. Educational Materials
: AD_A2,42, 548 CMU/SEI-91-EM-4 -
IR

‘ " Carnegie-Mellon University
\ —=— Software Engineering Institute

A Software Engineering %j T {W

Project Course G ELECTF g
with-a Real Client . % NOVL 51991 & §

Partl: Overview

Bernd Bruegge
John Cheng
Mary Shaw

July 1991

rovedi ?ﬂﬁi \ed
F\ppw b;‘z,-‘f“““wv""‘

®
/ vuwzﬂaw\m\mmiz%am |

Ly

TR ATy

(504 L

T

ORI

The following stafement of assurance s more than a stalement required to comply wih the federal law Thi s a sincere stalement by the unnversily 1o assure thal s

DROpIé are icludéd 1n e dversity which makes Catnege Melion ars dxding place Carnege Melion wiahes 1o nciude pecn' s without regard 16 1ace, coior, nskoaal
ongn, sex, handisap, relnon, creed, ancestry. beliel. age, veteran status of sexua! onentalon

Catnegre Melon Universidly goes not discaminale and Casnegie Melion Unversty 1§ fequared nol 10 dser mngle i a0m 550n5 and employmend gnthe bass of rce,
Golor, nalional o, sx o handicap in violalion of Tie Vi o Ine Crnt Hights Act of 1964, Titie IX of the Etkicatonal Amengren's of *372 and Seclon 504 of the
Behabiltaton Act of 1973 or other Tederal - state, of local laws or execulve orders. In addilon Catiege Meflon does not discrmangte n admssnans and employment 00
the basis ol religron, creed. ancestry. bekel, age, veléran $lalus of sexual onentaton in olaton of any fede-f, slale, of local Erws of execylve orders. Ing sl es concam
ing appkcation of this poicy should be drected to the Frovest, Carnege Mellon Unwersiy, 5000 Forbes Avenue Plisburgh, PA 15213 tetophone [412) 2686684 or tre:
Vice Prasdent for Entoiment, Carnégre Mefion Ursversty, 5000 Forbes Avanue Paisburgh, PA 15213 tefephone (412) 266 2056

"

Educational Materials

-CMU/SEI-91-EM-4
July 1991

A Software Engineeting
Project Course
with a Real Client

Partl: Overview:

Bernd Bruegge
John Cheng

Carnegie Mellon University
School of Computer Science

Mary Shaw

Carnegie Mellon University
School of Computer Science and
-Software Engineering Institute

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This document:was prepared for the

SEI Joint Program Office

ESD/AVS

Hanscom-AFB; MA 01731

The ideas and-findings in this document should not be construed-as an official
DoD position. The document is published in the interest of scientific and
‘technical information exc’ngnge.

Review and Approval

This document has been reviewed and is.approved for.publication,
i

FOR THE COMMANDER

Charles J. Ryan, Major, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense. This
work was-funded in part by the Dept. of Defense and in part by the School of Computer
Science, Carnegie Mellon University.

Copyright 1991 by Bernd Bruegge, John Cheng, and Mary Shaw.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer
of scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government.agency personnel-and their contractors. To ubtain a copy, please contact DTIC directly: Defense
Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145, ’

Copics of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161-2103.

Use of any trademark in this report {s not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Part I: Overview
L1l Introduction
12. The Students
L3. Syllabus (fina! version)
L4. Lecture Component
15. Project Component
LI5.1. Design‘Rationale
1.52. Project Organization
1.5.3. Team Selection and-Internal Team Management
1.5.4. Phases:

L55. Trade Between: Siudent Initiatives and Structure Imposed by
the Instructor

15.6. Trade Between Pedagogical and Project Objectives-
15.7. Risks and Problems
1.58. Internal Project Review

L59. Fxplanation of Project Exhibits (Part I of this set of
-éducational materials)

1.6. Administration
1.6.1. Staffing
1.62. Credit and Grading Policy
L£.3. Coordination Between Lectures and Project
1.6.4. Communication
1.6.5. Mechanics
L7. Conclusions

b3

Acasaaicn For

N

15
17
17
18
18:
15-

RS SY

AR BBSBBY

rvc——

L T uRARd N
s UFi2 Tub ’;

L
i basrugome ed ;

Py

dastilleation

— . ot e

e

37
“Latrivuition/
38110141y fodeg

CMU/SEI-91-EM-4
Diat

iAvall aadfori”

Epseial

+

CMU/SEI-91-EM=4

List of Figures

Figure L1..Students’ Prior Software Course Experience

Figure 12.-Students’ Operating System Experience at Beginning of
Course-

Figure L3. Values of Grading Spreadsheet

Figure L4, Formula for Grading Spreadsheet
Figure L5. Template for Student Form Letter
Figure L6.-Student Data to Merge into Form Letter
Figure L7.-Student Form Letter

[}

B8 8] K .

CMU/SEL-91-EM-4

iii

A Software Erigineering Project Course with a Real
Client

Abstract

At Carnegie Mellon University, we taught an introductory software
-engineering course that was organized around a -project with a real
deliverable for a real client. This case study describes the background and-
organization -of the course and presents the lecture and project materials
produced by the faculty and students of:the course.

Part I: Overview

L1 Introduction

Carnegie Mellon University has offered a course-in software engineering since-the early
1970s. Although-its-organization and position in-the curriculum have changed over the
years, the course has always had the primary objective of teaching -undergraduate
students something about the practical problems of building real-world software—groups
of people must cooperate to understand just what problem-is being solved and then create
and integrate a collection of software modules that solve the problem. This traditionally
has been a group-project course with-a lecture component. In recent years it has been a
senior-level elective; its_prerequisites are intended to ensure that students have already
studied medium-sized systems such as compilers and operating systems. Often students
who select this-course are considering entering the job-market as software developers.

The software engineering course is often our last chance to show students that developing
Teal software systems is not at all the same-thing as writing-a programming assignment
that will be graded and thrown away. ‘We ask them to think about what the end user really
wants, about .understandability-and reliability in use, about integration with other system
facilities, and about the problems their work will present to future maintainers.

In the summer of 1989, we decided that we could make the characteristics of software
systems more vivid by choosing a project whose result could benefit some group on
campus, preferably the campus computing community at large. We polled the local
community for project suggestions and chose a proposal from the Information Technology
Center (the group that developed Andrew, the campus-wide computing system). They
suggested combining existing software facilities to provide a bridge between electronic
mail and facsimile transmission provided by a special fax board in a personal computer.

CMU/SEL-9i-EM4 — 3

-—

The students succeeded. in developing a-working:prototype, which they demonstrated:in-a
formal presentation and-acceptance:test at the client’s site.

This report, which explains how the course was:organized-and presented, contains-three
parts: this overview; -our lecture materials (transparency masters, -homework, -and
quizzes);-and the project-materials prepared by-us-and by our students. In the remainder
of the overview, we.describe the background-of the students, present the formal-course
syllabus, -explain the-organization-of the lecture and project components, and -discuss
some of the strategies and mechanisms we used:to administer the course. The lecture-and
project materials are distributed-separately (page 43 contains-an order form for Parts II
and III).

2 - ~ ‘ — CMU/SEI-91-EVi4

12. The Students

This-version of the-course was taught in the fall semester 1989-as Carnegie Mellon course
15-413, Software Engineering. There were 19 undergraduate seniors_enrolled, including
17 from mathematics/computer science and 2-from electrical-and computer engineering.
Three would graduate at the end of the fall'term, the other 16 in- spring 1990. The majority
were-interviewing-for jobs:in the-computing field, primarily in software. Several were
applying to-graduate schools. In-addition, 4 graduate students and visitors-auditedthe
lectures regularly.

On the first:day of-the course, we:asked:the students (but not-the auditors)-about-their
background:in software. Table I.I: shows:the programming and software system courses
taken by the 16 students who answered:this question. The formal prerequisite for-our
course was-any one:of the the courses marked with a “P.” Each:of these courses gives the
students experience:with-medium-sized software systems. All.students-had taken at:least
one of the prerequisites; 5 students had-taken 2: Overall, the:mean number-of previous
software courses was 6 per student; the range was 4 to 8; and the mode was 5.

Table L1 Students’ Prior Software Course Experience (16 students reporting)

-

#Students PreReq Courses (one semester each
16 Introduction to Programming and Problem Solving
16 Fundamental Structures of Computer Science I
“6 Fundamental Structures of Computer Science II
13 Comparative Programming Languages
10 Operating Systems
Artificial Intelligence: Representation & Problem Solving
Vision
Applied Algorithms (may be under-reported here)
Concurrency & Parallelism (elec. & comp. engr. course)
Compiler Design
Parallel Programming
Knowledge-Based Systems
Robotics
Graphics:
Computational Physics (physics course)

g o

Pd bl e ped b DO DO GO O
Lyl

The graphs in Figures 1.1 and 1.2 show the students’ prior experience with programming
languages and operating systems, respectively. We tried to-determine from the responses
which students had -more extensive experience than use in a single course and which ones
had only passing familiarity or experience in a single course. Note that because the
students’ self-reporting was subjective, the information may not be consistent from one
student to another.

CMU/SEI-OLEM4 - S _ —

¥ studenis

-h - - -t - n
o ()M » N o o
N ! |
R ‘ i

\\\ \

Students;'—;Language;Experlencié at Beginning of Course

Lisp C Pascal Modu! Asse

a

peri

xxxxxxxx
Students’ Operating System Experience at Beginning of Course
(16 students_reporting)

i)

4
12

& ® S
\ S g e L
-

-

10-

Anciew

CMUISEI-SI-EM-‘!

log Small- Cobol Basic ‘DCL Forth
tak
ienced -

: /////////%W

Two-thirds of the students reported additional-experience, including:

The students -also described their own objectives in taking this conrse; some of these
appeared several times: :

Programming for various-Carnegie Mellon research projects.

‘User consulting and programming for Carnegie Mellon’s-academic

computing service.

Summer jobs-with AT&T Bell Labs, Federal Aviation Administraticn (FAA),
Johns Hopkins Applied Physics Labs, Lockheed, IBM, NCR.

Cobol database programming, Macintosh application programming, networks.

-

Learn more about various phases-and problems of software product
development.

Expand my view of software design beyond the “programming” realm.
Find out about complex software systems.

Compare formal design principles with software principles encountered in
summeér work.

Learn the fundamental ideas involved in software engineering, especially
project ‘management.

Gain some experience that will be useful when I go to work after graduating.
Obtain-]arge-group software experience; learn to work effectively in a group.

Learn enough about software engineering to be a useful member of a project in
industry.

Don’t know.

CMU/SELI-9L.EM4 —

L34

L3. Syllabus (final:version)

“The course syllabus that we gave-to the students-in November 1989 begins on the following
-page. It:is labeled “final:version” because we made changes to the original; most changes
involved-reordering lectures to improve the match between lecture content and the project
or to take advantage of special-opportunities such as visiting lecturers. Note that the
1écture component is presented-twice: first by conceptual:unit, then chronologically.

’fhe descriptions-of lectures have been-annotated with-references to the corresponding
-support-materials in Parts II and'III of this educational materials package.

3 : ' CMU/SEIL-91-EM-4

15-413: Software: Engineering:
Fall Semester 1989
Revised: November 20, 1989

Course Staff

Instructors: E-mail address Office Office hours
Mary Shaw shaw@cs.cmu.edu WeH 8214 Tu 3:30-4:30
' Th 11:00-12:00
Bernd Bruegge bruegge@cs.cmu.edu WeH 4209 Mon 3:30-4:30
‘Wed 3:30-4:30
Teaching-Assistant:
John-Cheng: jcheng@cs.cmu.edu WeH 3130 Tu 10:30-12:30
Objectives

“Upon completion of this course, a-student should:
+ Understand the difference between a program and a software product.
. + Be able to-design-and implement a module that will be integrated in a larger system.
; Each student will have.demonstrated the ability to:
 Work as a member of a project team, assuming various roles as necessary.
+ Create and follow project plans ;:md test plans:
+ Create the.full range of documents associated with software products.

-+ Read and‘understand papers from the software literature.

Administrative Matters
Dates/times

Class meetings: TuTh 9-10:20 in.Scaife Hall 206.
Project team meetings: as necessary, but at least weekly (arranged-by each team).

Textbooks

Brooks: The.Mythical Man-Month. Addison-Wesley, 1975, reprinted 1982.
~ Marvin V. Zelkowitz: Selected Reprints in Software, Third Edition. Computer Society Press,
1987.
Computing

The project will be implemented as a service in Andrew.
. If you don’t have an Andrew account, we'll help you get one.

CMUSELOLENM4 e

The course-bulleiin:board is:academic:cs.15-413=and various sub-bboards. Subscribe:to
them.

Grading

:Project: 60%

8% for each phase: requirements, design, project plan, detailed design, implementation,
Anit testing.iintegrqjioﬁn, and client acceptance.

Special incentive: if .a- complete product (specifications, -project -plan, design,
-administrator and user documentation,.and working code) with core functionality:is
delivered to:the client:as a joint-effort of:the course,.all students will receive atleast
55 points for the project.

‘Lectures:z40%

2%for each of-22 lectures: 1 point-for short quiz on main point of the reading, 1 point for

1:2 page-homework on main points of class discussion. ’
‘Instructors’ evaluation: adjustrment of up.to 5%.

‘Standards?
A: 90+
B: 80:89
C:70-79, incjudjng at least 25-points from lectures-and 40-points from project
D: 65:69 or 70-79, with wrong proportion of lectures and-project points
R: less than 65- '

Project Component Deadlines

Requirements -Sept. 26

Project Plan Oct. 3

Design Oct: 12

Detailed Design Oct. 26 _
implementation ‘Nov. 9

Unit Test :Nov. 16

System Integiation ‘Nov. 30

Acéeéptance ‘Dec. 7

1The project has 64 available points and the lecture 44.

) -) - ; - — CMU/SEL-OL-EM4

Lecture Component [28 lectures, 22 with readings]

Introduction [1: lecture]

‘Course organization (8/31). The nature-of software engineering; a brief sketch of its-history.
Products vs: systems. Introduction:to project. Reading after class: Brooks75 Ch:1. SEE
LECTURE MATERIALILA

Software Life :Cycle and :‘Documentation 13 lectures]

‘Requirements (9/7). Determining what.the client actually wants. Expressing it precisely.
Notations for requirements. ‘Reading: Brooks75 Ch-6, Davis82. SEE LECTURE MATERIAL
I.B-

Life cycle-(9/12). The stages-a-software project goes through;-from-conception and-
development to maintenance and retirement. Models for this life cycle. How well the
models match reality. Reading: Brooks75 Ch 13, Davis88. -SEE LECTURE-MATERIAL IL.C

‘Documentation (9/14). Retention and presentation of the information-that is part of-a:
software product but not explicit in the code. Reading: Brooks75-Ch 10, 15. SEE
LECTURE MATERIAL:I.D

Tools and Standards [2.5 lectures]

Fax formats and protocols (9/19): Information about fax formats and communication
protocols that will be needed for the-project. -Reading: McComb89, CCITT Group.3 and
Group 4. SEE LECTURE MATERIAL I, E

Standards; Andrew (9/21). Role of standards in software. Information about the Andrew
editor and libraries that will be needed for the project. Reading: Poston84- 85. SEE
LECTURE MATERIAL II.F

Configuration management and version control (10/12). Consistency-among.versions of
subcomponents. Automation of-system construction. Baselining and version control.
Reading: Feldman79, Tichy82. SEELECTURE MATERIAL I1.G

Management [5 lectures]

Project planning.(9/26 and 9/28). Justifying projects. Making them fit-within existing
systems. Project crganization-and:milestones, -Reading: Brooks75 Ch-2,-3, 14,
Davenport89, Fairley86. SEE LECTURE MATERIAL IL.H AND IL.|

-Estimation and tracking (10/5 and-10/10). Predicting size of product.-Estimating time
required to create it. Models and statistics for these predictions. How well the models
work. Reading: Brooks75 Ch 7, 8,9, Myers78, Myers89,-AdalC89. SEE LECTURE
MATERIAL LK AND I1.J

Verification and-validation (10/17). Techniques for gaining confidence that-software works.
Reading: Wallace 89. SEE LECTURE MATERIAL IL.L
Software Design [5 lectures]
Abstraction (10/26). Role of abstraction in software engineering. Increasing -abstraction size
as index of growth. -Reading: Shaw84. SEE LECTURE MATERIAL II1.M

System design (10/31 and 11/7). Conceptual integrity. System-level design- techmques
Survey of design methodologies. ‘Reading: Brooks75 Ch:4, 5, Lampsong4,
Bergland81. SEE LECTURE MATERIAL IL.N AND 11.O

Software structures (11/2). System-level abstractions for software. Reading:
Shaw89. SEE LECTURE MATERIALILP

CMU/SEIL-91-EM4

-Software-reuse (11/9). Notreinventingthe wheel: Reading: Prieto-Diaz87. ‘
SEE-LECTURE MATERIAL IL.Q 7)

Back End-[3 lectures]
:Programming environments (11/16). Tools and:environments to:support-software-
development. -Reading:-Brooks75:Ch 12, Kernighan81, Dart87. -SEE LECTURE
7 MATERIAL I.R:
Testing:(11/21). Planning and executing a testing strategy. Reading: Howden85. SEE . 5
LECTURE MATERIALILS-)) :
‘Mainteniance (11/30). Life after initial.rélease: -Fixing design errors,-adding new features.
Reading: Brooks75 Ch 11, Schneidewind87. SEE LECTURE MATERIAL IL.T-
The Software Engineering Profession [4 lectures]
The engineering component.of software engineering (10/3). Comparison of software
engineering to-olcer engineering disciplines. Lessons software-engineering should
draw from this comparison. SEE LECTURE MATERIALIL.U

‘Status-of the profession (10/24). Concerns and.prospects-of the-software-engineering.
profession. Reading: Musa85. SEE LECTURE MATERIAL IL.V

The work-force and.the job market (11/14). Whatit's like to'be a practitioner in software.
Panél discussion with representatives from big software development, startup software,
-and application software companies and a professional.recruiter.

Intellectual property issues (12/5). Kinds of intellectual property protection. Ownership of
results produced by programs. Reading: Legal Task Force84,-Gemignani85. SEE
LECTURE MATERIAL-ILW-

Project Discussions [4:5 lectures]

‘Requirements for.project (9/5). Client presents needs-and-answers:questions. SEE
PROJECT-MATERIAL lIl.A-AND 1Il.B :

Discussion of design-alternatives (9/21). Student presentations of design alternatives.. SEE
PROJECT MATERIAL IIL.E)) ’

Client's design review (10/19). Presentations of design. -Opportunity for mid-course
correction. .SEE PROJECT MATERIAL Ill.M-

Internal review of project (11/28). Class discussion of project: progress, lessons learned.
SEE PROJECT MATERIAL lll.J AND-HILV)

-Final presentations to client.(12/7). Demonstration; acceptance test. SEE PROJECT
MATERIAL 1IN

Chronological list of lectures and reading assignments

8/31 Course organization, software engineering, project overview
Reading after class: Brooks75 Ch-1"(system vs. product)

~ SEE LECTURE MATERIALILA.
9/5 Requirements of -projectand presentations of projects
SEE PROJECT MATERIAL 1Il.A.AND [I1.B
'9/7 Requirements

Reading: Brooks75 Ch 6: specifications
Dayisaz: purpose of requirements and survey of languages
SEE LECTURE MATERIAL (I B ‘

0 ’ ’ - — — CMU/SEL-91-EM-4

9/12

9/14

9/19

9/21

9/26

9/28

1073

10/5

10/10°

1012

10/17

Life cycle

-Reading: Brooks75:Ch 13: elements of-life cycle-

Davis88: comparison of life cycle models

"SEE LECTURE MATERIAL 11.C
Documentation
‘Reading: Brooks75-Ch 10,.15: documentation-(specifications,-user

documents)

SEE LECTURE MATERIAL ILD.
Fax formats -and protocols

-Reading: McComb89: product review of fax kits for Macs-

SEE LECTURE MATERIAL ILE
‘Standards and discussion of design alternatives

‘Reading: CCITT Group 3 and Group 4: fax standards

Poston84-85: standards for:software

"SEE _LECTURE MATERIAL Il.F.AND PROJECT MATERIAL lILL

‘Project planning |
Reading: Fairley86: project plans

"SEE LECTURE MATERIAL I.H

Project: planning I

‘Reading: Brooks75 Ch 2, 3, 14: schedules, team organization

Davenport89: justifying a software project
SEE.LECTURE MATERIAL IL.|
The engineering component of software engineering
SEE LECTURE MATERIAL ILU
Estimation and tracking |
Reading: Brooks75 Ch.7, 8, 9: communication, estimation, resource control
Myers89:-estimation-techniques
-SEE LECTURE-MATERIAL LY.
Estimation and tracking lI
Reading: AdzlC89: how well estimation works
Myers78: liie cycle curves
SEE LECTURE MATERIAL IL.K
Configuration management and version contro!
Reading: Feldman79: make
Tichy82: RCS
SEE LECTURE MATERIAL I1.G -
Verification and validation

Reading: Wallace89: survey
SEE LECTURE MATERIAL {I:.L

CMU/SEL9L.EM4 = - SE— . , -

10/19 Client design review .

SEE.LECTUREMATERIAL I1L.M

10/24 Status of ‘the profession
Reading:’ ‘Musa85: worlishop of professional society leaders
SEE LECTURE-MATERIAL ILV

10/26 Abstraction
Reading: Shaw84: growth-of-abstraction size as index of:growth
SEE LECTURE MATERIAL IL.M
10/3* System -design I
Reaging: Brooks75 Ch 4, 5: conceptual integrity, learning from experience
-Lampson84: reflections of-an expert-designer:
SEE LECTURE MATERIALILN
11/2 Software -structures
Reading: Shaw89: comparison of typical architectures
SEE'LECTURE MATERIAL ILP
11/7 System -design I}
Reading: ‘Bergland81: survey of design methodologies:
SEELECTURE MATERIAL 11.O
11/9 Sofiware -reuse
-Reading: Prieto-Diaz87: classification for indexing and rétrieval
SEE LECTURE MATERIALILQ-
11/14 The work force and the job market .
PANEL DISCUSSION
11/16 Programming: environments |
Reading: Brooks 75 Ch 12: software developers’ tools
Kernighan 81: UNIX (you should know this already}
Dart87: survey of software development enviranments

SEE LECTURE MATERIAL IR -
11/21 Testing
Reading: Howden85: functional testing

SEE LECTURE MATERIAL ILS

11728 Internal project review:
SEE PROJECT-MATERIAL Illl.J AND TILV
11/30 Maintenance
Reading: Brooks75 Ch 11: sysizm evolution
Schneidewind87: survey
SEE LECTURE MATERIAL ILT

12/5 Intellectua! property issues

Reading: ‘Legal Task Force 84: kinds of protection available
Gemignani85: ownership of results produced by programs)
SEE LECTURE MATERIAL LW ‘

2 ; ’ -] ’ CMU/SEI-91-EM4

&

12/7 Final:project presentaticn for-client

SEE PROJECT MATERIAL 1II.N

References

Referances to Selected Reprints are pajers yl \e,! v tha:course-text, Selected:Reprints in
'Software, Third:Edition, edited by-M:'V. Zeinc15:(r rairi-Society Press1987).

AdalC89:

Bergland81

‘Brooks75

CCITT Group 3
CCITT Group 4
Dani87
Davenport89
Davis82

Davis88.

Fairley86

Feldman79

Gemign’anias

‘Howden85s

IEEES7
Kernighan81
Lampson84

Legal Task Force 84

AdalC staff; Test case stk gstimating the cost of Ada scitware
development Ada:Informa..on-Clearinghouse- ‘Newsletier, March-1989,

pp. 4-6.
G. D..Bergland. A guided:+ of:progiam design methodologies.
Selected Reprints, p.28.

Frederick P.-Brooks dJr. The Mythical Man-Month. Addison-Wesley:
1975, reprinted 1982.

CCITT. Standardiz=*ion of group 3 facsimiie apparatus for document
transmission.

CCITT. Facsimile coding schemes and-coding-control functions for
group 4 facsimile apparatus.

Susan A. Dést et al., Software development environments. IEEE
Computer,-November 1387, pp: 18-28.

Thomas H. Davenport, The case:of the Soft software proposal: Harvard
‘Business Review, May-June 1989, pp. 12-24.

A. M. Davis, The design of a fumily of application-oriented requirements
languages. -Selected Reprints, p..20.

A. M. Davis. et al., A strategy for comparing alternative software
developniest life. cycle models. IEEE Transactions on Software
Engmeenna -October 1988, pp: 1453-1467.

Richard E. Fairley, A guide for preparing software project management
nlans. Tutorial: Software Project Management, Richard Thayer (ed),
IEEE:Computer Society, 1988, pp. 257-264. Fairley86 was the basis for
IEEE-Std. 1058.1-1987 (IEEEB7).

S. I Feldman, Make: A program for maintaining computer programs.
Software Praclice.and Experience, April- 1979, pp. 255-265.

M. C. Gemignani, Who owns what software produces.
Selected Reprints, p. 121.

W. E. Howderi, The theoty and practice of functionai testing.
Selected-Reprints, . 258.

-Standard for-software project management plans, IEEE Std. 1058.1-

1987,:Institute of Electrical and Electronic Engineers, April 1991.

B. W. Kernighan et'al.,, The UNIX programming environment. Selected
Reprints, p.-287

B. W.'Lampson, Hints for computer system design. /EEE Software,
January 1984, pp. 11-2§.

Task-Force.on Legal Aspects of-Computer-Based Technology,
Protection of computer ideawork—today and tomorrow. Selected

‘Reprints, p. 126.

“CMU/SEL-91-EM-4

13-

McComb89
Musa85
Myer78:
Myers89-

Poston84-85

Gordon McComb et al., The fax factor. MacUser, August 1988;-pp. 149-
160.

J. D. Musa, Software engineering: the futare of a profession. Selected
Reprints, p. 2.

W. Miyers, A statistical approach to scheduling software develoo:ment.
Selectod Reprints,:p. 53.

W. Myers, Allow plenty of time for large-scale software: JEEE Software,
July-1989, pp.-92:99.

Robert-M. Posion;:Software standards. Three columns on software
standdrds from IGEE Software: January-1984, May 1985, September
19¢€5..

Prietc-Diz=87 R. Prieio-Diaz et ak, G'acsifying software for reusability. Selected:
Reprints, p. 94.]

Schneidewind87 N. F. Schneidewind, The state-of software:maintenance. /EL":
Transactions on-Software Engineering, March 1987, pp. 30+ 310

Shaw84- M. Shaw, Abstraction techniques in modern programming languages.

] Selected Reprints, p. 232:

Shaw89: M. .Shaw, Largei-scale systems require higher-level abstractions,
-Proceeédings of the Fifth- International. Workshop on Software
Specification and Design, May 1989, pp. 143-146.

Tichy82 W_F. Tichy, Design, implementation, and evaluation of a revision control
system. Proceedings of the.6th International Conference on Software
-Enginevring, 1982, pp. 58-67.

Wailace89 D. R. Wallace et al;, Software verification and validation: an overview.
IEEE-Software, May 1989, pp. 10-17.

14 CMU/SEL-91-EM-4

L4. Lecture Component

The decision to make this a project-intensive .course was strongly influenced-by the
history of the.course-and its place in the Carnegie Mellon curriculum. Even-after making
that-decision, however, we.still had to:make decisions-about:the scope of coverage and the
depth to which we could cover each topic.

The-decision-on scope concerned what balance o strike between:material related-to the
management of software (life cycles, project organization; estimation, scheduling, etc.)
and: material .related to-technical -problems -of large software system design and
construction (design techniques, tools, environments, testing and maintenance, etc:).
We-decided to:strive:for-a-middle ground. Students need a:certain amount-of knowledge
of software management ‘to- complete a group project and- to be prepared to work in
industrial:projects; on the-other:hand, this-is the-only-opportunity most of these students
will have as undergraduates to lcarn about the technical side of large-system
development. Further, it would be 11'sleadiz:g-to suggest:by our choice of:content that
software engineering-consists of nothing bul software- management; it would be equally
misleading to ignore management tog:cs.

The: decision on-depth was driven by practical considerations. We could identify any
number of techniques and:tools for the students to-use. However;:each would require time
to learn well ensugh-to use, and:there simply isn’t enough time in-a single semester to do
very much of that. Moreover, the current technology is so di-erse-that it's unlikely that
many students would-end. up in-environments with the:particular-tools they learned in the
course. We decided instead to survey the possibilities=to make Sure the students
understood the-problem to-be-solved, the sorts of tools and tecaniques that exist, and the
-current shortcomings and-growth potential of the- methods.

As a‘result, we:decidad to use the lectures to survey major tonics ir:-hoth-the. management
aund-technology of software engineering. We organized these topics into units of about
four lectures each. We-also budgeted class:time for discussions about the project, project
reviews, and a unit on the nature of the software engineering profession.

When scheduling the lectures, we tried to-place each topic at-the point students would need
to apply it to the project. We found:that this wasn’t quite possible—about three weeks’
coverage of life-cycles, requirements, and project management should be covered:before
the student began their project in the second week of class. We did, -however, make as
close a match as we could.

We:examined a-number-of-textbooks and found that none, at.the time, matched the course
we wznted to teach. However, we knew of good, readabie papers o many of the topics on
‘our Jist. After some reflection, we decided:that Carnegie Mellon:sen ors (like most other
seniox computer science majors) should be-able to read papers from IEEE Software and
similar journals (IEEE Software is specifically intended to ke accessible to practicing
software developers) Thus, we were able to'match topics with papers. More than a-third of
the appropriate readings were in Zelkowitz's IEEE reprint collection, Selected Reprints:in

CMU/SEL-9-EM4 —— ﬁ —

Software;:so we selected:that as-a-prime textbook and added Brooks' Mythical Man-Month .
as additional readmg1 -

Specificlecture topicshave already been described in Section 1.3, which also contains the
‘bibliography and pointers to supporting material. In addition to theexplanations provided
there, the:following notes may be:of-interest.

*Back-of-the- -envelope calculation: During the semester, a homework assignment
revealed that the students-were not -able to perform the order-of-magnitude
estimates that are needed to:predict whether system performance-and capacity-are
even roughly ‘matched to-the system- requirements. In response, we added
segments at the.end of two:lectures to- -give some:-rules of thumb: -and exercises to
discuss in class: This material appears:in Sections-IL.L and III. K

*Becoming a professional: When we designed the course, we assumed that most of
the:students would not know. much about the nature:of the software engineering
(or-any other)- profession, so-we included:a unit-on professional topics. The-unit
included three :lectures and one panel:discussion. Material for the lectures
appears in Sections II.U, IL.V, and ILW. In addition:to the materials reproduced
‘here, we distributed student membership-materials-for the ACM and the IEEE
-Computer Society. For the.panel discussion, we invited people who could speak
frankly aboutwhat it’s like to be an:eniry-level programmer in (a) a large
established computer manufacturer, «(b) a start-up company, and (¢) an ‘
‘application-development group-in a non-computer industry. We -also invited a
professional recruiter of software personnel. Using specific examples from
software firms, the panelists talked about recruiting strategies, reasonable .
expectations, career tracks, and other topics raised by the students. One might : ‘
argue ‘that this. material should be covered in some other forum, such as a
computer club or student chapter meeting. Most of our students; however, would
not be reached this way, and this course presents the best alternative.

*Videotaped lectures: Two of the course lectures had previously been taped for-the
‘SEI Education: Program. One was “Software and Some Lessons from
Engineering,” part of the SEI Technology Series. The other-was “Language
Design and Abstraction. Techmques, -a lecture for the SEI Academic Series
course, Formal: Methods in Software Engineering, which was videotaped
February 1988."2(See Sectiotis ILM and-ILU.)

10ne of us (Brugge) taught this course again in spring 1991 with another CMU instructor,
Jeannette Wing, and used the textbook Software Engineering with Student Project
Guidance, by B.T. Mynatt, Prentice Hall 1991. This book matches many of our teaching
goals, and we recommend it for teaching the course with a-textbook.

2These and other videotapes can be ordered from the SEI. For more information, contact
the Education Program, SEI, Carnegie Mellon University, Pittsburgh, PA 15213-3890, or 3
send -electronic -mail to education@sei.cmu.edu. .

T - = ~CMU/SEL-91-EM4

L5. Project Component

L5.1. Design Rationale

The main- goal-of the:project-was to give-students a realistic:view-of the preblems involved-
in: manufacturing a-complex software system. Our intention was to avoid the “toy
program” approach and make the-project as realistic-as possible. The project-was to'be a-
vehicle for giving the:students hands-on experience-with both technical and managerial
aspects-of building a:large-software system.

Because:we required the studerts-to finish their:project, they’had an additional incentive to
apply the theoretical knowledge of:the lectures:to the-actual:construction of a-product: By
applying software -engineering principles to real problems, students deepened their
understanding.of theoretical concepts and gained practical=skills. It was our-experience
that giving the:students the goal of building a-working product resulted:-in motivation-at a
level we have ot see’before. ‘

We also:emphasized-the need to work together during the design, implementation, and-
delivery-of the system. Students'must:learn.to communicate with others on-a complex
problem, run project meetings, commit to schedules, and-deal with-a client.

Finally, we-selected a project of realistic-size, something that could be done by-about 20
students in 1 semester. When making-a rough estimate of staffing needs, we reasoned
this way: Our.students are typically taking 5 courses, and we can-expect them to spend 9-
12 hours/week: on our.course. We plan 2:-one-hour lectures.per week, each of which-should
take an hour or so outside class forpreparation. Thisleaves5-7 hours perstudent per week
for the project. With about 20 students, we should have the full-time equivalent of 100-140
hours per week, or about 3 full-time equivalents: (ignoring commaunication -overheads,
which are almost certainly substantial). The project:runs for slightly over 3 months; and-
we should-allow a safety factor for problems and estimation errors. Therefore, we were
looking for a project that should take about 3-4 full-time staff months. Selecting too large a
project would- essentially guarantee failure. 7

During the summer before the course, we requested proposals from the campus community
for projects that involved real users but.were not on the critical path of any development.
We selected a project proposed by the Information Technology Center (ITC) which
involved the extension of an electronic mail system to provide facsimile (fax)
transmission, and-we callcd-it Workstation Fax.

The emphasis in Workstation Fax was on functionality; performance was secondary.
Receiving or sending of fax images takes a matter of minutes, so we assumed that a
system latency—the time between sending-a fax and receiving it—on the order of 15-30
minutes would be acceptable, assaming-no a4ditional delays in the mail system.

CMUISEL-91-EN4) — - —5

L5.2. Project Organization

A task-of the magnitude of Workstation:Fax could-not be accomplished if the system had to
be designed and:implemented from scratch. Identifying existing software and-hardware
for reuse was therefore a major.part of our project:preparation.

One of the attractive properties of‘the Workstation Fax proposal was that it identified
several existing-components-and proposed a project that combined these elements-to obtain
the final product. The main component for reuse was the-Andrew mail message system.
In Workstation-Fax, the user sends and receives:fax transmissions via the Andrew mail
facility without needing to=produce hardcopies. Sending-a fax image from an-Andrew
workstation involves converting a text or Andrew raster image into Group 3 fax:format.
As part of the Andrew project, the ITC:-had built-tool kits for dealing with a variety-of raster
image:conversions, including Group-3-fax. This:tool kit provided the-underlying:routines
for - manipulating- fax images.

Receiving a fax image by e-mail is difficult because the delivery information on the cover
sheet is'not in digital form. It would be unrealisticto expect this project-to include software
that interprets-the:wide variety-of cover page-formats, including the-handwriting often
used-to provide routing information. To deal with this, we decided to route incoming faxes
manually by reusing the Andrew bulletin board facility: the incoming-fax is posted-on a
special bulletin board and routed from there by a human to the final destination.

To avoid requiring a full imple nentation of the Group 3 fax protocol-(which would have
been unreasonably difficult), w. also-looked at commercially available fax boards from
several companies. Xerox offers a fax board: that can be inserted directly into a
workstation. However, the students needed the specification of the board, which we could
not get in time for proprietary reasons. Instead, we selected the JT fax board from
Quadram because of its availability and price. The JT fax board is inserted into a card
slot of an IBM PC and comes with associated software to interactively send and receive
faxes from the PC—that is, to send the contents of a file on its disk as an outgoing fax or to
store an incoming fax as a file.

We set up a laboratory with two machines: the IBM PC with its fax board connected to a
phone line, and an Andrew workstation to be used for sending and receiving fax images
by e-mail. Then we gave each student a key to the room.

L5.3. Team Selection and Internal Team Management

Before the class started, we decomposed the project into four areas: sender, receiver,
administration, and cover sheet (see III.A). These four subprojects had to work
individually; but for the project to succeed, the products of all four groups had to integrate
successfully. This introduced an element of coordination not present in many project
courses.

In the first lecture, we asked the students to express their preferences for one of the project
areas and to indicate if they had any personal preferences about the other students they
would work with. Because of the possibility that the replies would yield conflicting

18 = ~ CMU/SEL-91-EM4

constraints, we committed only to take-these-preferences-into-consideration; in practice,
however, a reasonably good match of assignments to:preferences:was possible.

In class, we presented a range-of project management schemes (see IILD), introducing
three main project -functions (project management, project leader, liaison- with -other
groups)-and three support:functions (document editor, programmer, and record keeper)-
(see IILE, page 9f): We asked each of the ‘teams to map the project responsibilities-
according to their own preferences, with the-following constraints: the:project. leader and:
the liaison roles had-to be rotated on a regular basis among the:team members, and each:
team member had to:assume each of these roles at-least once during the project. The idea-
was to have consistency for functions such as-version control and documentation, but also-
to ensure that-everybody had to-deal with intra-team (project leader) as:well as inter-team:
(liaison) responsibilities.

I.5.4. Phases

Development of Workstation Fax followed a-software life-cycle-model. We -selected the.
following phases: requirements, :project planning, design, detailed design,
‘implementation, unit testing, and system integration.

At the beginning of the project, we presented the students with an-initial project description.
(see III.A) and a project schedule (see ILE, page 3) with three-important milestones: client
presentation at-the beginning of the semester, a formal project review-at midterm, and a
client acceptance test:at the end of the semester.

By giving the students an initial version of the requirements specification.and project
subdivision, we deemphasized the requirements specification. In the context of our
-undergraduate program—and we think in most others as well—development to a given
requirement is the logical thing to address at this point. Undergraduate curricula are-
intrinsically bottom-up. Students learn to deal with progressively larger pieces of
software and larger segments of the software life cycle. In this global sequence, selection
of a design should-come before requirements analysis.

To ensure that the students ended up with a working system, we asked them to-produce
three versions of Workstation Fax in-the following order:

* A stub version of the functionality to ensure that system integration would work
smoothly.

* A version that passes the client acceptance test.

* A version that allows various related activities to occur in parallel as much as
possible-(activities such as sending fax mail requests, receiving fax by mail,
sending-or receiving fax images, and billing).

Before the class started, we set up a global directory with a subdirectory for each of these
versions.

CMU/SEL91-EM4 — ‘ . 19

L5.5. Trade Between Student Initiatives and Structure Imposed by -the
Instructor

One charactenstlc of teaching a project in a-university is-that the:staffing (that is, the:
class enrollment) is flat-or:zslightly falling A:ring the development of-the project. This-is
a protglem when:-only a‘few people are needed-for a certain phase-and everybody else is:
idle. In the abstract, it is-best if the design is done by a few people and’then staff:is added to:
carry -out the design. This phenomenon has-already -been observed by Brooks. We:
immediately had'19 designers! Not only that,-but pedagogical concerns argue-that all-19:
should have-a part in all-stages.

A small group-of students: proposed-a system:design almost immediately after we had:
given-out the-system requirements (see IILL). The design-was-very:good, but we did not
acceptit initially:because:we were concerned that the rest of the class:would assume only-a-
passive receptive:role. Instead, we wanted to teach everybody how to.deal with the issues of
designing a complex system. We-think this canbe done only if each:student is-confronted
with-all the design problems and struggles for:a solution. Students will not-grasp the
complexity of a--system design that:is handed down from somebody else—even other
students.

We encouraged the-other students to:propose-different designs. This work resulted in a-
long design phase; it also-frustrated:several students who-did not-see “their” design win.
(This-was but_.one of many times when we had:to help-students understand that certain
frustrations- aré almost unavoidable.) We scheduled a class in -which several slide
presentations were given- By the -students with: alternative design -proposals (see IIL.L).

Many-different opinions were voiced, Some quite-loudly, but at the end of this-class we had=
the feeling that every student was aware of the design alternatives and was
’knowledgeable enough to-understand-the issues-and accept the selected design. The social:
processes of consensus-building were discussed-in lecture a:week or two later (see ILI).

One could-argue:here that we spent too much time in the design phase, but-we don’t think
s0. Once the students formed groups-to discuss design alternatives, we saw an opportunity
to teach-both the difficulties-of dealing with a-complex system and—at a very-concrete
level—=communication and-cooperation problems: We expanded the time here because the-
students were- highly motivated and eager to discuss their own views. If such an:
opportunity arises in a class, the teacher should be flexible and adjust the class schedule,
even at the expénse of other important topics such as quality assurance or configuration
management, In-fact, we believe that-our students learned.to appreciate the problems of
software development becguse we allowed alternative views to be presented, discussed;
and résolved.

L5.6. Trade Between Pedagogical and Project Objectives

We believe-it is-important:for software engineering students to beccme familiar with all-
aspects-of complex software system development, particularly the issues-that arise during
system integration and delivery. We.therefore emphasized finishing:a product-by a fixed
deadline.

0 i i ‘ ; T CMU/SEL-OL-EM4

As a-result, we had-to trade certain pedagogical-objectives. Forexample, even:though we
asked:the students to-use a-version:control:system-and a strict scheme for change requests,
we did not -always-enforce that request. Nor did we require that -the documents be
consistent -and complete- during -system integration. Many changes-occurred after-the
groups had-submitted their documents. Given-the limited time, we considefed it more
important for.the students-to write additional documents such as the unit test manuals:and
user manual’ than-to revise-the requirement specification. As-a-result, the requirements
specification-documents are not -consistent with the implementation; for example;.the
requirements specification-document submitted-by the.administration- group-defines an
Andrew mail:message interface for all interactions with:the user. This-was replaced- by a
C shell interface during the-implementation, but the document was never updated. We
believe that-the balance we-struck-is a reasonable one. However, when a breach occurs
between what is being taught and what:is being done in the:project, -it is important to
acknowledge this discrepancy and explain to ‘the students both the reason and the
conseguences.

We also believe—given the-complexity of the task-and the:short time available—that it-was
better to allow students to work with their own documentation tools than to ask.them touse
specific tools. This.- decision -is reflected in the various styles used in documents.and
source code submitted by the groups. ‘Some of the groups used:a Macintosh application,
others used the Andrew EZ:editor, and yet others used Scribe (a document-compiler-élass
text-formatter).

When teaching this course:later, Brugge and: Wing used=StP (Software:through Pictures),
a CASE tool:provided by Interactive Development Environments. The students used-the
structured analysis-and structured design methods (SA/SD) for the requiréments -and
design phases, respectively. The use of the CASE tool éncouraged. the use of templates
during these phases and led to-consistent documents. In addition, the examples :and
templates-provided in Mynatt's-textbook were consistent with the.notation used by StP.

The disadvantage-of. CASE tools is'the additional:learning experience the students need at
the beginning of the semester. We believe that this additional-overhead was more than
offset by the-consistency among the group-projects. By using a CASE tool such as StP,.each
group was always aware of interface changes in the other groups—differences in the
requirements specifications of the individual groups became visibleé in the structure
charts. We therefore recommend the use-of a CASE tool, if it-is available, for a project-
oriented class in software-engineering.

1.5.7. Risks and Problems
We-were aware at the outset that this project had certain-risks and potential problems.

Based on the answers to the questionnaire distributed at the beginning of the class (see
Figure I1), we assumed everybody knew C and Andrew. This was incorrect. Some of the
students misunderstood what we meant by the-term language familiarity. In fact; two
students in one group-did not have any programming experiencein the C language at all.
This had an:impact-on the:progress of this group.but was eventually absorbed internally:
the other team members taught the two students how to program in C.

CMU/SEL-OLEM4 ’ : - - : - ——

-

Anotherrisk was.that a major part-of the receiver-task relied on the raster-graphics:tool kit
hbrary (RGTK), which was written by-a-student working: part-time during the summer:
“To minimize the-risk, we hired this student as.a consultant for:the project. Th1s was.
:helpful in:two ways. First,there were several bugs in the RGT library, which the:student
found and fixed- during-the semester, making thé-success of the receiver-group -possible:
—Sgcond the students.gained. experience in-dealing=with an-external consultant.

The final.selection of the fax board was done only-three days before the-class started and
after most of the initial project handout (see II.A)had been-written. As itturned out, the JT
fax software was:not useful at-all: It did not allow for scheduled sends and did not record:
status information about:the success of the fax transmission. In-an extraordinary-effort,.
the sender group:rewrote:the JT fax software. This work:was, of course, not planned; and:
it changed our project into a real-life project with deadline misses and-the chance of
failure up-to the last week-before the client-acceptarce test.

15.8. Internal:Project Review

At the end-of the:semester; beforé the start of the:system-integration phase, we asked the-
students.in a homework problem to think about a redesign and reimplementation of
Workstatxon Fax:in an-industrial environment. The idea- was to-have them write about
their experience- and reflect on- problems -they had - encountered.. The assignment_also-
allowed the students to vent some steam that they had devéloped asthe result of someof our
d_eclslons_ The hgmework question. and:a representative- subset of stuglent answers is
contained:in Section III.V, with no-changes except for correction of spelling mistakes.

We summarized: students’ answers and discussed- them in an internal review on
November 28 (see IILJ). The results.of" this-activity were very.-encouraging. The teams-
felt much more comfortable with-each other; they realized they were solving a problem
together;:and they realized that the teachers-were:aware of many of their difficulties.

In the following- paragraphs, we reflect on the results of* the-internal review and-on the
project ingeneral. We hope that these reflections are helpful to teachers who are désigning
similar courses..

L.5.8.1 Unforeseen Problems

One of the biggest problems we experienced in the project was caused by the late selection of
the fax board. We didn’t look carefully enough at the board and’ we overlooked:
deficiencies in the associated software: it was not-able to-do-scheduled-delivery of fax,
-provide:status information, or send-raster images. These+deficiencies created an-obstacle
for the sender group, which missed most of their scheduled milestones because they had-to
rewrite the board software. An additional complication arose when the developer of the
fax board sold the product and the new vendor was unable to provide much help to-the
students:

The above problems caused frustration, but they also provided a good opportunity. to gain
realistic project experience. The students had to:review their design-and-implementation
and revise their project plans-as a'result of the problems. The point we want to stress here
is thatin a project with a real client, one has to expect problems. The challenge for the

CMU/SEL-91-EM4

teacher is-to accept ‘whatever problems arise and incorporate:them -into the lecture or-
discuss them in the project meetings.

Another problem-was that we were not able-to install the-Andrew workstation:in the:lab at
thebeginning of:the project. In fact, the workstation was installed two weeks before the
client acceptance-test."This was an-obstacle-because the students had-to movebetween the
fax-1ab room to-send or receive transmissions and.a terminal cluster-room-to submit fax
requests. “This kind of resource allocation: problem is-likely to happen in-one form or
another: The best-a teacher can-do isto explain it to the students, pointing out that one ‘has to
expect problems-when-building a real system.

1582 Role Rotation

For each :group-we defined two main functions:(project leader and-liaison) and: three
support functions (document editor,-programmer,:and record keeper). To ensure that all
students- gained:experience as project leader andZliaison, we-asked them to-rotate-these
roles on -a regular basis. (The responsibilities- for the project functions. and the role-
rotation scheme are explained:in more detail in Section I1ILF,. page 8.)

Many students-complained about the role totation schefe, and we-agree that it did not
work very well. The scheme particularly. caused problems when the first phase slips.
occirred and we asked students-to revise documents from: previous phases when they were:
-already assxgned to-other roles in the new. phasé. Thisswas very confusing -for-both the
students and the teachers. We- therefore do ot recommend our scheme:for future courses.

1.5.8.3 Communication

-

Often, meeting minutes-were not propagatéd by the liaisons-to-the other members-of the-
team. As-a result, some students complained that they were left in the dark about what
-exactly was going on; others-suspected that not-everybody was privileged to the same
information. We pointed out to-the students that this was not our intention but that it
reflected the real software world quite well. The situation improved after we added.a new
responsibility for the liaison: minutes of liaison-meetings had to be posted on the project
bulletin board.

L5.8.4 Team: Decomposition

Logking back, we think that-the decomposition into fourteams-was done too early. The
advantage of having teams from the very -beginning is that people immediately identify
themselves with-the project. However, problems.can occur when new tasks arise which
are not clearly one team’s responsibility. An-alternative; which we recommend, is to split
students into temporary groups for the design, let them develop one or more designs, select

the best -design, and -then reorganize the students according to the work packages
identified-in the selected design.

L15.8.5 Documentation

The production -of documents for the individual phases was another problem. Many
students would have appreciated templates that provided format and-content outlines for
the required documents (see III.J and IIL.V). We did provide an outline for user

CMUBSELOLEM4 B

documentation (sée.IL.D), a:content-template for software project-management (see-IL.H),
and: a- checklist -for test planning (see II.L); but we did not systematically provide:
document templates. One reason was. that for-many phases in the- life cycle, useful
templates were not- available when we taught the-course. Thissituation is changing.

When we did use templates—for example, Fairley’s teniplate for .software project
management-(see-I1.H)—we-had.good:experiences. However; setting-up a full software
project-managemeént plan requires more:effort than can be expected of students in-such a
short time. We therefore provided most of Fairley’s template (see IILE) and asked the
students to fill in the sections on work package- definition, people management, and
schedules (see- III Q).

The future course:designer-should provide a set of: guidelines-and checklists, in particular
for the requirement spemﬁcatwn and-design phases. This was mentioned by many
students during-the internal: project- review. Textbooks such-as B.T. Mynatt's Software
Engineering with Student Prq;ect Guidance or S.L. Pfleeger’s Software Engineering:
The Production-of Quality Software contain many -useful templates-for the various life
cycle-phases,

1.5.8.6 Versions

We believe that -a-prototype:is an important-aspect of a project-course. The -goal:of the
prototype version:is to-encourage:-students-to-produce a rudimentary system early so they
can get feedback ijom the client. Inour project, the prototype was never shown to theé:client
mainly:because of:lack of time. In fact; the protctype was compiled only-once-and:never
seriously used. '

In retrospect, it was-probably not realistic for us:to expect an experimental version: as

soon as the students produced a version:that passed-the client.acceptance test, they stopped
working on the implementation. We thérefore recommend the replacement of the detailed
design-phase by a- ‘prototyping-phase and more emphasis on testing the user interface.-If the
selected projectisvery risky,.as-in our case, a-prototype-has another advaiitage. It might be-
the only part of the project that can be completed during the course.

L5.9. Explanation of Project Exhibits (Part III of this set of educational

materials)

The project-related exhihits are grouped into two:parts: dociments and slides-that were
handed out to-the.students (IIL.A-K), -and documeiitation produced by the students:(IILL-
W). Each document is briefly described below.

Handouts:

IINA Initial Project Description

Students received:this docurient at the:beginning-of the course. It contains an overview of
the requirement specification, the overall schedule, our grading policy, and various
organizational details.

“CMU/SEI-91-EM-4

IILB- Requirement Specification Slides

We presented these slides:at the-beginning of the project. After the presentation, we asked
the-students to form groups. In the next lecture;the client presented-his needs.

II.C Requirement Specification Document

This: requirements document for the full system was taken almost verbatim from e
initial project description. We-gave this document to-students after discussing software-
project management.

IILD Project Management Issties

We presented these slides:before-asking:each-group to-organize itself.
IILE Software Project Managément Plan -

After discussing Fairley‘s software project management plan, we handed -out this
document. It follows. Fairley’s template very closely. We filled out most:of the sections-
and-asked-the students of each group to write.Section-4.4, Technical Process, and:Section
4.5., Work: Elements and Schedule (see Section 1I1.Q):

IIILF System Design Issues

These -slides were presented at.the ‘beginning of the system design phase. One-of the
groups-had already submitted-a design-and another group was working on-an alternative.

II.G System Design Document

This.document was produced after a special class on-alternative designs and a follow-up
discussion. The final design is a result-of these-discussions with the:students and-is based
on their submitted:designs.

IIILH Client Review Plan

This document includes discussion of the functions needed for the formal client review
and assignment of people-to these functions.

CMU/SEL-91-EM-4 ?] 5

TILI -Detailed Design

This-document announces a-liaison meeting to the :rest of the-class. Several decisions
were made concerning error-messages-and return-results of ‘public functions. A global
data:stricture fax_type was also defined-in that meeting.

IILJ- :Status, System Integration, Discussion

We-used these slides for status, system:integration-assignments; and the internal project
review..

OILK :Client Acceptance Test.

This section contains the status of the project two days before the:client acceptance test,-and
an announcement-of the revised schedule.

Student Documentation:

OLL Design Proposals
These proposals were submittéd-hy-students during the design phase.

IILM Design Review Slides:

Material -for the formal-client-review, which was. conducted by the students. The client
and several interested people were present.

IILN: Client Acceptance Test Slides

Material for the formal client:acceptancestest. The:presentation-was done completely by
students and was- videotaped. The -client and several interested people from other
departments were:present.

IO Requirement Specification

This documentation was submitted by the teams at the end of the-requirements phase. Note
the inconsistencies of the documents, in-particular, the user message specification. The
requirements were written- when it was assumed that the -interaction with the user was
completely by e-mail. We encouraged consistency but did not enforce it.

— - = - ~CMU/SEL-91-EM-4

IOIP Design
The.design-documents submitted:by the:four groups.

IOI.Q Software ProjectManagement Plan

Section 4.4 Technical Process and Section 4.5 Work Elements-and Schedule of-Fairley’s
seftware management plan template. ‘Note-that the administration-group- submitted a full
plan-for this project.

-

IILR Detailed Design
The:detailed designs submitted:hy the four groups.

I0LS- Unit Testing
The unit test manuals submitted*by-the:four groups.

TILT User Manual

“The:user manual,, which was written collaboratively:by the:four groups, with-one student
responsible for-the final-document.

LU Administrator Manual

This-manual was written for the operator who needs to know howto start up and operate
Workstation Fax,:and for the administrative assistant who needs to know how to read
cover sheets of incoming fax images and remail them to the indicated person. The
manual was written by the four groups, with one student responsible for the final
document.

III.V Internal Project Review

This material is the result of a homework assignment-that was used to evaluate the project
in the middle of the semester. Weiaske;d students to-discuss how to redesign Workstation
Fax in an industrial setting. We also encouraged them to evaluate-the project itself.

CMU/SEL-91-BM-4

III.W: Fax Examples

This-section contains several fax images that were created: by the students. The:first page
is-an example of:a_cover sheet of type raster that-was implemented-by:the cover sheet group-
but not used because only-sending- ofitext was-implemented. The second example is the-
first- successfully transmitted Fax from the-JT fax machine to the:fax machine in the
university’s Engineering and Science:Library. As-part-of-the system integration test, we-
asked‘the students to send the invitation to the. client acceptance test. The actualinvitation
received is shown as a third example. The final examples are the:two fax images that
were produced during the-client acceptance test. Note the.client’s-signature, which was-
added:to the fax:after it was received-at the fax machine-and before:it was resent to the-
sendér.

IILXYZ Bboard Discussions, Agendas

Examples of students’ project discussions on the Andrew bulletin-board. Examples of
meeting agendas.

B ‘ — - ’ ~ CMU/SELOL-EM4

L8. Administration
1.6.1. Staffing

A project-intensive-.course in software -engineering requires--considerable time and
attention to detail on:the part of the course staff. A:list of tasks for-the instructorincludes:

* Preparing and:presenting lectures

* -Preparing and:grading-quizzes

¢ ‘Preparing ,and%ggradi_r;xg homework -assignments

o Designing the project-and anticipating problems

* Writing and:-revising-project:documents

*-Setting-up common procedures (version control, document-templates)
* Acquiring tools, components,:and -associated:documentation
¢ Coordinating with the.client

. ?I‘roublgéhooting in-the:lab

- ‘Holding project-meetings

-+ Monitoring inter-project communication

» Being available during and cuiside office hours

In addition, a project involves not-only separate group-results but alse:the-intégration-of
these:results. Integration réquires extra-coordination that is not>necessary-in traditional
courses.

In our course, we divided the above tasks into lecture and project-specific responsibilities
and distributed them among several people: a lecturer who dealt with: the class-related
issues, a project manager who assumed the project-specific %asks, and a teaching
assistant who was responsible for grading and for attending the proysct meetings. We
also hired a consultant who:was familiar with the-experimental Andrew software that the
students used. Coordination-among these-activities was done quite frequently, in weekly
meetings as well as by e-mail; and-if difficulties-arose, we did not hesitate to change the
syllabus. For example, in the middle of the semester it became clear that we needed a
project review with all the students; therefore, we.added an internal project review to the
class schedule. '

Although we taught the course with three people, most of our experience should be useful to
an -instructor who teaches such a-course alone. This instructor has two alternatives:
spreading the lecture and project material over two semesters or cutting back in one or
more areas. Teaching the course in two semesters has the disadvantage discussed in-
Section 1.6.3.

CMU/SEI-91-EM4 - = ; ' 9

The: main -advantage-of a project-intensive course in software engineering=comes from .
intérleaving.the lecture material with-the project:experience. An-instructor-teaching-the
course alone:should ‘therefore:implement:a more-modest-project, such as a compiler for a
small language. However, the instructor should be aware that selecting :too small: a
—prOJect will:not teach-the students realistic software engineering principles.

L6.2. Credit and Grading Policy
A course of this kind presents-several special problems:
‘¢ Grading teamie‘ffor’cs
-e Fostering cooperation rather than competition
- Making-lectures:seem- relevant
‘- Getting the readings read:

Below we- will addreés each problem and the way we haﬁdled it. :The commOn thread of
grades) w1th the behavmrs weswish to encourage Thxs does, of course, force us to- grade
what’s important rather than what’s-easy to-grade.

1621 Grading Team Efforts

Our grading:policy was guided:by the desire to discourage competitiveness and encourage) .
communication among the students. At the beginning of class, we handed out the
following-grading policy (see IILA):

The -project proceeds in- the following phases: requirements, project plan,
design, detailed design implementation, unit testing, and System
integration. Each phase-results-in.a baseline document to be:submitted-to the
‘project management before the deadline. -Each document is reviewed.at least
once by the project management before it becomes a-baseline:document.

Each baseline.document is worth-up-to 8-points if it:is submitted in time. We
subtract 1-point per day for documents submitted after the deadline. We will
give an A to everybody who participated in:the project if the complete software
system passes the client acceptance test as defined in the requirement
‘specification -document. If the complete software.system fails the acceptance
test, an individual project still gets an A ifiit demonstrates that the individual
component passes its-acceptance test in the testbed-environment of the
individual project.

Workstation Fax is a project that puts- emphasis on collaboration, not
competition, between the students. We will not accept a system-that is:done by
-one team alone.

With group grades, there is the-danger that very active students might feel that others are
getting a “free ride.” In fact,.in the last third of the semester, we started splitting one
group’s grades te deal with a student who did not participate in delivering documents or .

- : - — = ~ CMU/SEL-91-EM4

programs, even when the- deadlmes were-extended. We announced our decision to:this
_group:-only, not to the whole:class. We discovered to our surprise-that the studeat then gave
much:more effort, in fact, more than any other:student in the group. As a- result, we
upgraded the:student’s grade-to the.full grade.

‘One would think that this‘is-a sign:that otir initial grading policy was:wrong. But we-are
more inclined.to.believe that it works for_the majority of the students. -One might say:-that
grade:splitting works for the minority of-students:who need a separate grade to be able to
structure their priorities, but our sample is much-too small to be:statistically valid.

L6.22. Fostering Cooperation Rather Than Competition

Like-many-students; ours are competitive. This:competition is-often grade-directed,.and
students can be distracted: from learnmg by uncertainties -about their class standing.
Even: worse; -they -are acctistomed’ to courses graded “on a curve,” with a limit on:the
number of A and B grades awarded. “This -inhibits: cooperation .and even leads to
counterproductive behavior-that would lower.some other student’s grade.

Since-a project course depends critically-on cooperation among students, we -addressed
this problem:directly. In-addition to-assigning group grades (which promotes cooperation
within groups), we prov1ded a-completion-incentive: if the project passed the.acceptance
test through the efforts of the class as a whole, every student would receive at least 55 of the
64 project points. We also-defused the uncertainty of the grading-curve by- publishing the
grading scale at-the beginning of the semester. V

L6.2.3. Convincing Students That Lectures Are Relevant

When the grade in-a course depends-primarily on project work, students tend to spend
their time on the project instead-of.on the lecture and associated readings. (This is true in
programming courses in general;-in extreme cases we've sesn students so-focused on
-making progress on-a project that they wouldn’t pay attention to the lectures that told them
how to solve the problems easily.)

We addressed the problem -of convincing students that the lectures were relevant in
several ways. First, we committed 40% of the course grade to-individual performance in
the lecture portion of the-course. This is-commensurate with our assessment of the
appropriate balance of time-and content; happily, it also_helps reduce apprehension about
the vulnerability of a student’s own grade to the vagaries of other students. Second, we
scheduled the lecture material for presentation as close as possible to the time students
would need it for the project. Finally, homework assignments usually required students
to explain a connection between the lecture and the project.

1.6.24. Getting the Readings Read:

In-any course, students often postpone assigned-readings until the night beforé a test. We
were daunted by the prospect of students doing the reading in this way.

Our solution was to give a-5-minute quiz-at the beginning of every class with-an assigned
reading (about 22 of the 28:classes). The quiz was easy and intended to.determine whether
the students had captured:the main point of the-readiag. For the most part, the quizzes
showed the students to e doing the reading. An added benefit-was that we could assume

CMUSELOLEM4 . ———— —

the reading as-shared context between:the instructor and-the students; as a result, the
lectures could provide motivation, context, and evaluation rather than:just repeating the
substance of the-reading.

1.6.2.5:;. Summary

Whatever the--grading -policy, it is -hard to grade -a software engineering: -project
consistently. Atthe end of the semester, there was-achance that the deadline for:the client
acceptance test-would not be:met. The-sender group had problems with:the fax-board and
related:software,-and they were still:trying to-debug when-the other-groups had:already
moved:to the unit testing phase. If we:had strictly applied:our grading policy, we would
have:subtracted a point for-each day-the sender-group was late. However, we-did not
subtract any points at all. We believed the main motivation for the students came from the
fact that they were-working on a product-for a real client, and this turned out to be correct.

1.6.3. Coordination Between Lectures and:Project

project-phases issimportant._If it is dofie well, the student can instantiate:class concepts
-almost immediately in the project, andithe project.experience can be used in class.

Synchronization-is hard to-achieve, especially in-the early phases-of the project, when the
students -are not yet familiar with concepts they need. (Nor is it possible to- have the
students apply all:the concepts taught ini class:) Onesolution-to this problem is to téach the
course-in two semesters. Insthe first semester, all-the software engineering concepts are
taught; in the second-semester-they are applied to-the_project. However, we believe it is
better-tv teach the course-in one semester and use the synchronization problems -as
pedagogical tools. Whenever the project demanded some knowledge:-from the-students
‘before-it was-taught, we found that the students were much more motivated when we
covered the material in the lecture.

For example, we-asked the students to-do a-requirement spécification before we-discussed
the topic in class, and to develop a project plan béfore we gave the lecture on planning. In
both cases, we asked the students to express:themselves informally at first and revise their
documents after the lecture was given. We found that this-approach worked well.

We also tried to keep the lectures coordinated with the project by giving homework
questions that required the student to apply lecture-material to the project. In more than one
case, we incorporated their answers into our next-lecture.

1.6.4. Communication

One of the most difficult problems in any group:project is the problem of communication.
As the size of the group grows, the number of possible communication channels increase
‘geometrically. In any project of more than trivial size, communication is likely to
become the major bottleneck in software engineering. The problem is exacerbated
because the students’ workload limits them to spending approximately 20% of their time.on
this project. Because each student is only 20% as productive as a full-time staff-member,
the number of students needed to complete the project is somewhat large, making

- = = = = ~CMUISEL91-EM4

communication-difficult. Additionally, these students-are not in-constant contact.-eight
hours a day as:they-would:be in a “real-world” environment. Hence, communication is
further complicated—a student may not:be able to simply-walk:down. the hall to talk to-a co-
worker.

Since communication:is crucial to any:project, especially-a student:project, it is necessary
to establish effective mechanisms:for interaction among;pevple in a-group and:interaction
between groups. In this course, we established two primary mechanisms: group meetings
-and:electronic-bulletin boards.

To ensure intra-group communication, each group held weekly meetings. Discussions-
usually centeredaround the current state of that group’s-progress, what each member of the
group was working-on, and any. problems-that had been encountered. Group leaders
conducted: these meetings;. usually according to-an agenda. Agendas were -used-as a
means of making sure that:the meetings had‘direction. ‘Without this precaution, meetings
often cease to be a productive use.of time. Minutes from:the meetings were posted, both to
record progress-and to keep-other.groups abreast of.current happenings.

Meetings-between the group liaisons were held periodically to-keep:the projectas a-whole
synchronized. The current state of each group was discussed and, more importantly,
interactions and expectations between the groups were ironed out; for example,-the details
of a-module and’its external interface could be clarified.

The other major means of communication was electronic-bulletin boards, or bboards. We
used a group of bboards that were set up before the course started (see iII.E). The bboards
could be read by all members of the cldss and any person in the university who subsecribed
to them, but only designated people could post messages. Two bboards were used for lecture
-announcements-and project announcements;-only the instructors were allowzsd to posi on
these-bboards. Another bboard was designated for-discussions about the project; students,
instructors, and:the external client could post on-this bboard. Finally, we created bboards
for each of the teams:for group-specifi¢ topics, and only-the team members could post on
these.

One.great:advantage-of bboards is their convenience. First, users can read and post at
any terminal. In the CMU Andrew environment, access to bboards is easy and
convenient because of the large number of terminal clusters. A second advantage is that
these bboards leave a record of all posts. For example, if a design decision is discussed
using a bboard (see IIL.XYZ), there is a record of all the issues that were considered; this is
useful -for documentation, maintenance, and many other activities. Third, the structure
of our bboards allows students to track down-relevant-information easily. Bboard readers
find information they want:-without-having to wade through irrelevant data. For example,
if a person wishes one-day to track the progress of a team, he or she needs to read only that
team’s bboard.

However, bboards become useless if they are not part of the “culture” of the environment.
That is, unless-students log into a computer frequently to check bboard messages, the
medium is ineffective. In our course, bboards were a means of communicating
announcements and minutes from meetings, as well as a forum for asking and
answering questions.

CMUSELOLEN4 —

1.6.5.. Mechanics

Computer support-is important‘for instructors as well:as for students. In addition to the
usual word processing facilities, we relied heavily on support -for overhead projection
transparencies for lecture materials and:on spreadsheets and form letters-for computing
grades:and advisin‘g"students;6f':their’statu_é.

The various lecturers produced overhead-projection-transparencies on the-systems they
found most conveniént. The consensus was that of the-systems we:used, PowerPoint on-the
Macintosh provided:the best.combination.of capabilities. It can:combine text-with simple
graphics easily; it will accept-drawings-and charts-from other Macintosh systems (a
number of graphs: were produced with Excel and imported, for example); and-it provides
automatic facilities for making handouts formatted with two -or six slides per page:
Students told us that they preferred the handouts at six-slides per page; for the-font sizes-we
used, this provided:adequate legibility with minimum bulk. We:also used FrameMaker
under X Windows-on a Sun in-some cases-where it was more convenient.

We maintained grades using:an Excel spreadsheet on:a-Macintosh. We wanted to do two
things-that made-this-grading:template more complex -than the-usual one: -we wanted to
record group grades-on -project phases in-one place and propagate the restilt to-all the
students involved,-and we wanted. to provide periodic:feedback t6- ‘individual -students on
their current course status, including current percentage and projected grade Figures I:3
-and I.4:show how the-former:is done-in Excel; Figures 1.5 to-I.7:show how:the latter-is
accomplished by exporting data from Excel-to the form-letter facility of Word.

Since the project grades complicate the spreadsheet a little, we exhibit a slightly simplified
version: of the course spreadsheet. Figure 1.3 shows values for grades and Figure 1.4
shows the formulas. The simplified version shows five homework assignments, two
exams,:and a finalzinstead of the daily-homework and-quizzes that we actually assigned,
but this'has little effect on the basic template. The nanies and grades in the example are, of
course, fictitious.

Look first at rows 4 through-15. Row 4-not:6nly labels the columns:but serves to-provide the
tag fields required:for form letters. Rows-5-13 give.individual-grades for each student.
Row 15-gives the perfect score for the zorresponding column. It is-filled in as-the semester
progresses, so the sums in row<15 show the.scores that-a-student-could have earned at the
current point in the semester; this makes it possible to compute the current grade
automatically.

Columns M-O and:R-V are individual -exam or homework grades. Columns L and Q
(rows 5-15) sum the raw scores:of exams and homeworks, respectively. Columns C and.E
give the points earned thus far-for project-and lecture, while column G is their sum (total
points). Columns D, F, and H are the corresponding percentages,-and columns I, J, and-K
are the:conversions of those percentages to-letter grades.

-

Next look at Rows 19.to 22, ignoring columas H and 1 for the moment. Each of rows 19-22
-corresponds to one of the project-groups. Grades for each of the phases are entered in
columns N-U, and their sum is computed:in column L. The “override provision” (if client
uccepts-the project, all groups gét at least 55 points of the 60)is implemented as the sum

Y, ‘ — — - ~ CMU/SEL9TEM-4

from:column L is moved forward to column C. The-project grade forzeach group.is then
propagated-to each student in the.group by locating the student’s grrup (given in-column B,
rows5-13)in the table:formed by columns A and C, rows19-22. -Columns H-and I:of rows
18-23 (theboxed, italicized-cells) form a-table usedto convert percentages to letter grades in
columnsI-K of rows-5-15. (The placement of this table at-this location was.a matter of
convenience. Resist the temptation to confuse it with some aspect of computing project:
group grades.) ‘

‘CMUSEROLEMA4 %

Figure L3

Values of Grading Spreadsheet

B A J B] C-] D E [F -G H- T = K™=
71 }15-413; Fall Semester1989 E = ~ - -
12 Course Grades~ |- z - -
3 |- Pro act ___|Lecture| - Total ~) k
-1=4 |Name:~ :Grou ProjPts Procht LecPts |LecPct [TotPls |TotPet Proj GLec GiGradd:
|25 |Jim Adams _|Cove] ~57.5| 95.8%]. 35.80| :89.5%] :93.30] 93.3%| A | B Al
-6 |Ann Brown " |Rec _55.01 91.7%)] 85.70]:89.3%| -90.70] 90.7%| A | :B A
-|27-_1Barbara Davis |Send| 55.0] 91.7%| 36.00]:90.0%| .91.00] 91.0%j A | A | A _
:1::8 |John-Doe ‘|Rec 55.0| 91.7%! 28.60] 71.5%|_ -83.60] 83.6%] A | C | B
-9 |SamJones Cove| _ 57.5| 95.8%| 38.10] :95.3%| 95.60] 95.6%| A | A | A-‘|:
1210 |Mike Miller _ |Send| 55.0] 91.7%| 33.60} :84.0%| -88.60| 88.6%| A | ‘B IRE
1211 }Jane Rose Adm 57.0] 95.0%|_ 33.80| :84.5%| 90.80| 90.8%]| A | :B Al
1212 |Robent:Smith |Adm| -57.0] 95.0%| 30.20| 75.5%| -87.20] 87.2%| A | :C B
‘(13 [Susan'Walker _.[Send] -55.0 91 7% 37.00] 292.5%] -92.00f 92.0%] A | °A A__
HET S -1 — 1 = _ .1 - _
:;;15: PERFECT SCORE - -60.0 700. 0% . 40.00/100.0%} 100.00/100.0%] A | ‘A A -
17 _ _ o - N _
18 PROJECT GROUPS - “|OverRid 55.0 GRADE SCALE -
29 {Adm- - 57.0) T N 0.0%| R |

20 |Cover. Z 57.5 ~ 1650% | D |
:21|Rec _ - 55.0|. _ - 1700% | C | .

-22 |Send] 55.0 . 180.0% | B

23 PERFECT SCORE 60 0 o B 90.0%.1 A |-

_ —L‘*’" M = N 0 P |_Q R S | T -U- v

i1 i i - S - e

12 L’ECTU%EGRADES , T S

£ 3 |Total 10/5|- 11/7] 12/10 {Total | 9/19] 10/10] 10/17]| 11/21] 11/28|.

= 4 |Exams |Ex1 Ex2 |Final- . |Hwk _ {Hwk1 [Hwk2 IHwk3 |Hwkd4 [HwKS:]-

=5 18.60 4.0 .49 9.7 217.201 . 2.4 3.6/° 32| 4.0 4.0

4267] 19.70 5.0 _"4.7] 10.0 ~1.16.00f 4.0f 28] 3.2] 40/ 2.0

<71 17:20 4.6 3.9] 8.7 ‘.18.80] 4.0 4,01, 3.4 3.7 3.7

8 11.70f" 3.5{°] 8.2 -]116.90] 24 4.0{. 4.0 3.0 3.5

9| 19.00] 5.0 4.6 9.4] ~19.10| 4.0 4.0 3.7 8.4 40|
.10 17.60 48] 4.1 8.7] 16.00f 40f - | 4.0l 4.0 4.0l

11} 15.10 43} 38| 70 118,701 3.6] 3.6] 3.5 -40] 4.0

=12 19.00 4.0 _ 5.0/ 10.0 ~11.20] 28] 2.8] 1.6/ -4.0
1213 19.50 4.7 50| 98 117.50] 36| 3.7]. 3.8 4.0 24

14 - s 1 5 - -

'11.2 20.00 5.0 _ 5.0 "10.0 -20.00] 4.0] 4.0 4.0] -4.0] 4.0

217 |PROJECT GRA 9/26] 10/3| 10/12[-10/26] 11/9] 11/16]| 11/30] 12/5

218 {Total Rats [Plan: |DesignFn Spdimpl: [Unit TdInteg |Acceplance |

19| §7.00] Adm|= 7 71 751 75 -~ 71 75| 6] 7.5

x20| §7.50| Cover| ~ 65| 75| 7.5/ 75| 75| 6.5 71 7.5

21 54.00f Rec| 75| 7 6l 5 7 71 71 7.5

22| 51.50] Send| - 7.5] 65/ 7.5/ 65] 6 3} 71 ~ 7.5

-23:| 60.00 . 751 75 75/_ 75 750 751 75/ 7.5

! SiL EYiE T LCALINING S= te |

3 9 , SL 9] L pudS| (TTATINOANNS= %4
, o e L A] A Sl OYLALZASIINOANS=] . AL

T o9 L . SL . SL 9] . . 3amO| (GTAOININNS= 0C

' SL L N3 N L. wWpY §>§es:wu {6l

15910 - 1AW}, ,ﬂmuo L. ol 2.2 I . el Rl
99t IL] ann_n , :H_n N <441 Slele| " . v os_ohﬁaxm ' Eal
R) ,, T T ; ,, T C— '

v ¥ CIASTHWNNS™]. 0t <] S G_o.n:zf:w.. anmovuo n:cm:xoo;.. ST

N T R P I A BELl

L LEl Ot (EIACIONNS=] . °~ . | . . 86 S O TNNNS=[PSPeD E TN 0O 1= €1

'8¢ $Z] (CIA-TINNS™ RSN DR 01}, TSl . P10 T L WINNS= (OISR 21 HIGN AOO 1=] &

9t ot UIATTTDWNNS=] _ . L Tl e p[(LHO TTAANS=|(PROSEID T THIdNNOO 1=] L1
T) (OTACOTWINAS=] © ol L 8] =Rl - . 8 9 (010:0 DNINNS=[(PFoSopesn 0l HIdNNOOT=] 01 |

ey (GAGHIANNS=] . T v6 o0S (GO6AIANNS=] RrRISPD6HIdNN00T=] 6

3 ¥l BABUHANSH A 1. St (80 SWINNS=| PRISweIDBZHMNNOO0T=] 8
_ | . V|, LA LDWNS= v . L8| 6tk ... 9P| LOLWNNSE| PrISHEDTHMNAOOT= L |
AN L P OAQHNAS=]., L. 0l ol 5| (90'9AIANS=| (Freasepel5 oI dNNO0T=] 9 1

, O CATCHWNNS L6 ¥ vl (GO SWINNS=]| (Freasapess SHIANOOT=] §
SAME] YAMH TAMH 2101 IMH 1 reud) XA %3] SUIeX e IERE
"V BLEIE] 10 u'r, WLELEL . v OEELE|. .. .OLEIE T e e TTEIOL[T TOBEIE] . ISEEl . o bTEIE] "o vy o I[EIOL|F N £

[R TR B T , Avdo 38N1IA 1 z

A N S q ~0 d 0. . N - A i . A ,

60

. 1

Ouw .HUW.Emm [

PP AOIXVIN=

g 80 T ! . PARSITT
)l " L0 ©UTTIPRIRAD)X VN> ' T BT
Kl §9°0] (0T TIPRIIRADIX VA= |, 43400 0Z
b .0 R {61 TIPRIIRADIX VA= wpvijel
N e e Ok 2 P Cete i e ol SS1 ., FPTHIIAO] T OmU._Umaxm 81|

Ao?dmg n —QKDV.OQ._I

91

m 1SD/61D=

SISASIH=

—SIOTSTI=

STSS o=

OUm ._U\Ezum Sl

T UK
R i

EEETEDEEN FIECC] i

[

e (oo

no?omunﬂo QQKD!OO\

~SSRiDT

EIT+EIO=] S1$3/¢E

T CIOFETT=

SISHVELD=

e AT

S L NS

GRS T DdNN00 |

(Fosop%I) TIAMKNAOO

C1SO/Z1D=]" T1F+Z1D=

1§37

qA=| TIOHT1]=

SISOHVTIO=

DRI R0 T LGN

(o) [ag) Bt
Ll -

wpy iaus 1u3qoy

EEEED

KPoSopwD 01N NOO 1=

BRoS3PaD | I:DAMNO0 1= [P Eo5PaD) LIGKNAOO =] SISVIID=| . 11a+110=] SIS 11a=| . IO+ T1=| SISVI10=| BDI0 31590 1 1H)dN =| |WpVY| . 0y Heff |
(RPSPEDIDINN00 1= SISH/010=] - 01a+010=| . $153/019=] 01001 1=| SISH01D=| Bolaidsidloxd 01gMdN =| 'pwasl . RITANAAINT O
- GIeaSIPRID G INO0 1=| (F*9SIPED 6AIdNN OO] S1$9/6D= 64+60=]_s1$A/63=| 60+61=| S1SI/60=| (3Dloxgs1lord 6d)dN > =| 2400 Souor RS 6
=| {IISIPH BAMNANOO] S1$D/80= §3+80=| sisgd=| gO+8T=| S1$3/80=] (Dloid"5109l04d SHINAODT=| 9] oq tniof] 8.

=[S PBD LAMNNOOT=| L SISOVID= . L3+ L= SIS, . 1 LOFLIR] L SISHNLO= [(BOI0Id 315901 LA)dAN =] PU3s}: 1L

!

GPreasIpu) xaMAAOOT=|

S1$O/90=] "

99+90=] S1$/9d=|"

" 9O+ =] o1

N9O=

Golas139l0id 9H)dNAOT 1=

L FIAN(] #I¥qIv

Y] WGl Uiy

~(BMPSINID SDINNOO 1=

S18D/60=

S3+$0= m 1$:9/6:4=

L SO+SI=| Sl

SHEO=

I3A0)

(Gresauo cadNNOO 1=

CO_Q& ﬂuﬂo& SEINAOOT=

swepy wif

1D o]) _En_ WAL SdioL] D] . S| - 1941043 u&_oi dna1 AUEN
S R SR N Y i I LI | R TORORGY T AL, e
— I T T T) $9pEID) 98IN05

pu3s fre:f “e1v-si

T—a

S T S TR

~ledenlwlin)o

e

jeoyspeards SurpBIy) 10§ ¥MuULIo]

y1om3ry

.H,

[N]

“CMU/SEL-91-EM-4

Microsoft Word on the Macintosh includes a facility -for- .generating form letters. A
master form: Aetter for-this class-is shown in in Figure 1.5. The data: file is-expected-to-
contain one-line with- ﬁeld names, separated by tabs or commas, and one line=per letter-
thh values for fields in an order corresponding- to the names. Such a file can be
,generated from the spreadsheet-of Figure 1.3 by saving it-from Excel in text-only form,
then using - Word to- delete lines-1-3 and.14-23. . The result.is shown=in Figure 1.6. The
Print-Merge:-command: is executed -on the master-form-letter to produce individualized
-grade reports:as illustrated in Figure 1.7. ‘Special messages to individual students may be-
-added with the editor before printing the letters.

Figure L5
Template for Student Form Letter

«DATA Grade Sheet Ex - Text»

—(cName))
To: «Names»
From: -Mary Shaw
‘Re: 15-413-standing-

Date: December 12, 1989

The-summary below shows your standing in the-software engineering course as
-of December 12, 1989. -If this:record does not match yours,-please letme know:

If you have homework assignments that you-haven't gotten:around to turning-in,
please. do ‘SO soon.

Project Points Lecture Points Total Points % Grade
«ProjPts» «LecPts» «TotPts» «TotPct» «Grade»-
‘Lecture Grades
10/5 1’] 7 Final.
‘Exams «Ex1» «Ex2» «Final»
9/19 10/10 10/17 11/21 11/28
Homework«Hwk1» «Hwk2» «Hwk3» «Hwk4 Hwk5»

= , e - — ~ CMU/SEI-O1-EM-4

o

<

X

NNTONONO®
M

© @ N

oNm

<ooto0w®®O

coNbhoOoOo:
fanddFT o
OONOY OO0
R LGLERR:
RV X E N

© ® 000

oaTE

.

NN TONM

49
3
I
<
x
3
T
@
3
T
g
3
T
3
x

0S°L1
0zt
oL'8t
00°9lL
0161
06°91
08°'8t
0091
0zt

HAH!

L.'m
< <

=

)
LorooooN -0

W00 0
wIOows <
<q<CmLDLDL
OO CD0O<C

s NN O

o

<L CLCLL

OO

N
x

-

X3 swexy ‘epeid: 49 987 uY loiy:

N

%026 0026 %526
%2'L8. 028 %SSL

%806 0806 %SV8

%9'88 0988 %0'v8
%9'S6 09'S6 %E'S6
%9'EB' '09'EB: %S! bL
%016 0016 %006
%L'06 0L'06 %E'€8

%E'E6 O0E'E6 %S'68. ;
- 10dI0L SIdio]: 194987 1514987 1odlod: siglold 'dnaiD:

10,1 O3t AR} 03 WyB(] JUSPTYS
97 a3ty

%L L6

%0'S6:

%0°S6
%L 16
%8'S6
%L°1L6
%L L6
%L 16
%8°G6

0'ss
0iLS
0'LS
0'sS
5'LS
1018S.

0'SS pues sie(q eseqieg

0'Ss

G'/S 18A0D

pueg lexjep uesng
wpy. Yuwg.ueqoy,

CMU/SEI-91-EM-4

Figure 1.7
‘Sample Form Letter-

Jim Adams

To: Jim Adams

From: ‘Mary Shaw:
Re: 15-413 standing
Date: ‘December 12; 1989

R

The-summary below shows your standing in thé software engineering cotirse as of December
12, 1989: 'If this record-does-not match-yours, please-let me know.

If you have homework:assignments that you haven't gotten-around-to turning in, please do.so
soon.

Project-Points. Lecture Points Total Points . % Grade

57.5 35.80: 93.30 93.3% A

Lecture-Grades

] 10/5. 1177 :Final
-Exams 4.0 4:9 9.7
9/19: 1 0/1 0 10/17 11/21 11/28-
Homework 2.4 3.6 8.2 4.0 4.0

" — . ~ CMU/SEI-91-EM-4

L7. Conclusions

‘We have described:a project-oriented:undergraduate-course in-software. engineering. We-
taught this:course to senior students:who intended to-enter professional careers as:software-
.developers=-and leaders of - software development teams. The -students-were required to-
apply the-theoretical knowledge of the lectures to the .actual construction of a:complex
software system. It-was our-experience that préesenting:the goal:of a working product to the:
students was a strong incentive for-them and-resulted-in-a level:of motivation wezhave not
seen before.

Finishing-the project was-the primary motivation for-most of our students. ‘Having a:
-client for the project-increased the motivation: The presence-of-a-client-also increased the-
overhead during the organization of the project. The enthusiasm:of the students who know:
they are delivering-a real product more than compensates for this.

We see this course-as our-last chance to teach the difference between a programming;
exercise and a delivered software product. Because there.is toormuch material to:cover in:
-depth in one semester, we-surveyed-the issues:in the-lectures, using the:project to provide-
motivation: and context. Thus, the-project:served not only as-an advanced -software-
-development task but also as:the “glue”to connect the topics surveyed in the lectures.

We recommend teaching -all the material in a one-semester course. The project
reinforces many-of the concepts taught-in the-lecture.and vice-versa. We found:that the
students exhibited -enthusiasm during the lectures when they-could immediately apply-
many-of the concepts.to their.project.

'If:?grading is required, group:grades-with some-flexibility work-well.

An internal project review is an integral part of a:-project-course. It clarifies many:
unspoken problems and helps to maintain the enthusiasm the students had at the
beginning of the semester. ‘We therefore recommend:such a milestone in every project
course at about the middle of the semester.

A software engineering project course with a teal client is time-intensive for teachers as-
well as students. If done well, the rewards are great for:both.

CMU/SELO1-EM4 — - — =

o) — — CMU/SEL-91-.EM4

. Order Form for EM-4 , Parts IL.and 111

Parts II and III of:educational materials package CMU/SEI-91-EM-4
contain instructors’ lecture materials-(including transparency
masters, homework assignments, and:quizzes) and:.course: project
materials prepared-by students-and instructors.

To receive the set of two-3-ring-hinders; complete this form:and return it
with-$55.00-payment to:

‘Education frogram:

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 152133890

Checks should be made payable to:Carnegie Mellon: University and
should accompany-this order form.)

Name - 5 _ - B)

Address____ -

Amount enclosed $____ ($55.00- per set)

CMUSELOLEM4) : = — —

“UNLIMITED;UNCLASSIFIED
SECURITY. a:ussmcxnm OF THIS PAGE

=3

REPORT DOCUMENTATION PAGE

REPORT SECUR!TY CLASS[FiCA’I’IO‘I
nclassmed

|-1b. RESTRICTIVE MARKINGS © ™~) —
|:None

i2a. SECURITY CLASS!FICATION AUTHORITY
A

‘2. DECLASSIFICATION/DOWNGRADING SCHEDULE - -
AN/A

=3:DISTRIBUTION/AVAILABILITY OF REPORT ~

Approved for Public Release

Dlstnbutlon Unlimited

PERFORMING ORGANIZATION REPORT NUMBER(S ~

f CMU/SEI-91-EM-4

"|:Educational Materials

“5MONTTORING ORGANIZATION REPORT NUMBER(S)

“6b OFFICE SYMBOL
(if applicable)-

. NAME OF PERFORMING ORGA\'IZAT!ON
oftware Engineering Institute

72. NAME OF MONTTORING ORGANIZATION -

|:SEI Joint:Program Office-

: 6c, ADDRESS (City, State and ZIP Code)

arnegie Mellon-University
:Pittsburgh PA-15213

i —7b ADDRESS {City, Statc and ZIP Code) i -

ESD/IAVS }
“Hanscom Air Force Base;:MA 01731

) B NAMEOFFUNDII\GISPOVSORB\G
ORGANIZATION

El Jomt Program Oftice

b, OFFICE SYMBOL
(if applicablc)

_ESDIAVS.

2’ PROCUREMENT INSTRUMENT le\“HCAﬂON NUMi};I‘ER
-F1962890C0003:

: Sc ADDRESS (City, State and ZIP Codc)

-§ Camegie-Mellon:University
: Pmsburgh PA 15213

“{10;SOURCE 6FHINDIN6 NOS.

PROGRAM PROJECT | TASI\ 7 WORk U\'lT
H.EMENTI\O NO. - 2| ‘NO.
63756t | NrA N/A N/A

?il TITLE aacxudc Secaii‘ly Classification)

¥ : A Software Engineering Pro;ject Course

with a Real Client

12. PERSONAL AUTHOR(S)
. Bernd Bruegge, John Cheng, Mary Shaw

£132. TYPE OF REPORT- - 13b. TIMECOVERED
Final

FRO\‘[.. T _

14, DATE OF REPOKT (Yz, Mo., Day). -| 15:PAGE COUNT
July 1991 43

i ‘16 SUPPLEMENTARY. Mmmow o =

COSATI CODES-

GRQ,UP

Y“l‘
P
|
g
9]
i ®

[I

SUBJECT TERMS (Conunuc on mcm: scof nw:ury and identify by block rumbcr)

softwére engineering education
project courses
software management

ABSTRAC'I (Conunue on reverse if necessary and idmurygy block nun;b;r)

At Carnegie Mellon, we taught an introductory software engineering course that

: was organized around a project with a real deliverable for a real client.

This

case study -describes the background .and organization -of the .course and presents
the lecture and project materials produced by the faculty and students of the

: .course.

. ~ (plcase twm over)
[2. DISTRIBUTION/AVATLABILITY OF ABSTRACT 21, ABSTRACT SECURTTY CLASSIFICATION B
| UNCLASSIFIED/UNLIMITED SAME AS RPTDTIC USERS g | Unclassified, Unlimited Distribution
222, NAME OF RESPONSIBLE INDIVIDUAL ™~ - 225, TELEPIIONT NUMBER (include s (i) 22e, GFFICE SYMBOL
“Charles-J. Ryan, Major, USAF (412) 268-7631 ESD/AVS-(SEI)

DD FORM 1473, 83 APR-

UNLIMITED. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIIS

The-Software Engineering Institute (SEl) is a federally funded research and development center, operated by-Carnegie
-Mellon University under contract with the United States Department of Defense.

The SEI Graduate Curriculum Project is developing a wide range of materials to support software engineering education.
A-curriculim module (CM) identifies and outlines the content of a specific topic area, and is intended to be used by an

-instructor in designing a course. ‘A support materials package (SM) contains materials related to a module-that may:be-

‘helpful in teaching a course. An-educational materials package (EM) contains other materials not necessarily 1 related toa
-curriculum module: -Other publications include software engineering curriculum recommendations and course: d95|gns

SEl educational materials are being made-available to educators throughout the academic, industrial, -and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
-SEl;by-Carnegie Msllon University, or by the United States government.

-Permission to make copies or.derivative works of SEI cumriculum modules, support materials, and educational materials is

-granted, without fes; provided that the copies and derivative works are not made or distributed for direct:commercial
advantage,-and that-all copies and derivative works cite the original document by name, author's name, and document-

number-and give notice that the copying is by permission of Carnegie Mellon University.

Comments on_SEI educational materials and requests for additional information should be addressed to.the Education
Program .Software-Engineering_Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania-15213: "Elsctronic: mail
can besent to education@sei.cmu.edu on the Iniernet.

-Curriculum Modules (* Support Materials available) Educational Materials

CM-1 [superseded by CM-19) -EM-1 Software Maintenance Exercises for a Software
‘CM-2 Introduction to Sofiware Design . Engineering Project Course o
CM-3 The Software Technical Review Process® "EM:2 APSE Interactive Monitor: An Artifact for. Software
‘CM-4: _Software Configuration Management® . Engineering Education

"CM-5 “Information Protection -EM-3 ,2:::!&:;% Somputer Programs: Instructor’s’ Gusde and:

‘CM6 “Software Safely -EM<4 A Software Engineering Prcuect Course with z a Real

CM-7 -Assurance of Software Quality Client

‘CM-8 Fomal Specification of Software* EM-5 Scenes of Software Inspections: Video Dramatizations
CM-9 Unit Testing and Analysis for the Classroom

‘CM-10 Models of Software Evolution: Life Cycle and Process EM-6 Materials to Support Teaching a Project-Intensive
CM-11 Software Specifications: -A Framework -Intreduction to Software Engineering

CM-12 Software Metrics
CM-13 Introduction to Software Verification and Validation
CM-14 Intellectual Property Protection for Software
CM-15 [no longer available]
-CM-16 Software Development Using VDM
CM-17 User Interface Development*
CM-18 [superseded by CM-23]
-CM-19 Software Requirements
CM-20- Formal Verification of Programs
CM-21 Software Project Management-
CM-22 Software Design Methods for Real-Time Systems*
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 _Language and System Support for Concurrent
Programming*
CM-26 Understanding Program Dependencies

