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1 Introduction

1.1 Motivation

The Active Data/Knowledge Dictionary project is motivated by the need to support the entire life-
cycle for developing data and knowledge-based applications; this includes the traditional phases of
requirements analysis, requirements specification, database and knowledge base design,
application program design, implementation, testing, maintenance and evolution.

Our view is that database systems and knowledge based systems will grow closer together,
especially as new paradigms are developed to find useful interactions between knowledge bases
and databases. Some of these paradigms have already begun to appear. For example, many
applications have been reported where an expert system is loosely-coupled with a database system.
The database is used as a data server so that an expert system can ask for data to continue its
reasoning and problem-solving tasks.

More importantly, considerable research is underway to integrate certain knowledge representation
and knowledge processing schemes directly into the database. A notable example is that of active
databases where Artificial Intelligence production systems are integrated directly into the database.
In this way a production system can be used to monitor the database state and to execute situation-
action rules against a relational database; the firing of these rules effects changes to the database
state which can trigger new rule firings. The rules that are executed can alert application programs,
update the database, or send requests to more powerful inference mechanisms such as expert
systems or truth maintenance systems.

Another important trend is that of object-oriented database systems. Although these systems are in
their infancy, it is important understand how object-oriented systems can be used to support new
types of applications. An important research area is that of merging object-oriented concepts with
the more traditional approaches of semantic data modeling, logic programming and knowledge
representation techniques.

Not only is new database and knowledge based technology being developed, but also new
applications are being envisioned in which the data and knowledge relationships are very closely
associated and their logical and physical structures are very complex. For example, in the area of
Software Engineering there is a need to provide support for the entire systems development life-
cycle from requirements, to specifications, to design, to code and maintenance. The Computer
Assisted Software Engineering (CASE) tools are intended to support several phases of the life-
cycle, and it is clear that object-oriented techniques are needed to manage the large repositories of
heterogeneous knowledge and data representations (objects) that comprise a software system.

Similarly, the development of knowledge based applications requires that large collections of rules
or some comparable knowledge representation be evolved incrementally. The management of
consistency among these representations and the validation of the knowledge are important to the
development, quality and reliability of these systems.

Finally, in database applications we find several trends which will require advanced support
environments. Many organizations are finding that databases developed over several years by
separate organizations contain overlapping information; they are forming federations of possibly
heterogeneous database systems. These enterprise-wide applications must have access to a
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coherent enterprise information architecture. One important issue is how the structure and meaning
of each database should be represented to the members of the federation. Another is how queries
involving multiple databases can be processed efficiently.

Another important application involves database design in the context of object-oriented data
models and systems. The issue here is that of schema evolution, given that objects instances and
object types can be created and changed dynamically. This is a revolutionary concept in the light of
traditional database systems in which the database schema is fixed and very difficult to change.

1.2 Goals of the Active Data/Knowledge Dictionary project

The Active Data/Knowledge Dictionary (ADKD) project is intended to explore several of the above
mentioned areas. The major goals are:

1) To explore the adequacy of the Information Resource Dictionary Systems (IRDS) to
support advanced systems development projects,

2) To propose a conceptual architecture for an Active Data/Knowledge Dictionary System
based on the requirements of the above-mentioned advanced application areas,

3) To explore in detail certain areas of active data/knowledge management, with particular
attention to:

* Intelligent query formulation and processing in heterogeneous database systems,

" Coordinated problem solving with multiple heterogeneous knowledge sources,

* Schema evolution in object-oriented databases,

* Active data/knowledge management in object-oriented databases,

" Hypermedia requirements for active dictionaries, and

4) To provide a better understanding of the role of meta-data in the management of
knowledge-intensive object-oriented applications.

1.3 Organization of the report

Section 2 provides an overview of data dictionaries with particular emphasis on the Information
Resource Dictionary System which is designed to support and manage software applications. We
provide a critique of the IRDS and discuss both its strengths and weaknesses. Section 3 explores
the conceptual architecture for an Active Data/Knowledge Dictionary and suggests that the
dictionary should provide a set of tools to assist the user in developing data/knowledge
applications. The report continues with several sections dealing with specialized research areas in
which the active data/knowledge dictionary concept is of great importance.

Section 4 discusses intelligent query processing in heterogeneous databases. A survey of system
prototypes is presented and the techniques used for query processing are discussed. Next the
Knowledge/Data Model is introduced and a novel architecture, the Intelligent Heterogeneous
Autonomous Database (InHead) architecture is presented. Two examples show how the InHead
intelligent thesaurus and blackboard architecture are used for cooperative query formulation and
processing. Section 5 focuses on the problem of using multiple heterogeneous knowledge

1-2



representations to solve problems associated with 1) telecommunication network fault diagnosis
and 2) database query optimization. The major knowledge representation schemes that are
addressed are model-based, case-based and rule-based viewpoints of the objects in the system.
The role of the intelligent thesaurus is discussed in this context.

Section 6 examines object-oriented database systems and the problem of schema evolution in
object-oriented databases. The active dictionary makes use of an assumption-based truth
maintenance system to maintain and control the various versions of classes and schemata defined
during the database design process. An example is provided for the schema evolution problem.

Section 7 examines knowledge/data management in active object-oriented databases. Here,
production rules are integrated into an object-oriented data model. A novel concept, the Rule
Schema, is used to reason about the dependencies among rules, objects and constraints in an
object-oriented database schema. Hypermedia requirements for active dictionaries are discussed in
section 8. Section 9 presents our conclusions and suggestions for future research. Section 10 is
our bibliography and it is followed by two appendices. Appendix A describes the concepts of
blackboard systems and appendix B gives a sample session with the GemStone System.
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2 Data Dictionaries and Directories

Data dictionary and directory systems are an integral part of data administration environments
which manage the information resources of the organization. Data dictionaries may be used to
catalog information regarding both automated and non-automated enterprise resources; these may
include paper records, database files, schemata and catalogs, as well as information regarding
hardware, software and human resources.

The data dictionary is the repository of all definitions, that is meta-data, associated with the
enterprise. Usually we connote the dictionary as being associated with a Database Management
System (DBMS), but at times it is convenient to extend the scope of the dictionary/directory to
include the information resources of the entire enterprise.

In this section we focus on the role of data dictionaries in support of database applications. Section
2.1 provides an overview of the major functions of the data dictionary/directory and defines both
passive and active dictionaries. Section 2.2 presents the architecture and a discussion of the
Information Resource Dictionary Syste.n (IRDS) which is an ANSI standard for such systems.

2.1 Definition and functions of the data dictionary/directory

In an excellent survey of data dictionaries and directories (D/D), Allen, Loomis and Mannino
[ALM82] define the D/D as follows:

Definition 2.1 A D/D system is an automated information system composed of:

" a database, called the D/D, that contains the meta-data describing
the data, processes, users, and processors of an organization;

" retrieval and analysis capabilities that assist a wide range of user
groups in application development;

" management tools that help ensure the security, validity,
recoverability, integrity, and shared accessibility of the D/D;

* functional interfaces that permit other software modules to access
the DID and convert meta-data into the format required by the D/D
System.

The main objectives of the D/D are to allow data processing personnel to control the data item
definitions used by all people and programs in the organization, to control the cost of developing.
maintaining and evolving appiications, to provide management reports on database and dictionary
usage patterns, and to define, store and manage corporate meta-data within a single repository.

Dictionary Users

Allen et. al. [ALM82], identify six user categories for a D/D system. They include:

I) Data administrators - use the D/D to design, monitor and restructure databases. They
also use the D/D to maintain a common repository of data element definitions and
implement standards for their use in application development,

2) Application personnel - use the D/D to access, store and manage programs, schemata
and configurations for system evolution,
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3) Operations staff - use the D/D to monitor the performance of the system for better job
scheduling,

4) Data processing management - use reports from the D/D to determine data us ge,

5) End users - have access to their views and the database schema information by means
of the dictionary, and

6) Auditors - monitor and examine system definitions, documentation and pe. mpnce
with the assistance of the D/D.

Data Dictionary Organization

The D/D provides a well-defined logical structure, or schema, by which the enterprise objects and
concepts can be described. For example, the data dictionary may describe the enterprise as
consisting of the following types of entities: Users, Databases, Sub-schemata, Relations,
Attributes, Domains, Tuples, Files, Transactions, Processes, Processors, Communication Lines,
and Workstations. The D/D also provides mechanisms for these concepts to be related. For
example, in the IRDS to be discussed in section 2.2, the Entity/Relationship Model [Che76] is
used to represent the Basic Functional Schema provided by the IRDS. Users may extend the
schema by defining additional entity sets and relationship sets.

Clearly, the predefined D/D schemas are intended to assist in the management of data processing
organizations that develop applications involving the access and manipulation of large shared
databases. These modeling techniques could be used to provide schemata for other development
environments, as for example, software engineering environments or knowledge-based systems
development. These will be addressed in section 3.

Data Dictionary Functions

The D/D has several major functions that it provides to its user community. These include the
following:

" DID Maintenance function provides update capabilities so that D/D elements can be
defined, modified, and deleted from the dictionary database.

* Extensibility function allows the predefined D/D schema to be extended with new
structures, that is, new entity sets, relationship sets and their attributes.

* Report Processor function provides general reporting capabilities as well as user-defined
reports.

* Query Processor function allows users to query the dictionary interactively in much the
same way a user would query the actual database.

* Convert Function of a D/D system is capable of reading application programs, libraries,
and schemata and generate for the D/D Maintenance Function a set of input transactions
that can be used to initially load the D/D with meta-data from various applications that will
now be managed by the D/D.
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Software !r:erface function allows the D/D to format its meta-data for other programs
such as compilers and data definition processors to use. This function thus serves to
provide multiple representations of the meta-data to those tools associated with the
management of database applications.

Exit Facility function allows the D/D procedures and programs to be extended by local
users to reflect the procedures of the organization. For example, the local organization
might wish to implement a different access authorization policy that would required a
locally developed program.

DID Management function performs the same database management tasks associated with
the database itself. These include security, concurrency control, integrity management,
etc.

The next section studies one such dictionary system, the Information Resource Dictionary System,
in detail. We show that the IRDS is structured to support multiple levels of meta-data. We argue
that the IRDS, while suitable for many traditional data processing applications, will fall short in
terms of functionality for the new classes of applications involving both object-oriented and
knowledge-based concepts.

2.2 The Information Resource Dictionary System

The Information Resource Dictionary System (IRDS) has been developed by Technical Committee
H4 of the Accredited Standards Committee X3 (X3H4) of the American National Standards
Institute (ANSI) in conjunction with the National Computer and Telecommunications Laboratory
(NCTL) at the National Institute of Standards and Technology (NIST). The purpose of the IRDS
standard is "to provide U.S. Federal Government data dictionary system users with useful,
flexible, and user-friendly data dictionary system software products to support all phases of the
system life cycle."

The IRDS standard was developed with the following design objectives:

0 The IRDS should contain the major features and capabilities that exist in currently
available dictionaries,

* The IRDS should be modular to support a wide range of user environments and to
support cost-effective procurement, and

* The IRDS should support portability of skills and data.

In following the first of these design objectives, U.S. Federal Government representatives and
dictionary software vendors reviewed draft versions of the IRDS Specifications. This resulted in
an IRDS Specification containing the most commonly used facilities of existing systems, and, as of
1988, an IRDS Specification representing the "state-of-practice" in data dictionary systems
technology.

To provide IRDS flexibility and procurement cost-effectiveness, X3H4 and NIST adopted a
modular approach. The ANSI X3H4 IRDS Standard consists of specifications for a Core
Standard data dictionary system module and for five additional modules: the Basic Functional
Schema, IRDS Security, the Extensible Life Cycle Phase Facility, the Procedure Facility, and the
Application Program Interface. The additional moduies are optional. Thus, IRDS users need to
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procure them only if their application requires that functionality. To provide additional flexibility,
capabilities are specified in the Core IRDS that enable users to customize or extend the type of data
that can be stored in the Information Resource Dictionary (IRD).

The result of the third design objective is that the IRDS Specifications include a menu-driven panel
interface for inexperienced users and a command language interface for more experienced users.

2.2.1 The major IRDS functions

Levels of data and meta-data in the IRDS

The IRDS architecture is specified in terms of the Entity-Relationship-Attribute (ERA) model and is
comprised of: 1) data in a production database, 2) an Information Resource Dictionary (IRD) and
3) an accompanying IRD schema. In the Entity-Relationship-Attribute (ERA) model, entities
represent "real-world" concepts such as persons, events, or quantities. These entities are
represented in collections called Entity Sets. Relationship Sets are used to describe the associations
between entity sets, while attributes represent properties of both entity sets and relationship sets.
Instances of entity sets, relationship sets and attributes comprise the data in the production
database.

The Information Resource Dictionary consists of entities, attributes, and relationships that are
instances of the corresponding IRD schema entity-types, relationship-types, and attribute-types.
The IRD schema, in turn, consists of instances of meta-entities, meta-relationships, and meta-
attributes at the IRD schema description level. These various meta-data levels are summarized in
Table 2.1 and a description of the major IRDS Modules follows.

The levels in Table 2.1 range from level 0 to level 4. The IRDS contains levels 1 through 4, and
we have added a Level 0 which corresponds to the primitives to be used in constructing the higher-
numbered levels. Level 0 would use an object-oriented data model whose primitives could be used
to implement the ERA Database Model for level 1; the level 1 ERA Data Model would be used to
specify the level 2 IRD Schema Constructs; the level 2 IRD Schema Constructs in turn would be
used to specify an ERA Application Schema; and level 4 would manage the production database
organized according to the level 3 schema.

The major IRDS functions and facilities are presented in more detail.

The Core Standard Module

The IRDS Core Standard Module provides the foundation for all IRDS schema structures. Within
the Core Standard Module, meta-entities, meta-relationships and meta-attribute types are defined
from which all other meta-levels are constructed. Among the meta-entities defined in the IRDS
Core are a number of meta-attribute types that can be used for IRD meta-data control and partial
validation.

The Core Standard Module contains the Minimal Schema, which the IRDS Standard specifies for
every IRDS implementation. The Minimal Schema provides the critical schema descriptors needed
to control every IRD schema and IRD.
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Table 2.1 Levels of Data and Meta-Data in the IRDS
Level Meta-Level Concepts Information Type

Level 0 Meta-Meta-Meta Object-Oriented Data Objects Types, Methods,
Schema Model Modeling Inheritance, Constraints, Rules,

Primitives Knowledge, etc.

Level 1 Meta-Meta-Schema ERA Data Model Core Standard Module
Implementation using Entity-Types, Relationship-Types,
primitives Attribute-Types

Pre-defimed IRD Entity,
Level 2 Meta-Schema Attribute Relationship Basic Functional Schema

Schema Types using
ERA Data Model IRD Schema Constructs

Level 3 Application Schema Application Schema Customer Entity Set, Invoice Entity
using IRD Schema Set, Billing Relationship Set
Types
Instances organized

Level 4 Real-World according to Customers are billed through

Business Concepts Application Schema invoices

The Basic Functional Schema

The Basic Functional Schema provides an initial set of schema structures. This set reflects
agreements reached by members of X3H4 and attendees at user workshops sponsored by the
National Bureau of Standards. These groups believed that the entity-types, relationship-types and
attribute-types specified in the Basic Functional Schema could describe most existing and planned
manual and automated systems.

The IRDS Security Module

The IRDS Security Module provides for two levels of access control: global security, which
allows IRDS users to specify views over sets of entities, relationships and attributes; and entity-
level security, which allows users to assign read and/or write privileges to specific entities.

The Extensible Life-Cycle-Phase Facility

The Extensible Life-Cycle-Phase Facility specifies integrity rules and customization facilities that
give IRDS users life-cycle support. This facility allows specific entity occurrences to be associated
with software life-cycle phases, thus providing control for the movement of entities through the
life-cycle (i.e., a measure of version control). The Extensible Life-Cycle-Phase Facility has
capabilities for including Hierarchical Phase Modeling, Relationship Sensitivity Structures, and
Life Cycle Integrity Rules.
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The IRDS Procedure Facility

The IRDS Procedure Facility provides the ability to define, store, maintain and execute procedures
involving the IRD and the IRD Schema. These procedures are composed of IRDS Commands,
along with flow-control and assignment statements.

The IRDS Application Program Interface

The IRDS Application Program Interface provides an interface between standard programming
languages and the IRDS command language. With this module users can write programs to
retrieve meta-data from, and pass meta-data to, the IRD.

2.2.2 Advantages and disadvantages of the IRDS

There are several advantages to using the IRDS Standard. Firstly, it is an advantage in and of the
fact that it is a standard. The standard provides a common framework, terminology, and
methodology for data element standardization throughout the software life-cycle. The IRDS
Standard also provides system designers with the expressive power of the Entity-Relationship-
Attribute data model. And finally, from a Federal Government perspective, there is a cost savings
advantage in that NIST has implemented a prototype which is freely available to Federal Agencies.

On the other hand, there are several problems with using the IRDS Standard. Firstly, is its
confusing terminology. The system description is replete with meta-, meta-meta-, and meta-meta-
meta-entities, relationships and attributes. This makes it very easy to get lost in the meta-levels.
Even the definition of one of its fundamental parts, the attribute, causes confusion. As mentioned
earlier, attributes represent properties of entities or relationships. On the surface, the definition
coincides with normal database terminology. But deeper investigation reveals that an IRDS
attribute is really describing properties relating to entity types or relationship types rather than
describing properties of entities or relationships themselves. For example, one might think of an
employee record with fields for name and social security number. In generally accepted database
terminology, the employee record would be the entity, with attributes name and social security
number. However, in accordance with the IRDS Standard, employee record, name and social
security number would all be entities. Attributes for these entities would be descriptors such as
field length, or type string.

Another drawback in the IRDS Standard is that it allows only binary relationships between entities.
Other than binary relationships are a common occurrence is everyday life. The family relationship
is a good example. Entire classes of entities (parents, grandparents, aunts, uncles, etc.) could
participate in a single relationship. There is no direct way of representing this in the IRDS
Standard.

The IRDS Standard is also problematic in that attributes cannot be entities. Consider for example
personnel and payroll systems that have a number of entity types and entity instances in common.
For consistency and interoperability, these common entities should be modeled as attributes (as
entities) of the two systems' interrelationship. Since attributes cannot act as entities, one must take
the relationship and decompose it into two additional relationships, where the entities actually exist
within the relationship definition.

Each entity-type name and entity name must be unique throughout an IRD. In certain applications,
such as representing the information within a federation of heterogeneous databases, this is a
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severe constraint. In effect, this dictates that one must define an integrated global schema. In a
global schema, identically-named entities and entity-types have the same meaning unless the global
data model has the capability to distinguish semantic variations. The ERA model does not have
this capability.

Other characteristics of the IRDS Standard make it cumbersome. The IRDS developers state that
the Standard is easily extended. In reality, extensions for all but simple objects and relationships
are complex. All of the various combinations of associations between entity-types, attribute-types
and relationship-types must be supplied by users.

Finally, the IRDS Standard is not object-oriented. There is no inheritance, nor is there the
capability to use methods and pass messages between entities. Also, there is no capability to
represent heuristics, constraints and temporal relationships. One is left with a one-dimensional
structural representation, with the dynamics and the constraints of the application omitted. These
would have to be implemented in the application programs accessing the dictionary and the actual
database. In subsequent sections we propose an object-oriented characterization of an active
data/knowledge dictionary that overcomes many of the above-mentioned limitations of the IRDS.
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3 Active Data/Knowledge Dictionary System

The data dictionary/directory technologies [ALM82] developed for the 1980's must be evolved and
extended to handle new requirements imposed both by new database system architectures and by
the new applications that are being planned, designed and implemented.

Since 1984 much attention has been focussed on the field of Expert Database Systems which
studies the models, tools, techniques and architectures for integrating Artificial Intelligence (AI)
and Database Management (DB) systems to provide knowledge-directed reasoning over large,
shared databases. In addition, object-oriented technologies from the fields of knowledge
representation, databases, and programming languages are maturing and are being incorporated
into these new object-oriented database systems.

Application developers and system architects are creating more sophisticated applications involving
both knowledge-based and data-based components. In many cases these architectures involve
existing systems that must now communicate and cooperate to achieve the strategic information
goals of the organization. Thus information may be distributed among several possibly
overlapping and redundant systems.

Our goal in this section is to explore the concepts, tools and techniques that will be needed to
support, the development of knowledge- and data-based applications of the 1990's. Clearly, data
dictionaries will require enhanced capabilities to support these applications as well as the entire
systems life-cycle. In this section we provide a definition, conceptual architecture and functional
specification for an Active Data/Knowledge Dictionary (ADKD) environment for the development
of expert database applications. In subsequent sections of this report, we present the results of our
research into some underlying tools and techniques for the ADKD.

3.1 Definition of an active database and active dictionary

Definition 3.1 A database management system is said to be active if it can monitor the database
state and automatically perform operations that 1) alert application programs, expert systems, or
other knowledge-based systems, and 2) update the database through rule-generated updates.

A popular active database architecture is one that integrates an AI production system with a
relational database system as depicted in figure 3.1.

• Alerts,
Externally dat
generated rule condition Data-driven ' Arbitrarv%. Database Database
database monitoring Production ' Programs
updates System

~Rule-generated DB updates

x.. ,, .,.\xx.,~x,.x Active atabase .-..... x....-.x

Figure 3.1 An Active Database Architecture
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Definition 3.2 An data dictionary/directory system, as defined in Definition 2.1, is said to be
active if it can monitor the state and performance of the underlying databases it supports and be
both proactive and reactive in suggesting and effecting needed evolutionary changes in those
databases.

This definition distinguishes an active dictionary from a passive one which is consulted for data
definitions and descriptions, but does not actively participate in the enforcement of the data
definitions and other database constraints.

Definition 3.3 An Active Data/Knowledge Dictionary (ADKD) is an active data
dictionary/directory system which supports both data- and knowledge-based applications. The
ADKD is an automated information environment composed of:

" a data and knowledge base containing the meta-data and meta-knowledge characterizing
the data, knowledge, processes and rules of an organization,

" browsing, retrieval and analysis capabilities to assist a wide range of users in the
development and management of large data- and knowledge-based applications,

tools to allow users to define, maintain and evolve data/knowledge representations and
applications, as well as to maintain the security, integrity, consistency, and shared
accessibility of the data and knowledge bases, and

functional interfaces that permit software tools to access the data and knowledge bases to
obtain relevant data/knowledge specifications in formats suitable for their particular
processing requirements.

The definition of the ADKD is quite general, but it does point out that new applications will have
both a database component and a knowledge-based component, and these may actually be
distributed and heterogeneous in nature. The ADKD must provide tools to define, manage and
evolve these systems. It will have to suppcrt multiple knowledge representations and reasoning
paradigms as well as multiple data models.

We feel that an object-oriented approach is required to provide the underlying data/knowledge
modeling support for the ADKD. These concepts correspond to the Level 0 constructs presented
in Table 2.1 of section 2.1. We would intend these modeling primitives to be general enough to
model several well-known knowledge representations such as production rules, cases, and
semantic nets as well as several semantic data models such as the functional data model, the entity--
relationship model, and the relational model.

Further, it is imperative that the ADKD provide modeling capabilities to specify knowledge
declaratively, rather than procedurally. In many object-oriented models, the behavioral aspects are
specified as "methods" or "active values" and are written as procedures or fur.ctions in a procedural
programming language. In order to be able to reason about these behavioral aspects of a
representation, they must be specified in a declarative language. We agree with Dayal et al
[DBM88] that "rules are objects too."
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3.2 The ADKD environment

The conceptual architecture for the ADKD Environment is depicted in figure 3.2. Note that the
architecture of the ADKD supports multiple users who interact with the Dialog Manager to
determine which service or services are to be used. The Dialog Manager in turn works with the
ADKD Coordinator to ascertain the appropriateness of the services requested and then works with
the services and the ADKD Object Manager to access the required objects - both knowledge and
data - from the Object Repository.

The Object Repository must have the capability to define, store, retrieve, and manage objects with
very different specifications in a uniform and integrated fashion. The object-oriented paradigm
suggested for the ADKD is suitable for providing object storage and retrieval services for complex
and persistent objects. To support information interchange, the repository will have translators to
map an object specification into the respective formats required by each tool.
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Figure 3.2 ADKD Conceptual Architecture

We now present each of the major services of the ADKD in terms of a functional architecture.

3.3 ADKD functional architecture

The Active Data/Knowledge Dictionary is envisioned as an environment for the development and

maintenance of data- and knowledge-based applications. It consists of a set of generic tools that

could support various application areas such a computer-aided Software Engineering (CASE),
computer-aided design and manufacturing (CAD/CAM), as well as computer-aided

database/knowledge base design (CAD/KD). The following discussion follows the diagram of
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figure 3.2. The various ADKD tools and their possible interrelationships are shown in figure 3.3
below. Note that in figure 3.3 the ovals represent services and tools while the white boxes
represent memories, data and knowledge structures, as well as existing enterprise systems such as
the IRDS, relational DBMS and multimedia DBMS.

3.3.1 User community

The ADKD user community consists of a number of individuals who may play multiple roles. The
major roles are those of Data Administrator, Database Engineer, Application Programmer,
Knowledge Engineer and Management. Brief descriptions of each user follows:

Data Administrators are concerned about the overall information architecture of the
enterprise, including both the automated data/knowledge systems and the non-automated
ones as well.

The Database Engineer is primarily concerned with the specification, design,
implementation, and management of all the database schemata of the enterprise. These
schemata may be represented in diverse data models and may operate under different
DBMSs. The Database Engineer should also be versed in the new object-oriented
methods for database design which would be supported by the ADKD tool set.

The Application Programmer will deal with the creation of traditional database views for
end users and will specify database transactions that will access the ADKD and the actual
data/knowledge bases. This task of writing application programs will be assisted by the
use of high-level constraints that traditionally have been embedded within application
programs, but which are now within the meta-data in the ADKD; the suggested object-
oriented model will capture the behavioral semantics of objects within the schema as rules
and constraints.

The Knowledge Engineer is responsible for acquiring and representing, within the
ADKD, corporate knowledge associated with major enterprise tasks and activities. This
knowledge when matched with appropriate data elements produces information used by
the enterprise. The Knowledge Engineer must work closely with Data Engineers to
define appropriate data/knowledge representations and mappings to/from the
data/knowledge bases to obtain translations and to tune the overall functionality and
performance of the system.

Management is concerned with the overall operation and performance of the ADKD
within the goals and mission of the organization. The ADKD should have the capability
to provide pre-defined reports to management and to support ad-hoc queries using both a
standard SQL interface as well as an object-oriented browser.

3.3.2 Dialog Management

The ADKD Dialog Manager (DM) assists the user in accessing the appropriate tools to perform
tasks associated with data and knowledge management. The DM compiles user profiles for
authorized users and uses them to structure the dialog and to provide authorized services. Once the
intent of the user is determined, the DM interacts with the ADKD Coordinator to access the suite of
tools and services to accomplish the intended task.
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The Dialog Manager should allow users to use command line instructions such as those offered by
DOS and Unix-based systems. It should also provide more object-oriented menu-driven interfaces
with pop-up menus and nested selections.

One could also posit that the Dialog Manager could have the structure of an expert system with a
psuedo-natural language interface, a knowledge base of rules regarding the use and function of the
ADKD and explanation facilities to assist users in understanding the complex data/knowledge
organizations of the ADKD.

3.3.3 ADKD Coordinator

The ADKD Coordinator is the "traffic-cop" that controls access to ADKD services. Here too, the
coordinator has access to a knowledge base that serves as a guide to the inter-relationships among
the ADKD services and how they may support a user-defined task. Consider for example that the
enterprise has a set of well-defined procedures for the design of an object-oriented database schema
and that specific rules exist for possible schema evolution 1. These methods are stored in a
knowledge base within the Object Repository and are used to evaluate the "state" of the database
design activity; the appropriate ADKD services can then be provided to assist the user in this
activity. There may be certain configurations of services that would be inappropriate because they
would conflict with enterprise rules. Thus, we see the role of control knowledge, or meta-
knowledge, and how it can affect the use of meta-data stored in the object repository.

3.3.4 User Interface Services

The User Interface Services are those directly related to allowing the user community to access the
ADKD data and knowledge sources. These interfaces should included object-oriented browsers
that present the complex data and knowledge organizations in the object repository. At a
minimum, the user interface services should describe the object types, their relationships, rules
associated with object types, attributes, relationships and constraints on the schema. Additional
information can be provided in the form of inheritance hierarchies and lattices, and the aggregation
hierarchies of composite object types.

The use of hypertext and hypermedia types would be especially useful in allowing the user to
freely associate objects through hyperlinks. Also, in certain situations it is advantageous to be able
to annotate a design decision by attaching a diagram, an image, or a voice annotation to a particular
object type or to a subschema 2.

3.3.5 Data/Knowledge Acquisition Services

The ADKD must support the acquisition, representation, storage and maintenance of multiple data
and knowledge models. By model we mean the structure, semantics, operations, constraints, and
query processing and reasoning services associated with a model. In order to support existing
systems, the ADKD should provide abstract models for file systems, relational database systems,

I Specific approaches to schema evolution in object-oriented systems are discussed in section 6.

2 Section 8 discusses the modeling of hypermedia object types in the context of multimedia documents, the

IRDS, and the ADKD.
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network data models, and others. The more advance semantic models such as the functional and
entity/relationship models should also be supported.

The knowledge representation schemes should include production rules, semantic networks,
frame-based systems, and case-based systems. The meta-data associated with these KR schemes
should be represented and stored explicitly. Another important requirement of the Knowledge/Data
Acquisition services is that the evolution of the various schemata must be supported 3.

At this point, it is too early to commit to a particular object-oriented model 4,but we feel that such a
model could serve as the "primitive model" in which the other paradigms could be expressed. This
is a topic of ongoing research.

3.3.6 Reasoning and Knowledge Management Services

The ADKD must perform complex reasoning tasks in supporting user queries. We envision the
need for supporting multiple reasoning paradigms including relational query processing for SQL-
type queries of the meta-data and meta-knowledge, reasoning about aggregation and generalization
hierarchies in support of inheritance of attributes and methods associated with objects, reasoning
using blackboard models of control in conjunction with multiple knowledge sources and an
intelligent thesaurus for cooperative query formulation and optimization 5.

The ADKD should provide tools to analyze constraints and rules associated with an object-oriented
schema. This is a relatively new area of research but it will prove very useful in handling complex
object representations involving behavioral knowledge expressed as rules.

3.3.7 Knowledge Organization Services

Both knowledge and data objects must be indexed, catalogued, and cross-referenced for ease of
storage and retrieval. For example in section 7 we present an object-oriented data model in which
rules are defined as clauses in a first order logic. These rules are grouped into rule sets and are
then associated with objects. Thus, there is a natural index between an object type and the rules
associated with it. Conversely, given a rule one can easily determine to which object it refers.
This object-oriented approach to indexing both objects and constraints has been proposed by
Shepherd and Kerschberg [SK86b]. The ADKD must provide tools for the organization of both
data, knowledge, meta-data and meta-knowledge.

3 In section 6 of this report we study schema evolution in object-oriented databases and propose a versioning
approach that uses a truth maintenance system to assist the dictionary in support changes in schema definitions.

4 We have investigated and used two models that could be candidates for the ADKD object-oriented model.
They are the Knowledge Data Model, and an object-oriented model that supports aggregation and generalization of
object types, attributes and relationships among object types, and rules that can be associated to object types. These
are presented in section 4 through 7 of this report.

5 Section 4 of this report studies the use of a blackboard model of control in conjunction with an intelligent
thesaurus to coordinate query formulation and processing in a federated database architecture.
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3.3.8 Translation and Mapping Services

The ADKD must support mappings from the internal knowledge/data representation to the
structure, operations and constraints of the more established data models such as the relational, and
network data models. The ADKD must also translate from one representation to another. This
would allow the constituents of a federated database to communicate with one another to exchange
data and possibly knowledge. In addition to supporting database data representations, the ADKD
should support multiple viewpoints of data and knowledge.

3.3.9 Learning and Adaptation Services

In order for the ADKD to truly be active, it must provide services to users and applications that
allow for the evolution of the objects stored in the Object Repository. In particular, data and
knowledge schemata must be able to evolve as our real-world models and activities evolve.
Therefore, the ADKD should provide tools for schema evolution, for knowledge refinement, and
for "krcwledge compilation" in the form of cases (see figure 3.3).

For example, the ADKD may assist in a problem-solving exercise involving multiple knowledge
sources, and the results of the exercise will suggest a solution to the user6. The entire problem-
solving exercise which includes intermediate results and the final solution can be added to a "case
base" of such cases.

The Al discipline known as Machine Learning can play a major role in supporting evolution in
databases. New tools and techniques are being developed to "discover" knowledge from data.
One such activity at George Mason University is the INLEN project [KMK89] in which a
relational database system and a rule-based system are connected through a loosely-coupled
interface. Both systems have their full capabilities to support queries and reasoning, but in
addition, a number of knowledge generation operators are available to learn new knowledge/data
from the existing knowledge/data bases. This knowledge can be re-integrated into the
knowledge/data bases and can also be used by decision-makers.

As an example, suppose INLEN were asked to discover knowledge about a database. It might
consult the meta-data to verify the current data organization, and through one of its learning
algorithms, propose a new functional dependency based on the actual data contained in the
database. This new functional dependency is a constraint that may or may not hold over all time
intervals because it depends on actual database instances rather than design knowledge. Therefore,
the ADKD could be tasked to monitor the database regarding this functional dependency, and if it
were violated during a database update, the Database Administrator could be notified.

The INLEN project is sponsored by DARPA. More research is needed to understand how
discovered knowledge can be used effectively within the context of active data/knowledge
dictionary systems.

6 Section 5 examines problem-solving using multiple knowledge sources: database meta-data, knowledge
hierarchies, case and heuristics to solve complex network fault diagnosis problems. It also addresses knowledge
compilation into cases.
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3.3.10 ADKD Object Manager

All services and tools must communicate with the ADKD Object Manager to retrieve objects from
the Object Repository. The Object Manager has meta-data and meta-knowledge of how the various
objects and their representations are stored in the Object Repository. The Object Manager is much
more than just an Object-Oriented Database Management System (GODBMS); it must provide for
the management of heterogeneous and multiple types of objects produced by the various enterprise
activities. A very important function of the Object Manager will be consistency checking and
management of the diverse object types, their interrelationships and dependencies.

3.3.11 Object Repository

The Object Repository contains the ADKD knowledge and data regarding the enterprise's
information architecture, including data definitions, knowledge representations, methodologies for
data and knowledge base design, etc. We see the Object Repository as being implemented using
an object-oriented database system. However, it is not clear if the entire ADKD should be
implemented solely within the context of an OODBMS.

The ADKD most probably should be implemented as an expert database system architecture in
which the knowledge-based components such as knowledge representations, blackboards, truth
maintenance systems and case-based systems would be implemented as special tools that would
access the Object Manager and Repository. Similarly, the special services such as Translation and
Mapping, Knowledge Organization and Management, and Learning and Adaptation Services
would be implemented as a suite of tools that could access the Object Repository for relevant
information and could communicate through the Blackboard Model depicted in figure 3.3.
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4 Active Query Processing in Heterogeneous Databases

Query processing comprises query decomposition, q,"',y optimization, and subquery processing.
The general strategy for processing queries in a heterogeneous environment is for a global
controller to decompose a global query (made by a local database) into appropriate local
subqueries, to supervise the execution of the subqueries, and to integrate the subquery results into
an answer for the requesting database. Optimization -.can occur anywhere in that process. An
alternative strategy, appearing in the federated and interoperable approaches, is to have a single
local query cause the generation of multiple queries to system databases without the aid of a global
controller. These queries are based upon the local database's view of the external schema of each
of the other databases. Results integration is left to the requesting database. Query optimization in
both approaches is left up to the local user. In the interoperable approach, however, some
optimizatior assistance is provided with its facility for allowing users to express "incomplete
queries," i.e., queries without all equijoins specified [Lit87].

4.1 Query processing in heterogeneous databases - literature survey

There have been several approaches taken to solving the problem of accessing and interconnecting
heterogeneous DBMSs [Car87, Dwy8l, Fra87, G+84, HR87b, L+86, S+81, T+87a]. In general,
these approaches have been to:

Provide a standard view of single databases and supply access to one database at a time
through a standard DML.

Provide an integrated view of multiple heterogeneous databases and the capability to access
and integrate data from several databases to answer a single query.

Integrate data elements of interest from multiple databases into a single integrated database
-nd access that database through a single DML.

The following paragraphs briefly describe some of the research eff.,rt-, exemplifying these
approaches. The efforts described are systems that are either under development, partially
developed, or that are proposals and analyses for future systems.

4.1.1 MULTIBASE

Multibase is a system for integrating access to pre-existing, heterogeneous, distributed databases.
Users view the database system through a single global schema (defined by the functional data
model) and access data with a global query language called DAPLEX. The architecture of the
Multibase system consists of two basic components: a schema design aid and a run-time query
processing subsystem.

The schema design aid provides tools for the system database designer to design the global schema
and to deflne a mapping from the local databases to the global schema and vice versa. The run-
time query processing subsystem uses the mapping definition to translate global queries into local
queries, ensuring that the local queries are executed correctiy and efficiently by local DBMSs
[S+8 11.

As shown in Figure 4. 1, the architecture of the Multibase schema design aid has three levels of
schemata: a global schema (GS) at the top level, an integration schema (IS) and one local schema
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(LS) per local database at the middle level, and one local host schema (LHS) per local database at
the bottom level. The local host schemata are the existing schemata defined in local data models
and are used by the local DBMSs. Each of these LHSs is translated into an LS defined in the
Functional Data Model. The IS describes a database that provides information used to resolve
inconsistencies between the data of different local systems. The LS and IS are mapped into the
GS. The GS allows users to pose queries against what appears to be a homogeneous and
integrated database.

USERS

LOBAL CHEMI
MAPPING LANGUAGE FACILITY

LS1 LS2 INTEGRATION
SCHEMA

MECHANIZED LOCAL HOST
SCHEMA TRANSLATOR

LS DBS2 LBSN

Figure 4.1 Multibase Schema Integration Architecture [S+811

The architecture of the run-time query processing subsystem consists of a global database manager
(which in turn consists of a query translator and a query processor), a local database interface
(LDI) for each local DBMS, and the local DBMSs (see Figure 4.2). A user submits a query to the
system (with DAPLEX) over the global schema. The query translator translates the global query
over the global schema into a global query over the disjoint union of local schemata. The query
processor decomposes the global query over the disjoint union of local schemata into individual
local queries over local schemata. The query processor also does query optimization and
coordinates the execution of local queries. The LDI translates local queries received from the query
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processor into queries expressed in the local data query language and translates the results of the
local queries into a format expected by the query processor, which integrates the results and
provides an answer back to the user.
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Figure 4.2 MULTIBASE Run Time Query Processing Subsystem [S+81]

4.1.2 MERMAID

Mermaid [T+87a], under development by Unisys Corporation, is a front-end to a network of
multiple heterogencous distributed databases (see Figure 4.3). The user interface provides a single
integrated view of the underlying databases. This view is maintained in the global data dictionary
which also stores the global schema

Users access the HDBMSs using ANSI standard SQL or a common query language called ARIEL.
The SQL or ARIEL query is translated into a global intermediate query language called DIL
(Distributed Intermediate Language). If the DIL query can be answered at a single site, Mermaid
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bypasses the distributed query processing and sends the query to the appropriate DBMS.
Otherwise, the DIL query is decomposed into subqueries. The distributor, which contains the
query optimizer and the system controller, develops a global subquery processing optimization
scheme and routes the subqueries to the appropriate local DBMSs for data services. (Data services
currently are limited to system-wide query and single database update.)
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Figure 4.3 MERMAID Architecture [Y+85]

A DBMS driver is required at each site which contains a DBMS. The driver conducts the required
query translation (from DIL to local DML and vice versa, denoted by "FWD TRN" and "BKW
TRN" in Figure 4.3) and returns the response (if any) to the controller. The controller assembles
the responses and directs the driver at the user's site to send the system response to the user
interface (and thus the user).

A great deal of emphasis has been placed upon the development of algorithms for distributed query
optimization (Y+851. A semijoin algorithm tries to reduce relations as much as possible before
sending them across the HDBMS network. A replicate algorithm tries to find an optimal set of
sites at which the query can be executed in parallel. And a combined semijoin and replicate
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algorithm seeks to find situations in which the semijoin and replicate algorithms can be exploited
opportunistically.

Mermaid is a prototype that has been implemented on a VAX 11/780 which is host to a back-end
Britton-Lee IDM database machine, a Sun 120 with INGRES, a Sun 170 with INGRES, and a
Sun 120 with Mistress [T+87a,T+87b,Tem88,U182].

4.1.3 MRDSM

Litwin and Abdelaziz have described the Multics Relational Data Store Multidatabase (MRDSM)
[L+86] that features the notion of interoperability among HDBMSs. Unlike the architectures of
Multibase and Mermaid, in which individual databases became components of an integrated
system, the MRDSM interoperable architecture forces a degree of cooperation and partnership
among databases. All participating DBMSs retain autonomy and control over their data.
Participating system database administrators define interdatabase dependencies which in turn define
interdatabase relationships with respect to the interdatabase integrity, privacy, and data meanings.

The general architecture of MRDSM is shown in Figure 4.4. MRDSM has no global schema.
Databases become participants when their export schema is defined to MRDSM. An export
schema may be a conceptual schema, a duta model, or a database view schema. The export schema
must conform to the relational model; the internal schema of the participant DBMS does not have
that constraint, however.

INTER-DATABASE INTER-DATABASE
DEPENDENCIES DEPENDENCIES

EXPORT SCHEMA EXPORT SCHEMA

INTER-DATABASE
DEPENDENCIES MRDSM SOFTWARE

EXPORT SCHEMA

Figure 4.4 A Typical MRDSM Configuration

Users access system databases through the MRDSM data manipulation language, MDSL [Lit87].
Notably, both retrieval and update operations are allowed. However, users must know the
contents of the participating databases to formulate MDSL queries. To assist users in query
formulation, MRDSM provides commands to instantly display the export schemata of the relevant
databases the users wish to access.

The goal of MRDSM is to allow users to formulate a system-wide query with a single statement.
Multiple database queries are generated through manipulation dependencies. Manipulation
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dependencies serve as an interdatabase message passing system. Manipulation dependencies route
"triggered queries", which are queries (i.e., insertion, deletion, etc.) that precede or follow
originating queries, throughout the system. Upon the occurrence of a query at a given database,
manipulation dependencies trigger subsequent queries to predesignated system databases. These
triggered queries may in turn become sources of other triggered queries.

MRDSM is being developed by INRIA (France). It is currently in the prototype stage and operates
on a domain of multiple MRDS relational databases running on Honeywell systems.

4.1.4 KADBASE

KADBASE is a flexible, knowledge-based interface in which multiple expert systems and multiple
databases can communicate as independent, self-descriptive components within an integrated,
distributed engineering computing system [HR891 As illustrated in Figure 4.5, KADBASE is
comprised of three basic components: a knowledge-based system interface (KBSI) for each
knowledge-based system (KBS) in the overall system; a network data access manager (NDAM);
and a knowledge-based database interface (KBDBI) for each database management system
(DBMS) in the system. A KBSI possesses knowledge about the schema of the KBS context (data
space) and uses that knowledge to perform semantic and syntactic translations for queries, updates
and replies. A KBDBI acts as an intelligent front-end to a DBMS. It possesses knowledge about a
specific local database schema and DML. The KBDBI uses that knowledge to perform semantic
and syntactic translations for queries, updates and replies. The NDAM receives global requests for
data services from KBSs, decomposes the requests into subrequests, and sends the subrequests to
the appropriate KBDBIs. It receives local replies from KBDBIs, combines these local replies into
a global reply, and forwards the global reply to the requesting KBS via the KBS's KBDI.

For example, if a request for data is issued by a KBS, the KBS's KBSI translates the request from
the data manipulation language (DML) embedded within the KBS to a global DML. The KBSI
forwards the query to the NDAM. The NDAM locates sources for the data referenced in the
request and decomposes the global query into a set of subqueries or updates to individual target
databases. The subqueries are then sent to the appropriate KBDBIs for processing. Upon
receiving the data from their supported DBMS, each KBDBI returns the data to the NDAM. The
NDAM aggregates the individual replies and forwards the global reply to the requesting KBS via
the KBS's KBSI.

The frame data structure is used to represent the KADBASE global schema and local schemata.
Mapping is done from the local schema to a local frame-based schema, and from the local frame-
based schema to a frame-based global schema by local and global KSs respectively.

The global data source mapping KS essentially plays the part of the data dictionary/directory -- a
table lookup exercise. Local mapping is more sophisticated, in that the LFBS may contain
information about semantic relationships between entities not found in the underlying data models.

One of the features of KADBASE is that it allows updates. Although not specified in the literature,
it appears that concurrency problems are avoided by insisting that all updates are
conducted/coordinated by the NDAM. While this approach does preclude the need to address
concurrency issues, it is not a particularly flexible approach in that it destroys all autonomy for
system DBMSs.
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Figure 4.5 The KADBASE Architecture [HR89]

Although data service requests in KADBASE are made by KBSs rather than users, one can think
of these KBSs as agents for users. However, the queries/updates that the KBSs generate are
essentially pre-defined in that they are limited by the scope of the application. Therefore, there is
no need to offer assistance in query formulation.

The KADBASE prototype and its demonstration applications (SPEX, a structural component
design expert system, and HICOST, an expert cost estimator for detailed building designs) have
been implemented on a VAX 11/750 and several MicroVAXs. The KADBASE sample databases
are under INGRES [HR87b,HR89].

4.1.5 ANSWER

Honeywell's ANSWER (Army's Nonprogrammer System for Working Encyclopedia Requests)
prototype assists untrained users in learning about the contents of an organization's databases
(assumed to be distributed and heterogeneous). Further, it helps them formulate queries of those
databases [D+88]. The ANSWER architecture is shown in Figure 4.6.

The Encyclopedia module contains high-level information representing an organization's activities
("enterprise objects"), mid-level information representing a global database schemata, low-level
information representing "local" database schemata, and information mapping local objects to
global objects to enterprise objects. The mapping information is the by-product of schema
integration occurring during Database Registration.

Database Registration allows the Encyclopedia Administrator to establish the semantic and syntactic
mappings required to make a new database known to the Encyclopedia. (Note this is performed
manually.) These mappings are the result of a four-phased schema integration process in which:
(1) component schemata are specified using a common data model; (2) schemata incompatibilities
are resolved; (3) object classes and relationship sets (i.e., object classes whose domains are equal,
contained, disjoint but integrable, etc.) are established; and (4) object classes and relationship sets
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are integrated. A novel feature incorporated into the Database Registration module is its
"knowledge extraction facility." The knowledge extraction facility is an expert system shell (i.e., a
user interface and inference mechanism) that aids in schemata integration. It automatically extracts
local schemata data element relationships from the Encyclopedia.

ENTERPRISE DATABASE QUERY
OBJECT REGISTRATION BROWSING FORMULATION

MANAGEMENT

DISTRIBUTED

ENCYCLOPIEDIA 6QUERY
PROCESSING

Figure 4.6 The ANSWER Architecture [D+88]

The Browsing module presents users with graphical representations of Encyclopedia object names
and relationships. It presents menus to the user that allow the user to select object types for access,
to scroll or page through object types or instances of the object types, and to get more detail about
specific object types or instances (zooming).

The Query Formulation module is somewhat of a misnomer. As described in [D+88], assistance
in query formulation is offered in two ways. Firstly by enabling the user to browse the
Encyclopedia (through the Browse module). And secondly, assistance is rendered by offering
users cither a syntax diagram [L+84] or an interactive SQL syntax error detector, or both. This
second feature of the Query Formulation module does not appear to have been implemented as of
this writing. Another unimplemented module is the Distributed Query Processing module. The
developers plan on using an existing distributed DBMS, such as Honeywell's Distributed Database
Testbed System, to implement distributed query processing. The query processing goal of
ANSWER is to be able to automatically formulate and optimize queries that can be executed on
distributed HDBMSs. It should be noted, however, that the authors' definition of heterogeneous
only extends to HDBMSs supporting SQL.

The initial prototype of ANSWER is currently being implemented. The goals for the initial
prototype are to allow users to maintain objects corresponding to high level concepts in the
enterprise model, register new databases with the Encyclopedia, browse through the enterprise,
derived and schema objects, and formulate SQL queries against schema objects.

4.1.6 ACDB INTERFACE

Semmel et al., [S+871 have proposed an architecture for an intelligent interface to the U.S. Army's
corporate database (ACDB). The objective of this research is to construct an interface that is able
to help casual users query the Army corporate database and assist those users in the analysis of
query results. The interface has been designed to support a consolidated SQL database that has
been composed from data elements of various production databases. As one can discern from
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Figure 4.7, it is being designed to incorporate practically every feature imaginable (the "Swiss
Army knife" of intelligent DBMS interfaces).

The function of the Intelligent Navigational Assistant (INA) is to assist users in constructing
queries and analyzing results after query execution. It is responsible for constructing SQL queries
(to include identifying syntactic errors and semantic inconsistencies) and analyzing query results
(to include security analysis i.e., the "Ancillary Functions" of Figure 4.7).

The Knowledge Base is the primary knowledge support structure. It stores user vocabulary
knowledge, query formulation knowledge, data model knowledge, update and validation criteria
knowledge, and ancillary knowledge (such as security knowledge).

The Update Manager is designed to monitor the transfer of data from the Army's production
databases to the corporate database. Temporal information is recorded, which is used by the INA
to determine potential temporal inconsistencies. The Update Manager also insures that updates to
the corporate database are not inconsistent.

The System Manager is designed to manage the total Al interface environment. Its task is to
provide knowledge structure maintenance capabilities so that the knowledge base and augmentation
files may be reviewed or modified by the Al interface administrators. It also incorporates tools that
enable it to monitor and accrue statistics concerning interface performance and user utilization.

The Augmentation Files contain knowledge of user profiles, temporal and inconsistent data files, a
user query history file, and security profiles.

A preliminary prototype was built at Johns Hopkins Applied Physics Lab. The prototype is PC-
based and allows users to formulate SQL queries. The prototype will guarantee syntactic
correctness but not semantic correctness. The project is currently inactive; the Army withdrew its
funding because of fiscal constraints.
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Figure 4.7 Functional Architecture of the ACDB Al Interface

4.1.7 SUMMARY

The systems reviewed in the preceding sections are all designed to address the problem of
integrating existing databases. Table 4.1 juxtaposes these systems against the features that are of
particular interest to this research. While much of this information has been presented earlier,
certain aspects warrant further discussion.
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The majority of the systems incorporate the relational model as their global data model. The stated
rationale behind this choice is the relational model's ubiquity. While this property may reduce the
time and complexity associated with implementing a heterogeneous system (i.e., there will be less
translation involved since most DBMSs are relational), it does not reduce the fact that the relational
model is very restrictive in its ability to accurately represent an enterprise. Semantic data models,
such as the functional data model (used in Multibase) and the entity-relationship model (used in
ANSWER), allow the enterprise to be represented in a more flexible and powerful way than
through traditional models. However, these models do not afford a method to incorporate
knowledge and data in a unified manner. This is a disadvantage when attempting to implement an
intelligent interface.

The KADBASE frame data model (which is also semantic data model based) is analogous to the
Knowledge/Data Model in that each frame-based schema incorporates knowledge about the local
schema it describes. However, it falls short of incorporating all of the important data modeling
primitives of the KDM. Further, it shares the property of semantic data models in which objects
are essentially static, rather than being viewed to have intrinsic behavior (such as having the ability
to send and receive messages) as in the Al world.

While the majority of systems reviewed make use of data dictionaries, there has been little effort to
develop and incorporate an integrated and active global thesaurus. The ANSWER system
thesaurus can be regarded as a thesaurus only in a very weak sense. That is, users can browse the
thesaurus to determine the broader and narrower terms. However, the thesaurus fails to provide the
necessary functionality for an active thesaurus as defined by McCarthy [McC88].. Further, it is
passive in nature in that users must access it, rather than it playing a proactive role with the user.

The proactive role of the thesaurus centers on providing users with query formulation assistance.
These systems are weak in this regard. Most have no help with query formulation. The Mermaid
user interface provides standard DBMS interface support but offers assistance only in editing
queries. As mentioned in the review of ANSWER, the notion of query formulation help is
deceiving in that users must guide themselves through the database content familiarization process.
The ACDB system is the only system in which active assistance with query formulation is
proposed.

A final point on Table 4.1 is that the notion of an intelligent interface appears in none of the
prototype systems. It has been proposed for the ACDB system, but has not been implemented in
the preliminary prototype.
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Table 4.1 Summary of Pertinent System Features

System

Feature MULTIBASE MERMAID MRDSM KADBASE ANSWER ACDB

Global Data Functional Relational Relational Frame Entity/ Relational
Model Relationship

Global DML DAPLEX SQL or MDSL Frame SQL SQL
ARIEL

Global No (Schema Data No Data Thesaurus Data
Thesaurus or Integration) Dictionary Dictionary Dictionary
Data
Dictionary

Global Schema Manual Manual N/A Manual Knowledge Manual
Construction Extraction

Facility

Global Updates No SQL Database Yes Yes No No

Query
Formulation No Syntax Only No No Yes Yes
Help
Query
Optimization Limited Yes No No Planned No
Facility

Intelligent
Interface No No No No No Yes

4.2 The knowledge/data model

The Knowledge/Data Model is an extension of the semantic data model and draws heavily upon the
features of the functional data model [SK77, KP76] and the object-oriented paradigm [Z+86].
Developed by Kerschberg and Potter, the KDM belongs to a class of hyper-semantic data models,
which facilitate the incorporation of knowledge in the form of heuristics, uncertainty, constraints
and other AI concepts, together with object-oriented concepts found in semantic data models
[PK89]. It contains modeling features that allow the semantics of an enterprise to be captured.
These semantics include data semantics, as captured by semantic data models and knowledge
semantics, as captured in knowledge-based systems.

The KDM specification language is known as the Knowledge Data Language (KDL). The KDL
maintains a knowledge base that contains the system's domain specification knowledge, the KDM
specification knowledge, the KDM meta-knowledge, and the domain KDM schema. The domain
specification knowledge, the KDM specification knowledge and the KDM meta-knowledge are
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referred to as the control knowledge. The control knowledge is used for manipulating and
handling the KDM primitives (described later), domain meta-data, and knowledge. The domain
KDM scheme is used to define and maintain the domain database. Knowledge, rules,and data are
represented in the KDM as <attribute, object, value> (AOV) triples. Objects are related to one
another in a semantic net through six KDM relationship primitives. These are generalization,
classification, aggregation, membeisnip, constraint/heuristic, and temporal. They are described
briefly below:

Generalization: Generalization provides the facility in the KDM to group similar objects
into a more general or higher-level object. This is done by means of the "is-a" relationship.
This generalization hierarchy establishes the inheritance mechanism.

Classification: Classification provides a means whereby specific object instances can be
considered to a higher-level object-type (an object-type is a collection of similar objects).
This is done through the use of the "is-instance-of' relationship.

Aggregation: Aggregation is an abstraction mechanism where an object is related to the
components that make it up via the "is-part-of" relationship.

Membership: Membership is an abstraction mechanism that specifically supports the "is-
a-member-of' relationship. The underlying notion of the membership relationship is the
collection of objects into a set-type object.

Temporal: The temporal relationship primitive relates object-types by means of
synchronous and asynchronous object linkages.

Constraint/Heuristic: This primitive is used to place a constraint on some aspect of an
object, operation, or relationship via the "is-constraint-on" relationship, or to attach an
heuristic via the "is-heuristic-on" relationship.

These primitives give a systems designer the abstraction mechanisms requisite for flexible
knowledge and data modeling. The generalization primitive allows classes to be organized into
hierarchies of superclasses and subclasses. The classification primitive allows individual objects to
be classified as instances of a class. The aggregation primitive allows the formation of complex
object-types from a number of simpler object-types. The membership primitive allows objects or
classes to be grouped as members of some higher level set of objects. Constraints express the
semantic relationships that exist between the extensional data of the KDM schema, and heuristics
can be used to derive intensional data. Lastly, temporal primitives express the temporal
relationships that exist between object-types representing tasks or events.

4.3 The knowledge/data language

Associated with the KDM is a schema specification language called the Knowledge/Data Language
(KDL). Figure 4.8 shows a general template for an object-type (class) specification employing the
KDL. KDL reserved words are shown in uppercase letters. Identifiers shown in lowercase letters
are place holders for user input. Optional items in the template are enclosed in square brackets, and
at least one of each of the items contained in curly brackets must be part of the specification.
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OBJECT-TYPE: object-type-name HAS
[ATTRIBUTES:

{attribute-name:
[SET OF I LIST OF] value-type
[COMPOSED OF {attribute-name,)]

[WITH CONSTRAIN rS (predicate,)]
[WITH HEURISTICS {rule,];)1

[SUBTYPES:
(object-type-name,}l

[SUPERTYPES:
{object-type-name,)]

[CONSTRAINTS:
(predicate, I

[HEURISTICS:
(rule,]

[SUCCESSORS:
(object-type-name,] l

[PREDECESSORS:
{object-type-name,l]

[CONCURRENTS:
(object-type-name,)]

[MEMBERS:
[member-name: member-type,)]

[INSTANCES:
(instance,)]

END-OBJECT-TYPE

Figure 4.8 KDL object-type specification template

Example: Consider a hypothetical Air Force C2 example in which one models the concepts
and relationships associated with an aircraft squadron. The object types are Squadrons, Aircraft,
Pilots, Missions, and Sorties. A squadron has pilots, schedules aircraft, and conducts missions
consisting of several sorties. These are depicted in Figure 4.9 using the KDM and its graph
representation formalism which is based on the Functional Data Model. Single-, double-, and
triple-headed arrows denote single-valued, set-valued and list-valued functions, respectively. The
rectangles denote object-types. Here we note that some objects are standard while others are
inferred (virtual) (e.g., Aces and the Strength of a Squadron). In this particular example the
concept of a squadron's strength, a function, is based on the number of missions flown, aircraft
scheduled, the number of pilots, and the ratio of aces to regular pilots. The English statement for
the squadron's strength is:

A squadron's strength is "Strong" if the squadron conducts at least 50
missions per month, schedules more than 20 aircraft, has at least 10
pilots, and the ratio of Aces to pilots is at least 0.25.

The associated heuristic, SH, for the strength attribute is:
FOR EACH s in Squadron
SH-CI: IF COUNT(conducts (s)) -50 AND
SH-C2: IF COUNT(has-pilots(s)) 10 AND
SH-C3: IF COUNT(schedules(s)) > 20 AND
SH-C4: IF RATIO(COUNT(aces(s) TO COUNT(pilots (s))) 0.25

THEN
R 1: strength(s) = "strong"
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Note that the virtual type Aces can also be defined in terms of an heuristic that defines those pilots
qualifying to be considered Aces. In processing the strength heuristic, the KDM processor would

first evaluate the Aces (possibly) through inference and then evaluate the strength heuristic.

An important issue is that the KDM's constraint and heuristic primitives allow knowledge-based
concepts to be specified as easily as database structures. This capability is similar to database
views, but the view is very tightly associated with the schema. In addition, views involving views
are quite natural, e.g., the Aces virtual type used in the strength heuristic.

In working with the KDL, we have recognized its weakness in modeling the behavior aspects of a
domain, because it does not associate operations with objects. Potter's continued, independent
work with the KDM describes a variant of the KDL called the Active KDL which does associate
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operations with objects (Potter89). This the KDM and the Active KDL are being implemented by
Potter's group at the University of Georgia.

The advantage of using the KDM

The advantage of using a hyper-semantic data model, such as the KDM, is that it allows a system
designer to represent both knowledge and data in a unified, object-oriented structure. By
associating domain knowledge and heuristics with objects, one can model the behavior of objects
as well as the dynamic relationships with other objects. The significant features of a hyper-
semantic data model are:

0 The incorporation of heuristics to model inferential relationships.

• The capability to organize these heuristics and to associate them with specific items
involved in the inferential relationships.

0 The capability to incorporate heuristics and constraints in a tightly coupled (unified)
manner.

• The ability to define inferred (virtual) objects.

0 A unified representational formalism for knowledge and data.

* A mechanism that allows for abstract knowledge typing (handling rules/constraints as
objects).

Heuristic relationships among database objects and object-types can be coded which give the
knowledge/data administrator a facility for defining object restrictions, specifications and inferred
information regarding the nature of an object. This allows one to compare the meaning of system
objects to user query objects in order to determine the user's meaning of those objects (a very
useful capability for improving query specifications). Users can be allowed to express queries in a
more general manner because the KDM formalism allows the semantics of database terms to be
captured.

The majority of the systems surveyed incorporate the relational model as their global data model.
The stated rationale behind this choice is the relational model's ubiquity. While this property may
reduce the time and complexity associated with implementing a heterogeneous system (i.e., there
will be less translation involved since most DBMSs are relational), it does not reduce the fact that
the relational model is very restrictive in its ability to accurately represent an enterprise. Semantic
data models, such as the functional data model (used in Multibase) and the entity-relationship
model (used in ANSWER), allow the enterprise to be represented in a more flexible and powerful
way than through traditional models. However, these models do not afford a method to
incorporate knowledge and data in a unified manner. This is a disadvantage when attempting to
implement an intelligent interface.

The KADBASE frame data model (which is also semantic data model based) is analogous to the
Knowledge/Data Model in that each frame-based schema incorporates knowledge about the local
schema it describes. However, it falls short of incorporating all of the important data modeling
primitives of the KDM. Further, it shares the property of semantic data models in which objects
are essentially static, rather than being viewed to have intrinsic behavior (such as having the ability
to send and receive messages) as in the Al world.
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4.4 Intelligent query processing using the Intelligent Heterogeneous
Autonomous Database arciitecture (InHead)

The InHead approach is to extend the state of the art in heterogeneous DBMS interface technology
by integrating Artificial Intelligence (AI) problem-solving techniques with advanced semantic data
modeling techniques. The approach draws upon the flexible and opportunistic problem-solving
capability of blackboard architectures, and the expressive power of the Knowledge/Data Model
(KDM) which allows both knowledge and data to be represented in a unified data knowledge
representation.

In contrast to the sequential and hierarchical nature of standard interfaces to heterogeneous
databases, e.g., Mermaid, Multibase and MRDSM, the InHead system incorporates an object-
oriented Knowledge/Data Model, the KDM, and knowledge sources (KSs) possessing global and
local domain expertise.

These KSs work together to provide users with simultaneous, multiple viewpoints of the system at
varying levels of abstraction. One KS can be looking at a user's problem from a global
perspective, while another can be viewing it in terms of a local database. In this way users can
more fully determine system-wide data relationships.

Furthermore, in decomposing user queries, the opportunistic nature of the blackboard provides
users with responses that are not only more complete (by KSs being activated on partial and
incremental information), but reflect a deeper understanding of the user's desires. Also, it is
envisioned that one KS will be a "User Model" and agent that contains a characterization of the
user's intentions or goals during the query sessions.

A novel feature of InHead is a global thesaurus KS. The thesaurus addresses semantic
heterogeneity issues in which data items may be similarly named, are related, are a subclass of,
and/or are a superclass of data items located elsewhere within the system's databases. In this
regard, the thesaurus plays the traditional role of data dictionary. What separates this approach
from others is that the thesaurus takes on a new role: it actively works with users to reformulate
queries based on knowledge associated with terms and their usage in the local databases. Figure
4.10 illustrates the architecture.

Conceptually, the system works as follows. Upon accepting a user query, the system controller
consults the global thesaurus. If the solution to the query is obvious, the controller acts upon the
query by sending it to the appropriate database(s). If not, the controller posts the query on the
blackboard. That enlists the aid of the KSs, which are domain experts over their respective
DBMSs. The KSs cooperatively try to find a solution to the query. If no solution can be found, a
request to the user for clarification or further information is generated.

Thus the InHead thesaurus is used to perform semantic query processing of the user's original
request before submitting the reformulated query to the local databases for processing. The
controller then conducts the necessary query translation and optimization, sends the query (or
subqueries) to the appropriate database(s), integrates the query results (if required), and provides
the answer to the user.
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Figure 4.10 The Intelligent Heterogeneous Database (InHead) Architecture

4.4.1 The active and intelligent global thesaurus

Conventional thesaurus functions include meta-data management, data descriptions, descriptions of"
the relationships between the terms used to describe meta-data, as well as term definitions and
descriptions. Thesauri become active when they are extended to provide functions such as: (1)
validating and performing consistency checks on input to the thesaurus itself; (2) indexing and
converting data values; (3) automatically translating queries using different variants of names; and
(4) actively participating in on-line help (i.e., offer suggestions). By incorporating knowledge (in
the form of heuristics and constraints attached to objects) into the thesaurus, we have not only
made the thesaurus more active, but intelligent! Our thesaurus can act both as a repository of
knowledge of data-item terms and of their usage, and as an active participant in formulating
improved query specifications (i.e., by providing global dam-item definitions and locations).

In essence, our active and intelligent global thesaurus provides the strategic problem-solving
knowledge required to control semantic heterogeneity. The thesaurus is the ideal KS to resolve
issues of semantic heterogeneity. Local database terms, concepts, relationships, constraints and
operations that have semantic variants can be "encapsulated" into an abstract object type with
sufficient domain knowledge to be able to translate and interpret the appropriate meaning for an
object. The active thesaurus objects can invoke appropriate methods to present the proper views to
the various local databases and to translate the global concept to the corresponding terms for the
local KS.
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The thesaurus could be used to incorporate newly discovered knowledge that might result from an
examination and integration of KSs associated with each local site and with the overall problem-
solving interactions among the sites in responding to semantically ambiguous queries. This
knowledge could then be used as strategic case-based knowledge in future problem-solving
exercises. The configuration management issues associated with knowledge evolution are topics
of current research in InHead.

4.4.2 A troop capacity example query

To more fully illustrate the research approach, the following example is presented. It shows how
the In-lead KSs interact on a blackboard to answer a user query. The example also serves to
highlight the aforementioned research issues. The existence of the intelligent interface and of the
databases it supports is assumed. The schemata for these databases appear in Figure 4.11.

ARMY AIRCRAFT DATABASE:
FXD_WING(SER#,MOD#,CAPACITY)
ROTARY(SER#,MOD#,LIFT)

NAVY AIRCRAFT DATABASE:
BOMBERS(SER#,MOD#,CAPACITY,RANGE,CREWSZ)
FIG HTERS(SER#,MOD#,SPEED,CREWSZ)
UTILITY(SER#,MOD#,CONFIG)

AIR FORCE AIRCRAFT DATABASE:
TRANSPORT(SER#,MOD#,CAPACITY,SPEED,RANGE)
BOMBERS(SER#,MOD#,TONNAGE,SPEED,RANGE)
FIGHTERS(SER#,MOD#,SPEED,RANGE)

Figure 4.11 System Database Schemata

Figure 4.12 shows the translation of the Figure 4.11 schemata into corresponding KDM schemata.
For brevity, Figure 4.12 shows only one of the object types (which corresponds to the above
relations) for each of the KSs. Note the natural way in which the KDM paradigm depicts the
objects, operations, and relationships being represented in the underlying system databases.

Suppose that a Pentagon official wished to determine the troop carrying capacity of all military
aircraft. Using the InHead system the Pentagon action officer would pose the following simple
SQL query to the interface:

SELECT capacity FROM aircraft WHERE (capacity = troop)

There is a great deal of ambiguity in this query. Firstly, the meaning of capacity. Should cargo
capacity that can be converted to troop capacity be included? Secondly, one needs to know what is
meant by aircraft. Are all aircraft included as the queries implies? Did the user really mean to
include dirigibles, trainers, and spy planes?

The InHead interface begins the reformulation process by placing the query on the blackboard.
The global thesaurus knowledge source (KS) recognizes the object type aircraft and places the
aircraft object subclasses that it knows about (i e., bombers, fighters, transports, utility,
fxdwing, and rotary) on the blackboard. Those subclasses are then returned to the user for more
specificity (including prompts for universal and existential quantification).
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GLOBAL THESAURUS KS: ARMY DATABASE KS:

OBJECT-TYPE aircraft HAS OBJECT-TYPE fxd-wing HAS
ATTRIBUTES ATTRIBUTES

ser#: INTEGER, capacity: REAL;
mod#: STRING;

SUPERTYPES
SUPERTYPES aicraft

vehicle; END-OBJECT-TYPE

SUBTYPES NAVY DATABASE KS:
bombers,
utility, OBJECT-TYPE utility HAS
fighters, ATTRIBUTES
transport, config: STRING,
fxdwing, passengerscapacity: INTEGER /* inferred
rotary. attribute

END-OBJECT-TYPE WITH HEURISTICS
IF config(X):= "personnel"

AIR FORCE DATABASE KS: THENpassengercapacity(X)=
CMPTPASS_CAP(X)

OBJECT-TYPE transport HAS /* CMPT PASSCAP is a function that
ATTRIBUTES causes a read to the database (in the appropriate

capacity: REAL, language) based on the mod# of the aircraft
speed: REAL, ELSE IF config(X):= "cargo"
range: REAL; passenger capacity(X) = CMPT_CAR-

PASS_CAP(X)
SUPERTYPES /* CMPT CAR-PASSCAP is a function that
aircraft. causes a read to the database (in the appropriate

END-OBJECT-TYPE language) based on the mod# of the aircraft
/ e.g., SELECT capacity
/P FROM cargo-pass
f* WHERE (mod# = mod#(x))

SUPERTYPES
aircraft.

END-OBJECT-TYPE

Figure 4.12 The KDM Multiple Knowledge Sources

It is assumed that the action officer desires to exclude bombers, fighters, and rotary aircraft, and
this is stated to the InHead interface. By means of a predefined KDM "membership" relationship
primitive, the thesaurus knows that Army rotary aircraft carry troops and alerts the user to that fact.
(Also note that the thesaurus will have knowledge to help the user with query formulation at the
syntactic level as well.)

Next, the attribute type troop.capacity is addressed. Troop.capacity is unknown to the global
thesaurus KS, but it is known to the local database KSs. The Army database KS has information
(via its data dictionary, assumed and not shown in the KS KDM schema) that the attribute
"capacity" of fxd-wing aircraft is specified in terms of troops. It has further knowledge that troops
are also personnel. The Army database KS places the synonym "personnel.capacity" onto the
blackboard and formulates a retrieval operation to its database. Upon seeing personnel.capacity on
the blackboard, the Air Force and Navy KSs can now act, since "capacity" of Air Force transport
and "config" of the Navy utility object class have heuristics to derive personnel capacity (as
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illustrated in the Navy KS schema). This action points out the way the KSs work together to
derive more complete answers.

It is apparent from this example that an "intelligent" system, such as the user model and interface,
must have a great deal of domain knowledge gained through domain (or enterprise) analysis. This
approach allows that domain knowledge to be represented and incorporated in a natural fashion.

4.4.3 An artillery movement example

For this example, suppose that we have an expert system whose task is to provision 10 M 110
Howitzer Weapon Systems for departure to the Middle East in 5 days. Thi. expert system is
written to interact with three primary databases: 1) a characteristics database, which describes the
physical characteristics of the component parts of weapons systems; 2) a weapons systems
database which describes the components of weapons systems: and 3) a logistics database which
describes the logistics support required to sustain weapons systems in combat. Two secondan,
but related databases are: a personnel database for crew requisitioning, and .1 ships database for
obtaining space on seagoing vessels.

The expert system, which plays the role of the user in this example, has a task-oriented functional
view of the problem as follows. Potentially semantic ambiguous terms are denoted in bold-face.

Overall Goal: Provision 10 MI 10 Howitzer Weapon Systems for departure to the Middle East in

5 days

Subgoals

1.0 Determine Availability of 10 Ml 10 Howitzer Weapon Systems.

1. 1 Determine the locations of such items, subject to constraint of being within 500 miles of
Norfolk, Virginia.

1.2 Send requests for items to locations to hold for shipment.

2.0 Determine Availability of Logistics Support Units

2. 1 Specialize camouflage to desert conditions.

2.2 Specialize radar to desert night vision.

2.3 Specialize rations to high water content rations.

2.4 Specialize clothing to lightweight, chemically resistant.

3.0 Determine Availability of Sealift Capability along the Eastern Seaboard.

3.1 Calculate total weight and volume for each system.

3.2 Provision crews for each system.

3.3 Assign crews and weapons to ships.

3.3.1 Notify crews.

3.3.2 Send shipment requisitions to sites holding weapons systems.
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We now discuss several of the possible cases in which semantic heterogeneity is manifested in this
system.

The first ambiguity occurs in the meaning of the word miles. The expert system may be assuming
nautical miles while the logistics database might be assuming statute miles. When the logistics
database sends its answers to the expert system, the data includes measurement units in its
data/knowledge packets. The thesaurus is consulted for any unit translations. If ambiguity
persists, the user can be consulted to provide appropriate definitions.

By focusing on Subgoal 1.0, we now look at the cooperative problem-solving and active database
aspects of InHead. Suppose that in addition to the above databases, the system had an Army
installation database, with attributes such as name, type, and location, and a database of Army
units that described a unit's location, its weapons systems,its readiness status, and its deployment
status. After the expert system retrieves all of the M1 10 locations, it begins to determine if these
installations satisfy the 500 mile constraint. These locations have been returned by installation
name and therefore, must be converted to grid coordinates to compute their distance in statute miles
from Norfolk, VA. Thus the expert system places a knowledge packet on the
blackboard in the form of <OPERATION,OBJECT,RTNVALUE>, for example,
<SELECT,WPNSYS.LOCN = "FT BRAGG, NC",GRID>.

Because the blackboard allows KSs to see and understand system goals and subgoals, they can
actively contribute to the process. In this case the installation database KS, understanding
locations in longitude and latitude, helps by placing <nil,INST.LOCN="FT BRAGG,
NC",39°N35°W> on the blackboard. The thesaurus KS, knowing that there are several instances
of LOCN (figure 4.13 shows a KDM conceptual model of a portion of the thesaurus KS), invokes
a method to translate long/lat to grid coordinates and places <nil,LOCN="FT BRAGG,
NC",12344321> on the blackboard, which is then used by the expert system to compute the
distance from Ft, Bragg, NC to Norfolk, VA.

Another example of a KS actively contributing to satisfy Subgoal 1.0 is found in the KS for the
unit database. Noticing on the blackboard that MI 10s from Ft. Pickett, VA have been targeted for
.Middle East deployment, the KS checks that availability of M1 10s on Ft. Pickett. By querying its
database the KS can determine the deployment status and readiness category of M 11Os on Ft.
Pickett. If an MI 10 is already deployed or unfit for combat, the KS could place that information
on the blackboard.

KS heuristics can also make their respective databases appear active. For example, reacting to an
instruction to transfer 2 M1 10s from Ft. Pickett to the Middle East, the KS could alert the expert
system that the action will cause the readiness category to fall below a certain threshold, resulting
in a condition that violates a stated local database constraint.

The expert system might specify the task, "Provide logistic support for ten M 110 howitzer systems
with desert camouflage." But the logistics support database has an attribute for camouflage in
terms of color combinations, rather than the term desert. The global thesaurus knows that desert
colors are grey and brown, so that the semantic heterogeneity is handled easily. Also, if that
information were not in the thesaurus, the expert system would engage a dialog with the user to
define the term for the thesaurus.
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Figure 4.13 Conceptual Model of Several Types of LOCATION

Another instance of ambiguity surrounds the use of the term crews. Crews can be either
operational crews or maintenance crews. In provisioning crews for each system, the system must
know if one or both is needed. That type of information can be placed in the thesaurus. A default
rule could be that operational crews take precedence over maintenance crews with the assumption
that one maintenance crew can maintain several systems.

4-23



5 Coordinated Problem Solving with Multiple Heterogeneous Knowledge
Sources

There are two general strategies to problem solving. First, to use a single approach, paradigm, or
method, extending its capabilities when necessary due to changes in the problem domain or one's
understanding of the domain. This approach has been extensively researched in several disciplines
and domains, such as operations research, statistical modeling, simulation, and artificial
intelligence (particularly, machine learning).

An alternative strategy to extending or modifying a single approach is to use the results obtained
from using that single approach as input to another approach, paradigm, or method. This latter
strategy minimizes the complexity of each individual reasoning approach and possibly, too, makes
the knowledge representations more "modular." However, the advantages of this strategy are
mitigated by the necessarily complicated control of the entire reasoning process. Specifically, the
problem of interfacing the various approaches is highly significant (e.g., how to "couple" the
approaches, when to use one or the other, and what syntax and semantics to use). This section
discusses these problems and suggest possible solutions. Two diverse areas are used to exempliiy
aspects of the problem; diagnostic problem solving (specifically, automated fault management of
telecommunications networks) and database query optimization.

5.1 Multiple knowledge sources for diagnostic problem solving

We view the diagnostic process as beginning when the target system exhibits evidence of a
problem; a set of symptoms is generated. The diagnos.ician, or diagnostic system, views these
symptoms and searches memories (virtual or physical) where these symptoms have been generated
when the target system was in a similar configuration or setting. If an exact match is found, the
previously diagnosed cause is proposed as the most likely cause of the current set of symptoms.
In other words, case-based reasoning is performed. If further testing indicates that this diagnosis
is inaccurate, if only a partial match is found (e.g., there were similar symptoms but the setting or
the configuration was different), or if this set of symptoms has never been seen before, the
diagnostician, or diagnostic system, uses this finding to guide another analysis of the problem.
But this analysis uses knowledge of the target system's structure and behavior, together with
knowledge of how the target system generates symptoms of the type being observed. In other
words, model-based reasoning is performed.

The diagnosis from this detailed structural/symptomatic analysis is tested. If it is accurate, a
memory of the symptoms, the current target system configuration, and the resulting diagnosis are
stored; a new positive case is created. If it is not accurate, an explanation of the failure is sought.
This explanation may result in some symptoms classified as secondary (i.e., not directly generated
by the problem). These secondary symptoms may be removed from further consideration or they
may be grouped or clustered when multiple problems are suspected. The diagnostic cycle would
be repeated for this same problem resulting in either an accurate diagnosis, or a failure to diagnose
the problem with the knowledge currently available. If the former result is achieved, a positive
case is stored, but if the latter result is achieved, a negative case is stored. In this way, the
diagnostician or diagnostic system will be able to recognize the limitations of the available
knowledge and request additional knowledge, rather than expend resources in what will prove to
be a futile effort. An architecture to support such a diagnostic reasoning process is described in
Figure 5.1.
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Figure5.1 Diagnostic System Architecture

It is clear from this description of diagnostic problem solving that heterogeneous information types
typically are needed. Additionally, heterogeneous problem-solving strategies are needed.
Specifically, a problem-solving approach that reasons with stored problems and their solutions is
needed as is a problem-solving approach that reasons with a representation of the structural and
symptomatic knowledge. One such possible combination is a case-based reasoning (CBR) system
and a model-based reasoning (MBR) system, respectively. To illustrate this, two examples are

given; one from the domain of fault management in telecommunications networks and one from the
domain of databases, specifically query optimization. Though these two examples may initially
seem unrelated, it is shown that the same approach may be applied to both.
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5.1.1 Telecommunications fault management example

A complex and evolving domain is telecommunications networks, particularly the transcontinental,
long-haul, public switching networks such as those provided by US Sprint, MCI, and AT&T (and
all the "Baby Bells" like US West). These networks provide long-distance telephone services by
establishing a physical "copper-to-copper" connection between two or more parties through
switches, multiplexers, digital cross-connects, and so forth. The "health" of these networks is
monitored by technicians known as surveillance engineers who monitor situation reports 24-hours
a day, seven days a week. These reports are generated by a variety of computer-based systems
which are connected to a variety of monitoring devices. As these reports (called alarms) scroll
across the monitors, the engineers attempt to determine the probable failure and to schedule repair
activities. Time is a critical factor in the diagnosis and repair process since the fault may be
blocking revenue-generating message traffic and a single blocked or disconnected call can be
sufficient cause for a customer to change carriers. But the surveillance engineers may not have all
the necessary or relevant information. For example, a piece of equipment can generate an alarm as
soon as it is instalted. But a surveillance engineer may not be aware of this connection until the
physical model of the network is updated. Thus, the surveillance engineer would be seeing what
appears to be phantom alarm messages; alarms being generated by what appears to be nonexistent
equipment.

A main problem, then, in automating failure diagnosis in a complex and evolving system is to
capture knowledge about the current physical condition, or state, of the system. There are three
parts to this knowledge. One part deals with the physical representation of the system; what device
is connected to what other -. vice. Another deals with the problem being reported; what devices
are reporting the problem. The third deals with the relationship between the first and second parts;
under what conditions is problem A reported by device B (or an A-type problem reported by a type
B device). The utility of any automated system will depend on the efficiency of knowledge
representation, not only in terms of how completely the knowledge is represented but also in how
rapidly such knowledge can be used.

A simplified example of a telecommunications network is presented in Figure 5.2 [KBD+90].
Ihis example will be used throughout this section to illustrate how faults arise, how they are
detected, and how their cause (or causes) are pin-pointed by network surveillance engineers.
Though current telecommunications networks are far more complicated tihan depicted here, the
essential elements are included. The relationship of a general Network Information System (NIS)
- the system typically used to collect and monitor information about the network as a whole - is
shown by the lines of message flow from entities like switches, digital multiplexers, and so forth.
The information flows between the communications network and the NIS are not pursued here,
since we are interested in analyzing alarm data, not with how this data arrives.

The data for the example network of Figure 5.2 is described in Table 5.1 [KBD+90] (below) and
will be used throughout this section.
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Table 5.1 Sample Data of Example Telecommunications Network

Network Components Description

AMUX I, AMUX3 Analog Multiplexers (FDM)

Circuit 1, Circuit 2 Circuits

City A, City B Cities

DMUX 1, DMUX2.1, etc... Digital Multiplexers (TDM)

DRAD2, DRAD3 Digital Radios
DXC 1, DXC2 Digital Cross Connects

ESF1, ESF3 Extended Superframe Converters
FRAD 1, FRAD3 Fiber Radios

FTSl, FTS2 Fiber Transmission Systems

J1, J2, J3 Junctions

PCM1 Pulse Code Modulation
RPl, RP2, RP3, etc. Repeaters

S1, S2, S3, S4, S5, S6 Stations

SW1, SW2, SW3 Switches

TMX3 Transmultiplexer (FDMfTDM conversion)

ECI, EC2, EC3 ElementClusters

CCM- 1, CCM-2, etc. ContactClosureMonitors

This knowledge has been expressed in terms of two additional models, both based on the
Knowledge Entity-Relationship (KER) model [KBH89]; one to represent the structural
knowledge, the other to represent the symptomatic knowledge (the alarms). These models are
depicted in Figure 5.3 and Figure 5.4, respectively. The KER Model is based on the concepts
and pr -ritives of the Knowledge Data Model presented earlier. The KER also provides for Entity
Types and Relationship Types as in the ERA model with the additional semantics that a relationship
type may also serve as an entity type as for example the Adjacent Objects, Path, Element Cluster
types in Figure 5.3. Moreover, heuristics may be associated with attributes as well as entity and
relationship types as in the KDM.
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Figure 5.3 KER Structural Diagram of a Telecommunications Network

A problem becomes conspicuous when alarm messages are generated in the Network Information
System (NIS). Typically, this infumation is being continually updated; about every 30 seconds

[GW88]. Analysts in the NIS determine the type of problem by using their knowledge about the
type(s) of alarms being generated (i.e., symptomatic knowledge) and their knowledge of the
network elements which are generating the alarms (i.e., structural knowledge).

Suppose a number of primary faults occur in our example network. Specifically, RPl drops one of
its circuits, radio FRAD1 has a failure, and there is a fiber outage at DMUX1. The following
alarms might be simultaneously generated:

* Al1 (congestion at radio FTS 1)

* A2 (fiber outage at DMUX 1)

* A5 (failure at radio FRAD 1)
* A3, A4, A6 (congestion at RPI, RP2, and RP3)

A surveillance engineer would notice that all of these alarms are network element alarms (using
his/her knowledge of the network's alarm behavior). In other words, each of these alarms is an

ind;cator that at least one fault exists with a device that carries tariff messages. The engineer would
use his/her knowledge of the physical network to identify the potentially faulty network elements.
This is done by associating the alarms with paths. For example, alarms Al, A3, A4, A6 are
generated by elements on same path (cf. Figure 5.2). Since A2 and A5 are on different paths, they
are analyzed separately. Finally, the RPl fault is identified as primary by queries to the monitors
of the repeaters in that path (i.e., "If RPx.input=notokay or RPx.output=notokay then
RPx.status=faulty").
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Figure 5.4 KER Diagram of an Alarm Monitoring Network

The first time this particular type of fault occurs, there would be few worthwhile recoLlections (i.e.,

either instances of similar faults in different equipment, or different faults in similar equipment,
would be recalled). Thus, the recollection step would be quite short and not very useful. A
detailed analysis would use knowledge of how the specific switches and repeater are connected
along with general knowledge of how switches and repeaters operate. Eventually, the offending
repeater would be identified, the switches absolved from blame, and a repair determined. This
repair would be implemented and the results retained as a new case.
Usually, the repair implementation!assessment cycle is continued until the problem is fixed. At

least the final repair is retained for historical reference (usually informally; like, in the head of the
diagnostician). So the next time the same or similar problem is encountered, the detailed diagnostic
process is either unnecessary or is streamlined.

5.1.2 Query optimization

A subset of a database is retrieved or updated by a database management system (DBMS)
according to criteria, or in response to a set of commands, specified by a query. Typically, the
DBMS translates the query into a sequence of basic database operations, specifically, sequences of

SELECT, PROJECT, PRODUCT, UNION, DIFFERENCE, JOIN, INTERSECTION, and
DIVIDE operations for a DBMS supporting the relational model of data. Each of these sequences
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is called a plan. It is frequently possible for a query to be decomposable into more than one plan.
Queryoptimization is the process of determining which plan uses a minimum of specified
resources, yet accomplishes the tasks specified by that query. This process is vital to the
transparent integration of distributed databases, efficient use of very large databases, and rapid
response to queries.

There are two stages to query optimization; transforming the queries into strategies (plans), then
calculating the cost of these strategies (plans) [JK841. Algebraic, heuristic, logical, and semantic
transformations have been suggested for single and multiple query operatinns with the greatest
amount of interest currently focused on semantic query transformations. Calculating and
comparing plan costs is done with a cost model which may be deterministic or based on heuristics.
One interesting result of this research is that no single cost model has yet been developed that is
consistently better than all other cost models.

One general observation from query optimization research is that accurate database statistics greatly
improve the accuracy of the cost model [Chr84]. Of particular significance are query selectivity
estimates (also referred to as column cardinality estimates; the number of tuples likely to be
retrieved during a SELECT operation). The physical distribution of tuples for a given attribute,
and whether or not an index has been created for that attribute, can also influence the performance
of the plan. However, as the database is updated, tuple locations and values will change and will
invalidate some of these statistics. Only for small, centralized databases would it be feasible to
continually recalculate these statistics, even though not doing so will surely degrade the accuracy of
the cost model.

An alternative approach is to decrease the cost model's reliance on the specific statistical values as
these values become suspect and to incorporate an heuristic evaluation. This approach would still
transform the queries into basic database operations, but the first step in forming and optimizing
the plan would be to consider adapting previous plans which have performed well (i.e., at low
processing costs). These retained plans would have previously been calculated to be optimal,
based on the statistical profile and other characteristics of the database. For example, suppose five
of the relations in a telecommunications database are as follows, where the doubly-underlined
attributes represent keys for their respective relations:

NETWORKOBJECT(NETOBJ ID, STATIONID, OBJECTTYPE, STATUS)
ALARM(ALARM ID, NETOBJ_[D CLUSTERJD, DESCRIPTION, TIME)
STATION(STATION ID, PHONE#, ADDRESS, CITY, STATE, ZIP, STATUS)
ELEMENTCLUSTER(CLUSTER I]), PATHID, STATION_ID)
PAPATHATHID, NETOBJDD)

For this example, suppose there are the following nuniber of tuples:

500 in NETWORKOBJECT
2000 in ALARM, 5 of which are DESCRIPTION="Fiber Radio Failure"'
10 in STATION, one of which is in Virginia
10 in ELEMENTCLUSTER
20 in PATH

We assume that the query optimizer knows this fact.
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Now, suppose we are interested in the answer to the question "Which stations were affected when
any station i Virginia experienced a Fiber Radio Failure alarm?" In the process of answering this
query, additional knowledge is gained. For example, that if the relation ALARM is to be used, the
first ope,-:ion should be a SELECT. And if a query refers to the state of Virginia, that adding a
SELECT operation on STATION, projecting the single value for STATIOND, and using it in
subsequent SELECT/JOIN operations is likely to be quite efficient. This meta-knowledge could be
used in future query optimizations, provided, that is, that the system would know when and how
to use this information.

5.2 The role of active data knowledge dictionary/intelligent thesaurus in
problem solving

There are at least two roles an active data knowledge dictionary/intelligent thesaurus (ADKD/IT) in
problem solving information interchange. First, as an interface between multiple reasoning
paradigms. Second, as a means of managing the evolution of knowledge.

5.2.1 As the interface between reasoning paradigms

Should the multiple reasoning paradigms be constrained to a single, globally recognized syntax and
semantics? This depends on how tightly coupled they are or need to be. If tightly coupled, then
such a single syntax and semantics must be used. However, this eliminates a benefit of using
multiple approaches; allowing each approach to use the knowledge representation best suited to the
particular paradigm (e.g., Memory Organization Packages, MOPs, for cases and rules for
heuristics). A potential disadvantage of loosely coupling the multiple reasoning paradigms is that it
allows the possibility of losing semantic integrity. In other words, transferring complex data or
knowledge from a system with a rich semantics to one with more rudimentary semantics could
result in some crucial interpretation being lost. An ADKD/IT could mitigate this possibility by
capturing and maintaining the nuances of representation methods and acting as a translator between
the paradigms. A bonus would be that since the semantic and syntactic knowledge would be
explicitly controlled by a single knowledge source, evolving the knowledge is more straight
forward. This is particularly important when using historical knowledge.

5.2.2 To manage knowledge evolution

Historical knowledge is not totally obsolete when the target system evolves. Neither is it
completely accurate. An ADKD/IT could support historical knowledge evolution by isolating the
relationships between the cases and the essential features of the network's structural and behavioral
knowledge. In other words, to maintain the context of the cases. We are currently researching
possible canonical forms for this historical knowledge. The forms presented by Ullman in
discussing query optimization algorithms look promising [Ul189]. We are also considering the
forms suggested by Shank in [RS89]; ossified cases, paradigmatic cases, and stories. We have
not, however, found these latter representations to be readily generalizable. We are continuing our
research in these areas and feel that the multiple knowledge source, cooperative problem-solving
approach to large scale heterogeneous systems is an appropriate one.
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6 Dictionary support for schema evolution in object-
oriented databases

In conducting research on an Active Data/Knowledge Dictionary (ADKD). one area of in-
terest is how such a dictionary could support the users' efforts to manage database schema
evolution. Data dictionaries are not static repositories of information. Rather, the metadata
stored in a data dictionary is constantly changing as users design databases to support their
applications and then as they modify those designs to reflect the changing requirements of
their applications.

In this section, we discuss data dictionary support for schema evolution specifically in the
context of object-oriented databases. We begin with a review of major concepts common to
many object-oriented data models, and from these concepts we will establish working defini-
tions for terms such as schemata and metadata as they apply to object-oriented databases.
Then we discuss the problems associated with schema evolution, illustrating them with an
example session with the GemStone object-oriented DBMS. Next we review literature on
schema evolution for proposed solutions to these problems. After critiquing these previously
proposed solutions, we present our own proposal for a data dictionary that is capable of
reasoning about evolving schemata, and finally we describe further research that needs to
be conducted if such a data dictionary is to become a reality.

6.1 Object-oriented data models

Before we can discuss data dictionary support for schema evolution in the context of object-
oriented databases, we must first review the major concepts common to many object-oriented
data models. From these concepts we will arrive at working definitions for terms such as
schemata and metadata as they apply to object-oriented database management systems.

The lack of a single reference model. It is important to note that there is not a single,
accepted object-oriented data model. Kim states in Research Directions in Object-oriezdted
Database Systems that there is "no standard for object-oriented databases" and that there is
"no standard object-oriented database language in which to program applications" [Kim9O.
page 1]. This problem exists because there is no single, precisely-defined object-oriented data
model. The Object-Oriented Databases Task Group (OODBTG) of the Database Svstems
Study Group (DBSSG)' is addressing this problem, and their latest draft reference model for
object data management identifies a set of characteristics commonly-shared among object-
oriented database management systems.

'One of the advisory groups to the Accredited Standards Committee X3 (ASC/X3), Standards Planning
and Requirements Committee (SPARC), operating under the procedures of the American National Standards
Institute (ANSI).
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Commonly-shared characteristics. The itemized lists below present the commonly-
shared characteristics of object-oriented database management systems as identified by the

OODBTG in [Obj90].

Abstract Object Characteristics * Data Management Characteristics

- Encapsulation - Persistence

- Objects - Data Language

- Identity - Integrity Constraints

- Types and Classes - Concurrency

- Composition -- Transactions

- Polymorphism - Recovery

- Inheritance - Versions

- Extensibility - Distribution

- Information Semantics - Security

- User Interfaces

It is not within the scope of our report to provide detailed descriptions of each of these
characteristics - reference [Obj9O] takes fifteen pages to do so. Suffice it to say that we have
considered each of these characteristics in coming up with the following working definitions
of terms that will be used throughout the remainder of our discussion.

Working definitions. The definitions in figure 6.1 are provided for readers who may be
unfamiliar with object-oriented database systems and the terminology used to describe them.
Terms used in the body of a definition which will be further defined are set in boldface type.
Other important terms appearing in the body of a definition are set in italics.

6.2 Problems posed by evolving schemata

We stated at the beginning of section 6 that data dictionarieb are not static repositories of
information. Rather, the metadata stored in a data dictionary is constantly changing as
users design databases to support their applications and then as they modify those designs
to reflect the changing requirements of their applications. This continuing design activity
poses two problems for users of object-oriented database systems, as enumerated below.

1. As a schema evolves, inconsistencies arise between information inferred from the meta-
data and information stored persistently by the database system. Appendix B provides
an example session with the GemStone object-oriented database system which illus-
trates this fact.

2. As the users' understanding of the problem to be solved changes, their search for a
new solution may lead them to re-derive metadata associated with previous solutions
because object-oriented databases do not support versions of either classes or schemata.
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Object-oriented database system: a database system which employs an object-oriented language
for data definition, manipulation, and query formulation.

Object-oriented language: a language which "provides linguistic support for objects" and which sup-
ports the "management of collections of objects by means of classes and class inheritance" [Veg87b,
pages 508-509].

Objects: objects have "a set of operations and a state that remembers the effect of the operations. Objects
communicate by sending each other messages to perform operations. Objects may be contrasted
to functions which have no memory. Whereas function values are completely determined by their
arguments, an object may learn from experience, its reaction to an operation being determined by its
invocation history" [Weg87b. page 508].

Classes: every object in an object-oriented database is an instance of some class, alternatively known as a
type, which specifies behavior for its instances through the following three constructs:

" a set of operations. alternatively known as methods or routines, defined for all instances of the
class;

" a set of properties, alternatively known as attributes or instance variables, similarly defined for
all instances of the class; and

" a set of constraints, alternatively known as invariants or assertions, which must be satisfied by
all instances of the class at all times.

Inheritance: a relationship that may exist between two classes, referred to as a subclass and its superclass.
The inheritance relationship specifies that all operations, properties, and constraints defined for a
superclass will be defined for its subclass. A system which supports multiple inheritance permits classes
to have more than one superclass from which they inherit operations, properties, and constraints.

Schema: in the context of an object-oriented database system. the term schema refers to a set of classes
organized into a class hierarchy if multiple inheritance is not supported or into a class lattice if
multiple inheritance is supported. The definitions of these classes are stored in a data dictionary and
are collectively referred to as the metadata.

Class hierarchy: a strict hierarchy in which each node represents a class and in which the parent-child
relationship of the hierarchy represents the inheritance relationship between a superclass and its
subclass.

Class lattice: a "directed acyclic graph with exactly one node containing no outgoing arcs" [SZ87.
pag. 395]. Each node in the graph represents a class, and each arc in the graph represents an
inheritance relationship. pointing from a subclass to its superclass.

Figure 6.1: Object-oriented database system terminology

6-:3



The first problem cited above affects the quality of solutions derived; the second affects the
efficiency with which solutions can be derived. During the past five years, various researchers

have proposed solutions to these problems associated with schema evolution. We review and

critique their proposed solutions in the next section of this paper before characterizing our
proposed solution in section 6.4.

6.3 Review of schema evolution literature

Object-oriented databases have only recently emerged as a topic of research and development.,
and as a consequence, many research areas associated with object-oriented databases have
not been investigated in depth. One such area is that of schema evolution. Kim states
in Research Directions in Object-oriented Databases that works published to date establish
a "framework for the evolution of an object-oriented database schema [which] represents
important first steps towards the logical design of databases," but that no object-oriented
database system yet has implemented versions of either individual classes or entire schemata
[Kim90, page 13]. In the sections that follow, we will review the published works of those
groups whose research has helped establish this framework for schema evolution in object-
oriented database systems.

6.3.1 Servio Logic Corporation (GemStone)

Papers published by researchers associated with the GemStone object-oriented database
management system describe a methodology for handling class and schema modifications in
GemStone [B+89, PS87]. Their methodology begins with the identification of six invariants
of schema modification, two of which are presented in figure 6.2.

To ensure that these invariant properties of a schema are maintained as classes are modified.
the methodology next identifies eight primitive class-modifying operations, one of which is
presented in figure 6.3.

By identifying invariants of schema modification and describing primitive class-modifying
operations which maintain those invariants, the methodology put forth by Servio researchers
guarantees that modifications made to a consistent bchema will result in another consistent
schema; however, it does not support versions of either classes or schemata, and therefore
only deals with the first problem cited in section 6.2.

It is important to note that while Servio researcher, :,ave described a method for coping with
change at the schema level, that method has not been implemented in the commercial offering
of GemStone. The example session with GemStone presented in appendix B demonstrates
that changes made to a class are not propagated by the system, and that as a result, the
schema resides in an inconsistent statc with its invariant properties unsatisfied.
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Representation invariant "The representation of an object is determined by its class. An object's storage
format, size, variables, and constraints upon those variables must be as specified by the object's class"
[B+89, page 300].

Full inheritance invariant "The representation of instances determined by a class is inherited by all of its
subclasses. ... Every class inherits every instance variable defined in its superclass" [B+89, page 301].

Figure 6.2: Two GemStone invariants of schema evolution

Adding a named instance variable "All instances of a class may have an additional instance variable
defined. In order to preserve the representation invariant, adding a named instance variable is not
allowed if another instance variable already has the same name. ... If the named instance variable
is not defined in a subclass, then the modification is propagated to that subclass. This preserves the
full inheritance constraint. All instances of the class to which the instance variable has been added
gain a value of nil for the new instance variable in order to maintain the representation invariant"
[PS87, pages 113-114].

Figure 6.3: A GemStone class-modifying operation
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6.3.2 Brown University

Brown University researchers Skarra and Zdonik have also actively investigated schema evo-

lution in the context of object-oriented database systems [SZ86, SZ87]. Their work addressed

the problem described below.

"In this work we look at the problem of changes in type definitions (i.e., the
database schema). It is natural to assume that in the course of a design, views of
the world (i.e., type definitions) will change. A database stores objects for long

periods of time. Each object was created as an instance of some type at some

point in that type's evolution. The type described all of the assumptions about
that object's behavior. What happens when that type definition changes? Old
objects may be incompatible with a new definition of a type. Also, new objects
may be incompatible with old definitions of their type for which programs have

already been written" [SZ87, pages 393-394].

The solution proposed by Skarra and Zdonik involves maintaining versions of types (classes)

and associating exception-handling mechanisms with each version so that all instances of all
versions of a type behave uniformly. Any time a change is made to a type T, a new version
of that type is created. Associated with each type is a version set interface which contains
"all the properties and operations ever defined by some version of T and every value ever
declared valid for properties and operation parameters" [SZ87, page 402].

All instances of all versions of a type are expected to behave according to the type's version
set interface. So that they do, each version of a type has associated with it exception
handling mechanisms in the form of prehandlers and posthandlers. These prehandlers and
posthandlers work as shown in figure 6.4 [SZ87, page 403]. When a program P(t) written
under type definition T3 needs to access or update an instance of T that was created under
version T1, either a prehandler associated with T1 or a posthandler associated with T3 will

execute if an exception is raised during the operation [SZ87].

By maintaining versions of types and associating exception handling mechanisms with each
version, Skarra and Zdonik hope to avoid converting the instances of a type when a new
version of that type is created. It should be noted, however, that their proposed solution

depends on the fact that meaningful exception handling mechanisms can be defined, some-
thing which will not always be possible. Also, their proposed solution does not provide for
identifiable versions of schemata. Since their proposed solution groups all versions of a type
into a single version set interface, only one schema can be supported at any given time.

6.3.3 MCC (ORION)

Papers published by researchers at the Microelectronics and Computer Technology Corpora-
tion (MCC) in the past five years describe their prototype object-oriented database system,
ORION, and its approach to solving the problems of schema evolution [B+87a, B+S7b. KCS8.
K+87, K+891. The paragraphs below review their works which address the two problems of
schema evolution identified in section 6.2: ensuring consistency within a schema and provid-
ing for versions of metadata.
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D (D D type definitions

DD--- prehandlers

" "---posthandlers

t P(t)

Figure 6.4: Skarra and Zdonik's exception handling mechanisms

Full inheritance invariant "A class inherits all instance variables and methods from each of its super-
classes, except when full inheritance causes a violation of the distinct name and distinct identity
invariants. In other words, if two instance variables have distinct origin but the same name in two
different superclasses, at least one of them must be inherited. If two instance variables have the same
origin in two different superclasses, only one of them must be inherited" [B+87b, page 314].

Figure 6.5: An ORION invariant of schema evolution

Ensuring consistency within a schema. The approach adopted by MCC researchers for
ensuring consistency within a schema begins in the same fashion as the GemStone methodol-
ogy described in preceding paragraphs - by identifying the invariants of schema evolution.
The invariants defined by MCC researchers for ORION are similar in nature to those de-
fined for GemStone, but they differ in detail because the data models underlying these two
object-oriented database systems are not the same. For example, the full inheritance in-
variant defined for ORION, presented in figure 6.5, differs from that defined for GemStone
because the ORION data model supports multiple inheritance where the GemStone data
model does not.

Where the GemStone methodology identified only eight primitive class modifying operations.
the MCC researchers identified a taxonomy of schema changes [B+87b, page 316], shown in
figure 6.6, containing 21 such possible changes. There are two reasons for this profound
difference in the number of possible changes. First, under the ORION data model, a schema
is represented as a class lattice which is a more complicated structure than the simple
class hierarchy supported by the GemStone data model. Secondly, the eight primitive class
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1. Changes to the contents of a node (a class)

(a) Changes to an instance variable

i. Add a new instance variable to a class

ii. Drop an existing instance variable from a class

iii. Change the name of an instance variable of a class

iv. Change the domain of an instance variable of a class
v. Change the inheritance (parent) of an instance variable (inherit another instance variable

with the same name)

vi. Change the default value of an instance variable

vii. Manipulate the shared value of an instance variable

A. Add a shared value
B. Change the shared value

C. Drop the shared value
viii. Drop the composite link property of an instance variable

(b) Changes to a method

i. Add a new method to a class

ii. Drop an existing method from a class

iii. Change the name of a method c" a class
iv. Change to the code of a method of a class
v. Change the inheritance (parent) of a method (inherit another method with the same name)

2. Changes to an edge

(a) Make a class S a superclass of a class C

(b) Remove a class S from the superclass list of a class C

(c) Change the order of superclasses of a class C

3. Changes to a node

(a) Add a new class

(b) Drop an existing class

(c) Change the name of a class

Figure 6.6: ORION's taxonomy of schema changes

6-8



Rulel: "If an instance variable is defined within class C, and its name is the same as that of an instance
variable of one of its superclasses, the locally defined instance variable is selected over that of its
superclass. The same applies to methods" [B+87b, page 3151.

Rule 8: (Edge Removal Rule) "If ciass A is the only superclass of class B, and A is removed from the
superclass list of class B, then B is made an immediate subclass of each of A's superclasses. The
ordering of these new superclasses of B is the same as the ordering of the superclasses of A.

A corollary to Rule 8 is that, if the root class OBJECT is the only superclass of a class B, any attempt
to remove the edge from OBJECT to B is rejected. If the edge is removed, node B would become
isolated, since OBJECT has no superclass to which B may be linked as a new superclass" [B+87b,
page 316].

Figure 6.7: Two ORION rules of schema evolution

modifying operations defined for GemStone are not complete in a graph theoretic sense as
they do not account for explicit deletion of a class from the hierarchy [PS87].

Associated with each of the 21 schema changes possible under the ORION data model are
a number of rules which serve to maintain the schema invariants. Two of these rules are
presented in figure 6.7, and a complete list of the 12 rules of schema evolution is presented
in [B+87b].

By identifying a taxonomy of schema changes, the invariants of schema evolution, and a set
of rules which maintain those invariants as changes are made, the methodology put forth by
MCC researchers ensures that changes made to a consistent schema will result in another
consistent schema. Later work published by this group addressed the problem of versioning
metadata as described in the following section.

Providing for versions of metadata. As noted earlier in this paper, no object-oriented
database system has yet implemented versions of either classes or schemata. To the best
of our knowledge, the only proposal for versioning metadata has been presented by MCC
researchers Kim and Chou in [KC88]. This proposal defines a model of versions of schemata
in terms of seven rules, the first three of which are presented in figure 6.8.

The three rules in figure 6.8 define the capabilities of schema versions and their relationships
to one another in the version-derivation hierarchy. The remaining four rules of Kim and
Chou's model of versions of schemata define the access scope, or set of objects accessible to.
a schema version.

It is important to keep in mind that this proposal addresses only versions of schemata: it
does not support versions of classes. Kim and Chou note that an alternative approach to
versioning schemata would be to treat classes as versionable objects from which 'virtual'
schema versions could be constructed.
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Schema-Version Capability Rule: "A schema version may be either a transient schema version or a
working schema version. A transient schema version may be updated or deleted; and it may be
promoted to a working schema version at any time. A working schema version cannot be updated. A
working schema version may be deleted or demoted to a transient version, if it has no.child schema
version" [KC88, page 151].

Schema-Version Derivation Rule: "Any number of new versions of schema may be derived at any time
from any existing schema version, giving rise to a version-derivation hierarchy for the schema. A
derived schema version is initially a transient schema version. If a schema version is derived from a
transient schema version, the transient schema version is automatically promoted to a working schema
version" [KC88, page 151].

Schema-Version Deletion Rule: "A schema version which is a leaf node in the schema-version derivation
hierarchy can be deleted, regardless of whether it is a working version or a transient version. A schema
version cannot be deleted, if it has any child schema version. When a schema version is dAeted, its
direct access scope is also deleted" [KC88, page 151].

Figure 6.8: Three schema-version rules

6.3.4 Other related research

Besides the works reviewed in sections 6.3.1 through 6.3.3. little else has been published
on the subject of schema evolution in object-oriented database systems. Bj6rnerstedt and
Hultdn have adopted a type version scheme for their object management system, AVANCE,
which is quite similar to the solution proposed by Skarra and Zdonik [BH89j. Li and McLeod
have also investigated type evolution in the context of an object-oriented data model, but
they emphasize the use of machine learning techniques to (semi-)automatically evolve type
definitions. Their work does not support versions of either classes or schemata [LMSSb.
LM88a].

Wile there has not been much published on the subject of schema evolution in object-

oriented database systems, there has been much published on version control in object-

oriented database systems [BM88a, CK86, CK88, KC87, K+86]. Some of these works [CK86.
CK88, K+86] provide the bas for Kim and Chou's proposal for versions of schemata, but

none specifically address the problem of versioning metadata.

6.3.5 Critique

In sections 6.3.1 through 6.3.3 we reviewed the published works of three groups who have pro-
posed solutions to problems associated with schema evolution in object-oriented databases.
We believe that the problem of ensuring consistency within a schema can be adequately
addressed by an approach similar to that proposed for the ORION database svstem. We

find, however, that none of these proposed solutions satisfactorily provide for versioning
metadata.

* Servio researchers include no provision for versioning metadata in their published works
on schema evolution.
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* Skarra and Zdonik's proposal provides for versions of types (classes), but groups all
these versions into a single version set interface which can support only one schema.

SICC researchers proposed versioning entire schemata, but not individual classes.

Since classes are the basic unit to which changes are made and from which schemata are
constructed, we feel that any approach for versioning metadata should provide for identifiable
versions of classes. As noted previously by Kim and Chou, virtual schema versions can be
constructed from versionable classes, and in the next section we propose a mechanism for
doing just this.

6.4 Proposed solution

Our proposed solution to the problem of versioning metadata comes from the observation that
a data dictionary must recognize and maintain the dependencies among differing versions of
classes 2 if it is to construct virtual schema v 7sions from those classes. A mechanism which
has been developed for maintaining knowledge of dependencies among data items is the truth
maintenance system (TMS) [Doy79, dK86a, dK86b, dKF90]. We propose giving the data
dictionary associated with an object-oriented database system the reasoning capabilities of
an assumption-based TMS (ATMS)3 so that it may construct consistent schemata from a
collection of versioned c'asses. In the sections to follow, we describe TMS support for problem
solving in general, and then describe how an ATMS may be used when the problem solving
task at hand is database design.

6.4.1 TMS support for problem solving

Truth maintenance svstems (:an be used as part of an overall architecture for problem solving
as shown in figure 6.9, a desc-iption of which follows.

"The problem solver architecture reflects [a] natural partitioning of concerns.
The inference engine is concerned with making inferences within the problem
solving task domain: the TMS is concerned with organizing the problem solving
process such that the current beliefs and inferences of the inference engine are
consistent with each other. Problem solving then proceeds by the continuous in-
terchange of information between the inference engine and the truth maintenance
system" [dKF90, page MA.5-180].

'Dependencies among classes arise from the client and/or descendant relationships that may exist between
them. If a class A has an attribute of type B, theri class .4 is a client of class B. If class A inherits from
class B, then class A is a descendant of class B.

3 The ATMS is one of several different types of truth maintenance systems identified by Forbus and de Kleer
in [dKF90]. Each of these different types of TMSs is well suited to a particular type of problem solving. We
have chosen to work with the ATMS because it supports the simultaneous exploration of multipl- potential
solutions - something that database designers often do when modeling complex application domains.
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justifications

assumptions

Inference Engine TMS
beliefs

contradictions

Figure 6.9: Problem-solver architecture

justification contradiction node

simple node assumption node
(enabled)

premise node assumption node
[ Ji (retracted)

Figure 6.10: Dependency graph symbols

When the problem solving task domain is logical database design, this general architecture
can be interpreted as follows. The database des:gner serves as the inference engine, supplying
metadata in the form of class definitions to the data dictionary. The data dictionary, given
the reasoning power of a TMS, can then serve as a cache for the metadata, detect incon-
sistencies in the metadata, identify consistent schemata from the metadata, and construct
explanations for its conclusions.

The state of a TMS's knowledge about an ongoing problem solving process can be represented
by a dependency graph constructed from the symbols shown in figure 6.10. The nodes of a
dependency graph represent basic propositions assumed or derived during the process of
problem solving. The justifications linking these nodes represent dependencies among the
basic propositions.
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Each node in a dependency graph will be represented within the ATMS by a data structure
of the form shown below [dK86a, page 146].

( datum, label, justifications )

The datum in this data structure uniquely identifies a node in a dependency graph. When
the ATMS is used to manage schema evolution in an object-oriented database system, the
datum will identify a specific version of a class.

The set of justifications in the ATMS data structure represents a set of propositional Horn
clauses, each of which has the datum as its consequent. For example, justifications in the
ATMS data structure shown below

( datum, label, {(Zl,Z 2 ,...),(y1,Y2,...),...)

represent the following set of propositional Horn clauses.

(z, A z2 A ... ) -* datum
(y, A y2 A...) -- datum

-* datum

When the ATMS is used to manage schema evolution in an object-oriented database sys-
tem, these justifications will represent the dependencies among specific versions of classes as
determined by their client and/or descendant relationships.

The label in the ATMS data structure contains a minimal, complete set of environments
where each environment is a consistent set of assumptions. This label can also be interpreted
logically as a set of propositional Horn clauses. For example, the label in the ATMS data
structure shown below

(datum, {{A,A 2 ,...}, {B,B 2,. . . . . . }, justifications)

represents the following set of propositional Horn clauses.

(A 1 A A2 A...) -- datum
(B 1 A B 2 A ... ) - datum

datum

In the context of object-oriented database design, a specific version of a class which has
no client or descendant classes will be considered an assumption. Each consistent set of
assumptions forming an environment corresponds to a specific schema version. Therefore.
by examining the labels associated with the ATMS data structures, it will be possible to
readily identify all consistent schemata that can be constructed from a collection of versioned
classes.

In order to demonstrate how an ATMS may be used to support database design efforts, the
following section provides an example of schema evolution in an object-oriented database.
Accompanying the example is a series of figures containing dependency graphs and ATMS
data structures which illustrate how the reasoning portion of our data dictionary would keep
track of the ongoing process of database design.
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6.4.2 An example of schema evolution

Initially, the reasoning portion of our data dictionary will record as premises the existence

of fundamental classes such as OBJECT, STRING, and INTEGER as shown in figure 6.11.

If the database designer were to define a class A with OBJECT as a superclass and with an

attribute of type STRING, the reasoning portion of our data dictionary would record this

first version of class A as an assumption as shown in figure 6.12.

If the database designer were to define a class B with A 1 as a superclass and with a function

returning a value of type INTEGER, the reasoning portion of our data dictionary would

record this first version of class B as an assumption as shown in figure 6.13. Note that class

A 1 is no longer treated as an assumption because its inclusion in a schema would be justified

by the inclusion of class B.

If the database designer were to modify the definition of class A 1 by changing the name of

its attribute, the reasoning portion of our data dictionary would record as an assumption
the existence of a second version of class A as shown in figure 6.14. Because two versions
of the same class cannot co-exist in a consistent schema, the reasoning portion of our data

dictionary would also record the fact that classes A 1 and A 2 are inconsistent with one another
as shown. It also follows from this dependency graph that classes B 1 and A2 cannot co-exist
within a consistent schema since B 1 justifies the inclusion of A 1 which is inconsistent with

A 2 .

If the database designer wanted a version of class B which was consistent with A 2, it would
be necessary to re-compile the definition of class B 1, specifying A 2 as its superclass. With

this done, the reasoning portion of our data dictionary would record as an assumption the
existence of a second version of class B as shown in figure 6.15. Also recorded would be the
fact that the two versions of class B are inconsistent with one another. Note that class A 2 is
no longer treated as an assumption because its inclusion in a schema would now be justified
by the inclusion of class B 2 .

Finally, consider the case where the database designer defines a class C with A 1 as its
superclass, and for some reason, this first version of class C violates the schema invariants
defined for its data model. The reasoning portion of our data dictionary will record this
fact by adding a premise that C1 is nogood and cannot be part of any consistent schema, as
shown in figure 6.16.

From the set of versioned classes in figure 6.16 there are three consistent schemata that can
be readily identified by examining the labels associated with the ATMS data structures -

these three schemata are shown in figure 6.17. The first schema is produced by enabling the
assumption node representing class B, and retracting all other assumption nodes. It follows
from the dependency graph then that this schema would consist of classes A 1 , B 1 , OBJECT,

STRING, and INTEGER. The second schema is produced by enabling the assumption
node representing class B 2 and retracting all other assumption nodes. This schema would
consist of classes A2, B 2 , OBJECT, STRING, and INTEGER. The third schema is the
trivial case in which no assumption nodes are enabled and only the fundamental classes
OBJECT, STRING, and INTEGER will be part of the schema.
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(OBJECT, {{}}, {()})
(STRING{{}},{(})
(INTEGER, {{}}, {(})

Figure 6.11: Fundamental classes recorded as premises

oamr SM (OBJECT, { { }), {()(A 1)})
(STRING, {{}}, {(), (A1)})
(INTEGER, {{}}, {(})

Al (A1 , {{A 1 }}, {(A,)})

Figure 6.12: Newly-defined class A recorded as an assumption

(OBJECT.{, {, (A,))
(STRING, {{}}, {(, (A,)})
(INTEGER, { {} }, {(), (B1 )})
(A,, {{B1 }}, {(B 1 )})
(B1 , {{B 1 }}, {(Bi)})

Figure 6.13: Newly-defined class B recorded as an assumption

(OBJECT, {{}}, {( ), (A 2 )})

"A I(STRING, {{}}, {), (A,), (A 2 )})
(INTEGER, {{}}, { (B1 )})
(A,, { {B, } } {(Bi)})
(Bi, {{B,} }, {(BI)})
(A2 , {{A 2 }}, {(A 2 )})
(., {}, {(A,, A 2 )})

Figure 6.14: Modified class A recorded as an assumption
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A . h(OBJECT, {{}},{),(Ai), (A2))
(STRING, {{}},{ (AI), (A 2 )1)
(INTEGER, {{}}, {(), (B), (B 2 )})

(Ai, {{B}}, {(BI)})
__ t {(B1 , B} {(B)}

(A 2, {{B 2}}, {(B 2))
(1, {}, 1{(Ai, AA) (B1 , B 2 )1)

(B 2, {{}, {(B 2 )})

Figure 6.15: Re-compiled class B recorded as an assumption

(OBJECT, {{}}, {() (A,), (A 2 )1)
A ' (STRING, {{}},{ (A,), (A 2 )1)

(INTEGER, {1{}, {(), (Bi), (B 2 )1)

(A1 , {{B 1}}, {(Bi), (CI)))
(B1. {{B,)), {(B,)})
(A2. I{{B 2}}, {(B2 )})

S(1, 1}, 1{(A,, A2),(Bi, BA,(C, nogoo0d)}

(B 2 , {{B 2 1}}, {(B 2 ))
-(C , {}, {(Ci)})

(nogood. {}, {(})

Figure 6.16: Inconsistent class C marked as nogood
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Figure 6.17: Three identifiable schemata

6-17
6



6.5 Further research

In section 6 of this report. we have discussed dictionary support for schema evolution in
object-oriented databases. Section 6.1 reviewed major concepts common to many object-
oriented data models and established working definitions for terms such as schemata and
metadata as they apply to object-oriented databases. Section 6.2 presented two problems
associated with schema evolution in object-oriented databases, and section 6.3 reviewed
literature on schema evolution for proposed solutions to these problems. Finally, section 6.4
presented our proposal for a data dictionary that is capable of reasoning about evolving
schemata and identifying versions of schemata from a collection of versioned classes.

As yet, our proposal is incomplete - further research needs to be conducted in two areas so
that such a data dictionarv can become a reality. The first area requiring further investigation
involves the resolution of ambiguous references during the process of data definition. When
the database designer defines a class A which references a class B for which multiple versions
B1 ... B, exist, the data dictionary must know or be told unambiguously which version of
class B is being referred to. We are investigating a means by which the labels associated
with ATMS data structures can be used to limit the set of potential referents.

The second area for further resea:ch inolves a method for dealing with instances stored
persistently in the database. The automatic conversion of instances proposed by Gemstone
researchers in [B+S9, PS87] does not make sense in an environment supporting versions of
classes which may be used for different applications. The screening approach proposed by
Skarra and Zdonik in [SZ86, SZ87] will not always work because it will not always be possible
to define semantically meaningful prehandlers and posthandlers. We are investigating Kim
and Chou's notion of an access scope for, or set of objects accessible to, a schema version to
see if it mav bv adapted to work when classes are the versioned objects.
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7 Active Rule Management in Object-Oriented Databases

7.1 Introduction

Using rules for describing and managing the behavioral aspect of knowledge is one area of re-
search in the fields of deductive databases and an object-oriented paradigm. Interest in this ap-
proach has increased significantly in the literature. Integration of an object-oriented paradigm and
deductive databases has been influenced by semantic modeling and semantic query processing re-
search [HTY89, HS89, Ngu86, AK89, And87, BS88a, DBM88, Fis87, GK87, KL89a, K+89, KN86,
Nie87, SZ86].

Active database research has dealt primarily with integrating production systems with relational
databases. In this section, we present an approach to associate rules to object types in an object-
oriented model. Since rules are distributed in an object-oriented database, inference is limited either
only within a class to which the rules are associated or outside the scope of individual classes by
means of explicit triggers. Propagation algorithms [HS89, DBM88, Fis87, KL89a] are also exe-
cuted in a predesignated manner for all users to make use of the same database constraints. In these
algorithms, rules are directly activated by explicitly pre-defined triggers.

In this paper, a technique for rule processing by active inference will be developed. Our approach
extends previous work as follows:

" Every object in an object-oriented data model has a unique object identifier or oid. Rules that
involve objects can access them by means of the oid. This is in contrast to rule firing in the
relational data model where tuples are identified by associative retrieval of attribute values.

* Since a set of rules can be regarded as an object [DBM88], rules can be encapsulated'. Then
these encapsulated rules may be associated with an object. The rules are associated with a
class, rather than being embedded within a class.

" Rule sets are associated directly to classes (or object types). Thus, inference is limited to
using those rules that are associated with a class or its inheriting classes. To remove this
limitation, a rule schema is constructed which represents the dependencies among the rule
sets and associated attributes. This schema provides a qualitative explanation of the conse-
quences of invoking one or more rule sets.

The goal of this paper is to propose a scheme for rule specification, management, and processing, by
which "active", object-oriented databases can be constructed. To do so, rules are represented and
depicted in a rule schema in Section 7.2. In Section 7.3, a scheme of rule activation is described.
To activate rules, a meta-message equation is generated from a rule schema in Section 7.4. Sec-
tion 7.5 and Section 7.6 discuss rule inference in generalization hierarchies and composite objects,
respectively. Finally, we summarize our work and discuss future work.

1 A rule encapsulated as an object could have methods, attributes, opeations, and invariants which are hidden from
other objects.

2 An active rule is a rule that takes one or more actions in response to a database access and update.
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7.2 Preliminaries

A rule is a declarative specification about a behavioral aspect [HTY89] expressed as a Horn clause.
In this section, the concept of a rule is formulated. Rules are encapsulated as a rule set and the rule
set is associated with an object type. Rules are also depicted in a rule schema. Note that a "rule" is
used as a generic term in this paper, so we do not distinguish constraints from general production
rules. Constraints and production rules are activated in a similar manner. Hence, we consider a
general methoa for rule activation.

7.2.1 Formulae

A key feature of our rule representation is that we are employing dot-notation3 and object identifiers.
Rules are defined by using the convention of dot-notation [Mor86], which specifies functional paths
[Shi81] within a schema of object types. The concept of an oid is a powerful programming primitive
for object-oriented database query processing [AK89]. By associating a message with the oid of
a receiver, it becomes easier to manage rules in both generalization and aggregation hierarchies in
object-oriented databases. We now present several definitions.

Definition 1 (Rule). We define a rule as a behavioral relationship among attributes of objects. A
rule is represented in a first-order logic in which antecedents p imply consequents q, p(e) =, q(e'),
where p, q are sets of predicates4 p = {pi,P2, ... ,p,} and q = {ql, q2,--.,. 1}, respectively, and e,
and e' are sets of arguments.

The arguments of predicates are called function terms and take the form

class.attribute(oid)

where an oid is either a constant or a variable.

For example, Engineer.degree(Smith) is a function term. Function terms play the role of a variable,
denoted by a small letter e, and so they can be bound to particular values. The values can be
obtained by message sending, to be defined below.

Definition 2 (Function term as a message). We denote by class.attribute(old), abreviatedby E(_) 5

a message requesting a data retrieval operation which is received by an object with the object
identifier oid, where a constant E denotes afunctional path (e.g., class.attribute) and the variable
x denotes an oid.

Consider a company database depicted in Table 7.1. The function term Engineer.degree(Smith) as
a message returns a value "MS."

3Every pair of objects can be combined through a pairwise-association operator (denoted by .) into another object.
4A predirate denotes true or false, that is, p(A) is either true or false.
5A function term is a variable e which can be bound by an attribute of an oid x, i.e., E(x).
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Table 7.1: Company Database - Employee and Engineer Object Types

Employee
oid name dependents salary I taxRate

Smith Smith Turner 2 55000 10%
James James Jeffrey 0 60000 10%
Tom Tom Parker 1 32000 8%

Engineer
oid degree yearsOtExperience worksOn
Smith MS 9 DARPA1
James PhD 10 DARPA1
Tom BA 3 RADC3 DARPA 1

Definition 3 (Substitution). A substitution is any finite set of associations between variables and
assertions. A variable w can be bound by substituting by its binding.

For example, suppose there is a rule associated with the Employee typ,-e of Table 7.1 and Figure 7.1
such that: an engineer's salary should be over forty thousand dollars if he has obtained a PhD de-
gree.

Engineer.degree(x) = "PhD" = . Engineer.salary(x) > $ 40,000

The first predicate "=" in this rule contains a function term "Engineer.degree(x)." The function term
itself is a message being sent to retrieve data from an object X by Definition 2. By this message
sending, the value cal. be substituted for the attribute "degree" of X by Definition 3. Therefore,
Engineer.degree(Smith) is evaluated to "MS", where Smith is an oid for the employee named Smith
from Table 7.1. This value, then, is tested with the value "PhD" by the vredicate "=." Similarly, the
predicate in the consequent part can be evaluated. For the case of Smith, the rule does not apply.
However, for James, who does have a PhD, his salary should be greater than $40,000 and indeed
it is $60,000. Note that the rule can be viewed as an integrity constraint. The aoove description
indicates the rule matching and execution process.

Definition 4 (Rule set). Rules can be grouped into a "rule set".

For example, rules concerning "salary" can be grouped into the rule set "salary-rules."

RULESET salary-rules (1)
Engineer.degree(x) = "PhD" Engineer.salary(x) > $ 40,000;
Engineer.degree(x) = "MS" Engineer.salary(x) > $ 35,000;
END salary-rules.

There are several advantages to using rule sets. They are:
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" Rules can be directly related and associated with a panicular object or an attribute of the
object.

" The scope of rule searching can be restricted to a single rule set associated with an object.

* Rules can be managed efficiently since they are grouped and are associated with an object
type. Thus, the rule sets will be inherited and thereby shared by all "children" of that object
type as opposed to the rule sets being replicated in those objects.

7.2.2 Rule Taxonomy

In general, procedural components can be associated with either a method or as an active value
in the object-oriented paradigm. Likewise, rules associated with a class can be classified either as
Rules as a method or Rules as an active value.

Rules in the rule set salary-rules can be associated with a method. This is an example of rules as
a method:

OBJECTTYPE Employee (2)
ATTRIBUTE name VALUE;

dependents VALUE;
salary VALUE;
taxRate VALUE;

METHOD salary-rules;
END Employee.

Rules as an active value are associated with an attribute of an object type. For example, "salary-
rules" can be declared in an attribute slot:

OBJEC'TYPE Employee (3)
ATTRIBUTE name VALUE;

dependents VALUE;
salary salary-rules;
taxRate VALUE;

END Employee.

The distinguishing characteristics between these two types will be discussed in greater detail in
later sections.

7.2.3 Rule Schema

A rule schema is a graph which expresses dependencies among a collection of attributes of objects.
It consists of nodes connected by edges. A node represents an attribute E, while an edge represents
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Figure 7.2: Graphic Depiction of a Rule Schema - Small Example

a relationship among attributes. Note that a rule is described in terms of function terms - (i.e.,
E(x)), but a rule schema is constructed in terms of attributes S.

Definition 5 (Rule Schema). The rule schema is defined by a 3-tuple M = (E, W, (D), where E is a
set of nodes (i.e., attributes), W is a set of real world values. 0t is a set of edges (rulesets) whore
4(E, W) = E' is a set of state transition functions. The output of O(E, W) is a set of attributes E'.

That is, 0 = (DI, 02, ..., dx) with corresponding substituted values W = (W, TV2, ..., W1 ) transits
from nodes E = (E, E2,.... Em) to another set of nodes E'. Consider, for example, the rule schema
M depicted in Figure 7.2. There are two rule sets, OI (E, ITV) and D.:(E2, TT',). The set of nodes
(attributes) E consists of El = (Ell, E12, E13) and E2 = (E21, E22, E23). The set of real world
values W consists of 1VV = (W11, W12, 1'13) and W2 = (U71, V ,2, W23). The output of this set of
rule sets will be l(El, Ti) E' and 12(D'2 , V2) = E2, where El -(£21. £3) and E = (£41).

7.3 Rule Activation

There are three issues in rule processing: activation of a rule set; match or selection of a rule from
the rule set; and execution of the matched or selected rule. Since rules are grouped into a rule set
and rule sets are associated with classes, the first step in rule processing is to activate the rule set
of that class. Then, rules in that activated rule set are matched and selected with a particular rule
eventually being fired. This section deals with activation of a rule set. Schemes for activating each
rule type are described. Note that both types are initially activated by sending messages.

7.3.1 Activation of rules as a method

In a manner similar to procedure calls, a message is sent to an object. When the message is matched
with a method of the object, the method is activated. Such a message sending is the standard way
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to invoke a method in an object-oriented paradigm. Its syntax is

(D(oid, argument)

where (1 is a name of a rule set as a method which an oid invokes. The argument is optional.

In object-oriented databases, this message can be generated from a database query. To invoke a
corresponding rule set for a query, let us consider the following definition.

Definition 6 (Predicate Submodel). Let pi be a predicate and M be a model of pi, a set of objects
satisfying pi. A model Ml of pi is a predicate submodel of a model A12 of P2 iff

1. pi and p2 are identical by appropriate substitutions for their variables, and

2. AI1 is a subset of, or is equal to _ 2 .

Theorem 1 (Rule set activation to an oid in a query). If a query is a predicate submodel of a rule
set, then the rule set can be activated.

Proof. Suppose the rule set is not activated. Then, the objects satisfying the rule set must be exclu-
sively disjoint with the objects satisfying a query. But, this contradicts our premise that the query
is a predicate submodel of the rule set. 0

By Definition 6, a rule set which contains a rule p(z) =, q(y) is activated when a query p(A) =>
is issued. This occurs because p(x), by substituting A for x (denoting p(x){x/A}), is identical to
p(A). For example, suppose the following query is issued.

Employee.degree(Srtith) is updated to PhD

Then, a rule in a rule set salary-rules, (2) in Section 7.2.2, is identical to the query by the substitu-
tion: Employee.degree(x) {x / Smith} = Employee.degree(Smith). A set of models for predicate
Employee.degree(Smith) is a subset of that for Employee.degree(x). From these two conditions,
the query is a predicate submodel of a predicate Employee.degree(x). By taking an oid Smith from
the query, then, a message is sent to the object "Smith": salary-rules(Smith). This is a very simple
case. In many cases, however, oids are not taken from queries, rather they need to be obtained by
the following process.

Definition 7 (Object Identification). Object identification is a process which identifies a set of
(attribute, value) pairs as a corresponding oid(s). That is, (E, W) corresponds to an oid or oids.
A set of oias identified to a predicate p(E(x) C) is {r I 3x p(E(x) C)}.

By the object ide;,,fication, each tuple is represented as a set of (attribute, value) pairs. For exam-
ple, a tuple of Smith is represented as (degree, "MS"), (dependents 2), and so on as in Table 7.1.
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Let's take another example. Suppose a query asks for any employee who has earned a PhD degree:

Employee.degree(x) = PhD =

Selection of rule sets is the same as above. Then, we need to obtain oids to which a message is sent.
The oids are obtained as the definition above: { x 3x Employee.degree(x) = PhD } {James}.
Therefore, a message salary-rules(James) is sent.

Consequently, rule set activation requires a notion as to what message is sent to which object and in
what order. Keeping this in mind, an inference mechanism in object-oriented databases is proposed
as following steps:

Rule Inference Process

Step 1 A rule set, of which a query is a predicate submodel, is selected.

Step 2 The appropriate oid(s) is found. It is either identical to an oid in a query or
obtained from the process of object identification. This oid is not changed unless
composite objects exist along a function path.

Step 3 Messages, in the form of ruleset(oid), are sent to the object with the oid from
the above step in the order specified by a meta-message equation.

Step 1 and Step 2 have already been explained in this section. Step 3 will be discussed in Section 7.4.

7.3.2 Activation of rules as an active value

When a rule-set is associated with an attribute as an active value, then only that rule-set is activated
when the attribute of the object containing that attribute is accessed. For example, "salary-rules"
in (3) above is activated when the salary of an object is retrieved or updated as in the queries
Erroploee..salary(Smrith) and Ernployee.salary(Smith) is $56, 000, respectively. The syntax
of rules as an active value, as defined by Definition 7, is simply

E(x)

The main difference between activation of rules as an active value and rules as a method is that
all ruie sets in a,. object which are applicable to a query are activated in rules as a method, while
only those rule sets associated with a specific attribute are activated in rules as an active value.
Activation in response to data access (i.e., rules as an active value) is, thus, quite simple. Therefore,
later sections will emphasize activation of rules as a method rather than rules as an active value.
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Figure 7.3: Graphic Depiction of a Rule Schema - Extended Example

7.4 Meta-Message Equation

Rule processing within a class may not be sufficient to provide a solution to a query. Reasoning
in object-oriented databases frequently requires rule sets which are beyond the scope of a single
object type. Therefore, a number of rule sets may be needed to answer a query. For an inference
that spans more than one object type, a meta-message equation is generated. In this section, we
investigate a mechanism for active message sending. Let's consider the following rule sets:

Rule set 101 p1(ei) ~qi(e'

Rule set 2 (D2 :p2_(e2) 'q2(c9

Rule set 3 03 :p3(e3) q3(e 3)

Rule set 4 0t4 :P4(e4) q4(C 4)

where the arguments e, and e' are function terms E,(s) and E'(x) respectively. Figure 7.3 is a
graphic depiction of an example rule schema which consists of the equations:

0 1 (El, TVO1 = E1; (D2 (E2, T'-) =E;

0 3(E3, TV3) = E3; (E 4 , T 4) = E'

where attributes El = (Ell E12, E13), E2 = (E21, £22, E23), E3 = (E31), £4 = (E41, E42). El = (E21, E31). E, =

(E41), E' = (E51), E4' = (E61, E71), attribute values II' = (It'll 1412, ;13), W2 I'1 22 ,) 1
M'30), WV4 = (I 41, W42)-
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7.4.1 Equation Generation

Suppose a query pi (E13(oidl) C) = > is issued. The query concerns attribute E 13(oidi) as well as pl.
Thus, the query is a predicate submodel of pi (E3(X) C). In other words, pI(E13(X) C){r/oidi }=
pi(E 1 3(oidl) C). Then, by Theorem 1, rule set 01 can be activated after making the substitution
{r/oidi }. Now, in order to determine the effect of activating 01, rule sets in Figure 7.3 are col-
lected and the equation grows in a bottom-up manner by walking along the edges until no more
edges are available. In our example, this process starts from the innermost rule set (DI and ends
with 03 and )4, as can be seen from Figure 7.3. The relevant attribute values in the above rule
schema example are 1,2, 113 and W4. The equations that result from this process are:

014(012()1(t, I1k), IV2), i'V4) = E61

)4()2()1 (E1, 171), 1V2), 1V74) = E71

4)3(01(E1, W), 1V3) = Es

We call these equations meta-message equations. A meta-message equation directs messages to be
sent to objects in the order in which rule sets are activated. This equation, thus, enables qualitative
reasoning which, according to the query, makes it possible to follow an inference chain to attribute
£61, E71, or E51.

7.4.2 Message Generation

A meta-message equation denotes an order for sending messages among objects. Rule sets are ac-
tivated in a bottom-up manner, starting with the innermost message; in the same manner that the
equations were generated.

Let's consider our first meta-message equation (14(0 2 (1)1(E, IV1). IT1:). 114) = E61. The query
specified an oid oid,, so the innermost rule schema, (E13, 1113) is identical to oid, by Definition 7.
That is, 1)D(El. 11-1) = 0)1(outl) where the generated message is:

Message 1: (!_(oidl)

Now, by Definition 5 and from our example rule schema, 0 1 (oidl) = E1. When this substitution
is made, the equation becomes 4)4((4)(E21, 1h), 11'4) = E61. where TV I are the real world values
of IV2 that are specific to E,1. The next message is generated from the new innermost rule schema.
4D,(Ezi. 11-21), and the appropriate oid. This message is:

Message 2: (D:(oid 2)

Again. by Definition 5 and from our example rule schema, 0:!(oid2 ) = E41. When this substitution
is made, the equation becomes 04(E41, 11741) = E61 where 11-41 are the -ml world values of 11-4 that
are specific to E41.
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Message 3: 0O4 (oid 4 )

Notice that these same messages would be generated from the second equation. Using the third
equation, the resulting messages 6 are:

Message 1: 0'(oidj)

Message 2: 4 3(oid3)

This rule activation mechanism is discussed in the context of both generalization and aggregation
inheritances in the following sections.

7.5 Rule Inference in Generalization Hierarchies

In this section, activation of a rule set will be discussed for generalization hierarchies. For example,
there are two rule sets 7 which are depicted in Figure 7.4.

RULESET salary-rule2
Engineer.yearsOfExperience(x) > 10 Engineer.salary(x) > $ 50,000;
END salary-rule2.

RULESET tax-rules
Employee.salary(x) > $ 50,000 A Employee.dependents(x) = 2

Fmployee.taxRate(x) = 10%;
Emplyee.salary(x) < $ 30,000 A Employee.dependents(x) = 2

;Employee.taxRate(x) = 2%;
END tax-rules.

For example, suppose a query is issued to update technical engineer (i.e., technician) Smith's years
of experience to 10 years. Recall from Table 7.1 that he currently has 9 years of experience and
earns a salary of $55,000: yearsOfExperience(Smith) is updated to 10 ='.

From the rule schema in Figure 7.4, the following meta- equation is generated.

tax-rules (salary-rule2 (yearsOfExperience, 10), $55.000) = taxRate

6 Notice that the order in which messages are generated is determined by the selected equation and not by the order

in which equations are selected. The order in which the equations are selected is relevant, but is not addressed in this
report.

7 Note that salary information is associated with the class Employee while yearsOfExperience is associated with
Engineer. The function term "Engineer.Salary(x) is-a Employee.salary(x)" is implicit due to the generalization
hierarchies.
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Table 7.2: Company Database - Extended Example

Budget Project SecretProject
oid amount oid contractor type oid class

DARPA 1 250000 DARPA 1 Henry Co B DARPA I top secret
RADC3 30000 RADC3 Smart Co D RADC3 confidential
RADC4 300000 RADC4 Beaty Co A RADC4 top secret

TechnicalManager Technician
oid supervises I clearanceLevel [od m by

James DARPAl 1 Smith I James ]

Tom RADC4 DARPA 1

where the attribute values are taken from Table 7.1. Since a query is issued only for an object
"Smith," we can use the oid of Smith.

tax-rules (salary-rule2 (Smith), $55,000) = taxRate

Because a new object identification is not necessary, we still keep the same oid as above:

tax-rules (Smith) = taxRate

Thus, two rules, salary-rule2 and tax-rules, are activated sequentially for Smith by the following
messages.

Message 1: salary-rule2 (Smith)

Message 2: tax-rules (Smith)

By sending messages and activating rules, we deduce that the tax rate for technician Smith is 10%.

7.6 Rule Inference in Composite Objects

In object-oriented databases, an object may reference a number of other objects. This relationship is
called the "IS-PART-OF' relationship [KBG89] and allows composite objects to be represented as
aggregations of other objects. The composite object can be represented in an aggregation hierarchy.
In this section, two types of composite objects, dependent and independent, are considered.

7.6.1 Inference in Dependent Composite Objects

We say that 0 is a dependent composite object to 0' if the existence of 0 depends on the existence
of 0'. Rule processing in dependent composite objects is simple, so that the technique used in
generalization hierarchies can be applied. A difference is that a function term is represented by a
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Figure 7.4: A Rule Schema of Object Technician

amount -type class clearanceStatus

proj-type-rule proj-class-rule clearance-rule

Figure 7.5: A Rule Schema of Object Secret Project
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functional path, similar to [Mor86, Shi8 l].

RULESET proj-type-rules
Project.funding.Budget.amount(x) > $ 200,000 = - Project.type(x)= "B";
Project.funding.Budget.amount(x) < $ 50,000 =€, Project.type(x) = "D";
END proj-type-rules.

RULESET proj-class-rule
SecretProject.type(x) > "B" =:, SecretProject.class(x) = "top secret";
END proj-class-rule.

For example, suppose a query asks the security class of all secret projects whose budget is over
$200,000: Budget.amount(x) > 200,000 = SecretProject.class(x). By applying the definition of
predicate submodel and thus Budget.amount(x) _= Budget.amount(x), the following meta-message
equation is obtained from the rule schema in Figure 7.5:

proj-class-rule (proj-type-rules (Project.funding.Budget.aamount, w), w2) = SecretPro-
ject.class

Since oids are not provided by the query, oids can be obtained by the definition of object identifica-
tion. By Definition 7 they are {x I 3x Budget.amount(x) > $200,000 } ={DARPA1, RADC4}.
When we applv the above meta-message equation to project DARPA I from the obtained oid set,
we get the equ .tion:

proj-class-rule (proj-type-rules (DARPA1), B) = SecretProject.class

From this instantiated equation, rule sets are activated by sending messages for the project instance
of DARPA 1:

Message 1: proj-type-rules (DARPA1)

Message 2: proj-class-rule (DARPA 1)

Finally, we conclude that DARPA l is a top secret project. Similarly, we have another meta-message
equation by applying to project RADC4:

proj-class-rule (proj-type-rules (RADC4), A) = SecretProject.class

By sending messages to RADC4, (1) proj-type-rules(RADC4) and (2) proj-class-rule(RADC4), it
is concluded that RADC4 is a top secret project.
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7.6.2 Inference in Independent Composite Objects

Let object types 0 and 0' be composite object types. 0 is said to be independent of 0', if the
existence of 0 does not depend on the existence of 0'.

First, dot notation is useful in describing the rule sets of independent composite objects, playing the
role of the "join" operation in relationial databases. A functional path along independent composite
objects needs more than one function term. From the following example, we see that the class of
secret projects which are supervised by a technical manager can be expressed as:

TechnicalManager.supervises(x).SecretProject.class(y) = C

Because the existence of independent composite objects are by definition independent on the ex-
istence of other composite objects, oids must be changed along the functional path of aggregation
hierarchies. In order to identify the oid of independent composite objects, we may use the following
definition.

Lemma 1 (Object Identification in Composite Objects). Let afunction path be E1 (W).E 2(y).E 3(z) =
C. Then, oids X of the independent composite objects can be obtained using the following equa-
tions.

Z = {z I 3z E3(Z) = C}

Y = {E2(Y) I VY Y E Z}

X = {E 3(x) I Vx x E "}

From our TechnicalManager example above, the set of oids Y is" = {y 1]3 SecretProject.class( )
= C 1. Once the set Y is obtained, the set of oids of composite objects, X, can be found: {
TechnicalManager.supervises(x) I Vx x E Y 1.

WiLh this notion in mind, let us consider an example of rule set activation. Suppose that in addition
to the rule sets of the previous section we have the rule set:

RULESET clearance-rules
TechnicalManager.supervises(x).SecretProject.class(y) = "top secret"
=- TechnicalManager.clearanceLevel(x) = "1 st";
TechnicalManager.supervise s(x).SecretProject.class(y) = "confidential"

TechnicalManager.clearanceLevel(x) = "3rd";
END clearance-rules.

Consider rule schema in Figure 7.5. Now suppose we want to obtain the clearance of the manager
of a secret-project DARPA I. The following meta-message equation can be generated:
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clearance-rules (proj-class-rule (proj-type-rules (Project.funding.Budget.amount, 200,000),
A), w) = clearanceStatus

From this equation, rule sets are activated by sending messages to the object which has the oid of
DARPA 1 (which is an oid taken from the query). Fhe first two messages generated from the two
innermost meta-message equations are:

Message 1: proj-type-rules (DARPA 1)

Message 2: proj-class-rule (DARPA1)

The rest of the equation is:

clearance-rules (TechnicalManager.supervises, w) = clearanceStatus

Given that Y = { DARPA1 } from the query, by using Lemma 1, the desired oids are:

{ TechnicalManager.supervises(x) !Vx x E Y} = {James, Tom}.

Therefore, a message can be sent to both objects of oids "James, Tom":

Message 3: clearance-rules (James)

Message 4: clearance-rules (Tom)

We conclude that a technical manager James' clearance is 1 and Tom's clearance is 3.

7.7 Summary

A technique for knowledge processing in object-oriented databases is developed in this report.
Rules use a dot notation and an oid of an object. This representation is suitable to the features of
an object oriented paradigm including generalization and composite objects. Rules are grouped
into rule sets and the rule sets are depicted in a rule schema. A rule set is regarded as a method or
an active value in object-oriented databases, and so two notions of rule activation are described.
Meta-,nessage equations can be generated from a rule schema. Based on each meta-message equa-
tio i, rules are automatically and sequentially activated.
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8 Hypermedia Requirements for Active Dictionaries

8.1 Introduction

In a multimedia application one typically interacts with the data through a workstation with a multi-
windowing capability. The user will likely be interested in displaying and interacting with several
multimedia types. For instance, in a medical application concerning the heart, the user may have a
window open that displays one or more views of the heart, another window that shows the
location of the heart within the body, a window with textual data, another window that shows the
position of the user within the data structure and another window with motion video on some other
aspect such as a beating heart. In addition, voice data can be presented to the user at appropriate
times.

In order to orchestrate the presentation of the information, one must have a methodology for
drawing the proper data from storage, integrating it, synchronizing the presentation to the user, and
finally displaying it. This takes a multilevel object-oriented system. For instance, the actual data
can be stored as sub-objects with higher level entities representing various combinations of
integrated and synchronized objects. The most straight-forward approach is to pre-synchronize the
data, such as the sound and picture in a movie. While such data can be pre-synchronized the
general problem requires the tools and techniques to develop the presentation in real time.

We have considered how the IRDS might be extended to handle conventional database data,
knowledge, text, imagery, spatial data, temporal data, engineering data and CAD/CAM data. We
use the concept of a multimedia document to illustrate the ideas. For instance, as a brief
introduction, consider imagery and video. Traditionally, one extracts information from an image
and places it along with text in a structured record. The actual image, in digital form, is stored in a
file on a disk and retrieved as needed. In this case there is little difference between imagery and
nther types of data. However, if we extract some special information about the image this may add
to the requirements of the data dictionary. For instance, there may be some particular constraints
about the intensity levels within the image. This adds active dictionary entries at the data level.
Also, there may be constraints over classes of images which yield entries at the meta or meta-meta
level. Also, they may be knowledge entries regarding the imagery that go beyond the capabilities
of the current IRDS structure.

With regard to video, new dimensions are added. At a basic level video is just the presentation of
many images in rapid sequence. However, the important aspects are contained in the relationships
of various images that are not necessarily successive, that is, a particular object appears in a range
of frames. This causes the interrelationship between any two objects to become much more
complex.

As with imagery, one forms a structured record with text to describe the video. So, from the point
of view of an active dictionary, video is similar to text and data in this regard but more complex
when higher levels of an active dictionary are concerned. We now elaborate on these ideas.

8.2 Multimedia document

In order to assess the impact of multimedia data on future versions of the IRDS, we have chosen
an example that involves a general stncture for a multimedia document. The structure is shown in
Figure 8.1 and follows no particular object-oriented conventions, but is similar to the diagrammatic
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conventions of the Knowledge Data Model described in section 4.2. In particular, the diagram
uses solid lines to indicate the "is-part-of" relationship of aggregate, or composite object types.
Relationship types associated with the Entity-Relationship model are depicted as diamonds.

The document can be divided into two general parts, the body and illustrations. The body refers
mainly to textual data while the illustration part involves all other types. The body includes header
and section information that are further divided into such other information as logo and edition,
subsections and sections, titles and paragraphs.

The general structure for this part of the multimedia document will most likely exist at the schema
and database levels of the IRDS. The actual data that comprise the paragraphs would be stored in
the database. The header information may involve other data types such as images (logo) which
will be discussed later. Another aspect of the body of the document concerns other data. These
data may include a variety of additional types at a higher level of abstraction. For instance, the
document may have had several revisions which le'ds to temporal data regarding the versions.
Also, domain specific data may be added as well as general constructs. Most of these data apply to
a level higher than the current IRDS levels. However, the constructs of the IRDS's Basic
Functional Schema can be used to define new entity types that could be used to represent this high-
level meta-data.

Another aspect of the multimedia document structure are relationships. Shown in Figure 8.1
between body and illustration is the relationship type BI. This indicates that there may be some
connection between these two aspects of a document For instance, an image or drawing may have
a connection with a particular fragment of text. 71 his type of information may be described at the
schema and database level of the IRDS. Also, there are a number of other relationships among
data at lower levels of the diagram but they are not shown since this would make the diagram too
complex. Under illustration three additional multimedia types are given, these are imagery, video
and voice. Each of these types will be discussed in turn.

8.2.1 Image data

The first type we will consider is image data. This category includes a variety of types including
engineering drawings, charts, maps, photographs, x-rays, and the like. (While most people would
agree that the term image is more restrictive than used here, there is no general agreement upon a
term that describes this category so we will use image.) There are three major ways of storing this
type of data, scan line analog form, a bit map representation and a vector representation. In the
scan line representation, data are stored as modulations of analog signals and are generally treated
as a whole image. That is, one can reproduce the entire image at will but ca,'not manipulate
individual parts of the image. In the bit map representation, individual pixels are represented in
digital form. For instance, a pixel with color information can be represented in 24 bits, 8 bits each
for red, gretm and blue. These data can now be manipulated individually or in groups thus
allowing further processing to be performed. However, the amount of digital data for one image
can be quite large; a megabyte for a digitized standard TV frame or as high as several gigabytes for
a high quality medical image. The third type of data in this category is vector data. In this case,
one has a set of standard representations and locates many of these together at various locations to
form the required image. These types of images are common in the case of computer generated
images.
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At one level all of the above categories contribute files of data that must be managed as a group.
That is, one often wants to view the entire image without further manipulation. Thus, the structure
of these data can be managed at the schema level of the IRDS and the actual data stored as a file.
This is shown as the Image-Body in Figure 8.1. Considering a higher level of the IRDS one needs
to create and manage a structured record about the image. Under current implementations this
record type will be all text and can be managed accordingly. This is shown as the Image Heater in
Figure 8.1. However, in future systems, sample data from the images, such as swatches, would
become part of the structured record. There are many reasons to include such data one of which is
that the user may want to take a "quick look" at the data in order to help make the decision as to
whether further data are needed. This inclusion of image swatches at the directory level will add an
additional element of complexity to the IRDS.

At a higher level of complexity one often wants to extract features from an image. Depending upon
the particular image involved, the features could be managed at the meta schema or schema level of
the IRDS. For instance, if one wants to know which images have trees in them then it would not
be difficult to inc!ude suitable fields in a structured record to indicate the presence of trees.
However, if more complex information were required, such as the shape and size of particular
objects in relationship to other objects, then this would be more difficult if not impossible to
manage with the current IRDS. In addition to the type of data discussed above, there are
operations that are performed on the image that may not pertain to particular features. For instance.
one may be interested in color enhancements of the image, compressing the image for use in index
generation and processing or, in general, processing the image in some way and keeping various
versions of the image. The types of operations described in this paragraph are representative of the
types of operations indicated in the third block under image in Figure 8.1 that is, other image data,
information and knowledge.

It is clear that the IRDS can handle certain forms of image data. However, its capabilities are
exceeded rather quickly when knowledge and certain types of meta data, as described above, are
considered. This is not surprising since the IRDS wasn't really designed for such data. However,
it is also clear that considerably more study needs to be undertaken to develop an IRDS structure
that will adequately deal with image data.

8.2.2 Audio data

Audio data can appear in a variety of ways in a multimedia environment. Various pieces of music
or speech can be digitized and stored in the multimedia database. Voice annotations can be
collected in conjunction with the analysis of image or video data. For example, a radiologist can
input voice annotations about various sections of a medical image during analysis thus adding data
to a permanent record.

In discussing audio, we will use the example of the Belfer Audio Laboratory and Archive at
Syracuse University which possesses a collection of 1.2 million sound recordings of various types
as well as images of each recording. The laboratory possesses high quality digitized audio
concerning much of the collection. in addi:iun, lower quality sound is also stored to provide initial
screening for the user.

A structured database record exists for each of the rcordings as well as the image of the sound
recording. The image provides the user with information that cannot readily be stored in the

8-3



stnictured record. Such information includes pictures, drawings, etc that appear on the recordings,
jacket spine information, logos, various cover designs, embossed serial numbers and a variety of
other types depending upon particular recordings.

Referring again to Figure 8.1, the Audio-Header information in the above example includes the
structured records about the sound recordings and the Audio-Body information includes the
digitized sound. These data and their structure can be stored in the database and at the IRDS
database and schema levels respectively. The image data can be handled in a manner similar to that
described in the previous section.

There are other kinds of data involved as indicated in Figure 8.1. For instance, many sound
recordings may exist concerning the same composition only performed by different artists. A
researcher doing comparative analysis of the recordings may want to make voice annotations about
his/her results or may reach certain conclusions at a more abstract level. The structure of some of
this information could be stored at a higher level of the IRDS with other information requiring a
level beyond the current IRDS levels.

In the example given above the original recordings are largely in analog form. In order to produce
a digitized sound recording various sampling techniques can be used. The greater the rate the
better the quality of the reproduced sound. As a point of reference, low quality sound may require
only 20 KBytes/minute while high quality sound would rec uire on the order of 0.5
MBytes/minute. As with imagery, the analog or digital recording is subject to analysis and
therefore additional information may be generated. That is, through the analysis of the sound,
textual data representing conclusions, knowledge, etc could be generated and thus produces
additional input to the IRDS. Also, new representations of the sound could be generated and thus
have to be stored in the database and thus affect the IRDS. Also, one can imagine a compressed
version of some audio that contains key characteristics that could be used for index generation.
These would then produce sound indexes that the IRDS might not be equipped to handle.

8.2.3 Video

The last type of media that we will discuss is video. As shown in Figure 8.1 a unit (tape, clip, etc)
of video is described by header information as indicated by Video-Header. The amount of header
information will vary depending upon how much is needed to describe the video. The actual video
will probably be stored externally to the system since digital video consumes enormous amounts of
secondary storage. For instance, 24 hours of digitized full motion video of TV quality without
compression would take on the order of 2.5 terabytes of storage. However, one may be interested
in storing short video chips, compressed video or swatches of video for a variety of applications.
In this case the actual video would appear in a database with header information at the database or
schema level of the IRDS.

The actual video can be viewed as a series of frames with each frame having an individual number.
In this case each frame can be considered in the same way as image data except that there is
considerable redundancy from frame to frame. Because of this redundancy, it may be best to
consider groups of frames as a basic unit.

As with oLher types of multimedia a variety of other types of information can be extracted from the
video. As with image data they can occur at all levels of the IRDS as well as levels that do not
currently exist within the IRDS.
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8.3 Extending the IRDS

It appears feasible to extend the IRDS to handle some types of multimedia data. However, before
embarking on such a task, considerable additional study should be undertaken. This study should
consider the particular characteristics of the various multimedia data types as well as the new types
of information that they bring to the field. At that point one may view the task as designing a new
IRDS to handle multimedia data as well as text and numeric data; rather than extending the current
IRDS. We suggest that object-oriented techniques be used to encapsulate these multimedia types
into object-types with well-defined interfaces and with methods to access and manipulate such
type. These capabilities do not exist in the current IRDS specification.

Mutimedia
Document

BoyBI Illustration

~Other
Header Section Knowledge IaeAudio

Data, Etc. oc

Logo] Eitin [ -HederA-Header

Frame # Frames

Frame Other

Figure 8.1 Multimedia Document Schema
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9 Conclusions

This report has presented the results of our research into the concepts, tools, techniques and
architectures for the Active Data/Knowledge Dictionary. We have studied the Information
Resource Dictionary System as a candidate for the ADKD; although it supports a semantic data
model, Chen's Entity/Relationship model, it will not support a fully object-oriented model which
we feel is necessary for the ADKD.

In Section 3 of the report we focussed on a functional architecture for the ADKD. It should be
viewed as an environment for the specification, development, and evolution of data-based and
knowledge-based applications. The ADKD must provide a collection of services including: 1)
User interface services for object-oriented browsing of complex data/knowledge organizations; 2)
Data and knowledge acquisition services that support well-known knowledge representation
paradigms such as productions, cases, and frame-based schemes as well semantic and object-
oriented data models. It is clear that the ADKD must be able to represent behavioral or procedural
knowledge in a declarative fashion so as to be able to reason about it; 3) Reasoning and knowledge
management services to provide support to Data and Knowledge Engineers in their tasks, 4)
Knowledge organization services to provide indexes into the object-oriented specifications of
data/knowledge for efficient storage, retrieval and update; 5) Translation and mapping services to
be able to communicate with existing systems, and 6) Learning and adaptation services to allow the
data/knowledge schemata to evolve so as to reflect the reality of their application environments.

Section 4 examines the major proposals for query processing in heterogeneous databases and
presents a novel approach, the Intelligent Heterogeneous Autonomous Database (InHead)
architecture which incorporates a blackboard control model, multiple Knowledge Sources (KSs)
that capture the structure and semantics of objects in the local databases, and an intelligent
thesaurus that resolves semantic ambiguities of terms used in the local databases

Section 5 further explores the use of multiple knowledge sources and heterogeneous data and
knowledge representations to solve problems. The concept of compiled knowledge resulting from
a problem-solving episode is used to show how the various knowledge sources can evolve and
improve the quality of their knowledge.

Section 6 presents our approach to schema evolution in object-oriented database systems.
Previous approaches have solved portions of the problem, and our approach, which couples an
ADKD with an Al truth maintenance system is original.

Section 7 shows how declaratively-defined rules can be integrated into an object-oriented data
model. These rules can represent both integrity constraints and active productions. The concept of
a rule schema is used to show how rules might be fired and which objects would be affected. This
approach could be used to build a tool for Constraint and Rule Management for the ADKD.

Finally, section 8 presents our findings concerning multimedia types such as voice, video, and
images within the ADKD. We discuss how the ADKD might be extended to include such types.

The concept of the Active Data/Knowledge Dictionary as an environment to support the analysis.
design, development and management of object-oriented data- and knowledge-based applications is
crucial to its acceptance within development organizations, and further research and development
efforts are needed.
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Appendix A Blackboard Architectures - Knowledge Sources and Control

The blackboard problem-solving paradigm has grown out of the Al field. It is typified by BBl
[HR85], a blackboard control architecture developed at Stanford.

BB 1 (see Figure A 1) provides a uniform blackboard architecture for knowledge-based systems that
reason about their own actions. In a BB1 system, functionally independent knowledge sources
cooperate by recording and modifying information in a global data structure called the blackboard.
Task knowledge sources (also referred to as domain knowledge sources) solve problems on the
corresponding task blackboard. Control knowledge sources construct control plans for the
system's actions on the control blackboard. Learning knowledge sources modify information in
the knowledge base. All knowledge sources operate simultaneously and, when triggered, compete
for scheduling priority. BB I also provides an explanation capability [SHR87] by which a system
shows how its actions fit into its control plan [JHR86].

Knowledge Base Control Blackboard

Facts Control Plan Interface
Task KSs Agenda and Explanation
Control KSs Scheduled KSARs
Learning KSs

Task Blackboard Scheduler

Level I
Lev e 2 Interpreter

Leve! n

Figure Al. The BBl Blackboard Control Architecture

Knowledge sources have a condition-action format. The condition describes situations in which
the knowledge source can contribute to the problem-solving process. Ordinarily, it requires a
particular configuration of solution elements on the blackboard. The action specifies the
knowledge source's behavior. Ordinarily, it entails the creation or modification of solution
elements on the blackboard. Only knowledge sources whose conditions are satisfied can perform
their actions (HR85].

Each change to the blackboard constitutes an event that, in the presence of specific other
information on the blackboard, can trigger (satisfy the condition of) one or more knowledge
sources, Each such triggering produces a unique knowledge source activation record (KSAR). A
KSAR is similar to an item on a task agenda. It represents a unique triggering of a particular
knowledge source by a particular blackboard event. When a KSAR is chosen by the scheduling

A-1



mechanism, its knowledge source's action executes in the context of its triggering information,
typically producing new blackboard events [HR85].

The system's control plan iq managed and formulated on the control blackboard. Each control
decision is represented as a data structare with the attributes defined in Table A. 1. These attributes
are instantiated for decisions at each level of abstraction on the control blackboard. The control
blackboard's levels of abstraction represent different categories of control decisions. Decisions at
the Problem, Strategy, Focus, and Policy levels describe desirable actions, the ,by determining
which of the system's control heuristics operate during particular problem-solving time intervals.
Decisions at the To-Do-Set level describe feasible actions, identifying all KSARs eligible for
execution on each problem-solving cycle. Decisions at the Chosen-Action level describe actions
scheduled for execution on each problem-solving cycle. Figure A.2 defines and gives examples of
decisions at each level of the control blackboard.

Table A.1 Basic Attributes of Control Decisions.

Attribute Definition

Name Identifying level and number

Goal Prescribed action (predicate or function of KSAR
attributes)

Criterion Expiration condition (predicate)

Weight Goal importance (0-1)

Rationale Reason for Goal

Creator KSAR that created the decision

Type Role in control plan

Status Function in control plan

First-Cycle First operative cycle

Last-Cycle Last operative cycle

The BBl problem-solving cycle comprises three steps: (a) the interpreter executes the action of one
task, control, or learning knowledge source, which changes the contents of the corresponding
blackboard. (b) the agenda-manager adds KSARs to the agenda; and (c) the scheduler rates each
KSAR on the agenda against the current control plan and chooses one KSAR to execute its action.
Unless it has been instructed to operate autonomously, the scheduler also invites the user to request
an explanation, to override its chosen action, etc. Thus, on each cycle, a BB 1 system knows what
actions are feasible (those on the current agenda) and what actions are desirable (those described in
the current control plan). It determines which of its feasible actions best matches its desirable
actions -- and performs that one [JHR861. It is this flexible problem-,;olving cycle that enables
BBI systems to dynamically plan, execute, explain, and learn about their own actions.
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A detailed description of BB1 is beyond the scope of this discussion. However, readers may
consult [GCHR87, HR85, HHR87, JHR86, Nii86, SHR87] for further information.

The blackboard framework is regarded by many Al researchers as the most general and flexible
knowledge sys t em architecture. It offers expert system programming techniques that are difficult
to achieve in othe-r frameworks. Among them are:

" Dynamic control. At each step in the formation of the solution, a decision can be made as
to how test to make inferences related to that step.

" Focus of attention. There is no rigidity with respect to what part of the emerging solution
should be attended to next; for example, whether attention should go to an element at a
low level of abstraction or at a high conceptual level.

0 Flexibility of programming the control. Knowledge about how control should be applied
in various domains can be codified in control rules or in complex control regimes.

* Modularity. Because the architecture is inherently modular (knowledge sources,
blackboarct levels, control structures, etc.) the design, testing and maintenance of the
system can be eased.

The blackboard framework has been shown to be particularly well-suited to the classes of
problems possessing one or more of the following traits:

• The need to represent many specialized and distinct kinds of knowledge.

• The need to integrate disparate information.

• A natural domain hierarchy (or hierarchies).

• Having continuous data input (e.g., signal tracking).

• Having sparse knowledge/data.

The problem of improving query specifications to a system of heterogeneous databases shares
many of these traits. There are many specialized centers of knowledge to be represented. For
example, there is the need to represent knowledge of query decomposition techniques, individual
database contents, individual database query formulation methods, individual database contents
from a system-wide viewpoint (i.e., an active knowledge encyclopedia of the databases' terms and
of their usage), user desires and preferences, and past performance of databases.

Regardless of the data model utilized, databases are often conceptualized hierarchically. Also, it is
natural for humans to conceptualize search for knowledge in a hierarchical fashion, and thus, it is
desirable to guide the user in his quest hierarchically. The KDM allows one to easily represent
hierarchies. The more obvious and natural the hierarchical representation, the more attractive the
blackboard approach becomes.

Inherent in the heterogeneous nature of the system considered is the need to integrate disparate
information. The blackboard provides an organizational framework to hold the fundamentally
different kinds of information required to improve query specifications. Although not a part of this
research, this blackboard feature could be applied in other capacities such as conducting system-
wide query optimization.
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Furthermore, it is likely such a system would possess sparse knowledge/data. Thus, there could
be cases in which uncertain knowledge or limited available data would make absolute determination
of a solution impossible (i.e., queries in which entity and attribute ambiguities were not fully
resolved). In these cases the incremental problem-solving nature of blackboard systems still
allows progress to be made. It is these reasons that make the blackboard framework appealing to
the problem of improving query specifications to a system of heterogeneous databases.

Problem
Definition: Problem the system has decided to solve.
Example:

Goal = (KS Problem-Domain = situation-assessment)
Criterion =

((complete solution at lowest domain Level)
(all Requested-Tasks planned)
(all Constraints met)
(route efficient))

Strategy
Definition: General sequential plan for solving the problem.
Example:

Goal = (Action-Level = successive domain Levels)
Criterion = complete solution spanning all domain Levels

Focus
Definition: Local (temporary) problem-solving goals.
Example:

Goal = (Action-Level = Outcome)
Criterion = complete solution at Outcome Level

Policy
Definition: Global (permanent) scheduling criteria.
Example:

Goal = (Triggering-Cycle = recent)

To-Do-Set
Definition: Sets of pending KSARs.
Example

Goal = ((Triggered-List = (KSAR-008,KSAR-009))
(Invocable-List = (KSAR-005,KSAR-006, KSAR-007)))

Chosen-Action
Definition: KSARs chosen to execute.
Example:

Goal = KSAR-007

Figure A.2 Levels of Abstraction for the Control Blackboard (From
[HR85]).
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B An example of schema evolution in GemStone

To illustrate one problem posed by evolving schemata in object-oriented databases, we cre-
ated an example schema in the GemStone object-oriented database system and will present
the transcript of a session we had with that system.

We first asked GemStone to tell us about its data dictionaries by entering the list dictionaries
command at the system prompt as shown in line 1, below. The system responded by saying
that it had dictionaries named Globals, UserGlobals, and Example as shown in lines 2
through 5.

1 topaz 1> list dictionaries
2 Symbol List dictionary names:'

3 Example
4 UserGlobals
5 Globals

Next. we asked GemStone to list those classes defined in the dictionary named Example. for
that dictionary is where we had earlier created a simple schema with which to illustrate the
problem at hand. Line 1, below, shows our request. The system's response in lines 2 and 3
show that the dictionary contains two class definitions: one for a class named Student and
another for a class named Person.

1 topaz 1> list classesIn: Example
2 Student

3 Person

Wanting to learn about the class Student. we asked GemStone to show the definition of that
class. Line 1. below, shows our request and lines 2 through 22 show the system's response.
From the system's response we learned the following about class Student:

" it is a subclass of class Person (line 3).

" it has one instance variable named Advisor (line 4).

" values of its instance variable are constrained to be of type String (line S).

" it has two methods: one for updating the value of its instance variable (lines 11 through
16) and one for simply accessing the value of its instance variable (lines 17 through
22).

1 topaz 1> fileout class: Student
2 run
3 Person subclass: 'Student'
4 instVarNames: #( 'Advisor')
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5 classVars: #0
6 poolDictionaries: #]
7 inDictionary: Example
8 constraints: #[#[#Advisor, String]]
9 isInvariant: false

10 %
11 category: 'Updating'
12 method: Student
13 Advisor: newValue

14 "Modify the value of the instance variable 'Advisor'."
15 Advisor:= newValue
16 %
17 category: 'Accessing'
18 method: Student
19 Advisor

20 "Return the value of the instance variable 'Advisor'."
21 -Advisor

22 %

Wanting to learn more about class Student, we next asked GemStone about the class Person
from which it inherits instance variables and methods. Line 1, below, shows our request and
lines 2 through 22 show the system's response. From the system's response we learned the
following about class Person:

* it is a subclass of GemStone's root class, Object (line 3).

" it has one instance variable named Name (line 4).

" values of its instance variable are constrained to be of type String (line 8).

e it has two methods: one for updating the value of its instance variable (lines 11 through
16) and one for simply accessing the value of its instance variable (lines 17 through
22).

1 topaz 1> fileout class: Person
2 run
3 Object subclass: 'Person'
4 instVarNames: #( 'Name')
5 classVars: #()
6 poolDictionaries: #[]
7 inDictionary: Example
8 constraints: #C#[#Name, String]]
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9 isInvariant: false

10 7.
11 category: 'Updating'
12 method: Person
13 Name: newValue

14 "Modify the value of the instance variable 'Name'."

15 Name:= newValue
16 %
17 category: 'Accessing'
18 method: Person

19 Name

20 "Return the value of the instance variable 'Name'

21 -Name

22 %

From the metadata contained in dictionary Example, we concluded that class Student has
two instance variables: Advisor which is defined as part of class Student, and Name which
it inherits from class Person. Along with these two instance variables, class Student should
have four methods: two for updating the values of the instance variables, and two for simply
accessing their values.

To test this conclusion, we attempted to create an instance of class Student and assign values
to its Name and Advisor instance variables. Lines 1 through 6, below, show our attempt to
do this, and lines 7 and 8 show the error message generated by the system in response to
that attempt.

1 topaz 1> run
2 Is 1
3 s := Student new.

4 s Name: 'Chris Bosch'.

5 s Advisor: 'Dr. Kerschberg'.
6 '.

7 [903, 10] No method was found for the selector #Name: when

8 sent to aStudent with arguments contained in anArray.

Contrary to what we had inferred from the metadata contained in dictionary Example,
class Student does not have a method for updating the Name instance variable. Further
investigation would show that class Student did not inherit any instance variables or methods
from class Person as defined in the data dictionary even though it is defined to be a subclass
of class Person.

The reason that this situation exists is due to the fact that the definition of class Person
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has evolved over time. When we first defined class Person, it had two instance variables.
FirstName and LastName, along with associated methods for updating and accessing those
instance variables. Then, we defined class Student to be a subclass of class Person. Finally.
we redefined class Person to have just one instance variable, Name, and associated methods.

Given this complete knowledge of the metadata's derivation history, we can conclude that
class Student has three instance variables: Advisor which was defined as part of class
Student as well as FirstName and LastName which it inherited from class Person as first
defined. Along with these three instance variables, class Student should have six methods:
three for updating the instance variables and three for simply accessing their values.

To test this conclusion, we attempted to create an instance of class Student and assign values
to its FirstName, LastName, and Advisor instance variables. Lines 1 through 7. below, show
our attempt, and lines 8 through 11 show the system's response indicating that our attempt
was successful.

1 topaz 1> run

2 IsI
3 s := Student new.

4 s FirstName: 'Chris'.

5 s LastName: 'Bosch'.
6 s Advisor: 'Dr. Kerschberg'.
7 %
8 a Student
9 FirstName Chris

10 LastName Bosch
11 Advisor Dr. Kerschberg

B-4


