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Abstract

This research addresses the implementation of an electronic element,
which emulates the biological synaptic interconnection, in an artificial
electronic neural system. The basic interconnection, or the weight, consists
of an electrically reprogrammable, nonvolatile, analog conductance which
programs at 5V levels. In addition, the fabrication technology for this
synaptic interconnection is compatible with existing CMOS VLSI process.
The attractive features of this synaptic weight will be discussed in this
report. Furthermore, this report examines the material needs, the device
structures, the use of the synaptic weights in a two-tap weight linear
adaptive neural-like circuit and the issue of integrating both the synaptc
weight elements and the peripheral circuit onto a single silicon wafer.

1. Introduction

The current surge of enthusiasm for neural network aims to construct systems that can learn
or modify their behavior according to the environment. There are many similarities which exist
between this new class of machine and human beings. One of these similarities is the massive
parallelism in processing information. Parallel processing! concepts are in stark contrast to the
operations of modern digital computers that perform large numbers of sequential operations very

rapidly and accurately.

Researchers believe the synaptic junctions in a neural system are the local memory sites
and provide the physiological basis for the distributed parallel systems.? 3 These synapses are not
only modifiable but also serve the functions of storing and transmitting information from neuron to
neuron. To reduce the complex modelling required for the synaptic interconnection. the
representation of the synapse has been simplified to a single ideal junction between the output of
neurons taxons) and the inputs to neurons (dendrites). Synaptic modification requires information
from the input and the output of the neuron in order to perform complex recognition. Therefore. the
nature of the synaptic junction and the principle or algorithm which controls local organization at

the neuron level become two central issues pertaining to neural networks research.

The recent interest in neural networks* > is a direct consequence of the programmability
which is an essential feature of learning machines, associative memories. and adaptive signal
processors. Programmability requires a modification of the svnaptic strength in the language of
aeurobiology. If we seek an efficient hardware implementation of electronic neural svstems, then
the synapses - as well as the network itself- should be analog. Several attempts have been made to

realize programmable synapses, either digitally® or with temporary storage on the input capadtance
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of a MOS Transistor’ ® to alter the latter's analog conductance. The former approach stores the
weight information in digital registers and thus suffers from excessive chip area and power
consumption. On the other hand, although the MOS Transistor provides an analog svnaptic
strength (weight) in a small chip area, the weight is temporary and requires periodic refresh similar
to a DRAM. Thus, this dynamic refresh approach lacks the nonvolatility and storage properties of
an EEPROM cell. Researchers at Intel have reported an electrically trainable artificial neural
network with floating gate device as the synaptic element.? Although floating gate device has the
property of nonvolatility, its high programming voltage requirement prevents it from being

technologically compatible with scaled CMOS process.

In this research report we describe a new approach to obtain an electrically reprogrammable or
modifiable synaptic weight to be used as a basic functional element in electronic neural syvsiems.

The salient features of this network element are the following:

s Low programming voltages(5-10V) which are compatible with peripheral
CMOS VLSI technology in contrast with Floating Gate approaches.

* Low power dissipation (< 1uW).
¢ Dynamic Range of 1000:1 (60 dB).

» Nonvolatile features which mimic biological synapses with respect to memory
loss (e.g. 20% of the information available after 10 years) and reinforced
learning (e.g. successive interrogation enhances memory retention).

e Small synaptic area on a VLSI chip (e.g. less then 20um? for 1.25 um feature
sizes).

» Extensive erase/write programming cycles are possible with this synapse (>
108 cycles) in con‘rast with Floating Gate approaches.

e Inherent radiation damage resistance beyond a total dosage of 1IMRad (Co5"
and 1¢° Rad/sec transient which is not possible with Floating Gate technology.
Thus, if radiation damage resistance of neural networks is an important issue.
then the SONOS devices have demonstrated success in this area.

The basic nonvolatile device structure, which we describe in this report was first introduced as
a digital nonvolatile memory cell in the summer of 1987 at the IEEE Device Research Conference-*
by researchers at Lehigh University. We have had a continual invoivement vver a 20 vear period
with nonvolatiie memories. deginning in the late 60's where we had programming voitages of 25%. w0
the late 30's with our novel 5V SONOS device structures. During this time period we introduced the

use of CCD’s and nonvolatile memories*** = *° in nonvolatdie charge addressed memories

‘NOVCAM). These ideas have been emploved recently for neural network circuits by researchers at

[ 8]




Lincoln Laboratories.1# Our recent work recognizes the inherent analog conductance aspect of the
nonvolatile SONOS memory device which makes it a perfect candidate for the modifiable synapse in

an electronic neural system.

In addition to the realization of an electronic element to simulate the synaptic interconnections
of a neural network, we must have a method or algorithm to change or reprogram these
interconnections and, thus, alter the connectivity of the neural network. We have had experience
with a particular form of an algorithm, namely, the Widrow-Hoff Least Mean Square (LMS)!? error
algorithm or in neural network terminology - the so-called 'delta rule’. In the late 70’s we researcaed
a CCD Adaptive Analog Signal Processor®: 17 which realizes the ‘delta rule’ with CCD analog delay
lines and electrically reprogrammable MNOS analog conductance weights. These weights were
nonvolatile memory transistors whose analog conductance was programmed with voltages ranging
from 15-25V. Our recent work on ’scaling’ these programmable analog conductances has resuited in
a new device structure, called the SONOS nonvolatile memory transistor, which can be
reprogrammed with voltages ranging from 5-10V. This work has recently been described at the 1891
11th IEEE Nonvolatile Semiconductor Memory Workshop.18 These voltage levels are compatbie
with ‘scaled’ CMOS VLSI technology which has 12-15V breakdown voltages for 1.25um feature sizes.
In this report we describe our recent work on the electrically reprogrammable tmodifiable: SONCS
nonvolatile synapse and a simple electronic neuron with 2 synaptic weights. We discuss this two-tap
weight linear adaptive neuron in terms of the technology, the electrical characteristics or the

svnapses, and their performance in this simple test vehicle - a 'delta ruie’ adapuve signal processor.

2. Technology and Characterization of SONOS Synaptic Weight

The programmable svnapse is the result of an ongoing effort at Lehigh University to '~ -aie’ the
programming voltages required to alter the analog conductance of a nonvolatile memo:+v transistor
with a multi-layer (oxide-nitride-oxide! gate insulator as shown in Fig. 1. Recent ' .furts in scaiing
this device have resulted in a SONOS (SilicorvBlocking Osxide’NitrideeTunneiing Oxide Silicon:
nonvoiatile memory transistor which is electrically reprogrammable at CMOS voitage leveis.
Typically, the tunneling oxide is 13-25A , the storage nitride is 50-100s and the biocking oxide :s
35-30A . Fig.2 shows the Transmission Electron Microscope { TEM) snotograph of the cross seczcnal
view of the SONOS transistor. This device is similar to a SNCS -ransistor except for the addition of

the blocking oxide which is used to inhibit injection of carriers from the poivsilicon gate etectroge




‘and also to improve the memory retention by prohibiting the transfer of stored charge from the
nitride to the gate electrode. As the result, the blocking oxide permits ihe entire dielectric sandwich

to be scaled to dimensions where the programming voltages ranging from 5-10 V are possible.

When the SONOS device is subjected to a pusitive (or negative) programming pulse, electrons
(or holes) are injected into the silicon nitride layer by means of tunneling across the thin tunnel
oxide. The injected charges are trapped by the silicon nitride and thus shift the threshold voltage

positively (or negativelv). The threshold voltage of a SONOS transistor can be written as

Qe Xy X% V4 e, g Npog
V =¢)GS———+ —_— Qun + 20 + —0—m— —— ()
TH Ceﬁ' €ox EN ) N °B Ceﬁ'

where 0, is the bulk potential, 65g is the gate to semiconductor workfunction, Q; is the fixed charge
at the tunneling oxide-silicon interface, ¢,; and ey are the dielectric permittivities of the oxide and

nitride, & is the dielectric permittivity of the bulk silicon. x is the tunnel oxide thickness. x  is the

blocking oxide thickness, x is the nitride thickness, is the charge centroid in the insulator. and Qy

is the charge stored in the nitride. N is the bulk doping density, and
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We assume that the tunnel oxide and blocking oxide have the same dielectric permittivity; even
though, it is known that the tunnel oxide is silicon rich and the blocking oxide is an oxvnitride. The
values of the charge centroid £ and the charge stored in the nitride Qy will change as the device is

written or erased. The analog conductance of the SONOS synaptic weight may be written as
W . . .
84s = Heir 7 Cot Vs~ Vra! -
where L g is the effective carrier mobility. Vg is the read voltage. and Vyy is the electrically
modifiable threshold voltage given in equation (1). Therefore. there are two ways which the analog
channel conductance can be altered: (1) change the vaiue of V55 or (2} change the value of V. In

our study, the latter approach is chosen.

The SONOS transistors are characterized for their memory properties by using the test staton

described in Anirban Roy's Master's Thesis.}® This test station allows one to take both the




erase/write and retention measurements. To investigate the memory loss/retention properties of the
synaptic weight element, retention measurements are taken. The retention characteristics are
obtained by applying positive (negative) five volts to the gate for 10 seconds to place the device in the
write (erase) state and then measuring the turn-on voltage after a varying delay time. The turn-on
voltage is related to the threshold voltage by

2Ips

VT = VTH+*J——- (4;

B

with Ipg as the forced drain to source current during measurement and
W
B =T (T)Cerr 5

where W is the width of the transistor. L is the length of the transistor. and @i 4 is the effective
mobility. The effective mobility is the bulk mobility reduced by Coulombic and surface scattering of
carriers in the inversion layer. This mobility is influenced by the gate and substrate voltages.? For
a SONOCES transistor retention measurements indicate that greater than 20 percent of the memory
window remains after a projected 10 vear delay time as shown in Fig. 3. The erase/write
measurements indicate the programming speed of the synaptic weight element. To measure the
writing (erasing) speed, negative (positive) five volts are applied to the gate for 10 seconds to piace
the device in the erase (write) state. Then. positive (negative) five volts are applied to the gate with
varying pulse widths and the turn-on voltage is measured after each pulse width. The erase/write
characteristics of the SONOS memory transistor are shown in Fig. 4. A wide dynamic range is one
of the essential properties for the synaptic weight element. and Fig. 5 illustrates a 60 dB in dynamic
range after =5V programming for the SONOS swvnaptic weight. In addition. a recent study in
reliability has demonstrated the inherent resistance of the SONOS memory transistor o radiation
damage (3Vyy = 0.1V, with V5g = + 5V at 1MRad Co% radiation).*
3. Single-level Linear Adaptive Neuron

We have incorporated the SONOS svnaptic weights into a single-level linear neuron-ike
circuit using a Widrow-Hoff's delta learning rule.*> The arcait is built with a hybrid breadboard of
CMOS components for the control logic and the algorithm implementation and :he SONCS

and

o

nonvolatile memorv transistors to demonstrate the voltage levei compagbility of both SONC

CMOS technologies. Many researchers believe that the neural system is made up of several lavers’




of neurons and Fig. 6 shows the multi-layer architecture of an artificial neural network. The first
layer of neurons, the input layer. can be best thought as the sensory neurons in a human body. The
weight connections between the input layer and the middle hidden layer are normally considered to
be feedforward and fixed. On the other hand, the weight connections between the middle hidden
layer and the output layer are considered to be feedback in nature. Our work has concentrated on

the implementation of two neurons in the hidden layer and one output neuron as highlighted in the

figure.

Fig. 7 shows the block diagram of the single-level linear adaptive neuron. A desired response
(or external teacher), d(m), is presented to the neuron as the training signal. If the output of the
linear adaptive neuron is not trained, then there exists a mismatch between the output of the linear

adaptive neuron, y(m), and the desired response, d(m).
g(m) = dlm) — v(m) (6

where &tm) is the error generated. This error is then used by a learning aigorithm. namely the
Clipped-data Least Mean Error aigorithm. 1o minimize the error generated and thereby training the
neuron to the correct response. This singie-level linear adaptive neuron has wo tap weights. each
weight is composed of two SCNOS analog electrically reprogrammable conductances as shown in
Fig. 8. Since the synaptic weight must be either positive or negative in value, we have chosen a
differential weighting scheme. If the analog conductance connecting the positive summing path to
:he differential operational ampiifier is greater than the analog conductance connecting the negative
summing path to the differentia: operational ampilifier. then the weight is positive in value. On the
other hand. if the opposite case s true. then the weight is negative in vaiue. Positive weight vaiue
corresponds to the excitatory symaptc strength and the negative weight value corresponds to the

innibitory synaptic strength.

-

In operation, the input signal v is passed through a switched capacitor analog deiayv iine
where the input signal is samvied and delayed to create two tapped signal outputs x,/m and 3.m.
These tapped signals multipix o their corresponding programmabie weights W, and ¥, and the
resuit is summed linearly at the summing amplifier. The output »1m) can be 2spressed as:

i

Mm) = Y W.mhx, . .
=0




where m is the time index and & is the spatial indez. A correlated double sampling technique®%is
employed in the circuit to remove the unwanted noise and offset voltages introduced by the summing

amplifiers. The linear adaptive neuron is configured to perform Widrow-Hoff's delta rule as:

W (m+1) = W (m) + AW (m) 8

where A W(m) is the incremental weight to be calculated by the clipped-data least mean square error
(C-LMSE) algorithm?3:

AW (m) = 2ule(m)|-Sgnfe(m)] Sgnlx(m—k)] )

where U is the convergence factor. Compared to the regular Least Mean Square Error algorithm, the
input signal amplitude is clipped in the learning algorithm. This algorithm eliminates the usage of a
four quadrant multiplier needed for the LMS error algorithm. The sign multiplication in the
incremental weight calculation is essentially an Exclusive OR operation and the output of the
Exclusive OR gate controls the path of proper gate programming voltage for the SONOE symaptc
weight. If the convergence factor is small. then the system will minimize the misadjustment caused
by the variance of the weights; however. this also results in a long convergence time. Conversely. if
we choose to use a larger convergence factor. then the convergence time of the system is shortened
with the penalty of larger misadjustment. The backpropagating error is used to calculate the
adjustments to minimize the system error as shown in equation (9). Once the error is minimized.
the system is said to be in its steady state condition®* where the output of the system. vum.. is the

best match of the training signal, d(m). or the 'external teacher’.

The incremental weight update is essentially a cross correlation between the error and the
clipped input data vectors. The update stops when the two vectors become orthogonal. Sometimes.
the network may be overcerrected initally. however, the error will be quickly minimized dv the
learning algorithm and the system reaches its desired response. The digital delay line provides the
sign information of the input to the learning algorithm. A special steering network is designed :o
switch the proper programming voltages to the gate terminals of the SONOS transistors once the

incremental weights are caiculated.

=3




4. Experimental Results

There are two main types of characteristics from which the electrical performance of the linear
adaptive neuron can be evaluated. The first characteristic, namely the output and training signals
versus time characteristics, gives the information cn how well the output signal approximates the
training signal especially in the phase relationship between these two signals. The second
characteristic, namely the error signal versus time characteristics, shows how fast the linear
adaptive neuron adapts before it reaches its minimum error. A typical output and training signals
versus time characteristic consists of two parts: the initialized and the adapied part. In the
initialized part, the weights are first initialized to a known state (either the fully positive or the fully
negative state) and then the weights are subjected to a reading voltage to read out the weight
information and the output signal and the training signal are compared and recorded. The linear
adaptive neuron is then allowed to adapt itself to the training signal and the results are shown in
the adapted part of the characteristics. Figure 9 shows the output and training signal versus time

characteristic.

A typical error signal versus time characteristic is obtained with initialized weight values and
monitoring the error signal with time. OQur observation indicates the weight initialization scheme
affects the convergence behavior of the linear adaptive neuron. This phenomenon is attributed to
the nonsymmetric erase and write characteristics of the SONOS transistor. Therefore. one weight
initialization scheme may require more erase action taking place than another weight initialization
scheme, causing a difference in convergence characteristics. Figures 10 shows a typical error versus

time characteristic.

5. Technical Progress

The performance of the linear adaptive neuron depends strongly on the programming
characteristics of the svnaptic weight elements. Therefore. a fabrication run aimed specificaily at
improving the programming speed of the synaptic weight elements has been completed anc fully
char cterized. The main differences between the new and the oid devices are the thicknesses of the
storage nitride layer and the biocking oxide laver. By reducing the nitride layer and increasing the
blocking oxide layer thicknesses, the gate injection of carriers is minimized. Furthermore, the
charge tunneled across the tunneling oxide is better retained ‘n the nitride layer with a thicker
blocking oxide. As a result. the programming speed. indicated by the eraseswrite characterization of

the new devices, demonstrates a roughiy one order of magnitude improvement in the programming




speed (determined by the cross-over time as mentioned in the previous section) over the old deices
as shown in figure 11. In addition, the programming voltage dependence on the programming speed,
as shown in figure 11, illustrates an improvement of one order of magnitude in programming speed
with each one volt increment in the programming voltage. We have also incorporated the new
synaptic weight elements into the linear adaptive neuron. Since the programming speed of the new
synaptic weight elements has improved by a factor of 10, the convergence time (a measure of the
performance of the linear adaptive neuron) has been reduced by a factor of 10 accordingly as shown

in figure 12.

A fully computer controlled data acquisition system is an invaluable tool for synaptic weight
element characterization. The current measurement system requires the operator to manually set
up the measurement sequence and hand-record the data obtained. An automatic data acquisition
system enables the user to set up the measurements, and analyze the data, all under the controi of
one console. The biock diagram of such a system is shown in figure 13. A vital part of the proposed
system, the HPIB command/data interpretor has been successfully designed. constructed. and fuily

tested for functionality. The schematic of the HPIB command/data interpretor is shown in figure 14

We have continued our efforts on the integration of the linear adaptive neuron into a singie
silicon wafer. We have layed out some of the vital parts of the linear adaptive neuron under the
Mentor Graphics package with a technology specifically geared to the fabrication process of our
microelectronics laboratory at Lehigh. Since we are creating analog ASICs. area and power
consumption of the designs have to be minimized. Upon completion of layout. an extracton of the
netlist and the parasitics are obtained and SPICE circuit simulatons are performed 0 ensure the
designs are properly transferred into layouts. Figures 15 and 16 illustrate a sampie of the lavouts

already completed.

The research efforts during the period of March 1891 to September 1991 have resuited in a
paper to be presented at the International Joint Conference on Neural Networks (IJCNN 91 20 be

heid in November at Singapore.
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6. Proposed Investigations

We have demonstrated the direct relationship between the SONOS synapti: weight element
characteristics and the performance of the linear adaptive neuron. Therefore, we feel it is important
to continue our research efforts on the synaptic weight elements. In particular, the investigation of
how to make even faster devices has resulted in the fabrication plans of utilizing thinner tunneling

oxide thickness and p+ polysilicon gate material.

We have also pledged our effort to the development of the automatic data acquisition system to
further aid our research. A customized computer program will be written to drive and interface with
the existing measurement equipment. The data obtained can then be collected, formatted, and

analyzed with device parameter extraction routines.

We will focus on the layout design of the remaining parts of the linear adaptive neuron. We
believe the advent in SONOS device technology and the integration of the signal processing circuitry
as well as the synaptic weight elemernt onto a single silicon wafer will make an impact to the

Artificdal Intelligence Neural Network Technology field.

7. Conclusions

The SONOS nonvolatile memory transistor has been shown to be an ideal electronic element
for the electrically reprogrammable analog conductance in an artificial neural network. We have
demonstrated the attractive features of this synaptic weight for the use of large neural network
svstems, for instance, low programming voltage (5-10V), low power dissipation(<1pW / synapse’,
small chip area (estimated 20um? weight cell for a 1.2 pm feature size), a dynamic range of 60 dB.
good memory retenticn (20 % window at a projected 10 vears period), and endurance bevond 107
erase/write cycles. In addition. the SONOS synaptic weight has inherent resistance to radiation
damage (AV,, =0.1V, with 1, =+3V at iMRad Co%0 radiation). We have been continuing our efforts in
optimizing the modifiable synaptic weights to provide better electrical characteristics for neural

network applications.

We have also incorporated the SONOS synaptic weights into a single-level two tap linear
adaptive neuron employing a Widrow-HoiT's delta learning rule. The combination of CMOS control
arcuits and SONOS synaptic weights has demonstrated the feasibility of integrating these two

technologies onto a single silicon wafer. The initial results are encouraging and promising and

10




provide insight and direction into the integration of these two technologies to realize large artificial

peural network systems.
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Figure 16.Sample Layout of the Analog Delay Line

27




o ——

5

[ P

e e s

o enf @ TRBN 1 T ARSI AT Yok AR g AV T
R

L .
- s rm
] “?
[ e AN sl g )
; 3
i
:
;
:
Yot e——
. R y B A
S o oo L 2 _
! i : 2 3 rs-zﬁi‘wﬁ-.-« oo v
; . RS
B e. R e s b0 S s e gy < . ot %'ﬁ
! é 7 AF b : L
1 : -4

. . . ) f % . - d . i ¥ X o - : o . SV "

-t

Figure 17.Sample Layout of the D Flip Flop

28




Ll

0

10.

11.

14.

18.

20.

References

D.O. Hebb, The Organization of Behavior, John Wiley, 1949.
T. Kohonen, Associative Memory: A System Theoretic Approach, Springer-Verlag, 1977.
D. Rumelhart, and J. McClelland, Parallel Distributed Processing, MIT Press, 1986.

John J. Hopfield and David W. Tank, “Computing with Neural Circuits: A Model”,
Science, Vol. 233, August 1986, pp. 625-633.

J. Denker, “Neural Network for Computing: Snowbird 1986”7, AIP Conference Proceedings.
1986.

H.P. Graf and P. deVegvar, “A CMOS Implementation of a Neural Network Model”.
Proceedings of Stanford Conference on Advanced Research in VLSI, 1987.

Y. Tsividis and S. Satyanarayana, “Analog Circuits for Variabie-Synapse Electronic Neural
Networks”, Electronic Letters, Vol. 23, No. 24, Nov 1987, pp. 1313-1314.

F.J. Kub, I.A Mack, KK Moon, C.T. Yao and J.A. Modla. “Programmable Analog Svnapses
for Microelectronic Neural Networks Using a Hybrid Digital-Analog Approach”, JEEE Device
Research Coference on Neural Networks, 1988. pp. 24-27.

Mark Holler, Simon Tam, Hernan Castro, and Ronald Benson. “An Electrically Trainable
Artifidal Neural Network (ETANN) with 10240 Floating Gate' svnapses’. Proceedings of
IJCNN, 1989.

F.R. Libsch, A. Roy and M.H. White, “A True 5V EEPROM Cell for High Density NVEM™.
IEEE Trans. Electron Devices, Vol. ED-34, No. 11, 1987, pp. 2371,

M. White, D. Lampe, F. Blaha and I. Mack. “CCD and MNOS Devices for Programmabie
Analog Signal Processing and Digital Nonvolatile Memory”, IEEE Internationai Zlectron
Devices Meeting, 1973.

M. White, D. Lampe. F. Kub, and D. Barth. “A Nonvolatile Charge Addressed Memory
(NOVCAM) Cell”, IEEE. J. of Solid-State Circuits, October 1975,

M.H. White, I. A Mack. GM. Borsuk, D.R.Lampe, and F.J. Kub. “Charge-Coupled Device
(CCD) Adaptive Discrete Analog Signal Processing”, IEEE J. of Solid-State Circuizs. Vol.
SC-14, 1979, pp. 132.

J. Sage and R. Withers and K Thompson. “MINOS/CCD Circuits for Neural Network
Implementation”, IEEE International Svmposium on Circuits and Svstems. 1982. pp.
1207-1209.

B. Widrow and M. Hoff.Jr.. “Adaptive Switching Circuits™, IRE WESCON Conv. Rec.,pr. 4.
1960. pp. 96.

M. White and I. Mack. A CCD Monolithic LMS Adaptive Analog Signai Processor Integratea
Circuit, Final Report. Contract N00173-77-C-0328. 1980.

M. White, “A VLSI Conductance Multiplier (Synapse: for Hardware Implementation of
Neural Networks”, invited paper to workshop on Hardware Impiemen:ation of Neurai
Networks, 1988.

Chun-Yu Malcolm Chen, Margaret L. French and Marvin H. White. “An Analog Nonvoiatie
Eletrically Modifiable Synaptic Element for VLSI Neural Network Implementation™. 1:ith
IEEE Nonvolatile Semiconductor Memorv Workshop, 1991.

Anirban Roy, “Retention. Endurance and Interface Traps in MONOS Memory Transistors’.
Master's thesis, Lehigh Univeristy, 1985,

T.J. Krutsick, M.H. White. H.-S. Wong and R.V.H. Booth, “An Improved Method of MOSFET

29




21

23.

Modeling and Parameter Extraction”, IEEE Trans. on Electron Devices, Vol. ED-34, No.
8, Aug. 1987, pp. 1676-1680.

Umesh Sharma and Marvin H. White, “Tonization Radiation Induced Degradation of
MOSFET Channel Frequency Response”, IEEE Trans. on Nuclear Science, Vol. 36, No.
3, June 1989, pp. 1359-1366. :

Marvin H. White, Donald R. Lampe, Franklyn C. Blaha, and Ingham A Mack,
“Characterization of Surface Channel CCD Image Array at Low Light Levels”, IEEE J. of
Solid-State Circuits, Vol. SC-9, No. 1, February 1974, pp. 1-13.

J.L. Moschner, “Adaptive Filter with Clipped Input Data”, Tech. report, Standford Lab.
Report, No. 6796-1, June 1970.

Marvin H. White and Chun-Yu Chen, “Electrically Modifiable Nonvolatile Synapses for
Neural Networks”, Proceedings of IEEE International Symposium on Circuits and Systems,
1989, pp. 1213-1216.

30




