asla/aslb
asr/asra/asrb
Isr/lsra/lsth
staa/stab
suba/subb
sba
sbea/sbeb
tab/tba
tst/tsta/tstb

+ Add.

: Add

+ Add accumulators

+ Add with carry:

. Add with carry:

. And
Bit test

. Clear
Compare

» Compare accumulators

» 1's complement.
2's complement (negate)
decimal adjust a
decrement
exclusive or

. Increment
load accumulator

+ wclusive or

. push a/ b to stack (LIFO)
pull a /b from stack

crotate leftm/a/b

rotate nght m /a/b

: anithmetc shuft leftm /a / b

+ arithmetic shuft nght m/a/b

* logic shuft nght m/a /b
store accumulator
subtract
subtract accumulators
subtract with carry
transfer accumuiators

+ test, zerv or minus

Index Register and Stack Manipulation lastructions

cpx
dex/des
1nX/10s
1dx/ds
stx/sts
s/tsx

.compare x tom, m+1
decrement
werement
* load regster
store register
transfer registers

a=a+m

b=b+m

a=a+b

a=a+m+c

b=b+m+c

2a=a ANDm/b=bAND m
aAND m /b AND m
m=0/3a=0/b=0
a-m / b-m

a-b
m=&f-m/a=&ff-a/b=&ff-b
m=0-m/a=0-a/b=0b

m=m-1/a=a1/b=b-1
aXORm/bXORm
m=m+1/a=a+1/b=b+1
a=m/b=m
a=aORm/b=bORm

m=a/m=b
a=am/b=bn
a=ab
a=am-¢c/b=bm-c
b=a/a=b
m-0/a-0/b-0

x=x-1/sp=sp-l

x=x+1/sp=sp+1

X,=m, x=(a+1)/sp,=m, sp=(m+1)
m=x, (m+1)=x/m=sp, {@+1)=sp
sp=x-1/x=sp+1

Jump and Branch Instructions:

bra < branch always

bee + branch if carry clear

bes - branch if carry set

beq : branch if equals zero

bge . branch if greater than or equals zero
bgt < branch if greater than zero

bhi < branch if gher

ble : branch if less than or equals zero
bls : branch if lower or same

blt < branch if less than zero

bmi + branch of minus

bne - branch if not equal zero

bve - branch if overflow clear

bvs - branch if overflow set

bpl : branch if plus

bsr + branch to subroutine

jmp © Jump

st % jump to subroutine

nop . no operation (takes a small amount of time)
rti return from wterrupt

s < return from subroutine

swi » software interrupt

wai * want for interrupt

Dummy Mnemonics Added to Simplify ELLA Program:

rq “ nterrupt request
nmi * non-maskable interrupt

Condition Code Register Manipulation Operations:

cle + clear carry flag

ch clear interupt mash

cly clear overflow flag

sec set carry flag

se1 + set interrupt mash

sev . set overflow

tap - transfer accumulator a 1nto cc register

tpa transfer cc register mto accumulator a

a accumulator a b : accumulator b m contents of memory location
(m+1) contents of next memory location after m X :xregister sp - stack powmter
» hugh byte . low byte

N.B Many Mnemonucs can have more than one addressing mode associated with them There are altogether
197 vahd mnemonmic/adressing mode combwsations plus 1rq and nmi, although there are only 107 such
mnemanics bsted (plus 2 dummy mnemonics),

49

Glossary:

Accumulator

Addressing mode.

Assembler code.

Condition codes
register:

Direct addressing

Extended addressing

Immediate addressing
Implied addressing

Indexed addressiug

Interrupt

Interrupt request

Mpemomnc

Non-maskable interrupt

An accumulator is a register on which a large number of arithmetic and logical
operations may be carried out.

The addressing mode tells the microprocessor where to get the data for its next
operation Six addressing modes are implemented on the Motorola 6800. These are
immediate, direct, mdexed, extended, implied and relati

Low Jevel language which is made up of mnemonics plus other symbols to indicate
the addressimg mode.

A register which 15 affected by most anthmetic and logical functions, and also by
wnterrupts. On the 6800 1t is made up of 6 flags, which indicate when true (bit 5 first,
bit 0 last) that: a balf carry from bit 3 has occurred, mferrupt requests are to be
ignored, the result was negative, the result was zero, the operation caused a 2's
complement overflow and the operation caused a carry.

The address of the data 1s given by the value in the next location after the op-code,
(therefore 1t 15 o the range &0000 &O00ff).

The address of the data is 1n the next two locations after the op-code (high byte
first)

The data comes from the next memory location after the op-code
No data is necessary e.g clra

The address of the data is the index regster plus an offset whuch 1s in the next
location after the op-code

An interrupt causes the microprocessor to stop what it 1s doing after finishing the
current mstruction, and to jump to a location which is defined at a particular
lecation in memory When the routine 1s fimshed (with an rti) it jumps back to
where it was when the ainterrupt occurred, with the same values in all the registers
as before the mterrupt This 1s achieved by dumping all the registers on the stack
as the nterrupt 1s mmbiated, and reading them back as the interrupt routine
termunates There are three ways of mibating an interrupt on the 6800, a software
interrupt (swi), and two hardware interrupts

If the interrupt mask bit 1n the condifion codes register 1s zero, a zero on the
nterrupt request kne causes an intempt 10 occur.

A mnemonic is a three or four letter word which defines the operation to be
performed by the mucroprocessor The words are chosen to be user friendly aad
must be converted into op-codes before they can be stored i memory or used by
the microprocessor

A non-maskable interrupt causes an wnterrupt whatever the state of the condition
codes register

Op-code-

Register:

Relative addressing’

Software interrupt.
Stack.

Von Neumann
MICTOprocessor’

Hexadecimal representation of an 8-bit pumber which is an anstruction to a
microprocessor. An op-code is umque, defining both the addressing mode and the
mnemonic.

A register 15 a store for information on the microprocessor A limited number of
anthmetic and iogical functions are possible such as increment, decrement, or
setting particular bits to be true or false.

The address to branch to is the start of the next instruction plus an offset which
comes from the location after the current op-code.

A particular op-code is used from within the program to call the interrupt routine

A stack is an area of memory used for storing data, which is accessed by the stack
pointer. The stack pointer (sp) always points to the first available unused location
When a piece of data is pushed to the stack it is placed at the memory location
sp, and sp is then decremented. When a picce of data is pulled from the stack
the stack pointer is first incremented, then the data is read The location deifned
by sp is now free for new data to be pushed, but still contains the old data The
stack is therefore a last-in first-out (LIFO) store

A mucroprocessor 10 which the program and data share a common address
space

51

Bibliography:
1...The ELLA User Manual, Computer General ED
2 .. Microprocessor Data, Cambridge University Engineering Dept.

3.. Motorola Microprocessor, Microcontroller and Peripheral Data Volume 1, Motorola Limited

REPORT DOCUMENTATION PAGE DRIC Reference Number (if known)

Overalt sacurity assiicAton of 3heetcmsmmmmsssrcsss sl UNCLASSIFIED.co. vsenccsssmsssssssssssmnsessss wrssssssn

{As {or as possible this sheet should contaln only unclassified Hitis y to enter classified the field

must be mivked to indica:s the classification eg (R), (C) of (S).

Originators Reference/Re 2ot No. Month
MEMO 4515 AUGUST 1991

Name and Location
RSRE, St Andrews Road
Malvern, Worcs WR14 3P3

Monitoring Agency Name and Location

USING ELLA FOR HIGH LEVEL DESIGN:
MODELLING THE MOTOROLA 6800 MICROPROCESSOR

Security Classification Titie ClassMication (U, R, C or §)
UNCLASSIFIED u

Foreign Language Title (in the case of transiations)

Conference Details

Agency Reference Contract Number and Period

Project Number Oiher References

Authors Pagination and Ref
HUGGETT, AR 52

Abstract

This document starts by providing a bnef overview of the ELLA language The majority of the document
describes the design and development of an abstract high level ELLA mode! of a Motorola 6800
Microprocessor, including all of the 187 codes which make up the 6800 nstruction set

Abstract Classification (U,R.C o 5)
u

Descriptors

Distnbubon {Enter any imit on the distnbubon of the document)
UNLIMITED

S8048

