- - : 9\

TR e
Pubiic reporting burden for this ¢ I ' i [HilRY i, l me fof revk instructh g existing data sources gathering and maintaining the data
needed, and reviewing the collec wdmmammmwwmmm to Washington
Headquarters Service, Directoral 204, Arfington, VA 22202-4302, and to the Office of information and Reguiatory Aftairs, Oftice of
Management and Budget, Wash: _
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final: 09 Aug 1991 to 01 Jun 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Alsys, Inc., AlsyCOMP_058, Version 5.3, Unisys B39 under BTOS I, v3.2.0 (Host &
Target), 910809W1.11196 i
B EEE

6. AUTHOR(S) e s ,l —
Wright-Patterson AFB, Dayton, OH L o PN
USA oo sy
[7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) e _{! ‘ MR_M ING ORGANIZATION |
Ada Validation Facility, Language Control Facility ASD/SCEL £ 9 REPORT NUMBER
Bidg. 676, Rm 135 | AVF-VSR-5000-0891
Wright-Patterson AFB, Dayton, OH 45433
3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING/MONITORING AGENCY |
Ada Joint Program Office REPORT NUMBER
United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
17, SUPY SUPP.L-E-M-E-NT-_ARY_NOTES " _ ;

P R (, ‘LL Uil L PN S TR U Fg-c v (f)-& o h . L) N GPIEN }«} o }\1 (Cloe (‘ /("E, .

' . ~ —
.41).-4 u{ﬂm iui0<~\m3 ‘e

(723, DISTRIBUTION/AVAILABILITY STATEMENT ' 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Approved for public release; distribution unlimited.

Alsys, Inc., AlsyCOMP_058, Version 5.3, Wright-Patterson AFB, OH. Unisys B39 under BTOS lI, v3.2.0 (Host & Target),
ACVC 1.11.

1-15064
\\'\\\l\l\l‘ "\IM‘I\ T

(14 SUBJECT TERMS 15. NUMBER OF PAGES
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANS/MIL-STD-1815A, AJPO. 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION] 20. LIMITATION OF ABSTRACT |
OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 ‘ Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

AVF Control Number: AVF-VSR-500-0891

26 August 1991
91-04-22-ALS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910809W1.11196

Alsys, Inc.
AlsyCOMP 058, version 5.3
Unisys B39 under BTOS II, v3.2.0 =>
Unisys B39 under BTOS II, v3.2.0

Prepared By:
Ada Vvalidation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

p——

e T : 2ar
[XORE Al seed ¥ -
v .

rerd 1
Cgry I
o cray ar
f' ey - . “-"k.‘_. = -
IR
'Y
oA\ -
408
. i e 4@
. . - 8r
- “r
, Casiid
'v>.4‘v R bl
Ui

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1l.11. Testing was completed on 9 August 1991.

Compiler Name and Version: AlsyCOMP 058, version 5.3
Host Computer System: | Unisys B39 under BTOS II, v3.2.0
Target Computer System: Unisys B39 under BTOS II, v3.2.0

Customer Agreement Number: 91-04-22-ALS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, validation Certificate
910809W1.11196 is awarded to Alsys, Inc. This certificate expires on 1
June 1993.

This report has been reviewed and is approved.

e Z
Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

ey . /%I// ;
S e //:
,.;EHE Vgliégtioﬁ Organization
7" Director,-C ter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ity o5t

Ada Joint Program Office

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

CUSTOMER; Alsys, Inc.
ADA YVALIDATION FACILITY: Ada Validation Facility (ASD/SCEL)

Computer Operations Division
Information Systems and Technology Center
Wright-Patterson AFB OH 45433-6503

ACVYC VERSION: 1.11
ADA IMPLEMENTATION:
COMPILER NAME AND VERSION: ALSYCOMP_058, version 5.3

HOST COMPUTER SYSTEM: Unisys B39
under BTOS II, v3.2.0

TARGET COMPUTER SYSTEM: Unisys B39
under BTOS 11, v3.2.0

CUSTOMER’S DECLARATION

I, the undersigned, representing Alsys, Inc., declare that Alsys, Inc. has no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the implementation listed in this
declaration.

%@&HQ_W; Date: § Aveust 199/

4

George Romanski,
Vice-President, Engineering
Alsys, Inc.

67 South Bedford Street
Burlington, MA 01803-5152

CHAPTER 1
1.1
1.2
1.3
1.4
CHAPTER 2
2.1
2.2
2.3
CHAPTER 3
3.1
3.2
3.3
APPENDIX A
APPENDIX B

APPENDIX C

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT .
REFERENCES. . « « « « o v v v o+ .
ACVC TEST CLASSES . . . « « « « . . .
DEFINITION OF TERMS

IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS « « « . .
INAPPLICABLE TESTS.
TEST MODIFICATIONS. .
PROCESSING INFORMATION

TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS
TEST EXECUTION. . . »

MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

1-1
1-2
1-2
1-3

. 3-1

3-1
3-2

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
{Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions reqarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

Reference Manual for the Ada Programming Language, [Ada83]
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures, Version 2.1, [Pro90]
Ada Joint Program Office, Auqust 1990.

Ada Compiler Validation Capability User’s Guide, [UG89] 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
cptimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation~specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard. .

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program gquidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user—designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

validated Ada
Implementation

validation

Withdrawn
test

INTRODUCTION

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection)>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be inccrrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programmin
language. :

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AvVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203Aa C34006D C355081 €35508J
€35508M C35508N C35702A C35702B B41308B C43004A
C45114a C45346A C45612Aa C45612B C45612C C€45651A
C46022A B49008A B49008B A74006A - C74308A B83022B
B83022H B83025B B83025D c83026Aa B83026B €83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CcCl223a BCl1226a CCl1226B
BC3009B BD1B02B BD1B06A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2AB7A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A - CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005SB CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812a CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant

for a given Ada implementation. Reasons for a test’s inapplicability may

be supported by documents issued by the ISO and the AJPO known as Ada

Commentaries and commonly referenced in the format AI-ddddd. For this

implementation, the following tests were determined to be inapplicable for

the reasons indicated; references to Ada Commentaries are included as
appropriate.

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z2 (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG_INTEGER, or
SHORT INTEGER; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify values for ’SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE OVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION’s base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A53A checks operatizns of a fixed-point type for which a length
clause specifies a power—-of-ten TYPE'SMALL; this implementation does
not support decimal 'SMALLs. (See section 2.3.)

CD2A84A, CD2AB84E, CD2A84I..J (2 tests), and CD2A840 use length clauses

to specify non-default sizes for access types this implementation
does not support such sizes.

2-2

IMPLEMENTATION DEPENDENCIES

BD8001a, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINE CODE.

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USE_ERROR is
raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2111C checks whether a sequential file can be reset from mode
IN FILE to mode OUT FILE; this implementation does not support this
operation and raises USE_ERROR.

CE2401H, EE2401D, and EE2401G wuse instantiations of DIRECT IO with
unconstrained array and record types; this implementation raises
USE_ERROR on the attempt to create a file of such types.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method
CE2102E CREATE OUT FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT IO
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL IO
CE21020Q RESET OUT FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN _FILE DIRECT IO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102F RESET Any Mode TEXT IO
CE3102G DELETE ——— TEXT IO
CE31021 CREATE OUT_FILE TEXT IO
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN OUT_FILE TEXT IO

The tests listed in the following table check the given file
operations for the given combination of mode and access method; this
implementation does not support these operations.

2-3

IMPLEMENTATION DEPENDENCIES

Test File Operation Mode File Access Method
CE2105Aa CREATE IN FILE SEQUENTIAL IO
CE2105B CREATE IN FILE DIRECT IO
CE3109a CREATE IN FILE TEXT IO

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an Inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT’LAST; for this implementation, the value of
COUNT’LAST is greater than 150000, making the checking of this
objective impractical.

CE3202A expects that function NAME can be applied to the standard
input and output files; in this implementation these files have no
names, and USE ERROR is raised. (See section 2.3.)

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 20 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B23004A B24007A B24009A B28003A B32202A B32202B
B32202C B37004A B61012A B91004A B95069A B95069B
B97103E BAl1101B BC2001D BC3009¢C

BA2001E was graded passed by Evaluation Modification as directed by the
AVO. The test expects that duplicate names of subunits with a common
ancestor will be detected as compilation errors; this implementation
detects the errors at link time, and the AVO ruled that this behavior is
acceptable.

EA3004D was graded passed by Evaluation and Processing Modification as
directed by the AVO. The test requires that either pragma INLINE is
obeyed for a function call in each of three contexts and that thus three
library units are made obsolete by the re-compilation of the inlined

2-4

IMPLEMENTATION DEPENDENCIES

function’s body, or else the pragma is ignored completely. This
implementation obeys the pragma except when the call is within the package
specification. When the test’s files are processed in the given order,
only two units are made obsolete; thus, the expected error at line 27 of
file EA3004D6M is not valid and is not flagged. To confirm that indeed
the pragma is not obeyed in this one case, the test was also processed
with the files re-ordered so that the re-compilation follows only the
package declaration (and thus the other library units will not be made
obsolete, as they are compiled later); a "NOT APPLICABLE" result was
produced, as expected. The revised order of files was 0-1-4-5-2-3-6.

When run as is, the implementation fails to detect an error on line 27 of
test file EA3004D6M. This is because the pragma INLINE has no effect when
its object is within a package specification. However, the results of
running the test as-is do not confirm that the pragma had no effect, only
that the package was not made obsolete. By re-ordering the compilations
so that the two subprograms are compiled after file D5 (the re-compilation
of the "with"ed package that makes the various earlier units obsolete), we
create a test that shows that indeed pragma INLINE has no effect when
applied to a subprogram that is called within a package specification.

The test must execute and produce the expected NOT APPLICABLE result (as
though INLINE were not supported at all). The recommended re-ordering of
EA3004D test files is: 0-1-4-5-2-3-6.

CD2A53A was graded inapplicable by Evaluation Modification as directed by
the AVO. The test contains a specification of a power-of-10 value as
'SMALL for a fixed-point type. The AVO ruled that, under ACVC 1.11,
support of decimal 'SMALLs may be omitted.

CE3202A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test applies function NAME to the standard input file,
which in this implementation has no name; USE ERROR is raised but not
handled, so the test is aborted. The AVO ruled that this behavior is
acceptable pending any resclution of the issue by the ARG.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.
For technical and sales information about this Ada implementation, contact:

George Romanski, Vice-President, Engineering
Alsys, Inc.

67 South Bedford Street

Burlington, MA (01803-5152

(617) 270-0030

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

a) Total Number of Applicable Tests 3792

b) Total Number of Withdrawn Tests 95
¢) Processed Inapplicable Tests 82
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 283
g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto a VAX system (from a standard 1,2
inch, 9-track VMS BACKUP tape) and then transferred to the Unisys B39 via
ethernet.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host computer system,
as appropriate. The results were captured on the computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Compiler Options:

TEXT => NO Do not show source code in listing
(used for all but the B tests)

TEXT => YES Show source code in listing
(used for the B tests)

3-2

SHOW => NO

WARNING => NO

ERRORS => 999

CALLS => INLINED

GENERICS => STUB

PROCESSING INFORMATION

Do not show header nor error summary in
listing.

Do not include warning messages.

Maximum number of compilation errors
permitted before terminating the compilation.

This option allows insertion of code for
subprograms inline and must be set for the
pragma INLINE to be operative.

This option places code of generic
instantiations in separate subunits.

The default options were used for all binds.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN—also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length. ’

Macro Parameter Macro Value
$MAX IN LEN 255
$BIG_ID1 (1..254 => 'A’, 255 => ’1’)
$BIG_ID2 (1..254 => 'A’, 255 => '2')
$BIG_ID3 (1..127 => 'A’) & '3" & (1..127 => 'A’)
$BIG_ID4 (1..127 => 'A’) & "4’ & (1..127 => 'A’)
$BIG_INT LIT (1..252 => r0’) & "298"
$BIG REAL LIT (1..250 => '0’) & "690.0"
$BIG_STRINGI "ro& (1..127 => 'A’) & "
$BIG_STRING2 Mg (1..127 => ‘A7) & '17 & '™
SBLANKS (1..235 => " 1)

$MAX LEN INT BASED LITERAL .
"2:" & (1..250 => ’0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..248 => '0') & "F.E:"

$MAX STRING_LITERAL '™ & (1..253 => 'A’) & "

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
$ACC_SIZE 32
SALIGNMENT 2
$COUNT_LAST 2147483647
SDEFAULT_MEM SIZE 2%%24

$DEFAULT STOR UNIT 8

$DEFAULT_SYS_NAME 180X86

$DELTA_DOC 241.04E-31

SENTRY ADDRESS FCNDECL . ENTRY_ADDRESS

$ENTRY ADDRESS1 FCNDECL . ENTRY_ADDRESS1
$ENTRY_ADDRESS2 FCNDECL . ENTRY_ADDRESS2
$FIELD LAST 255

$FILE_TERMINATOR e

SFIXED NAME NO_SUCH_FIXED TYPE

SFLOAT NAME NO_SUCH FLOAT TYPE

$FORM_STRING "

$FORM_STRING2 "CANNOT RESTRICT FILE CAPACITY"

SGREATER THAN DURATION
75_000.0

SGREATER THAN DURATION BASE LAST
131_073.0

SGREATER_mAN_FLOAT_BASE LAST
1.0E+39

$GREATER_THAN FLOAT SAFE LARGE
1.0E+38

MACRO PARAMETERS
SGREATER THAN SHORT FLOAT SAFE LARGE
1.0E+38
$HIGH_PRIORITY 10

$ILLEGAL EXTERNAL FILE NAMEl
TSYS]<NODIRECTORY>FILENAME

$ILLEGAL EXTERNAL FILE NAME2
THIS—FILE-NAME~I S—NOW—MUCH~TOO-
LONG-FOR-A-NAME~ON-MY—SYSTEM

$INAPPROPRIATE LINE LENGTH

-1
$INAPPROPRIATE__PAGE_LEN§;'IH
$INCLUDE PRAGMAL PRAGMA INCLUDE ("A28006D1.TST")
$SINCLUDE PRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")
$INTEGER FIRST -32768
SINTEGER LAST 32767

$INTEGER LAST PLUS 1 32768
$INTERFACE_LANGUAGE ADA
SLESS_THAN DURATION -75_000.0

$LESS_THAN DURATION BASE FIRST
-131_073.0

$LINE_TERMINATOR ASCII.CR & ASCII.LF
$LOW_PRIORITY 1

$MACHINE CODE_STATEMENT
NULL;

$MACHINE CODE TYPE NO_SUCH TYPE

$MANTISSA DOC 31

$MAX DIGITS 15

SMAX INT 2147483647
$MAX INT PLUS_1 2147 483 648
$MIN_INT -2147483648

A-3

MACRO PARAMETERS

SNAME

$NAME _LIST

$NAME SPECIFICATION1
$NAME SPECIFICATION2
$NAME SPECIFICATION3
$NEG BASED_INT
$NEW MEM SIZE
$NEW_STOR UNIT
$NEW_SYS NAME
$PAGE_TERMINATOR
$RECORD DEFINITION
$RECORD_NAME

$TASK SIZE

$TASK STORAGE_SIZE
$TICK

SVARIABLE ADDRESS
$VARIABLE ADDRESS1
SVARIABLE ADDRESS2
$YOUR PRAGMA -

NO_SUCH_TYPE AVAILABLE

S$370,180x86,180386,MC680X0,VAX,
TRANSPUTER,RS_6000,MIPS

[SYS1<CE>X2120A
[SYS]<CE>X2120B
[SYS]<CE>X3119A
164#F000000E#

2%*24

16

180X86

ASCII.CR & ASCII.LF & ASCII.FF
NEW_INTEGER
NO_SUCH_MACHINE_CODE TYPE
32

1024

0.1

FCNDECL.VARIABLE ADDRESS
FCNDECL.VARIABLE ADDRESS1
FCNDECL . VARIABLE ADDRESS2

INTERFACE

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

Compiler Options:
COMPILE (SOURCE => source name | INSTANTIATION,

LIBRARY => library name,
OPTIONS =>

(ANNOTATE => character string,
ERRORS => positive Integer,
LEVEL => PARSE | SEMANTIC | CODE | UPDATE,
CHECKS => ALL | STACK | NONE,
GENERICS => STUBS | INLINE,
TASKING => YES | NO,
MEMORY => number of kbytes),

DISPLAY => -
(OUTPUT => SCREEN | NONE | AUTOMATIC | file name,
WARNING => YES | NO, -
TEXT => YES | NO,
SHOW => BANNER | RECAP | ALL | NONE,
DETAIL => YES | NO,

ASSEMBLY => CODE | MAP | ALL | NONE),
ALLOCATION =)

{ STACK => positive_integer,

GLOBAL => positive_integer),
IMPROVE =>

(CALLS => NORMAL | INLINED,

REDUCTION => NONE | PARTIAL | EXTENSIVE,
EXPRESSIONS => NONE | PARTIAL | EXTENSIVE),

KEEP =>
(COPY => YES | NO,
DEBUG => YES | NO,
TREE => YES | NO));

OPTION/SWITCH
SOURCE =>
LIBRARY =>
ANNOTATE =)
ERRORS =>
LEVEL =>
CHECKS =>
GENERICS =>
TASKING =)
MEMORY =)
OUTPUT =>
WARNING =>
TEXT =>
SHOW =)
DETAIL ->
ASSEMBLY =->
STACK =>
GLOBAL =>
CALLS =>
REDUCTION =>
EXPRESSIONS =>
COPY =>
DEBUG =>
TREE =>

COMPILATION SYSTEM OPTIONS

source name | INSTANTIATION
library name
character_string

positive_integer

PARSE | SEMANTIC | CODE | UPDATE

ALL | STACK | NONE
STUBS | INLINE

YES | NO
number of kbytes

SCREEN | NONE | AUTOMATIC | file name

YES | NO
YES | NO

BANNER | RECAP | ALL | NONE

YES | NO
CODE | MAP | ALL | NONE

positive_integer
positive_integer
NORMAL | INLINED

NONE | PARTIAL | EXTENSIVE
NONE | PARTIAL | EXTENSIVE

YES | NO
YES | NO
YES | NO

B-2

EFFECT

Name of source file.

Name of program library.
Comment string for library
addition.

Abort compilation after count
of errors.

Specify level of
compilation.

Specify which compilation
checks to be done.

Specifies where expansion of
generic instantiation are.
Skip Optimization for tasking?
Sizes internal compiler work
area.

| Directs the output
Generate warning messages?
Include full source text in
listing?

Specify banner and error
summary display.

Generate detailed diagnostics?
Controls listings of generated
code and data layout.

Controls run-time location of
stack data.

Controls runtime location of
global data.

Activates pragma inline.
Controls high level optimizer.
Controls low level optimizer.
Copy source text to library?
Save debug info in library?
Save intermediate program
representation?

LINKER OPTIONS

The linker options of this Ada implementation, as described in this

Appendix, are provided by the customer.

Unless specifically noted

COMPILATION SYSTEM OPTIONS

otherwise, references in this appendix are to linker documentation and not

to this report.

BIND (PROGRAM
LIBRARY

OPTIONS =>

(

LEVEL
EXECUTION
OBJECT
UNCALLED
TIMER
SLICE

STACK =5

(

MAIN
TASK
HISTORY

HEAP =>

(

SIZE
INCREMENT

INTERFACE =>

(

DIRECTIVES
MODULES
SEARCH

DISPLAY =>

(

(

OUTPUT
DATA

WARNING
KEEP

=>
DEBUG

=>
=)
-=>
=>
=>
=>

=>
=>
=>

=>
=>

=->
=
=>

Binder Options:

=> main program name,
=> library name,

CHECK | BIND | LINK,

AUTOMATIC | DYNAMIC | PROTECTED,

AUTOMATIC | file name,

REMOVE | KEEP,
NORMAL | FAST,

NO | positive_integer),

positive_integer,
positive integer,

YES | NOJ,

positive_integer,
positive_integer),

options_for_linker,

file names,
library names),

SCREEN | NONE | AUTOMATIC | file name,

BIND | LINK | ALL | NONE,

YES | NO),

YES | NO));

B-3

"COMPILATION SYSTEM OPTIONS

OPTION/SWITCH

PROGRAM =>
LIBRARY =>
LEVEL -
EXECUTION =>
OBJECT =>
UNCALLED =>
SLICE =>
MAIN =>
TASK =>
HISTORY =>
SIZE =>
INCREMENT =>
DIRECTIVES =>
MODULES =>
SEARCH =>
OUTPUT =

DATA =>
WARNING =>
DEBUG =>

EFFECT
main_program name Ada name of main subprogram.
library name Name of program library.
CHECK | BIND | LINK Specify level of bind.
AUTOMATIC | DYNAMIC | PROTECTED Controls use of dynamic
loader.
AUTOMATIC | file name Name of object module.
REMOVE | KEEP Removes or keeps uncalled
subprograms.
NO | positive integer Define time-slice.
positive integer Size of main stack.
positive integer Sizc of task stack.
YES | NO Generate stack traces for
unhandled exceptions?
positive integer Size the initial heap
allocation.
positive_integer Size subsequent heap
allocations.
options_for linker Supplies linker directives.
file names Additional object modules.
library names Additional object libraries.
SCREEN | NONE | AUTOMATIC | file name Location of
binder listing.
BIND | LINK | ALL | NONE Amount of data to be
included in binder listings.
YES | NO Generate warning messages?
YES | NO Generate debug information?

B-4

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -32 768..32 767;
type FLOAT is digits 6 range
-241.111 1111 1111 1111 1111 11114#E+127..
2#1.111 1111 1111 1111 1111 11114E+127;

type DURATION is delta 2#0.000 000 000 000 Ol# range
-131072.00000. .131071.99994;

type SHORT INTEGER is range -128..127;
type LONG INTEGER is range -2 147 483 648..2 147 483 647;
type SHORT FLOAT is digits 6 range

-241.11T 1111 1111 1111 1111 1111#E+127 ..
2$1.111711117111171111 1111 11114E+127;

type LONG FLOAT is digits 15 range
-2#1.1111 1117 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111#E+1023

2#1.1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111#E+1023;

end STANDARD;

Alsys Ada Software Development Environment

for BTOS I

APPENDIX F

Version 5

Copyright 1991 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: May 1991
Alsys reserves the right to make changes in specifications and other information

contained in this publication without prior notice. Consuit Alsys to determine
whether such changes have been made.

Alsys, AdaWorld. AdaProbe, AdaXref. AdaReformat, AdaMake, AdaVerify, AdaCount. and
AdaSplit are registered trademarks of Alsys.
INTEL is a registered trademark of Intef Corporation.

TABLE OF CONTENTS

APPENDIX F
1 Implementation-Dependent Pragmas
1.1 INLINE
1.2 INTERFACE
13 INTERFACE_NAME
1.4 INDENT
1.5 Other Pragmas
2 Implementation-Dependent Attributes
2.1 PIS_ARRAY
22 E'EXCEPTION_CODE
23 Attributes Used in Record Representation Clauses
3 Specification of the package SYSTEM
4 Support for Representation Clauses
4.1 Enumeration Types
4.1.1 Enumeration Literal Encoding
4.1.2 Enumeration Types and Object Sizes
42 Integer Types
4.2.1 Integer Type Representation
422 Integer Type and Object Size
43 Floating Point Types
43.1 Floating Point Type Representation
43.2 Floating Point Type and Object Size
44 Fixed Point Types

4.4.1 Fixed Point Type Representation
4.4.2 Fixed Point Type and Object Size

Table of Contents

W

wviu W W

N a2

15

16
16
16
18
18
18
20
20
21
21
21

4.5
4.6
4.7

438

6.1
6.2

8.1
8.2
83
84
85
8.6
8.7
88
8.9

9.1

1

Access Types and Collections
Task Types
Array Types
4.7.1 Array Layout and Structure and Pragma PACK
4.7.2 Array Subtype and Object Size
Record Types
4.8.1 Basic Record Structure
4.8.2 Indirect Components
4.83 Implicit Components
4.8.4 Size of Record Types and Objects

Conventions for Implementation-Generated Names

Address Clauses

Address Clauses for Objects
Address Clauses for Program Units

Unchecked Conversions

Input-Output Packages

Correspondence between External Files and CTOS Files
Error Handling

Sequential Files

Direct Files

Text Files

Access Protection of External Files

The Need to Close a File Explicitly

Limitation on the Procedure RESET

Sharing of External Files and Tasking Issues

Characteristics of Numeric Types

Integer Types

24
24

29
29
31

38

39

41

41
42

F -3
w

E&E&EEEEEKG

Appendix F, Version 5

9.2
9.3

10
10.1
10.2
103
10.4
11

11.1
11.2

Floating Point Type Attributes
Attributes of Type DURATION

Other Implementation-Dependent Characteristics

Characteristics of the Heap
Characteristics of Tasks
Definition of a Main Subprogram
Ordering of Compilation Units

Limitations

Compiler Limitations
Hardware Related Limitations

INDEX

Table of Contenis

49
50

51
51
51

52
52

53
53

55

iv

Appendix F, Version 5

APPENDIX F

Implementation - Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
Ada Software Development Environment for BTOS IL. Appendix F is a required part of
the Reference Manual for the Ada Programming Language (called the RM in this

appendix).

The sections of this appendix are as follows:
1. The form, allowed places, and effect of every implementation-dependent pragma.
2. The name and the type of every implementation-dependent attribute.
3. The specification of the package SYSTEM.
4. The description of the representation clauses.

5. The conventions used for any implementation-generated name denoting im-
plementation-dependent components.

6. The interpretation of expressions that appear in address clauses, including those
for interrupts.

7. Any restrictions on unchecked conversions.
8. Any implementation-dependent characteristics of the input-output packages.
9. Characteristics of numeric types.

10. Other implementation-dependent characteristics.

11. Compiler limitations.

Implementation-Dependent Characieristics 1

The name A4lsys Runtime Executive Programs or simply Runtime Executive refers to the
runtime library routines provided for all Ada programs. These routines impiement the
Ada heap, exceptions, tasking control, and other utility functions.

General systems programming notes are given in another document, the Application
Developer’s Guide (for example, parameter passing conventions needed for interface with

assembly routines).

2 Appendix F, Version 5

Section 1

Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported; however, it is not possible to inline a subprogram in a
declarative part.

1.2 INTERFACE

Ada programs can interface with subprograms written in Assembler and other languages
through the use of the predefined pragma INTERFACE and the implementation-defined-
pragma INTERFACE_NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which parameter passing conventions will be generated.
Pragma INTERFACE takes the form specified in the RM:

pragma INTERFACE (language_name, subprog «m_name);,
where,
« language name is ASSEMBLER or ADA.

» subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language names accepted by pragma INTERFACE are ASSEMBLER or ADA.
The full implementation requirements for writing pragma INTERFACE subprograms are
described in the Application Developer's Guide.

The lariguage name used in the pragma INTERFACE does not have to have any
relationship to the language actually used to write the interfaced subprogram. It is used
only 1o tell the Compiler how to generate subprogram calls; that is, what kind of
parameter passing techniques to use. The programmer can interface Ada programs with
subroutines written in any other (compiled) language by understanding the mechanisms

Implementarion-Dependent Pragmas ' 3

used for parameter passing by the compiler and the corresponding mechanisms of the
chosen external language.

1.3 INTERFACE_NAME

Pragma INTERFACE_NAME associates the name of the interfaced subprogram with the
external name of the interfaced subprogram. If pragma INTERFACE_NAME is not used,
then the two names are assumed 10 be identical. This pragma takes the form:

pragma INTERFACE_NAME (subprogram_name, string_literal),
where,

» subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

o sming_literal is the name by which the interfaced subprogram is referred to at link
time.
The pragma INTERFACE_NAME is used to identify routines in other languages that are
not named with legal Ada identifiers. Ada identifiers can only contain letters, digits, or
underscores, whereas the BTOS II Linker allows external names to contain other

characters, for example, the dollar sign ($) or commerciai at sign (@). These characters
can be specified in the sring_literal argument of the pragma INTERFACE_NAME.

The pragma INTERFACE_NAME is allowed at the same places of an Ada program as the
pragma INTERFACE. (Location restrictions can be found in section 13.9 of the RM.)
However, the pragma INTERFACE_NAME must always occur after the pragma
INTERFACE declaration for the interfaced subprogram.

The string_literal of the pragma INTERFACE_NAME is passed through unchanged to the
BTOS II object file. The maximum length of the sming_lizeral is 40 characters. This limit
is not checked by the Compiler, but the string is truncated by the Binder to meet the
Intel object module format standard.

The user must be aware however, that some tools from other vendors do not fuily
support the standard Intel object file format and may restrict the length of symbols. For
example, the Microsoft assemblers silently truncate symbols at 31 characters.

The Runrime Executive contains several external identifiers. All such identifiers begin
with either the string "ADA@" or the string "ADAS@". Accordingly, names prefixed by
"ADA@" or "ADAS@" should be avoided by the user.

4 Appendix F, Version 5

Example

package SAMPLE_DATA is
function SAMPLE_DEVICE (X: INTEGER) return INTEGER;

function PROCESS_SAMPLE (X: INTEGER) return INTEGER,;
private
pragma INTERFACE (ASSEMBLER, SAMPLE_DEVICE);
pragma INTERFACE (ADA, PROCESS_SAMPLE);
pragma INTERFACE_NAME (SAMPLE_DEVICE, "DEVIOSGET_SAMPLE");

end SAMPLE_DATA;

1.4 INDENT

Pragma INDENT is oniy used with AdaReformat. AdaReformat is the Alsys reformatter
which offers the ¢ ~« .onalities of a pretty-printer in an Ada environment.

The pragm- s 'aced in the source file and interpreted by the Reformatter. The line
prugma INDENT(OFF),

causes AdaReformat not to modify the source lines after this pragma, while
pragma INDENT(ON);

causes AdaReformat 10 resume its action after this pragma.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses and records (Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS. it is possible to suppress all checks in a given compi-
lation by the use of the Compiler option CHECKS. (See Chapter 4 of the User’s Guide.)

Implementanion-Dependent Pragmas

Appendix F, Version 5

Section 2

Implementation-Dependent Attributes

2.1 PIS_ARRAY

For a prefix P that denotes any type or subtype, this attribute yields the value TRUE if P
is an array type or an array subtype; otherwise, it yields the value FALSE.

2.2 E’EXCEPTION_CODE

For a prefix E that denotes an exception name, this attribute yields a value that
represents the internal code of the exception. The value of this attribute is of the type

INTEGER.

2.3 Attributes Used in Record Representation Clauses

In addition to the Representation Attributes of [13.7.2] and [13.7.3], the following
attributes are used to form names of indirect and implicit components for use in record
representation clauses, as described in Section 4.8.

'OFFSET
"RECORD_SIZE
"VARIANT_INDEX
'"ARRAY_DESCRIPTOR
'"RECORD_DESCRIPTION

Implementarnion-Dependent Atmributes

Appendix F, Version 5

Section 3

Specification of the package SYSTEM

The implementation does not allow the recompilation of package SYSTEM.

package SYSTEM is

.- TR TANE RN ET RN ERNNN T IR T NN

-- * (1) Required Definitions. *
- ATV ROT RN OV CT IR TN NN TR

type NAME is (180X86);
SYSTEM_NAME : constant NAME := IBOXBS;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 2%%24;

-+ System-Dependent Named Numbers:
MAX_INT : constant := 2**31 - 1;
MIN_INT : constant := - (2**31);
MAX_MANTISSA : constant := 31;
FINE_DELTA : constant := 2#1.0#E-31;
MAX_DIGITS : constant := 15;

-~ For the high-resolution timer, the clock resolution is

-~ 1.0 7 1024.0.
T1cK : constant := 0.1;

Specification of the package SYSTEM

10

-- Other System-Dependent Declarations:
subtype PRIORITY is INTEGER range 1 .. 10;

-- The type ADDRESS is, in fact, implemented as s
-- segr-~t:offset pair.

type ADDRESS is private;

NULL_ADDRESS : constant ADDRESS;

- ARG ERRETEE SRR RN TR TSR RNy

== * (2) Operations on Address *
.- TNV ETVETE TRV TSN RN R NNy

-- VALUE converts a string to an address. The syntax of the string and its
-- mesning are target dependent.

-- For the 8086, 80186 and 80285 the syntax is:

-+ ¥§555:0000% where SSSS and 0000 are 8 4 digit or less hexadecimal
.- number representing a segment value and an offset.

.- The physical address corresponding to SSS:0000 dependents

.- on the execution mode. In resl mode it is 16*$$SSS+0000.

-- In protected mode the value SSSS represents a segment

-- descriptor.

-- Example:
-~ %0014:00F0"

== The exception CONSTRAINT_ERROR is raised if the string does not have

-- the proper syntax.

function VALUE (LEFT : in STRING) return ADDRESS;

Appendix F, Version §

~= IMAGE converts an address to a string. The syntax of the returned string
-- is described in the VALUE function.

subtype ADDRESS_STRING is STRING(1..9);

function IMAGE (LEFT : in ADDRESS) return ADDRESS_STRING;

<~ SAME_SEGMENT returns true if the two addresses have
-- the same segment value.

function SAME_SEGMENT (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

-- The following routines provide support to perform address
-+ computation. For the "+* and ®-» gperators the OFFSET parameter

-- is added to, or subtracted from the offset part of the address,
-- the segment remaining untouched.

type OFFSET is range 0 .. 2**16 -1;

" -
>4, Hon

== The exception ADDRESS_ERROR is raised by "<%, “<zu, #yu,
-- if the two addresses do not have the same segment value.
-- The exceptiun CONSTRAINT_ERROR can be raised by “+» and “-u,

ADDRESS_ERROR : exception;
function “+# (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

function "s# (LEFT : in OFFSET; RIGHT : in ADDRESS) return ADDRESS;
function »-# (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

Specification of the package SYSTEM

12

-~ The exception ADDRESS_ERROR is raised if the two addresses do

-- not have the same segment value,
function ®#-% (LEFT : in ADDRESS; RIGHT : in ADDRESS) return OFFSET;

-- Perform an unsigned comparison on offset part of addresses.

function ®<a® (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function “<* (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function *>=¢ (LEFT, RIGHY : in ADDRESS) return BOOLEAN;
function "»® (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

function “mod® (LEFT : in ADDRESS; RIGHT : in POSITIVE) return NATURAL;

-~ Returns the given address rounded to a specific value.
type ROUND_DIRECTION is (DOWN, UP):

function ROUND (VALUE : in ADDRESS;
DIRECTION : in ROUND_DIRECTION;
MODULUS : in POSITIVE) return ADDRESS;

-- These routines are provided to perform READ/WRITE operation

-- in memory.

-~ Warning: These routines will give unexpected results if used with
-- unconstrained types.

generic
type TARGET is private;
function FETCH_FROM_ADDRESS (A : in ADDRESS) return TARGET;

generic

type TARGET is private;
procedure ASSIGN_TO_ADDRESS (A : in ADDRESS; T : in TARGET);

Appendix F, Version 5

-~ Procedure to copy LENGTH storage unit starting at the address
- FROM to the address TO. The source and destination may overlap.
-- OBJECT_LENGTH designates the size of an object in storage units.

type OBJECT_LENGTH is range 0 .. 2**16 -1;
for OBJECT_LENGTH'SIZE use 16;

procedure MOVE (T0 : in ADDRESS;

FROM : in ADDRESS;
LENGTH : in OBJECT_LENGTH);

private

end SYSTEM;

Specification of the package SYSTEM

13

14

Appendix F, Version 5

Section 4

Support for Representation Clauses

This section explains how objects are represented and allocated and how it is possible to
control this using representation clauses. Applicable restrictions on representation

clauses are also described.

The representation of an object is closely connected with iis type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of array and record types it
is necessary 1o understand first the representation of their components.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

« a(predefined) pragma PACK, applicable to array types
s arecord representation clause
= asize specification

For each class of types the effect of a size specification is described. Interactions among
size specifications, packing and record representation clauses is described under the

discussion of array and record types.
Representation clauses on derived record types or derived tasks types are not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

Support for Represenrarion Clauses 15

4.1 Enumeration Types

4.1.1 Enumeration Literal Encoding

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes

are the integers 0, 1, 2, .., n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in RM 13.3. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes pr(mded by an
enumeration representation clause must be in the range - 231 83,

An enumeration value is always represented by its internal code in the program
generated by the compiler.

4.1.2 Enumeration Types and Object Sizes
Minimum size of an enumeration subtype
The minimum possible size of an enumeration subtype is the minimum number of bits

that is necessary for representing the internal codes of the subtype values in normal
binary form.

A static subtype, with a null range has a minimum size of 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is detcmuned as follows. For m >= 0, L is the
smallest positive mther such that M <= 2L-1. For m < 0, L is the smallest positive
integer such that 2l camand M <= 2LL1. For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK_AND_WHITE is COLOR range BLACK .. WHITE;
- The minimum size of BLACK_AND_WHITE is 2 bits.

16 Appendix F, Version §

subtype BLACK_OR_WHITE is BLACK_AND_WHITE range X .. X;
- Assuming that X is not static, the minimum size of BLACK_OR_WHITE is
- 2 bits (the same as the minimum size of its type mark BLACK_AND_WHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.
The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its
subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type EXTENDED is
(— The usual ASCII character set.
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

'x" 'y" ’z', ' ’l 'I" '}‘l '~', DEL‘

-- Extended characters
C_CEDILLA_CAP, U_UMLAUT, E_ACUTE, ..),

for EXTENDED'SIZE use §;
- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

Support for Representation Clauses 17

4.2 Integer Types

There are three predefined integer types in the Alsys Ada Software Development
Environment for BTOS II implementation:

type SHORT_INTEGER is range -2°°07 .. 2*°07-1;
type INTEGER is range -2**15 .. 2**15-1;
type LONG_INTEGER is range -2°°31 .. 2°*31-1;

4.2.1 Integer Type Representation
An integer type declared by a declaration of the form:

type TisrangeL .. R;

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the smallest that contains the values L to R

inclusive.

Binary code is used 10 represent integer values. Negative numbers are represented using
two’s complement.

4.2.2 Integer Type and Object Size
Minimum size of an integer subtype

The minimum possible size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary

form. ;

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determined as
follows. For m >= 0, L is the smallest positive integer such that M <= 2""". For m <
0, L is the smallest positive integer that 2l c=mandM <=2"L1. For exampie:

subtype S is INTEGER range0.. 7;
~ The minimum size of S is 3 bits.

18 Appendix F, Version 5

subtype Dis Srange X .. Y;
- Assuming that X and Y are not static, the minimum size of

- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORT_INTEGER, INTEGER and
LONG_INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORT_INTEGER, its size is 8 bits.

type J is range 0 .. 255;
-- J is derived from INTEGER, its size is 16 bits.

type N is new J range 80 .. 100;
- N is indirectly derived from INTEGER, its size is 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80 .. 100;

for S'SIZE use 32;

-- S is derived from SHORT_INTEGER, but its size is 32 bits
- because of the size specification.

type] is range 0 .. 255;

for J'SIZE use 8;

-- 1 is derived from INTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is
-- 8 bits because N inherits the size specification of J.

Support for Representation Clauses 19

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

4.3 Floating Point Types

There are three predefined floating point types in the Alsys implementatioz for 130x28
machines:

type SHORT_FLOAT is
digits 6 range -(2.0 - 2.0**(-23))*2.0**127 .. (2.0 - 2.0**(-23))*2.0**127,

type FLOAT is
digits 6 range -(2.0 - 2.0**(-23))*2.0**127 .. (2.0 - 2.0**(-23))*2.0**127;

type LONG_FLOAT is
digits 15 range -(2.0 - 2.0**(-52))*2.0**1023 .. (2.0 - 2.0**(-52))*2.0**1023;

Note that SHORT_FLOAT has the same range as FLOAT.

43.1 Floating Point Type Representation

A floating point type declared by a declaration of the form:

type T is digits D [range L .. R];

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

The values of the predefined types SHORT_FLOAT and FLOAT are represented using the
single float format. The values of the predefined type LONG_FLOAT are represented
using the double float format. The values of any other floating point type are represented
in the same way as the values of the predefined type from which it derives, directly or
indirectly.

20 Appendix F, Version 5

43.2 Floating Point Type and Object Size

The minimum possible size of a floating point subtype is 32 bits if its base type is
SHORT_FLOAT or FLOAT or a type derived from SHORT_FLOAT or FLOAT,; it is 64 bits
if its base type is LONG_FLOAT or a type derived from LONG_FLOAT.

The sizes of the predefined floating point types SHORT_FLOAT and FLOAT is 32 bits
and LONG_FLOAT is 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32 or 64 bits).

An object of a floating point subtype has the same size as its subtype.
4.4 Fixed Point Types

4.4.1 Fixed Point Type Representation

If no specification of small applies to a fixed point type, then the vaiue of small is
determined by the value of delta as defined by RM 3.5.9.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

To implement fixed point types, the Alsys Ada Software Development Environment for
BTOS II uses a set of anonymous predefined types of the form:

type SHORT_FIXED is deita D range (-2.0°*7-1)*S .. 2.0**7*S;
for SHORT_FIXED'SMALL use §;

type FIXED is delta D range (-2.0**15-1)*S .. 2.0**15°S;
for FIXED'SMALL use S;

type LONG_FIXED is deita D range (-2.0**31-1)°S .. 2.0**31°S;
for LONG_FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Support for Representation Clauses 21

A fixed point type declared by a declaration of the form:
type Tis delta D range L . R;

possibly with a small specification:
for TSMALL use §;

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L to R inclusive.

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V /FBASE'SMALL

44.2 Fixed Point Type and Object Size
Minimum size of a fived point subtype

The minimum possible size of a fixed point subtype is the minimum number of binary
digits that is necessary for representing the values of the range of the subtype using the

small of the base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such thats < mand M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integer such that I <=2l Fori <0, Lis the smallest positive integer such that -

2-Te=janar<=211,

type F is delta 2.0 range 0.0 .. 500.0;
— The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
- The minimum size of S is 7 bits.

subtype D is S range X.. Y;

-- Assuming that X and Y are not static, the minimum size of D is 7 bits
— (the same as the minimum size of its type mark S).

22 ' Appendix F, Version 5

Size of a fixed point subtype

The sizes of the predefined fixed p.int types SHORT_FIXED, FIXED and LONG_FIXED
are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which it

derives directly or indirectly. For example:

type S is delta 0.01 range 0.8 .. 1.0;
- § is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is delta 0.01 range 0.0 .. 2.0;
-- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new Frange 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied 1o a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is deita 0.01 range 0.8 .. 1.0;

for S'SIZE use 32;
-- S is derived from an 8 bit predefined fixed type, but its size is 32 bits

-- because of the size specification.

type Fis delta 0.01 range 0.0 .. 2.0;
for F'SIZE use 8;
-- Fis derived from a 16 bit predefined fixed type, but its size is 8 bits

-- because of the size specification.
tyr-2 N is new F range 0.8 .. 1.0;

- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 8 bits because N inherits the size specification of F.

Support for Representation Clauses ‘ 23

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

4.5 Access Types and Collections
Access Types and Objects of Access Types

The only size that can be specified for an access type using a size specif tion is its usual
size (32 bits).

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

Collection Size

As described in RM 13.2, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type.

When no STORAGE_SIZE specification appiies t0 an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE_SIZE is then 0.

The maximum size allowed for a collection is 64k bytes.

4.6 Task Types
Storage for a task activation

As described in RM 13.2, a length clause can be used to specify the storage space (that is,
the stack size) for the activation of each of the tasks of a given type. Alsys also allows the
task stack size, for all tasks, to be established using a Binder option. If a length clause is
given for a task type, the value indicated at bind time is ignored for this task type, and the
length clause is obeyed. When no length clause is used to specify the storage space to be

24 Appendix F, Version 5

reserved for a task activation, the storage space indicated at bind time is used for this
activation.

A length clause may not be applied to a derived task type. The same storage space is
reserved for the activation of a task of a derived type as for the activation of a task of the

parent type.
The minimum size of a task subtype is 32 bits.

A size specification has no effect on a task type. The only size that can be specified using
such a length clause is its usual size (32 bits).

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

4.7 Array Types

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

4.7.1 Array Layout and Structure and Pragma PACK

Componer.: Gap Component Gep Component Gap

If pragma PACK is not specified for an array, the size of the components is the size of the
subtype of the components:

Support for Representation Clauses 25

type A is array (1 .. 8) of BOOLEAN;
— The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL_DIGIT is range 0.. 9;
for DECIMAL_DIGIT'SIZE use 4;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL_DIGIT;
- The size of the type DECIMAL_DIGIT is 4 bits. Thus in an array of
- type BINARY_CODED_DECIMAL each component will be represented on
~ 4 bits as in the usual BCD representation.

If pragma PACK is specified for an array and its components are neither records nor
arrays, the size of the components is the minimum size of the subtype of the components:

type A is array (1.. 8) of BOOLEAN;

pragma PACK(A);

- The size of the components of A is the minimum size of the type BOOLEAN:
- 1bit.

type DECIMAL _DIGIT is range 0.. 9;
for DECIMAL _DIGIT'SIZE use 32;
type BINARY_CODED_DECIMAL is
array (INTEGER range < >) of DECIMAL_DIGIT;
pragma PACK(BINARY_CODED_DECIMAL);
-- The size of the type DECIMAL_DIGIT is 32 bits, but, as
- BINARY_CODED_DECIMAL is packed, each component of an array of this
- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays, since records and arrays may be assigned addresses consistent with the

alignment of their subtypes.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
1o optimize access to the array components and to their subcomponents. The size of the
£ap is chosen so that the relative displacement of consecutive components is a multiple

26 Appendix F, Version 5

of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

typeRis
record

K:INTEGER;
B : BOOLEAN,;
end record;
for R use
record
KatOrangeO .. 15;
Bat2range0.. 0;
end record;
-- Record type R is byte aligned. Its size is 17 bits.

type Ais array (1.. 10) of R;

-- A gap of 7 bits is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 240 bits.

Component Gap Component Gap Cuaponent Gap

Array of type A: each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

typeRis

record
K: INTEGER;
B : BOOLEAN;
end record;

type Ais array (1 .. 10) of R;

pragma PACK(A),

- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 270 bits.

Support for Representarion Clauses 27

type NR is new R;
for NR'SIZE use 24;

type B is array (1.. 10) of NR;

— There is no gap in an array of type B because
- NR has a size specification.

— The size of an object of type B will be 240 bits.

K B K B K 8|l
Component Component
Array of type A or B

4.7.2 Array Subtype and Object Size

Size of an array subtype

The size of an array subtype is obtained by muitiplying the number of its components by
the sum of the size of the components and the size of the gaps (if any). If the subtype is
unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

« if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

« if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps. The consequence of packing an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

28 Appendix F, Version 5

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful 10 verify that the layout of an array is as expected by

the application.

Size of the objects of an array subtype

The size of an object of an array subtype is aiways equal 10 the size of the subtype of the
object.

4.8 Record Types

4.8.1 Basic Record Structure
Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM 13.4. In the Alsys Ada Software
Development Environment for BTOS II implementation there is no restriction on the
position that can be specified for a component of a record. If a component is not a record
or an array, its size can be any size from the minimum size to the size of its subtype. If a
component is a record or an array, its size must be the size of its subtype.

type DEVICE_INFO_RECORD is

record

BITIS : BOOLEAN; -- Bit 15 (reserved)

CTRL : BOOLEAN; -- Bit 14 (true if control strings processed)
NETWORK : BOOLEAN; -- Bit 13 (true if device is on network)
BIT12 : BOOLEAN; -- Bit 12 (reserved)

8IT11 : BOOLEAN; -- Bit 11 (reserved)

SITI0 : BOOLEAN; -- 8it 10 (reserved)

8iT9 : BOOLEAN; -- Bit 9 (reserved)

BIT8 : BOOLEAN; -- 8it 8 (reserved) .
ISDEV : BOOLEAN; -- Bit 7 (true if device, false if disk file)

Support for Representation Clauses 2

EOF : BOOLEAN; - Bit 6 (true if st end of file)

BINARY : BOOLEAN; ~-- Bit S5 (true if binsry (raw) mode)

8IT4 : BOOLEAN; -- 8it & (reserved)

ISCLX : BOOLEAN; ~- Bit 3 (true {f clock device)

ISKUL : BOOLEAN; -- Bit 2 (true if NUL device)

ISCOT : BOOLEAN; -- Bit 1 (true if console output device)

ISCIN : BOOLEAN; ~-- Bit 0 (true if console input device)
end record;

for DEVICE_INFO_RECORD use

record
BIT1S st 1remge7 .. 7; --Bit15
CTRL at 1range 6 .. 6; -- Bit 14
NETWORK at 1 range 5 .. 5; -~ Bit 13
BIT12 at 1 range 4 .. &; -- Bit 12
81T at 1 range 3 .. 3; -- Bit 11
BIT10 st 1range 2 .. 2; -- Bit 10
81719 at Trange ¥ .. 1; --Bit9
8IT8 at 1range 0 .. 0; -- Bit 8
ISDEV at Orange 7 .. 7; -~ Bit7
EOF at Orange 6 .. 6; --Bité
BINARY at Orange5 .. 5; --8it5
BIT4 st Oranged .. &; --Bité
1SCLK st Orenge 3 .. 3; --8it3
1SNUL et Orange 2 .. 2; --Bit2
1SCoT st Orarge 1 .. 1; --8it 1
I1SCIN at Orenge 0 .. 0; -- it O

end record;

Pragma PACK has no effect on records. It is unnecessary because record representation
clauses provide full control over record layout.

A record representation clause need not specify the position and the size for every
component. If no component clause applies to a component of a record, its size is the

size of its subtype.

30 Appendix F, Version 5

4.8.2 Indirect Components
'OFFSET

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Beginning of the record

Compile time offset
DIRECT

Compile time offset
OFFSET

Run time offset
INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these

components dynamic components:

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range < >) of INTEGER;

type GRAPH (L : NATURAL) is

record

X :SERIES(1..L); - Thesive of X dependson L
Y : SERIES(1.. L); - The size of Y depends on L

end record,

Q : POSITIVE;

Support for Representation Clauses 31

type PICTURE (N : NATURAL; D : DEVICE) is
record
F : GRAPH(N); -- The size of F depends on N
S : GRAPH(Q); -- The size of S depends on Q
case D is
when SCREEN =>
C:COLOR;
when PRINTER =>
null;
end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

D = SCREEN D = PRINTER
Ns2 N=1
Beginning of the record
S OFFSET S OFFSEY
Compile time offsets
F OFFSEY F OFFSETY
N N
I L]

——
D 1]
R I
c - -
Run time offsets - F -
- F -
- - - [-

The record type PICTURE: F and S are placed at the end of the record

32 . " Appendix F, Version 5

Note that Ada does not allow representation clauses for record components with non-
static bounds [RM 13.4.7], so the compiler’s grouping of dynamic components does not
conflict with the use of representation clauses.

Because of this approach, the only indirect components are dynamic components. But
not all dynamic components are necessarily indirect: if there are dynamic components in
a component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
situation):

Beginning of the record

Y OFFSET
e Compile time offset
L
- - =——em——e—me Compile time offset
X Size dependent on discriminant L
— temem—— Run time offset
Y Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store
the size of any value of the record type (the maximum potential offset). The compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Support for Representation Clauses : 33

4.83 Implicit Components

In some circumstances, access 10 an object of a record type or to its componeats involves
computing information which only depends on the discriminant values. To avoid
recomputation (which would degrade performance) the compiler stores this information
in the record objects, updates it when the values of the discriminants are modified and
uses it when the objects or its components are accessed. This information is stored in

special components called implicit components.

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD_SIZE and the other VARIANT_INDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAY_DESCRIPTORs or

RECORD_DESCRIPTORS.

'RECORD_SIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively:
allocated for the record object may be more than this).

The value of a RECORD_SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

IfR is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name RRECORD_SIZE. This
allows user control over the position of the implicit component in the record.

34 . Appendix F, Version 5

VARIANT _INDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when

a discriminant check is to be done.

Component lists in variant parts that themselves do not contain a variant part are
numbered. These numbers are the possible values of the implicit component

VARIANT_INDEX.
type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record
SPEED : INTEGER; .
case KIND is
when AIRCRAFT | CAR =>
WHEELS : INTEGER;

case KIND is
when AIRCRAFT => -1
WINGSPAN : INTEGER;
when others => -2
null;
end case;

when BOAT =>--3
STEAM : BOOLEAN;
when ROCKET => -4
STAGES : INTEGER;
end case;
end record;

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set
1 {KIND, SPEED, WMEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (XIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

Support for Representarion Clauses 35

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component Interval

KIND .-
SPEED .-
WHEELS
WINGSPAN
STEAM
STAGES

E) VT IRy
SUanNn

The implicit component VARIANT_INDEX must be large enough to store the number vV
of component lists that don’t contain variant parts. The compiler treats this implicit

component as having an anonymous integer type whose range is 1.. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANT_INDEX. This
allows user control over the position of the implicit component in the record.

"ARRAY_DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, size of the component
may be obtained using the ASSEMBLY parameter in the COMPILE command.

The compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as having
an anonymous array type. If C is the name of the record component whose subtype is
described by the array descriptor, then this implicit component can be denoted in a
component clause by the implementation generated name CARRAY_DESCRIPTOR.
This allows user control over the position of the implicit component in the record.

36 Appendix F, Version 5

'RECORD_DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, the size of the
component may be obtained using the ASSEMBLY parameter in the COMPILE

command.

The compiler treats an implicit component of the kind RECORD_DESCRIPTOR as
having an anonymous array type. If Cis the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORD_DESCRIPTOR. This allows user control over the position of the implicit
component in the record.

Suppression of Implicit Components

The Alsys implementation provides the capability of suppressing the implicit
components RECORD_SIZE and/orVARIANT_INDEX from a record type. This can be
done using an implementation defined pragma called IMPROVE. The syntax of this
pragma is as follows:

pragma IMPROVE (TIME | SPACE, [ON =>] simple_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANT_INDEX or a
RECORD_SIZE component if this component appears in a record representation clause
that applies to the record type. A record representation clause can thus be used to keep
one implicit component while suppressing the other.

A pragma IMPROVE that applies 10 a given record type can occur anywhere that a
representation clause is allowed for this type.

Support for Representation Clauses 37

4.8.4 Size of Record Types and Objects
Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size is not computed at compile time

« when the record subtype has non-static constraints,

« when a component is an array or a record and its size is not computed at compile
time.
The size of an unconstrained record subtypc is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size.

A size specification applied to a record type or fia« named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record suk - ¢
An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8k bytes. If the size of the subtype is greater than this, the object
has the size necessary to store its current value; storage space is allocated and released as
the discriminants of the record change.

38 Appendix F, Version 5

Section 5

Conventions for Implementation-Generated Names

The ‘ollowing forms of implementation-generated names [13.4(8)] are used to denote
implementation-dependent record components, as described in Section 4.8 in the
sections on indirect and implicit components:

C'OFFSET
R'RECORD_SIZE
R'VARIANT_INDEX
R’ARRAY_DESCRIPTORs
R’RECORD_DESCRIPTORs

where C is the name of a record component and R the name of a record type.
The following predefined packages are reserved to Alsys and cannot be recompiled:

ALSYS_BASIC_IO
ALSYS_ADA_RUNTIME
ALSYS_BASIC_DIRECT_IO
ALSYS_BASIC_SEQUENTIAL _IO

Convenrions for Implementation-Generared Nanes 39

40

Appendix F, Version 5

Section 6

Address Clauses

6.1 Address Clauses for Objects
An address clause can be used to specify an address for an object as described in RM 13.5.

en such a clause applies to an object the compiler does not cause storage to be

allocated for the object. The program accesses the object using the address specified in
the clause. It is the responsibility of the user therefore to make sure that a valid
allocztion of storage has been done at the specified address.

An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8k bytes or for a constant.

There are a number of ways to compose a legal address expression for use in an address
clause. The most direct ways are:

Address Clauses

For the case where the memory is defined in Ada as another object, use the
"ADDRESS attribute to obtain the argument for the address clause for the second

object.
For the case where the desired location is memory defined in assembly or another

non-Ada language (is relocatable), an interfaced routine may be used to obtain the
appropriate address from referencing information known to the other language.

For the case where an absolute address is known to the programmer, use the
function SYSTEM.VALUE. This function has one (1) parameter of type string. The
string is of the form "ssss:0000". The length is 9, and the "’ is required to separate
the segment and offset portion of the address. SYSTEM.VALUE returns a value of
type SYSTEM.ADDRESS. The string representing the desired address can be passed
as the actual parameter 10 SYSTEM.VALUE in the simple expression part of the
address clause. See Section 3 for the specification of package SYSTEM.

In all cases other than the use of an address attribute, the programmer must ensure
that the segment part of the argument is a selector if the program is to run in
protected mode. Refer 10 the Application Developers’ Guide, Section 5.1.5 for more
information on protected mode machine oriented programming.

41

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

42 Appendix F, Version 5

Section 7

Unchecked Conversions

Unchecked type conversions are described in {13.10.2]. The following restrictions apply
to their use:

Unconstrained arrays are not allowed as target types. Unconstrained record types
without defaulted discriminants are not allowed as target types. Access types to
unconstrained arrays are not allowed as target or source types. Notes also that
UNCHECKED_CONVERSION cannot be used for an access to an unconstrained

string.
If the target type has a smaller size than the source type then the target is made of
the least significant bits of the source.

i the source and the target types are each of scalar or access type or if they are both of
somposite type, the effect of the function is to return the operand.

in other cases the effect of unchecked conversion can be considered as a copy:

If an unchecked conversion of a scalar or access source type to a composite target
type is performed, the result is a copy of the source operand. The result has the size
of the source.

If an unchecked conversion of a composite source type to a scalar or access target
type is performed, the result is a copy of the source operand. The result has the size
of the target.

Unchecked Conversions 43

Appendix F, Version 5

Section 8

Input-Output Packages

The RM defines the predefined input-output packages SEQUENTIAL IO, DIRECT_IO,
and TEXT_IO, and describes how 10 use the facilities available within these packages.
The RM also defines the package I0_EXCEPTIONS, which specifies the exceptions that
can be raised by the predefined input-output packages.

In addition the RM outlines the package LOW_LEVEL _IO, which is concerned with low-
level machine-dependent input-output, such as would possibly be used 1o write device
drivers or access device registers. LOW_LEVEL_IO has not been implemented. The use
of interfaced subprograms is recommended as an alternative.

81 l‘(;g;rreespondence between External Files and BTOS 11
iles

Ada input-output is defined in terms of external files. Data is read from and written to
external files. Each external file is implemented as a standard BTOS II file, including the
use of STANDARD_INPUT and STANDARD_OUTPUT.

The name of an external file can be either
s the null string
e aBTOSII filename

If the name is a null string, the associated external file is a temporary file and will cease
to exist when the program is terminated. The file will be placed in the current directory

and its name will be chosen by BTOS I1.

If the name is a filename, the filename will be interpreted according to standard BTOS II
conventions (that is, relative to the current directory). The exception NAME_ERROR is
raised if the filename has more than 50 characters.

If an existing BTOS II file is specified 1o the CREATE procedure, the contents of the file
will be deleted before writing to the file.

Input-Output Package: 45

If a non-existing directory is specified in a file path name to CREATE, the directory will
not be created, and the exception NAME_ERROR is raised.

8.2 Error Handling

BTOS Il errors are translated into Ada exceptions, as defined in the RM by package
IO_EXCEPTIONS. In particular, DEVICE_ERROR is raised in cases of ..Drive not
ready;.i.Errors:drive not ready;drive not ready, .. Unknown media;.i Errors:unknown
media;unknown media, .i.Disk full;.i.Errors:disk full;disk full or .. Hardware

errors;.i. Errors:hardware;hardware errors on the disk (such as read or write fault).

8.3 Sequential Files

For sequential access the file is viewed as a sequence of values that are transferred in the
order of their appearance (as produced by the program or run-time environment). This
is sometimes called a szream file in other operating systems. Each object in a sequential
file has the same binary representation as the Ada object in the executable program.

8.4 Direct Files

For direct access the file is viewed as a set of elements occupying consecutive positions in
a linear order. The position of an element in a direct file is specified by its index, which is
an integer of subtype POSITIVE_COUNT.

DIRECT_IO only allows input-output for constrained types. If DIRECT_IO is instantiated
for an unconstrained type, all cails to CREATE or OPEN will raise USE_ERROR. Each
object in a direct file will have the same binary representation as the Ada object in the
executable program. All elements within the file will have the same length.

8.5 Text Files

Text files are used for the input and output of information in ASCII character form.
Each text file is a sequence of characters grouped into lines, and lines are grouped into a
sequence of pages.

All text file column numbers, line numbers, and page numbers are values of the subtype
POSITIVE_COUNT.

46 : Appendix F, Version 5

Note that due to the definitions of line terminator, page terminator, and file terminator
in the RM, and the method used to mark the end of file under BTOS I1, some ASCII files
do not represent well-formed TEXT_IO files.

A text file is buffered by the Runtime Executive unless
« it names a device (for example, [VID]).
= it is STANDARD_INPUT or STANDARD_OUTPUT and has not been redirected.

If not redirected, prompts writien to STANDARD_OUTPUT with the procedure PUT will
appear before (or when) a GET (or GET_LINE) occurs.

The functions END_OF_PAGE and END_OF_FILE always return FALSE when the file is a
device and STANDARD_INPUT when it is not redirected. Programs which would like to
check for end of file when the file may be a device should handle the exception
END_ERROR instead, as in the following example:

Example

begin
Lloop
-~ Display the prompt:
TEXT_I0.PUT ("--> ");
-- Read the next line:
TEXT_I0.GET_LINE (COMMAND, LAST);
-- Now do something with COMMAND (1 .. LAST)
end loop;
exception
when TEXT_IO.END_ERROR =>
null;
end;

END_ERROR is raised for STANDARD_INPUT when F6 (ASCIL.SUB) is entered at the
keyboard.

‘Input-Output Packages 47

8.6 Access Protection of External Files

All BTOS 11 access protections exist when using files under BTOS I If a file is open for
read only access by one process it can not be opened by another process for read/write

aCCEss.

8.7 The Need to Close a File Explicitly

The Runtime Executive will flush all buffers and close all open files when the program is
terminated, either normally or through some exception.

However, the RM does not define what happens when a program terminates without
closing all the opened files. Thus a program which depends on this feature of the
Runtime Executive might have problems when ported to another system.

8.8 Limitation on the Procedure RESET

An internal file opened for input cannot be RESET for outpui. However, an internal file
opened for output can be RESET for input, and can subsequently be RESET back to
output.

8.9 Sharing of External Files and Tasking Issues

Several internal files can be associated with the same external file only if all the internal
files are opened with mode IN_MODE. However, if a file is opened with mode
OUT_MODE and then changed to IN_MODE with the RESET procedure, it cannot be

shared.

Care should be taken when performing muitiple input-output operations on an external
file during tasking because the order of calls to the I/O primitives is unpredictable. For
example, two strings output by TEXT_IO.PUT_LINE in two Jifferent tasks may appear in
the output file with interieaved characters. Synchronization of I/O in cases such as this is
the user’s responsibility.

The TEXT_IO files STANDARD_INPUT and STANDARD_OUTPUT are shared by all
tasks of an Ada program.

If TEXT_IO.STANDARD_INPUT is not redirected, it will not block a program on input.
All asks not waiting for input will continue running.

48 Appendix F, Version 5

Section 9

Characteristics of Numeric Types

9.1 Integer Types
The ranges of values for integer types declared in package STANDARD are as follows:

SHORT_INTEGER -128 .. 127 - 2%*7 - 1
INTEGER -32768 .. 32767 -- 2%*15 - 1
LONG_INTEGER -2147483648 .. 2147483647 .- 2%*31 -1

For the packages DIRECT_IO and TEXT_IO, the range of values for types COUNT and
POSITIVE_COUNT are as follows:

COUNT 0 .. 2147483647 .- 2%*31 - 1

POSITIVE_COUNT 1 .. 2147483647 .- 2%%31 - 1

For the package TEXT_IO, the range of values for the type FIELD is as follows:

FIELD 0..25 -- 2*'8 -1

9.2 Floating Point Type Attributes

SHORT _FLOAT LONG_FLOAT
and FLOAT
DIGITS é 15
MANTISSA 21 51
EMAX 84 204

Characteristics of Numeric Types 49

EPSILON
LARGE

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

FIRST

LAST
MACHINE_RADIX
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS

SIZE

9.53674E-07
1.93428E+25
125
1.17549E-38
4.25353E+37
-3.40282E+38
3.40282E+38
2
128
-125
true
false

32

9.3 Attributes of Type DURATION

DURATION'DELTA
DURATION * SMALL
DURATION'FIRST
DURATION'LAST

DURATION'® LARGE

50

2.0 = (-14)
2.0 ** (-14)
-131_072.0
131_072.0

same as DURATION'LAST

8.88178E-16
2.57110E+61
1021
2.22507E-308
2.24712E+307
-1.79769£+308
1.79769€+308
2

1024
- 1021

true

false

Appendix F, Version 5

Section 10

Other Implementation-Dependent Characteristics

10.1 Characteristics of the Heap

All objects created by allocators go into the heap. Also, portions of the Runtime Execu-
ave representation of task objects, including the task stacks, are aliocated in the heap.

UNCHECKED_DEALLOCATION is implemented for all Ada access objects except access
objects to tasks. Use of UNCHECKED_DEALLOCATION on a task object will lead to

unpredictable results.

All objects whose visibility is linked to a subprogram, task body, or block have their
storage reclaimed at exit, whether the exit is normal or due 10 an exception. Effectively
pragma CONTROLLED is automatically applied to all access types. Moreover, all
compiler temporaries on the heap (generated by such operations as function calls
returning unconstrained arrays, or many concatenations) allocated in a scope are

deallocated upon leaving the scope.
Note that the programmer may force heap reclamation of temporaries associated with
any statements by enclosing the statement in a begin .. end block. This is especially

useful when complex concatenations or other heap-intensive operations are performed
in loops, and can reduce or eliminate STORAGE_ERRORS that might otherwise occur.

The maximum size of the heap is limited only by available memory. This includes the
amount of physical memory (RAM) and the amount of virtual memory (hard disk swap

space).

10.2 Characteristics of Tasks

The default task stack size is 1K bytes (32K bytes for the environment task), but by using
the Binder option STACK.TASK the size for all task stacks in a program may be set to a
size from 1K bytes to 64K bytes.

Other Implementanion-Dependent Characteristics 51

Normal priority rules are followed for preemption, where PRIORITY values are in the
range 1 .. 10. A task with undefined priority (no pragma PRIORITY) is considered to be
lower than priority 1.

The maximum number of active tasks is restricted only by memory usage.

The accepter of a rendezvous executes the accept body code in its own stack.
Rendezvous with an empty accept body (for synchronization) does not cause a context

switch.
The main program waits for completion of all tasks dependent upon library packages
before termirating.

Abnormal completion of an aborted task takes place immediately, except when the ab-
normal task is the calier of an entry that is engaged in a rendezvous, or if it is in the
process of activating some tasks. Any such task becomes abnormally completed as soon

as the state in question is exited.
The message

GLOBAL BLOCKING SITUAT:ON CZTECTED

is printed to STANDARD_OUTPUT when the Runtime Executive detects that no further
progress is possible for any task in the program. The execution of the program is then
abandoned.

103 Definition of a Main Subprogram

A library unit can be used as a main subprogram if and only if it is a procedure that is not
generic and that has no formal parameters.

10.4 Ordering of Compilation Units

The Alsys Ada Software Development Favironment for BTOS 11 imposes no additional
ordering constraints on compilations beyond those required by the language.

52 Appendix F, Version 5

Section 11

Limitations

11.1 Compiler Limitations

The maximum identifier length is 255 characters.
The maximum line length is 255 characters.
The maximum number of unique identifiers per compilation unit is 2500.

The maximum number of compilation units in a library is 1000.

The maximum number of Ada libraries in a family is 15.

11.2 Hardware Related Limitations

The maximum amount of data in the heap is limited only by available memory.

If an unconstrained record type can exceed 4096 bytes, the type is not permitted
(unless constrained) as the element type in the definition of an array or record type.

The maximum size of the generated code for a single compilation unit is 65535
bytes.
The maximum size of a single array or record object is 65522 bytes. An object

bigger than 4096 bytes will be indirectly allocated. Refer to ALLOCATION
parameter in the COMPILE command. (Section 4.2 of the User’s Guide.)

The maximum size of a single stack frame is 32766 bytes, including the data for
inner package subunits unnested to the parent frame.

The maximum amount of data in the global data area is 65535 bytes, including
compiler generated data thai goes into the GDA (about 8 bytes per compilation unit
plus 4 bytes per externaily visible subprogram).

Limitations 53

54

Appendix F, Version 5

Abnormal completion 52
Aborted task 52

Access protection 47

Access types 24

Allocators 51

Application Developer’s Guide 3
Array gaps 26

Array subtype 7

Array subtype and object size 28
Array type 7
ARRAY_DESCRIPTOR 36
ASSEMBLER 3

Attributes of type DURATION 50

Basic record structure 29
Binder 51
Buffered files 46
Buffers
flushing 47

C3
Characteristics of tasks 51
Collection size 24
Collections 24
Column numbers 46
Compiler limitations 53
maximum identifier length 53
maximum line length 53
maximum number of Ada libraries
53
maximum number of compilation
units 53
maximum number of unique
identifiers 53
Constrained types
[/Oon 46
Control Z 47

Index

INDEX

COUNT 49
CREATE 45, 46
CTOS conventions 45
CTOS files 45

DEVICE_ERROR 46
DIGITS 49

Direct files 46
DIRECT_IO 45, 46, 49
Disk full 46

DOS Linker 4

Drive not ready 46
DURATION'DELTA 50
DURATION’FIRST 50
DURATION’LARGE 50
DURATION'LAST 50
DURATION’SMALL 50

E’EXCEPTION_CODE 7
EMAX 49
Empty accept body 52
END_ERROR 47
END_OF_FILE 47
END_OF_PAGE 47
Enumeration literal encoding 16
Enumeration subtype size 17
Enumeration types 16
EPSILON 5C
Errors

disk full 46

drive not ready 46

hardware 46

unknown media 46
EXCEPTION_CODE

Attribute 7

FIELD 49

55

File closing

explicit 47
File names 45
File terminator 46
FIRST 50
Fixed point type representation 21
Fixed point type size 22
Floating point type attributes 49
Floating point type representation 20
Floating point type size 21

GET 47

GET_LINE 47

GLOBAL BLOCKING SITUATION
DETECTED 52

Hardware errors 46
Hardware limitations
maximum amount of data in the
global data area 53
maximum data in the heap 53
maximum size of a single array or
record object 53
maximum size of the generated code
53
Hardware related limitations 53
Heap 51

[/O synchronization 48
Implicit component 36, 37
Implicit components 34
IN_MODE 438

INDENT 5

Indirect record components 31
INTEGER 49

Integer type and object size 18
Integer type representation 18

56

Integer types 49
Intel object module format 4
INTERFACE 3,4
INTERFACE_NAME 3,4
Interfaced subprograms 45
Interieaved characters 48
IO_EXCEPTIONS 45, 46
IS_ARRAY

Attribute 7

LARGE 50

LAST 50

Layout of a record 29
Legal file names 45
Library unit 52
Limitations 53

Line numbers 46
Line terminator 46
LONG_INTEGER 49
LOW_LEVEL IO 45

MACHINE_EMAX 50

MACHINE_EMIN 50

MACHINE_MANTISSA 50

MACHINE_OVERFLOWS 50

MACHINE_RADIX 50

MACHINE_ROUNDS 50

Main program 52

Main subprogram 52

MANTISSA 49

Maximum amount of data in the global
data area 53

Maximum data in the heap 53

Maximum ideatifier length 53

Maximum line iength 53

Maximum number of Ada libraries 53

Appendix F, Version 5

Maximum number of compilation units
3

Maximum number of unique identifiers
53

Maximum size of a single array or
record object 53

Maximum size of the generated code 53

NAME_ERROR 45, 46

Non-blocking /O 48
Number of active tasks 52

OPEN 46
Ordering of compilation units 52
OUT_MODE 48

P'IS_ARRAY 7

PACK 5

Page numbers 46

Page terminator 46
Parameter passing 2
POSITIVE_COUNT 46, 49
Pragma IMPROVE 5, 37
Pragma INDENT 5
Pragma INTERFACE 3, 4
Pragma INTERFACE_NAME 4
Pragma PACK §, 25, 26, 30
Pragma PRIORITY 5§, 52
Pragma SUPPRESS 5
Predefined packages 39
PRIORITY 5,52

PUT 47

PUT_LINE 48

RECORD_DESCRIPTOR 37

RECORD_SIZE 34,37
Rendezvous 52

Index

Representation clauses 15

RESET 48

Runtime Executive 2, 4, 46, 47, 48, 51,
52

SAFE_EMAX 50
SAFE_LARGE 50
SAFE_SMALL 50

Sequential files 46
SEQUENTIAL_IO 45

Sharing of external files 48
SHORT INTEGER 49

SIZE 50

Size of record types 38

SPACE 37
STANDARD_INPUT 45, 47, 48
STANDARD_OUTPUT 45, 47, 48, 52
Storage reclamation at exit 51
STORAGE_SIZE 24

Stream file 46

SUPPRESS 5

Synchronization of I/O 48
SYSTEM $§

Task activation 24
Task stack size 24, 51
Task stacks 51
Task types 24
Tasking issues 48
Tasks

characteristics of 51
Text file

buffered 46
Text files 46
TEXT_IO 45,49
TIME 37

57

UNCHECKED_DEALLOCATION
51

Unknown media 46

USE_ERROR 46

Variant pant 35
VARIANT_INDEX 35, 36, 37

58

Appendix F, Version 5

