RE

Puoiic reporting burden for tt

AD-A242 272
e

Management and Budget, Washington, DC 20503

o,

e

Form Approved

PAGE OPM No. 0704-0188

he time for g instructs hing existing data gathering and maintasmng the data
¥ aspect of this collection of information, includng suggestions for reducing this burden, to Washagion
te 1204, Adlington, VA 22202-4302, and to the Office of Information and Regulatory Affairs, Office of

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

3. REPORT TYPE AND DATES COVERED
Final: 02 Nov 1990 tp 01 Jun 1993

T BT 7 YT 3
4. TITLE AND SUBTITLE

Target), 901102W1.11056

901102W11055Alsys, Inc., AlsyCOMP_016 Version 5.1, CompuAdd 320 (Host &

5. FUNDING NUMBERS

by

N

6. AUTHOR(S) ﬂ‘?_"ﬁ ox ‘-- 1 r- (s —gv' ‘ '?“ A‘»,
Wright-Patterson AFB, Dayton, OH 25%\“ & % E
USA B HOVS SY i @

o\, 5 B

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility, Language Control Facility ASD/SCEL
Bldg. 676, Rm 135

Wright-Patterson AFB, Dayton, OH 45433

of %0
N &) 8. ORMING ORGANIZATION

REPORT NUMBER
AVF-VSR-410-0891

9, SPONSORING/MONITOR:NG AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office

United States Department of Defense

Pentagon, Rm 3E114

Washington, D.C. 20301-3081

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

e ey
11. SUPPLEMENTARY NOTES

< }—F~/ L &t O}/V\a-pe-o}‘»& ‘gf/\f

0o S¢
),\/U\,) ADA H[‘f/‘((L

(J»L/\) ‘}\(; I/J U\LL(A\ l)?«bﬁ/ /1/1 lc—ﬁxb@_&,

N~ k}“r\—\

"12a. DISTRAIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Alsys, Inc., AlsyCOMP_016 Version 5.1, Wright-Patterson AFB, OH, CompuAdd 320 (Host & Target), ACVC 1.11.

G1-1
A "’I!I lllll ’Iﬂ,u

14, SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPCRT
UNCLASSIFIED

UNCLASSIFED

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

15. NUMBER OF PAGES
16. PRICE CODE

20 LIMITATION OF ABSTRACT
OF ABSTRACT
UNCLASSIFIED

NSN 7540-01-280-550

Standard Form 298, (Fev. 2-89)
Prescribed by ANSI Std. 239-128

1104 108

]

AVF Control Number: AVF-VSR-412-0891

23-August-1991
90-06-01-ALS
Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 901102wW1.11058
Alsys, Inc.
AlsyCOMP 003 Version 5,.
HP Vectra RS/25C => HP Vectra RS/25C
Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503
- I /.
i Acsusalicn For
CNTIS GRAKL HJ ,
! LTIl TR o |
[Gas 1vnued £ *
[H

B s Sy S——

. P
[NV RS \uu/

i ——

* ~ A | ~
tevn LAy P
AVAL L8 ATLY Goass

T tom e nd
7 Avall uwnd/er
g ;Dizt | Bspsoial

¢, ; L
C/
Vor e/ - A
~ . e

Q.

®

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was ccmpleted on 2 November 1990.

Compiler Name and Version: AlsyCOMP 003, Version 5.1
Host Computer System: HP Vectra RS/25C (under MS/DOS 3.30)
Target Computer System: HP Vectra RS/25C (under MS/DOS 3.30)

Customer Agreement Number: 90-06-01-ALS

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, validation Certificate
901102w1.11058 is awarded to Alsys, Inc. This certificate expires on 1
June 1993.

This report has been reviewed and is approved.

Y

/%’“gﬂw (/é”/—) Mé/\‘
Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

'

A L TR G T 2

P
.. Ada Validation Organization

Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

/]

Ada Joint Program Gffice
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

CUSTOMER:

ADA VALIDATION FACILITY:

ACVC VERSION:

ADA IMPLEMENTATION:

COMPILER NAME AND VERSION:

HOST COMPUTER SYSTEM:

TARGET COMPUTER SYSTEM:

CUSTOMER'S DECLARATION:

Alsys, Inc.

Ada Validaiion Facility (ASD/SCEL)
Computer Operations Division

Information Systems and Technology Center
Wright-Patterson AFB OH 45433-6503

1'11

ALSYS_COMP_C03-ADA

HP Vectra RS/25C
under MS/DOS 3.30

HP Vectra RS/25C
under MS/DOS 3.30

I, the undersigned, representing Alsys, Inc., declare that Alsys, Inc. has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the

implementation listed in this declaration.

\ide it

Mike Blanchette,

Vice President, Engineering
Alsys, Inc.

67 South Bedford Street
Burlington, MA 01803-5152

Date

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES « + o « o ¢ o ¢ o o o o o o ce e .12
1.3 ACVC TEST CLASSES . « « v & v & « & . . ce e 122
1.4 DEFINITION OF TERMS . + « « « v o« « o « o o . .. 1-3
CHAPTER 2 IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAWN TESTS . « « « o « & « . . C e e e e .24
2.2 INAPPLICABLE TESTS . . « & « « « « & « o & & c.o.2-1
2.3 TEST MODIFICATIONS « . « & « « v ¢ « o o o « . .. 2-4
CHAPTER 3 PROCESSING INFORMATION
3.1 TESTING ENVIRONMENT « o ¢ v o o v o o o . 3-1
3.2 SUMMARY OF TEST RESULTS . . « . + . . . c e e . 321
3.3 TEST EXECUTION . . « o & « v ¢ & « & « . R
APPENDIX A MACRO PARAMETERS
APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UGB9].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION
1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-18154, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

[UGB9] Ada Compiler Validation Capability User’'s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

4, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set ¢t identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERHMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any reeded hardware that have to be <dded
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Aca certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Vithdrawn
test

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are trarsformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and IS0 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Softwvare that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardvare implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 12 October 1990.

E28005C B28006C C34006D B41308B €43004A Cc45114A
C45346A C45612B €45651a C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026B
B85001L C83026a €83041a C97116A €98003B BA2011A
CB7001A CB7001B CB7004A CCl223a BC1226A CC1226B
BC3009B BD1B02B BD1B06A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD700SE AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814Aa CE3902B

In addition to the tests indicated above, C35702A was withdrawn as a result
of a challenge by this customer; it was included in the subsequent list of
withdrawn tests, dated 21 November 1990.

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..72 (15 tests)

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG_INTEGER, or
SHORT INTEGER.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LCRG FLOAT, or SHORT FLOAT.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain ’SMALL
representation clauses which are not powers of two.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-~of-ten TYPE’SMALL; this implementation does not
support decimal 'SMALLs. (See section 2.3.)

C45624A checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 5. For this
implementation, MACHINE OVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT IO, and hence
package REPORT, obsolete.

C96005B checks for values of type DURATION’BASE that are outside the
range of DURATION. There are no such values for this implementatioa.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2AB4E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

B86001Y checks for a predefined fixed-point type other than DURATION.

2-2

IMPLEMENTATION DEPENDENCIES

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8J11A use machine code
insertions.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CE2102E CREATE OUT FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT I0
CE2102N OPEN IN FILE SEQUENTIAL_IO
CE21020 RESET IN FILE SEQUENTIAL_IO
CE2102P OPEN OUT FILE SEQUENTIAL IO
CE2102Q RESET OUT FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT IO
CE21028 RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN FILE DIRECT IO
CE2102v OPEN QUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102F RESET Any Mode TEX._IO
CE3102G DELETE ——— TEXT IO
CE31021 CREATE OUT_FILE TEXT 10
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN OUT_FILE TEXT IO

The tests listed in the following table are not applicable because the
given file operations are not supported for the given combination of
mode and file access method.

Test File Operation Mode File Access Method
CE2105A CREATE IN_FILE SEQUENTIAL_ IO
CE2105B CREATE IN _FILE DIRECT IO
CE3109a CREATE IN FILE TEXT IO

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE ERROR is raised wien this
association is attempted. -

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2111C raises a USE_ERROR when file is RESET from IN FILE to OUT FILE.
CE2203A checks that VRIT® raises USE ERROR if the capacity of the

external file is exceeded for SEQUENTIAL IO. This implementation does
not restrict file capacity.

2-3

IMPLEMENTATION DEPENDENCIES

EE2401D and EE2401G use instantiations cf package DIRECT IO with
unconstrained array types and record types with discriminants without
defaults. These instantiations are rejected by this compiler.

CE2401H raises USE_ERROR when CREATE with mode INOUT FILE is used for
unconstrained records with default discriminants.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT I0. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT/LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 24 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B23004A B24007A B24009A B25002A B26005A B27005A
B28003A B32202A B32202B B32202C B37004A B45102A
B61012A B91004A B95069A B950698B BI97103E BA1101B
BC2001D BC3009A BC3009C

BA2001E was graded passed by Evaluation Modification as directed by the
AVO. The test expects that duplicate names of subunits with a common
ancestor will be detected as compilation errors; this implementation
detects the errors at link time, and the AVO ruled that this behavior is
acceptable.

CD2A53A was graded inapplicable by Evaluation Modification as directed by
the AVO. The test contains a specification of a power-of-10 value as small
for a fixed-point type. The AVO ruled that, under ACVC 1.11, support of
decimal smalls may be omitted.

EA3004D was graded passed by Evaluation and Processing Modification as
directed by the AVO. The test requires that either pragma INLINE is obeyed
for a function call in each of three contexts and that thus three library
units are made chsclete by the re-compilation of the inlined function’s

‘body, or else the pragma is ignored completely. This implementation obeys

2~4

IMPLEMENTATION DEPENDENCIES

the pragma except when the call is within the package specification. When
the test’s files are processed in the given order, only two units are made
obsolete; thus, the expected error at line 27 of file EA3004D6M is not
valid and is not flagged. To confirm that indeed the pragma is not obeyed
in this one case, the test was also processed with the files re~ordered so
that the re-compilation follows only the package declaration (and thus the
other library units will not be made obsolete, as they are compiled later);
a "NOT APPLICABLE" result was produced, as expected. The revised order of
files was 0-1-4-5-2-3-6.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Mike Blanchette
67 South Bedford Street
Burlington MA 01803-5152

For a point of contact for sales information about this Ada implementation
system, see:

Mike Blanchette
67 South Bedford Street
Burlington MA 01803-5152

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC (Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3805

b) Total Number of Withdrawn Tests 82
¢) Processed Inapplicable Tests 82
d) Non-Processed I/0 Tests 0
e) Non~Processed Floating-~Point

" Precision Tests 201

f) Total Number of Inapplicable Tests 283
g) Total Number of Tests for ACVC 1.11 4170

All I/0 tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (3ee section 1.3) was
taken on~site by the validation team for processing. The contents of the
magnetic tape were loaded onto a VAX/VMS system and then transferred to the
host computer via a FTP LAN network.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed usiing command scripts provided by the customer and
reviewed by the validation team. Ses Appendix B for a complete listing of
the processing options for this implementation. The options invoked
explicitly for validation tez%ing during this test were:

OPTION/SWITCH EFFECT

SHOW => NO po not show header nor error
summary in listing.

WARNING => NO Do not include warning messages.

GENERIC => STUB Place code of generic instantiation
in separate subunits.

ERROR => 999 Maximum number of compilation errors
permitted before terminating the
compilation.

CALLS => INLINED This option allows insertion of code for

subprograms inline and must be set for
the pragma INLINE to be operative.

3-2

PROCESSING INFORMATION

MODULE => \alsys\dummyes.obj
Required by run-time library.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UGB9]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line

length.
Macro Parameter Macro Value

SBIG_ID1 (1..Vv-1 => A", V => '17)

$BIG_ID2 (1..V-1 => A7, V => '27)

$BIG_ID3 (1..V/2 => 'A') & '3" &
(1..V-1-V/2 => *A’)

$SBIG_ID4 (1..v/2 => "A’) & '4" &
(1..V-1-V/2 => *A")

SBIG_INT LIT (1..v-3 => '0") & "298"

SBIG_REAL LIT (1..v-5 => '0') & "690.0"

SBIG_STRING1 & (1..V/2 => TAT) & M

SBIG_STRING2 rmrog (1..V-1-V/2 => 'A’) & '17 & '

SBLANKS (1..v-20 => 1 1)

SMAX LEN_INT_BASED LITERAL
"2:" & (1..V-5=> '0") & "11:"

SMAX_LEN_REAL BASED LITERAL
T "6:" & (1,.V-7 => '0’) & "F.E:"

$MAX STRING LITERAL "’ & (1..V-2 => 'A’) & '"'

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their

respective values.

Macro Parameter

Macro Value

$MAX_IN_LEN
$ACC_SIZE
SALIGNMENT
$COUNT_LAST
$DEFAULT MEM_SIZE
$DEFAULT_STOR_UNIT
SDEFAULT_SYS_NAME
$DELTA_DOC
SENTRY_ADDRESS
SENTRY ADDRESS1
$ENTRY_ADDRESS2
$FIELD LAST
$FILE_TERMINATOR
$FIXED NAME
SFLOAT_NAME
$FORM_STRING

SFORM_STRING2

255

32

2

2147483647

2%%24

8

180X86

24#1.04E-31
SYSTEM.VALUE("00010: 0040")
SYSTEM.VALUE("00010: 0080")
SYSTEM.VALUE("00010:0100")
255

NO_SUCH_FIXED TYPE
NO_SUCH_FLOAT TYPE

1"

"CANNOT RESTRICT FILE CAPACITY"

SGREATER_THAN DURATION

75000.0

SGREATER_THAN DURATION BASE_LAST

131073.0

$GREATER THAN FLOAT BASE LAST

1.30141E+38

SGREATER_THAN FLOAT SAFE_LARGE

1.0E308

MACRO PARAMETERS
$GREATER THAN SHORT FLOAT SAFE_LARGE
1.0E308
$HIGH PRIORITY 10

SILLEGAL EXTERNAL FILE NAMEl
\NODIRECTORY\FILENAME

SILLEGAL EXTERNAL FILE NAME2
THIS_FILE_NAME IS _TOO LONG_FOR MY SYSTEM

$INAPPROPRIATE LINE LENGTH
-1

SINAPPROPRIATE PAGE LENGTH

-1

$INCLUDE_PRAGMA1 PRAGMA INCLUDE ("A28006D1.TST")
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ¢"B28006D1.TST")
$INTEGER_FIRST -32768

SINTEGER _LAST 32767

$INTEGER LAST PLUS_1 32768
SINTERFACE_LANGUAGE C
SLESS_THAN_DURATION -75000.0

SLESS_THAN DURATION BASE FIRST
-131073.0

SLINE_TERMINATOR ASCII.CR & ASCII.LF
SLOY_PRIORITY 1

SMACHINE_ CODE_STATEMENT
NULL;

$MACHINE CODE_TYPE NO_SUCH_TYPE

SMANTISSA_DOC 31
$HMAX_DIGITS 15
$MAX_INT 2147483647
$MAY_INT PLUS 1 2147483648
$MIN INT -2147483648

A-3

MACRO PARAMETERS

SNAME

$NAME_LIST
$NAME_SPECIFICATION1
SNAME_SPECIFICATIONZ
$NAME_SPECIFICATION3
$NEG_BASED_INT
$NEW_MEM_SIZE
SNEW_STOR_UNIT
$NEW_SYS_NAME
SPAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
STASK_STORAGE_SIZE
$TICK
S$VARIABLE_ADDRESS
$VARIABLE_ADDRESS1
$VARIABLE_ADDRESS2
$YOUR_PRAGMA

NO_SUCH_TYPE_AVAILABLE
180X86

D: \WORK\X2120A

D: \WORK\X2120B
D:\WORK\X3119A
164FO00000E#

2%%24

16

180X86

ASCIT.CR & ASCII.LF & ASCII.FF
NEW INTEGER;
NO_SUCH_MACHINE_CODE_TYPE
32

1024

1.0/18.2
SYSTEM.VALUE("0010:0020")
SYSTEM.VALUE("0010:0024")
SYSTEM.VALUE("0010:0028")
INTERFACE

A4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

Compile Options

COMPILE (SOURCE => source_name | INSTANTIATION,
LIBRARY => library_name,
OPTIONS =>
(ANNOTATE => character_string,
ERRORS => positive integer,
LEVEL => PARSE | SEMANTIC | CODE | UPDATE,
CHECKS => ALL | STACK | NONE,
GENERICS => STUBS | INLINE,
TASKING => YES | NO,
MEMORY => number_of kbytes),
DISPLAY =) -

(OUTPUT => SCREEN | NONE | AUTOMATIC | file name,
WARNING => YES | NO, -
TEXT => YES | NO,

SHOW => BANNER | RECAP | ALL | NONE,
DETAIL => YES | NO,

ASSEMBLY => CODE | MAP | ALL | NONE),
ALLOCATION =>

(STACK => positive integer),
IMPROVE =>
(CALLS => NORMAL | INLINED,

REDUCTION => NONE | PARTIAL | EXTENSIVE,
EXPRESSIONS => NONE | PARTIAL | EXTENSIVE);

KEEP =>
(CoPY => YES | No,
DEBUG => YES | NO,
TREE => YES | NO));

B-1

COMPILALI N SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless speciiically noted
othervise, references in this appendix are to linker documentation and
not to this report.

bind Options
BIND (PROGRAM => main_program name,

LIBRARY => library_name,
OPTIONS => .
(LEVEL => CHECK | BIND | LINK,
EXECUTION => EXTENDED | PROTECTED,
FLOAT => AUTOMATIC | HARDWARE | SOFTVARE,
MATHLIB => I287 | 1387,
0BJECT => AUTOMATIC | file_ name,
UNCALLED => REMOVE | KEEP,
TIMER NORMAL | FAST,
SLICE =, NO | positive_integer),
STACK =D
(MAIN =? positive_integer,
TASK => positive_integer,
HISTORY => YES | NO),
HEAP =D
(SIZE => positive_integer,
INCREMENT => positive_integer),
INTERFACE =>
(DIRECTIVES => options_for_linker,
MODULES => file names,
SEARCH => library names),
DISPLAY => -
(OUTPUT => SCREEN | NONE | AUTOMATIC | file_ name,
DATA => BIND | LINK | ALL | NONE,
VARNING > YES | NO),
KEEP =>
(DEBUG => YES | NO,
TUNE => YES | NO));
B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -32768 .. 32767;
type SHORT INTEGER is range -128 .. 127;
type LONG_INTEGER is range -2147483648 .. 2147483647;
type FLOAT is digits 6 range
-2%1.1111111111111111111211114E+127 ..
2#1.111111111111112111111114E+127;
type SHORT FLOAT is digits 6 range
~24#1.111111111111111111131114E+127 ..
2#1,111111111111111111111114E+127;
type LONG_FLOAT is digits 135 range
241.111111311111111121111121111111111111111111111111111114E1023 ..
241.11111111111111211111111312111211111111332121211111111114#E1023;
type NATURAL is Integer range 0..INTEGER’last;
type DURATION is delta 2#0.00000000000001# range
-131072.0000 .. 131071.99994;
type POSITIVE is INTEGER range 1..INTEGER'last;

end STANDARD;

c-1

PRE-RELEASE DOCUMENTATION - OCTOBER 1990

Alsys FirstAda Development Environment

APPENDIX F

Version 5

Copyright 1990 by Alsys

All rights reserved. No part of this document inay be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: October 1990

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine
whether such changes have been made.

Alsys, AdaWorld, AdaProbe, AdaXref, AdaReformat, AdaMake, AdaVerify, AdaCount, and
AdaSplit are registered trademarks of Alsys.

Microscft, M8-DOS, and M3 are registered trademarks of Microsoft Corporation.

IBM, PC AT, P8/2, and PC-DOS are registered trademarks of International Business Machines
Corporation.

INTEL is a registered trademark of Intel Corporation.

TABLE OF CONTENTS

APPENDIXF
1 Implementation-Dependent Pragmas
1.1 INLINE
1.2 INTERFACE
13 INTERFACE_NAME
14 INDENT
1.5 Other Pragmas
2 Implementation-Dependent Attributes
21 PIS_ARRAY
22 EEXCEPTION_CODE
23 Autributes Used in Record Representation Clauses
3 Specification of .ae package SYSTEM
4 Support for Representation Clauses
4.1 Enumeration Types
4.1.1 Enumeration Literal Encoding
4.1.2 Enumeration Types and Object Sizes
4.2 Integer Types
4.2.1 Integer Type Representation
4.2.2 Integer Type and Object Size
4.3 Floating Point Types
43.1 Floating Point Type Representation
43.2 Floating Point Type and Object Size
44 Fixed Point Types

4.4.1 Fixed Point Type Representation
4.4.2 Fixed Point Type and Object Size

Table of Contents

w

v bW

NN

15

16
16
16
18
18
18
20
20
21
21
21
22

4.5
4.6
4.7

4.3

6.1
6.2
6.3

8

81
82
83
84
85
86
87
88
89

Access Types and Collectiors

Task Types

Array Types
4.7.1 Array Layout and Structure and Pragma PACK

4.7.2 Array Subtype and Object Size
Record Types

4.8.1 Basic Record Structure

4.8.2 Indirect Components

4.8.3 Implicit Components

4.84 Size of Record Types and Objects

Conventions for Implementation-Generated Names

Address Clauses

Address Clauses for Objects
Address Clauses for Program Units
Address Clauses for Interrupt Entries

Unchecked Conversions

Input-Output Packages

Correspondence between External Files and DOS Files
Error Handling

The FORM Parameter

Sequential Files

Direct Files

Text Files

Access Protection oi External Files

The Need to Close a File Explicitly

Limitation on the Procedure RESET

8.10 Sharing of External Files and Tasking Issues

24
24

29
29
k)|

38
39
41
41

42
42

43

Appendix F, Version 5

9.1
9.2
9.3

10

10.1
10.2
10.3
104
10.5

11

11.1
11.2

Characteristics of Numeric Types

Integer Types
Floating Point Type Attributes
Auributes of Type DURATION

Other Implementation-Dependent Characteristics

Use of the Floating-Point Coprocessor
Characteristics of the Heap
Characteristics of Tasks

Definition of a Main Subprogram
Ordering of Compilation Units

Limitations

Compiler Limitations
Hardware Related Limitations

INDEX

Table of Contents

51.

51
51
52

53
53
53
54
55
55
57
57
57

59

Appendix F, Version 5

APPENDIX F

Implementation - Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
FirstAda Development Environment. Appendix F is a required part of the Reference
Manual for the Ada Programming Language (called the RM in this appendix).

The sections of this appendix are as follows:

1L

2

10.

11.

The form, allowed places, and effect of every implementation-dependent pragma.
The name and the type of every implementation-dependent attribute.

The specification of the package SYSTEM.

The description of the representation clauses.

The conventions used for any implementation-generated name denoting im-
plementation-dependent components.

The interpretation of expressions that appear in address clauses, including those
for interrupts,

Any restrictions on unchecked conversions.

Any implementation-dependent characteristics of the input-output packages.
Characteristics of numeric types.

Other implementation-dependent characteristics.

Compiler limitations.

Implementation-Dependent Characteristics 1

The name Alsys Runtime Executive Programs or simply Runtime Executive refers to the
runtime library routines provided for all Ada programs. These routines implement the
Ada heap, exceptions, tasking control, and other utility functions.

General systems programming notes are given in another document, the Application
Developer's Guide (for example, parameter passing conventions needed for interface with
assembly routines).

Appendix F, Version 5

Section 1

Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported; however, it is not possible to inline a subprogram in a
declarative part.

1.2 INTERFACE

Ada programs can interface with subprograms written in Assembler and other languages
through the use of the predefined pragma INTERFACE and the implementation-defined
pragina INTERFACE_NAME.

Pragma INTERFACE specifies the name of an interfaced subprog. am 210 the name of
the programming language for which parameter passing conventions will be generated.
Pragma INTERFACE takes the form specified in the RM:

pragma INTERFACE (language_name, subprogram_name);
where,
a language name is ASSEMBLER, ADA, or C.

s subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language names accepted by pragma INTERFACE are ASSEMBLER, ADA and
C. The full implementation requirements for writing pragma INTERFACE subprograms
are described in the Application Developer’s Guide.

The language name used in the pragma INTERFACE does not have to have any
relationship to the language actually used to write the interfaced subprogram. It is used
only to tell the Compiler how to generate subprogram calls; that is, what kind of
parameter passing techniques to use. The programmer can interface Ada programs with
subroutines written in any other (compiled) language by understanding the mechanisms

Implementation-Dependent Pragmas 3

used for parameter passing by the compiler and the corresponding mechanisms of the
chosen external language.

1.3 INTERFACE_NAME

Pragma INTERFACE_NAME associates the name of the interfaced subprogram with the
external name of the interfaced subprogram. If pragma INTERFACE_NAME is not used,
then the two names are assumed to be identical. This pragma takes the form:

pragma INTERFACE_NAME (subprogram_name, string_literal);
where,

s subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

s string_literal is the name by which the interfaced subprogram is referred to at link
time.

The pragma INTERFACE_NAME is used to identify routines in other languages that are
not named with legal Ada identifiers. Ada identifiers can only contain letters, digits, or
underscores, whereas the DOS Linker allows external names to contain other characters,
for example, the dollar sign (§) or commercial at sign (@). These characters can be
specified in the sring_lizeral argument of the pragma INTERFACE_NAME.

The pragma INTERFACE_NAME is allowed at the same places of an Ada program as the
pragma INTERFACE. (Location restrictions can be found in section 13.9 of the RM.)
However, the pragma INTERFACE_NAME must always occur after the pragma
INTERFACE declaration for the interfaced subprogram.

The string_literal of the pragma INTERFACE_NAME is passed through unchanged to the
DOS object file. The maximum length of the string_literal is 40 characters. This limit is
not checked by the Compiler, but the string is truncated by the Binder to meet the Intel
object module format standard.

The user must be aware however, that some tools from other vendors do not fully
support the standard object file format and may restrict the length of symbols. For
example, the IBM and Microsoft assemblers silently truncate symbols at 31 characters.

The Runtime Executive contains several external identifiers. All such identifiers begin
with either the string "ADA@" or the string "ADAS@". Accordingly, names prefixed by
"ADA@" or "ADAS@" shoauld be avoided by the user.

4 Appendix F, Version 5

Example

package SAMPLE_DATA |s

function SAMPLE_DEVICE (X: INTEGER) return INTEGER;

function PROCESS_SAMPLE (X: INTEGER) return INTEGER,;
private

pragma INTERFACE (ASSEMBLER, SAMPLE_DEVICE);

pragma INTERFACE (ADA, PROCESS_SAMPLE);

pragma INTERFACE_NAME (SAMPLE_DEVICE, "DEVIOSGET_SAMPLE");
end SAMPLE_DATA;

1.4 INDENT

Pragma INDENT is only used with AdaReformat. AdaReformat is the Alsys reformatter
which offers the functionalities of a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter. The line
pragma INDENT(OFF);

causes 4daReformat not to modify the source lines after this pragma, while
pragma INDENT(ON);

causes AdaReformat to resume its action after this pragma.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses and records (Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Section 3). Undeéfined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given compi-
lation by the use of the Compiler option CHECKS. (See Chapter 4 of the User’s Guide.)

Implementation-Dependent Pragmas : 5

Appendix F, Version 5

Section 2

Implementation-Dependent Attributes

2.1 PIS_ARRAY

For a prefix P that denotes any type or subtype, this attribute yields the value TRUE if P
is an array type or an array subtype; otherwise, it yields the value FALSE.

2.2 E’EXCEPTION_CODE

For a prefix E that denotes an exception name, this attribute yields a value that
represents the internal code of the exception. The value of this attribute is of the type
INTEGER.

2.3 Attributes Used in Record Representation Clauses

In addition to the Representation Attributes of [13.7.2] and [13.7.3], the following
attributes are used to form names of indirect and implicit components for usc in record
representation clauses, as described in Section 4.8,

"OFFSET
'RECORD_SIZE
"VARIANT_INDEX
'ARRAY_DESCRIPTOR
'RECORD_DESCRIPTION

Implementation-Dependent Attributes 7

8 Appendix F, Version 5

[

Section 3

Specification of the package SYSTEM

The implementation does not allow the recompilation of package SYSTEM.

package SYSTEM is

- ARV RR AN AN RS A AR TARD

== ¥ (1) Required Definitions. *
- ARNETRATANTEENANR R R ANT RN RR

type NAME is (180Xx86);
SYSTEM_NAME : constant NAME := 180X86;

STORAGE_UNIT : constant := §;
MEMORY_SIZE : constant := 2%*24;

-~ System-Oependent Named Numbers:
MAX_INT ¢ constant := 2**31 - 1;
MIN_INT : constant := - (2%*31);
MAX_MANTISSA : constant := 31;
FINE_DELTA : constant := 2¥1.0#€-31;
MAX DIGITS : constant := 15;

== For the high-resolution timer, the clock resolution is

-- 1.0 7 1024.0.
TicK s constant := 1.0 / 18.2;

Specification of the package SYSTEM

10

-- Other System-Dependent Delcarations:
subtype PRIORITY is INTEGER range 1 .. 10;

-~ The type ADDRESS is, in fact, implemented as a
-~ segment:offgset pair.

type ADDRESS is private;

NULL_ADDRESS : constant ADDRESS;

e AREF AR RE R TINA R AR EACEREN

-= * (2) Operations on Address *
en TRTANRAN AR RN RN AR AR ORD

-- VALUE converts a string to an address. The syntax of the string and its

-- meaning are target dependent.

.o

-- For the 8086, 80186 and 30286 the syntax is:

-- ®SSSS:0000" where SSSS and 0000 are a 4 digit or less hexadecimal

.- mmber representing a segment value and an offset.

.- The physical address corresponding to $5$5:0000 depercients
.- on the execution mode. In real mode it is 16"S$SS+0000.

. In protected mode the value SSSS represents a segment
.- descriptor.

-- Example:

<= “0014:00F0"

=+ The exception CONSTRAINT_ERROR is raised if the string does not have

-~ the proper syntax.

function VALUE (LEFT : in STRING) return ADORESS;

Appendix F, Version 5

-= IMAGE converts an address to @ string. The syntax of the returned string
-- is described in the VALUE function.

subtyps ADDRESS_STRING is STRING(1..9);

function IMAGE (LEFT : in ADDRESS) return ADDRESS_STRING;

=~ SAME_SEGMENT returns true if the two addresses have

== the same segment value.

function SAME_SEGMENT (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

-- The following routines provide support to perform address

-- computation. For the “+* and “-# operators the OFFSET parameter
-- is added to, or subtracted from the offset psrt of the address,
== the segment remsining untouched.

type OFFSET is range 0 .. 2*%16 -1;

-~ The exeception ADDRESS_ERROR is raised by W<*, Weaw,K #>n, twy gk u.u
-- if the two addresses do not have the same segment value.

== The exception CONSTRAINT_ERROR can be raised by "+% ang ®-u,
ADDRESS_ERROR : exceptfon;

function "+# (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

function "+ (LEFT : in OFFSET; RIGHT : in ADDRESS) return ADORESS;
function ®-® (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

Specification of the package SYSTEM

-~ The exception ADDRESS_ERROR is raised if the two adiresses do
-~ not have the same segment value.
function “-* (LEFT : in ADDRESS; RIGHT : in ADDRESS) return OFFSET;

-- Perform an unsigned comparison on offset part of addresses.

function “<a* (LEFT, RIGHT : in ADDRESS) return aoot.;m;
function "<* (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function ">=a% (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function ‘> (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

function ¥mod® (LEFT : fn ADDRESS; RIGHT : in POSITIVE) return NATURAL;

== Returns the given address rounded to a specific value.
type ROUND_DIRECTION is (DOWN, UP);

function ROUND (VALUE : in ADDRESS;
DIRECTION : in ROUND_DIRECTION;
MOOULUS : in POSITIVE) return ADDRESS;

. L Fo
- These routines are provided to perform READ/WRITE operstion

-- in memory.

-- Warning: These routines will give unexpected results if used with
-~ unconstrained types.

generic
type TARGET is private;
function FETCM_FROM_ADORESS (A : in ADDRESS) return TARGET;

generic
type TARGET is private;
procedure ASSIGN_TO_ADDRESS (A : in ADDRESS; T : in TARGET);

12 Appendix F, Version 5

== Procedure to copy LENGTH storage unit starting at the address
-- FROM to the address TO. The source snd destination may overiap.
-- OBJECT_LENGTH designates the size of an object in storage units.

type OBJECT_LENGTH is range 0 .. 2**16 -1;
for OBJECT_LENGTH'SIZ2E use 16;

procedure MOVE (T0 : in ADORESS;
FROM : in ADDRESS;

LENGTH : in OBJECT_LENGTH);
private

end SYSTEM;

Specification of the package SYSTEM

13

14

Appendix F, Version 5

Section 4

Support for Representation Clauses

This section explains how objects are represented and allocated and how it is possible to
control this using representation clauses. Applicable restrictions on representation
clauses are also described.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the representation
of the cosresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of array and record types it
is necessary to understand first the representation of their components.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects: |

= a(predefined) pragma PACK, applicable to array types
= arecord representation clause
= asize specification

For each class of types the effect of a size specification is described. Interactions among
size specifications, packing and record representation clauses is described under the
discussion of array and record types.

Representation clauses on derived record types or derived tasks types are not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

Support for Representation Clauses 15

4.1 Enumeration Types

4.1.1 Enumeration Literal Encoding

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2, .., n-1.

An enumeration representation clause can be provided to specify the value of each

internal code as described in RM 13.3. The Alsys compiler fully implements enumeration

representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range 231,23,

An enumeration value is always represented by its internal code in the program
generated by the compiler.

4.1.2 Enumeration Types and Object Sizes
Minimum size of an enumeration subtype

The minimum possible size of an enumeration subtype is the minimum number of bits
that is necessary for representing the internal codes of the subtype values in normal
binary form.

A static subtype, with a null range has a minimum size of 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is determined as follows. For m >= 0, L is the
smallest positive ime§cr such that M < = 211, For m < 0, L is the smallest positive
integer such that 2l cxmand M <=211, For example:

typs COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK_AND_WHITE is COLOR range BLACK.. WHITE;
-- The minimum size of BLACK_AND_WHITE is 2 bits.

16) Appendix F, Version 5

subtype BLACK_OR_WHITE is BLACK_AND_WHITE range X .. X;
- Assuming that X is not static, the minimum size of BLACK_OR_WHITE is
—~ 2 bits (the same as the minimum size of its type mark BLACK_AND_WHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.
The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its
subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type EXTENDED is
(-~ The usual ASCII character set.
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

’x)’ Yy” 'z" i d ” ’l” ’}" ’~" DEIq

- - Extended characters
C_CEDILLA_CAP, U_UMLAUT, E_ACUTE, ..);

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit inregers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

Support for Representation Clauses : 17

4.2 Integer Types
There are three predefined integer types in the Alsys FirstAda implementation:

type SHORT_INTEGER is range -2**07 .. 2**07-1,
type INTEGER is range -2**15 .. 2**15-1;
type LONG_INTEGER is range -2**31..2**31-1;

4.2.1 Integer Type Representation
An integer type declared by a declaration of the form:
type Tisrange L..R;

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the smallest that contains the values L to R
inclusive.

Binary code is used to represent integer values. Negative numbers are represented using
wo’s complement.

4.2.2 Integer Type and Object Size
Minimum size of an integer subtype

The minimum possible size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determined as
follows. For m >= 0, L is the smallest posmve integer such that M <= 2L, For m <
0, L is the smallest positive mtcgcr that -2 <= mand M <= 2111, .For example:

subtype S is INTEGER range0..7;
-- The minimum size of S is 3 bits.

18 ‘ Appendix F, Version 5

subtype Dis Srange X.. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORT_INTEGER, INTEGER and
LONG_INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORT_INTEGER, its size is 8 bits.

typeJ is range 0.. 255;
- J is derived from INTEGER, its size is 16 bits.

type N is .cew J range 80 .. 100;
- N is indirectly derived from INTEGER, its size is 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80 .. 100;

for S'SIZE use 32;

- S is derived from SHORT_INTEGER, but its size is 32 bits
-~ because of the size specification.

type J is range 0 .. 255;

for I'SIZE use 8;

--J is derived from INTEGER, but its size is 8 bits because
- of the size specification.

type N Is new J range 80 .. 100;
- N is indirectly derived from INTEGER, but its size is
- 8 bits because N inherits the size specification of J.

Support for Representation Clauses 19

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

4.3 Floating Point Types

There are three predefined floating point types in the Alsys implementation for 180x86
machines:

type SHORT_FLOAT is
digits 6 range (2.0 - 2.0**(-23))*2.0°*127 .. (2.0 - 2.0°*(-23))*2.0**127,

type FLOAT is
digits 6 range -(2.0 - 2.0°*(-23))*2.0**127 .. (2.0 - 2.0°*(-23))*2.0°*127;

type LONG_FLOAT Is
digits 15 rangs -(2.0 - 2.0°(-51))*2.0**1023 .. (2.0 - 2.0°*(-51))*2.0**1023;

Note that SHORT_FLOAT has the <aine range as FLOAT.

43.1 Floating Point Type Representation
A floating point type declared by a declaration of the form:

type T is digits D [range L . R};
is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

In the program generated by the compiler, floating point values are represented using
the [EEE standard formats for single and double floats.

The values of the predefined types SHORT_FLOAT and FLOAT are represented using the
single float format. The values of the predefined type LONG_FLOAT are represented
using the double float format. The values of any other floating point type are represented
in the same way as the values of the predefined type from which it derives, directly or
indirectly,

Appendix F, Version 5

43.2 Floating Point Type and Object Size

The minimum possible size of a floating point subtype is 32 bits if its base type is
SHORT_FLOAT or FLOAT or a type derived from SHORT_FLOAT or FLOAT; it is 64 bits
if its base type is LONG_FLOAT or a type derived from LONG_FLOAT.

The sizes of the predefined floating point types SHORT_FLOAT and FLOAT is 32 bits
and LONG_FLOAT is 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32 or 64 bits).

An object of a floating point subtype has the same size as its subtype.

4.4 Fixed Point Types

44.1 Fixed Point Type Representation

If no specification of smatl applies to a fixed point type, then the value of small is
determined by the value of delta as defined hy RM 3.5.9.

A specification of small can be used to impose a value of smail. The alue of small is
required to be a power of two.

To implement fixed point types, the Alsys FirstAda compiler uses a set of anonymous
predefined types of the form:

type SHORT_FIXED is delta D range (-2.0°*7-1)*S .. 2.0**7°S;
for SHCRT_FIXED'SMALL use S;

type FIXED is delta D range (-2.0**15-1)*S .. 2.0**15°S;
for FIXED'SMALL use S;

type LONG_FIXED isdelta Dran, . '0°*31-1)*S.. 2.0**31°S;
for LONG_FIXED'SM. .. 3

where D is any real value anc .. any power of two less than or equal to D.

Support for Representation Clauses 21

A fixed point type declared by a declaration of the form:
type Tisdelta Drange L . R;

possibly with a small specification:
for TSMAIL use S;

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose smali and delta are the same as the small
and deita of T and whose range is the shortest that includes the values L to R inclusive.

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V/FBASE'SMALL

4.4.2 Fixed Point Type and Object Size
Minimum size of a fived point subtyps

The minimum possible size of a fixed point subtype is the minimum number of binary
digits that is necessary for representing the values of the range of the subtype using the
small of the base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being

the bounds of the subtype, if i and I are the integer representations of m and M, the

smallest and the greatest model numbers of the base type such thats <mand M < S,

then the minimum size L is determined as follows. For i >= 0, L is the smallest positive

mtergcr such that I <;12L‘ Fori< 0, L is the smailest positive integer such that -
=jandI <=2""-1.

type F is delts 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
- The minimum size of S is 7 bits.

subtype DisSrange X. Y;

-- Assuming that X and Y are not static, the minimum size of D is 7 bits
- (the same as the minimum size of its type mark S).

22 ’ Appendix F, Version 5

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORT_FIXED, FIXED and LONG_FIXED
are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly. For example:

type S is delta 0.01 range 0.8 .. 1.0;
-- S is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is deita 001 range 0.0 .. 2.0;
-- Fis derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new Frange 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied 1o a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is deita 0.01 range 0.8 .. 1.0;

for S'SIZE use 32;

- S is derived from an 8 bit predefined fixed type, but its size is 32 bits
- because of the size specification.

type F is deita 0.01 rang. 0.0.. 2.0;

for F'SIZE use §;

— Fis derived from a 16 bit predefined fixed type, but its size is 8 bits
-- because of the size specification.

type N is new Frange 0.8 .. 1.0;

- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 8 bits because N inherits the size specification of F.

Support for Representation Clauses 23

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

4.5 Access Types and Collections
Access Types and Objects of Access Types

The only size thai can be specified for an access type using a size specification is its usual
size (32 bits).

An object of an access subtypc has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

Collection Size

As described in RM 13.2, a specification of coliection size can be provided in order to
reserve storage space for the collection of an access type.

When no STORAGE_SIZE specification applies to an access type, no storage space is
reserved for its collection, and the value of the attrioute STORAGE_SIZE is then 0.

The maximum size allowed for a collection is 64k bytes.

4.6 Task Types
Storage for a task activation

As described in RM 13.2, 2 length clause can be used to specify the storage space (that is,
the stack size) for the activation of each of the tasks of a given type. Alsys also allows the
task stack size, for all tasks, to be established using a Binder option. If a length clause is
given for a task type, the value indicated at bind time is ignored for this task type, and the
length clause is obeyed. When po length clause is used to specify the storage space to be

24 Appendix F, Version 5

|
l

reserved for a task activation, the storage space indicated at bind time is used for this
activation.

A length clause may not be applied to a derived task type. The same storage space is
reserved for the activation of a task of a derived type as for the activation of a task of the

parent type.
The minimum size of a task subtype is 32 bits.

A size specification has no effect on a task type. The only size that can be specified using
such a length clause is its usual size (32 bits).

An object of a task subtype has the same size as its subtype. Thus an object of a task '
subtype is always 32 bits long.

4.7 Array Types

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same sizc.

4.7.1 Array Layout and Structure and Pragma PACK

ooooo

prisase

i e
Component Gap Component Gap

b
reteEies
Gap

Component

If pragma PACK is not specified for an array, the size of the components is the size of the
subtype of the components:

Support for Representation Clauses 25

type A is array (1 .. 8) of BOOLEAN;
- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL_DIGIT is range 0 .. 9;
for DECIMAL_DIGIT'SIZE use 4;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL_DIGIT;
-- The size of the type DECIMAL_DIGIT is 4 bits. Thus in an array of
- type BINARY_CODED_DECIMAL each component will be represented on
— 4 bits as in the usual BCD representation.

If pragma PACK is specified for an array and its components are neither records nor
arrays, the size of the components is the minimum size of the subtype of the components:

type A is array (1 .. 8) of BOOLEAN;

pragma PACK(A);

- The size of the components of A is the minimum size of the type BOOLEAN:
-~ 1bit.

type DECIMAL _DIGIT is range0..9,
for DECIMAL_DIGIT'SIZE use 32;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL_DIGIT;
pragma PACK(BINARY_CODED_DECIMAL);
- The size of the type DECIMAL_DIGIT is 32 bits, but, as
- BINARY_CODED_DECIMAL is packed, eack component of an array of this
-~ type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays, since records and arrays may be assigned addresses consisteni with the
alignment of their subtypes.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
£4p is chosen so that the relative displacement of consecutive components is a multiple

26 Appendix F, Version 5

of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

typeRis
record
K:INTEGER;
B : BOOLEAN;
end record;
for R use
record
KatOrangeO.. 15;
Bat2range0..0;
end record;
-- Record type R is byte aligned. Its size is 17 bits.

type A is array (1.. 10) of R;
-- A gap of 7 bits is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 240 bits.

2232 biand 23

X 8 |33 = =
sl K B || K B ||

=8 : i

Component Gap Component Gsp Component Gap

Array of type A: each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are insciied:

typeR is
record
K:INTEGER;
B : BOOLEAN;
end record;

type Aisarray (1..10) of R;

pragma PACK(A);

-- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 270 bits.

Support for Representation Clauses T 27

type NR is new R;
for NR'SIZE use 24;

type Bis array (1.. 10) of NR;

- There is no gap in an array of type B because
— NR has a size specification.

- The size of an object of type B will be 240 bits.

|
X 8 X 8 X s ||
Componesnt Component
Array of ype A or B

4.7.2 Array Subtype and Object Size

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components by
the sum of the size of the components and the size of the gaps (if any). If the subtype is
unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

s if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

» if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps. The consequence of packing an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

28 Appendix F, Version 5

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of the
object.

4.8 Record Types

4.8.1 Basic Record Structure
Layout of a record

Each record is allocated in 2 contiguous area of storage units. The size of a record
component depends on its type.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM 13.4. In the Alsys FirstAda
implementation there is no restriction on the position that can be specified for a
component of a record. If a component is not a record or an array, its size can be any size
from the minimum size to the size of its subtype. If a component is a record or an array,
its size must be the size of its subtype.

type DEVICE_INFO_RECORD is

record

BITIS : BOOLEAN; -~ Bit 15 (reserved)

CTRL : BOOLEAN; -- Bit 14 (true if control strings processed)
NETWORK : BOOLEAN; -- Bit 13 (true if device is on network)
8IT12 : BOOLEAN; -- Bit 12 (reserved)

BIT1T : BOOLEAN; ~-- Bit 11 (reserved)

BIT10 : BOOLEAN; -- Bit 10 (reserved)

8179 T BOOLEAN; -- Bit 9 (reserved)

BIT8 : BOOLEAN; -- Bit 8 (reserved)

ISDEV : BOOLEAN; -- Bit 7 (true if device, false if disk file)

Support for Representation Clauses - 29

EOF : BOOLEAN; -~ Bit 6 (true if at end of file)

BINARY : BOOLEAN; -- Bit 5 (true if binary (raw) mode)

BIT4 : BOOLEAN; -- 8it 4 (reserved)

ISCLK : BOOLEAN; ~-- Bit 3 (true if ctock device)

ISNUL : BOOLEAN; -- Bit 2 (true if NUL device)

ISCOT : BOOLEAN; -~ 8it 1 (true if console output device)

ISCIN : BOCLEAN; -- Bit 0 (true if console input device)
end record;

for DEVICE_INFO_RECORD use

record
8IT15 at 1 range 7 .. 7; -- Bit 15
CTRL at 1 ranga 6 .. 6; -- Bit 14
NETWORK at 1 range 5 .. 5; -- Bit 13
BIT12 at 1 range & .. 4; -- Bit 12
BITN st 1range3 .. 3; --Bit 11
BITI0 at 1 range2 .. 2; -~ Bit 10
BIT9 at 1 remge 1 .. 1; --8it9
8118 at Trange 0 .. 0; --8it8
1SOEV atOramge 7 .. 7; --8it7
EOF at O range 6 .. 6; ~-- Bit 6
BINARY at O range5 ..5 -- &its$s
BITé atOrangeé ..4; --Bité
1scLx at Crange3 .. 3 --Bit3
ISNUL at O range 2 .. 2; -- Bit 2
1scoT st Orange? ..1; --8it1
ISCIN at Orange 0 .. 0; --BitO

end record;

Pragma PACK has no effect on records. It is unnecessary because record representation
clauses provide full control over record layout.

A record representation clause need not specify the position and the size for every
component. If no component clause applies to a component of a record, its size is the
size of its subtype.

30 Appendix F, Version 5

4.8.2 Indirect Components
‘OFFSET

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Beginning of the record

Compile time offset
DIRECT

Compile time offset
OFFSET

Run time offset
INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components:
type DEVICE is (SCREEN, PRINTER);
type COLOR is (GREEN, RED, BLUE);
type SERIES is array (POSITIVE range <>) of INTEGER,;
type GRAPH (L : NATURAL) is
record
X : SERIES(1 .. L); - The size of X depends on L
Y :SERIES(1..L); -- The size of Y depends on L.
end record;

Q : POSITIVE;

Support for Representation Clauses 31

type PICTURE (N : NATURAL; D : DEVICE) is
record
F : GRAPH(N); - The size of F depends on N
S : GRAPH(Q); - The size of S depends on Q
caseDis
when SCREEN =>
C: COLOR;
when PRINTER =>
null;
end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

32

D = SCREEN D = PRINTER
N=2 N=1
8eginning of the record
S OFFSET S OFFSET

Compile time offsets
F OFFSET F OFFSET
N N
annannanny e by
LR ELLLLLL LS EKLRLKCK ECLELCCTE] LKL
L
0 D
P oS
— —
c - -
Run time offsets - F -
- F -
- - - s -
- s -

The record type PICTURE: F and S are placed at the end of the record

Appendix F, Version 5

Note that Ada does not allow representation clauses for record components with non-
static bounds [RM 13.4.7], so the compiler’s grouping of dynamic components does not
conflict with the use of representation clauses.

Because of this approach, the only indirect components are dynamic components. But
not all dynamic components are necessarily indirect: if there are dynamic components in
a component list which is not followed by a variant part, then exactly ore dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
situation):

Beginning of the record

Y OFFSET
Compile time offset
L
S
— Compile time offset
X Size dependent on discriminant L
— Run time offset
Y Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of ap indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store
the size of any value of the record type (the maximum potential offset). The compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0.. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name COFFSET.

Support for Representation Clauses 33

4.83 Implicit Components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid
recomputation (which would degrade performance) the compiler stores this information
in the record objects, updates it when the values of the discriminants are modified and
uses it when the objects or its components are accessed. This information is stored in
special components called implicit components.

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD_SIZE and the other VARIANT_INDEX.

On the other hand an implicit component may be used to access a-given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAY_DESCRIPTORs or
RECORD_DESCRIPTORS.

'RECORD_SIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defauited. It contains the size of the storage space
necessary to stcre the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD_SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0.. MS.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'RECORD_SIZE. This
allows user control over the position of the implicit component in the record.

34 Appendix F, Version 5

'VARIANT .INDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when
a discriminant check is to be done. .

Component lists in variant parts that themselves do not contain a variant part are
numbered. These numbers are the possible values of the implicit component
VARIANT_INDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record
SPEED : INTEGER;
case KIND is
when AIRCRAFT | CAR =>
WHEELS : INTEGER;
case KIND Is
when AIKCRAFT => -1
WINCSPAN : INTEGER;
when others => -2
null;
end case;
when BOAT => -3
STEAM : BOOLEAN;
when ROCKET => -4
STAGES : INTEGER;
end case;
end record;

The value of the variant index indicates the set of components that are present in a
record value:

Varisnt {ndex (114
1 (XIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (XIND, SPEED, STEAM)
4 {KIND, SPEED, STAGES)

Support for Representation Clauses 35

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given componeat is present in the value:

Component Intervel
KINO --

SPEED .-

WHEELS 1..2
WINGSPAN 1..1
STEAM 3..3
STAGES 4 .. 4

The implicit component VARIANT INDEX must be large enough to store the number V
of component lists that don’t contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose range is 1. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANT_INDEX. This
allows user control over the position of the implicit component in the record.

"ARRAY_DESCRIPTOR

An implicit component of this kind is associated by the compilei with each record
component whese subtype is an anonymous array subtype that depends on a discriminant
-of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, size of the component
may be obtained using the ASSEMBLY parameter in the COMPILE command.

The compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as having
an anonymous array type. If C is the name of the record component whose subtype is
described by the array descriptor, then this implicit component can be denoted in a
component clause by the implementation generated name CARRAY_DESCRIPTOR.
This allows user control over the position of the implicit component in the record.

36 Appendix F, Version 5

’RECORD_DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, the size of the
component may be obtained using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind RECORD_DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORD_DESCRIPTOR. This allows user control over the position of the implicit
component in the record.

Suppression of Implicit Components

The Alsys implementation provides the capability of suppressing the implicit
components RECORD_SIZE and/orVARIANT _INDEX from a record type. This can be
done using an implementation defined pragma called IMPROVE. The syntax of this
pragma is as follows: ’

pragma IMPROVE (TIME | SPACE, [ON =>] simple_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. Ifon
the other hand SPACE is specified, the compiler only inserts a VARIANT_INDEX or
RECORD_SIZE component if this component appears in a record representation clause
that applies to the record type. A record representation clause can thus be used to keep
one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Support for Representation Clauses 37

4.8.4 Size of Record Types and Objects
Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size is not computed at compile time

» when the record subtype has non-static constraints,

« when a component is an array or a record and its size is not computed at compile
time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype
An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8k bytes. If the size of the subtype is greater than this, the object
has the size necessary to store its current value; storage space is allocated and released as
the discriminants of the record change. .

38 Appendix F, Version 5

Section 5

Conventions for Implementation-Generated Names

The following forms of implementation-generated names [13.4(8)] are used to denote
implementation-dependent record components, as described in Section 4.8 in the
sections on indirect and implicit components:

C'OFFSET
R'RECORD_SIZE
R'VARIANT _INDEX
R'’ARRAY_DESCRIPTORS
R'RECORD_DESCRIPTORS

where C is the name of a record comiponent and R the name of a record type.

The following predefined packages are reserved to Alsys and cannot be recompiled:
ALSYS_BASIC_IO
ALSYS_ADA_RUNTIME

ALSYS_BASIC_DIRECT_IO
ALSYS_BASIC_SEQUENTIAL_IO

Conventions for Implementation-Generated Names 39

40

Appendix F, Version 5

Section 6

Address Clauses

6.1 Address Clauses for Objects

An address clanse can be used to spzcify an address for an object as described in RM 13.5.
When such a clause applies to ap ubject the compiler does not cause storage to be
allocated for the object. The program accesses the object using the address specified in
the clause. Itis the responsibility of the user therefore to make sure that a valid
allocation of storage has been done at the specified address.

An address clause is not allowed for task objects, for unconstrained records whose size is
greater thae 8k bytes or for a constant.

There are a number of ways to compose a legal address expression for use in an address
clause. The most direct ways are:

s For the case where the memory is defined in Ada as another object, use the
"ADDRESS attribute to obtain the argument for the address clause for the second
object.

« For the case where the desired location is memory defined in assembly or another
non-Ada language (is relocatable), an interfaced routine may be used to obtain the
appropriate address from referencing information known to tiae other language.

s For the case where an absolute address is known to the programmer, use the
function SYSTEM.VALUE. This function has one (1) parameter of type siring. ‘The
string is of the form "sss:0000°. The length is 9, and the "’ is required to separate the
segment and offset portion of the address. SYSTEM.VALUE returns a value of type
SYSTEMLADDRESS. The string representing the desired address can be passed as
the actual parameter to SYSTEM.VALUE in the simpie expression part of the
address clause. See Section 3 for the specification of package SYSTEM.

In ail cases other than the use of an address attribute, the programmer must ensure
that the segment part of the argument is a selector if the program is to run in
protected mode. Refer to the Application Developers’ Guide, Section 5.1.5 for more
information on protected mode machine oriented programming,

Address Clauses . 41

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Interrupt Entries

Address clauses for interrupt entries are supported. (See Chapter 7 of the Application
Developer’s Guide for details.)

42 . Appendix F, Version 5

Section 7

Unchecked Conversions

Unchecked type conversions are described in [13.10.2]. The following restrictions apply
to their use:

s Unconstrained arrays are not allowed as target types. Unconstrained record types
without defauited discriminants are not allowed as target types. Access types to
unconstrained arrays are not allowed as target or source types. Notes also that
UNCHECKED_CONVERSION cannot be used for an access to an unconstrained
string.

= If the target type has a smaller size than the source type then the target is made of
the least significant bits of the source.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the eifect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

a If an unchecked conversion of a scalar or access source type to a composite target
type is performed, the resuit is a copy of the source operand. The result has the size
of the source.

» If an unchecked conversion of a composite source type to a scalar or access target
type is performed, the result is a copy of the source operand. The result has the size
of the target.

Unchecked Conversions 43

44

Appendix F, Version 5

Section 8

Input-Output Packages

The RM defines the predefined input-output packages SEQUENTIAL_IO, DIRECT_IO,
and TEXT_IO, and describes how to use the facilities available within these packages.
The RM also defines the package IO_EXCEPTIONS, which specifies the exceptions that
can be raised by the predefined input-output packages.

In addition the RM outlines the package LOW_LEVEL_IO, which is concerned with low-
level machine-dependent input-output, such as would possibly be used to write device
drivers or access device registers. LOW_LEVEL_IO has not been implemented. The use
of interfaced subprograms is recommended as an alternative.

8.1 Correspondence between External Files and DOS Files

Ada input-output is defined in terms of cxternal files. Data is read from and written to
external files. Each external file is implemented as a standard DOS file, including the use
of STANDARD_INPUT and STANDARD_OUTPUT.

The name of an external file can be either
s the null string
» aDOS filename
s 2 DOS special file or device name (for example, CON and PRN)

If the name is a null string, the associated external file is a temporary file and will cease
to exist when the program is terminated. The file will be placed in the current directory
and its name will be chosen by DOS.

If the name is a DOS filename, the filename will be interpreted according to standard
DOS conventions (that is, relative to the current directory). The exception
NAME_ERROR is raised if the name part of the filename has more than 8 characters or if
the extension part has more than 3 characters.

Inpus-Output Packages 45

If an existing DOS file is specified to the ..CREATE;CREATE procedure, the contents
of the file will be deleted before writing to the file,

If a non-existing directory is specified in a file path name to CREATE, the directory will.
not be created, and the exception NAME_ERROR is raised.

8.2 Error Handling

DOS errors are translated into Ada exceptions, as defined in the RM by package
IO_EXCEPTIONS. In particular, DEVICE_ERROR is raised in cases of Jdrive not ready,
unknown media, disk full or 8.3 The FORM Parameter

The form parameter is a string, formed from a list of attributes, with attributes separated
by commas. The string is not case sensitive. The attributes specify:

« Buffering
BUFFER _SIZE = > size_in_bytes

« Appending
APPEND => YES | NO

s Truncation of the name by DOS
TRUNCATE => YES | NO

» DIRECT IO on UNCONSTRAINED objects
RECORD_SIZE = > size_in_bytes

where: '

BUFFER_SIZE: Controls the size of the internal buffer. This option is not sup-
ported for DIRECT_IO. The default value is 1024. This option has no effect when
used by TEXT_IO with an external file that is a character device, in which case the
size of the buffer will be 0.

APPEND: If YES output is appended to the end of the existing file. If NO output
overwrites the existing file. This option is not supported for DIRECT_IO. The
default is NO. '

46 ' : Appendix F, Version 5

TRUNCATE: If YES the file name will be automatically truncated if it is bigger than
8 characters. The default value is NO, meaning that the exception NAME_ERROR
will be raised if the name is too long.

RECORD_SIZE: This option is supported only for DIRECT_IO. This attribute
controls the logical record length of the external file.

- When DIRECT_IO is instantiated with an unconstrained type the user is
required to specify the RECORD_SIZE attribute (otherwise USE_ERROR will
be raised). The value given must be larger or equal to the largest record which
is going to written. If a larger record is processed the exception USE_ERROR
will be raised.

- When DIRECT _IO is instantiated with a constrained type the user is not
required to specify the RECORD_SIZE but if the RECORD_SIZE is specified
the only possible value would be the element size in bytes. Any other values
will raise USE_ERROR.

The exception USE_ERROR i raised if the form STRING in not correct or if a non
supported attribute for a given package is used.

Example:
FORM => "TRUNCATE => YES, APPEND => YES, BUFFER_SIZE => 20480"

8.4 Sequential Files

For sequential access the file is viewed as a sequence of values that are transferred in the
order of their appearance (as produced by the program or run-time environment). This

is sometimes called a stream file in other operating systems. Each object in a sequential

file has the same binary representation as the Ada object in the executable program.

Input-Output Packages 47

8.5 Direct Files

For direct access the file is viewed as a set of elements occupying consecutive positions in
a linear order. The position of an element in a direct file is specified by its index, which is
an integer of subtype POSITIVE_COUNT.

DIRECT _IO only allows input-output for constrained types. If DIRECT IO is instantiated
for an unconstrained type, all calls to CREATE or OPEN will raise USE_ERROR. Each
object in a direct file will have the same binary repres=ntation as the Ada object in the
executable program. All elements within the file will have the same length.

8.6 Text Files

Text files are used for the input and output of information in ASCII character form.
Each text file is a sequence of characters grouped into lines, and lines are grouped iato a
sequence of pages.

All text file column numbers, line numbers, and page numbers are values of the subtype
POSITIVE_COUNT.

Note that due to the definitions of line terminator, page terminator, and file terminator
in the RM, and the method used to mark the end of file under DOS, some ASCII files do
not represent well-formed TEXT_IO files.

A text file is buffered by the Runtime Executive unless
= it names a device (for example, CON or PRN).
s itis STANDARD_INPUT or STANDARD_OUTPUT band has not been redirected.

If not redirected, prompts written to STANDARD_OUTPUT with the procedure PUT will
appear before (or when) a GET (or GET_LINE) occuss.

The functions END_OF_PAGE and END_OF_FILE always return FALSE when the file is a
device, which includes the use of the file CON, and STANDARD_INPUT when it is not
redirected. Programs which would like to check for end of file when the file may be a
device should handle the exception END_ERROR instead, as in the following example:

48 . Appendix F, Version 5

Example

begin
loop
-- Display the prompt:
TEXT_LO.PUT (%--> ®);
- Read the next line:
TEXY_IO.GET_LINE (COMMAND, LASY);
== Now do something with COMMAND (1 .. LAST)
end loop;
exception
when TEXT_IO.END_ERROR =>
nutl;
end;

END_ERROR is raised for STANDARD_INPUT when ~ Z (ASCILSUB) is entered at the
keyboard.

8.7 Access Protection of External Files

All DOS access protections exist when using files under DOS. If a file is open for read
only access by one process it can not be opened by another process for read/write access.

8.8 The Need to Close a File Explicitly

The Runtime Executive will flush all buffers and close all open files when the program is
terminated, either normaily or through some excepticn.

However, the RM does not define what happens when a program terminates without
closing all the opened files. Thus a program which depends on this feature of the
Runtime Executive might have problems wher ported to another system.

8.9 Limitation on the Procedure RESET

An internal file opened for input cannot be RESET for output. However, an internal file
opened for output can be RESET for input, and can subsequently be RESET back to
output.

Input-Output Packages 49

8.10 Sharing of External Files and Tasking Issues

Several internal files can be associated with the same external file only if all the internal
files are opened with mode IN MODE. However, if a file is opened with mode
OUT_MODE and then changed to IN_MODE with the RESET procedure, it cannot be
shared.

Care should be taken when performing multiple input-output operations on an external
file during tasking because the order of calis to the /O primitives is unpredictable. For
example, two strings output by TEXT_IO.PUT_LINE in two different tasks may appear in
the output file with interieaved characters. Synchronization of I/O in cases such as this is
the user’s responsibility.

The TEXT_IO files STANDARD_INPUT and STANDARD_OUTPUT are shared by all
tasks of an Ada program.

If TEXT_IO.STANDARD_INPUT is not redirected, it will not block a program on input.
All tasks not waiting for input will continue running.

50 Appendix F, Version 5

Section 9

Characteristics of Numeric Types

9.1 Integer Types
The ranges of values for integer types declared in package STANDARD are as follows:

SHORT_INTEGER -128 ., 127 .= 27 - 1
INTEGER -32768 .. 32767 - 215 -1
LONG_INTEGER ~2147483648 .. 2147483647 - 2%*31 -1

For the packages DIRECT_IO and TEXT_IO, the range of values for types COUNT and
POSITIVE_COUNT are as follows:

COUNT 0 .. 2167483647 . 20*31 - %

POSITIVE_COUNT 1 .. 2147483647 e 2**31 -1

For the package TEXT_IO, the range of values for the type FIELD is as follows:

FIELD 0..25 - 2**8 - 1

9.2 Floating Point Type Attributes

s SHORT_FLOAT LONG_FLOAT
o and FLOAT
N"éxcm 6 15
WANTISSK 21 51
EMAX - 8% 204

Characteristics of Numeric Types) 31

EPSILON
LARGE
SAFE_EMAX
SAFE_SMALL
SAFE_LARGE
FIRST

LAST
MACHINE_RADIX
MACHINE_EMAX
MACHINE_EMIN

MACHINE_ROUNDS

MACHINE_OVERFLOWS

SIZE

9.53674E-07
1.93428E+25
125
1.17549¢-38
4.25353E+37
-3.40282E+38
3.40282£+38
2
128
-125
true
false

32

9.3 Attributes of Type DURATION

DURATION'DELTA
DURATION ' SHALL
DURATION' FIRST
DURATION*LAST

DURAT IOH* LARGE

52

2.0 ** (-14)
2.0 ** (-14)
-131_072.0
131_072.0

sade as DURATION!LAST

8.88178E-16
2.57110E+61
1021
2.22507E-308
2.26712E+307
~1.T9769E+308
1.79769E+308
2
1024
-1021
true

. false

Appendix F, Version 5

Section 10

Other Implementation-Dependent Characteristics

10.1 Use of the Floating-Point Coprocessor

Floating point coprocessor instructions are used in programs that perform arithmetic on
floating point values in some fixed point operations and when the FLOAT_IO or
FIXED_IO packages of TEXT_IO are used. The mantissa of a fixed point value may be
obtained through a conversion to an appropriate integer type. This conversion does not
use floating point operations. Object code running on an 80286 or 80386 using floating
point instructions does not require the coprocessor, since software floating point
emuiation is provided (see Binder option FLOAT in User’s Guide, Section 5.2). Object
code running on an 8086, 8088 or 80186 does require an 8087 coprocessor, since 8087
software emulation is not supported. See Appendix D of the Application Developer’s
Guide for more details.

The Runtime Executive will detect the absence of the floating point coprocessor if it is
required by a program and will raise CONSTRAINT_ERROR.

10.2 Characteristics of the Heap

All objects created by allocators go into the heap. Also, porions of the Runrime Execu-
rive representation of task objects, including the task stacks, are allocated in the heap.

UNCHECKED_DEALLOCATION is implemented for all Ada access objects except access
objects to tasks. Use of UNCHECKED_DEALLOCATION on a task object will lead to
unpredictable resuits.

All objects whose visibility is linked to a subprogram, task body, or block have their
storage reclaimed at exit, whether the exit is normal or duc to an exception. Effectively
pragma CONTROLLED is automaticaily applied to all access types. Moreover, all
compiler temporaries on the heap (generated by such operations as function calls
returning unconstrained arrays, or many concatenations) allocated in a scope are
de~llocated upon leaving the scope.

Other Implementation-Dependent Characteristics ' 53

Note that the programmer may force heap reclamation of temporaries associated with
any statements by enclosing the statement in a begin .. end block. This is especially
useful when complex concatenations or other heap-intensive operations are performed
in loops, and can reduce or eliminate STORAGE_ERRORs that might otherwise occur.

The maximum size of the heap is limited only by available memory. This includes the
amount of physical memory (RAM) and the amount of virtual memory (hard disk swap
space).

10.3 Characteristics of Tasks

The default task stack size is 1K bytes (32K bytes for the environment task), but by using
the Binder option STACK.TASK the size for all task stacks in a program may be set to a
size from 1K bytes to 64K bytes.

Normal priority rules are followed for preemption, where PRIORITY valué are in the
range 1.. 10. A task with undefined priority (no pragma PRIORITY) is considered to be
Iower than priority 1.

The maximum number of active tasks is restricted only by memory usage.

The accepter of a rendezvous executes the accept body code in its own stack.
Rendezvous with an empty accept body (for synchronization) does not cause a context
switch.

The main program waits for oompleuon of all tasks dependent upon library packages
before terminating.

Abnormal completion of an aborted task takes place immediately, except when the ab-
normal task is the caller of an entry that is engaged in a rendezvous, or if it is in the
process of activating some tasks. Any such task becomes abnormally completed as soon
as the state in question is exited.

The message -
GLOBAL BLOCKING SITUATION DETECTED

is printed to STANDARD_OUTPUT when the Runtime Executive detects that no further
progress is poasiblc for any task in the program. The execution of the program is then
abandoned.

54 Appendix F, Version 5

Qe e, e e, Dy AR P 2

10.4 Definition of a Main Subprogram

A library unit can be used as a main subprogram if and only if it is a procedure that is not
generic and that has no formal parameters.

FirstAda imposes no additional ordering constraints on compilations beyond those
required by the language.

Other Implementation-Dependent Characteristics 55

LA

ihoaran,

ve .
™
.
LA
e,

. N
R T
- S RS

i s
o o ~

P A 7% 4
- P 4 "

s - *
8 .

56

Section 11

Limitations

11.1 Compiler Limitations

The maximum identifier length is 255 characters.

The maximum line length is 255 characters.

The maximum number of unique identifiers per compilation unit is 2500.
The maximum number of compilation units in a library is 1000.

The maximum number of Ada libraries in a family is 15.

11.2 Hardware Related Limitations

The maximum amount of data in the heap is limited only by available memory.

If an unconstrained record type can exceed 4096 bytes, the type is not permitted
(unless constrained) as the element type in the definition of an array or record type.

The maximum size of the generated code for a single compilation unit is 65535

bytes.

The maximum size of a single array or record object is 65522 bytes. An obj:ect
bigger than 4096 bytes will be indirectly allocated. Refer to ALLOCATION
parameter in the COMPILE command. (Section 4.2 of the User’s Guide.)

The maximuem size of a single stack frame is 32766 bytes, including the data for
inner package subunits unnested to the parent frame.

The maximum amount of data in the global data area is 65535 bytes, including
compiler generated data that goes into the GDA (about 8 bytes per compilation unit
plus 4 bytes per externally visible subprogram).

Limitations 57

58

Appendix F, Version 5

MY LTSS AYE | gD e
e o ~ -
v t v

Abnorma} completion 54
Aborted task 54

Access protection 49

Access types 24

Allocators 53

APPEND 46

Application Developer’s Guide 3
Array gaps 6

Array subtype 7

Array subtype and object size 28
Array type 7
ARRAY_DESCRIPTOR 3¢
ASSEMBILER 3

Auribu*s of typ2 DURATION 52

Basic record structure 29
Binder 54
BUFFER _SIZE 46
Buffered files 43
Buflers

flushing 49

c3

Characteristics of tasks 54

Collection size 24

Collections 24

Column numbers 48

Compiler limitations 57
maximum identifier le:ngm
maxitgum fine leagth 57

maxmag: aumber of Ads libraries

“"‘.‘ 4
ﬁﬂ’ Rk

ut'tnumber of compilation

T wEn 57 -
maximom rumbes of unique
ientifiers 57

nnetrained rimoe

e e R 1

)

-~

Irdlex

e ARPRRECAC L . i - = el 2
T T A e QRN TS kR 2L L

INDEX

I/Qon 48
Control Z 49
COUNT 51
CREATE 46, 48

Device name 45
DEVICE_ERROR. 46
DIGITS 51

Direct iles 48
DIRECT_IO 45,48, 51
Disk full 46

DOS conventions 45
DOS files 45

DOS Linker 4

DOS specia! file 45
Drive not ready 46
DURATIGN'DELTA 52
DURATION'FIRST 52
DURATIONLARGE 52
DURATICNLAST 32
DURATION'SMAIL 52

E’EXCEPTION_CODE 7
EMAX 51
Empty acoept body 54
END_ERROR 48, 49
END_OF_FILE 48
END_OF_PAGE 48
Enumeration lieral encoding 16
Enumeraticn subtype size 17
Enumeration types 16
EFSILON 52
Errors

disk fuil 46

drive not ready 46

hardwere 46

ol AL
UUMU\WU MEdia v

59

EXCEPTION_CODE
Attribute 7

FIELD 51
File closing

explicit 49
File names 45
File terminator 48
FIRST 52
Fixed point type represeniatiop 21
Fixed point type size 22
Floating point coprocessor 53
Floating point type attributes 51
Floating point type representation 20
Floating point type size 21
FORM parameter 46

GET 48

GET_LINE 48

GLOBAL BLOCKING SITUATION
DETECTED 54

Hardware errors 46
Hardware limitations
maximum amount of data in the
global data area 57
maximum data in the heap 57
maximum size of a single array or
record object 57
mazimum 2ize of the generated code
8T
Hardvare related limitations 57

o syncfxtonization 50
Implicit component 36, 37
Imrlicit components 34

650

IN_MODE 50
INDENT 5
Indirect record components 31
INTEGER 51
Integer type and object size 18
Integer type representation 18
Integer types 51
Intel object module format 4
INTERFACE 3,4
INTERFACE _NAME 3, 4
Interfaced subprograms 45
Interleaved characters 50
IO_EXCEPTIONS 45,46
IS_ARRAY

Attribute 7

LAXKGE 52

LAST 52

Layout of a record 25
Legal file names 45
Library unit 55
Limitations 57

Lipe numbers 48
Line terminator 438
LONG_INTEGER 51
LOW_LEVEL IO 45

MACHINTI_EMAX 52
MACHINE_EMIN 52
MACHINE_MANTISSA 52
MACHINE_OVERFLOWS 52
MACHINE_RADIX 52
MACHINE_ROUNDS 52
Maia program 54

Main subprogram 35
MANTISSA 51

Appendix ¥, Version 5

Maximum amount of data in the global
data area 57

Maximum data in the heap 57

Maximum identifier length 57

Maximum line length 57

Maximum number of Ada libraries 57

Maximum number of compilation units
57

Maximum number of umque identifiers
57

Maximum size of a single array or
record object 57

Maximum size of the generated code 57

NAME_ERROR 45, 46
Non-blocking /O 50
Number of active tasks 54

OPEN 48
Ordering of compilation units 55
OUT_MODE 30

PIS_ARRAY 7

PACK 5

Page numbers 48

Page termipator 48
Parameter passing 2
POSITIVE_COUNT 48, 51
Pragma IMFROVE. 5, 37
Prasvas DB ~

LB L. o .

Predefined packages 39

PRIORITY 5,54

Index

PUT 48
PUT_LINE 50

RECORD_DESCRIPTOR 37
RECORD _SIZE 24,37,47
Rendezvous 54
Representatior clauses 15
RESET 49,50

PO R RN S ST T Bl sy P e TR o s s,
a2 R TS Ry Y

Runtime Executive 2, 4, 48, 49, 53, 54

SAFE_EMAX 52
SAFE_LARGE 352
SAFE_SMALL 52
Sequential files 47
SEQUENTIAL_IO 45
Sharing of external files 50
SHORT_INTEGER 51
SIZE 52

Size of record types 38
SPACE 37
STANDARD_INPUT 45, 48, 49, 50

STANDARD_OUTPUT 45, 48, 50, 54

Storage reclamation at exit 33
STORAGE SIZE 24

Stream file 47

SUPPRESS 5
Synchronization of /O 50
SYSTEM 3

Task activation 24
Task stack size 24, 54
Task stacks 53
Task types 24
Tasking issues 50
Tasks

characteristics of 54

Tome Sim
LWAL LW

61

rey e,

buffered 48
Text files 48
TEXT_IO 45,51
TIME 37
TRUNCATE 47

UNCHECKED_DEALLOCATION 53
Unknown media 46
USE_ERROR 47, 48

Variant part 35
VARIANT_INDEX 35, 36, 37

oz

Appendix F, Version 5

