
AD-A242 539

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
NOV 181991 0

THESIS
DATA COMPRESSION USING THE DICTIONARY

APPROACH ALGORITHM

by

Michael T. Kaoutskis

December, 1990

Thesis Advisor: Chyan Yang

Approved for public release; distribution is unlimited.

9-15184 i! - ',

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DiSTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b DECLASSIFICATIONDOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBERS)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZAThON
(If applicable)

Naval Postgraduate School EC Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS(City, State. and ZIPCode)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

DATA COMPRESSION USING THE DICTIONARY APPROACH ALGORITHM

12 PERSONAL AUTHOR(S)
KAOUTSKIS, Michael T.
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Master's Thesis FROM _ _ TO _ 1990 December 84
16 SUPPLEMENTARY NOTATIONTh- views expressed in this thesis are those of the
author and do not rt-flect the official policy or position of the Depart-
ment of Defense or the US Government.
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP entropy coding; compression ratio; decompression;
dictionary conversion into numbers

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Several data compression schemes have been investigated for reducing
storage space and transfer time via a computer network.

The primary goal of this thesis is to develop a new scheme for data
compression ratio better than the already existing schemes. The main
approach adopted by this research is a combination of dictionary look
up and entropy source coding.

20 DISTRIBUTION AVA;LAB,9TY OF ABSTRACT 21 ABSTRACT SECuR:T
v

(,ASSI C ATION

IXUNCLASSIFIEDUN INMED E SAVE AS PPT E r)-,c IISTRS UNCLASSIFIED
22a NAME OF RESPOrNSIBLt 1NDviD,,A[22b TE 14PfO' 4% (Include AreaCode) 22 () , '('

YANG, Chyan 408-646-2266 l
DD Form 1473, JUN 86 Prr,',us pd,t,ons ae(bsoletp _ , (P TV (LATS (1% ; T'14 T-, __

s/N ()102 -IF:-() l UNCLASSI FI ED
S!i

Approved for public release; distribution is unlimited.

Data Compression Using The Dictionary Approach Algorithm

by

Michael T. Kaoutskis

Lieutenant, Hellenic Navy

B.S.,E.E, Hellenic Naval Academy 1982

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 1990

Author: _ _ _ _ _ _ _

Michael T. Kaoutskis

Approved by: _ _ _ _ _ _ _ _ __- - _ _ _

Chyan tang, Thesis Advisor

Mitchell L. Cotton, Second Reader

Michael A. Morgan, Chirman

Department of Electrical and Computer Engineering

1i

ABSTRACT

Several data compression schemes have been investigated

for reducing storage space and transfer time via a computer

network.

The primary goal of this thesis is to develop a new scheme

for data compression with compression ratio better than the

already existing schemes. The main approach adopted by this

research is a combination of dictionary look up and entropy

source coding.

t .>

/-

iiii

TABLE OF CONTENTS

I. INTRODUCTION.......................1

II. ALGORITHMS FOR DATA COMPRESSION.............3

A. THE FINITENESS OF SYMBOLS..............3

B. RELATIVE FREQUENCY METHODS.............4

1. Huffman Coding Algorithm.............4

2. Arithmetic coding................6

C. RUN LENGTH ENCODING.................7

D. PROGRAMMED COMPRESSION...............8

E. ADAPTIVE CODE....................9

1. Locally Adaptive Data Compression Scheme 9

2. L Z W Compression Algorithm. 12

a. compression..................13

b. Decompression................16

3. The LZ77 OPM/L Text Compression Technique. 17

F. DICTIONARY APPROACH................22

III. DICTIONARY DATA COMPRESSION 23

A. OVERVIEW.....................23

B. COMPRESSION PROGRAM................24

1. Input Part...................24

iv

2. Conversion Part................25

3. Numerical Translation.............27

C. DICTIONARY....................29

D. DECOMPRESSION PROGRAM...............30

E. USAGE OF THE PROGRAM................31

1. Compression..................31

2. Decompression..................31

IV. STATISTICAL RESULTS - PERFORMANCE 33

A. GENERAL......................33

1. Size of file vs. compression ratio. 33

2. Comparison between different compression

schemes....................33

B. SIZE OF FILE VS. COMPRESSION RATIO........33

C. COMPARISON BETWEEN DIFFERENT COMPRESSION SCHEMES 36

D. NON-REVERSIBLE VERSION OF THE DICTIONARY PROGRAM 37

E. TIME IMPROVEMENT ALGORITHM............40

V. CONCLUSIONS......................42

A. DATA COMPRESSION.................42

B. FUTURE RESEARCH..................42

APPENDIX A: PROGRAM LISTINGS...............43

A. COMPRESSION PROGRAM................43

B. DECOMPRESSION PROGRAM...............54

C. TIME IMPROVEMENT ALGORITHM............62

v

REFERENCES.........................72

INITIAL DISTRIBUTION LIST................

vi

LIST OF FIGURES

Figure 1 Huffman Coding 5

Figure 2 Coding CAT using Arithmetic Encoding 7

Figure 3 The "move-to-front" word list 11

Figure 4 The string and the alternate tables 14

Figure 5 The compression procedure 15

Figure 6 The decompression procedure 15

Figure 7 Performance of different compression schemes . 20

Figure 8 Binary searching tree for longest match . . 21

Figure 9 Link list scheme for the Dictionary and Text 25

Figure 10 Conversion of words into numbers 27

Figure 11 Bit Conversion of Digits 27

Figure 12 Conversion of numbers and compose of

character 28

Figure 13 Compression ratio vs. size of file with

dictionary with less than 1000 words 34

Figure 14 Compression ratio vs. size file with dictionary

with more than 3000 words 35

Figure 15 Comparison between the three schemes 36

Figure 16 Compression ratio vs. size of file with

dictionary with less of 1000 words for non-reversible

algorithm 37

vii

Figure 17 Compression ratio vs. size of file for

dictionary with more than 3000 words for non-

reversible algorithm 38

Figure 18 Comparison between the non-reversible algorithm

and the others compression schemes 39

viii

ACKNOWLEDGMENT

I would like to express my gratitude and appreciation to

the faculty and staff of the Electrical and Computer

Engineering department for providing me with the opportunity

and encouragement to explore many exciting facets of

electrical engineering. I would like to offer special thanks

to Professor Chyan Yang for providing the necessary guidance

and direction in the formulation of this document. I also wish

to thank Professor Mitchell Cotton and the lab technicians

Elaine Codres, Bob Limes, and Gary Rediske for their

assistance.

Finally, I am most grateful to my wife Elina for her

patience, understanding, and support during my studies.

ix

I. INTRODUCTION

This thesis presents an initial step in developing a new

data compression technique based in the dictionary approach.

"Data compression is the process of encoding a body of data D

into a smaller body n(D)."[Ref. 7]. If n(D) can be decoded

back to D, without loss of information, then it is said to be

a reversible data compression. The situation in which some

acceptable approximation to D is obtained in the decoding is

known as non-reversible data compression.

Usually non-reversible algorithms are used for image

compression. This thesis considers only ASCII text compression

techniques.

The primary advantages to utilizing data compression

techniques are:

Data storage space such as disks or tapes can be

greatly reduced with data compression. A compressed

file generally takes less storage space than an

uncompressed one. Also, compressed files can be

decompressed when users demand the original

copy.

With data compression the same amount of

information can be sent over a network in much

less time than decompressed data. For data

communications, a sender can compress data before

transmitting it and the receiver can decompress

the data after receiving it.

The main parameters of interest in data compression are

compression ratio C(r) and compression speed. Compression

ratio is defined as

amount of compressed data X 1
amount of original data

Therefore, a compression ratio of 33% would mean that the

compressed text is one-third the size of the original text.

The compression speed is the average bytes compressed per

second. These two performance measures are often inversely

proportional to each other. The trade off between them depends

on the application requirements.

2

II. ALGORITHMS FOR DATA COMPRESSION

Data compression can be approached in three ways:

. The finiteness of symbols.

• The relative frequencies with which the symbols

are used.

* The context in which a symbol appears.

This chapter will examine in detail, each of these three

approaches to data compression.

A. THE FINITENESS OF SYMBOLS

One example of a finite set are the titles of the books

that exist in a library. Usually a title of book has about 20

characters. If the title is translated via the ASCII code, 140

bits (one character needs 7 bits) are required. However if

each title is given a sequence number, then the sender can

seixd the sequence only and the receiver can map this number

into the appropriate title. The largest library in the world

has about 230 titles (The Library of Congress has 226

titles) [Ref. 9]. Using sequence numbers instead of titles, the

necessary bits to transmit are only 30 instead of 140. With

this method we have a compression ratio (30/140)*100 = 21%.

Here we assume that the sender and the receiver have the same

translation table that translate the titles into numbers.

3

B. RELATIVE FREQUENCY METHODS

An important parameter of data transmission is the entropy

of a symbol S of an alphabet Z{Sl,S 2,S3,...SkO given by the

formula: [Ref. 4]

Hr(s) = E pi log(i/P1) (1)

where P1,P2...'Pk are the probabilities of occurrence of each

symbol that contained in alphabet Z. When the radix r is not

given we assume r=2 and abbreviate H2(S) = H(S).

The importance of entropy is that for a source coding

there exists an inherent entropy that cannot be exceeded.

The notion of entropy provides a foundation for intuitively

reasonable facts such as:

" Random data cannot be compressed.

• Data that has been compressed by an optimal

compressor (one that always achieves the entropy

of the source) cannot be compressed further.

" One cannot guarantee that a data compressor will

achieve any given performance on all data.

1. Huffman Coding Algorithm

The Huffman code uses the frequency of occurrence that

a symbol appears in the text. The most frequently used symbols

hdve a shorter binary pattern and less frequently symbols have

a longer pattern. For example, suppose we want to compress the

text:

4

"T h i s i s a t e s t t e x t"

The set of symbols and their relative frequencies are:

P(T) = 5/15 P(h) = 1/15 P(i) = 2/15 P(s) = 3/15

P(a) = 1/15 P(e) = 2/15 P(x) = 1/15.

F'--> 5 oo 5 00 5 oo 5 oo 6 1 9 o

s--> 3 11 3 11 3 io 4 o 5 oo 6 1

i-->:'2 oii 2 oo 3 11 3 1o 4 ot

e--> 2 ioo 2 on 2 0o 3 ii

hl--> 1 ioi 2 io0 2 otl

xc--> 1 .oo 1 in)

a--> 1 mol

Figure 1 Huffman Coding

Each letter can be coded with the following bit pattern show

in Fig. 1, T = 00, s = 11, i = 011, e = 100, h = 101, x =

0100, and a = 0101. Note that the most frequent symbols are

translated with only two bits and less frequent ones, such as

x, with four.

One disadvantage of the Huffman code and all codes that

based on the frequency of existence is that the source text

must be scanned twice before transmission begins. The first

5

pass determines the frequncies of occurrence of each symbol

and the second compresses the text.

2. Arithmetic coding

Arithmetic coding is based on the idea that each

symbol is not coded independently one after another as in

Huffman code, but coded as a portion of the real number line

between 0 and 1. Encoding a sequence of symbols ultimately

results in selecting a portion of the reals and transmitting

a number in that portion.

The operation of the algorithm can most easily be seen

with an example. Four symbols A, C, G, and T, occur with

frequencies 0.50, 0.30, 0.15, and 0.05, respectively. The sum

of the probabilities is 1. With this probability distribution,

the interval 0.00 to 0.50 is used for A, 0.50 to 0.80 for C,

0.80 to 0.95 for G, and 0.95 to 1.00 for T. Suppose that we

want to encode the symbol string CAT as in Fig.2. For the

first symbol C, the range is narrowed to the interval 0.50 to

0.80. As the algorithm progresses the interval is steadily

narrowed, requiring more and more bits provide the necessary

accuracy. The next symbol to encode is A, which utilizes the

inteval 0.50 to 0.65 of Fig. 2(b). If we expand this to unit

length as in Fig. 2(c) and select the T part from it, we get

the interval 0.6425 to 0.6500. If there were more symbols,

they would further subdivide the interval again as shown in

6

Fig. 2(d). The encoded result that is transmitted is any value

in the final range, for example 0.645.

When the receiver gets this value, it immediately sees that

100 T" 0.80 T 0.65 0.65
0.05 0.785 0.6425 .___ - -

GG{ G/

3.80 -0.74 -- 062 -- *

C 4
050 - 0.575 --

A A

0.00 - - 0 0.50 -\ 06425 -

(a) (b(Cc) (dI

Figure 2 Coding CAT using Arithmetic Encoding.

it lies between 0.50 and 0.80, indicating that the first

symbol must be a C. It then constructs the interval 0.50 to

0.80, just as the sender did, and sees that 0.645 lies between

0.50 and 0.65, meaning that the second symbol must be an A. In

this manner, the receiver decodes the message, symbol by

symbol.

C. RUN LENGTH ENCODING

This technique based on the probability of existence of a

symbol if the previous one is known. This method is primarily

used to encode long binary bit strings containing mostly

7

zeros. Each K-bit symbol tells how many zero bits occurred

between consecutive 1 bits. To handle long zero runs, two

symbols consisting of all 1 bits means that the true distance

is 2k-1 plus the value of the following symbol. Consider the

following binary bit pattern:

000100000100000010000000000000010000001000100000001101000001

which consists of zero runs of length 3,5,6,14,6,3,7,0,1, and

5. It can be encoded using 3-bit symbol as:

011 101 110 111 111 000 110 011 111 000 000 001 101
1 1 1 1 1 1 1 1 1 1

The bit pattern Ill 000 means that there are 7 zeros followed

by one 1. The bit pattern 000 indicates two consecutive ones.

Using this compression scheme it can be shown that a reduction

of approximatelly 32% is possible.

D. PROGRAMMED COMPRESSION

Programming is generally done by the applications

programmer or data management system. In formatted data files,

several techniques are used. Unused blank or zero spaces are

eliminated by making fields variable in length and using an

index structure with pointers to each field position.

Predictable field values are compactly encoded by way of a

code table - such as when warehouse names are given as integer

8

codes rather than an alphabetic English names. Each field has

its own specialized code table that deals with positional

redundancy. Since programmed compression cannot effectively

handle character distribution redundancy, it is a nice

complement to Huffman encoding.

Programmed compression has several serious disadvantages.

It introduces increased program development expenses; the type

of decompression used requires a knowledge of the record

structure and the code tables; the choice of field sizes and

code tables may complicate or inhibit later changes to the

data structure making the software more expensive to maintain.

E. ADAPTIVE CODE

The adaptive data compression algorithm is a scheme that

exploits locality of reference: words are used frequently over

short intervals and then fall into long periods of disuse.

There are many different algorithms like Lempel-Ziv [Ref. 13]

technique or L 2 W [Ref. 11] technique or a Locally Adaptive

Data Compression Scheme [Ref. 2] by BENTLEY SLEATOR TARJAN and

WEI, and many others.

1. Locally Adaptive Data Compression Scheme

This technique is based on a simple heuristic for a

self organizing sequential search and on variable-length

encodings of integers. This scheme has the advantages that it

is simple, allows fast encoding and decoding, and requires

9

only one pass over the data to be compressed. (Huffman takes

two passes).

As mentioned earlier, this scheme is based on the

locality of reference meaning that in a certain text some

words appear with high frequency at one point of the text and

with low frequency in another point. Therefore this algorithm

is based on a self-organizing search which maintains a

sequential list of words with frequently accessed words near

the front. This data compression scheme uses a self-organizing

list as an auxiliary data structure and employs short encoding

to transmit words near the front of the list and long encoding

for the words at the end of the list.

Example:

Suppose we want to compress the message:

THE CAR ON THE LEFT HIT THE CAR I LEFT 0

'The words are written with capital letters, separates with a

single space, and the end of the message is indicated by the

symbol 0).

The sender and receiver maintain identical word lists

using the o' move-to-front ', heuristic: After a word is used it

is deleted from its current position and moved to the front of

the list. This attempts to ensure that frequently used words

appear near the front of the list.

10

THl CAR ON TIE LEFT' HIT T1IE CAR I LEFT

1. Oll 1.TIE 1.LEFT 1.111T 1.TIIE 1. CAR 1.1 1.LEFT

2 .CA. 2 . Ott 2.TIHE 2.LEFT 2.HIT 2.THfE 2.CAR 2.1

3. TJE 3. CA R 3.Ott 3.TIIE 3. LEFT 3,IIT 3.TILE 3.CAR

4 .CAR 4.011 4.Ol 4 .LEFT 4 .i1IT 4 .TIIE

5.CAR 5,CAR 5.0Ot 5. LEFT 5. i1IT

6. Ot 6. Or)

Figure 3. The "move - to - front" word list.

After the construction of the word list as in Fig. 3,

the sender transmit the following message:

I THE 2 CAR ; 30N : 3 : 4 LEFT '5 HIT ', 3 45 5 6 1 , 5:.

The list is initially empty. To transmit the word W, the

sender looks it up in the list. If it is present in position

L, the sender transmits L, which the receiver decodes by

writing the Lth element in the list; both then move W to the

front of their respective lists,shifting the words in

positions 1,2.. .L-1 to positions 2,3..L. If W is not in the

list of 11 words, the sender reacts as though it were in the

N+-Ist position and sends the integer N-1 followed by the word

W (which the receiver expects bprause .. + is greaLer than the

size of the current list) ; both sender and receiver then move

11

W to the front of their lists. Each word is transmitted as a

string of letters just once; subsequent occurrences are

encoded by integers. The integer encoding of a word is one

greater than the total number of different words that have

occurred since its previous appearance.

The above example illustrates the most important

property of the scheme: if a word has been recently used then

it will be near the front of the list and therefore have a

short decimal encoding. Because the integer L requires roughly

log10L characters to encode, frequent words are transmitted

with few characters. This scheme has many variations, one of

them is the L Z W technique.

2. L Z W Compression Algorithm

The L Z W algorithm is organized around a translation

table, referred to as a string table (instead of a word list

as in the previous scheme), that maps strings of input

characters into fixed-length codes.The use of 12-bit codes is

common. The L Z W string table has a prefix property in that

for every string in the table its prefix string is also in the

table. That is if string 6M, composed of some string 6 and

some single character M, is in the table, then 6is in the

table. M is called the extension character on the prefix

string 6. The string table in this explanation .s initialized

to contain all single - character strings.

12

The L Z W string table contains strings that have been

encountered previously in the message being compressed. It

consists of a running sample of strings in the message, so the

available strings reflect the statistics of the message.

L Z W uses the "greedy" parsing algorithm, where the

input string is examined character-serially in one pass, and

the longest recognized input string is parsed off each time.

A recognized string is one that exists in the string table.

Strings added to the string table are determined by this

parsing: Each parsed input string extended by its next input

character forms a new string added to the string table.Each

such added string is assigned a unique identifier, namely its

code value.

a. Compression.

The compression algorithm in each execution parsed

off an acceptable string 6. The next character M is read and

the extended string 6M is tested to see if it exists in the

string table. If it is there, then the extended string becomes

the parsed string 6 and the step is repeated. If 6M is not in

the string table, then it is entered, the code for the

successfully parsed string 6 is put out as comprcssed data,

the character M becomes the beginning of the next string, and

the step is repeated. An example of this procedure is shown in

Figures 4, 5, 6. For simplicity a three-character alphabet is

used.

13

STRING TABLE ALTErPATE 1AHLk

a 1 a 1

b 2 b 2

c 3 c 3

ab 4 lb 4

Ia 5 2a 5

abc 6 4c 6

cb 7 3b 7

bab 8 5b a

baba 9 Ba 9

aa 10 la 10

aaa 11 10a 11

aaaa 12 Ila 12
Figure 4 The string and the alternate tables

The string table is initialized with three code

values for the three characters, shown above the dotted line.

Code values are assigned in sequence to new strings. The

alternate table is constructed from the code value of the

existing string and the new character M that was added.

The compression procedure is shown in fig. 5. The input

data, being read from left to right, is examined starting with

the first chararter a. Since no riatching string longer than a

exists in the table, the code 1 is output for this string and

the extended string ab is put in the table under code 4. Then

b is used to start next string. Since its extension ba is not

in the table, it put there under code 5, the code for b is

14

output, and a starts the next string. This process continues

straightforwardly.

INPUT SYMBOLS a b ab c ba bab a aa aaa

OUTPUT CODES 1 2 4 3 5 8 1 10 11

NEW STRING
ADDED TO 5 7 9 11
TABLE

4 6 8 10

Figure 5 The compression procedure

For the decompression each code is translated by

recursive replacement of the code with the prefix code and

extension character from the string table (Fig. 4). For

example code 5 is replaced by code 2 and a, and then code 2 is

replaced by b.

INPUT CODES 1 2 4 3 5 8 1 10 11
V V V V V V V V V

a b lb c 2a 5b a la 10a
V V V V V
a b 2a a !a

v V
b a

OUTPUT DATA a b ab c ba bab a aa aaa

STRING 4 6 8 10
ADDED
TO TABLE 5 7 9 11

Figure 6 The decompression procedure

15

This algorithm makes no real attempt to optimally

select strings for the string table or optimally parse the

input data. It produces compression results that, while less

than optimum, are effective. Since the algorithm is clearly

quite simple, its implementation can be very fast.

The principal concern in implementation is storing

the string table. To make it tractable,each string is

represented by its prefix string identifier and extension

character, so each table entry has fixed length.

b. Decompression.

The L Z W decompressor logically uses the same

string table as the compressor and similarly constructs it as

the message is translated. Each received code value is

translated by way of the string table into a prefix string

and extension character. The extension character is pulled off

and the prefix string is decomposed into its prefix and

extension. This operation is recursive until the prefix string

is a single character, which completes decompression of that

code Fig. 6. This terminal character, called the final

character, is the left-most character encountered by the

compressor when the string was parsed out.

An update to the string table is made for each code

received (except the first one). When a code has been

translated, its final character is used as the extension

character, combined with the prior string, to add a new string

16

to the string table. This new string is assigned a unique code

value, which is the same code that the compressor assigned to

that string. In this way, the decompressor incrementally

reconstructs the same string table that the compressor used.

3. The LZ77 OPM/L Text Compression Technique

The LZ77 is an OPM/L data compression scheme suggested

by Ziv and Lempel. A slightly modified version of this scheme

improving the compression ratios for wide range of texts is

d -veloped by Storer and Szymanski and called LZSS with very

fast decoding and comparatively I .-. o arnory required for

coding and decoding.

An OPM/L (original rointer macro restricted to left

pointers) scheme replaces a substring in a text with a pointer

tc a previous (left) occurrence of the substring in the text.

The pointer represents the position and size of the sub-string

in the original text. These restrictions make fast single-pass

decoding straightforward.

The LZ77 scheme restricts the reach of the pointer to

approximately the previous N characters, effectively creating

a "window" of N characters which are used as a sliding

dictionary. Pointers are chosen using a "greedy" algorithm

which permits single-pass encoding.

The use of a window has several advantages:

17

The amount of memory required for encoding and decoding is

bound by the size of the window, and is typically no more

than 8 kbytes.

* For many types of text, and for sufficiently large N, the

window is a good dictionary for the substring which

follows because it will usually contains the same

language, style and topic.

All pointers can have fixed size fields.

An LZ77 encoder is parameterized by N, the size of the

"window", and F, the maximum length of a substring that may be

replaced by a pointer. Encoding of the input string proceeds

from left to right. At each step of the encoding a section of

the input text is available in a window of N characters. Of

these, the first N-F characters have already been encoded and

the last F characters are the ,,lookahead buffer"'.

For example, if the string s = abcabcbacbababcabc...

is being encoded with the parameters N = 11 and F = 4 and

character 12 is to be encoded next, the window is:

5 6 7 8 9 10 11 12 13 14 15

b c lb I a Ic lb I a lb I a lb Id
already encoded Ilookahead bufferl

Initially the first N-F characters of the window are

(arbitrarily) blanks, and the first F characters of the text

are loaded into the lookahead buffer.

The already encoded paI: of the window is searched to

find the longest match for the lookahead buffer, but obviously

18

cannot be the lookahead buffer itself. In the example, the

longest match for the "babc" is "bab", which starts at

character 10.

The longest match is then coded into a triple

<i,j,a>, where i is the offset of the longest match from the

lookahead buffer, j is the length of the mach, and a is the

first character which did not match the substring in the

window. In the example, the output triple would be < 2,3,,c,

>. The window is then shifted right j + 1 characters, ready

for another coding step.

Decoding is very simple and fast. The decoder

maintains a window in the same way as the encoder but, instead

of searching for a match in the window uses the triple given

by the encoder.

The main disadvantage of LZ77 is that, although the

encoding step requires O%1) time, a straightforward

implementation can require up to (N-F)*F character

comparisons, typically on the order of several thousands. LZ77

is therefore best for the situation where a file is to be

encoded once (preferably on a fast computer) and decoded many

times, possibly on a small machine. Examples of these

situations are on-line help files and manuals, decentralized

databases, teletext, and electronic books.

Figure 7 lists the performance of the different

compression schemes with the parameters of speed and memory

they use for the compression.

19

LZSS LZSS Z77 LZ78 LZW Adth- jAdapt.
N.. , - 2meiiHuff

Speed Encode 18 52 24 5300 5700 - 990
(characters

pe second) Decode 13600 10900 15200 10060 8400 - 1300

32Memory Encode 8 2 8 350 48 1400 8
-32-

(kby") Dcode 8 2 8 135 12 1400 8

Figure 7 Performance of different compression
schemes

One improved technique for reducing the time for

compression is suggested by T.C.BELL [Ref. 1] since time is

the only point that LZ77 or LZSS techniques fall short of the

other algorithms that shown in Fig. 7. The algorithm developed

by BELL is the "binary tree algorithms, that searches for the

longest match for a string.

Consider the same string as in LZ77 technique:

S = a b c a b c b a c b a b a b c a b c . . . with parameters

N = 11 and F = 4.

5 6 7 8 9 10 11 12 13 14 15

b c I b a c I b -I a I b I a I b I c _

The lookahead buffer is defined as 1= x = babc and

x5 = bcba x6 = cbac x7 = bacb x8 - Acba x 9 = cbab x10

baba x0 = abab. By inspection the longest match is x10 with

vector (1, x) = (10, 3) where 10 is the position of the match

string start and 3 is the characters that match the lookahead

buffer.

20

The binary search algorithm start with sorting the x5,

x6, ... x0 with lexicographical order. So we have:

x0 x8 x10 1 x7 x5 x9 x6

abab acba baba babc bacb boba cbab cbac

The longest match for 1 should be found at the

beginning of xi, or x7. This happened because these two strings

are lexicographically adjacent to the lookahead buffer 1 and

are the two candidates for the longest match.

The basic construction of the tree is that for any

node x, all nodes in its left subtree are lexicographically

less than x, and all nodes in its right subtree are

lexicographically greater than xi. So with this way the tree

is constructed starting with x5, X, x7,..x10, Xo, 1 and then

x1n, and x7 appear on the path to 1 as shown in Fig. 8.

x7_ _ I x6 cba

x8= a cX8 x9 =cba

xO =aba x!O_0 a

Li1 babc
Figure 8 Binary searching tree for longest match

21

F. DICTIONARY APPROACH

This approach is based on the fact that the sender and the

receiver have the same dictionary of words, each word can be

encoded by its coding number. Each coded number can be

uniquely decoded. This method is called Static Dictionary

Method and is developed by J.STORER [Ref. 7]. For this method

we assume that the message is English text and all the

substrings exists in the dictionary. This method is simple and

there is no danger that the encoder and decoder dictionaries

become different as a result of a noise in communication line,

allowing for much simple and efficient error detection and

recovery.

Also, in the same area of the dictionary approach exists

the Sliding Dictionary Method and the Dynamic Dictionary

Method that update the dictionary during the compression. With

these methods it is not necessary to require all the

substrings of the original text to exist in the installed

dictionary. If a new string is recognized by the sender it is

transferred and added to the dictionary of the receiver for

further use.

22

III. DICTIONARY DATA COMPRESSION

A. OVERVIEW

The whole idea of this approach is based on the fact that

the necessary bits to represent an ASCII character are 8,

but with the same number of bits it is possible to represent

an integer up to 511. An English word with an average length

of 5 letters require 5*8 = 40 bits to represent using regular

ASCII code. However, if each word is represented with an

integer number, the required number of bits are only 16 for

65,532 words. This almost covers all common English words used

today.

The program developed in this study translates each word

into an integer based on a dictionary specified by the user.

The program compare the words of the text to be compressed,

with the words in the dictionary. The output is a file that

contains only numbers. The optimum condition occurs when all

the words in the text are in dictionary.

If a word does not exist in the dictionary, the output

of the program produces a list of new words used to update the

dictionary.

After the creation of the stream of number, the digits of

these numbers are compressed using HUFFMAN coding (Ref. 4].

23

The digits that appeared more frequently in the compressed

file will be coded with shorter bit patterns than those with

less frequent digits. So the digit . and the BLANK are coded

with only two bits because they appear more frequently than

other digits. The other digits are coded with various length

bit pattern up to six bits.

The decompression uses an identical dictionary as that

used in the compression. Decompression converts the stream of

integers into English words. If a word is not in the current

dictionary, the program adds the word to the dictionary and

then makes the conversion.

The method of updating the dictionary of the receiver is

similar to the Dynamic Dictionary Method proposed by J.STORER.

[Ref. 7]

B. COMPRESSION PROGRAM

The program is written in C programming language and

consists of three parts: Input, Conversion, and Numerical

Translation.

1. Input Part

Tho input part of the program reads two files: the

dictionpry and the text that is to be compressed. It creates

two linked-lists. Each node in the list contains a word, and

a pointer that points to the next node. The function makelist

reads the files character by character and creates the list of

nodes. Two header nodes are created, headdic and headtext, to

24

provide the head-and-tail information of the lists as seen in

Fig. 9.

Header node

head length tail

Node

Head NoeTail
H word ne t-> word ne word

Length

Figure 9 Link list scheme for the Dictionary and

Text

2. Conversion Part

This conversion part is the most important of the

program because it translates the words to numbers. This task

is done by the function printlist. This function compares all

words of the dictionary with each word of the text. When there

is a match, it prints the number of the node in the

dictionary. For example, if the word of the text is the same

as the third word in the dictionary, then the program converts

25

the word to the number 3. An example of this appears in

Fig. 10.

If the word in the text does not exist in the

dictionary the program creates a new node in the dictionary

list and store the new word for future use. Additionally,

the program prints the new word into the compressed file

OUTPUT. This new word is then used for updating the dictionary

of the receiver that will perform the decompression. Usually

OUTPUT contains a few words at the beginning (new words) and

a stream of numbers that is the entire compressed text. The

distinction between words and numbers succeed with the symbol

cf and is necessary for the decompression program to understand

where finished the new words and start the compressed text.

Another task of the function printlist is to update

the old dictionary, i.e Diction. Diction is then used for

future file compression.

26

B la n c i
C R z
L F 3..... 3

The . .. 5.
i- .-..... A

te x t 6 ..
f o r 9

Figure 10 Conversion of words
into numbers

3. Numerical Translation

In the numprical translation part, there is a

function HOFFCr nat reads the stream of numbers and counts

the frequenrj of each digit. The function BITCOM then

translates each digit into a Binary Code.

Each code is unique and recognizable by the

decompression program. The codes for each digit are in

Fig. 11.

BLANC 00
1 10
2 111
3 0100
4 0110
5 0111
6 1100
7 1101
8 01011
9 010100
0 010101

Figure 11 Bit Conversion of Digits

27

Finally, all the encoded bits are grouped into bytes

before they are sent to the receiver. An example of this

conversion and the composition of a character appears in

Fig. 12.

Set of numbers: 1 28 93

F1 0 1 10 INI 10 11 001 01 0100 l

Ox8e Oxbl Ox44

Memory Contents
149a ox8e
149b Oxbl
149c Ox44

Figure 12 Conversion of numbers and compose of

character

Figure 12 shows how the program creates the eight bits

characters and stores them in memory. For example consider the

set of numbers 1 b 28 b 93.

The program puts into the first two digits of memory

149a, the bit pattern 10 (this comes from table in Fig. 11).

After the 1 follows a blank so the program puts into the next

two bits, the 00 pattern. Next the 2 is translated into 111.

The last bit of this eighth bit pattern is full with the first

bit of the pattern of conversion of the number 8 (In this case

28

the pattern is 01011 so the last bit of the character is 0).

This explains why the character 0x8e is stored in the place

149a for this example.

C. DICTIONARY

The dictionary is an important part in the compression

process. The running time of the compression program and the

compression ratio depend on the way that the dictionary is

constructed. The use of an alphabetical dictionary is not a

good choice because the program may spend a lot of time

comparing the words of the dictionary until reaching the

match. Instead, a dictionary based on the usage frequency of

each word in the English text is used.

Based on the study of H.KUCERA [Ref. 5] of the most

frequently used words today, the top of the dictionary

contains words such as the, and a. This allows the program to

find the most common words quickly. With this kind of

dictionary, the time required for compression is significantly

reduced.

Moreover, it is interesting to investigate the number of

words that must be contained in the dictionary. As more words

are contained in the dictionary, the compression ratio

improved because the new words in the compressed file are few

(the words occupies a lots of bits). The ideal situation is a

dictionary which includes the entire set of the words in the

text which yields the maximum compression ratio.

29

D. DECOMPRESSION PROGRAM

The decompression program is based on three linked-lists.

The first one contains the words of the dictionary, the second

has the new words that exists in the compressed file called

OUTPUT, and the third list contains the numbers that are

received instead of the whole text.

The words of the second list must be added to the

dictionary and the stream of numbers must be converted to the

original text.

The first and the second list are read with the function

makelist() as in the compression program. The third list

created with the function fscanf() reads from a file that

called intmed and contains only the numbers that are sent to

the transmitter. The nodes of this list are slightly different

than the nodes of the previous lists, because instead of the

word in the node, it contains an integer called num and a

pointer to the next node. This kind of node is called numnode.

The num in this special node is used for translation of the

compressed file into the original one.

The function printlist() adds new words to the dictionary

that are received with the compressed file, and converts the

numbers into English text. The dictionary created from the old

one with the addition of the new words called Dictiona. The

program also contains other functions such as the NewNode()

which creates the new node for the new word to be added to the

30

old dictionary, and the function create() which creates the

first node of each list.

The conversion of the characters that was sent in the

compressed file succeeded with the function Ahoff(). Actually

this function gets character by character from the compressed

file and feeds the function Bit com() which makes the

conversion into the digits. The ahoff() function creates the

file intmed that contains the stream of numbers necessary for

the creation of the Numlist.

E. USAGE OF THE PROGRAM

1. Compression

For compression, run the executable file created by

the compilation of the .C program with two arguments. The

first argument is the dictionary and the second is the file to

be compressed. The result is a message that the compression

complete, and the compressed file called OUTPUT. The next time

the program is run, it is necessary to use the file DICTION,

created by the first execution, as the first argument.

2. Decompression

For decompression, the executable file created by the

compilation of the .C decompression program is used. It also

requires two arguments. The first one is the name of the

dictionary file (must be the same as that used in the

compression part), and the second one is always the file

OUTPUT.

31

The result is a message that decompression done, and

a file that called ORIGINAL which is the actual data file that

originally compressed. The next time the program is run,

DICTIONA, which is the up-to-date dictionary,is used as the

first argument.

32

IV. STATISTICAL RESULTS - PERFORMANCE

A. GENERAL

This chapter contains some of the performance results of

the dictionary compression scheme. The following tests are

made to investigate the performance of the method.

1. Size of file vs. compression ratio

2. Comparison between different compression schemes

B. SIZE OF FILE VS. COMPRESSION RATIO

In this test, different file sizes were examined. The

results are plotted in Fig. 13. This figure exibits a family

of curves, each representing a different percentage of

existence in the dictionary.

Curve A is the case where all the words of the text exist

in the dictionary. Curve B represents the case where only 75%

of the text words exist in the dictionary, curve C is the 50%

case and D curve is the case for 25%.

The vertical axis is the compression ratio and the

horizontal axis the size of files in bytes. The horizontal

axis is in log and the vertical is linear. The compression

ratios is calculated from the formula:

Comp.Ratio = (1 - Comp.File/Origin.File)*100

Another important parameter in these curves is the size of

the dictionary. Fig. 13 is based in a dictionary with less

33

100

90 ---. CURVE A
80 -*-..-CURVE B0o 70 a.... l CURVE C

6o-CURVE D

50
0 40

00 30

0 10 .

-20 ..

-30
1000 10000 100000

SIZE OF FILE

Figure 13 Compression ratio vs. size of file with
dictionary with less than 1000 words

than 1000 words.

Curve A represents the highest compression ratio,which is

expected since all the words exist in the dictionary and the

compressed file contains only numbers. As we move to the

curves B, C, and D, the compression is reduced and sometimes

even exibit negative values. This means that instead of

34

compression the program provides expansion, i.e, the OUTPUT

file is bigger than the ORIGINAL text. This may occur for

small files (less than 2K) and also larger files (more than

40k).

The explanation of this phenomenon is that in small files

when the dictionary has only 25% known words the program must

send the rest words of the text like new words, so the output

file is bigger than the original one, hence the compression

ratio is negative. The same phenomenon happens with big files.

100 ij I I
90

80 :CURVE A
80 K-CURVE B70 .CURVE C

- 60 - CURVED
50

Z q

o 40 -- A

U) 30 , "'L.J / 4 1, • '

0. 20 I

10

-20 r ! " '

-30 ' I
1000 10000 100000 1000000

SIZE OF FILE

Figure 14 Compression ratio vs. size file with dictionary
with more than 3000 words

35

Figure 14 shows the same family of curves as those of Fig.

13 but the dictionary contains more than 3000 words. The

difference between Figure 13 and 14 is that now we must send

larger numbers for each word and the compression ratio is

slightly smaller than those in Fig. 13.

C. COMPARISON BETWEEN DIFFERENT COMPRESSION SCHEMES

Figure 15 shows the curves of the compression ratio

between three compression schemes: The COMPRESS of UNIX [Ref.

10], the Stacpack of Stac.INC (commercial program) [Ref. 8]

and the Dictionary scheme developed in this study.

100

90 -oSTACPAk.
KDICTIONARY____

80 |--COMPRESS

70 '17,

S 30

1 I t1...ij

1000 10000 100000 1000000

SIZE OF FILE

Figure 15 Comparison between the three schemes

36

The horizontal axis is the size of the file in log and the

vertical axis is the compression ratio. The data for the

dictionary comes from a dictionary of more than 3000 words.

The dictionary contains all the words of the text.

D. NON-REVERSIBLE VERSION OF THE DICTIONARY PROGRAM

So far we have developed reversible one algorithm. It is

interesting to see the algorithm that is not reversible. This

algorithm does not count BLANK spaces in the text. Any numbers

of consecutive blanks are represented as one single blank.

Since this algorithm is not reversible we can significantly

increase the compression ratio as shown in Figures 16 and 17

for two different kinds of dictionaries.
100 I

90I -o-CURVE A

80 ---CURVEB
0 oCURVE C

_.0 -,--CURVE D
60 i ,, '

Z .- I ,

0 50 --

W3 40 ', \K -.

a 30 , '
0 ' I

0 20 /, ' .

10
A/

0

-10
1000 10000 100000

SIZE OF FILE

Figure 16 Compression ratio vs. size of file with
dictionary with less of 1000 words for non-reversible
algorithm

37

The curves A, B, C, and D are for dictionaries that

contains 100%, 75%, 50%, and 25% percentage of words,

respectively. Fig. 16 is for a dictionary with less than 1000

words and the Fig. 17 is for a dictionary with more than 3000

words.

This kind of algorithm (don't-care-blank) could be used in

cases where blank spaces inside the text can be neglected. For

example, instead of 5 blank spaces in a row in the original

text the algorithm recovers only one. This algorithm gives a

better compression ratio than the reversible version.

100 ' -

90I90 -- o-CURVE A

80 ---CURVE B
0.,.CURVE C0 70 I f -(-

-60- .-- CURVE D
60 ...

Z 50 -
0 rl

'I I , -

c:i 30

23 20

io*0

-10 I ' ' -

-20 -- I -

1000 10000 100000 1000000

SIZE OF FILE

Figure 17 compression ratio vs. size of file for
dictionary with more than 3000 words for non-reversible
algorithm

38

The results of the comparison between the non-reversible

algorithm and the other compression programs is shown in Fig.

18. The horizontal axis is the size of the file in Kbytes and

the vertical the compression ratio.

100
--STACKPACK

90 - -. DICTIONARY
-COMPRESS

80 -

0
70 .-

Z 60 ,-
0 50

a: 40 :
(L

0 30 1

1000 10000 100000 1000000

SIZE OF FILE

Figure 18 comparison between the non-reversible algorithm
and the others compression schemes

39

E. TIME IMPROVEMENT ALGORITHM

The main problem of the developed algorithm is the time

that spent the program searching the whole list of the

dictionary for matching with the words of the text. A version

of the algorithm that gives solution on this problem is in the

appendix A.

The solution is that instead of singly linked-list for the

dictionary the improved algorithm has 28 separate lists. The

26 are for the lower case letters (one for each letter), the

27th is for all the punctuation symbols like CR, SP, LF and

the 28th is for all the capital letters. In addition the

structure of each node contains a field, called val an integer

that is used to indicate the place that word is ordered in the

dictionary.

The program reads the dictionary and place each word and

its number in the proper list. Then the program starts reading

the text file to be compressed. It checks the first symbol of

each word, and start searching for match in the list that

contains this symbol. If it finds the same word it then prints

the number that represent this word in the dictionary. In case

that the word is new it adds the word in the list and print a

number that is larger than the last number of the dictionary

by one.

40

The rest of the algorithm about the numerical translation

remains the same. With this kind of algorithm the whole

execution time may be improved 27 times.

The algorithm could be further improved if instead of 28

list we may use 53 or more. For example we may separate

capital symbols, that is to have one list: for each capital

letter. In addition the punctuation symbols may be subdivided.

41

V. CONCLUSIONS

A. DATA COMPRESSION

The programs provided within Appendix A achieve the

primary goal of this thesis. The goal was to develop a new

data compression scheme different from those already existing,

with better results. This goal was met through the dictionary

approach and numerical translation. Algorithms for compression

and decompression were developed and implemented.

Implementation and successful testing of the algorithm verify

the accomplishment of the primary goal.

B. FUTURE RESEARCH

The opportunity exists for improving the developed scheme

not in the area of compression ratio, but rather in the area

of time. This could be done with a different organization of

the dictionary and the text. Instead of using multiple linked

lists for the dictionary, it could be organized in some kind

of tree so it is possible to further reduce the searching time

fur matching.

42

APPENDIX A: PROGRAM LISTINGS

A. COMPRESSION PROGRAM

/* This is the program that makes the COMPRESSION. *
It is the complete reversible algorithm *

#include <stdio.h>
#include <string.h>
#include <malloc.h>

#define MAXLEN 25

#define MALLOC(x) ((x *) malloc(sizeof(x)))

&& x<='/') (1: 1<=x && x<=''@) I (''<=x && x<=1' ') (' <=x &&

#define RECOG(x) (x==AI)

struct node

char *word;
struct node *next;

typedef struct node type;

struct header

int length;
node type *head, *tail;

typedef struct header head type;

head -type *header-new, *headdic, *headtext;
FILE - *fopeno, *fp, *fout, *fdic, *fhoff, *fred,
*ftel, *fend;
FILE *ffin, *fwor, *fnum;
char *lala;

void print_listo;
void hoffcom();
void bit como;
void connect()

main (argc, argv)

43

int argc;
char *argv[];

head_type *createo, *makelist(o, *makelistl();

headdic =makelist(argv[l]);

headtext =makelistl(arvj2]);

print listo;
hoff_como;
connecto;

printf("\n\n Compresssion done!");
printf("\n\n The compressed file called OUTPUT");

exit(0);

head -type *makelist(filein)
char *filein;

register int c, length;
node_type *new, *NewNodeo;
char buffer[MAXLEN + 1];
head_type *headd;
head_type *createo;
nt p

headd = create 9;
if ((fp = fopen(filein,"r")) == NULL)

printf("ERROR ! I can't open %s\n",filein);
exit(0);

strcpy(buffer,"
length = 0;
for(;;)

c = getc(fp);
if'(c == EOF) break;
p = 1;
if ((060<=c && c<=071)1 (0101<=c && c<=0132) (0141<=c

&& c<=0172))

buffer[length++] =c;

if ((PUNCT(c)) && (buffer[O] '

buffer~length]= '\01;
new = NewNodeo;
new->next = NULL;

44

if (headd->length == 0)

headd->head =new;

else

(had>al{>et nw

(headd->tail)nx = new;

headd->length++;
ne w - >wo rd (c har

*)malloc(sizeof(char)*strlen(buffer) +1);
strcpy(new->word, buffer);
strcpy(buffer,"
length = 0;
p = 0;

if ((PUNCT(c)) && (p == 1))

buffe~r[0] = c;
buffer[l]= '\01;
new = NewNode();
new->next = NULL;
if (headd->length == 0)

headd->head =new;

else

(headd->tail)->next new;

headd->tail = new;
headd->length++;

n e w- > word c (h ar
*)malloc(sizeof(char)*strlen(buffer) +1);

strcpy(new->word, buffer);
strcpy(buffer,""
length = 0;
c =. getc(fp);

/* end for *
return (headd);

head -type *Inakelistl (filein)
char *filein;

register int c, length;
node_type *new, *NewNode()
char buffer[MAXLEN + 2.];
head_type *headd;

45

head type *createo;

headd = create();
if ((fp = fopen(filein,"r")) == NULL)

printf("IERROR ! I can't open %s\n",filein);
exit(0);

strcpy(buffer,"
length = 0;
for(;;)

c =getc(fp);
if (c == EOF) break;
if ((060<=c && c<=071) 1:(0101<=c && c<=0132)1 I (0141<=c

&& C<=0172))

buffer[length++] = c;

if ((PUNCT(c)) && (buffer[0] 1

buffer[length]= 1\01;
new = NewNodeo;
new->next = NULL;
if (headd->length ==0)

headd->head =new;

else

(hed-ti)>et nw

(headd->tail)n~ = new;

headd->length++;
n ew - >w ord c (h ar

*)malloc(sizeof(char)*strlen(buffer) +1);
strcpy(new->word, buffer);
strcpy(buffer,"
length = 0;

if (PUNCT(c))

buffer[0] = c;
buffer[l]= '\0';
new = NewNodeo;
new->next = NULL;
if (headd->length ==0)

headd->head =new;

else

46

{ had>al->et=nw

(headd->tail)n~ = new;

headd->length++;
ne w- >w o rd = (ha r

*)malloc(sizeof(char)*strlen(buffer) +1);
strcpy(new->word, buffer);
strcpy(buffer,"
length = 0;

/* end for *
return (headd);

noe-tp Nwoe

nodetype *NewNode

if (!(newnode = MALLOC(node type)))

printf("I out of storage \n");
exit (1);

return(newnode);

head -type *create()

if (header-new = MALLOC(head type))

header -new->length = 0;
header-new->head =header-new->tail =NULL;

return(header-new);

void print_list()

int r, k, m;
node_type *dicptr, *textptr, *mnew;

k =headdic->length;

fout = fopen(I"wordout","1w+1");
textptr = headtext->head;
for (;textptr != NULL;)

dicptr =headdic->head;
for (;dicptr != NULL;)

if (strcmp((textptr->word) ,(dicptr->word))
0) break;

47

dicptr=dicptr->next;

if (dicptr == NULL) /* end of dic list? if so, add
it now *

mew = NewNodeo(
mew->next = NULL;

mew - >w o rd c (h ar
*)malloc(sizeof (char) *strlen(textptr->word)+l);

strcpy((xew->word) ,(textptr->word));
(headdic->tail)->next = mew; /* new tail *
headdic->tail = mew;
headdic->length++;
fprintf(fout,"1%s ",mew->word);
printf("1%s ",mew->word);

textptr = textptr->next;

fprintf(fout, IIAI);

printf (EIAAll);

fclose(fout);
fhoff = fopen("lhoffman"l,"w+");
textptr = headtext->head;
for (;textptr != NULL;)

dicptr =headdic->head;
for (;dicptr != NULL;)

if (strcmp ((textptr->word) ,(dicptr->word)) =

0)

fprintf(fhoff,"%d "1,r);
printf("1%d "1,r);
break;

r++

dicptr = dicptr->next;

textptr = textptr->next;

fprintf(fhoff," 1)
fclose(fhoff);
fdic = fopen(I"diction","w+"1);
dicptr =headdic->head;

for (;dicptr != NULL;

fprintf(fdic, "%s\n",dicptr->word);
dicptr = dicptr->next;

fclose(fdic);

48

void hoffcomo(

char C;
static int counter, tempa;
int k, s, totbit, siz
int b=0, aO=0, al=0, a2=0, a3=0, a4=0, a5=0,

a6=0, a7=0, a8=0, a9=0;
float pb=0.0, p0=0.0, p1=0.0, p2=0.0, p3=0.0,

p4=0.0;
float p5=0.0, p6=0.0, p7=0.0, p8=0.0, p9= 0.0;

f red f fopen (Ihof fman","Ir+1);
for ;)

c =getc(fred);

if (c ==EOF) break;
if (c I- I b++;
if (c == 0' aO++;
if (c Ill'' al++;
if (c == 2' a2++;
if (c == 3' a3+'+;
if (c ==141)a4++;
if (c == 5' a5++;
if (c == 6' a6++;
if (c == 7' a7++;
if (c == 8' a8++;

i~(c == 9' a9++;

fclose(fred);
s = (b+aO+al+a2+a3+a4+a5+a6+a7+a8+a9);
totbit = (b*2 + aO*6 + al*2 + a2*3 + a3*4 + a4*4 + a5*4

+ a6*4 + a7*4 +a8*5 + a9*6);
printf ("Total bits: %d\n",totbit);
pb = (float) (b)/(float) (s)*l00;
p0 = (float) (ao)/(float) (s)*100;
p1 = (float) (al)/(float) (s)*100;
p2 = (float) (a2)/(float) (s)*l00;
p3 =-(float) (a3)/(float)(5) *100;
p4 = (float) (a4)/(float)(5) *100;
p5 = (float) (a5)/(float) (s)*100;
p6 = (float) (a6)/(float) (s)*l00;
p7 = (float) (a7)/(float) (s)*l00;
p8 = (float) (a8)/(float) (s)*100;
p9 = (float) (a9)/(float) (s)*100;

siz = totbit/8 + 1;
printf("'Siz %d\n",siz);
lala = (char *) imalloc(siz * sizeof(char));
f red = 'fopen (1hof fman", "r+");

49

tempa = OxOOQO;
counter = 0;
fend =fopen("ltelikol,"lW+"f);
for(;)

c getc(fred);
if (c == FOF) break;
bit-com(c);

}coefn)
fclose(fed);

void bit com(nunber)
char number;

static mnt telnpa, ccunter;
int mask = OxOOQO, texnp2 =OXOOOO;

int corinask, bhof, mn;
mnt acounter;

switch (number)

case 11
bhof =OxOOQO;
acounter =14;
bhof <<= acounter;
bhof >>= counter;
teinpa = teinpa Ibhof;
counter = counter + 2;
break;

case '1':
bhof = 0x0002;
acounter = 14;
bhof <<= acounter;
bhof >>= counter;
if (counter 1=0)

corinask = x8000;
for m n 1; mn < counter; m++)

corinask >>= 1;

bhof bhof A cormIask;

teinpa =terpa Ibhof;
counter = counter +$ 2;
break;

case t1

50

bhof = OxOOOb;
acounter = 11;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa 1 bhof;
counter = counter + 5;
break;

case '2':
bhof = OxO007;
acounter = 13;
bhof <<= acounter;
bhof >>= counter;
if (counter = 0){

cormask = Ox8000;
for (m = 1; m < counter; m++)

{
cormask >>= 1;)

bhof = bhof ^ cormask;
)

tempa = tempa I bhof;
counter = counter + 3;
break;

case '7':
bhof = OxOOOd;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
if (counter != 0)

(
cormask = Ox8000;
for (m = 1; m < counter; m++)

{
cormask >>= 1;

)
bhof = bhof A cormask;

tempa = tempa 1 bhof;
counter = counter + 4;
break;

case '3':
bhof = OxO004;
acounter = 12;
.hof <<= acounter;
bhof >>= counter;
tempa = tempa I bhof;
counter = counter + 4;

51

break;

case '6':
bhof = OxOOc;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
if (counter != 0){

cormask = Ox8000;
for (m = 1; m < counter; m+I-)

{
cormask >>= 1;

)
bhof = bhof - cormask;

I
tempa = tempa I bhof;
counter = counter + 4;
break;

case .'4':
bhof = OxO006;
acounter = 12;
bhof <<=acounter;
bhof >>= counter;
tempa = tempa I bhof;
counter = counter + 4;
break;

case '9':
bhof = OxO014;
acounter = 10;
bhof <<= acrunter;
bhof >>= ccanter;
tempa = tempa I bhof;
counter = counter + 6;
break;

case '5':
bhof = OxO007;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa I bhof;
counter = counter + 4;
break;

case '0':
bhof = OxOO15;
acounter = 10;
bhof <<= acounter;

52

bhof >>= counter;
tempa = tempa Ibhof;
counter = counter + 6;
break;

if (counter >= 8)

temp2 = tempa & OxffOO;
tomp2 >>= 8;
if (temp2 ==Oxia) temp2 = Oxi;
if (texnp2 ==Oxffff) temp2 = x8l;
*lala = temp2;
fprintf (fend, "%c", *lala);
lala++;
tempa <<= 8;
counter =counter - 8;

void connect()

char c, d;

ff in = fopen("output","w+");
fwor = fopen("wordout","r+");
fnum = fopen("teliko","r+");

for C;

c = getc(fwor);
if (c == EOF) break;
putc (c, f f in);

for (;

d = getc(fnum);
if (d == EOF) break;
putc (d, f fin);

fcloselfin);
fclose(fwor);
fclose(fnum);

53

B. DECOMPRESSION PROGRAM

/* This is the program that makes the DECONRESSION. *

#include <stdio.h>
#include <string.h>
#include <malloc.h>

#define MAXLEN 25
#define MALLOC(x) ((x *) malloc(sizeof(x)))
#define PUNCT(x) ((x=='\n)'!(x=='\t')H(x=='\r')Hl(I 1<=x
&& x<=,/,) (,:,<=x &&)x<=1@1) I ([<=x && x<=1' I (It '<X &&
x<='- '))
#define RLECOG(x) (x==A A')

struct node

char *word;
struct node. *next

typedef struct node type;

struct numnode

int num;
struct numnode *numnext

typedef struct numnode type;

struct header

int length;
node type *head, *tail;

typedef struct header head type;

struct numheader

int length;
numnode_type *numhead, *numtail;

typedef struct rumheader numhead type;

head -type *header -new, *headdic, *headtext;
numhead_type *header-numnew, *headnum;
FILE *fopeno, *fp, *fpl, *fp2, *fp3, *fdic, *fori,
*fred, *freg;

54

void print listo;
void ahoff 0;
void bit_comO);

main (argc, argv)
int argc;
char *argv[];

int m = 0, puffer, length;
head_type *create(), *iakelisto;
numhead_type *niimcreate 0;
node-type *listext;
numriode type *vew, *NumNewNode o;
char C;

headdic = makelist(argv[lJ);
headtext = makelist(argv[2));
fpl = fopen("'codhof",I"w+II);
fp3 = f open (argv[2),"Ir");
for(;;)

c =getc(fp3);

if cC == EOF

break;

if (m != 0

putc(c,fpl);

M++

if(RECOG(c)) m = 1;

fcoeI p)
fclose(fp3);

ahoffoC;

fp2 = fopen(I"intmed","1r+11);
headnum-* numcreate o;
length = 0;
while (fscanf(fp2,"1%d',&puffer) !=EOF)

yew = NumNewNodeo;
vew->numnext = NULL;
if (headnum->length == 0)

headnum->numhead = yew;

else

55

(headnum->numtail)->numnext = yew;

headnum->nuntail = yew;
headnum->length++;
(vew->num) = puffer;

f close (fp2)

print listo;

printf("\n\n Decompression done!");
printf("\n\n The decompressed file called ORIGINAL");

exit(0) ;

head -type *makelist (filein)
char *filein;

register mnt c, length;
node_type .*new, *NewNodeo;
char buffer[MAXLEN + 1);
head-type *headd;
head-type *createo;
nt P
headd =createo;
if ((fp = fopen(filein,"r")) == NULL)

printf ("ERROR II can't open %s\n",filein);
exit (0)

strcpy(buffer,"
length = 0;
for(;;)

c = getc(fp);
p = ;
if (c == EOF Ic ='-A')

break;

if ((060<=c && c<=071) (O00<=c && c<=0132) (0141<=c
&& c<=0172))

buffer(length++] c;

if (PUNCT(c) && (buffer[0) =

buffer~length)= '\0';
new = NewNoieo);

56

new->next = NULL;
if (headd->length == 0)

headd->head = new;

else

(hed-ti)>et nw

(headd->tail)nx = new;

headd->length++;
new->word = (char

*)malloc(sizeof(char)*strlel(buffer) +1);
strcpy(new->word, buffer);
strcpy(buffer,""
length = 0;
p = 0;

if (PUNCT(c) && (p ~=1))

buffer.LO] =c;

new = NewNode();
new->next = NULL;
if (headd->length ==0)

headd->head = new;

else

{ had>al)>et nw

(headd->tail)nx = new;

headd->length++;
new->word = (char

*)malloc(sizeof(char)*strlen(buffer) +1);
strcpy(new->word, buffer);
strcpy(buffer,""
length = 0;

-- c =getc(fp);

/* end for *
return (headd);

noe) tp Nwoe

node_type *newnode

if (!(newnode = MALLOC(node type)))

printf("I out of storage mike \n");

57

exit (1)

return(newnode);

)und-ye*u~woe

numne~type N*enode()de

if (!(numnewnode = MALLOC (numnode type)))

printf("l out of storage \n");
exit(1) ;

return (numnewnode);

head -type *createo(

if (header-new = MALLOC(head type))

header -ne~w->1ength = 0;
header-new->head = header-new->tail =NULL;

return(header-new);

numhead_type *numcreate()

if (header-numnew = MALLOC(numhead type))

header-nuinnew->length 0;
header-numnew->numhead =header-nurnnew->numtail

NULL;

return (header-numn ew);

void print_list()

int r;
node type *dicptr, *textptr, *mnew;
nuinnode type *numptr;

textptr = headtext->head;
for (;textptr !=NULL;

if (strcip(textptr->word," \0"1) ==0

textptr = textptr->next;
if (textptr == NULL) break;

58

dicptr = headdic->tail;
mew = NewNode 0;
mew->next MNULL;
(mew->word) = (char *) malloc(sizeof (char) *

strlen(textptr->word)+l);
strcpy((mew->word), (textptr->word));
(headdic->tail)->next = mew;
(headdic->tail) = new;
headdic->length++;
textptr = textptr->next;

numptr = headnum->numhead;
fori fopen("original",w4");
for (;numptr != NULL;

dicptr =headdic->head;
for (r 1; r <= heacidic->length; rf++

if ((numptr->num) == r

{pit~oi"s"dct-wr)
fprintf (for" i "%s" ,dicpr ->w rd

break;

dicptr = dicptr->next;

numptr = numptr->riumnext;

fclose(fori);

fdic = fopen("dictiona","w+");
dicptr =headdic->head;
for (;dicptr != NULL;)

fprintf(fdic, "%s\n",dicptr->word);
dicptr = dicptr->next;

fclose(fdic);

/* This the decompression programn for the hoffman *

void ahoff()

char C
static int counter, tempa;
mnt k, net, s, totbit, siz

fred = fopen("codhof", "r+");
freg = fopen("intned",w
for Q;;

59

c = getc(fred);
if (c = EOF) break;
if (c ==Oxi) c = Oxia;
if (c = Oxff~l) c = OxOOff;

bit-o~
fclose(freg);
fclose(fred);

void bit com(nunber)
char number;

char temp2;
static char tempa, counter = 0;
int mask = 0x0080, m;

for (m =1; m<=8; m++)

temp2 =number & mask;
mask =mask/2;

printf (Iltemp2 %x mask %x\n",temp2, mask) ;*/
counter++ ;
tempa <<= 1;
if (temp2 != 0) tempa = tempa +1;
temp2 = OxO;

1* printf (Itempa %x counter %d\n", tempa, counter);/
if (tempa ==OxO && counter == 2)

printf("l 1);
fprintf(freg," 'I);

tempa = OxOOOO;
counter =0;

if (tempa == x2 && counter ==2)

printf("1"l) ;
fprintf(freg,"l");

- tempa =OxOOQO;
counter =0;

if (tempa ==Oxb && counter ==5

printf("8");
fprintf(frng,"8");
tempa =OxOOOO;
counter =0;

if (tempa == x7 && counter == 3

60

prnf(11)
fprintf(2") "")

tempa =OxOOQO;
counter =0;

if Ctempa ==Oxd && counter ==4)

printf("71);
fprintf (f reg, "17");
tempa = OxOOQO;
counter =0;

if (teinpa == x4 && counter ==4)

printf ("3") ;
fprintf(freg,"3");
tempa =OxOOQO;
counter =0;

if (tempA = Oxc && counter ==4)

printf ("6") ;
fprintf(freg, "6");
tempa = OxOOOO;
counter =0;

if (teinpa == x6 && counter ==4)

{rnf"1)
fprintf(fr4,"))

tempa = OxOOQO;
counter 0;

if (teinpa == x14 && counter ==6)

printf("19");
fprint f(f reg, 19 1);
tempa = OxOOQO;
counter =0;

if Ctempa == x7 && counter ==4)

printf ("5") ;
fprintf(freg,"5");
teinpa = OxOOQO;
counter =0;

if (tempa ==OxiS && counter == 6)

printf("0");

61.

fprintf(freg, "0");
tempa = OxOQO;
counter = 0;

C. TIME IMPROVEMENT ALGORITHM

/* This is the time improved program that makes the
COMPRESSION. */

/* It is the complete reversible algorithm *

#include <stdio.h>
#include <string.h>
#include <malloc.h>

#define MAXLEN 15
#define Nlist 29
#define TRUE I
#define FALSE 0
#def ine PUNCT (x) ((x== I\n I)I(x==' \t')H(x== \r;)('<=x &&

x<=1' '))

FILE *fid, *fword, *fhoff, *fdic, *fred, *fend, *ffin, *fwor,
*fnum;
char *lala;

struct node{
mnt val;
char *word;
struct node *next;

struct Hnode
mnt length;
struct node *head, *tail;

/* list[] are head pointers to each list *
void hoff -como;
void bit comO);
void connecto;

inain(argc, argv)
int argc;
char **argv;

62

struct node *new, *newnodeo;
char buffer[MAXLEN];
struct Hnode *listrNljst];
int if index, ctr, v;
int j, FOUND, k, c, p, leng;
struct node *ptr;

fox(i=0; i<Nlist; i++)

if(list~i]=(struct Hnode *)malloc(sizeof(struct
Hnode))

list[i]->length=O;
listri]->head=listri]->tail=NULL; I

ctr=l;
v = 0;
fid=fopen(argvCl]J ,')
strcpy(buffer,
leng = 0;
for(;;)

c = getc(fid);
if (c = EOF) break;
p =1;
if (v = 0)

if(65< (int) c & (int) c <90) index =28;

else(
if((int) c < 971 (int) c > 122) index=27;
else index = (int) c - 97;

if ((060<=c && c<=071)1 (0101<=c && c<=0132) :(0141<=c
&& C<=0172))

buffer~leng++] = c;
V= 1;

if ((PUNCT(c)) && (buffer[0] !

buffer[leng] = \;
new=newnode o;
new->val=ctr;

new - >word = (char
)malloc(sizeof(char)(strlen(buffer)+1));

strcpy(new->word, buffer);
if(list[index]->leigth==0) (/*first timne*/

list~index)->length = 1;
list~index]->head =list[index]->tail =new;

else{

63

list [index] ->length++;
(list[index] ->tail) ->next=new;
list[index] ->tail=new;

strcpy(buffer,"
leng = 0;
ctr++;
p= 0;
v =0;

)/* end if PUNCT (c) *
if ((PTJNCT(c)) && (p=l)

buffer[0J = c;
buffer[l] = \;
new = newnodeoi;
new->val=ctr;

n ew- > wo r d c (ha r
)malloc(sizeof(char)(strlen(buffer)+l));

strcpy (new->word, buffer);
if(list[index]->length==0) (/*first time*/

list[index]->length = 1;
list~index]->head = list~index]->tail = new;

else(
list [index] ->length++;
(list[index] ->tail) ->next=new;
list[index] ->tail=new;

strcpy (buf fer,")
leng = 0;
ctr++;
c = getc(fid);
) /* end second if PUNCT(c) *

)/* end for *
fclose(fid);

/* now done with the dictionary reading *
/* start to read the text to be compressed *

f id=fopen(argv[2] .,"r") ;
fhoff = fopen("lhoffman"l,"w");
fword = fopen("lwordout"l,"w");
v = 0;
ctr = ctr -1
strcpy(buffer,"
leng = 0;
for(;;)

c = getc(fid);
if (c = EOF) break;

if (v ==0)

64

if (65< (int) c && (int) c <90) index = 28;
else (

if((int) c <97 11(int) c >122) index=27;
else index =(int) c - 97;

if((060<=c &&c<=071) (0101<=c &&c<=0132) (0141<=c
&&c<=0172))

buffer~leng++] = c

if ((PUNCT(c)) && (buffer[0] 1

bufferileng] = \;

/* start searching */

ptr=l ist [index] ->head;
FOUND=FAILSE;
while(ptr!=NULL && !FOUND)
if (Istrcmp (ptr->word, buffer)) {FOUND=TRUE;

fprintf(fhoff,"%d ",ptr->val);
break;

else (ptr =ptr->next;}

/* if not FOUND *

if(!FOUND) {*add to the output *
fprintf(fhoff,"%d ",++ctr);
fprintf(fword,"%s ",buffer);

new = newnodeo;
new->val = ctr;

n ew-> wo rd (cha r
)mailoc(sizeof(char)-(strlen(buffer)+l));

strcpy(new->word, buffer);
if(list[index].>length ==0)

list~index]->length =1;
list~index]->head = list~index]->tail=

new;

else{
list [index) ->length++;
(list[index]->tail)->lext = new;
list~index]->tail = new;

65

strcpy(buffer,"
leng = 0;
v = 0;
index = 27;

if (PUNCT(c))

buffer[0] = c;
buffer[l] = \;

/* start searching *

ptr=list[index] ->head;
FOUND=FALSE;
while(ptr!=NULL && !FOUND)
if (!strcmp(ptr->word,buffer)) {FOUND=TRUE;

fprintf(fhoff,"%d ",ptr->val);
break;

else {ptr =ptr->next;)

/* if not FOUND *

if(!FOUND) /*add to the output *
fprintf(fhoff,"%d ",++ctr);
fprintf(fword,"%s "1, buffer);
new = newnode o;
new->val = ctr;

n ew- >w o rd c (h ar
)malloc(sizeof(char)(strlen(buffer)+l));

strcpy(new->word, buffer);
if(listjjindex]->length 0)(

list~index]->length =1;

list~index]->head = list[index]->tail
new;

else{
list [index] ->length++;
(list[index]->tail)->next =new;

list[index]->tail =new;

strcpy(buffer,
leng = 0;

f printf (fword, "^A"I)
fclose(fword);
fclose(fhoff);

66

hoff -como;
connect();
printf("\n\n Compression done!");
printf("l\n The compressed file called OUTPUT\n");

struct node *newnode()

struct node *tmp;

if(! (tmp=(struct node *) malloc(sizeof(struct node))))
{printf("lout of the storage\n"); exit(1);)

tmp->next=NULL;
return(tmp);

void hoffcomn(

char c;
static int counter, tempa;
int k, s, totbit, siz
int b=0, aO=0, al=0, a2=0, a3=0, a4=0, a5=0,

a6=0, a7=0, a8=0, a9=0;
float pb=0.0, p0=0.0, p1=0.0, p2 =0.0, p3=0.0,

p4=0. 0;
float p5=0.0, p6=0.0, p7=0.0, p8=0.0, p9= 0.0;

fred =fopen("lhoffman"l,lr+"l);

for(;)

c =getc(fred);

if (c ==EOF) break;
if (c I- I b++;
if (c == 0' aO++;
if (c Ill1' al++;
if (c == 2' a2++;
if (c == 3' a3++;
if (c == 4' a4++;
if (c ==1 5 1 a5++;
if (c == 6' a6++;
if (c == 7' a7++;
if (c == 8' a8++;
if (c == 9' a9++;

fclose(fred);
s = (b+aO+al+a2+a3+a4+a5+a6+a7+a8+a9);
totbit = (b*2 + aO*6 + al*2 + a2*3 + a3*4 + a4*4 + a5*4

+a6*4 + a7*4
+a8*5 + a9*6);
printf ("Total bits: %d\n"l,totbit);

67

pb = (float) (b)/(float) (s)*100;
p0 = (float) (aO)/(float) (s)*l00;
p1 = (float) (al)/(float) (s)*100;
p2 = (float) (a2)/(float) (s)*l00;
p3 = (float) (a3)/(float) (s)*l00;
p4 = (float) (a4)/(float) (s)*1OO;
p5 = (float) (a5)/(float) (s)*1OO;
p6 = (float) (a6)/(float) (s)*l00;
p7 = (float) (a7)/(float) (s)*l00;
p8 = (float) (a8)/(float) (s)*100;
p9 = (float) (a9)/(float) (s)*1O0;

siz = totbit/8 + 1;
printf("'Siz %d\n",siz);
lala = (char *) malloc(siz * sizeof(char));
fred = fopen("lhoffman"l,"r+"l);
tempa = OxOOQO;
counter = 0;
f end f fopen (Iteliko'l, Iw+1);
for(;)

c =getc(fred);

if (c == EOF) break;
bit-com(c);

fcoefn)
fclose(fed);

void bit com(number)
char number;

static mnt tempa, counter;
int mask = OxOOOO, temp2 =OxOOGO;

int cormask, bhof, m;
int acounter;

switch (number)

case 1'1
bhof = OxOOQO;
acounter =14;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa :bhof;
counter = counter + 2;
break;

case '1':
bhof = 0x0002;
acounter = 14;

68

bhof <<= acounter;
bhof >>= counter;
tempa = tempa I bhof;
counter = counter + 2;
break;

case '8':
bhof = OxOOOb;
acounter = 11;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa I bhof;
counter = counter + 5;
break;

case '2':
bhof = OxO007;
acounter = 13;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa : bhof;
counter = counter + 3;
break;

case '7':
bhof = OxOOOd;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa 1 bhof;
counter = counter + 4;
break;

case '3':
bhof = OxO004;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa 1 bhof;
counter = counter + 4;
break;

case '6':
bhof = OxOOOc;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa I bhof;
counter = counter + 4;
break;

69

case '4':
bhof = OxO006;
acounter = 12;
bhof <<=acounter;
bhof >>= counter;
tempa = tempa 1 bhof;

zounter = counter + 4;

break;

case '9':
bhof = OxO014;
acounter = 10;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa 1 bhof;
counter = counter + 6;
break;

case '5':
bhof = OxO007;
acounter = 12;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa 1 bhof;
counter = counter + 4;

break;

case '0':
bhof = OxO015;
acounter = 10;
bhof <<= acounter;
bhof >>= counter;
tempa = tempa I bhof;
counter = counter + 6;

break;
)

if (counter >= 8)
{

temp2 = tempa & OxffOO;
temp2 >>= 8;
if (temp2 == Oxia) temp2

= Oxl;

if (temp2 == OxOOff) temp2 = Ox~l;

*lala = temp2;
fprintf(fend,"%c",*lala);
lala++;
tempa <<= 8;
counter = counter - 8;

70

void connect()

char c, d;

ff in = fopen("output","w+");
fwor = fopen("wordout","r+");
fnum = fopen("teliko","r+");

for (;

c = getc(fwor);
if (c == EQF) break;
putc (c, f fin);

for (;

d = getc(fnum);
if (d == EQF) break;
putc(d,f fin);

fcoefi)
fclose(ff in);
fclose(fwor);

17

REFERENCES

1. Bell C. T., Better OPM/L Text Compression, IEEE
Transactions on Communication December 1986.

2. Bentley L. J., Sleator D. D., Tarjan E. R. and Wei K.
V., A Locally Adaptive Data Compression Scheme,
Communication ACM April 1986.

3. Cleary G. J. and Witten H. I., Data Compression Using
Adaptive Coding and Partial String Matching, IEEE
Transactions on Communication, April 1986.

1. Hamming W. R., Coding and Information Theory, Prentice
Hall 1986.

5. Kucera H., Francis W. N., Computational Analysis of
Present-Day American English, Brown University Press,
Providence, Rhode Island 1967.

6. Langdon Jr G. G., An Introduction to Arithmetic Coding,
IBM Res. Develop, Vol 28 No 2, March 1984.

7. Storer A. J., Data Compression methods and theory,
Computer Science Press 1988.

8. STAC ELECTRONICS INC. Carlsbad CALIFORNIA 92008.

9. Tanenbaum A. S., Computer Networks, Prentice Hall, 1988.

10. UNIX

11. Welch A. T., A Technicque for High-Performance Data
Compression, IEEE June 1984.

12. Witten H. I., Neal M. R. and Cleary G. J., Arithmetic
Coding For Data Compression, Communication ACM June
1987.

13. Ziv I. and Lempel A., Compression of Individual
Sequences via Variable-Rate Coding, IEEE Transaction
on Information Theory September 1978.

72

