Y

AD-A242 538
IR

NAVAL POSTGRADUATE SCHOOL
Monterey, California

&, NOV 18191

THESIS

DESIGN IMPLEMENTATION INTO FIELD
PROGRAMMABLE GATE ARRAYS

by

Norman C. Messa

March 1991

Thesis Advisor:

Approved for public release; distribution is unlimited

L
CTERTIRTHY

Y1 4146 037

UNCLASSIFIED
SECURTY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188
1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
2b DECLASSIFICATION DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)
Naval Postgraduate School Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS {City, State, and ZIP Code)
Monterey, CA 93943-5000 Wonterey, CA 93943-5000
8a NAME OF FUNDING / SPONSORING 80 OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
8c. ADDRESS (City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROIJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (include Security Classification)

DESIGN IMPLEMENTATION INTO FIELD PROGRAMMABLE GATE ARRAYS

12 PERSONAL AUTHOR(S)
MESSA, Norman C.

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
aster's Thesis FROM TO 1991 March 104

16 SUPPLEMENTARY NOTATIONThe views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ent of Defense or the US Government

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Field Programmable Gate Array; Logic Cell
Array

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

In the past three years a new type of programmable logic device has
emerged. The programmable gate array is a new approach to an old problem
of trying to implement logic designs in an efficient manner. This thesis
explores the implementation of design using the Field Programmable Gate
Array (FPGA). 1In particular, this thesis utilizes the XILINX develop-
ment system tools to implement design into the XILINX Logic Cell Array
(LCA). This thesis begins by defining the characteristics of the LCA and
then defines the characteristics of the Small Computer Systems Interface
(SCSI) which is used as a design implementation example. The XILINX
implementation method is then explored and a corplete design implementa-
tion study is conducted on the design example. Both Mentor Graphics and

Futurenet schematic capture tools are used for design entry. Following
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
& uncLassiFEDUNUMITED (J Same as ReT [bTic USERS | 1ya CeITILn
223 NAME OF RESPONSIBLE INDIVIDUAL 25’6#{?@#8&1‘ {Include Area Code) | 22¢ OFFICE SYMBOL
LEE, Chin-Hwa 408-646-2190 EC/Le
DD form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
. g TEL _ .
S/N 0102-LF-014-6603 UNCLASSIFIED

1

UNCLASSIFIED

SECURITY CLASSIFICATION (UF THIS PAGE

19. cont.

design implementation, backannotated design simulation is performed

to study the effect of the LCA technology on design performance. The
results of this thesis showed that designs implemcnted using this
technology performed comparably to other implementation technologies.
Additionally, this implementation method allows design to be completed
in a significantly shorter time frame than previously possible.

DD Form 1473, JUN 86 1Fl o BT N [T FRC

UNCLASSIFIED
i1

Approved for public release; distribution is unlimited.
Design Implementation
Into Field Programmable

Gate Arrays

by

l

Norman C. Messa %
Lieutenant, United States Navy i s

|

|

|

B.S., Chapman College

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

| b
NAVAL POSTGRADUATE SCHOOL [L'M_,A .
March 1991

Author: %"%«- 6 : / @/ //

Approved by: //v
w\/\/\/@n\iﬁta ee, Thesis Advi

Murali Tummala, Second Reader

m /.,c/wwé ﬁ W%L

Michael A. Morgan, C{xaxrman
Department of Electrical and Computer Engineering

iii

ABSTRACT

In the past three years a new type of programmable logic device has
emerged. The programmable gate array is a new approach to an old problem
of trying to implement logic designs in an efficient manner. This thesis
explores the implementation of design using the Field Programmable Gate Array
(FPGA). In particular, this thesis utilizes the XILINX development system tools
to implement design into the XILINX Logic Cell Array (LCA). This thesis begins
by defining the characteristics of the LCA and then defines the characteristics
of the Small Computer Systems Interface (SCSI) which is used as a design
implementation example. The XILINX implementation method is then explored
and a complete design implementation study is conducted on the design
example. Both Mentor Graphics and Futurenet schematic capture tools are used
for design entry. Following design implementation, backannotated design
simulation is perfcrmed to study the effect of the LCA technology on design
performance. The results of this thesis showed that designs implemented
using this technology performed comparably to other implementation
technologies. Additionally, this implementation method allows design to be

completed in a significantly shorter time frame than previously possible.

iv

II1.

III.

TABLE OF CONTENTS

INTRODUCTION

INTRODUCTION TO FIELD PROGRAMMABLE GATE ARRAYS
A. OVERVIEW
B. ARCHITECTURE OF THE LOGIC CELL ARRAY (LCA)
1. Configuration memory
2. Input/output blocks (IOB's)
3. Configurable logic blocks (CLB's)
4. Interconnect
C. MODES OF CONFIGURATION . .

D. PROGRAMMING THE LCA

PRINCIPLES OF THE SMALL COMPUTER SYSTEM INTERFACE
(8Cs1)
A. BASIC OPERATION
B. SCSI AS A STATE MACHINE
1. Bus free phase
2. Arbitration Phase
3. Selection Phase

4, Information transfer phase

10

12

19

23

23

27

29

29

30

31

Iv. THE DESIGN PROCESS USING FIELD PROGRAMMABLE GATE
ARRAYS
A. OVERVIEW
B. DESIGN CYCLE ON A PERSONAL COMPUTER
C. DESIGN CYCLE ON AN ENGINEERING WORKSTATION

D. A COMPARISON OF DESIGN PLATFORMS

V. SCSI - A DESIGN EXAMPLE

A. COVERVIEW

B. INITIAL DESIGN LAYOUT

C. DESIGN IMPLEMENTATION ON THE PC

D. DESIGN IMPLEMENTATION ON AN ENGINEERING
WORKSTATION

E. THE DESIGN VERIFICATION PROBLEM - PROTOTYPE VS
BACKANNOTATED SIMULATION

F. DESIGN CONSIDERATIONS

V. CONCLUSIONS

LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

vi

33

33

34

46

51

52

52

53

61

66

85

86

88

90

91

LIST OF FIGURES

Figure 1 Density comparison for three generations of LCA's
[from Ref. 3]

Figure 2 General structure of XC3020 LCA [from Ref. 1]

Figure 3 Configuration static memory cell {[from Ref.
1)

Figure 4 XC3000 series LCA IOB [from Ref.1]

Figure 5 XC3000 family LCA Configurable Logic Block [from
Ref. 1]

Figure 6 Combinational logic types available in XC3000
family LCA [from Ref. 1]

Figure 7 LCA interconnect and switching matrix [from Ref.
3]

Figure 8 LCA PIP's and switching matrix [from Ref. 1]

Figure 9 Direct interconnects [from Ref. 1]

Figure 10 General interconnect and switching matrix [from
Ref. 1]

Figure 11 LCA long lines [from Ref. 1]

Figure 12 XC3020 LCA structure (from Ref. 1]

Figure 13 Master Serial configured LCA [from Ref. 1]

Figure 14 Master Parallel Mode configured LCA [from Ref.
1]

Figure 15 Daisy-chained Slave Mode LCA's [from Ref.1]

Figure 16 Peripheral Mode configuration [from Ref. 1]

10

11

12

[
Q

14

15

16

17

18

Figure

Figure

Ref.

17

18

1)

Slave Mode configuration [from Ref. 1]

LCA configuration process state diagram (from

Figure 19 LCA configuration data structure (form Ref.

1]
Figure
Figure
Figure
Figure
Figure

1]
Figure
Figure
Figure

Figure

20 SCSI device ID bits [from Ref. 4]

21

22

Typical SCSI configurations [from Ref. 4]

Non-arbitrating SCSI ([from Ref. 4]

23 Arbitrating SCSI [from Ref. 4]

24

25

26

27

28

Ref.1]

Figure
Figure

1]
Figure
Figure
Figure
Figure
Figure
Figure

Figure

29

30

32

33

34

35

36

37

Design Entry to XNF translation [from Ref.

Optimization and mapping [from Ref. 1]
Merging of mapped files [from Ref. 1]
Translating to an LCA file f{from Ref. 1]

Placing and routing the LCA file [from

Bitstream generation [from Ref. 1]

Real-time in circuit verification [from Ref.

LCA backannotation [from Ref. 1]

Simulation timing diagram [from Ref. 1]
XC3020 prototype board

Apollo Workstation Design path {from Ref. 1]
Apollo design flowpath [from Ref. 5]
Backannotation of LCA design [from Ref. 5]

NETED schematic of BUSFREE circuit

viii

19

20

22

23

25

28

28

38

39

40

41

42

43

44

45

46

47

48

49

51

54

Figure 38 QUICKSIM timing diagram of BUSFREE circuit

Figure 39 NETED schematic of ARBIT circuit

Figure 40 QUICKSIM timing diagram of ARBIT circuit with
arbitration lost

Figure 41 QUICKSIM +timing simulation of ARBIT with
arbitration won

Figure 42 NETED schematic of SELECT circuit

Figure 43 QUICKSIM timing simulation of SELECT circuit

Figure 44 NETED layout of SELTAR circuit

Figure 45 QUICKSIM timing of SELTAR circuit when
selected

Figure 46 QUICKSIM timing of SELTAR circuit when not
selected

Figure 47 NETED schematic of INFOTRAN circuit

Figure 48 QUICKSIM +timing simulation of INFOTRAN
circuit

Figure 49 FUTURENET schematic of BUSFREE circuit

Figure 50 FUTURENET schematic of ARBIT circuit

Figure 51 FUTURENET schematic of SELECT circuit

Figure 52 FUTURENET schematic of SELTAR circuit

Figure 53 FUTURENET schematic of INFOTRAN circuit

Figure 54 LCA NETED schematic for BUSFREE circuit

Figure 55 Timing simulation of unrouted BUSFREE
circuit

Figure 56 Timing simulation of routed BUSFREE circuit

Figure 57 LCA NETED schematic of ARBIT circuit

1x

54

55

55

56
56
57

57

58

58

59

59

61

62

63

64

64

68

69

70

70

Figure 58 Timing simulation of unrouted ARBIT circuit
with arbitration won

Figure 59 Timing simulation for unrouted ARBIT circuit
with arbitration lost

Figure 60 Timing simulation for routed ARBIT circuit with
arbitration won

Figure 61 Timing simulation for routed ARBIT circuit with
arbitration lost

Figure 62 LCA_NETED schematic for SELECT circuit

Figure 63 Timing simulation for unrouted SELECT
circuit

Figure 64 Timing simulation for routed SELECT circuit

Figure 65 LCA_NETED schematic of SELTAR circuit

Figure 66 Timing simulation of unrouted SELTAR circuit

Figure 67 Timing simulation of routed SELTAR circuit

Figure 68 LCA_NETED schematic of INFOTRAN circuit

Figure 69 Timing simulation of unrouted INFOTRAN
circuit

Figure 70 Timing simulation of routed INFOTRAN circuit

Figure 71 LCA_NETED schematic for completed SCSI
design

Figure 72 Timing simulation of unrouted SCSI circuit

Figure 73 Timing simulation of routed SCSI circuit

Figure 74 LCA placement and routing of SCSI design

71

72

72

73

74

74

75

76

76

77

78

78

79

80

80

84

Table I

Table 11

LIST OF TABLES

LCA CONFIGURATION MODES [from Ref. 1]

LCA DESIGN MEMORY REQUIREMENTS {[from Ref.

1]

21

35

ACKNOWLEDGEMENTS

I wish to thank my Thesis Advisor Dr. Chin-Hwa Lee for his
guidance and suggestions during the course of this project.
I would also like to thank my second reader Dr. Murali Tummala
for his many constructive suggestions. I would also like to
offer a special thanks to Ms. Jennifer Tran of XILINX whose
patience and perseverance were of immeasurable help in the
initial stages of this project. Lastly, I would like to thank
my daughter Rebecca for her Love and understanding which

enabled me to complete this thesis.

I. INTRODUCTION

In this thesis the Field Programmable Gate Array (FPGA)
was examined as a design medium for implementation of small to
medium sized designs. The FPGA is studied here from a design
implementation standpoint with emphasis concentrated on design
ease, reliability and desian verification. A key question of
interest to be answered in this thesis is with regard to how
well do designs implemented using FPGAs perform as compared to
other implementation technologies. This study started by
examining the FPGA technology and device characteristics. A
description of the Small Computer Systems Interface (SCSI)
provided the guidelines for a design implementation example
discussed later in this thesis. The actual design

implementation process was then examined followed by an

actual design implementation example of a SCSI device which
took the design from conception and schematic capture to
hardware implementation. 1In this thesis two different design
platforms were used, and a comparison of the design processes
was made. Additionally, timing simulation was performed on
implemented designs to examine the effects of FPGA technology
on design performance.

In this thesis, Chapter II will provide a description of
the Logic Cell Array (LCA) technology which will be followed

by a discussion of the SCSI communication protocol in Chapter

II11. Chapter IV will provide insight into the actual design
implementation process utilizing the XILINX development tools.
Chapter V will go through a complete design implementation
example from design entry to the actual design placement and
routing into an LCA. Several conclusions and observations

have been made as the result of this work which are summarized

in Chapter VI.

I1II. INTRODUCTION TO FIELD PROGRAMMABLE GATE ARRAYS

A. OVERVIEW

In this chapter, the characteristics of the Field
Programmable Gate Array (FPGA) 1s discussed with regard to its
functionality, configurability and operation. Information in
this chapter is derived from References 1, 2 and 3. The FPGA
is a device in which small to medium sized designs may be
accommodated. It is an alternative form of Application
Specific Integrated Circuit (ASIC) in lieu of Programmable
Logic Devices (PLDs), fixed gate arrays or full custom
integrated <circuits. There are currently +two main
technologies for FPGA, The first, XILINX, wutilizes an
architecture that is fully re-programmable with configuration
controlled by software. The second, ACTEL, utilizes anti-fuse
technology making it one time programmable. 1In this thesis
the XILINX technology will be explored exclusively because of
the re-programmability. The XILINX FPGA is refered to as a
Logic Cell Array (LCA) by the industry as well as in this
thesis (Logic Cell is a XILINX trademark). The XILINX LCA is
an array of logic blocks +that are configured and
interconnected via software that is downloaded into the LCA at
either power-up or any other time the designer desires in a

re-program mode. This later characteristic allows the LCA's

configuration to be a function of time. As the technology
stands today it is currently in its second generation. The
first generation XC2000 series LCAs could hold designs as
large as 1800 gates whereas the second generation XC3000
series LCAs can hold designs up to 9000 gates. As to the
future, the planned third generation XC4000 series LCAs will
allow for designs up to 20000 gates. Both the XC2000 and
XC3000 series LCAs are currently available in production
quantities. The XC4000 series LCAs will be available
sometime within the next year. Figure 1 shows the density
comparison of the three generations of XILINX LCA's. In this

thesia design consideration was given to both XC2000 and

XC3000 LCA's.

Density Comparison
Max Typical
Gates Utilization XC2000 XC3000 XC4000
1200 800 2064 -- --
2000 1200 2018 3020 --
3000 2000 -- 3030 4002
4200 3000 -- 3042 4003
6400 4000 -- 3064 4004
9000 5000 -- 3090 4005
-- 6000 -- -- 4006
- 8000 - e 4008
-- 10000 -- -- 4010
-- 13000 - -- 4013
-- 16000 - -~ 4016 :
-- 20000 - ~- 4020

Figure 1 Density comparison fcr three generations of LCA's
{from Ref. 3]

B. ARCHITECTURE OF THE LOGIC CELL ARRAY (LCA)

== E) I e e

‘/EBBLOCKS
3 THREE-STATE BUFFERS WITH ACCESS CONFIGURABLE LOGIC
TO HORIZONTAL LONG LINES BLOCKS
P T L ' ¢
-~
{3 [:} {:J | [:]
P ¢ A& A \A A

4 INTERCONHNECT AREA

4. 4. 4.

r's

=

3
3
[
s

FRAME POINTER |

L [/
]

=
I
EEL

CONFIGURATION MEMORY

Figure 2 General structure of XC3020 LCA [from Ref. 1]

The XILINX LCA architecture consists of three major

components:

. Configurable Logic Blocks (CLBs)
- Input/Output Blocks (IOBs)

Interconnect

In addition, configuration memory is wused to hold the
configuration program bits which control the configuration of
CLLBs, 1I0Bs and interccnnect. igure 2 shows the general
structure of the XC3000 family LCA. On the perimeter,

configurable Input/Output Blocks (10Bs) provide the interface

between the package pins and +the internal arrav of
configurable logic. The Configurable Logic Blocks (CLBs) are
arranged in an array with the interconnect programmed to form
networks carrying signals between I0OBs and CLBs. The
functions implemented in the LCA are controlled by a
configuration program which is 1loaded into an internal
distributed array of configuration memory.
1. Configuration memory

Configuration memory consists of a distributed array

of static memory cells (see Figure 3). During configuration
— Q
CONFIGURATION
; 5 . CONTROL
i —— Q
READ or ——+— i
WRITE E

—o}—
L
DATA —FLLDQ_

AR{4 S8]

Figure 3 Configuration static memory cell [from Ref. 1]

the cell is written through the data i1ine and is read through
the data line during readback. During normal operation the
pass transistor is off, and continuous configuration control
is provided. There are five methods for loading configuration
program data into configuration memory. Two methods load the
data serially and three methods load the data in a byte wide

parallel manner.

2. Input/output blocks (IOBs)

Figure 4 shows an IOB for an XC3000 family LCA. 1t
provides the interface between the external package pin and
the internal configurable logic. It is also the means by
which the configuration program is locaded into the LCA during

the program or re-program phases of LCA operation. It allows

PROGRAM CONTROILED MEMORY CELLS Voo
THA -
out At output SLEW PASSIVE ¢ 7
INVERT INVERT SELECT RATE PULL UP

THREE STATF —o- D_‘Iﬁ L "

N

cut —e 2 E >—L b a —[) outPUT

FLIP BUIFER
fLoP

’ A — VO PAD
. L ;J
DIRECT IN «—

BEGISTERED I +— — o o _]_ q
FLIP TTL o

FLOP CMOS FaN
or INPUT
LATCH THRESHOLD

>
n
ok 13 L - (GLOBAL RESET)
Yy
e PROGRAM — cx2
— CONTROLLED

MULTIPLEXER O = PROGHAMMABLE INTEAICONNECTION POINT or PIP

Figure 4 XC3000 series LCA IOB [from Ref.l]

for either registered or direct inputs. Each I0OB has a
programmable tri-state output buffer that can be driven by
either a registered or a direct output signal. Specific
configuration of the IOB is determined by the contents of the

program controlled memory cells. A global reset is also

incorporated. This global reset is important on the initial
configuration to have all flip-flops reset for proper and
reliable operation.
3. Configurable logic blocks (CLBs)
Figure 5 shows a Configurable Logic Block (CLB) for an

XC3000 family LCA. The CLB's provide the functional units

i
oaTA W — —3! 1
: 0
MUX {o a}-
: F 1
i —om
1 16 %
o RO Qax
: a X — x
b F F
oGic — ¢ COMRINATORIAI :
VARIABLES g FUNCTION . CLBOUIPUTS
Qy _
—y

¢ L—’F\ ' Qv .

ENABLE CLOCK —-—8C T‘

*$" (ENABLE) ———————
CLOCK 'jj {D
resetr ——Id
0 (INHIBIT) ——— l__
H

_g (GLOBAL RESET)

Figure 5 XC3000 family LCA Configurable Logic Block [from
Ref. 1) .

through which the user's design is implemented. The CLBs are
arranged in an array (8 x 8 in the case of the XC3020) with
two letter designations corresponding to the row and column

where they are situated. The XC3000 family LCAs accomodate up

to five logic variables. The combinatorial loglic section of
the CLB utilizes a 32 by 1 lookup table to implement boolean

functions. Figure 6 shows the combinational 1logic types

available.

A - ~
Py U_,
— ANY FUNCTION
Qv -L Of UP 104 -f
— VARIABLES
.-
o—-—————~D
.

A

[——
ax ~ -
ANY FUNCTION
Qv —4{

Oof U104
VAFHABLES

-
6—————_|
.

Sa

ox F
r ANY FUNGTION |
| oF s vAnIABLES
G

Sb

VARIABLES

Figure 6 Combinational logic types available in XC3000
family LCA {from Ref. 1]

4. Interconnect
The programmable interconnects in the LCA serve to
connect inputs, outputs and CLBs into logical networks. CLB
interconnects are physically comprised of two-layer metal-
ization. In Figure 7 the pass—-transistors, each controlled by

a configuration bit from the configuration program form

<
<
~
<
o
<
-
<
<

"
H2'
=B

b — -

e

T

HS

T

b -1
5 —

<
-

\".. oo VK §PR . ;;. 3
7 W

Figure 7 LCA interconnect and switching matrix [from Ref.
3]

Programmable Interconnect Points (PIPs) and switching matrices
make—up the connections between the metal segments and the CLB

pins (see Figure 8). There are three types of programmable

10

interconnect available in the LCA:

- General Purpose Interconnect
. Direct Interconnect

- Long Lines

The general purpose interconnects shown in Figure 8 are metal

INTERCONNECT SWITCHING
“PIPs" MATRIX
bt AN s S
S ¥ Ce e Y
. -[[I!l 1 ;-
i -
{=A L/ s
t- $-
: * ‘P-
Jll E_
MRS],"1,
- ‘_)
Tha |
1 iJ.E . . &J'E . . . L;u:
CONFIGURABLE INTERCONNECT
LOGIC BLOCK BUFFER

Figure 8 LCA PIP's and switching matrix [from Ref. 1]

segments that run between the rows and columns of CLBs joined
on each end by a switching matrix shown in Figures 9 and 10.

Switching matrix connections are controlled by bits 1in

11

Figure 9 Direct interconnects [from Ref. 1]

configuration memory. Direct interconnects are high speed
segments for connecting 10Bs with nearby CLBs (see Figure 9).
Direct interconnect can also be used to connect adjacent CLBs.
Long lines are special lines that run nearly the entire length
and width of the chip and bypass all switching matrices.
These can be used to transfer signals that must be

routed a long distance. This is done to minimize signal skew
(see Figure 11). Figure 12 shows the entire XC3020 LCA which
is capable of implementing designs up to 2000 gates in size.
Additionally, the LCA has the capability of providing its own

internal oscillator.

C. MODES OF CONFIGURATION
There are five modes of operation that the LCA may be

configured. These modes specifically deal with how the

12

MA”}I_{
. ‘ucx

Figure 10 General interconnect and switching matrix [from
Ref. 1]

3 VERTICAL LONG LINES l

P Doy e ok

9 T m Core
ON-CHIP - L

Py r.

THREE STATE
BUFFERS

PULL-UP - RO e -

RESISTORS ' el RS re . :

FORONCHP(i: EE S Cotlin ol S H S

OPEN DRAIN RTINS S e [:;}ai".fT': {::E~' S {:;}
SIGNALS I \ U B e i

g anomizontaliong imes . o

WHI;; § _ﬁﬁ oy ""Eﬁ o _.EE s Eii

+. ¢ T

o
s

o

Figure 11 LCA long lines [from Ref. 1]

configuration program is transferred from some external device

into the LCA's configuration memory. The five modes are:

. Master Serial Mode

Master Parallel Mode

13

THONA MATENOEN CLmA ona

E

TEANIFOC O 0

digﬂ%glquibtnf ﬁ?{j&jiﬁb gﬁ%f

RS Lo o e
o1 .0 9 o o oo B!
HL._

'J

‘Vdu o- ool o Ui"é&n
{"&] el Qva] el el gG] e BN

g v ool s los] as Géﬁd'
{Qb JCE It) IS o] o] o
| elusjosfoslos|us] s Uﬁtd
0 of | ol ol ol ol ol D[

AN o fo o {os | oo U%ud'
rg; 0] 0] ol o ol Bl
bo_ J'de o os| oo loslos] Déf"lu
[,g; 26] ol 0| 0| Bl 6| ol

o{vLTJ* ll[v]“.:' []"I" [,r"; L}"‘;I U'k:' -[_Jo"‘:‘ YL]»'.;‘ 3
AR S]]t €] R L]

SR

“UNDONDED 104 M 7Y ACE S) ALIETINATE MY TER DICT #0°UY

Figure 12 XC3020 LCA structure [from Ref. 1]

. Peripheral Mode
. Slave Mode

. Daisy Chain Mode (with Master or Peripheral Mode leader)

In any of the Master modes, the LCA automatically loads its
configuration data from some external memory device. In
Master Serial Mode (see Figure 13) configuration data 1s
loaded into the LCA via the DATA IN pin (DIN) .from a
synchronous serial source. XILINX can provide a serial
configuration PROM specifically for that purpose. In Master
parallel Mode (see Figure 14) configuration data is provided
a byte at a time to the DO-D7 pins as a result of a 16 bit

address generated by the LCA from pins AO-A15. There are two

14

317

DURING CONSIGLRATION 1
THE Sr1 M2 PULL Drawn l
RESISTON OVERCOMES TlE : M2 FATDWN

f

INTERAMAL PLLL WP,
BUT IT ALLOWS W TJ
BE USEA 1O

DouT]

PR v -
uDC

(S
GENERAL
FURPDSE
USER 1O
PHS

T (XC 3000)

tLlrd

Il otuen
o [roems

LCA
OPTIONAL

$—— DENTICAL SLAVE
LCAs CONFIGURED
THE SAME

E
’ B4

RESET L2 L I I J S EE B R
e wl prrrenes :
o OATA geruaL { !

couw p— cix MEmOAY L cASCADED :
: AL
toc ce ceop——a weroRy
oone —4—{nd OF XCi73e ‘

Do
v MK AP SETS THE XC 1736 ADDRE S§ POINTER)

e X X X .

CFOR OPTIONAL SLAVE MODE | CAs 1N A DAISY CHAM

Figure 13 Master Serial confiqured LCA [from Ref. 1]

variations to the Master Parallel mode. Master Parallel Low
brings configuration data into the LCA starting at address
0000 while Master Parallel High brings configuration data into
the LCA starting at address FFFF. This provides compatibility
with microprocessors that begin program execution from low
memory and increment: as well as those that begin program
executlon from high memory and decrement. The final Master
Mode variation is Master Mode (S~rial or Parallel) with daisy-

chained slaves (see Figure 15). The configuration clock

15

USER CONTAM OF HIGHE R
— v ORDER PROM ADDRE SS BITS
CAN BE USED 1O SELECT FROM
L__D ALTERNATIVE CONF IGUIRA TIONS
; MO Mi PWROWN
50 — [—] oout ~
— {2 COLK}——= =
—]noc
S S
S e —
Ul RCLK ATL
UseRvo | |
PNS | —d INIT (XC3000) A1 }— -+ EPROM
{2Xx 8
— A12]— - | ORLARGER)
:| LotHer
1 { O PINS AN
— At
Lca A °
RESET ——d RESET A9 AS
Ve D? A8 Ag
'a 06 A? AT o7 BN
/105 AB AS [+ N
s 04 AS as 05 r\
ﬂ 03 A¢ At 11 aN
| 102 A A3 D3
/'4 s3] A2 A2 [+14 q
Y 4 At A o
A0 A0 Do {—\|
Loc 13
DONE [[—c CE
< L ‘
g 7
DATA BUS
AG-ATS
ouUTRUT) x ADDRESS X
D0-07 X Prow BYTE N
p———75—————ed 1
RCLK
OUTPUT) 4
18 CCLK
8 CClxe
ceLK N
OUTPUT)
memoU) \ﬁ 07 BYTE N1 XDO BYIE N @

Figure 14 Master Paralliel Mode configured LCA [from Ref.

1]

(CCLK) from the master LCA is provided to the slave LCAs and

their serialized data is passed from DOUT to DIN doWn the

daisy-chain. The serial configuration bit stream is passed

down the daisy-chain synchronized to

CCLK. On the leading

edge of CCLK data comes into DIN and is passed to DOUT on the

trailing edge of CCLK. In Peripheral Mode (see Figure 16) the

16

a3V

T b 11 In e

WO M1 PWInW Mo M1 PwRDWN) [Mo M1 PamOwn
LAY com) — cok Skn cax L1t}
oout on oout } ———-—{om oot |-
LCA Lca
-" SUAVE #1 SLAVE #n {
—{ron [H L
GerEna —d nCLx Al — = | Ats oc HOT | —
4
FIRrCSE Aa|———ans LOC P— | GFNERAAL toe p— | GENENAL
(LT PUNPOSE PURPOSE
PNS AN — | usEnvo — | usrAvo
_ Ernos orER OTHER
. A7] a7 Yo PiIS YO rIs
N OIHER _ —_— J—
: VO FiNS AN LYA)
“{ LA Ao t————1at0 wt »—1 it p—
MASTER o} ——— 1 ae — o ne
{07 I A —{neset —{neser
~—1ne At ———{ar (.21 BN
~—~—— 0% as as o
—_— A NOTE XC2000 DEVICES DO NOT
. ol e " i HAVE FTF 1O HOLD OFF A MASTER
01 ™ M [BN oevee FESEY OF A MASTEN DEVY
————02 o1 [21BN SHOULD BE ASSERTED BY ANEXTE
o R TRIWG CICLNT TO ALLOW FOR (C/
o » 2 7N VATUATIONS IN CLEAR BTATE TIIE
~—— 00 atp————1a o1}~
”) AN
%3 LoC L'—r-e /3
o 18V
l r—{NESET L L ™ (o3
3 A EACH
o
AF AAM caigcron
/T PROGAA L (>3 it
e '}
JSYSTEMRESET D 8] 1t~
-X- I+

Figure 15 Daisy-chained Slave Mode LCA's [from Ref .1]

LCA 1s treated as a processor peripheral and configuration
data 1is sent to it in a byte-wide fashion. A byte of
configuration data is absorbed by the LCA for each processor
write cycle. In this mode, daisy-chaining with slave LCAs is
also permitted. This mode is most useful since it allows the

LCA to be reconfigured at any time. The implication of this

17

is that an LCA can be used to serve many functions and occupy
the same space. This would be important in any space limited
situation. The final mode in which an LCA can be configured
is the Slave Mode (see Figure 17). In this mode, serial
configuration data is strobed into the LCA one bit at a time.
The source of the configuration data may be a previous slave
LCA in a daisy-chain, a Master or Peripheral Mode LCA, or any

other fprocessor.

— o5
CONTRO ADDNESS nara *
SGNALS BuUS /s e
° MO MIPWR 5n)
OWN
7
o007 oy coxf——d e,
S oour}— y —1-»4
< . faonress b d S
S cso ™2
LoaKc woe | —
S5V Se— l LCA
woc b— | genenaL
. PURPOSE
C s USER O
N— cs2 _
_ o - oTHER
— " v vﬂs{
— — e | ROY/BUSY —
e N L0
AEPAGGAAM .
R oF
q reser
T
> YA /FRERERERR
cSi
o D GE—
.~ ~s
o 20 G C
anYBUSY \ /
*
*FON OF TIONAL SLAVE MODE LCAs W A DAISY CHAN

Figure 16 Peripheral Mode configuration [from Ref. 1]

18

5V

MO M!I PWROWN
MICRO 5w
COMPUTER
STRE [——————+—9 CCLK et - .
bo}———— o ooUT f——r | —=
o1 |— MDC
VO I p2}— toC p—— | GeneRaL
PORT 5V PURPOSE
o3}— LcA USER O
o4b— I
OTHER 3
05— 0 PINS .
06 fo—— {-— -4 —I0P e
o7 e 120
=
qu AESET (9 AESET
ju—

o BITN X BTN
:}.:
CCix

(')‘E)UT BITN -1 Xxﬁlm
(OUTPUT)

*FOR OPTIONAL SLAVE MODE LCAs IN A DAISY CHAIN

Figure 17 Slave Mode configuration [from Ref. 1]

D. PROGRAMMING THE LCA

Figure 18 shows a state diagram for the LCA configuration
process. The mode with which the LCA is confiqured is
determined by the input level on the three mode pins; MO, Ml
and M2. Table 1 summarizes the configuration alternatives.
It should be noted that configuration of an LCA is one trait
that separates it from the more conventional logic devices
(i.e., PLDs and full custom Gate Arrays). The LCA 1is
configured rather than programmed although the two terms have
been used interchangeably. The programming is done externally
to the LCA in either a fixed memory device like an Erasable

Programmable Read Only Memory (EPROM), a serial PROM, or a bhit

19

POWER ONDELAY 1S

2’ CYCLES FOR NON MASTER MODE—11 TO 33 mS
2'* CYCLES FOR MASTER MODE —43 1O 130 mS

USER VO PINS WITH HIGH IMPEDANCE PULL UP

POWE 1} DOWMN
NO HDC, LOC
onPuULL.UP

N1 SIGNAL LOW {XC 3000) 'l‘gcc_-l'gﬂ'

ACTIVE

OPERATIONAL
MODE

ACTIVE RESET—
OPERATES ON
USER LOGIC

NIIALIZATION INACTIVE
ACTIVE RESET

POWER ON
JIME DELAY
TEST CONFIGUHATION
MODE PINS PIOGRAM MODE
LOW ON DONE PROGHAM AND RESET 1-/
CLEARIS

~200 CYCLES FOR THE XC3020--130 TO 400 115
-250 CYCLES FOR THE XC3030—165 10 500 uS
~290 CYCLES FOR THE XC3042—195 10 580 uS
~330 CYCLES FOR THE XC3064-—220 TO 660 uS
~375 CYCLES F OR THE XC3090—250 10 750 uS

CLEAR
CONFIGURATION
MEMORY

Figure 18 LCA configuration process state diagram {[from
Ref. 1)

stream that is stored in either memory or some other type of
storage medium, Configuration of the LCA involves trans-
transferring the configuration bit stream into the LCA's
configuration memory cells. The first step in programming the
LCA is the INITIALIZATION phase. The initialization state
will continue until a 14-bit timer running off of a 1 MHz
clock has timed out. This timer clock is assumed to have a

variation of +50% due to differences in process and

temperature which will allow the timer to count at a rate of
0.5 MHz to 1.5 MHz. This equates to an INITIALIZATIOd phase
of 11 to 33 ns. 1In the Master Modes this time is extended by
a factor of four to ensure that any slave devices the LCA may
be driving are initialized. At the end of initialization the

LCA enters the CLEAR phase where it clears configuration

20

Table I LCA CONFIGURATION MODES {from Ref. 1]

MO M1 M2 Clock Mode Dala
0 0 0 aclive Masler Bit Serial
0 0 1 aclive Mastar UByle Wide Addr. = 0000 up
o { 0 — teserved —
0 1 1 activa Masler Byte Wide Addr. » FTFT down
1 0 0 — rasarved —
1 0 1 passiva Peripheral Byle Wide
1 {1 0 — tasarved —
1 { 1 passive Slave Bit Serial

memory. When the INITIALIZATION and CLEAR phases have
completed, it 1is indicated by an active low INIT signal
(available only on XC3000 family). At this point the
CONFIGURATION phase begins. The configuration program header
contains a length count of the configuration data to be
transferred to the configuration memory. Figure 19 shows a
typical format of a configuration program. When LCAs are
daisy-chained, the preamble and length count are shifted into
the LCA on the leading edge of the configuration clock (CCLK)
and shifted out on trailing clock edges. Once an LCA has
received a preamble and length count, DOUT goes high until the
LCA has absorbed the appropr.ate number of frames. This
method allows several configuration programs to be stored on
one EPROM. When configuration memory is full and the°length
count agrees, the LCA will startup and become operational.
During startup user 1/0 pins become active and can be defined
to be either TTL or CMOS compatible voltage levels. At this

point the device configuration data stored in the LCA will

21

1111111 - DUMMY BITS*

0010 - PREAMBLE CODE
« 24-BIT LENGTH COUNT > ~ CONFIGURATION PROGRAM LENGTH HEADER
111 - DUMMY BITS (4 BITS MINIMUM)

0 <« DATA FRAME # 001> 111 ©3020
0 <DATAFRAME #002> 111 FoA X .
0 < DATA FRAME £003 > 111 197 CONFIGURATION DATA FRAMES | PROGRAM DATA
(EACH FRAME CONSISTS OF
» : ~ A e e REPEATED FOR EACH LOGIC
0 < DATA FRAME # 198 > 111 THREE STOP BITS CELL ARRAY IN A DAISY CHAN

0 < DATA FRAME #1907 > 111

AARR POSTAMBLE COOE {4 BITS MINIUMY

“THE LCA DEVICES REQUIRE « DUMMY BITS MIN . XACT 2 10 GENERATES 8 DUMMY BITS 1108 08
Device XC3020 XC3030 XC3042 XC3064 XC3090
Gates 2000 3000 4200 6400 9000
CLBs 64 100 144 224 320
Row X Col (8 X 8) (10X 10) (12 X12) (16 X 14) (20 X 16)
10Bs 64 80 96 120 144
Flip-flops 258 360 480 688 928
Bits per frame 75 92 108 140 172
{w/ 1 start 3 stop)

Frames 197 241 285 329 373
Program Data = 14779 22178 30784 46064 64160
Bits * Frames + 4

{excludes header)

PROM size (bits) = 14810 22218 30824 46104 84200
Program Data

+ 40 bt Headers

Figure 19 LCA configuration data structure [form Ref. 1]

totally specify its functionality and interconnect. At any
time, the LCA configuration memory may be re-programmed thus
totally changing the characteristics and functionality of the
LCA.

With an understanding of the LCA technology this thesis
will now look at an actual design. In Chapter III the design

example of SCSI will be defined.

22

I1I1. PRINCIPLES OF THE SMALL COMPUTER SYSTEM INTERFACE (SCSI)

A. BASIC OPERATION

The purpose of this chapter is to introduce the basic
concepts of +the Small Computer Systems Interface (SCSI)
protocol. The information contained in this chapter 1is
derived from Reference 4. This protocol will be used as the
basis for a design example to demonstrate the methodology
behind implementation of design into a FPGA. It will also be

used as a benchmark to evaluate FPGA technology performance.

DB(7) DB(b) DB(S5) DB(4) DB(3) DB() DB(1} OB(8) <-- DATA BUS
I i I | | | | |

|] ! SCSI 1D =@
I |
| | SCSI ID = 1
l l

| |

| |

| |

| |

I S

|

I

[

|

|

S

Figure 20 SCS1 device 1D bits [from Ref. 4]

23

The SCSI 1is a protocol that allows asynchronous or
synchronous bidirectional communication between two devices.
It allows for priority arbitration when more than one device
is trying to use the bus. It allows specific target device
addressing from the controller. Information is transfered via
an asynchronous handshaking protocol. Information 1is
transfered via a common data bus and may take the form of
data, control signals or messages. The Dbasic SCSI allows
communication between only two SCSI devices at any one time.
There is a maximum r{ eight SCSI devices that can be connected
to the SCSI b .z In this thesis the only SCSI of interest is
the original asynchronous SCSI standard design. Later SCSI
desigrs such as SCSI-II are not considered. Here, only non-
parity systems are considered. Each SCS1 device will have a
unique SCSI ID which is actually a bit pattern assigned to it
(see Figure 20). When two STSI devices communicate on the
bus, one acts as an initiator and the other acts as a target.
For example, a host computer (the initiator) +transfering
information to a disk controller (the target). Figure 21
shows two examples of typical SCSI configurations. Each
target may have seven additional SCSI1 peripherals attached to
it. Using extended messages it is possible to address up to
2048 peripheral devices per target. The initiator has control
of certain SCSI bus functions while the target has control of
the rest. The initliator may arbitrate for the SCSI bus and

select a particular target while the target may request the

24

Peripheral devices such as
no%netic-daskS, printers,
op

iCal-disxs, and mognetic-
T T.1, tapes.

conruter G SCST BUS Jorwone

SINGLE INITIATOR, SINGLE TARGET

' 2 A
°°“’“"“,E;} SCSI BUS
TN

s
)

SINGLE INITIATOR, MULTIPLE TARGET

COMPUTER %_g}\] SCST BUS ontrciter [d)

COMPUTER | w7 | Controller

Controller

OO
5D
50

/ CE———

PICR

_
-
|S‘ ‘

N

COMPUTER

L ontrolle

AD

MULTIPLE INITIATOR, MULTIPLE TARGET

Figure 21 Typical SCSI configurations [from Ref. 4]

transfer of command, data, status or message information.
Information transfers on the data bus are asynchronous and
utilize a REQ/ACK handshake protocol with each byte transfered
requiring a handshake.

There are eighteen SCSI bus signals which are summarized

as follows:

. BSY (Busy) indicates that the bus is being used.

. SEL (Select) is a signal used by the initiator to select
a target.

- C/D (Control/Data) is a signal driven by a target to
indicate whether control or data Iinformation is on the
data bus.

» I/0 (Input/Output) 1s a signal driven by the target to
control data direction with respect to the initiator.

. MSG (Message) 18 a signal driven by the target during the
message phase.

- REQ (Request) is a signal driven by the target to indicate
a request for a REQ/ACK handshake.

- ACK (Acknowledge) is a signal driven by the initiator to
indicate acknowledgement of a REQ/ACK handshake.

ATN (Attention) is a signal driven by the initiator to
indicate an attention condition.

DB(0-7,P) (Data Bus) is eight bit data plus a parity bit
which make up the SCSI data bus. Use of the parity bit is
optional.

There are several timing definitions that should be

included in any SCSI design to provide standardization. They

are as follows:

26

ARBITRATION DELAY (2200 nS) is the minimum time a SCSI
device shall wait from the time that it arbitrates for the
SCSI bus until it checks to see if it arbitration has
been won.

ASSERTION PERIOD (90 nS) is the minimum time REQ or ACK
are asserted during synchronous data transfer.

- BUS CLEAR DELAY (B00O nS) in the maximum time allowed for
a SCSI device to quit driving all SCSI bus signals.

BUS FREE DELAY (800 nS) is the minimum time that a SCSI
device must wait from the time that it detects that the
bus has been free for 400 nS before it can enter the
arbitration phase by asserting BSY.

BUS SET DELAY (1800 nS) is the maximum time for a SCSI
device to assert BSY and put it's own SCSI ID bit on the
DATA BUS after it enters the bus free phase.

- BUS SETTLE DELAY (400 nS) is the time to wait for the SCSI
bus to settle after changing bus control signals.

CABLE SKEW DELAY (10 nS) 1s the maximum difference in
propagation time between any two SCSI bus signals.

- DESKEW DELAY (45 nS) is the minimum time required to allow
for deskewing signals.

- DATA RELEASE DELAY (400 nS) is the maximum time for an
initator to shift from sending data to receiving data.

- HOLD TIME (45 nS) is the minimum time that the SCSI device
must walt after asserting REQ or ACK prior to changing the
data on the SCSI data bus.

- RESET HOLD TIME (25000 nS) is the minimum time RST must be
asserted.

SELECTION ABOQRT TIME (200000 nS) is the maximum time that
a target has to respond to selection.

B. S8SCSI AS AR STATE MACHINE

The SCSI may be looked at as a state machine. Depending

on the particular implementation however, it may or may not

27

COMMAND or

SELECTION DATA or

phase

BUS FREE
phase

STATUS or

MESSAGE phaose

RESET condition

Figure 22 Non-arbitrating SCSI {from Ref. 4]

COMMAND or
DATA or
STATUS or

MESSAGE phase

SELECTION
r

o)
ESELECTIO
phase

BUS FREE
phase

RESET condition

Figure 23 Arbitrating SCSI [from Ref. 4]

contain all of the states. Figure 22 shows a three state

non-arbitrating SCSI while Figure 23 shows a four state

arbitrating SCSI. The implementation chosen for use in this

thesis is one with full arbitration capabilities. The basic

28

SCSI design involves a state machine with four states which

are:

- BUS FREE PHASE
ARBITRATION PHASE
SELBECTION PHASE

- INFORMATION TRANSFER PHASE

1. Bus free phase
The SCSI device is in this phase when no other SCSI
device is using the bus and the bus is available. To enter
this phase, BSY and SEL must both be false for at least one
bus settle delay (400 ns). It is also required that any other
SCS1 device that was driving the bus must release the bus
within a bus clear delay (800 ns) after BSY and SEL have been
false for a bus settle delay (400 ns).
2. Arbitration Phase
This phase allows one SCSI device to take control of
the bus even when another device tries to gain control. The
SCS1 1D bit is the vehicle for accomplishing this. Since each
SCS1 device has a unique SCSI ID bit the device with the bit
in the most significant position will win the arbitration and
the other device request will be masked. The device that

loses arbitration goes back to wait for the bus free phase to

be detected.

29

When a SCSI device detects bus free, it waits a bus free
delay (800 ns) and then asserts BSY as well as puts its SCSI
ID bit on the SCSI data bus. After an arbitration delay (2200
ns) from the assertion of BSY to ensure that any other device
that wants to compete for the bus have had the opportunity to
do so, the SCSI device will read the data bus to determine
whether or not there exists a device with a higher order SCSI
ID bit. 1If there is not, the device has won the arbitration
and it asserts SEL. If there exists a higher SCSI ID bit on
the data bus, the device loses the arbitration, releases BSY
and its own SCSI ID within a bus clear delay (800 ns) and
waits for bus free.

3. Selection Phase

In this phase the initiator will select a target to
either write to or read from. At the beginning of this phase,
BSY and SEL have both been asserted by the initiator and a bus
clear delay plus a bus settle delay have passed (1200 ns).
The SCSI device becomes the initiator by releasing 1/0 which
is driven by the target. The initiator sets the data bus to
the logical OR of its own SCSI ID and the target SCSI ID. The
initiator waits 2 deskew delays (90 ns) and releases BSY. The
initi;tor then waits at least a bus settle delay (400 ns) for
a response from the target. The target determines that it has

been selected when SEL and its own SCSI ID bit which was

placed on the data bus by the initiator are true and BSY and

30

1/0 are false. 1If, upon examining the data bus, a SCSI device
determines that it is a target of some initiating SCSI device,
it asserts BSY. After 2 deskew delays (90 ns) the initiator
releases SEL.
4. Information transfer phase

This is the state where the SCSI normally operates.
During this phase data, commands, status, and messages are
transfered between the initiator and the target. The target
drives Cc/D, 1/0 and MSG to setup different +types of
information transfer. The target will set 1I/0 to true to
transfer information from the target to the initiator and will
set 1/0 to false to transfer information from the initiator to
the target. To send information from the target to the
initiator, the target drives the data bus. The target starts
by setting 1/0 true. The target asserts REQ and after one
deskew delay plus a cable skew delay (55 ns) to ensure valid
data, the initiator reads the data bus. The initiator then
asserts ACK. When ACK is true at the target, the target may
change or release the data bus. The target then negates REQ
and the initiator negates ACK. This process is then repeated
byte by byte until no further information is to be trans-
ferred. To transfer information from the initiator to the
target, the target sets 1/0 to false and asserts REQ. After
one deskew delay plus a cable skew delay (55 ns) the initiator

asserts ACK to let the target know that there is valid data.

31

The target then reads the data bus and then negates REQ to let
the initiator know that it can change the data bus. After REQ
is false at the initiator, the initiator may change the data
bus. The initiator then negates ACK to let the target know
that it can send another byte if it is ready. This process is
repeated until there is no more information to be sent.
There are four types of information that can be sent over

the SCSI bus. They are:

- DATA which can go in either direction
. COMMAND which goes from initiator to target
- STATUS which goes from target to initiator

- MESSAGE which can go in either direction

The type of information that is sent over the SCSI bus is a
function of how the 1/0, C/D and MSG lines are driven. In this
thesis we will be using a SCSI implementation that sends data
only.

The SCSI is used here as a design example for the
implementation of design into an FPGA. It was chosen because
the design performance of such a device using other
technologies is known providing a good comparison of FPGA
design performance with other design implementation methods.
The SCS1 possesses characteristics that would lend itself as

a test case for FPGA design implementation.

32

IV. THE DESIGN PROCESS USING FIELD PROGRAMMABLE GATE ARRAYS

A. OVERVIEW

Information contained in this chapter is derived from
Reference 1. In this chapter, the typical design cycle using
the XILINX Development System to implement design into FPGAs
is discussed in detail. The purpose of this discussion is to
provide familiarization with the process so that the actual
design example in Chapter V may be presented effectively.
Implementation using FPGAs allows the logic designer +to
realize small to medium sized designs that have in the past
been relegated to implementation into custom (and expensive)
Application Specific Integrated Circuits (ASICs). The FPGA
allows the designer to inplement designs with the flexibility
of being able +to modify those designs quickly and in-
expensively. This design implementation into method allows
the designer to come up with a logic design using industry
standard schematic capture packages or design description
languages. Through the use of software conversion, those
designs can be mapped into a fully programmable array of logic
cells. Once this mapping is complete, it can be routed
(interconnected) in such a way to optimize <circuit
performance. Once the design has been mapped and routed, it

must be converted +to a bit stream or a PROM file of

33

configuration data for actually programming the LCA. One of
the main issues that will be looked at in this thesis is the
issue of design verification both prior to and after routing.
In the past, timing simulation could be run on designs that
had been described via schematic capture. The issus with
FPGAs is what effect does LCA routing have on circuit
performance. This will require backannotating the routed LCA
design +to incorporate routing delays into +the +timing
simulation. This is a major issue that this thesis is trying
to resolve. Additionally, the guestion as to whether or not
hand routing will be required to optimize design performance
either from the aspect of meeting the required timing
considerations or to accomodate the design into the LCA of a
chip. Router constraint issues will also be looked at. The
question of what needs to be done to implement previously
tested designs in a modular fashion into FPGAs will also be
examined. Design implementation will be conducted using a
personal computer as well as an engineering workstation. The
differences and advantages of the design platforms will also

be studied.

B. DESIGN CYCLE ON A PERSONAL COMPUTER

The design platform used was an IBM Personal System/2
Model 50 with 3 MB of RAM and a 20 MB Hard Drive. This system
was adequate for small efforts such as training and

familiarization with the design process. Memory upgrade is

34

required however, for more involved designs. Table 11 shows
the memory requirements for various design and device

Table II LCA DESIGN MEMORY REQUIREMENTS [from Ref. 1]
C "~]

2000 gates 2064, 2018, & 3020 LCA 2.50 Mbyles
3000 gates 3030 LCA 3.25 Mbytes
4200 gates 3042 LCA 4.00 Mbytes
6400 gates 3064 LCA 5.25 Mbytes
9000 gates 3090 LCA 6.50 Mbytes

Note: Other resident programs not included, 0.5 MB less without XDM.

complexities. The beginning of the design process involves
the initial layout of the design. Two methods are available
to support this. The two design entry methods supported by
the XILINX Development System are schematic capture and design
description language entry. Most popular schematic capture
packages are supported in this development environment.
Schematic capture is used to layout the design while a design
description language is used to describe a design and place
that description into a Programmable Array Logic* (PAL)
circuit. The XILINX Development System supports either or
both of these methods. The schematic capture method utilizes
a standard library of parts in conjunction with a schematic

editor to build a schematic file whereas +the design

35

description language approach uses a text editor to describe
the PAL design. It should be noted that design description

entries for PAL may be included in schematic designs, but a

“"FILE " must be included in the PAL symbol to cross
reference the description language text file to be
incorporated into the design. In this thesis, FUTURENET was
used as the tool for schematic capture. At this point timing
simulation of the design is prudent prior to taking the design
into the XILINX Development System. For instance CADAT could
be used to simulate the design functionality. However, due to
the difficulty of use and unreliability of that simulator, the
choice was made to reconstruct the design schematics in the
Mentor Graphics Development System with NETED and run timing
simulation in QUICKSIM to verify design functionality. Once
the design verification was completed satisfactorily, then the
FUTURENET design schematics could be implemented into the FPGA
via the XILINX development system on the PC.

The heart of the XILINX Development System is the XILINX
Design Manager (XDM). The XDM is a shell that manages all
software functions. Unfortunately, it took up 0.5 MB of user
memory. Due to limited memory resources XDM could not be run
concurrently with the XACT program or APR program when a user
tries to place and route designs of 2000 gates or larger. The
XACT program run by the XACT Executive is used to make the

configuration bit file and allow editing of LCA files

manually. The APR program is used to automatically place and

36

route designs in the LCA. In the first case, XDM must be
suspended and XACT run separately while in the later case APR
must be run from DOS. These inconveniences could be
eliminated by wupgrading the amount of user memory in
accordance with Table II.

The first step which is necessary to implement the design
is to convert all schematic file (which could be hierarchical)
and PAL design files into XILINX NETLIST FILES (XNF). With
regards to schematic files, FUTURENET interface outputs a PIN
file that is converted to an XNF file by the PIN2XNF program
while the PAL design PDS file is converted to an XNF file by
the PDS2XNF program (see Figure 24). The result is that all
design files have been put into the XNF format. The PAL
design XNF file 1is additionally optimized by the XNFOPT
program to reduce the combinational logic contained in the
design so that it will fit better in the LCA. The result is
that an optimized XNF file is generated from the PAL design
file (see Figure 25). The next step is to map the XNF files
into Logic Cell Array (LCA) Configurable Logic Blocks (CLBs)
and Input/Output Blocks (IOBs) (see Figure 25). Once all of
the XNF files have been mapped they are merged into one map
file by XNFMERGE (see Figure 26). The final map file is then
put into the LCA file by the MAP2LCA program (see Figure 27).
At this point the LCA file is "unplaced" and "unrouted", which
means that there have been no I1I0Bs or CLBs chosen and no

interconnect performed. The next step is to place and route

37

Srhemaficn ‘:::v

_ XNt
: Srhamanc in XHE Timnsistee
«) (vq TREZXIN) -()
F
?

¥ibrx Hoatket Fremat
Vi) Contmu:
A% Devgn Loge

—_— xue

PAL 1o XNF Tienyisioy -
{99 . "PDS2XMS) ""(_) —*

“PALT

N AREY Care ¥
Designs o

LOnsgner otr

Thikd Paity or DSS01

TITLE DECODE . PDS
AUTIIOR

COMPANY XILINX

OAJE

cuie PECODE FALIONHE
1lnput Fins

40 d1
1Output Flns
out

iDefine counter states

STRING LFRO 4y 4 7407

STRING ONE “/dl a0
STRING TWO todr ¢ /40
STRING THRET T dl ¢ a0’
EJQUATIONS

ovt = TERDQ ¢ OME 4 THREE

Figure 24 Design Entry to XNF translation (from Ref. 1]

the design. There are two ways available to place and route.
The first is an automatic place and route which uses an
annealing algorithm to get the best performance from the
design. There are three routing options available in the

automatic router for the best performance:

- Use router directly .
- Use a constraint file

- Use a gulde file

In using the router directly, there are three router options

available: R1l, R2 and R3. R3 which is delay driven is the

38

. 10 Macgnng
\ Page 510

Xibra MAT [doy
(Design t onw V1as Benn
Cuouped win (L B}

N s L gx

Synihesis P'riogram
FXNLOP L)

ne
Plice haider

tor PALY g omr oran

,'E.'L[> ,.C]

OUIPLLLOW
w

on

o1

»
coumt .z

Figure 25 Optimization and mapping [from Ref. 1]

slowest of the three but results in the lowest delays and
unroutes. Rl is the fastest router of the three. The use of
the constraint file option allows the user to supply a user
constraint file "filename.cst" to a provide direction to the
router. This file is used in addition to any schematic
constraint file "filename.scp" that may exist as a result of
the processing of the schematic by the XILINX system. The
user constraint file overrides any schematic constraint file
if possible. The -C option must be selected when running APR

to utilize this option. The guide file option allows the user

39

AR A the Suh designs
8t Mriged into
Top leval Desin

0sam

The meiged design contains the CLBS and I0Bs for the enlive design

Figure 26 Merging of mapped files [from Ref. 1]

to incorporate design changes but use the placement and
routing of the old design. This option utilizes a block, pin,
and net name matching scheme. If a match occurs between the
new design and the guide file, the guide file placement and
routing information is used. To use the guide file, the -G
option must be used when APR is invoked. Manual routing can
also be performed using the EDITLCA program from tﬁe XACT
design editor (see Figure 28).

Once a placed and routed LCA file has been generated, the
MAKBITS program (see Figure 29) which is run from the XACT

Executive will be used to generate the configuration bitstream

40

X
tCA
Transiaton

(MAP2LCAY

Doam

[]Dacmccocxmoacmcjﬂf

3 000 .

r 00000 :
0000000

p 00000000 N -
0 00000000 f) | @& e e e
700000000 § ‘ i
0 0 i
p0o0ooooo0on]|
'oooooouo? | 000t
Uoowcnocrnooc:cocn-g - —— =

frtiafly (before Place and Roule) the LCA design is
urvouted. and the Conligurable Logic and 10 blocks are
pul In random locations

Figure 27 Translating to an LCA file [from Ref. 1]

which can be downloaded into the LCA to configure it. The bit
file can also be used to make a programming file to program an
EPROM (see Figure 30). An EPROM 1s a good choice because it
is inexpensive and reuseable and lends itself ideally to
prototype designs. The XILINX Development System supports

three programming formats: .

MCSB86 — Intel MCS-86 Hexadecimal Object
- EXORMAX - Motorola Exormax

TEKHEX - Tektronix Hexadecimal

41

Aviomats Phwn
and Hoyse Mingram
1 APR)

andrar
XAC (Danign Fanor
{XACTY

A q
nnnnnnnnn vur.‘: ;{*z'i':'\.nu\!

05504 Yo Sunutatr

E——— Y F1P LR
age 516

N

!’J“ EIE] IR R LI

¢ For complex designs. Interaciive placemert
" i and routing of critical logic with the XACH
l ' L" Design Editor is lollowed by APR ¥
- sutomatically place/roule e remaiing
U—J I design 11 nacessary. additional interactve
4
ﬂ - ™ [2] [l

XACT edit on post- APR design Is possible

LIRS

A simple placed and routed design {closeup of upper lell
comer of 2064 PC60)

Figure 28 Placing and routing the LCA file [from Ref.1)

These formats are industry standards and can be programmed on
very lnexpensive PC based EPROM programmers.

The uext issue that needs to be examined with regard to
implementation is how will the design perform once it has been
placed and routed into an LCA. One method is to run the
program LCA2XNF on the routed LCA file. This produces an XNF
file which contains routing delay information (see Figures 31
and 32). This XNF file can then be converted to a simulator
netlist for use in some simulator such as CADAT or SILOS.
Since it was already determined that CADAT was unreliable and
difficult to use and SILOS was not available, this back-

annotation problem will be solved at the engineering

42

Contiguranan

Brstroam N —_ e .4 Desgn
Venisinn

Cnnya.lm
(MAKEDITS) /7 Page 5 14
/

0S50 //

To n Cicyn

T111111100100007000000021100111100100111) The BT e contams the binary contiguration dala which
003131111101110311112100010111101321110) p'Og'imsa“lCAh)peﬂO'm"\cdesnn'umﬂbn
OIIIIII0I03101101 10110111021 118001E01)

O IIOTHI0LIOLIIIL0LE1I100ATI3121I0L21131)

OOITEIIIIII I3 I0000 0 00080

61110031021101130131031110210131101113%811

11111311100100000000000111001180001001111

00111000111 5013)1101 111100010000 LY '
MOTIIIITI0EIII01EE)001E1110000120020010)
OOIIIIIIIISILI01010)80110010000100100
G1111110111012102115111011111310111135110

C111111610110211931

LCA Conligursiion Bitsiream

Figure 29 Bitstream generation [from Ref. 1]
workstation level. Another problem that was not resolved at
all was the problem of real-time in-circuit verification as
shown in Figure 30. XILINX has an XACTOR real-time in-circuit
verifier. It is rather expensive and is unnecessary for this
thesis, but it could be purchased at some time in the future.
Additionally, there are several third-party vendors that sell
verifiers and prototyping boards for use in design development
with FPGAs. As an alternative a simple prototype board was
developed to attempt to do rudimentary testing of FPGA designs
(see Figure 33). The board supports an XC3020 FPGA operating
in Master Parallel Low mode with an BKB or larger EPROM. To

use the board with another type of LCA will require a minimal

43

Wb PIORA

(> ey e crmat Genoralon
{AAMETIIOM 3

RO

l"l'\ql animes
Xy Datn 0 eic)

Downiosd Basirgam from PC
Inio LCA lor In cheudt Verlicston
{0 PROM programming)

Xrny
s Crcum
Devgn

Verder
("XACTOR')

Connect Emuivor Pod(s) 1o
Targel System lor Ranl isne
In-cicum Vericaton

DS28 wan

Figure 30 Real-time in circuit verification [from Ref. 1]

amount of redesign. Additionally, a demo board was provided
by XILINX that served to verify the development system
installation. Several sample designs (e.g., a counter) were
processed. The counter was downloaded into the configuration
memory as well as programmed into an EPROM. LCA configuration
and operation were observed to be correct from a macroscopic
viewpoint.

Figure 34 shows the overall big picture of the design

process on a PC. There are basically four elements:

44

/ ADAT,

:CAD, oic }

13572 07351 o
Thod £ty Senubge | —-o —
o 1esl Eddor

LR

? o0 S Designer delines design inputs
mauln n, _ -D'PD

l N orap

ET =]P"_D D R

J wair
D coumt .2

e

LCA designs are simulated al the physical CLB level wih worst case tin¥ng
{Neis “Inskie” CLBs are nol generally accessed)

Figure 31 LCA backannotation {from Ref. 1]

- Design Entry

- Design Implementation

Hardware Circuit Implementation and Verification

Logic Simulation

On the PC we currently have the ability to do design entry and
design implementation. The logic simulation is reserved for

the engineering workstation.

45

Simutation silows design
analysls undo+ waorst case
temperalyre. voltage, and
frocess condiions

Eacts VO pin andt CLB outpust can be observed with the
sumitator Graptuc or lex) tisplay of sgnals i generated
in response to Nput shimutus lor verdicabon of AC
perormance and logic behavior ol design

Figure 32 Simulation timing diagram {from Ref. 1]
C. DESIGN CYCLE ON AN ENGINEERING WORKSTATION

The design platform used for this variation was an Apollo
4000, The means for schematic capture of the design was
Mentor Graphics NETED. This is similiar to what was used in
verifying designs on the PC. The design process is virtually
identical to that on the PC. The overall design path is shown
in Figure 34. 1In this case however we have installed not only
the design entry and implementation tools, but also the
simulator. The overall functioning of the various XILINX
programs is the same as those on a PC. However, the
implementation is somewhat different. The file structure is
now UNIX-based vice MS-DOS based. This can cause consider-
able confusion and various error messages usually related to
the ability to find files. It must be understood that what is

happening is that operations are occuring across the MENTOR-

46

Figure 33 XC3020 prototype board

XILINX interface. It is important to realize that when MENTOR
tools are being used, files in a UNIX directory are being
accessed. On the other hand, the XILINX tools are based on
direct file accesses of the current working directory just
like in the MS-DOS environment. As a result, continuing care
must be taken in the design process to ensure you have "access
to the files you need. The XILINX Development System has the
characteristic of calling various subroutines from the Mentor
portion of the software. It is therefore crucial that all
authorization lists for both parts of the system (MENTOR and

XILINX) be kept up-to-date or else the whole system will be

47

DESIGN | i
ENTRY

DESIGH
IMPLEMENTATION

nsam

|; TRANSIATED & oUTED
V84800 APRIO 1A HORE

811 101 A1 COMPLER
MAYTNIIS & RAAREPINOM

LOGIC
— L SIMULATION
xR
TROCHAM AN [

QATE ARAY

HARDWARE
CIRCUIT

IMPLEMENTATION
& VERIFICATION 1y g' ..cwwu-o
Ol‘
FAC IO D328
f"wmww

lllll lc".n

=

Figure 34 Apollo Workstation Design path [from Ref. 1]

rendered unusable.

The design process starts by using NETED to capture the
design schematically. PAL design files are allowed just like
on the PC design platform. When using NETED in conjunction
with the XILINX development system a different library.will be
used. LCA_NETED is invoked which uses NETED with the lca_lib
library instead of the normal gen 1ib library. The lca 1lib

consists of the XILINX macros and parts for use in designs.

The development system allows the construction of macros for

48

Design Entry

" e APOLLO

05501 en e ‘Pollo

nlucA

LCA Optimization

0343 wn B APOLLO

Implementation

| AACT .

W.Cirevit Debugging

Figure 35 Apollo design flowpath [from Ref. 5]

use as additional building blocks if required. Once the
design is laid out, it can be expanded and extracted using
LCA_EXPAND SIM for direct input into QUICKSIM logic
simulation, or can be expande. using LCA_EXPAND for input into
the design implementation software (see Figure 35). It is
recommended that QUICKSIM be run on the design to verify the
functicnal operations prior to taking it into the XILINX
environment. To take the design across the interface bo;ndary
EREL2XNF is run which converts the ".erel" file from the
MENTOR environment to a ".xnf" file in the XILINX environment.

At this point it should be obvious to the designer that there

is no design manager to guide one along the XILINX design

49

path. Everything must be done manually from the command line
environment. There is also an error in the XILINX
documentation (see Figure 35) which implies that there is an
XNF2LCA program like that in the PC environment. This is not
the case and the conversion from the “.xnf” file to the ".lca"
file must be done manually each step of the way. This will
require at a minimum the running of XNFMAP and MAP2LCA. 1If
there are any hierarchical drawings or PAL design files,
PDS2XNF, XNFOPT, XNFMERGE and XNFDRC may also need to be run
at the appropriate time. Once the ".lca" file has been
created it can be placed and routed into an LCA by the APR
program resulting in a routed ".lca" file. This routed ".lca"
file can then be used in MAKEBITS and MAKEPROM to generate the
configuration program data required to actually configure the
LCA to the design. The next step will be to backannotate the
routed ".lca” file and input it into the simulator for design
verification. This is accomplished by running LAC2XNF to
convert the routed ".lca” file to an ".xnf" file. LCA _TIMING
is then run which provides a file "simsheet.erel"” which can be
input into QUICKSIM. This is an important step. This allows
the simulation of the design once it is place and routed in
the LCA. Figure 36 shows the backannotation proceié. The
significance of this is that by comparing the pre-routing and
post-routing simulation results actual design performance

inside the LCA can be verified.

50

Routed LCA File which contains
worst-case net delays

Converts an LCA into an XNF file

File which contains worst-case
net delays and describes logic
in terms of gates that can be
modeled for simulation

Generates Simsheet schematic
T —— | and expands it for simulation.

Simsheet contains one symbol,
22# simsymbol, whose underlying
logic is described by design XNF

QUICKSIM

Simulate Simshee! schematic

|

Figure 36 Backannotation of LCA design [from Ref. 5]

R —

D. A COMPARISON OF DESIGN PLATFORMS

The engineering workstation as compared to the PC is a
superior platform with regard to performance and degree of
integration. The PC serves as a better design platform for
the first time user. The MS-DOS file system is easier to
understand and the design entry and design implementation
interface are more accurately documented,. The PC platform
software is obviously more mature and the design manager which
is totally menu~driven makes the design process a lot e;sier.
There are some serious memory limitations in our PC
environment. The Apollo workstation is approximately five
times as fast as the IBM P/S 2. On large designs this would

be a big advantage.

51

V. SCSI - A DESIGN EXAMPLE

A. OVERVIEW

The first step in doing any design is to break the design
problem'into small pieces that can be easily understood. 1In
the SCSI standard there are many options available, and most
avallable characteristics are implementation dependent. The
implementation chosen for this thesis is a device capable of
carrying out five basic SCSI functions. The device must be
capable of detecting when the SCSI bus is free and begin
arbitrating for the bus after the appropriate delay. The
device must be capable of selecting a target. In the case
when it is a target, it must be capable of acknowledging that
it has been selected. The heart of the SCSI is an eight bit
data bus that must be capable of transfering data in both
directions. For simplicity, the assumption is made that this
device has a SCSI ID of 4, that is, bit 4 is equal to 1. 1In
order to simplify the design and to more easily understand all
of the SCSI functions, five circuits were drawn seperately in
both FUTURENET and MENTOR GRAPHICS environments. This allowed
for timing simulation of the MENTOR GRAPHICS drawings with
QUICKSIM to verify individual crcuit operation. The designs
would then be implemented on a PC using the FUTURENET drawings

via the FUTURENET/XILINX {nterface. Initial implementation

52

was done using XC2064 parts but a final implementation was
done using XC3020 parts. The five circuits involved in this
design are:
. BUSFREE which detects when the SCSI bus is free and
signals arbitration to begin after the appropriate time

delay.

ARBIT which arbitrates the SCSI bus to the device with the
highest SCSI ID bit.

. SELECT which selects a target for a SCS1 initiator.

- SELTAR which allows a SCSI device to acknowledge that it
is a selected target.

- INFOTRAN which allows information to travel bi-
directionaly to and from a SCSI device as well as not
interfer with other SCSI devices on the bus.
It should be noted that for simplicity, only the data transfer
will be considered. Message and Command transfers would only
involve the target driving two control lines to the initiator.

Once the design implementation was completed on the PC for
the five circuits, the design was redone in the engineering
workstation environment. This time however, backannotation
was performed on the implemented design to see the effects of

LCA placement and routing on design performance speed.

B. INITIAL DESIGN LAYOUT

As previously discussed, the overall SCSI design was
broken up into five functional circuits. A description of
what these functions performed was specified and transformed

into schematics. The schematics were laid out using Mentor

53

Serect Count:0 | mar J] wwwows J| sue i stwe) aesic Jj sovmco] W

sy (To— -
s >——— - ?
" Causrree
f
cLkO—

—T

| =)

[sresti of 7 iroot)

Friatting S1eutgtar Tine

L0y Foraod 209

Frece tit | O -Repest |

F0RCe C1t O 10D -Wepeat s 3 .
Fotre vay 0

e

Figure 38 QUICKSIM timing diagram of BUSFREE circuit

54

Select

count:o | wmrp

Il winooxs J| rue

I ster)l wasic |} sovawceo|

wEHD

3

s >

i O

suarene D—f T_
:

e

scar tperany

N —

=T

—___7Eﬁ::——___—__c>"'

—

Figure 39 NETED schematic of ARBIT circuit

patr
¥

" rae
for
()

vife
Vitw

(L]
LITONLY (1)

€avit Operationy

Tisy $ican

farce
Skt prpaxPotn? *orget

Windous

rost tcest
rur tesanck wtee

wite atl
TEMPLATE RUN

v
BUSteEE 0
Sesy_tordy |

FCPCe SLSI DS 1
#0200 SCST 10760 @
FORCe SCST IOITY B
Ry 20

120

Force BusTeLE |
Uy 1T00

i

Byy 420

"L

i

1
™1
g1
01
o1
[)
[}
01
(]
01

[y

b

“ost tusrn:!

~ Jshestlof ¢

L

SEL
BusFREE

1T40.8

(root) |

Figure 40
arbitrati

QUICKSIM timing diagram of ARBIT circuit

on lost

55

with

ore
[SET UREANPOIRT Forgel

. Vindows
Prant sicmaL
- haese tustamct anb
! e ol
1] A 1ERPLATE
ity s 218

Forte BUSFRCE O
FOMCe $US1_1004) 1
FORCe SCSII0(3) B
ForCe $ESITIOK) O
Forte 5ESIZI0CH) ©
*un 400

VIfw AL

RN 100

yorce Busseet |
SUN 1000

vilu sl

L

Lo
Vite ML

Figure 41

QUICKSIM timing
arbitration won

simulation of

ARBIT

with

[setect comtzo | mir ﬂ-rwn@fnu 0 osowr [wnsic J| novenco] W IED
[100 I
v ’J
sOo— —

ee>—i-

Terary, 1817001 Crrd

orer 1eivier i

=TT T

— e

—> 00

amed 1]

—C>one

=411

= Coeer

—-L>aet

—{>ene

Pﬂl

56

Figure 42 NETED schematic of SELECT circuit

Quar

n tep

St MouseFucs 110aihpad (ontig
Bssic Operationy

Prodiction

Cemaand Card

L¢84

eneaccecco

WIS User Liae scal . Inp. steetl of 7 (raots
fonce 10 0

CLock Prrisa 200

fosce (LK § 0 -Fepeat

FOPCe (LK D 100 -Repest

For(e TRECET TD()) 1

FORCe SCST Torar 3

Run 300

Ruk 4060

SCRCe 95Y §

vitw mL

Figure 43 QUICKSIM timing simulation of SELECT circuit

select Comt:o | wae flowowons fovne f sowe [I oansic] novesceo 1o
1o 1
g51> 3
SELD>-
[1
.
))‘_
“ oB(7tO) trre
{ -
. v *
| =
e O F=¥1

Figure 44 NETED layout of SELTAR circuit

57

eive

Force

SET BUEACFOINT Forget
Ningows

reant srenel

LTI e T
view nul
TEnp: RTE UM

ST hO())

frput radix

10 9% <
MChitaor B 10 857 SEL DRODY
Ralys Binry
ASSIgn b1 _$11st _redin Binary
A33130 N1 _Ssanitor redix Binary
S(Ate ySer tine |
[

N ‘l\\(Qperationy
eaty 10avEL

BISPLAY S1CHML

taFoint Forget
¥indows

feo0L S1cmat

PROESE Intiemtt Wtip

wite it

1EnPLATE RUN

croe

Kote: Screen IRage plotted o /5ys/print/alv.v.nessa baedcopy tiroa 1dea/spools
RESET SIN Tiee
setting Siaylator i
Halix Binaey
#55Tgn bi_S1tst _radix Vinary
o ain Binary

1
STAte t0ace Tine 10
Inftiatize 05
Fiviod List O
PERI0d Trace O
foRCe SEL A
w20

Figure 46 QUICKSIM +timing of SELTAR circuit when not

selected

58

setect tount:o | wee [Lwmonws | vt sowe i wsic ff moveeo] T o

S i
posCre e - —{ = ——— e
| L2

o~ S
Rl

verl >

S .{ e g — w2
L2y

g
3L I —{_} j}_l

[T S — L -5———»———« [E———

mo————lv 5 —-:—J o

TR
n-o———-l- j&— F———o .

. . . [)
- — = S, 13, SN L1 S 4. S— . 1) E—
6.8 18 I2 07
TeaveL PN N I B R L T)

S¥E Moas#fucs toucrpad Lonfig
Basic Cperationy

Preguction

teamand Lard

wr

“Horeetiof /7 ooty

Force 10 8
LN

Figure 48 QUICKSIM timing simulation of INFOTRAN circuit

59

Graphics NETED and tested using QUICKSIM +to verify
functionality of operation and initial timing of the five
circuits. More accurate and meaningful timing can only be
simulated after the design is backannotated. Figure 37 shows
the NETED layout of the BUSFREE circuit while Figure 38 shows
the QUIéKSIM timing results. Figure 39 shows the NETED layout
of the ARBIT circuit while Figures 40 and 41 show its timing
characteristics with arbitration both won and lost. Figures
42 and 43 show the SELECT circuit layout and timing while
Figures 44, 45 and 46 show the SELTAR circuit layout and
timing. Finally, Figures 47 and 48 show the main SCSI bus
INFOTRAN layout and timing. A detailed analysis of timing
performance will be examined later in this chapter. This
initial layout was done using components from the gen_lib
components library within NETED. This posed a problem in
later development stages since the gen_lib components
possessed slightly different characteristics than the XILINX
macro library or FUTURENET components and as a result some
design changes were required. A good example of this was the
tri-state buffer which was a crucial component in the design.
In the Mentor Graphics environment, a low enabling signal
caused the device toc go to the high impedance output condition
while the XILINX macro three-state buffers operated in the
opposite manner with a high enabling signal causing the device
to go to the high impedance output condition. Once the

designs were laid out and were operating satisfactorily in

60

simulation, they were taken for implementation into the PC

environment.

C. DESIGN IMPLEMENTATION ON THE PC
The implementation process involved taking the circuit

schematics and redrawing them in the FUTURENET environment.

? L_"" g L S

p A B [
‘ 0 = ¢ rour
(—i '
i | e K LU £ L}_ﬁ

! I
ke
e

Figure 49 FUTURENET schematic of BUSFREE circuit

Figures 49, 50, 51, 52 and 53 show the BUSFREE, ARBIT, SELECT,
SELTAR and INFOTRAN circuits as drawn with FUTURENET. These
designs were originally done using XC2000 family library.
When they were converted to XC3000 family designs one item
that had to be changed was the addition of the global clock
buffer (GCLK). This was forced by the software.) If an
external clock was being used to toggle more than two flip-
flops and GCLK was not being used, the software would flag a
design error and identify +the nets effected. It 1is

recommended that the net with the highest fan-out be the net

61

to use the GCLK resource.

Ejgure 50 FUTURENET schematic of ARBIT circuit

On the PC, the capability to functionally simulate design
periormance was not available. As a result, once
imp .ementation was completed, there was no way to determine
wha: effects reouvting and placement into the LCA had on design
performance. The initial design implementation was done using
XC2064 LCAs which had the capacity of 1200 gate designs.
After upgrading system the memory to handle larger designs,
the designs were reimplemented wusing XC3020 LCAs. As
previously mentioned, at this point a design error was

identified. The XC3000 family LCAs have a special global

62

[‘].]:l pitatat:

2116 B

Li:

Figure 51 FUTURENET schematic of SELECT circuit

clock buffer (GCLK) which is used to minimize the eftects of
fan-out on clock signals caused by trying to drive many flip-
flops. An alternate clock buffer (ACLK) is also available for
the same purpose. The software forces the designer to use
these resources. It is recommended that the sources with the
highest fan-out be given the GCLK and ACLK resources.
Implementation on the PC platform is quite simple. it
starts with running the XILINX Design Manager (XDM) which is
essentially a design environment shell capable of calling all
design tools from one environment. XDM is initially run from

DOS and is setup in accordance with a user specified profile.

63

— — —_—
i D R L R —
o—
ey

Figure 52 FUTURENET schematic of SELTAR circuit

Figure 53 FUTURENET schematic of INFOTRAN circuit

64

The first menu DesignEntry is used to call an entry program
(i.e., FUTURENET) and the associated library files. Trans-
lation of the SCSI design files is performed automatically by
XMAKE which takes the design file, for example, from
"busfree.dwg" which is a FUTURENET drawing to "busfree.lca"
which is an unrouted ".lca" file. The PlaceRoute menu allows
the running of APR which takes the unrouted "busfree.lca" and
creates a routed "busfree.lca". The choice was made to
utilize an EPROM to hold the configuration data for the LCA.
This is accomplished by running the XaCT program. Initially,
memory constraints prohibited the running of XACT from the XDM
shell. The PC used in this thesis has been upgraded to 4 MB
which alleviates this problem. The primary purpose of the
XACT program is to manually edit LCA routing, but it also acts
as the shell for two other important programs which are
Makebits and Makeprom. In +this example, the routed
"busfree.lca" file is converted to a configuration bitstream
file "busfree.bit" by the Makebits program. This bitstream
was then converted to a EPROM programming file "busfree.mcs"
which is in Intel Hex format (MCS-86). The next thing to
accomplish was actually programming the EPROM. Two methods
were used to accomplish this. An expensive DATA I/0 universal
programmer was used. It could however only work on certain
type of EPROMs since it did not support some of the newer CMOS
technology EPROMs (e.g., AM27C64). The second method involved

the use of an inexpensive PC based EPROM programmer. The

65

strategy in this method was to convert the EPROM programming
file to pure binary code and to download it to the EPROM
directly. This was accomplished with a program HEX2BIN which
was provided with the programmer. One final issue that was
looked at with regard to EPROM programming was the starting
address of the confiquration program. The MakeProm program
allow the designer to specify the address at which the
configuration program should reside. For example, 1853 bytes
are required for an XC3020 LCA. Thus, an 8 KB EPROM could
hold four seperate configuration programs. 1t should be noted
that the size of the configuration program is a function of
the actual LCA device used in the design and not the design
itself. Both EPROM programming methods used allowed this
feature to be exploited. They both allowed the configuration
program to be stored at any address in the EPROM. This design
example was not overly complex so that this feature was not
utilized. However, it could be very useful in a more complex

design.

D. DESIGN IMPLEMENTATION ON AN ENGINEERING WORKSTATION

For this part of the work, design was implemented
utilizing an Apollo 4000 series workstation with Mentor
Graphics tools and the XILINX Development System software.
Aditionally, an interface module was also installed which
provided the bridge between the MENTOR tools and the LCA

design implementation. The design process involved the

66

following design methodology:

1. Using LCA NETED which uses XILINX macro libraries,
capture schematic.

2. Using LCA_EXPAND_SIM, prepare the design file for
QUICKSIM simulation.

3. Run QUICKSIM and thoroughly test the design.

4. Run LCA_EXPAND to EXPAND the design file in preparation
for leaving the Mentor Graphics environment and entering the
XILINX environment.

5. Run EREL2XNF to convert the Mentor Graphics design file
to a XILINX Netlist File (XNF). A specific LCA part number
must be provided at this point.

6. Run XNFMAP and MAP2LCA to convert the .xnf file to an
unrouted .lca file.

7. Run APR to place and route the design.

8. Run LCA2XNF on the routed design which will provide an
XNF file with routing delay information.

9. Run LCA_TIMING on the backannotated XNF file which
prepares a new SIMSHEET for use in QUICKSIM.

10. Run QUICKSIM to verify design performance of the routed
design.

11. Once design performance is verified, run MAKEBITS and
MAKEPROM on the design file to get the configuration
bitstream and EPROM programming file.

In this design example, this methodology was followed for
each part of the SCSI design. The exception being, when
generating the configuration bitstream, the EPROM programming
file was only done for the completed design. In doing the
design in this environment, several design errors were found

as a result of being able to test the designs after routing.

These errors were mainly caused by the fact that initially

67

running QUICKSIM on a design file resulted in zero delays.
However, the delays that were really there as a result of
placement and routing in the LCA often caused signal
conflicts. By breaking up the SCSI design into five
functional blocks and thoroughly testing them in QUICKSIM both
before and after routing, a much clearer view of the SCSI
dsign characteristics was obtained. Also, by looking at
smaller blocks of the design, a better understanding of LCA
performance for design implementation with regard to routing
delay effects was aquired.

The first part of the design that was attempted was also
the most simple. The BUSFREE circuit merely was to detect

when the SCSI bus was free and signal the beginning of

setect comt-0_ | e [wmoows | v 0 osowr || wnsic [} sovemcto] Cowwo 7—7l

T w— |

B%v&?}‘[) -—1

-\]
SEL E.>— L
- . . : { S g>gusrree
r,zyFT>‘[/,;-' l [P‘ " - *

= - e I:—j_l
Figure 54 LCA NETED schematic for BUSFREE circuit

|

i . seavk

sifuckiloucrpad tonitg 1
Opersticnd . .

Y SEL BUSFREE
UL N :

EERNRIT
RASLL

Fonce SEL @
un 0
L ViEe ML

Figure 55 Timing simulation of unrouted BUSFREE circuit

arbitration after 400 ns. Figure 54 shows the BUSFREE
circuit. Figure 55 shows the timing for the unrouted design
which shows the BUSFREE signal going high 400 ns after the BSY
and SEL signals are both low. Figure 56 shows the timing
simulation of the design that has been backannotated from the
routed design which shows the BUSFREE signal going high 436 ns
after BSY and SEL are both low. The extra 36 ns is a result
of the routing but will not have much effect on performance
since this design will just take a 1little longer than
specified to begin the information transfer phase. Filgure 57
shows the schematic for the ARBIT circuit which puts the SCSI

ID on the SCSI bus at the beginning of the arbitration phase.

69

setect Cowt:t | we | wioous [} e f} sowe | owesie [} novxceo] ¥t ito

CHOHCHT
]

1—;1

Figure 57 LCA NETED schematic of ARBIT clrcuit

70

After 800 ns BSY is asserted and after 1200 ns SEL is asserted
provided the arbitration was won. If arbitration was lost,
BSY would be negated in lieu of asserting SEL. Due to a

misinterpretation of the S8CSI standard, +the 1200 ns SEL

ot TouseiPuch tTouthped Conryg
Basic Oprrations

-

L4
[]
[}
]
:
)
[}
)

Torte SCS1_104 1
Force SCs1103 @
fonce SS1 106 €
Forte $CS17107 O

for §
i rorte SusPRct L
N 10

fuy 200

Vikw ML

noex -Rectongle -8.2,2.5.¥le0
Vite Mes §.3,-0.7,View

Figure 58 Timing simulation of unrouted ARBIT circuit with
arbitration won

assertion should be 1200 ns from the time that BSY is asserted
making the SEL assertion 2000 ns from the time the arbitration
phase begins. This error was corrected in the final design by
adding four flip-flops clocked at 200 ns periodé which
increased the arbitration time by 800 ns consistent with the
SCS1 standard.

Figure 58 and 59 show the timing simulations of the

unrouted ARBIT circuit when arbitration is won and lost,

71

ScS1_10¢
SUSI_108
o84

RavEL §

Set Mouse!Puckilouchpad {ontig

Wnlce Gperations |
Production i
toasang Cord 1
e A

(e
“sts1_tod
=084
"ll‘l —"$7— Il. e

ToRCe SCS1_104 4
YorCe SCSITI0S O
FORCe SCSI_I06 O
FORCe S(SI 10?7 O
e S

(ks
FonCe BUSEREE 1
RN 900

RN 100
Forte DS 1
un 300
Aun 100
Vitw mi

) L
Figure 59 Timing simulation for unrouted ARBIT circuit with
arbitration lost

il Guu!
Thavit §
Suantiovenped (anfig

12]
1y 01 02 Ot
1z Oz 0z 02
17 01 Oz Oz
42 01 02 B2
ir 0z 07 02
b2 020z @2
iz 0z Oz 02

Proguction
Conmang Cecd
MLP

USHREE O
sCst_toe)
sesi s 0 scey 107
5081 106 0 ::::_:::
Fovty SLS110T O R
sce1 o
scst 1o
scs1 1oy
acer_1pe
Ruy <00 sussREC
Usraing: Spite st ine: 1210.0 on net /95T e
" 100

Figure 60 Timing simulation for routed ARBIT circuit with
arbitration won

72

respectively. Figure 60 and 61 show the timing simulations of
the routed ARBIT circuit for arbitration won and lost,

respectively. An additional 49 ns is seen in the BSY and SEL

SC51_IDS
004

ERL

St fouseiPusk iTouchpad Config §
Basic Operatiam

. Production
| Cosawng (ord
LY

i
PO “Dier Line dcoie 2 1.0 Nsec, Inbul rad

T force scsLoe L
FORC STSI IS 0
FoRCe SCSI 108 O ! ses).
FoRte SCS1 107 0 | scet_loe
kun 10 1 scst_loy
"N 10 (X EIN] 1)
Foute Buseate § acet_tos
hun 50 : 101
"% 400 i T

I sovre oes | i Tlos
R 400 susFALC

Varning: Spite et tise: 12100 on et /R8T’ er

w100

—
Figure 61 Timing simulation for routed ARBIT circuit with
arbitration lost

times due to routing delays. This is not a real problem since
this just means that the SCSI will spend an extra 49 ns
arbitrating the bus. Since the design arbitration time is
2000 ns, that extra time due to LCA implementation is
insignificant. Figure 62 shows the schematic for the SELECT
circuit which puts the logical OR of the SCSI 1D and the
TARGET ID on the SCSI bus. The selection phase begins when
the SEL signal is asserted as a result of winning arbitration.

Figure 63 shows the unrouted SELECT circuit timing simulation

73

setect townt:o | e] wiwoons | rne I! st |l lnsxc i n&ﬂl_gl__;-_ﬂili _l

i

=1 — — =

Figure 62 LCA_NETED schematic for SELECT circuit

[MEAY A SIEI
[N R T T S T

.9 4.0 ive. ¢
9asic Operationy |
poc rave §
1y Fiirer Ticea 1}
Force
| st antarsotut rorget
Windows
Proe et
vent tunianed e
bicw aLL

wh 1ArLaTE B .
B]
] N
AT

b Ser tine $CA18 =
FohCe SCSI 0

FoRCe SCS14 1

¥ORCe TARLETY |

FORCe TARCET4 O

mun 19

ny o
£0RCe STLOUT |
»y £00

noox wpctangly -274.0,-4.9,0rsce
Vil #fes
& 1 Urroe: Operation tupported In trace viadew, but enly Ln savefors arae. (frem Idew/QuiCusy
Staly TRace Tise 8.0
ity m1

Figure 63 Timing simulation for unrouted SELECT circuit

74

which puts the required information on the SCS1 bus without

Yol ousaiPuckiTouchpad Lonfig
Basic perations
froduction

FORLe S(S14 |
. FORCe TaRCETY L

FORCe TARCE4 O

CLeck Pariod 200

FoRCe (Ll § O -Repeat

FCRCe TLX O 100 -Repeat
[(LOck Period 100

FORCE FCLE 1 O -Nepuat

force F{LX 0 50 -Repeat
o 50
e

L]
Fol
fun 100

stLout 1

Figure 64 Timing simulation for routed SELECT circuit

delay. Figure 64 shows the routed SELECT circuit timing
simulation which shows a 60 ns delay in getting the IDs on the
SCS1 bus.

Figure 65 shows the schematic for the SELTAR circuit which
acknowledges the SCSI device selection as a target by
asserting the BSY line. Figure 66 shows the unrouted SELTAR
circuit timing simulation which shows the BSY 1line-Dbeing
asgserted immediately upon selectipn whereas Figure 67 shows
t+he routed SELTAR circuit timing simulation that shows BSY
being asserted 67 nS after selection. This completes the
verification of the BUSFREE, ARBITRATION and SELECTION phases

of the SCSI1 operation.

75

Setect Count:0 | mar [} winoows ",,L"_' ,,'!A_S'ET,,JI,,ESLMKT_'OI _ mito

. ”c;_g_;{/§:_ :"‘]1 '"“f‘:j"*~~f-» i
ﬁ];) .

.n<>ﬁi_itjﬂ4_ SRS

~-‘~L>—tl;[m~@
Y L

==
o

v o—— N

1
=N
"o~—L\——

= " =

ot | 7

Figure 65 LCA NETED schematic of SELTAR circuit

[
at top mavie |
Set Woyle!Puckttouchpad Lord ig
Bavic Operations
 Production
Command Cord

. 1{

“user Liee

4 Essetting Simyletor Vime
fOfCe //CLORMLRESESD | |
FC2te 10 0
Force BSY &
L Foste SEL @
| Force D#4 O
oy 1o : .
¥oace D04 § i
tuv g0
marn -Rectengle -4.3,2.1 view
Vite Me3 2.8,-9.8.View
rorce STL L
a1

Figure 66 Timing simulation of unrouted SELTAR circuit

76

S0t Rouse (Puck fouchoad Coni g

Bestc Bperations
Production

e e

e
sheetl of / (root)

SSEY SIN Yios
Pesetting Siaulater Ting
FORC //CLOBSCNESETN 1 §
foRie 10 0

forte B5Y B2

Foute L O

Figure 67 Timing simulation of routed SELTAR circuit

sevect Count:0 | weep W owmoons | e W sowe [aasic ff sovanceo| W IED

.

I

S x..,{l

Figure 68

LCA NETED schematic of INFOTRAN circuit

$ot Mouse: Puck i Tguchpad Config
Rasic Cperationg

Proguction

tomamg Lerd
[114] ir oz
12 02
1z 0z

*] “bIn5 “oInT DO
“DINd "BINE “OOUT2
23 ~bout4

FORCo DOUID D
forte bout4)
ForCe DOUTS 9
Foace DOUTA §
force Dout? @

ue 160

Foree 0EQ L

Ay 200

Force REQ @

L

ViEw att

nang -Rectengtd -3.7,3.9,View
Vite Mea 3 Mlew

circuit

[RAR]
¢ alx DIxd bin
0 ¢ fr

DITS T
or §

Pin
[}

BTw
13

5Tw
it

ETW
134

1
Quicxs

at top avEL g

S# Pouse Puchifouchpad Londig
$2sic Operationy

Production

tomesnd Cord

ey

)
| ecocncococono
seooenacool

KK DN

b%u v
oouf? -oouTS
~baut4 ~pouTY

“pgutf
i LH

i

Force #2140
Ry 200
Vite ML

Figure

70 Timing simulation of routed INFOTRAN circuit

78

’)

=

=

o[

s
)
%

arHJ

Bahd b

Hk

P “Lrjr] 'I" }

i
il H

VIR

4.*'_‘4_

prthphtpkll

s

Figure

71 LCA NETED schematic for completed SCS1 design

79

Bat MouselPutailoucnpad Config
41c dperatiens

Production
tornand Cord

FoRCe TMCLET? O
N 2500 B
Vit ALL

RN 200

o100

Mk 100

Run 109

E

Figure 72 Timing simulation of unrouted SCSI circuit

Lz 4202 12

1z $1 07 4z
Set Mouse!Pyckifourhpad Config . 211021
Rasic Operations B 1z 11 0z
Prodactton R Izl 0
tonsyng Cord ir 12 02
Bir

0P
!(rcon taage plotted Yo /eys/print/alu.v.pesia.hardcopy trron 1dea’Speol)
Vite ALL
Vity AL
viEw ML
¥ty ML

[44
[24
0z

e e e |
<roat)

33550
3323EERNEE

Figure 73 Timing simulation of

80

routed SCSI circuit

Figure 68 shows the schematic of the INFOTRAN circuit.
The direction of data transfer is a function of signal 1I0.
When 10 is low, data will be sent from initiator to target,
and when 10 is high, data transfer will go from target to
initiator. The REQ signals data transfer to start and the ACK
signal indicates the presence of valid data on the data bus.
Figure 69 shows the timing simulation of the unrouted INFOTRAN
circuit which shows bidirectional data transfer as well as the
REQ/ACK handshake. A 100 ns REQ/ACK handshake delay was
chosen to account for the cable skew and deskew delays (55 ns)
plus the delay required by +the SCSI standard as well as
anticipated routing delays. The goal was not to acknowledge
the REQ assertion until at least 55 ns after valid data is on
the SCSI bus. Figure 70 shows the timing simulation of the
INFOTRAN circuit which again shows a bidirectional data
transfer and the ACK being asserted 60 ns after valid data is
on the SCSI bus which is consistent with the 55 ns delay
required by the SCSI standard. Upon completing thorough
testing of all parts of the SCSI the parts were put into one
schematic for implementation into an LCA. Figure 71 shows the
completed design. Multiplexors were used to route different
types of data to the external SCSI bus depending uéon the
state of the machine. Specifically, during the arbitration
phase the SCSI ID goes to DBO-DB7 while in the selection phase
the logical OR of the SCS1 1D and TARGET ID is directed to the

SCSI bus. During the information transfer phase data to

81

(from) the initiator is sent to (received from) the SCSI bus.
Figure 72 shows the timing simulation for the unrouted SCSI
design. In this simulation, the bit pattern "00001000" was
used for the SCSI 1D while the TARGET ID bit pattern was
"00010000". The data to be transfered by the SCSI during the
information transfer phase was "10101010". These bit patterns
were chosen in order to minimize the number of traces that had
to be monitored in QUICKSIM to ensure proper operation of the
SCSI. 1In this example, DB3 and DB4 were monitored. During
the arbitration phase, the SCSI 1D is placed on the SCSI bus
which corresponds to DB3 and DB4 of O and 1, respectively.
Once the selection phase starts, the SCSI bus carries the
logical OR of the SCSI 1D and the TARGET 1D which in this case
corresponds to DB3 and DB4 both equal to 1. The information
transfer phase begins with the asserting of REQ by the target.
In this example, DB3 and DB4 go to O and 1, respectively.
Other events of significance are the assertion of BSY a* 1200
ns and the assertion of SEL at 2400 ns. During the selection
phase, 10 is released at 2400 ns, BSY is released at 2600 ns,
and SEL is released at 3000 ns. At this point information
transfer can begin. Figure 73 shows the timing simulation for
the routed and backannotated design. The same events occur in
this simulation with the exception of a 49 ns delay. This
implies a 1.6 % increase in time for this design to go through
the bus free cycle, arbitrate the SCSI bus, and select the

target. Once selection has occured, data is placed on the

82

SCSI bus upon assertion of REQ by the target. ACK is not
asserted until 81 ns after all data on the SCSI bus is valid
which exceeds the SCSI bus hold time requirements (45 ns).
Specifically, the SCSI standard requires 55 ns for cable skew
and deskew delays plus a bus hold time of 45 ns prior to
asserting ACK to signal that there is valid data on the SCSI
bus (total delay is 100 ns). This implies the fastest rate at
which this design could transfer information is 5 MB/second.
This actual transfer rate in this design is 3.73 MB/second as
a result of the extra 34 ns delay between the REQ and ACK
assertions. This extra 34 ns delay could be alleviated from
this design by running FCLK at a higher clock rate (15.2 MHz
vice 10 MHz). This performance could be improved by using a
non-symetrical REQ/ACK handshake scheme. In this design a
conservative approach was used to handle the handshake. If a
non-symetrical handshake (i.e., when REQ is negated by the
target ignore cable skew and deskew delays) the bandwidth
could Dbe doubled. This would involve some additional
combinational logic circuitry to handle this method since the
situation of transfer from target +to initiator would be
reversed. Making the REQ/ACK handshake symetrical transfers
in both directions are handled by the same circuitrf. The
tradeoff was simplicity for bandwidth.

Once the SCSI design has been implemented into a placed
and routed ".lca" file, it must be converted into a bit

stream and then programmed into an EPROM. On the Apollo

83

Figure 74 LCA placement and routing of SCSI design

workstation, this is accomplished by the MAKEBITS and MAKEPROM

lne

s

These programs are invoked from the command 1

programs.

In the workstation

mode since there is no design manager.

environment there also is no capability to graphically use

.lca file must be transfered into

the

To do this,

EDITLCA.

after

lca"

Figure 74 shows the file "scsi

the PC environment.

84

being transfered to the PC which is then brought into the
EDITLCA program. Once in EDITLCA, the design can be edited to
change routing. This should not be done by an inexperienced
designer or someone without a detailed knowledge of LCA
architecture.

Oncé the SCSI design was successfully placed and routed
with a satisfactory test cycle run, it was noted that the
overall delay introduced by the technology was 49 ns. This
corresponds +to the SCSI cycle completing its bus free,
arbitration and selection phases, and is prepared to transfer
information. In testing the various parts of the SCSI, it was
noted that the BUSFREE, ARBIT and SELECT circuits introduced
a delay of 36 ns, 49 ns and 60 ns, respectively. This would
lead to a total of 145 ns delay. This implies that the
placement and routing algorithm is gquite efficient 1in

optimizing design overlap.

E. THE DESIGN VERIFICATION PROBLEM - PROTOTYPE V'

BACKANNOTATED SIMULATION

Both prototype and backannotated simulation are valid
methods of design verification. Both methods have their
advantages and disadvantages. In +this thesis, ‘+he
backannotated simulation approach was stressed. However,
before having a totally valid design, prototyping would need
to be done. While backannotated simulation takes into account

technology introduced anomolies, it is not a substitute for

85

prototyping. One very attractive characteristic of the LCA
technology is that prototyping can be done at a much later
stage in the design process. This is because design flaws can
be so easily corrected. 1In other technologies, some design
prototyping would need to be done at an earlier stage in the
design.' For example, if standard TTL parts were being used in
this design, before the entire design was combined, a
prototype of the individual design parts would need to be
completed. As part of this thesis, a prototyping board was
constructed which configured an XC3020 LCA in Master Parallel
Low mode. Once a design is implemented, the "design.rpt" file
will tell the designer which LCA pins are being used for which
signals. 1In this way, the designer will be able to actually
test the combinational logic of the design. This prototyping
board is however extremely limited in its resources. It
requires a +5 VDC power supply. The LCA was found to function
at a voltage as low as 2.9 VDC, but when trying to program via
a download cable, the DONE signal was never recognized going
high so the download programming cycle never completed. As a

result, a +6 VDC power supply was used.

F. DESIGN CONSIDERATIONS

When utilizing this technology there is no substitute for
experience. In this discussion, the assumption will be made
that the decign is being done in the engineering workstation

environment. 1In starting any design, it is important to keep

86

good documentation of what was done. This can be aided by
having a good file directory for all design work. It is also
important to keep track of what files have had what processes
performed (i.e. which ".lca" files have beer routed). In
inputing designs into the XILINX development environment for
LCA 1mpfementation, it is very improtant that these designs
have been created with the XILINX macros and parts from the
supplied libraries. While it is true that the XILINX macros
utilize components from the Mentor Graphics gen 1ib, they
often attach properties which are necessary to process these

designs into the XILINX system.

87

VI. CONCLUSIONS

From the work done in this thesis, several conclusions can
be made. Implementation of designs into FPGAs is an efficient
method of implementing design work in a manner that is easily
modified either to correct design errors or to improve design
performance. The performance of designs implemented with this
technology was comparable, as shown in the SCSI design
example, to other currently available technologies. The
XILINX implementation tools, while flexible and able to accept
a variety of design input methods, required the use of the
XILINX supplied libraries to function properly. Direct use of
previously tested designs developed under the Mentor Graphics
development system was not possikle without major rework.
This is not a fault of the XILINX development system but
rather a characteristic. Any previously developed designs
that were created prior to the installation of the XILINX
software must be redone utilizing the XILINX macro libraiies.
The XILINX macro libraries were extensive and fulfi’’ed all
the needs of +the design work done in this +thesis.
Additionally, the capability exists to write additional macros
as desired. The XILINX development env.ronment greatly
reduced design development time. Minor design changes and
design debugging could be done in nearly real time with a

minimal amount of effort.

88

Design implementation worked best in the workstation
environment because of increased machine speed (a factor of
five) and fewer memory constraints which will allow for even
larger design work in the future. The PC design platform is
still necessary however, to utilize its graphics capabilities
for manhally editing or viewing LCA layout since the XACT
program does not currently exist in the workstation
environment. The XILINX software was extremely stable but did
have a relatively steep learning curve. This was contributed
to by the fact that the documentation for the workstation
environment was first written for the PC environment and
partially updated.

The LCA technology studied in this thesis is an important
technology which should be persued with further study and use.
Speculation into the possible uses of this technology is as
wide as one can imagine. One very general use of +this
technology would be in any application where space and/or
weight is a consideration; the LCA has the ability to be
reconfigured to perform more than one function. Another
possible use is when security is an issue; on power-down all
device characteristic information is 1lost making reverse

engineering of design virtually impossible.

89

LIST OF REFERENCES

1. XILINX Inc., The Programmable Gate Array Data Book, XILINX

Inc., San Jose, CA, 1989.

2. XILINX Inc., XILINX Presents the XC4000 Technical Seminar,

XILINX Inc., San Jose, CA, 1990.

3. R. Freeman, "User—-programmable gate arrays,” IEEE
Spectrum, pp. 32-35, December 1988.

4. Draft Proposed American National Standard for Information
Systems - Small Computer Systems Interface (SCSI), X3T9.2
Revision 17B, December 16, 1985,

5. XILINX Inc., Logic Cell Array Development System Reference

Manual Vol. II, XILINX Inc., 1990.

90

INITIAL DISTRIBUTION LIST

Copies

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

Department Chairman, Code EC 1
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

Professor Chin-Hwa Lee, Code EC/Le 5
Naval Postgraduate School
Monterey, CA 93943-5000

Professor Murali Tummala, Code EC/Tu 1
Naval Postgraduate School
Monterey, CA 93943-5000

LT Norman C. Messa 3

SMC 1225, NPS
Monterey, CA 93943-5000

91

