Effect of symmetry on the physical and electronic properties of a series of conjugated polymers composed of di(2-thienyl)-2,5-dialkoxyphenylene repeat units, symmetrically and asymmetrically substituted with methoxy, heptyloxy, dodecyloxy, hexadecyloxy, eicosinoxy and hexyl groups were studied. Polymers were prepared via an oxidative polymerization using ferric chloride and isolated after dedoping with ammonium hydroxide. Neutral polymers, soluble in common organic solvents including chloroform, methylene chloride and tetrahydrofuran, are predominantly linked at the 5 and 5' positions of the thiophene rings to result in fully conjugated main chains that are stable to 360 °C under nitrogen. Molecular weight analyses indicate weight average degrees of polymerization (X_w) of ca. 10-20; thus, substantial fraction of chains in each sample contains 30-50 aromatic rings. Differential scanning calorimetry studies revealed that melt transitions, indicative of molecular ordering, are present in the symmetrically substituted polymers found to be amorphous. Upon oxidation of the insulating polymers, bipolaronic charge carriers were formed with the oxidized polymers exhibiting electrical conductivities up to 4 × 10^-2 cm^-1. Order found in these polymers was confirmed by x-ray diffraction and found to persist at elevated temperatures, yielding birefringent melts, suggestive of liquid crystalline order. Asymmetrically substituted polymers, soluble in common organic solvents including chloroform, methylene chloride and tetrahydrofuran, are formed with the oxidized polymers exhibiting electrical conductivities up to 4 × 10^-2 cm^-1.
SYMMETRY EFFECTS ON THE PHYSICAL AND ELECTRONIC PROPERTIES OF PROCESSABLE, ELECTRICALLY CONDUCTING, SUBSTITUTED POLY(DI-2-DIENYLPHENYLENES)

Jose P. Ruiz, Jayesh R. Dharia, John R. Reynolds and Leonard J. Buckley

Accepted for publication in Macromolecules

October 21, 1991
SYMmetry effects on the physical and electronic properties of processable, electrically conducting, substituted poly(di-2-thienylphenylenes)

Jose P. Ruiz, Jayesh R. Dharia and John R. Reynolds*

Center for Advanced Polymer Research
Department of Chemistry
The University of Texas at Arlington
Arlington, Texas 76019-0065

Leonard J. Buckley
Polymer Physics Group
Naval Air Development Center
Warmister, Pennsylvania 18974
Abstract: The effect of symmetry on the physical and electronic properties of a series of conjugated polymers composed of di(2-thienyl)-2,5-disubstitutedphenylene repeat units, symmetrically and asymmetrically substituted with methoxy, heptoxy, dodecyloxy, hexadecyloxy, eicosinoxy and hexyl groups has been studied. The polymers were prepared via an oxidative polymerization using ferric chloride and isolated after dedoping with ammonium hydroxide. The neutral polymers, soluble in common organic solvents including chloroform, methylene chloride and tetrahydrofuran, are predominantly linked at the 5 and 5' positions of the thiophene rings to result in fully conjugated main chains that are stable to 360 °C under nitrogen. Molecular weight analyses indicate weight average degrees of polymerization (X_w) of ca. 10-20 and, thus, a substantial fraction of chains in each sample contains 30-50 aromatic rings. Differential scanning calorimetry studies revealed that melt transitions, indicative of molecular ordering, are present in the symmetrically substituted polymers. The order found in these polymers was confirmed by x-ray diffraction and was found to persist at elevated temperatures, yielding birefringent melts, suggestive of liquid crystalline order. The asymmetrically substituted polymers were found to be amorphous. Upon oxidation of the insulating polymers, bipolaronic charge carriers were formed with the oxidized polymers exhibiting electrical conductivities up to 4 Ω⁻¹cm⁻¹.
Introduction

The introduction of substituent groups onto conjugated polymers has been utilized to a great extent in controlling their resulting physical and electronic properties. As a result of the incorporation of different side groups, processability (by way of solution or melt processing) and electronic tunability (in terms of conducting and optical properties) have resulted.1-3

Polythiophene, when polymerized through the 2 and 5 positions, has a symmetric repeat unit and is a highly crystalline polymer.4 Due to the rigidity of the backbone, and strong interchain interactive forces, polythiophene is completely insoluble and infusible. Its substituted derivatives, on the other hand, have attracted significant attention because of their resulting solution and melt processability when flexible alkyl groups are introduced onto the thiophene ring.5 Although desirable qualities are exhibited by these polymers, the substituent incorporated removes the symmetry of the thiophene repeat unit. This asymmetry leads to configurational head-to-head and tail-to-tail defects, causing deleterious effects on the crystallinity of the resulting polymer. Approximately 20% of the linkages along the polymer backbone are head-to-head as determined by NMR spectroscopy.6,7

X-ray diffraction studies by Winokur and coworkers8 revealed that, during oxidative doping, a change in size of the unit cell volume ensues that requires a cooperative motion of the alkyl chains, the polymeric backbones and the dopant ions. With the presence of the these defects, this cooperative motion is hampered, thus, resulting in a decrease in the electrical conductivity of the polymer after redox doping.

The use of 3,3'-dialkyl-2,2'-bithiophene monomers resulted in a more ordered polymer composed exclusively of alternating head-to-head and tail-to-tail linkages.7 Molecular order induced in these polymers resulted in higher electrical conductivities. Steric interactions between the substituents, however, resulted in lower electrical
conductivites, as the size of the substituents increased. Another method of synthesizing symmetric polythiophenes has been utilized by the introduction of substituents at both the 3 and 4 positions of the thiophene ring. Steric interactions between the side-groups, however, decreased conjugation and inferior electrical conductivities resulted.9

Comparable to polythiophenes, poly(p-phenylene) (PPP) has a highly symmetric repeat unit and has been found to be highly crystalline yet completely insoluble and infusible.10 Soluble PPP's have been synthesized by the incorporation of alkyl chains at the 2 and 5 positions of the phenylene ring.11 The addition of these substituents does not affect the symmetry of the repeat unit, however, due to steric interactions, adjacent rings are essentially orthogonal to one another.12 This destroys conjugation along the polymer chains and relatively large electronic band gaps are obtained from these polymers.11 Aside from this steric interaction, another problem encountered in the preparation of PPP is that the phenylene monomer needs to be activated by introducing reactive sites for polymerization. This has been accomplished by the palladium catalyzed coupling of boronic acid derivatives and PPP's with number average degrees of polymerization of up to 100 have been prepared.11b No redox or electrical properties were reported for these polymers.

In this respect, with the broad range of symmetric and asymmetric substitution possibilities on phenylene rings coupled with the synthetic flexibility in polymerizing thiophenes, interest in polymers containing both phenylene and thiophene moieties along the conjugated backbone has developed. Various systems that have been studied include: the preparation of completely alternating phenylene-thiophene copolymers;13 the random copolymerization of 1,4-dibromobenzene and 2,5-dibromo-thiophene;14 and the utilization of bis(2-thienyl)benzene monomers to yield
polymers with alternating bithiophene and phenylene15,16 or alternating thiophene and phenylene17 repeat units.

Recently, we have reported the preparation and characterization of polymers from 1,4-bis(2-thienyl)benzenes with the incorporation of methyl and methoxy substituents on the phenylene unit.16 In this study, we elucidated substituent effects by both theoretical and experimental evaluation of electronic properties, redox behavior and electrical conductivities. This study revealed that the incorporation of alkoxy substituents on the phenylene unit resulted in polymers with electronic band gaps, and conductivities after doping, comparable to poly(3-alkylthiophenes).

In extending this work, we have symmetrically and asymmetrically incorporated long chain substituents, including heptox, dodecyloxy, hexadecyloxy, eicosinoxy and hexyl groups, onto the phenylene moiety of a series of 1,4-bis(2-thienyl)-2,5-disubstitutedbenzenes and examined the effect of the length of the side-chain, as well as the symmetry of the repeat unit, on the resulting polymers physical and electrical properties. The polymerization was carried out by a ferric chloride oxidative route with a subsequent dedoping with ammonium hydroxide. These polymers, analogous to substituted polythiophenes, are soluble in common organic solvents with the predominant formation of linkages at the 5 and 5' positions of the terminal thiophene rings. A differential scanning calorimetry study carried out on these polymers revealed that symmetric inclusion of substituents within the polymer repeat unit results in molecular ordering as evidenced by the observation of melt transitions. This order, which was found only in the symmetrically substituted polymers, was confirmed by x-ray diffraction. Interestingly, symmetrically substituted polymers with long alkoxy substituents also exhibited multiple endothermic transitions and birefringence in the melt suggestive of liquid crystalline behavior. Upon solution oxidation of the initially
insulating polymers, bipolaronic charge carriers were formed with the doped polymers exhibiting electrical conductivities up to 4 Ω⁻¹cm⁻¹.

Results and Discussion

Monomer Synthesis. The approach taken in the synthesis of a series of 1,4-bis(2-thienyl)-2,5-disubstitutedbenzene monomers is outlined in Scheme 1.

Insert Scheme 1

Long chain alkoxy substituents were introduced onto the benzene ring through the use of the Williamson ether synthesis¹⁸ from hydroquinone for symmetric disubstitution and 4-methoxyphenol for asymmetric substitution. The hexyl substituents were incorporated using a Grignard coupling reaction.¹⁹

The derivatives with long alkoxy side groups were successfully halogenated with elemental bromine in CCl₄ to selectively brominate the 2 and 5 positions. No catalysts were necessary because of the activation of these sites as a result of the electron donating effect of the alkoxy substituents. The products were all purified by recrystallization to yield compounds in excess of 80%. These reactions were also carried out in CH₂Cl₂ and CHCl₃ to give the same desired products, but reactions in CCl₄ gave the best isolated yields. 1,4-Dihexylbenzene was brominated with elemental bromine with a small amount of iodine used as a catalyzing oxidizing agent.¹⁹ The structure and purity of these benzene derivatives were confirmed by ¹H and ¹³C NMR as listed in the experimental section.

The thiophene moiety was incorporated onto the phenylene unit by the reaction of organometallic 2-thienyl intermediates. The use of 2-thienylzinc chloride with a palladium(0) catalyst in the formation of 2-thienylbenzenes and 2-furanylbenzenes has been reported by Pelter et al.¹⁷ 2-Thienylzinc chloride was prepared by lithiation of thiophene and a subsequent transmetallation reaction of 2-thienyllithium with
anhydrous zinc chloride. This reagent was treated with the 1,4-dibromo-2,5-
disubstitutedbenzene derivatives in the presence of palladium (0) tetrakis(triphenyl-
phosphine) as catalyst at 50 °C under inert conditions. The monomers were obtained
in excellent yields. The structure and purity of these monomers were confirmed by FT-
IR, 1H NMR, 13C NMR, listed in Tables 1 - 3, and elemental analyses, found in the
experimental section.

Polymerization. Oxidative polymerization using ferric chloride has been
utilized previously in preparing high molecular weight poly(3-alkylthiophenes)\(^6\),\(^{20}\) as
shown in Reaction (1). While most polymerizations were carried out at room
temperature, polymers 3c and 4c were prepared at 60°C which was required for
complete dissolution of the monomer. These two polymers remained in solution
during synthesis while all of the other polymers precipitated out of solution in the form
of dark blue powders. Partially oxidized polymers were isolated by precipitation into
methanol, washed with chloroform, ether, methanol and water then fully dedoped by
compensation with aqueous ammonium hydroxide.

Insert Reaction (1)

As the partially oxidized polymers were washed with methanol and water, color
change due to partial dedoping was observed. A more drastic color change was
observed for 7c in contrast to the alkoxy substituted polymers which can be attributed
to the difference in the oxidation potentials of these conjugated polymers as discussed
previously for the methyl and methoxy substituted poly(di-2-thienylphenylenes).\(^{16}\)

All of the above polymerizations were carried out for 20 h at room temperature.
The effect of polymerization time on the resulting polymer's molecular weight and
band gap was used to optimize the polymerization conditions using 2c as an example.
In addition, elevated polymerization temperatures were examined in the preparation of
polymers 2c' and 2c" which also precipitated out of solution during polymerization. The results from these experiments will be discussed with the polymer physical properties.

Neutral Polymer Structure. The structure and purity of all neutral polymers were analyzed using FT-IR, 1H NMR and 13C NMR spectroscopies and elemental analyses. The relevant results of these studies are listed in Tables 1-3.

The FT-IR results agree closely with results for the corresponding short chain alkyl and alkoxy substituted poly(di-2-thienylphenylenes) reported previously. These findings illustrate the stability of the monomer under the polymerization conditions as well as the retention of symmetry of the repeat unit after polymerization. This latter phenomenon suggests the formation of predominantly linear, α and α' linked, chains during polymerization.

The C-H stretching vibrations for monomer (2b) and polymer (2c) are compared in Figure 1. Note the disappearance of the vibration associated with the thiophene α-C-H stretch in the polymer while the vibrations attributed to the thiophene β-C-H and the phenylene C-H stretches remain. This is in contrast to the dimethoxy substituted polymer reported previously which exhibited residual α-C-H absorbances and suggests that higher molecular weights have been attained for the longer dodecyloxy substituted polymer. This is not surprising as the dodecyloxy side-groups enhance the solubility and the polymer can grow to longer chain lengths prior to precipitation. Comparable results were observed for all other polymers.

In an attempt to improve molecular weights further by increasing polymer solubility, polymerizations were carried out at elevated temperatures of 60 °C (in chloroform) and 130 °C (in 1,1,2,2-tetrachloroethane) to yield polymers 2c' and 2c" respectively. Identical FT-IR spectra were obtained from these polymers which
indicated the structural integrity of the repeat unit under these more rigorous polymerization conditions.

1H NMR chemical shifts and assignments for the polymers are shown in Table 2. A comparison, between monomer (2b) and polymer (2c) is shown in Figure 2 as an example. The retention of all of the resonances assigned to the aliphatic protons and most of the aromatic protons verify the monomers are stable under the polymerization conditions used. The significantly lower intensity at 7.50 ppm in the polymer, relative to the monomer, is caused by proton elimination from the 5 and 5' monomer positions during polymerization as expected. The loss of peak splitting in all of the resonances resulted from the different carbon environments along the polymeric chain. Quantitation of molecular weight, using the ratio of the integrated aromatic peak versus the isolated aliphatic resonance at about 4.0 ppm (-CH$_2$O-for all the alkoxy substituted polymers), was carried out and will be discussed later.

The random polymerization of asymmetric monomers leads to both head-to-head and head-to-tail linkages and thus the polymer formed is aregic and contains configurational isomers as shown in Figure 3. Symmetric monomers, on the other hand, contain only head-to-tail linkages, are isoregic and only contain conformational isomers. It is interesting to note that the introduction of asymmetry as in the case of 5c and 6c does not complicate the 1H NMR spectra. This results from the electronic similarity of the alkoxy substitutents (methoxy versus heptoxy or dodecyloxy groups) and is suggestive of the absence of interactions of the side chains with the polymer backbone.

13C NMR spectra were obtained at 50 °C in CCl$_4$ as the elevated temperatures enhanced polymer solubility. The chemical shifts obtained and their assignments are listed in Table 3. The spectra support the fact that a predominantly linear, α and α' linked, polymer is formed. The observed simplicity of the spectra is again attributed to
the symmetric nature of the repeat units, that is, limited overlapping resonances were observed. A comparison between a symmetrically substituted polymer, 2c, and an asymmetrically substituted polymer, 6c, is shown in Figure 4. The asymmetric polymers (5c and 6c) exhibited a splitting of the peak at ca. 150 ppm due to the differences in the substituent groups.

The elemental compositions of the polymers support the structures depicted for each polymer with the results listed in the Experimental Section.

Physical Properties of the Neutral Polymers. As observed for poly(3-alkylthiophenes),\(^5\),\(^20\) the incorporation of long alkyl and alkoxy substituents onto the conjugated di-2-thienylphenylene polymer backbone imparts both solution and melt processability. All the polymers studied here were soluble in common organic solvents, such as, chloroform, carbon tetrachloride, tetrahydrofuran, dichloromethane, toluene and 1,1,2,2-tetrachloroethane. This is in contrast to the methyl and methoxy substituted poly(di-2-thienylphenylenes) which are completely insoluble and infusible.\(^1\)\(^6\) Solubility of the alkoxy substituted polymers increased as the side-chain was lengthened and solubility was highest in hot toluene or tetrachloroethane. Effects of long chain substitution on various rigid rod polymers has been discussed previously including work on polyesters, polyamides and poly(\(\rho\)-phenylenes).\(^2\)\(^1\)

During the oxidative polymerization, the alkoxy substituted polymers, 1c, 2c, 5c and 6c, precipitated in the reaction medium while polymers 3c and 4c, containing the longer hexadecyloxy and eicosinoxy side groups, remained soluble. The hexyl substituted polymer, 7c, behaved similarly to 3c and 4c even though a relatively short chain was incorporated. This is attributed to a lower extent of conjugation, and higher flexibility of this polymer, as discussed previously for the methyl and methoxy substituted polymers through theoretically derived results.\(^1\)\(^6\)
The polymers were purified by reprecipitation after dedoping with ammonium hydroxide (see Experimental) and subsequently dissolved in hot toluene. Brittle yet free standing films were cast from these solutions. Redox doping and electrical conductivity measurements, to be discussed later, were carried out on these annealed films. The mechanical properties of the polymer films improved after initial annealing of solution cast films at 200 °C for 4h.

The polymers' thermal stabilities were determined using thermogravimetric analyses (TGA) under either nitrogen or air. Figure 5 shows the thermograms for the neutral polymers and all exhibited an onset of degradation greater than 360 °C under nitrogen with no weight loss at lower temperatures. This is comparable to the corresponding polythiophenes and previously reported di-2-thienylphenylene polymers with methyl and methoxy substituents. The weight loss accounted for at this transition can be attributed to the cleavage of the side chain for all the polymers. A thermogram of poly(3-hexylthiophene) is included for comparison. When air was used as the TGA carrier gas, stability to 300 °C was observed with very little char residue (ca. 1.0%) remaining indicative of the efficient removal of inorganic salts after work-up.

Molecular weight approximations were obtained using gel permeation chromatography (GPC), against polystyrene standards, as well as NMR integration. A summary of the molecular weight as a function of substitution is listed in Table 4. In the GPC studies, the polymers were not completely solubilized by the THF. In that the soluble fraction represents ca. 75% of the entire sample, the values reported here represent a low estimate.

Primary molecular weight analysis by 1H NMR integration was carried out by determining the integration ratio of the entire aromatic region versus the isolated aliphatic peak (attributed to the -CH2O-) at 4.2 ppm. Integration errors greatly affect the outcome of these analyses and, thus, the error is ca. ± 10%. A number average
degree of polymerization of about 6 repeat units (18 aromatic rings) was obtained for all the alkoxy substituted polymers when analyzed by this method. This comparison was not possible for 7c since the α-methylene protons are not completely resolved from the remaining aliphatic protons in the NMR spectra. Application of the GPC determined polydispersities, with values ranging between 1.5 and 3.0, to the number average molecular weights (Mn) determined by NMR, yield weight average degrees of polymerization (Xw) of 9 to 18 repeat units. Thus, a significant fraction of the chains present in a sample contain a relatively high chain length composed of 30 to 50 aromatic rings.

In an attempt to improve these molecular weights, a study of the effect of polymerization time was carried out. The GPC determined Mw's and UV-VIS transition edge energies (measured as the onset of absorption for all the polymers π - π* transition) are shown in Figure 6 as a function of polymerization time at room temperature. These results reveal that, after a polymerization time of 9 h, an insignificant increase in molecular weight, or further decrease in band gap, resulted. The reaction time used for the preparation of all of the polymers studied was more than sufficient to obtain an optimum molecular weight.

Motivated by the fact that the polymer solubility improved at elevated temperatures, 1,4-bis(2-thienyl)-2-5-didodecyloxybenzene, 2b, was polymerized at 60 °C in chloroform (2c*) and 130 °C in 1,1,2,2-tetrachloroethane (2c**). Again, the polymers precipitated during synthesis, which was a possible limiting factor in achieving longer chain lengths. While little effect on Mw was observed at 60 °C, a substantial increase to 19,000 was observed at 130 °C. At the same time, a considerable broadening of the molecular weight distribution was observed. It is likely that the slightly improved solubility at 130 °C allows polymerization to a higher degree but the effect is not very large.
Long Range Order. Of major interest in these polymers is the effect of symmetric and asymmetric substitution on the repeat unit and thus, the regiospecificity of the polymer structure on the physical and electronic properties. Monomers which contain equivalent 2,5-dialkoxy substituents on the phenylene ring (1b, 2b, 3b and 4b) can only undergo head-to-tail type couplings and the polymer is isoregic. When the 2,5 substituents are different, (5b and 6b), on the other hand, coupling is expected to occur relatively randomly and a polymer with an aregic structure is formed.

X-ray diffraction was carried out on samples that had been annealed at 200 °C for 4 h as shown in Figures 7-9. As expected, the symmetric polymers, 1c, 2c and 3c, yielded distinct diffraction peaks that indicate a high degree of molecular order. The asymmetric polymers, 5c and 6c, exhibited broad amorphous scattering with no discernable order. A listing of the peaks and their relative intensities is shown in Table 5.

The crystalline polymers, 1c, 2c and 3c, exhibit sharp diffraction patterns due to molecular spacings on the order of 0.3 to 0.4 nm which can be assigned to coplanar stacking of the aromatic chains. In addition, these polymers all exhibit distinct diffraction peaks at low angles which are due to interlayer spacings of 1.244, 1.295 and 2.035 nm respectively. This long range order suggests strong interactions between alkoxy substituents on adjacent stacks and the structures of these polymers may be similar to the model developed for poly(3-alkylthiophenes) by Winokur et al.8 Using an integral breadth of 0.68 ° for polymer 2c (Table 5) leads to an average crystallite size of 1.31 nm.22 This represents an average domain size through the thickness dimension of the film. The lower intensity and breadth of the low angle peaks for polymers 1c and 3c preclude this analysis.
Order in these polymers was also studied by differential scanning calorimetry (DSC). Figure 10 shows exemplary DSC scans of the symmetric didodecyloxy substituted polymer, 2c, and the asymmetric methoxy/dodecyloxy substituted polymer, 6c. A compilation of the DSC transitions observed for all of the polymers is given in Table 6.

All the symmetrically substituted alkoxy polymers, 1c, 2c, 3c and 4c, exhibited three endothermic transitions whereas the asymmetrically substituted polymers, 5c and 6c, only exhibited two. The lowest temperature transition, T₁, present in all of the polymers, was assigned to side-chain crystallization. A similar transition has been observed for the dialkyl substituted PPP's. The size of this transition increased as the length of the side-chain is increased.

The two high temperature transitions, T₂ and T₃, are attributed to the polymer backbone. T₂, for the symmetrically alkoxy substituted polymers is, tentatively assigned to a phase transition to a liquid crystalline state. Birefringence under crossed polarized light in optical microscopy was observed to persist up to T₃ in polymer 3c, suggestive of liquid crystalline behavior. T₃ is assigned to a phase change to an isotropic melt. Temperatures beyond T₃ exhibited completely dark optical micrographs under crossed polarizers.

T₂ from the DSC results of the asymmetrically substituted polymers is assigned to a glass transition. There was no discernable birefringence when this polymer was analyzed by polarized light microscopy. This result, coupled with the x-ray diffraction results, lead us to believe that asymmetric substitution enforces the amorphous nature of the polymer.

Based on these results, the polymers that are isoregic, with symmetric inclusion of alkoxy substituents, are all semicrystalline. When asymmetry is introduced into the repeat unit, the polymer formed is aregic and amorphous. The dihexyl substituted
polymer, 7c, only exhibited a glass transition which is attributed to the flexible, non-planar polymer backbone, thus, the polymer is amorphous.

Band Gap and Polymer Oxidation. An onset of the π to π^* transition, in solution, of 2.4 eV was observed for all of the symmetric and asymmetric alkoxy substituted polymers and 3.0 eV for the dihexyl substituted polymer. The effects of the alkyl and alkoxy substituents on the electronic band gap in poly(di-2-thienylphenylenes)16 discussed previously is verified here. A hypsochromic (blue) shift was observed for the transitions reported here relative to the methyl and methoxy substituted poly(di-2-thienylphenylenes) since the values for the latter polymers were obtained on solid films where the polymer chains tend to be locked in the preferred conformation.23 No difference was observed in the transition energies for the symmetric and asymmetric alkoxy substituted polymers because of the electronic similarity of the alkoxy substituents with respect to the polymer backbone. This is also indicative of the absence of steric interactions from the longer side-groups which might force the aromatic rings further from planarity.

Polymer solutions in chloroform were titrated with an acetonitrile solution of nitrosonium hexafluorophosphate, NOPF\textsubscript{6}, to prepare varying levels of oxidized polymer. Upon incremental addition of oxidizing agent, the reduction of the intensity of the interband transition in the neutral polymer was accompanied by the emergence of two new midgap absorptions at 0.8 and 1.75 eV. This phenomenon is consistent with the formation of bipolaronic charge carriers.24 A set of sample spectra obtained from the solution doping experiment performed on 2c is shown in Figure 11. All of the other alkoxy substituted polymers, 1c, 3c, 4c, 5c and 6c, exhibited identical results. When 7c was oxidized accordingly, very minute changes were observed in the spectra even when excess oxidant was added. This is attributed to the difficulty in forming the necessary planar backbone in polymer 7c. The large twist angle, together with the
high barriers to rotation, inhibits the planarity of the polymer backbone and, thus, oxidation to the conductive form is quite difficult.

Electrical Conductivities. All of the neutral polymers prepared here exhibited conductivities less than or equal to 10^{-7} Ω^{-1} cm$^{-1}$. Upon oxidation with NOPF$_6$, elevated electrical conductivities, up to 4 Ω^{-1} cm$^{-1}$ for the alkoxy substituted polymers and 10^{-6} Ω^{-1} cm$^{-1}$ for the hexyl substituted polymer, were observed. Analogous to the methyl substituted polymer, the presence of the alkyl substituent does not permit extended conjugation lengths or doping and little conductivity increase is observed.16 A summary of the conductivity results is listed in Table 7.

Nitrosonium salt was used to oxidize the polymers since we have previously observed higher electrical conductivities using this dopant than with iodine. This phenomenon is consistent with the oxidation characteristics of poly(p-phenylene) and poly(p-phenylene vinylene) where oxidants stronger than iodine are necessary in obtaining high electrical conductivities.25 Conductivity measurements were carried out on both pressed pellets and cast film samples.

In order to improve the molecular order and material properties, solution cast polymer films were annealed prior to oxidation. It was found that annealing not only improves the molecular order, but also enhances the polymers' mechanical strength in that annealed films retained their material integrity after doping, whereas the unannealed samples easily cracked upon oxidation. Similar conductivities, however, were obtained for both oxidized annealed and unannealed samples.

Since the ability of oxidant to penetrate the annealed, and more highly crystalline, cast films may be hampered, a study of doping times was carried out. Doping times of 10, 30, 60, 120 minutes and 24 hours were all used and it was found that after 30 minutes exposure to NOPF$_6$ solution, saturation doping had occurred and the maximum conductivity was observed.
It is known that the introduction of long chains onto the polythiophene backbone decreases the resulting electrical conductivity of the oxidized form.26 In these substituted poly(di-2-thienylphenylenes), on the other hand, comparable electrical conductivities are exhibited by the polymers independent of the length of the side chain as evident in Table 7. When symmetry effects are analyzed, conductivity differences are observed. All the symmetric alkoxy polymers exhibited electrical conductivities between 1 and 4 $\Omega^{-1} \text{cm}^{-1}$. When asymmetry is introduced, this conductivity falls one order of magnitude to ca. $10^{-1} \Omega^{-1} \text{cm}^{-1}$. We attribute this to the amorphous nature of these polymers. When long alkyl chains are incorporated, as in the case of polymer 7c, order is not a factor since large energy barriers are present for planarity to be achieved. The low conductivity demonstrated by 7c is analogous to that of the dimethyl substituted polymer reported previously16 where conformations dictate nonplanarity of the polymer chain and the polymer redox dopes with difficulty.

Conclusions

A series of symmetrically and asymmetrically substituted polymers from 1,4-bis(2-thienyl)-2,5-disubstitutedbenzenes, with long alkyl and alkoxy substituents, have been prepared by oxidative polymerization with ferric chloride. Neutral polymers were isolated after dedoping with ammonium hydroxide. The structures of the polymers are consistent with linkages predominantly at the 5 and 5' carbons of the terminal thiophenes. These polymers are soluble in common organic solvents and are melt processable. The incorporation of the long substituents have introduced flexibility, as well as order to the systems, as evidenced by the presence of multiple endothermic transitions in DSC, birefringence in optical microscopy and distinct peaks in x-ray diffraction. All the polymers are stable up to 360 °C under nitrogen with the cleavage of the side-chain proceeding at this point.
Upon oxidation of the insulating form of the polymers with NOPF$_6$, highly conductive materials, with conductivities on the order of $10^0 \ \Omega^{-1} \ \text{cm}^{-1}$ for the alkoxy substituted polymers, were obtained. Solution doping experiments performed on these polymers indicate that upon oxidation, two new mid-gap absorptions are formed, due to bipolaronic charge carriers. The differences in the physical and electronic properties of the polymers studied were attributed to the steric effects in polymer 7c and the regiospecificity in the alkoxy substituted polymers.

Experimental Section

Reagents and Starting Materials. Etherial solvents, THF and ether, used in the monomer preparations were dried by refluxing with sodium benzophenone ketyl. Chloroform was dried by refluxing over phosphorus pentoxide. The reagents, hydroquinone, 4-methoxyphenol, 1-bromoheptane, 1-bromododecane, 1-bromohexadecane, 1-bromoeicosane, bromine, thiophene, 2-thienyl lithium (1.0 M in THF), n-butyl lithium (2.5 M in hexanes), tetrakis(triphenylphosphine) palladium(0) catalyst and ferric chloride were all obtained from Aldrich Chemicals and used without further purification. Concentrated ammonium hydroxide was used as received from Baxter Scientific. 1,4-Dihexyldiene and 1,4-dibromo-2,5-dihexyldiene were prepared according to literature preparations. Melting points were determined and corrected using a Meltemp capillary apparatus.

1,4-Diheptoxybenzene (1a). A solution of KOH (0.401 mol) in 100 ml of ethanol was slowly added to a stirred solution of hydroquinone (0.182 mol) in 150 ml ethanol. The reaction was stirred at room temperature for 1 h. A solution of 1-bromoheptane (0.477 mol) in 25 ml ethanol was added dropwise. The reaction was stirred at 50 °C for 24 h. The reaction was quenched by pouring into water. The
product was isolated by extraction into methylene chloride. Solvent evaporation followed by recrystallization of the product from hot methanol resulted in white platelet crystals [mp = 53 - 54 °C (lit.\(^{18}\) mp = 57 - 58 °C), 76%].

1,4-Didodecyloxybenzene (2a). Compound 2a was prepared according to the procedure described for 1a utilizing hydroquinone (0.091 mol), KOH (0.199 mol) and 1-bromododecane (0.208 mol). Recrystallization from hot ethanol gave a white solid (mp = 70 - 72 °C (lit.\(^{27}\) mp = 74 °C), 77%).

1,4-Dihexadecyloxybenzene (3a). Compound 3a was prepared according to the procedure described for 1a utilizing hydroquinone (0.045 mol), KOH (0.100 mol) and 1-bromohexadecane (0.091 mol) in an ethanol-ether (1 : 1) mixture. Recrystallization from chloroform gave a white solid [mp = 86 - 87 °C (lit.\(^{27}\) mp = 85 °C), 63%].

1,4-Dieicosinoxybenzene (4a). Compound 4a was prepared according to the procedure described for 1a utilizing hydroquinone (0.024 mol), KOH (0.050 mol) and 1-bromoeicosane (0.052 mol) in tetrahydrofuran. Recrystallization from chloroform gave a white solid [mp = 97 - 98 °C, 30 %]. Calculated for C\(_{46}\)H\(_{86}\)O\(_2\): C, 82.38; H, 12.83. Found: C, 82.40; H, 12.93. \(^1\)H NMR: 6.82 (s), 3.89 (t), 1.56 (q), 1.25 (m), 0.87 (t). \(^{13}\)C NMR: 153.30, 115.51, 68.79, 31.95, 29.70, 29.48, 26.11, 22.70, 14.10.

1-Heptoxy-4-methoxybenzene\(^{28}\) (5a). Compound 5a was prepared according to the procedure described for 1a utilizing 4-methoxyphenol (0.081 mol), KOH (0.087 mol) and 1-bromoheptane (0.088 mol). Recrystallization from ethanol resulted in white platelet crystals (mp = 39 - 40 °C, 76%). Calculated for C\(_{14}\)H\(_{22}\)O\(_2\): C, 75.62; H, 9.99. Found: C, 75.75; H, 10.08. \(^1\)H NMR: 6.82 (s), 3.89 (t), 3.46 (s) 1.75...
(q), 1.34 (m), 0.89 (t). 13C NMR: 153.60, 153.25, 115.39, 114.56, 68.63, 55.67, 31.74, 29.35, 29.03, 25.96, 22.55, 14.02.

1-Dodecyloxy-4-methoxybenzene (6a). Compound 6a was prepared according to the procedure described for 1a utilizing 4-methoxyphenol (0.081 mol), KOH (0.089 mol) and 1-bromododecane (0.104 mol). Recrystallization from ethanol resulted in a white solid (mp = 52 - 54 °C, 97 %). Calculated for C$_{19}$H$_{32}$O$_{2}$: C, 78.01; H, 11.05. Found: C, 78.05; H, 10.09. 1H NMR: 6.83 (s), 3.89 (t), 3.76 (s) 1.75 (q), 1.26 (m), 0.89 (t). 13C NMR: 153.61, 153.28, 115.40, 114.56, 68.65, 55.71, 31.90, 29.60, 29.38, 26.05, 22.69, 14.11.

1,4-Dibromo-2,5-diheptoxybenzene. A solution of bromine (0.094 mol) in 50 ml of carbon tetrachloride was slowly added to a solution of 1a (0.038 mol) in 100 ml of carbon tetrachloride. The mixture was allowed to stir for 20 h at room temperature. The reaction was quenched by washing with aqueous KOH. After water washes, the solvent was removed. The solid product obtained was recrystallized from ethanol to produce a white clumped solid (mp = 59 - 60 °C, 88 %). Calculated for C$_{20}$H$_{32}$O$_{2}$Br$_{2}$: C, 51.80; H, 6.97. Found: C, 51.57; H, 6.90. 1H NMR: 7.08 (s), 3.94 (t), 1.80 (q), 1.45 (m), 0.89 (t). 13C NMR: 150.07, 118.47, 111.12, 70.30, 31.74, 29.10, 28.96, 25.86, 22.56, 14.06.

1,4-Dibromo-2,5-didodecyloxybenzene. 1,4-Dibromo-2,5-didodecyloxy benzene was prepared according to the procedure described for 1,4-dibromo-2,5-diheptoxybenzene using 2a (0.023 mol) and bromine (0.058 mol). After recrystallization from ethanol/benzene (3:1), a white fluffy solid resulted (mp = 77 - 79 °C, 92 %). Calculated for C$_{30}$H$_{52}$O$_{2}$Br$_{2}$: C, 59.59; H, 8.69. Found: C, 58.92; H, 8.72.
1H NMR: 7.08 (s), 3.93 (t), 1.80 (q), 1.25 (m), 0.88 (t). 13C NMR: 150.05, 118.44, 111.10, 70.28, 31.91, 29.53, 29.30, 29.09, 25.91, 22.58, 14.11.

1,4-Dibromo-2,5-dihexadecyloxybenzene. 1,4-Dibromo-2,5-dihexadecyloxy benzene was prepared according to the procedure described for 1,4-dibromo-2,5-diheptoxybenzene using 3a (0.028 mol) and bromine (0.010 mol). After recrystallization from chloroform, a white fluffy solid resulted (mp = 88 - 89 °C, 84%).

Calculated for C$_{38}$H$_{68}$O$_2$Br$_2$: C, 63.68; H, 9.49. Found: C, 63.38; H, 9.84. 1H NMR: 7.05 (s), 3.91 (t), 1.80 (q), 1.23 (m), 0.89 (t). 13C NMR: 149.99, 118.36, 111.04, 70.26, 31.92, 29.68, 29.36, 29.09, 25.91, 22.70, 14.14.

1,4-Dibromo-2,5-dieicosinoxybenzene. 1,4-Dibromo-2,5-dieicosinoxy benzene was prepared according to the procedure described for 1,4-dibromo-2,5-diheptoxybenzene using 4a (0.015 mol) and bromine (0.050 mol). After recrystallization from chloroform, a white fluffy solid resulted (mp = 92 - 93 °C, 77%).

Calculated for C$_{46}$H$_{84}$O$_2$Br$_2$: C, 66.66; H, 10.14. Found: C, 66.18; H, 10.37. 1H NMR: 7.08 (s), 3.94 (t), 1.80 (q), 1.49 (m), 0.87 (t). 13C NMR: 150.06, 118.47, 111.12, 70.32, 31.93, 29.70, 29.36, 29.09, 25.94, 22.70, 14.13.

1,4-Dibromo-2-heptoxy-5-methoxybenzene. 1,4-Dibromo-2-heptoxy-5-methoxybenzene was prepared according to the procedure described for 1,4-dibromo-2,5-diheptoxybenzene using 5a (0.059 mol) and bromine (0.149 mol). This preparation resulted in a thick orange oil which was not further purified (90%).

Calculated for C$_{14}$H$_{20}$O$_2$Br$_2$: C, 44.23; H, 5.31. Found: C, 43.99; H, 5.15. 1H NMR: 7.01 (s), 3.90 (t), 3.81 (s), 1.78 (q), 1.42 (m), 0.88 (t). 13C NMR: 150.44, 150.11, 118.37, 116.89, 111.16, 110.53, 69.96, 56.63, 31.87, 29.26, 29.10, 26.05, 22.70, 14.25.
1,4-Dibromo-2-dodecyloxy-5-methoxybenzene. 1,4-Dibromo-2-dodecyloxy-5-methoxybenzene was prepared according to the procedure described for 1,4-dibromo-2,5-diheptoxybenzene using 6a (0.035 mol) and bromine (0.087 mol). After precipitation in methanol, a white fluffy solid resulted (mp = 56 - 58 °C, 76 %). Calculated for C_{19}H_{30}O_{2}Br_{2}: C, 50.67; H, 6.73. Found: C, 50.72; H, 6.87. \(^1\)H NMR: 7.09 (s), 3.95 (t), 3.84 (s), 1.80 (q), 1.25 (m), 0.88 (t). \(^1^3\)C NMR: 150.41, 150.14, 118.57, 116.95, 111.22, 110.35, 70.32, 56.97, 31.90, 29.53, 29.55, 29.30, 29.09, 25.90, 22.58, 14.11.

1,4-Bis(2-thienyl)-2,5-diheptoxybenzene (1b). A solution of 2-thienyl lithium (0.044 mol) in THF was added dropwise into a solution of anhydrous zinc chloride (0.042 mol) in THF at room temperature. The mixture was allowed to stir for 1 h. The resulting 2-thienyl zinc chloride was then slowly added to a solution of 1,4-dibromo-2,5-diheptoxybenzene (0.011 mol) with Pd(PPh\(_3\))\(_4\) (60 mg) in THF. The reaction was heated to 50 °C and stirred at this temperature for about 72 h. The reaction was cooled and quenched by pouring the reaction mixture into a 1.5 M HCl solution. The ether layer was neutralized by washing with water. After drying the ether solution over calcium chloride and evaporation of the solvent. The preparation resulted in a yellow granular product upon recrystallization in ethanol/benzene (3 : 1) mixture (mp = 77 - 78 °C, 89 %). Calculated for C\(_{28}\)H\(_{38}\)O\(_2\)S\(_2\): C, 71.45; H, 8.54. Found: C, 71.36; H, 8.23.

1,4-Bis(2-thienyl)-2,5-didodecyloxybenzene (2b). Compound 2b was prepared according to the procedure described for 1b utilizing 2-thienyl lithium (0.040 mol), zinc chloride (0.041 mol), 1,4-dibromo-2,5-didodecyloxybenzene (0.010 mol) and Pd(PPh\(_3\))\(_4\) (60 mg) resulting in a yellowish fluffy solid upon recrystallization in
ethanol/benzene (3 : 1) mixture (mp = 77 - 78°C, 92 %). Calculated for C\textsubscript{38}H\textsubscript{58}O\textsubscript{2}S\textsubscript{2}: C, 74.68; H, 9.58. Found: C, 74.50; H, 9.39.

1,4-Bis(2-thienyl)-2,5-dihexadecyloxybenzene (3b). Compound 3b was prepared according to the procedure described for 1b utilizing 2-thienyl lithium (0.033 mol), zinc chloride (0.087 mol), 1,4-dibromo-2,5-dihexadecyloxybenzene (0.022 mol) and Pd(PPh\textsubscript{3})\textsubscript{4} (60 mg) resulting in a yellowish fluffy solid upon recrystallization in chloroform (mp = 86 - 87°C, 70 %). Calculated for C\textsubscript{46}H\textsubscript{74}O\textsubscript{2}S\textsubscript{2}: C, 76.45; H, 10.24; S, 8.90. Found: C, 76.36; H, 10.90; S, 8.97.

1,4-Bis(2-thienyl)-2,5-dieicosinoxybenzene (4b). Compound 4b was prepared according to the procedure described for 1b utilizing 2-thienyl lithium (0.048 mol), zinc chloride (0.047 mol), 1,4-dibromo-2,5-dieicosinoxybenzene (0.012 mol) and Pd(PPh\textsubscript{3})\textsubscript{4} (60 mg) resulting in a yellowish fluffy solid upon recrystallization in chloroform (mp = 98 - 99°C, 85 %). Calculated for C\textsubscript{54}H\textsubscript{88}O\textsubscript{2}S\textsubscript{2}: C, 77.88; H, 10.50; S, 7.71. Found: C, 77.35; H, 11.62; S, 7.62.

1,4-Bis(2-thienyl)-2-heptoxy-5-methoxybenzene (5b). Compound 5b was prepared according to the procedure described for 1b utilizing 2-thienyl lithium (0.053 mol), zinc chloride (0.052 mol), 1,4-dibromo-2-heptoxy-5-methoxybenzene (0.013 mol) and Pd(PPh\textsubscript{3})\textsubscript{4} (60 mg) resulting in a yellow solid product upon recrystallization in ethanol/benzene (3 : 1) mixture (mp = 55 - 56°C, 67 %). Calculated for C\textsubscript{22}H\textsubscript{26}O\textsubscript{2}S\textsubscript{2}: C, 68.34; H, 6.79; S, 16.59. Found: C, 68.34; H, 6.62; S, 16.57.

1,4-Bis(2-thienyl)-2-dodecyloxy-5-methoxybenzene (6b). Compound 6b was prepared according to the procedure described for 1b utilizing 2-thienyl lithium (0.045 mol), zinc chloride (0.049 mol), 1,4-dibromo-2-dodecyloxy-5-
methoxybenzene (0.011 mol) and Pd(PPh₃)₄ (60 mg) resulting in a yellow fluffy solid upon recrystallization in ethanol/benzene (3 : 1) mixture (mp = 57 - 58 °C, 89 %). Calculated for C₂₇H₃₆O₂S₂: C, 70.99; H, 7.96; S, 14.04. Found: C, 71.23; H, 8.10; S, 14.29.

1,4-Bis(2-thienyl)-2,5-dihexylbenzene (7b). Compound 7b was prepared according to the procedure described for 1b utilizing 2-thienyl lithium (0.045 mol), zinc chloride (0.046 mol), 1,4-dibromo-2,5-dihexylbenzene (0.015 mol) and Pd(PPh₃)₄ (60 mg) resulting in an off-white solid product upon recrystallization in ethanol/benzene (3 : 1) mixture (mp = 59 - 61 °C, 88 %). Calculated for C₂₆H₃₄S₂: C, 72.85; H, 9.47; S, 17.68. Found: C, 72.80; H, 9.03; S, 17.87.

Poly(di-2-thienyl-2,5-diheptoxyphenylene) (1c). A solution of compound 1b (0.002 mol) in 20 ml chloroform was added to a stirred solution of ferric chloride (0.008 mol) in 100 ml chloroform. The mixture was stirred for 20 h at room temperature with a slow dynamic flow of N₂. The blue-black solution was precipitated from 300 ml of methanol. The blue-black residue was collected by filtration and washed with successive portions of methanol and water. The blue-black powder was dedoped by stirring in 30 ml concentrated NH₄OH for 18 h. The resulting brick red material was isolated by filtration and washed thoroughly with methanol and water. The powder was dried in a vacuum dessicator overnight. Final purification was effected by reprecipitation of CHCl₃ solutions into CH₃OH, filtering and vacuum drying. Calculated for C₂₈H₃₈O₂S₂: C, 71.43; H, 8.15. Found: C, 70.59; H, 7.71.

Poly(di-2-thienyl-2,5-didodecyloxyphenylene) (2c). Compound 2b (0.0016 mol) was polymerized according to the procedure described for 1c utilizing ferric chloride (0.0058 mol). A blue-black residue was collected prior to compensation
with NH$_4$OH. After dedoping, a red-orange powder was collected and dried in a vacuum dessicator overnight. Final purification was effected by reprecipitation of CHCl$_3$ solutions into CH$_3$OH, filtering and vacuum drying. Calculated for C$_{38}$H$_{56}$O$_2$S$_2$: C, 74.93; H, 9.29. Found: C, 75.44; H, 9.31.

Study of Polymerization Time versus Molecular Weight on 2c. Compound 2b (1.67 mmol) was polymerized according to the procedure described for 1c utilizing ferric chloride (7.56 mmol). About 10 ml aliquots were taken at specific times (1, 3, 6, 9, 21, 30, 49, 120 h) and the polymerization was quenched by precipitating into MeOH. The powders were collected by filtration. The partially oxidized polymers were completely dedoped by reaction by compensation with concentrated NH$_4$OH$_{(aq)}$ for 45 min. The red-orange powders were isolated by filtration and successively washed with MeOH and water and finally dried in a vacuum dessicator overnight. Final purification was effected by reprecipitation of CHCl$_3$ solutions into CH$_3$OH, filtering and vacuum drying. The molecular weights were determined for each sample by GPC analysis.

Poly(di-2-thienyl-2,5-didodecyloxyphenylene) (2c'). Compound 2b (0.0016 mol) was polymerized according to the procedure described for 1c utilizing ferric chloride (0.0058 mol) while heating to 60 °C. A blue-black residue was collected prior to compensation with NH$_4$OH. After dedoping, a red-orange powder was collected and dried in a vacuum oven at 70 °C overnight. Final purification was effected by reprecipitation of CHCl$_3$ solutions into CH$_3$OH, filtering and vacuum drying. Calculated for C$_{38}$H$_{56}$O$_2$S$_2$: C, 74.93; H, 9.29; S, 10.53. Found: C, 73.61; H, 9.22; S, 10.21.
Poly(di-2-thienyl-2,5-didodecyloxyphenylene) (2c). Compound 2b (0.0017 mol) was polymerized according to the procedure described for 1c using 1,1,2,2-tetrachloroethane as solvent with ferric chloride (0.0060 mol) while heating to 130 °C. A blue-black residue was collected prior to compensation with NH₄OH. After dedoping, a brick-red powder was collected and dried in a vacuum dessicator overnight. Final purification was effected by reprecipitation of CHCl₃ solutions into CH₃OH, filtering and vacuum drying. Calculated for C₃₈H₅₆O₂S₂: C, 74.93; H, 9.29; S, 10.53. Found: C, 69.76; H, 8.15; S, 9.71.

Poly(di-2-thienyl-2,5-dihexadecyloxyphenylene) (3c). Compound 3b (0.0010 mol) was polymerized at 60°C according to the procedure described for 1c utilizing ferric chloride (0.004 mol). A blue-black residue was collected prior to compensation with NH₄OH. After dedoping, a red-orange powder was collected and dried in a vacuum dessicator overnight. Final purification was effected by reprecipitation of CHCl₃ solutions into CH₃OH, filtering and vacuum drying. Calculated for C₄₆H₇₆O₂S₂: C, 76.66; H, 10.00; S, 8.88. Found: C, 73.59; H, 9.71; S, 8.46.

Poly(di-2-thienyl-2,5-dieicosinoxyphenylene) (4c). Compound 4b (0.0010 mol) was polymerized at 60°C according to the procedure described for 1c utilizing ferric chloride (0.0040 mol). A blue-black residue was collected prior to compensation with NH₄OH. After dedoping, a red-orange powder was collected and dried in a vacuum dessicator overnight. Final purification was effected by reprecipitation of CHCl₃ solutions into CH₃OH, filtering and vacuum drying. Calculated for C₅₄H₈₆O₂S₂: C, 78.07; H, 10.36; S, 7.71. Found: C, 74.60; H, 10.29; S, 7.25.
Poly(di-2-thienyl-2-heptoxy-5-methoxyphénylene) (5c). Compound 5b (0.0026 mol) was polymerized according to the procedure described for 1c utilizing ferric chloride (0.0093 mol). A blue-black residue was collected prior to compensation with NH₄OH. After dedoping, a brick red powder was collected and dried in a vacuum dessicator overnight. Final purification was effected by reprecipitation of CHCl₃ solutions into CH₃OH, filtering and vacuum drying. Calculated for C₂₂H₂₆O₂S₂: C, 68.34; H, 6.79. Found: C, 68.36; H, 6.28.

Poly(di-2-thienyl-2-dodecyloxy-5-methoxyphénylene) (6c). Monomer 6b (0.0022 mol) was polymerized according to the procedure described for 1c utilizing ferric chloride (0.0111 mol). A blue-black residue was collected prior to compensation with NH₄OH. After dedoping, a brick red powder was collected and dried in a vacuum dessicator overnight. Final purification was effected by reprecipitation of CHCl₃ solutions into CH₃OH, filtering and vacuum drying. Calculated for C₂₇H₃₄O₂S₂: C, 71.31; H, 7.55. Found: C, 70.89; H, 7.79.

Poly(di-2-thienyl-2,5-dihexylphénylene) (7c). Compound 7b (0.0010 mol) was polymerized according to the procedure described for 1c utilizing ferric chloride (0.0105 mol). Work-up was carried out by evaporating half of the reaction solvent and precipitating in 300 ml methanol. A green powder was isolated which was dedoped with NH₄OH to yield a yellow material which was thoroughly washed with methanol and water. The powder was dried under dynamic vacuum overnight. Final purification was effected by reprecipitation of CHCl₃ solutions into CH₃OH, filtering and vacuum drying. Calculated for C₂₆H₃₂S₂: C, 76.40; H, 7.91. Found: C, 76.43; H, 7.72.
Structural Identification of Monomers and Polymers. Infrared spectra were obtained with a Digilab FTS-40-FT-IR spectrophotometer utilizing the DRIFT (Diffused Reflectance Infrared Spectroscopy) technique on samples in a powdered KBr dispersion. Since the polymer samples were highly opaque, this method was preferred over more conventional methods (KBr pressed pellets) in order to compare the spectra of the monomers with the polymers.

1H NMR spectra for all the monomers and polymers were obtained as solutions in deuterated chloroform and recorded on Bruker 300 MSL-FT-NMR or Nicolet 200 FT-NMR spectrophotometers. Solution 13C NMR spectra, using TMS as internal reference for both the monomers and polymers, were obtained using a Bruker 300 MSL-FT-NMR or a Nicolet 200 FT-NMR using the CDC$_3$ triplet at 77 ppm as an approximate internal reference.

Elemental analysis for carbon and hydrogen were obtained on a Perkin Elmer 2400 CHN Analyzer or by Robertson Laboratory, Inc., Madison, New Jersey.

Thermal Analysis. The thermal stability of the polymers was studied by thermogravimetric analysis (TGA) on a Dupont 951 instrument. The temperature program included an equilibration temperature at 60 °C for one minute then a 20 °C/min ramp to a temperature of 1000 °C. The samples were run under a purge stream of nitrogen unless otherwise stated. In order to evaluate if any inorganic residue was still present in the materials isolated, the TGA scans were performed under air purge.

Differential scanning calorimetry (DSC) scans were run on a Dupont 951 instrument using a temperature program that included an equilibration temperature at 250 °C then cooling at 10 °C/min to -50 °C. The samples were kept at this temperature
for 1 min then heated to 250 °C at 10 °C/min. All samples were run under a blanket of nitrogen.

Molecular Weight. Relative molecular weights were determined by gel permeation chromatography (GPC) against polystyrene standards using a Waters 640 system and tetrahydrofuran as the eluting solvent. Ultrastyragel columns (Waters), with porosities of 10,000, 5,000 and 1,000 Å in series, were used. An absolute molecular analysis was carried out using the \(^1\)H NMR spectra integration of the aromatic region (Ar-\(\text{H}\)), corresponding to 4 protons in the monomer and three times the number of repeat units plus the two end group protons in a long polymer chain, and the isolated methylene (-OCH\(_2\)-), corresponding to 2 protons for both monomer and twice the number of repeat units for the polymer. A ratio indicative of the polymer chain length is obtained.

X-ray Diffraction. Polymer films for x-ray diffraction studies were prepared by melting polymer powders at 200 °C for 4 h then slowly cooling (1 °C / min) to room temperature. X-ray diffraction studies were performed using a Rigaku D/MAX-11TB system with a Theta/Theta goniometer and a graphite monochromator. The power level was 50 kV/ 20 mA with Cu k-alpha radiation (\(\lambda = 1.5418 \text{ Å}\)). The sample was kept stationary while scattering angles from 2 ° to 45 ° were scanned in the reflection mode. The scanning rate was 10 °/min and the data was summed over 10 scans. The data was smoothed and analyzed for d-spacings and integral breadths. All of the polymer samples used in x-ray diffraction experiments were annealed.

Optical Microscopy. Optical microscopy was carried out on a Leitz-Wetzlar polarizing microscope equipped with a heating stage which was calibrated with a naphthalene standard. The polymers were heated at a rate of 4 - 5 °C/min. The polymer samples were solution cast on glass slides and annealed at
200 °C for 4 h and slowly cooled to room temperature (1 °C/min).

Oxidative Doping of Polymers. Solution doping experiments were carried out on the soluble polymers as dilute solutions (>1 mM) in chloroform. Nitrosyl hexafluorophosphate (NOPF$_6$) was used as received from Strem Chemicals and dissolved in acetonitrile (20 mM). Oxidized polymer solutions were prepared by adding appropriate amounts of NOPF$_6$ and the spectra of the incrementally doped solutions obtained on a Varian 2300 spectrophotometer (scans ranged from 200 nm to 2000 nm).

Oxidation of the conjugated polymers by NOPF$_6$ for conductivity measurements was carried out as a solution in chloroform. In all cases, four equivalents of oxidizing agent was utilized to insure complete extent of polymer oxidation. The reaction was allowed to proceed for 30 min and the solid oxidized polymer was isolated by vacuum filtration and finally washed with chloroform. The solids, as dark blue-black powders, were dried in a vacuum dessicator overnight. Polymer films were cast from hot polymer solutions (20 mg/ml) in toluene. Polymer films with thickness of about 1 - 5 μm were annealed at 200 °C for 4 h then slowly cooled to room temperature (1 °C/min). Polymer oxidation was carried out under N$_2$ atmosphere by soaking the films in NOPF$_6$ solutions in acetonitrile. The films were then washed with acetonitrile and dried under vacuum.

Conductivity Measurements. Measurements were made using a Keithley 610C Electrometer or a Keithley 197 autoranging microvolt digital multimeter. Samples were prepared as pressed pellets, pressed between two wires in a capillary tube or solution cast on glass slide. The Van der Pauw technique29 was used to determine the conductivity for the pressed pellets, the two probe method was employed for the capillary samples and four probe method for the cast films.
Acknowledgements

This work was supported by grants from the Defense Advanced Research Projects Agency, monitored by the Office of Naval Research, the Robert A. Welch Foundation (Y-1012), Rockwell International and the Texas Energy Research in Applications program. We would also like to acknowledge A. Ray and V. Panchalingam for their help in obtaining NMR spectra and Michael Winokur for supplying a preprint of reference 8b.
References

 1988, 9, 743.

20. (a) Österholm, J. E.; Laakso, J.; Nyholm, P.; Isotalo, H.; Stubb, H.; Inganäs, O;

 Ballauff, M.; Wegner, G. *Makromol. Chem.* 1987, 188, 2865. (c) Rodrigues-

22. Hukins, D. "X-ray Diffraction By Disordered and Ordered Systems," Permagon

 1023.

Table 1. FT-IR Absorbances and Assignments for the Monomers and Polymers (cm\(^{-1}\)).

<table>
<thead>
<tr>
<th>Cmp</th>
<th>α</th>
<th>β</th>
<th>φ</th>
<th>C - H Stretches</th>
<th>Aromatic C - H Str.</th>
<th>Allphatic</th>
<th>Ring Stretches</th>
<th>CH(_3)</th>
<th>Aromatic OOP Bends</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>3101</td>
<td>3067</td>
<td>3001</td>
<td>2954 2935 2865 2853</td>
<td>1573 1534 1493 1470 1434 1389</td>
<td>882 809</td>
<td>989 852</td>
<td>845 786</td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td>-</td>
<td>3064</td>
<td>2994</td>
<td>2946 2926 2863 2854</td>
<td>1602 1528 1486 1467 1454 1390</td>
<td>- 845</td>
<td>786 790</td>
<td>846 788</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>3075</td>
<td>3074</td>
<td>3005</td>
<td>2957 2916 2863 2848</td>
<td>1582 1534 1491 1468 1432 1390</td>
<td>894 819</td>
<td>975 852</td>
<td>846 788</td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td>-</td>
<td>3066</td>
<td>2996</td>
<td>2954 2921 2862 2851</td>
<td>1603 1532 1485 1466 1436 1387</td>
<td>- 848</td>
<td>790 788</td>
<td>801 996 851</td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>3075</td>
<td>3076</td>
<td>-</td>
<td>2916 - 2852 -</td>
<td>- 1538 1492 1469 1432 1387</td>
<td>- 801</td>
<td>992 852</td>
<td>846 788</td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td>-</td>
<td>3064</td>
<td>-</td>
<td>2922 - 2846 -</td>
<td>1603 1532 1484 1464 1407 1388</td>
<td>- 846</td>
<td>788 786</td>
<td>801 996 851</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>3015</td>
<td>3076</td>
<td>-</td>
<td>2917 - 2849 -</td>
<td>- 1535 1492 1470 1435 1392</td>
<td>- 801</td>
<td>996 851</td>
<td>846 788</td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td>-</td>
<td>3066</td>
<td>-</td>
<td>2919 - 2850 -</td>
<td>1602 1531 1485 1464 1415 1385</td>
<td>- 848</td>
<td>786 786</td>
<td>801 996 851</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>3089</td>
<td>3066</td>
<td>3003</td>
<td>2941 2921 2864 2851</td>
<td>1588 1532 1489 1458 1427 1393</td>
<td>898 821</td>
<td>991 855</td>
<td>847 789</td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td>-</td>
<td>3065</td>
<td>2991</td>
<td>2949 2928 2864 2853</td>
<td>1603 1529 1488 1460 1434 1398</td>
<td>- 847</td>
<td>789 788</td>
<td>898 818 991 847</td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>3092</td>
<td>3066</td>
<td>2990</td>
<td>2941 2921 2863 2850</td>
<td>1580 1534 1490 1464 1428 1394</td>
<td>898 818</td>
<td>991 847</td>
<td>849 788</td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td>-</td>
<td>3066</td>
<td>2992</td>
<td>2950 2923 2865 2851</td>
<td>1604 1530 1486 1461 1435 1396</td>
<td>- 849</td>
<td>788 788</td>
<td>893 833 965 847</td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>3100</td>
<td>3070</td>
<td>3006</td>
<td>2948 2915 2863 2852</td>
<td>1600 1534 1491 1467 1434 1385</td>
<td>893 833</td>
<td>965 847</td>
<td>833 788</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>-</td>
<td>3067</td>
<td>3008</td>
<td>2951 2924 2868 2853</td>
<td>1602 1534 1487 1460 1436 1376</td>
<td>901 843</td>
<td>803 803</td>
<td>788 825</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>-</td>
<td>3063</td>
<td>-</td>
<td>- - - - -</td>
<td>- 1491 1453 1441</td>
<td>- -</td>
<td>788 825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3HT</td>
<td>-</td>
<td>3055</td>
<td>-</td>
<td>2959 2930 2858 2850</td>
<td>- - 1512 1458 1439</td>
<td>- -</td>
<td>825 825</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. \(^1\text{H} \) NMR Chemical Shifts and Assignments for Monomers and Neutral Polymers

<table>
<thead>
<tr>
<th>Cmpd</th>
<th>H-1</th>
<th>H-2</th>
<th>H-3</th>
<th>H-4</th>
<th>H-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 b</td>
<td>7.25(\text{s})</td>
<td>7.33(\text{d})</td>
<td>7.09(\text{t})</td>
<td>7.53(\text{d})</td>
<td>4.07(\text{t}), 1.89(\text{q}), 1.26(\text{m}), 0.88(\text{t})</td>
</tr>
<tr>
<td>1 c</td>
<td>7.0 - 7.5</td>
<td>4.1, 1.3 - 2.2, 0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b</td>
<td>7.25(\text{s})</td>
<td>7.33(\text{d})</td>
<td>7.08(\text{t})</td>
<td>7.53(\text{d})</td>
<td>4.07(\text{t}), 1.89(\text{q}), 1.26(\text{m}), 0.88(\text{t})</td>
</tr>
<tr>
<td>2 c</td>
<td>7.0 - 7.5</td>
<td>4.1, 1.3 - 2.2, 0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 b</td>
<td>7.24(\text{s})</td>
<td>7.33(\text{d})</td>
<td>7.06(\text{t})</td>
<td>7.54(\text{d})</td>
<td>4.08(\text{t}), 1.24(\text{m}), 0.9(\text{m})</td>
</tr>
<tr>
<td>3 c</td>
<td>7.0 - 7.6</td>
<td>7.1, 1.2 - 2.0, 0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 b</td>
<td>7.25(\text{s})</td>
<td>7.32(\text{d})</td>
<td>7.09(\text{t})</td>
<td>7.55(\text{d})</td>
<td>4.06, 1.88- 0.85(\text{m}),</td>
</tr>
<tr>
<td>4 c</td>
<td>7.5-7.2</td>
<td>4.06, 1.94-0.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 b</td>
<td>7.23(\text{s}), 7.33(\text{d})</td>
<td>7.09(\text{t})</td>
<td>7.54(\text{d}), 4.09(\text{t}), 3.93(\text{s}), 1.90(\text{q}), 7.26(\text{s})</td>
<td>7.51(\text{d}), 1.32(\text{m}), 0.89(\text{t})</td>
<td></td>
</tr>
<tr>
<td>5 c</td>
<td>7.0 - 7.8</td>
<td>4.1, 3.9, 1.3 - 2.2, 0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 b</td>
<td>7.23(\text{s}), 7.33(\text{d})</td>
<td>7.09(\text{t})</td>
<td>7.53(\text{d}), 4.06(\text{t}), 3.93(\text{s}), 1.89(\text{q}), 7.23(\text{s})</td>
<td>7.52(\text{d}), 1.26(\text{m}), 0.88(\text{t})</td>
<td></td>
</tr>
<tr>
<td>6 c</td>
<td>7.0 - 7.8</td>
<td>4.1, 3.9, 1.2 - 2.2, 0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 b</td>
<td>7.28(\text{s})</td>
<td>7.33(\text{d})</td>
<td>7.09(\text{t})</td>
<td>7.04(\text{d})</td>
<td>2.69(\text{t}), 1.54(\text{q}), 1.29(\text{m}), 0.84(\text{t})</td>
</tr>
<tr>
<td>7 c</td>
<td>6.8 - 7.6</td>
<td>2.7, 1.2 - 2.0, 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. 13C NMR Chemical Shifts and Assignments for Monomers and Neutral Polymers

![Chemical Structure Image]

<table>
<thead>
<tr>
<th>Cmpd</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-6</th>
<th>C-7</th>
<th>C-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>122.99</td>
<td>149.24</td>
<td>112.88</td>
<td>139.28</td>
<td>125.14</td>
<td>125.62</td>
<td>126.69</td>
<td>69.69, 31.73, 29.38, 29.03, 26.15, 22.58, 14.06</td>
</tr>
<tr>
<td>1c</td>
<td>122</td>
<td>149</td>
<td>112</td>
<td>137</td>
<td>125</td>
<td>126</td>
<td>138</td>
<td>69.8, 32.8, 29.5, 29.1, 26.3, 22.7, 14.1</td>
</tr>
<tr>
<td>1b</td>
<td>122.94</td>
<td>149.21</td>
<td>112.78</td>
<td>139.29</td>
<td>125.13</td>
<td>125.63</td>
<td>126.69</td>
<td>69.70, 31.92, 29.63, 29.40, 26.21, 22.69, 14.12</td>
</tr>
<tr>
<td>2c</td>
<td>122</td>
<td>149</td>
<td>121</td>
<td>137</td>
<td>125</td>
<td>126</td>
<td>138</td>
<td>69.8, 31.9, 29.7, 29.4, 26.3, 22.7, 14.1</td>
</tr>
<tr>
<td>3b</td>
<td>122.87</td>
<td>149.15</td>
<td>112.69</td>
<td>139.23</td>
<td>125.08</td>
<td>125.84</td>
<td>126.67</td>
<td>69.68, 31.94, 29.70, 29.41, 26.22, 22.72, 14.16</td>
</tr>
<tr>
<td>3c</td>
<td>125.79</td>
<td>149.53</td>
<td>112.43</td>
<td>138.24</td>
<td>126.08</td>
<td>125.29</td>
<td>137.7</td>
<td>69.95, 31.9529.71, 26.39 22.69, 14.07</td>
</tr>
<tr>
<td>4b</td>
<td>122.87</td>
<td>149.22</td>
<td>112.85</td>
<td>139.28</td>
<td>126.65</td>
<td>125.59</td>
<td>125.1</td>
<td>69.75, 31.94, 29.71, 29.42, 26.24, 26.72, 14.13</td>
</tr>
<tr>
<td>4c</td>
<td>122.88</td>
<td>149.35</td>
<td>112.48</td>
<td>138.07</td>
<td>126.21</td>
<td>125.88</td>
<td>137.54</td>
<td>69.98, 31.96, 29.74, 26.41 22.70,14.08</td>
</tr>
<tr>
<td>5b</td>
<td>123.00</td>
<td>149.37</td>
<td>112.10</td>
<td>139.13</td>
<td>125.17</td>
<td>125.62</td>
<td>126.69</td>
<td>69.70, 56.40, 31.72, 29.38, 29.03, 26.15, 22.57, 14.05</td>
</tr>
<tr>
<td>5c</td>
<td>122</td>
<td>149</td>
<td>112</td>
<td>137</td>
<td>125</td>
<td>126</td>
<td>138</td>
<td>69.8, 56.5, 31.8, 29.4, 29.1, 26.3, 22.6</td>
</tr>
<tr>
<td>6b</td>
<td>122.90</td>
<td>149.37</td>
<td>112.07</td>
<td>139.15</td>
<td>125.17</td>
<td>125.63</td>
<td>126.72</td>
<td>69.71, 56.42, 31.92, 29.66, 29.39, 26.21, 22.69, 14.13</td>
</tr>
<tr>
<td>6c</td>
<td>122</td>
<td>149</td>
<td>112</td>
<td>137</td>
<td>125</td>
<td>126</td>
<td>139</td>
<td>69.7, 56.4, 31.9, 29.6, 26.2, 22.7, 14.1</td>
</tr>
<tr>
<td>7b</td>
<td>142.73</td>
<td>133.48</td>
<td>132.21</td>
<td>138.57</td>
<td>125.17</td>
<td>126.36</td>
<td>126.99</td>
<td>33.07, 31.57, 31.49, 29.25, 22.55, 14.05</td>
</tr>
<tr>
<td>7c</td>
<td>143</td>
<td>134</td>
<td>133</td>
<td>132</td>
<td>126</td>
<td>125</td>
<td>139</td>
<td>33.1, 31.5, 29.2, 22.5, 14.0</td>
</tr>
</tbody>
</table>
Table 4. Molecular Weight Analyses of the Polymers.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Solubility(^a) (mg/ml)</th>
<th>GPC - UV ((M_w))</th>
<th>(M_w / M_n)</th>
<th>NMR ((M_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>7.8</td>
<td>4,700</td>
<td>1.95</td>
<td>2400 (6)</td>
</tr>
<tr>
<td>2c</td>
<td>8.1</td>
<td>5,500</td>
<td>1.69</td>
<td>3600 (6)</td>
</tr>
<tr>
<td>2c'</td>
<td>-</td>
<td>5,400</td>
<td>1.42</td>
<td>-</td>
</tr>
<tr>
<td>2c''</td>
<td>-</td>
<td>19,000</td>
<td>3.93</td>
<td>-</td>
</tr>
<tr>
<td>3c</td>
<td>13.0</td>
<td>9,900</td>
<td>1.87</td>
<td>-</td>
</tr>
<tr>
<td>4c</td>
<td>13.0</td>
<td>9,900</td>
<td>1.71</td>
<td>-</td>
</tr>
<tr>
<td>5c</td>
<td>8.0</td>
<td>5,900</td>
<td>2.93</td>
<td>2000 (6)</td>
</tr>
<tr>
<td>6c</td>
<td>8.6</td>
<td>6,700</td>
<td>2.40</td>
<td>2400 (6)</td>
</tr>
<tr>
<td>7c</td>
<td>16.0</td>
<td>8,600</td>
<td>2.46</td>
<td>na</td>
</tr>
</tbody>
</table>
Table 5. Summary of X-ray Diffraction Results for the Symmetrically Substituted Polymers.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>2-Theta Peak Maxima (°)</th>
<th>d-Spacings (nm)</th>
<th>Integral Breadth (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>7.1 br,w</td>
<td>1.244</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>23.58 s, st</td>
<td>0.377</td>
<td>3.98</td>
</tr>
<tr>
<td>2c</td>
<td>6.82 very s, st</td>
<td>1.295</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>20.6 s, st</td>
<td>0.431</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21.82 very s, st</td>
<td>0.407</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>27.16 br, w</td>
<td>0.328</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>29.48 very s, w</td>
<td>0.303</td>
<td>0.18</td>
</tr>
<tr>
<td>3c</td>
<td>4.34 w</td>
<td>2.034</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9.08 br, w</td>
<td>0.973</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>19.22 sh, st</td>
<td>0.461</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20.92 st</td>
<td>0.424</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>22.4 sh, w</td>
<td>0.396</td>
<td>-</td>
</tr>
</tbody>
</table>

st - strong; m - medium; w - weak; s - sharp; br - broad; sh - shoulder
Table 6. DSC Transitions for the Monomers and the Neutral Polymers.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>79</td>
<td>150</td>
<td>205</td>
</tr>
<tr>
<td>2c</td>
<td>90</td>
<td>117</td>
<td>158</td>
</tr>
<tr>
<td>3c</td>
<td>51</td>
<td>122</td>
<td>165</td>
</tr>
<tr>
<td>4c</td>
<td>69</td>
<td>133</td>
<td>149</td>
</tr>
<tr>
<td>5c</td>
<td>44</td>
<td>103</td>
<td>-</td>
</tr>
<tr>
<td>6c</td>
<td>21</td>
<td>132</td>
<td>-</td>
</tr>
<tr>
<td>7c</td>
<td>-</td>
<td>22</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 7. Electrical Conductivities for the Neutral and Oxidized Polymers.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Neutral Form ($\Omega^{-1} \text{ cm}^{-1}$)</th>
<th>Oxidized Form ($\Omega^{-1} \text{ cm}^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Presed Pellet</td>
</tr>
<tr>
<td>1c</td>
<td>$\leq 10^{-9}$</td>
<td>1×10^0</td>
</tr>
<tr>
<td>2c</td>
<td>$\leq 10^{-8}$</td>
<td>4×10^0</td>
</tr>
<tr>
<td>3c</td>
<td>$\leq 10^{-7}$ a</td>
<td>-a</td>
</tr>
<tr>
<td>4c</td>
<td>$\leq 10^{-7}$ a</td>
<td>-a</td>
</tr>
<tr>
<td>5c</td>
<td>$\leq 10^{-8}$</td>
<td>2×10^{-1}</td>
</tr>
<tr>
<td>6c</td>
<td>$\leq 10^{-8}$</td>
<td>2×10^{-1}</td>
</tr>
<tr>
<td>7c</td>
<td>$\leq 10^{-9}$</td>
<td>3×10^{-8}</td>
</tr>
</tbody>
</table>

a Measurement carried out on cast film.
FIGURE CAPTIONS

Figure 1. Aromatic C-H stretches of 1,4-bis(2-thienyl)-2,5-didodecyloxybenzene, (2b, left) and poly(di-2-thienyl-2,5-didodecyloxy-phenylene), (2c, right).

Figure 2. 1H NMR spectra of 1,4-bis(2-thienyl)-2,5-didodecyloxybenzene, 2b, and poly(di-2-thienyl-2,5-didodecyloxy-phenylene), 2c.

Figure 3. Conformational and configurational isomers formed for the symmetrically and asymmetrically substituted poly(di-2-thienylphenylenes).

Figure 4. Aromatic regions of the 13C NMR spectra for poly(di-2-thienyl-2,5-didodecyloxyphenylene), 2c, and poly(di-2-thienyl-2-didodecyloxy-5-methoxyphenylene), 4c.

Figure 5. TGA scans for poly(di-2-thienylphenylenes) carried out under nitrogen atmosphere.

Figure 6. Relationship between polymerization time, GPC number average molecular weights (\bar{M}) and electronic band gaps (ω) for poly(di-2-thienyl-2,5-didodecyloxyphenylene), 2c.

Figure 7. X-ray diffraction patterns for poly(di-2-thienyl-2,5-diheptoxyphenylene), 1c, and poly(di-2-thienyl-2-heptoxy-5-methoxyphenylene), 5c.

Figure 8. X-ray diffraction patterns for poly(di-2-thienyl-2,5-didodecyloxy-phenylene), 2c, and poly(di-2-thienyl-2-dodecyloxy-5-methoxy-phenylene), 6c.

Figure 9. X-ray diffraction pattern for poly(di-2-thienyl-2,5-dihexadecyloxy-phenylene), 3c.

Figure 10. DSC scans for symmetric poly(di-2-thienyl-2,5-didodecyloxy-phenylene), 2, and asymmetric poly(di-2-thienyl-2-dodecyloxy-5-methoxyphenylene).

Figure 11. Solution doping of poly(di-2-thienyl-2,5-didodecyloxyphenylene), 2c, with NOPF$_6$ in chloroform with doping levels of: 0.00, 0.25, 0.50, 0.75, 1.00 and 2.00.
Fig 6

Polymerization Time (h)

Band Gap (eV)

Molecular Weight
Fig 7

Intensity (Arbitrary Units)

2θ (Degrees)
Fig. 9

Intensity (Arbitrary Units)
1a: \(R = R' = \text{OC}_7\text{H}_{15} \)
2a: \(R = R' = \text{OC}_{12}\text{H}_{25} \)
3a: \(R = R' = \text{OC}_{16}\text{H}_{33} \)
4a: \(R = R' = \text{OC}_{20}\text{H}_{41} \)
5a: \(R = \text{OCH}_3; R' = \text{OC}_7\text{H}_{15} \)
6a: \(R = \text{OCH}_3; R' = \text{OC}_{12}\text{H}_{25} \)
7a: \(R = R' = \text{C}_6\text{H}_{13} \)

\[\text{Br}_2 / \text{CCl}_4 / \text{RT} \]

\[\begin{array}{c}
\text{Br} \\
\text{Br}
\end{array} \]

\[\text{2 eq.} \]

\[\text{THF} / \text{Pd(PPh}_3)_4 / 50 ^\circ \text{C} \]

1b: \(R = R' = \text{OC}_7\text{H}_{15} \)
2b: \(R = R' = \text{OC}_{12}\text{H}_{25} \)
3b: \(R = R' = \text{OC}_{16}\text{H}_{33} \)
4b: \(R = R' = \text{OC}_{20}\text{H}_{41} \)
5b: \(R = \text{OCH}_3; R' = \text{OC}_7\text{H}_{15} \)
6b: \(R = \text{OCH}_3; R' = \text{OC}_{12}\text{H}_{25} \)
7b: \(R = R' = \text{C}_6\text{H}_{13} \)

SCHEME 1
\begin{align*}
1: & \quad R = R' = OC_{7}H_{15} \\
2: & \quad R = R' = OC_{12}H_{25} \\
3: & \quad R = R' = OC_{16}H_{33} \\
4: & \quad R = R' = OC_{20}H_{41} \\
5: & \quad R = R' = OC_{12}H_{25}; R'' = OCH_{13} \\
6: & \quad R = OC_{12}H_{25}; R' = OCH_{3} \\
7: & \quad R = R' = C_{6}H_{13}
\end{align*}