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ABSTRACT

An investigation was conducted to determine the
temperature and composition dependence on the activation
energy for creep of Al-0.5wt.pct.Li, Al-1.0wt.pct.Li, and Al-
2.0wt.pct.Li alloys. A series of isothermal tests was
conducted to extend previous data. Temperature cycling
measurements were conducted utilizing constant true stress
Creep tests, with nominal temperatures ranging from 300°C to
500°C. Temperature cycling tests involved a range of 10°C for
each test. Experimental results indicate all three alloys
behave as a class II alloy (pure metal class) with a stress
exponent, n, approximately equal to 5. 1In addition, subgrain
formation was observed in association with the primary stage
of creep. The activation energy for creep of the Al-
0.5wt.pct.Li and Al-1.0wt.pct.Li alloys was observed to be

essentially the same as that for pure Aluminum.
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I. INTRODUCTION

With the fast pace of technology in the aerospace industry
today there are ever increasing demands for higher strength
and stiffness in structural materials but with reduced weight
and improved formability. Aluminum alloys have been widely
used in the construction of aerospace vehicles for many years
because of their high strength to weight ratio, forming
characteristics and corrosion resistance. It should be kept
in mind that the specific application determines selection of
the particular strength- or stiffness-to-weight ratio that
should be utilized. For structures in uniaxial tension a
ratio of E/p should be maximized for best design. Here E is
Young’s modulus and p is the density. Those structures to be

loaded in bending should utilize a ratio of E”z/p and in

design of plates subjected to distributed loads, a ratio of

E'"?/p is best [Ref. 1].

Each weight percent Lithium added to aluminum reduces the
density, p, of the alloy by approximately three percent and
increases the elastic modulus, E, by six percent. Lithium is
the only potential alloy addition to Aluminum that affects The
density and modulus in such a manner [Ref. 2]. Thus Lithium
additions to Aluminum provide improvements in both modulus and
density for a wide range of potential applications and
therefore provide attractive benefits to designers. However,
without other alloying elements such as Copper or Magnesium,
Al-Li alloys exhibit poor fracture toughness.

Due to the positive effects of Lithium addition to
Aluminum there is currently substantial research and

development of Al-Li alloys in progress for service at ambient




temperatures. However, Al-Li alloys are not viewed as high
temperature materials there is presently no accepted limit on
the operating temperatures for these alloys. Many components
in today’s aerospace vehicles must withstand elevated
temperatures while maintaining good strength properties.

The determination of acceptable operating temperatures for
Al-Li alloys will require understanding of the essential role
of Lithium in Aluminum at elevated temperatures. The purpose
of this research is to expand the current data on Al-
0.5wt.pct.Li, Al-l1l.0wt.pct.Li and Al-2.0wt.pct.Li alloys in
the 300-500°C range. A series of constant stress creep tests
between 300-500°C was conducted to determine the stress and
temperature dependence of creep in the three Al-Li alloys
described above. An additional series of constant stress
temperature cycling tests was used to evaluate the temperature
dependence through activation energy in the same temperature

range.




II. BACKGROUND

A. THE STRUCTURE OF THE AL-LI S8YSTEM

The Al-Li equilibrium phase diagram pictured in Figure 1
is that developed by McAlister and published in 1982.[Ref. 3]
The solid solubility of Lithium in Aluminum is less than 0.5
weight percent at ambient temperature, 1.5 weight percent at

300°C and reaches a maximum of 4.2 weight percent at 600°C.
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Figure 1. Al-L1 Phase Diagram.

Again, the major focus of this reszarch is the Al1-0.5wt.pct.Li
and Al-1.0wt.pct.Li in the 300-500°C range. Both of these
alloys are within the solid solution region of the phase

diagram and thus should not be influenced by precipitation.




The increase in the ambient temperature elastic modulus
due to the addition of Lithium has been studied by Fox and
Fisher [Ref. 4] in alloys containing between 1.33 and 2.14
weight percent Lithium. The addition of Lithium results in an
increase in the electron charge density between nearest
neighbor Aluminum and Lithium atoms. This increase in the
electron charge density results in an increased force between
atoms and an increase in the modulus of elasticity.

Radmilovic, Fox, and Thomas [Ref. 5] have shown that

ordered &’ Al,-Li precipitates develop within the disordered

matrix in Al-Li alloys due to spinodal decomposition of the
solid solution. This spinodal reaction occurs by increasing
the Lithium content of Lithium enriched regions in the alloy.
These Lithium enriched regions are ordered and apparently
exist at temperatures above the §’ (and §) solvus
temperatures. The existence of this ordering phenomenon
explains why it is so difficult to suppress the formation of
§’ precipitates in alloys containing greater than 1.6 weight
percent Lithium. Both the increase in the modulus of
elasticity and the presence of ordering in the solid solution
are indications that Aluminum and Lithium atoms will tend to
bond.

The modulus of elasticity and the stacking fault energy
are two factors that are known to exert an influence on the
creep of metals and alloys and thus one cou.d expect the creep

response of Al-Li alloys to reflect these factors [Ref. 6]

B. CREEP AND CREEP MECHANISMS
Creep is the inelastic, time-dependent response of a
material. At elevated temperatures creep imposes limits on

stress and lifetimes of engineering components. Subjected to
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a constant tensile load, a mechanical component will elongate
from creep. Under constant load, the decrease in area results
in an increase in stress and failure occurs following the
initiation of necking. The temperature regime particularly
important for creep is 0.5T,<T<T,, the range in which
diffusion is an important factor [Ref. 7]
1. The Dependence of Creep on Temperature

At sufficiently high temperatures atom mobility may be
high enough to permit diffusion-controlled dislocation
movement to be the rate controlling process. If the ccreep
process is dependent upon dislocation climb then we would
expect that the steady state creep rate would be proportional

to the diffusion coefficient of atoms:

eaD (1)

and there currently exists ample evidence for the correlation
between ¢ and D. Since the creep rate is proportional to the
diffusion coefficient one would expect that the activation
energy for creep of pure metals should be abcut equal to the
activation energy for self diffusion.[Ref. 6]

This suggests that the creep rate can be described by

an Arrhenius type of equation:
. Q.
eaexp (- — 2
( RT) (2)

where Q. is the activation energy for creep, R is the gas

constant and T is the absolute temperature. The activation

energy for creep, Q.,, can be calculated if the creep rate is

known at two temperatures:

where T, and T, are the absolute temperatures at which creep

rates ¢, and ¢, were determined.[Ref. 6] Again , if diffusion




ln(%l)
Q.~-R— 2 (3)
( )

1.1
T2 Tl

is the sole temperature dependent process involved then it is
expected that Q. = Q,
2. Dependence of Creep on Stress
Creep 1is also stress dependent. Sherby and Burke

(Ref. 6], have demonstrated that:

eaDf (o) (4)
thus:

%af(o) (s)

and several regimes have been identified.

Sherby and Burke [Ref. 6] have determined that there
are three ranges with three different relationships between
the steady state creep rate and the stress. In the low stress

range (I), at constant temperature, where ¢/D is around 102 em

2 the creep rate follows:
eao!l (6)

In the intermediate range (II), at constant temperature with

¢/D between 102 and 10° cm? the creep rate follows:
€xg” (7)

with n being approximately 5 for pure metals. In range III,

at constant temperature with creep rates above 10° cm? the

creep rate is:




exebe (8)

Different types of mechanical behavior are observed in the
three ranges and since creep can occur by any one of several
independent processes the fastest process will usually be the

rate controlling one.[Ref. 6]
3. 80lid S8clutions and Creep Rate
Sherby and Burke [Ref. 6] have also noted that solid

solution alloys with ¢/d between 102 and 10° cm?, can be

divided into two classes (I and II). Class I alloys follow

the microcreep law:
. o
C'BDS('E):’ (9)

where ¢ is the strain rate, D, the diffusion coefficient of

the solute, o the stress, E the modulus of elasticity and B a
physical constant. This theory is based on dislocation glide
where the rate is determined by the velocity which solute
atoms can be dragged along with a moving dislocation line.
These class I alloys often do not exhibit a primary creep
stage which 1limits the effect of subgrain formation and
stacking fault energy on the creep rate.

Class II alloys follow a dislocation climb law of the

form:
é-wlvﬂ%)s (10)

where y is the stacking fault energy, D, is lattice diffusion

coefficient, E is the modulus of elasticity, and A is a
physical constant. In this class of alloy the controlling

mechanism for creep is dislocation climb, which is related to
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subgrain formation, stacking fault energy and the elastic
modulus. Class II alloys also exhibit a distinct primary
creep phase similar to pure metals. Equation 10 reduces to
the form of equation 2 for constant stress and reduces to
equation 7 at constant temperature. Furthermore, if stacking
fault energy or modulus become temperature dependent equation

10 predicts that the observed value of Q. may differ from Q.

Following Goodson [Ref. 10]:

0.--R 0lnD  op OInE 5, dlny

1 1 1 (11)
6(75) 8(75) 3(75)

In the expression it is seen that if either E or y become
strongly temperature dependent this will result in an

additional factor in the activation energy.
4. Previous Work at NP8

Initial isothermal studies conducted by Ellison [Ref.
9] over a range of temperatures and stresses and it was
determined that the Al-2.0wt.pct.Li exhibited a stress

exponent of n = 5 but that Q. was anomalously high, well in

excess of that for pure Aluminum. In similar work by Taylor
[Ref. 8] on Al-0.5.wt.pct.Li and Al-l1l.0wt.pct.Li alloys the
stress exponent was also found to be similar to that for pure
metals, that is n = 5.

Subsequent studies by Goodson [Ref. 10]) on the Al-
2.0wt.pct.Li, wutilizing temperature cycling methods, also
concluded that the 2.0 wt.pct. Lithium alloy exhibited

anomalously high activation energy. This result was
attributed to ordering of Lithium at elevated temperatures and
the effects of ordering on temperature dependence and the
modulus of elasticity. This study extends the research on all

three alloys and provides additional data on the activation




energy for the Al-0.5.wt.pct.Li and Al-l.0wt.pct.Li alloys

utilizing a temperature cycling technique.




III. EXPERIMENTAL PROCEDURE

A. MATERIAL PROCESSING AND FABRICATION

The alloys used in the conduct of this investigation were
cast by the Naval Surface Weapons Center in White Oak,
Maryland utilizing 99.99 percent pure Aluminum alloyed with
99.99 percent pure Lithium. The three alloys studied were of
nominal compositions Al-0.5wt.pct.Li, Al-1.0wt.pct.Li and Al-
2.0wt.pct.Li. The material was received in the form of
tapered cylindrical ingots 200 mm (8.0 in.) in length and
approximately 76 mm (3.0 1in.) in diameter. Transverse
sections 25 mm (1.0 in.) thick and 76 mm (3.0 in.) in diameter
were solution treated at 540°C for 12 hours. The homogenized
billets were rolled between 400 and 450°C to a final thickness
of 2 mm (0.08 in.) in most cases and 1.4 mm (0.055 in.), in
one case, in accordance with the rolling schedule developed by
Goodson [Ref. 10].

The rolled sheets of both thicknesses (2.0 mm and 1.4 mm)
were machined so that the tensile axis was parallel to the
rolling direction. The sample geometry is shown in Figure 2.
A special device to hold the material was utilized due to the
softness and ductility of the material. Five specimens were
machined at one time using a cutting plan that would ensure
the maximum number of samples possible were cut from each
sheet. The finished samples were examined and
surface/machining imperfections were removed with a jewelers
file. Prior to testing all samples were annealed for 15

minutes at 500°C. [Ref. 8]

10
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Figure 2. Creep sample geometry.
B. CREEP TESTING
1. Creep Testing Apparatus

The two creep testers shown in Figure 3 were specially
designed to transmit loads between 1.5 and 222.5 Newtons (0.3
to 50 lbs.) at strains as high as 300 percent. These machines
were designed at NPS and patterned after a machine built by
Barrett and later modified by Matlock [Ref. 11]. The constant
stress is obtained by means of an Andrade-Chalmers lever arm
[Ref. 12]. The rotation of the contoured lever arm during
elongation of the specimen decreases the effective lever arm
in proportion to the decrease in cross sectional area of the
specimen. This proportional decrease in applied load to
specimen cross section allows a constant true stress to be
maintained. The design of the arm is based on the assumption
that the load train is rigid and the linkage displacement is
taken up uniformly. The contour of the lever arm was designed
using AUTOCAD software in conjunction with a graphical

technique developed by Coghlan [Ref. 13). The design was

11




based on the effective specimen gauge length of 12.7 mm (0.5
in.) and utilized an initial lever ratio of 10:1. The lever
arm was constructed of 6.4 mm (0.25 in.) thick 2024-Té6
aluminum and is attached to one end of a shaft which rotates
on a set of precision bearings. An adjustable counter balance
is attached to the opposite end of the shaft which allows the
arm to be balanced so that the applied force on the sample is
due only to the weight suspended from the contoured arm. A
fixed counter balance, W1l in Figure 3, was attached inboard of
the adjustable counter balance to counter act the weight of
the load train. [Ref. 9]

In the original design a flexible steel strap, 9.5 mm
(0.375 in.) wide by 0.51 mm (0.02 in.) thick, followe? the
contour of the lever arm and hung along the vertical tangent
to the lever. A second steel strap of the same dimensions was
hung tangent to a 51 mm (2.0 in.) radius cylinder centered on
the fulcrum point which transmitted the load to the specimen.
The steel strap on the lever arm has been replaced by a 9.5 mm
(0.375 in.) wide by 0.127 mm (0.005 in.) thick strip of monel
which is lighter and provides more flexibility. The steel
strap connecting the load train to the cylinder has been
replaced by a 51 mm (2.0 in.) wide by 0.254 mm (0.01 in.)
thick strap of monel. The cylinder was replaced by a 51 mm
(2.0 in.) wide aluminum cylinder of the same radius, 51 mm
(2.0 in.). An aluminum block was designed which attaches to
the monel strap on top and the universal joint is threaded in
on the bottom. The block has attachments on the forward side
for the linear variable differential transformer (LVDT) core
and on the back side for a counter balance to ensure the

tangent to the cylinder is maintained.

12




LVDT INPUT

ADJUSTABLE BALANCE

WEIGHTS
PRECISION
BEARINGS

AT

FULCRUM

FLEXIBLE
STEEL STRAP —————m—enf

UNIVERSAL JOINT

LvDT :

STAINLESS
STEEL TUBE

SELF CENTERING
INCONEL GRIPS
AND CAGE

ASSEMBLY

/

MARSHAL é

CUT-AVAY/

B

Al-Li SPECIMEN

FURNACE

CONSTANT STRESS
ANDRADE LEVER ARM

THERMOCOUPLE INPUT

&)

ATA 101 LVDT
SIGNAL
CONDITIONER

HP 3497A DATA
ACQUISITION UNIT

P

lHP 9826 cunpurzgj
1
{ WP 72258 PLOTTER

r

OMEGA TEMPERATURE,
CONTROLLER

POVERSTAT POWER
CONTROLLER

NEWPORT DIGITAL
THERMOCOUPLE
READ OUT

Figure 3. Diagram of constant stress creep test unit.
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Sample elongation was measured using a Schaevitz LVDT
with a 25.4 mm (1.0 in.) displacement. The core was attached
to the aluminum block in the load train above the universal
joint. A 2.866 mV/V output signal from the LVDT is
conditioned by a Schaevitz ATA 101 Analog Transducer
Amplifier. The amplifier voltage was measured using a Hewlett
Packard (HP) 3497A Data Acquisition unit controlled by a HP
9826 computer.

Marshall tubular furnaces, capable of attaining
1200°C, were used to maintain required temperatures in
conjunction with Eurotherm 808 digital temperature
controllers. A temperature gradient of less than 2°C was
established along the gauge length by installing external
shunts and temperature was continuously monitored using "K"
type chromel-alumel thermocouples.

Special self aligning grips, manufactured with Inconel
Alloy 625, were designed to hold the creep specimens (Figure
4). These grips were made by the Collins Instrument Company,
Freeport, Texas using a wire electro-discharge machining (EMD)
process to control tolerances. The tapered shank connected to
the button head provides self alignment and facilitates rapid
installation and removal to minimize heat loss while changing
samples [Ref. 9]. At lower stresses the weight of the lower
grip assembly accounts for a significant addition of stress to
the specimen. This was taken into account in performing
calculations when feasible. However, future testing should
incorporate some type of spring loading in the lower grip to
offset the additional stress when experimenting at levels of

reduced stress.

14




2. Cam Calibration

Extensive cam calibration was conducted subsequent to
the equipment modifications described in the preceding
section. A 50 1lbf capacity Interface load cell was rigidly
attached to the frame of the creep unit and then aligned in
the load train at the same position as a tensile sample. The
load cell was connected to the load train using a threaded
steel rod and nuts. The 2.866 mV/V output signal from the
load cell was conditioned using an HP 6216A constant current
DC power supply at a setting of 10 V prior to processing by
the HP 3497A Data Acquisition unit.

A weight was suspended from the monel strap at the end
of the contoured lever arm. The LVDT and load voltages were
read and the steel rod was measured from the load cell to a

pre-set mark on the rod using a digital caliper. The lower

L/ 7
 — Regi
<;;' \V/;A Tapered Region —— -
Slot for
/ "

Clevis Pin

4622 — Milled

Recess

Figure 4. Self aligning grip assembly.
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nuts on the steel rod were adjusted to allow the moment arm to
decrease. The LVDT and load cell voltages were read and
recorded and the distance the steel rod "elongated" was then
measured. This was repeated in intervals of 1.3 mm to 1.8 mm
(0.05-0.07 in.) until an elongation of approximately 11.5 mm
(0.45 in.) was achieved. This corresponded to the maximum
expected ductility of the specimen. The expected variation in
load with deflection can be calculated using the definition
of constant true stress and assuming constant volume of the

material:

O=— (12)

and:

V-constant~Al-A,1, (13)

where o is the stress, P the load, A the area, A, the initial
area, l, the initial length and 1 = 1l,+Al, where Al is the

deflection. Equations 12 and 13 can be combined to show:

_ 9541,

T+A1 (14)

This procedure was repeated for various applied weights
ranging from 0.29 to 5.4 1b. The difference between
theoretical and experimental results from each test were
compared with error ranging from 0.98 to 4.18 percent, the
greatest error being at the lightest loads. Figures 5 and 6
represent applied force, both calculated and experimental,
plotted as a function of elongation.

During the course of the test phase 16 of 65 tests

were discarded. On several occasions the grip became

16




entangled with a thermocouple creating unusable data. At the
lowest stress levels the weight of the lower grip assembly
accounted for a significant additional stress which in turn
introduced variability in results. This was taken into account
by calculating the additional stress associated with the grip
and adjusting calculations for applied weight or stress if a

test had already been run.
3. Software used for Constant Btress Tests

The software developed for the creep testing is
written in HP Basic 2.0 and was last modified by Goodson [Ref.
10)}. The software is designed to control both creep units
simultaneously and provides a graphic display of real time
engineering strain vs. time for both tests. Once tests are
completed the user can save accumulated data on any of three
floppy disk drives. Plots of true strain vs. time and percent
elongation vs. time can be plotted on the HP 7275B plotter.
A strain rate program was also developed by Goodson [Ref. 10]
which plots strain rate versus true strain. Activation
energies for the alloys were calculated from temperature
cycling tests and graphical differentiation of the creep

curves using Goodson’s program.
4. Constant Temperature Testing

Once required furnace temperature was attained the
furnace was de-energized and lowered. The grip assembly
containing the sample was carefully installed into the grip
holders and the slack was removed from the load train by a
small preload to prevent slippage in the grips. The furnace
was raised, re-energized and allowed to stabilize for
approximately 35-45 minutes. Both the bottom and the top
furnace openings were insulated to minimize any flue effects.

Prior to temperature stabilization the creep program

17
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was started and initial test parameters entered. The weight
to be applied was calculated . -4 placed in a modified funnel
which centered the lead shot used for the weight. After the
temperature had stabilized the weight was carefully suspended
from the lever arm by the flexible strap and the program
started. The LVDT was zeroed by the data acquisition program
as it was started. Each test was allowed to continue to

failure.
5. Temperature Cycling Tests

Accurate temperature cycling was achieved using a
Eurotherm 808 programmable digital temperature controller
which allowed for precise control of temperature ramp, level,
and dwell time. Prior to test initiation the temperature
controller was programmed so that the temperature difference
between levels was 10°C with a dwell time of four hours at
each level. The remaining pretest setup is identical to that
for a constant temperature test with the exception that the
Eurotherm program is set to run prior to applying the load and
starting the creep program. The Eurotherm program was set for
continuous cycling so that each test would proceed under these

conditions until failure.
6. Optical Microscopy

Specimens were cut from as-rolled and annealed,
untested samples and from Al-0.5wt.pct.Li and Al-1.0wt.pct.Li
materials that were tested at 400°C at a stress of 8.84 MPa.
The tests were allowed to continue to the steady state creep
stage at which time the furnace was de-energized, lowered and
the sample cooled under 1load to ambient temperature.
Specimens were mounted in Buehler fast-cure acrylic, manually
ground to 600 grit and polished with 1 um diamond paste. The

samples were subsequently electropolished and etched using a

20

U,




modified Barker’s reagent (HBF,, 48% solution, 46 cma, boric

acid 79 cma,lyo 970 cm® ). Examination was done using Zeiss

ICM-405 optical microscopes. Both normal illumination and

plane-polarized light techniques were employed.
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IV. RESULTS8 AND DISCUSSION

A. INITIAL MICROSTRUCTURE

Ellison [Ref. 9] studied the microstructural development
of a Al-2.0wt.pct.Li alloy and found that the as-rollec
material was free of inclusions, with elongated columnar
grains oriented in the rolling direction. After annealing at
500°C for 15 minutes, a coarse, equiaxed and stable grain
structure, free of residual stresses, was produced. Grains
were approximately 50 microns (0.05 mm) in size with no

evidence of precipitation present.

B. CONSTANT STRESS, ISOTHERMAL TESTS

During this phase of the research specimens of all three
alloys, Al-0.5wt.pct.Li, Al-1.0wt.pct.Li, and Al1-2.0wt.pct.Li,
were tested at various stresses and temperatures in order to
determine a minimum creep rate. All tests were conducted at
a constant stress and under isothermal conditions until
specimen failure. A typical creep curve with true strain
plotted versus time is shown in Figure 7.

Examination of the Figure reveals three distinct portions
of the creep curve. The primary phase is characterized by a
rapid initial strain rate which decreases until a steady state
is reached. 1In the primary phase the decrease in the strain
rate reflects substructure changes that increase the overall
resistance to dislocation motion. Strain hardening at
elevated temperatures involves dislocation generation and
subgrain formation associated with the rearrangement of the
dislocations. Therefore as creep increases and dislocation

motion decreases, the rate of strain hardening decreases.

22




Examination of the creep curves for all three alloys reveals
primary creep in all cases, consistent with pure Aluminum.
(Ref. 6]

In the secondary phase a minimum creep rate, corresponding
to a steady state rate, becomes apparent. This constant
strain rate in the secondary stage indicates a stable
substructure and a dynamic balance between the hardening and
softening processes. [Ref. 14]

In the tertiary stage the creep rate accelerates until
fracture. This accelerating creep rate is dominated by
instability in the form of 1localized necking, microvoid
formation and coalescence followed by fracture. In addition,
the strain hardening grains may recrystallize and further
destroy the balance between material hardening and softening
processes. [Ref. 14]

The minimum creep rate was determined from a plot of creep
rate versus true strain. Figure 8 is such a creep rate curve
corresponding to the creep curve shown in Figure 7. The
jagged appearance of the curve is the result of quantization
errors in the data acquisition equipment. Alternatively, the
creep curve itself could be used to determine the creep rate
by graphical calculation of the A(strain)/A(time), which is
easily accomplished with a well pronounced steady state

region.
1. S8train-Rate Dependence of Stress

The data of Table 1 summarize the results of the
constant stress isothermal tests which were utilized to expand
on the work of Taylor [Ref. 8] and Goodson [Ref. 10] in
compiling a more comprehensive body of data. Sherby and Burke
[Ref. 6] note that for an intermediate stress range the

relationship between strain rate and stress at constant
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Table I. SUMMARY OF ISOTHERMAL CONSTANT STRESS TESTS

-
$Li | Temp (°C) & (sec™t) o (MPa) log € log o
0.5 300 4.4 x 10° 9.70 -5.36 0.97
300 1.15 x 107 15.8 -3.95 1.20
350 8.34 x 107 8.84 -4.08 0.95
350 9.0 x 10° 6.27 -5.06 0.80
350 3.75 x 10° 5.42 -5.43 0.73
350 2.61 x 107 3.58 -6.58 0.55
400 1.54 x 102 | 14.67 -1.81 1.17
400 9.1 x 10° 3.07 -5.04 0.49
400 4.76 x 107 1.81 -6.32 0.26
450 1.79 x 10° 2.67 -4.75 0.43
450 1.28 x 10° 2.10 -4.91 0.32
450 1.33 x 10° 1.63 -5.88 0.21
500 2.0 x 10* 2.41 -3.70 0.38
1.0 300 8.36 x 10%| 10.97 -5.07 1.04
350 1.35 x 10°| 15.85 -2.87 1.20
350 1.32 x 10°| 7.59 -4.88 0.88
400 3.61 x 10°%| 5.32 -4.44 0.73
400 1.09 x 10*]| 5.16 -3.96 0.71
400 5.23 x 10%| 3.68 -5.28 0.57
450 2.29 x 10°| 2.65 -4.64 0.42
2.0 500 6.13 x 10*| 3.03 -3.21 0.48
500 8.30 x 10°| 2.34 -4.08 0.37
500 9.38 x 10%| 1.74 -5.03 0.25
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temperature can be described by the power law relationship:

e=Ko ™ (15)

where values of n for pure metals, Aluminum included, are

typically equal to 5. The experimental values of ¢, were

plotted versus o on log-log axes for each test temperature.
Figures 9, 10, and 11 include the results from this research
in addition to those obtained by Taylor [Ref. 8] for the Al-
0.5wt.pct.Li and Al-1.0wt.pct.Li and that of Goodson [Ref. 10]
for the Al-2.0wt.pct.Li alloy. The stress exponents calculated
show some temperature dependence in the 300°C and 500°C ranges
with values of n at 6.33 and 6.13 at 300°C and 4.31 and 4.29
at 500°C for the Al-0.5wt.pct.Li and Al-l.0wt.pct.Li

respectively. These n values based on the above mentioned

research were calculated as n Alogé/Alogoc from the data by
linear regression and are summarized in Table II. The values
of n determined from the combination of previous data and in
this research are similar. The most extensive data was
collected on the Al-0.5wt.pct.Li and the Al-l.0wt.pct.Li
alloys. There are slight differences in some of the n values
which can be attributed to refined test procedures and
improved accuracy of the equipment. From these n values it is
believed that the creep mechanism in these alloys is similar
to that of pure Aluminum which deforms by glide and climb of
dislocations, with diffusion controlled climb determining the

overall rate of straining.
2. S8trength Dependence on Lithium Concentration

The curves presented in Figures 13 and 14 are a
summary of data collected from work by Taylor ([Ref. 8],
Goodson [Ref. 10] and this research. Data for all three

alloys is shown and grouped together by test temperature. It
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Table II. SUMMARY OF STRESS EXPONENTS

value of n
Tenm °C
P ( ) 0.5%Li 1.0%Li 2.0%Li
300 6.33 6.13 6.73
350 5.57 5.18 6.06
400 4.69 5.64 4.78
450 5.12 4.50 4.79
500 4.31 4.29 4.96

can easily be discerned that, as the Lithium concentration
increases, the necessary applied stress to obtain a given
strain rate increases, implying a stronger material under
creep. This higher strength with increased Lithium
concentration is most pronounced at the lower temperatures.
The most notable difference 1is between the Lithium
concentrations of one and two weight percent. With the
exception of the 400°C range, the strength of the 0.5 and 1.0
weight percent alloys are within a factor of two. It is also
evident that the strength of the 2.0wt.pct.Li increases at a
more rapid rate as the temperature decreases than does either
the 0.5 or 1.0 weight percent alloys. Up to 1.0 weight
percent Lithium the data compares closely to that of pure
Aluminum, only slightly stronger.

The strength dependence of Lithium concentration is
clearly illustrated in Figure 15 in which each alloy was
tested at 400°C and at stresses within 2.7% of each other.
There is a slight increase in strength of the 1.0 over the 0.5
weight percent but a very pronounced increase between the 1.0

and 2.0 percent alloys.
3. Microstructural Evolution During Creep

Microstructural analysis of the Al-1.0wt.pct.Li alloy

is summarized in Figure 12. The grip section of a sample
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Figure 12. (a) Grip section of Al-1.0%L1 at 400°C and a
stress of 8.84 MPa. (b) Gage section of Al-1.0%Li at 400°C
and a stress of 8.84 MPa. Sample cooled under load.
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crept at 400°C to a strain of 0.35 (within the steady state
regime) is seen (Figure 12a) to exhibit an equiaxed grain
structure similar to that reported by Ellison [Ref. 9] at the
initiaticn of testing of the Al-2.0wt.pct.Li alloy and also to
be present in the grip section of crept samples of the same
Al-2.0wt.pct.Li alloy. The lower micrograph (Figure 12b) was
obtained from the deformed gage section of the Al-1.0wt.pct.Li
sample and exhibits a microstructural characteristic of
subgrain-forming metals. The grain boundaries have become
serrated by interaction of the high-angle boundaries with
subgrain boundaries in the grain interiors. This serration of
the boundaries suggests subgrain formation in association with
a stress exponent n = 5 and this leads to the same conclusion
reported by Ellison {[Ref. 9], that these alloys behave as

class II solid solutions.

C. TEMPERATURE CYCLING TESTS

In this phase of the research, identical specimens of the
0.5 and 1.0 weight percent Lithium alloys were crept at a
constant stress, o, while the temperature was varied. The
stress was selected from the double log stress versus strain
rate plots, shown in Figures 9, 10 and 11, to provide a test
duration of approximately one day (80,000-90,000 sec). The

test was set up and initiated at temperature T,, as described

in chapter III. After four hours the temperature was rapidly

increased to a level T, = T, + 10°C. Temperature T, was

maintained for four hours as well, after which time the

temperature was rapidly decreased to the initial value of T,.

The average time for the 10°C temperature excursion to be
completed was 10 minutes. This temperature cycling was

repeated through steady state and up to failure.
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A typical example of this procedure at 350-360°C is shown
in Figure 16, in which true strain, €, 1is plotted as a
function of time. Three phases of creep are evident as in the
isothermal curves, and that the duration of the temperature

excursion from T, to T, is nominal when compared to the overall

duration of the test. Figure 17 represents a creep rate
versus creep strain curve for the temperature cycling test in
Figure 16. In examining the creep rate data it can be seen
that, after the 10°C temperature increase, the creep rate
rapidly attains its new value and that the minimum creep rate
after three cycles essentially agrees with the original steady
state rate established before the first temperature increase
and the creep transient after a temperature change is
identical to that of pure Aluminum. [Ref 9]

The creep rate can also be determined from the creep curve
itself where the two creep rates are easily discernable. One
must be careful to select the steady state region of the curve
and not to use an area too close to the primary or tertiary
phases. Determination of the two rates is the same as that

described for the constant temperature tests.
1. Activation Energy

Assuming that creep is thermally activated and follows
an Arrhenius temperature dependence at constant stress, the

values for Q, can be obtained from equation 3. To determine
Q. the steady state creep rate was evaluated at temperatures
T, and T, for a particular temperature cycling test described

previously. The creep rates were determined from the strain
rate versus true strain curves as shown in Figure 17. In some
instances where the strain rate curve was excessively jagged

due to quantization errors in the data acquisition equipment,
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Table III. SUMMARY OF ACTIVATION ENERGY FOR

TEMPERATURE

$Li | Temp(°C) €on (sec™) ¢, (sec™) Q.
(kcal/mole)

0.5 | 300-310 1.16 x 10° 1.95 x 10 34.4
300-310 | 3.83 x 10° 6.39 x 10° 33.8
350-360 | 7.44 x 10° 1.14 x 10° 33.5
350-360 | 6.08 x 107 9.30 x 10°® 33.1
400-410 6.77 x 10° 9.72 x 10° 33.0
400-410 | 6.03 x 10° | 8.76 x 10° 34.1
450-460 | 2.05 x 10° 3.04 x 10° 41.5
450-460 1.02 x 10° 1.42 x 10° 34.3
450-460 | 5.03 x 10° 7.63 x 10® 40.0
500-510 | 2.93 x 10® | 3.95 x 10® |  135.9
500-510 | 4.93 x 10° 6.51 x 10° 33.3
1.0 | 300-310 3.75 x 10° 6.47 x 10° 36.0
300-310 7.71 x 10° 1.32 x 10° 35.4
350-360 | 4.23 x 10 6.76 x 10° 36.7
350-360 | 1.81 x 107 1.20 x 10° 32.0
400-410 5.04 x 10°° 7.26 x 10°® 33.3
400-410 1.71 x 10° 2.49 x 107 34.3
| <00-410 | 8.44 x 10® | 1.24 x 10° 34.9
450-460 | 2.00 x 10 2.79 x 10° 35.1
450~460 3.67 x 10°® 5.37 x 10° 39.8
500-510 | 3.45 x 10 4.55 x 10 32.4
500-510 | 1.51 x 10° 2.00 x 10° 33.8
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the creep rate was determined from the creep curve as
previously described. The mean test temperature [Ref. 15]

defined as:

[¥] I

(—%—Jri) (16)

i-
T T,

[ 8]

was used in plotting all activation energy results.

The results for the temperature cycling tests on both
alloys are summarized in Table III. Data from work by Goodson
[Ref. 10) for Al-2.0wt.pct.lLi, also determined from
temperature cycling tests, and that of Taylor [Ref. 8] for Al-
0.5wt.pct.Li and Al-1.0wt.pct.Li from isothermal tests are
summarized in Appendix D.

The activation energies are plotted as a function of
temperature in Figures 18 and 19. Results from work by
Goodson [Ref. 10] are plotted in Figure 20 for comparison

purposes. As shown in Figure 18 the activation energy Q. for

Al-0.5wt.pct.Li varies between 33.1 and 35.9 kcal/mole at
temperatures of 300,350,400, and 500°C, and in a manner
similar to that for pure Aluminum in the same temperature
interval. Sherby and Burke [Ref. 6] have shown that the
activation energy for pure Aluminum, when determined at
constant stress, varies in a gradual manner from 34.5 to 36.4
kcal/mole in the 300-500°C temperature interval. In fact
Sherby and Burke [Ref. 6] have shown that the activation
energy is constant if this gradual variation is corrected for
temperature dependence of the elastic modulus. The exception
to this pattern in the present data is at 450°C, where there

is an anomalously high Q. in two of three tests. The

activation energy for the Al-1.0wt.pct.Li is also similar to
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that for pure Aluminum, ranging from 32 to 39.8 kcal/mole,
again the highest value being at the 450°C test point.
Goodson [Ref. 10] reported that the Al-2.0wt.pct.Li
exhibits a similar stress dependence and formation of subgrain
structure as observed in pure Aluminum. However, the values

of Q. are appreciably higher. He attributed this to a more

strongly temperature dependent modulus in this alloy as
compared to pure Aluminum, or to a greater temperature
dependence in the stacking fault energy.

Goodson [Ref. 10] suggests that the ordering of the
Lithium in the solid solution, as proposed by Radmilovic, Fox,
and Thomas [Ref. 5], was responsible for the increased
temperature dependence of the modulus. Thus upon heating of
the alloy at temperatures above the solvus temperature the Al-
2.0wt.pct.Li is expected to exhibit a mixture of ordered
regions of higher Lithium content and regions depleted in
Lithium content. It was further suggested that these ordered
regions persisted to temperatures as high as 450°C, at which
temperature the structure undergoes an order-disorder
transformation. Above this temperature the structure exhibits
a random distribution of Lithium in the solid solution. As
previously stated, Radmilovic, Fox, and Thomas [Ref. 5] have
postulated that such an order-disorder reaction occurs in the
as quenched Al-Li alloys containing greater than 1.6 weight
percent Lithium, which also corresponds to the solvus for Al-
LI at 300°C. Fox and Thomas [Ref. ] concluded that Aluminum
and Lithium atoms exhibit a strong tendency to bond based on
the increased electron charge density between nearest neighbor
atoms which is reflected in the increased modulus at room

temperature.

45




Conversely, as pointed out by Goodsor [Ref. 10], for
random solid solutions we can anticipate a reduced modulus at
temperatures approaching the melting temperature because of

the lower value of T, for the Al-2.0wt.pct.Li alloy as
compared to the T, for pure Aluminum.

In summary, Goodson [Ref. 10] proposed that for the
temperature interval over which the ordering reaction occurs
the modulus of elasticity will exhibit a stronger temperature
dependence than that of pure Aluminum which is reflected in
the creep response of the alloy.

Taylor’s [Ref. 8] preliminary study of the Al-
0.5.wt.pct.Li and Al-l.0wt.pct.Li alloys suggest a similar
trend based on limited data. However based on this research
it appears that the Lithium content has little effect on the
activation energy for creep in the 0.5 and 1.0 weight percent
Lithium alloys in the 300-500°C range. In contrast the Al-
2.0wt.pct.Li alloy develops a substantially higher activation
energy in the 300-450°C range.

D. DISCUSSION

The stress dependence for creep of all three alloys
correlates well with that for pure Aluminum. The creep rate
appears to follow the power law dependence with the stress
exponent equal to approximately 5 for temperatures above
300°C. Also, subgrain formation occurs during primary creep.

The activation energy for the Al-0.5wt.pct.Li and Al-
l1.0wt.pct.Li alloys determined from this research correlate
very well for that of pure Aluminum. The data from the Al-
0.5wt.pct.Li and Al-1l.0wt.pct.Li suggest that as the Lithium
concentration de.reases the tendency for ordering diminishes

or is eliminated. At high Lithium concentrations it is
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difficult to suppress precipitate formation, however at lower
Lithium concentrations quenching will suppress the formation
of precipitates. By suppressing the precipitate formation
through quenching the kinetics have been affected. This would
suggest that the modulus of these alloys might exhibit the

same temperature dependence as pure Aluminum.
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V. CONCLUSIONS

The following conclusions can be drawn concerning the
behavior and characteristics of binary Aluminum-Lithium alloys
of 0.5, 1.0, and 2.0 weight percent Lithium:

1. The alloys exhibit a creep response consisting of a
well defined primary, a secondary, and a tertiary phase. The
characteristic shape is similar to that of pure Aluminum.

2. The alloys exhibit a similar stress dependence as that
of pure Aluminum (n ~ 5), with values of n ranging from 4.3 to
6.3 between 300 and 500°C.

3. Lithium additions of 0.5 and 1.0 weight percent
modestly increase the strength of the alloys above that for
pure Aluminum, while a 2.0 weight percent addition has a more
pronounced effect, particularly as the temperature decreases.

4. Lithium addition of less than 2.0 weight percent has
little effect on the activation energy for creep. Alloys in
this class exhibit activation energies similar to that of pure

Aluminum.
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APPENDIX A. CREEP AND CREEP RATE CURVES FOR Al-0.5%Li
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Figure 22. Creep Curye at 350°C for a stress of 8.84 MPa:

€min = 8.34 X 10" sec
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Figure 24. Creep Curye at 350°C for a stress of 3.58 MPa:
€min = 2.61 x 109 segx
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Figure 25. Creep Curve at 400°C t. - a stress of 14.67 MPa:

€min = 1.54 X 10" sec
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Figure 27. Creep Curye at 400°C for a stress of 1.81 MPa:

mn = 4.76 X 10" sec
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Figure 28. Creep Curye at 450°C for a stress of 2.67 MPa:

€min = 1.79 x 10" sec’
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Figure 29. Creep Curye at 450°C for a stress of 2.10 MPa:
€min = 1.28 x 10® sec
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Figure 30. Creep Curye at 450°C for a stress of 1.63 MPa:
€min = 1.33 x 108 sect
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Figure 31. Cregp Cu

rve at 500°C for a stress of 2.4)1 MPa:
€min = 2.0 X 10" sec
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Figure 32. Creep Rate Cuyrve at 300-310°C for a stress of
8.84 MPa: ¢; = 1.95 x 10" sec & ¢, = 1.16 x 10" sec
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Figure 33. Creep Rate Cyrve at 300-310°C for agstregss of
9.84 MPa: ¢, = 6.39 x 10" sec & é, = 2.83 x 10" sec

61




o

z

-

_ N

n z

. o]

=z

— T

A 04

-

n

)

_Jm 3

[ m

}—
ey
-J.-‘
L ] l ] 1 ] | | 1 &
o o ™ n w w ~ ~ ® ®
— o0 Y ] | 1 I ) l 1
® w 3] (] W [N} Ll J L) [
® < — Y ™ N 0w n o .
. () () . . . . . . —

o ) ™ o N in - m
® [S)

1-23S ‘31U NIUYLS

Figure 34. Creep Rate Cuyrve at 350-360°C for a_stress of
5.13 MPa: ¢, = 9.30 x 10° sec' & ¢, = 6.08 x 10° sec’
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Figure 35. Creep Rate Cyrve at 350-360°C for agstress of
5.75 MPa: ¢, = 1.20 x 10" sec” & ¢, = 8.13 x 10~ sec
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Figure 36. Creep Rate Cyrve

at 400-410°C for a stregs of

3.02 Mpa: é; = 9.72 x 10" sec & ¢é, = 6.77 x 10 sec
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Figure 37. Creep Rate Cyrve at 400-410°C for a stregs of

2.84 MPa: ¢, = 8.76 x 10" sec” & é, = 6.03 x 10" sec
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Figure 38. Creep Rate Cyrve at 450-460°C for a.stress of
1.67 MPa: ¢, = 7.63 x 10" sec & é, = 5.26 x 10° sec

66




o
oo
pu—
(A
e
n pd
| o ]
N
Z
-
-—.v_ z‘
. -
T
14
’—-
1y
1
. L
jus)
7%
J -
(oY

.8825
. 80082881
1.7E-5
1.4E-6
1.2E-7

1-03S ‘3188 NIUY1S

Figure 39. Creep Rate Cyrve at 450-460°C for a stress of

1.71 MPa: ¢é; = 1.42 x 10 sec & ¢, = 1.02 x 10~ sec
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APPENDIX B. CREEP AND CREEP RATE CURVES FOR Al-1.0%Li
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Figure 40. Creep Curye at 300°C for a stress of 10.97 MPa:
€mn = 8-36 X 10° sec
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Figure 41. Creep Curye at 350°C for a stress of 7.59 MPa:

€min = 1.32 x 107 sec
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Figure 42. Creep Curve at 350°C for a stress of 15.85 MPa:

€min = 1.35 X 107 sec
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Figure 43. Creep Curye at 400°C for a stress of 5.32 MPa:

€min = 3.61 X 10° sec
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Figure 44. Creep Curye at 400°C for a stress of 3.68 MPa:
€min = 5.23 x 10" sec
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Figure 45. Creep Curye at 450°C for a stress of 2.65 MPa:
€min = 2-29 X 10° sec
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Figure 46. Creep Rate Cyrve at 300-310°C for a,stress of
9.05 MPa: ¢, = 1.32 x 10° sec! & ¢, = 7.71 x 10° sec
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Figure 47. Creep Rate Cyrve at 300-310°C for a stress of
9.84 MPa: ¢, = 6.47 x 10" sec & ¢, = 3.75 x 10" sec
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Figure 48. Creep Rate Gurve at 350-360°C
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Figure 49. Creep Rate Gurve at 400-410°C for a stress of

3.63 MPa:¢, = 2.49 x 10" sec & ¢, = 1.71 x 10~ sec
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Figure 50. Creep Rate Cyrve at 400-410°C for a,stress of
3.60 MPa: ¢, = 7.26 x 10" sec & é, = 5.04 x 10 sec
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Figure 51. Creep Rate Cyrve at 400-410°C for agstre
3.26 MPa: ¢, = 1.24 x 10" sec” & ¢, = 8.44 x 10" sec
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Figure 52. Creep Rate Cyrve at 450-460°C for a, stress of
1.88 MPa: ¢, = 5.37 X 10° sec’ & ¢, = 3.67 x 10% secT
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Figure 53. Creep Rate CL_:‘rve t _450-460°C for a stress of
1.92 MPa: ¢, = 2.79 x secal 7 €, = 2.00 x 10° sec§
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Figure 54. Creep Rate Cyrve at 500-510°C for a stregs of

1.17 MPa: ¢, = 4.55 x 10~ sec & ¢, = 3.47 x 10" sec
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APPENDIX C. CREEP AND CREEP RATE CURVES FOR Al-2.0%Li
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Figure 55. Creep Curye at 500°C for a stress of 3.03 MPa:

€min = 6.13 x 10 sec
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Figure 56. Creep Curye at 500°C for a stress of 2.34 MPa:
€min = 8.30 X 10" sec
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Figure 57. Creep Curye at 500°C for a stress of 1.74 MPa:
= 9.38 x 10 sec
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Figure 58. Creep Rate Cyrve at 500-510°C for agstress of
1.40 MPa: ¢é¢; = 9.14 x 10" sec & ¢é, = 1.58 x 10" sec
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APPENDIX D. DATA FROM PREVIOUS WORK AT NPS
Table IV. SUMMARY OF STRESS EXPONENTS
(*c) Value of n
Tem °C

P 0.5%Li (1) 1.0%Li (1) | 2.0%Li (2)
250 5.2 5.4

300 7.1 6.1 6.7
350 5.2 4.9 6.0
200 2.4 5.6 5.0
450 4.5 2.3 2.8
500 4.3 4.3 4.9

2

51;. Data from work by Taylor [Ref. 8)
. Data from work by Goodson [Ref. 10)

?;b%e Xi SUMMARY OF ACTIVATION ENERGY AT CONSTANT STRESS
e L
Log of Activation
Temperature Applied Energy Lithium
Interval(°C) S8tress (Kcal/mole) Concentration
250-300 1.4 30.6 5%
300-350 1.3 26.0
1.0 36.4
0.7 46.2
350-400 1.0 38.3
0.6 45.9
400-450 .06 48.8
450-500 .06 50.7
250-300 1.7 31.6 1.0%
1.3 45.6
300-350 1.46 40.4
0.84 39.7
350-400 1.3 41.0
0.7 44.8
400-450 1.0 38.1
0.6 53.8
450-500 0.8 31.3 L
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Table VI. SUMMARY OF AL-2.0%LI ACTIVATION ENERGY RESULTS IN
KCAL/MOLE [Ref. 10)

Temp(°C) Te:;?EC) Creep Creep Rate Log-Log
curves curve
300-310 304.92 47.4 45.9 42.5
350-360 354.93 52.3 50.9 55.9
400-410 404.94 57.5 55.6 49.0
400-410 404.94 55.3 62.7 49.0
450-460 454.95 54.9 54.6 54.4
470-480 474 .95 40.4 * -
500-510 504 .95 33.1 * -

* Note: these values not obtained due to limits in the
data acquisition system.

?ﬁb%e VI?. SUMMARY OF AL~-2.0%LI TEMPERATURE CYCLING RESULTS
ef. 10

Mean . 1 . 1 Qc
Temp (°C) Temp (°C) € (s8ec ) €p(sec’) (kcal/mole)
300-310 305 2.10 x 10°%| 4.30 x 10° 47.4
350-360 355 1.28 x 10%| 6.55 x 107 52.3
400-410 405 1.18 x 10%| 2.22 x 10® 57.5
400-410 405 3.98 x 107 | 7.31 x 107 55.3
450-460 455 5.51 x 10°| 8.69 x 10°® 54.9
470-480 475 1.75 x 10%| 2.52 x 10® 40.4
500-510 505 1.51 x 10%)| 1.99 x 10°® 33.1
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