
UNLIMITED

AD-A242 132,, I~lillfllllllll[[i! iil!Report No. 91004
o

ROYAL SIGNALS AND RADAR ESTABLISHMENT,
. MALVERN

0 'ELECTE f

m . OCT 2, 119

FROM ENGLISH INTO Z,
A REVERSE SPECIFICATION PROCESS

Author: S C Gless

iThi- docurnent-has bcen approved
-!or public clease and sale; itsd i:butijcn is uinlimited.

91-13840

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

RSRE
Malvern, Worcestershlre.

June 1991

- UNLIMITED 91 10 22 144

00 CONDITIONS OF RELEASE

DRtC U

COPYRIG T (c)
1988

CONTROLLER
HMSO LONDON

DRIC Y
Reports quoted are not necessarily available to members of the public or to commercial
organisations.

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 91004

Tile: From English into Z, a reverse specification process.

Author: S. C. Giess

Date: June 1991

Abstract

On an exercise to translate the communication protocol specification
RFC 826, 'The address resolution protocol', already written in English,
into the mathematical specification language Z.

NTIS C~r, ,1

DTIC ;I ! 3
: Uatli¢c i(, cA

/ By
Distribution I

Dist

Copyright

Controller HMSO London

1991

Introduction .1

The English description of the specification 2

Modular decomposition of the specification 3

The use of Z in writing specifications 6

The Z specification ... 7

Comments on the specification process 7

Conclusions .. 9

Acknowledgements...10

References.. 10

Appendix A... 11

Appendix B...2

Inrduction

Part of the work programme of the Distributed Information Systems
Division of the DRA at Malvern is to create approaches to the
specification of communication protocols which use formal languages
that are powerful enough to capture all the necessary actions of these
systems. Such languages aim to allow reasoning concerning the
operation of the protocols with the goal of minimising if not completely
avoiding design and implementation problems. Such problems can
arise because these protocols are frequently defined by means of
documentation written in English.

The use of English descriptions, when applied to the specification of
large systems, is well known to have dangers. These are (i) differences
in meanings attached to English words between the writer of the
document and the reader of the document and (ii) the possibility of the
English description being incomplete. This incompleteness could be due
to the designer having an environment in mind of which the reader is
unaware. Alternatively the designer may have originally decided that
another module of the system will handle some conditions but then
forgot to incorporate them in the other module due to the development
time-span (It can often take several years to develop a communications
protocol). Of course the incompleteness could just be due to simple
oversight.

These dangers can be reduced by using a notation that compactly
expresses the desired functionality. If the notation has a mathematical
foundation then the possibility of detecting inconsistencies and omitted
parts in such specifications is further increased. However there is a
penalty in the need for the designer to understand aspects of pure
mathematics for the full correct use of such notations. Whether this
penalty will turn out to be a serious problem will, I suspect, only become
clear after a large body of designers whose first discipline was not Pure
Mathematics have tried such notations on real world problems.

This report investigates these problems by setting out to specify an
existing communications protocol in a formally based language.

There are several formal languages extant which are comparatively
mature in terms of syntax and tool support, eg VDM, Z. There are
others which are specifically designed for protocols, eg LOTCS, Estelle,
however they and their tools are still in varying stages of development
and do not have the same reasoning potential nor can they handle
timing questions. There are others which are just starting to appear
from the research phase which have the reasoning potential, eg CSP [1)
and can handle questions of timings, eg Timed CSP [2].

It was considered that an attempt to specify a real protocol in Z [3] could
be a useful step in the exploration of the issues mentioned above to the
mutual benefit of the protocol desigrors, the protocol implementors and
formal language creators. The par dcular protocol was chosen because
it was large enough to be non-trivially useful in exploring the issues, yet
small enough not to be overwhelming. Moreover it had already been
implemented by other members of the Distributed Information Systems
Division.

It is hoped that the work described here will show protocol users the
benefits to be obtained from formality.

The English description of the specification

The Network Working Group's Request for Comments No. 826 (RFC 826)
describes, in informal English, the elements of an Ethernet address
resolution module. In November 1982 a draft version of this Protocol was
circulated for comments among the Network Working Group (NWG) of
the ARPA internet community. This draft has subsequently become the
de facto definition (4] and is the one considered in this memorandum
(see appendix A). It is worth noting that this protocol is a small part of
an extensive suite of protocols which, when taken together, constitutes
the operational basis for one of the largest communication communities
in existence.

The context for this address resolution protocol is as follows: Consider a
Local Area Network (LAN) comprising several host systems connected
by an Ethernet cable. Some of these LAN members are also connected to
other networks, with the packet data transfer being controlled by
ARPAnet software. Some of the LAN members are also running
ARPAnet software and wish to send or receive data to other systems also
running ARPAnet software perhaps on other networks. However the
addressing scheme used by the Ethernet system is not the same as that
used by the ARPAnet. So, since the LAN requires Ethernet addresses, it
is neccessary to find the Ethernet address of the desired machine (if it
happens to be on the same LAN) or the Ethernet address of a LAN
member that can route the data onwards. This requires the existence of
a software module to effect the address translation in each LAN member
running ARPAnet software. The ARPA community calls this action
"address resolution".

We see that the purpose of the module is to return the appropriate
Ethernet address when given a protocol type and an address in that
protocol's format. The module does this by storing the information in an
address resolution table. When it is asked for the Ethernet address of
another address type it first examines this table to see if the information
is already present. If it is then the Ethernet address is returned. If the
information is absent then the module broadcasts a request to all other
units on the Ethernet to see if any of them is the wanted unit. If the

2

wanted unit is present it sends a reply to the requestor and at the same
time, updates its own table with the requestor's address information.
When the requestor receives a reply it updates its own table.

The informal specification given in RFC 826 is almost an
implementation algorithm recipe of this process. However we shall see
that it makes assumptions which rely on the implementor's knowledge
of the operation of the rest of the system.

Modular decomposition of the specificaton

There are two viewpoints to the description/specification of a protocol:

The first, the "global" view, considers the definition of the operation of
the protocol as a whole, ie the interactions that all the relevant nodes
have to undertake for the desired result to be achieved. This is the
viewpoint of the designer of the protocol.

The second, the "local" view, considers the definition of the constituent
processes that a particular node should be able to do in order to carry out
the protocol. This view is typically that which the implementor needs
when writing software for a particular host.

Clearly these two viewpoints on the protocol have to be consistent for the
protocol to work in practice. Checking that this is indeed so is an
important part of verification.

One advantage gained by using a formal language is that it is easier to
prove that 'local" view specifications are in full agreement with the
"global" specification. However we must remember that the
decomposition itself of the global into the local may require validation.
This point is illustrated by RFC 826 which is a small part of a larger
system. This is because the specification, as written, is not complete,
relying upon other parts of the protocol suite for correct operation. Hence
the change of viewpoint from global to local is an implementation design
decision, which in turn may affect some system goal on the part of the
protocol designer not explicitly stated in the RFC document.

ThM glbal view

In order to understand the operation of the protocol we study the English
definition given in appendix A from the global viewpoint, decomposing
its overall operation into a collection of component processes whose
individual specification requirements can be easily captured. The reader
is well advised to study appendix A carefully. In particular observe what
the English actually says, as compared to what the reader may be
expecting to see by virtue of any prior personal experience with
communications protocols.

3

This decomposition is done from the starting point of a node which has
had a request for address information passed down to it from a higher
protocol level.

First we define the operation of the protocol as a whole, calling it
process module Addressprotocol. This process has to either return the
Ethernet address from its own data table, ie a local search, or update its
own data table by inquiring of the other systems on the Ethernet, a
remote search.

We can represent the local search process by the single module
Successful-localfind and the remote search by the module
Successful_tableupdate. So the global operation is an OR expression
between a successful local search and a successful remote search, that
is:

Address-protocol f Successfuljocal_find %, Successfultableupdate

where the symbol is used informally to indicate a choice.

However the remote search process itself can be decomposed into a
sequence of actions comprising six stages. In the first stage the request
for information is despatched to other members on the Ethernet - called
module Sendrequest. In the second the request is received by the other
members - module Receive-request. Here each member checks for the
applicability of the request to it. The third stage checks whether the
requestor is known to it - module Existing-entry-check. If it is not,
then, in the fourth the requestor's data is added to node's table, provided
the node is the one wanted - module Add_newentry. The fifth stage
sends a reply to the requestor - module Reply. Finally, in the sixth stage,
this reply is received by the originator which then updates its local table -
module Updatetable.

It can be seen that a successful remote search gives rise to a sequence of
actions of the form:

Sendrequest - Receive-request - (Existing-entryCheck
Add.newentry) - Reply -+ Updatetable.

Here the CSP symbol -- is used informally to indicate the sequence of
actions.

4

We note that this natural way of describing the protocol crosses machine
boundaries, some processes are running on the originating local
machine whilst others are on the remote machines as we show below:

< Overall > < Local

Address-protocol = Successfullocalfind

.......... Local > < Rem ote

(Send.request .-. Receiverequest --# (Existing_entryCheck

.............. Remote > <.... Local >

Addnew.-entry) -+ Reply -# Update-table)

Here we have simplified the description of the remote process action to a
single sequence. In reality it would be a parallel combination of distinct
processes, one per LAN node.

The local view

Now the actual implementation in any one machine of the complete
protocol has to cater for the machine acting in a local role or in a remote
role. To achieve this the operation of the protocol can be considered to be
three independent modules.

Informally, these are:

Address_module1 = Successfuljlocalfind , Send_request

Addressmodule2 = Receiverequest --+ (Existing-entry-check

Addnew-entry) -- Reply

Address_module3 = Update-table

In Address_module1 the address resolution procedure has been passed
a request for the address from the protocol level above it. This request is
serviced by first mounting a search of the local address table. If the
address is there then it is returned and that is the end of that procedure.
If the search was unsuccessful then a request for information packet is
created and broadcast to other machines on the Ethernet. This is also
the end of the procedure. Hence the overall functionality is either a
successful find or a successful send request, but not both.

5

In Addressmodule2 the address resolution procedure receives a
request for information in the form of a packet sent over the Ethernet.
The module consists of a sequence of tests which form the precondition
to either an update of the table or the addition of a new entry, but not
both. If any of the tests fails then the procedure terminates leaving the
address table either unchanged or updated depending upon where in
the chain the test failed.

In Address-module3 the address resolution procedure receives a reply
to a request for information in the form of a packet sent over the
Ethernet. The module checks that the packet is for it as a precondition
and, if successful, updates the table otherwise the procedure terminates
leaving the table unchanged.

he use of Z in writing specifications

A summary of the Z approach to writing a specification.

As a first step the complete system is decomposed, in a top down
manner, into small units of modular activities. This is followed by the
specification of each of these small activities by means of units called
schemas. A schema explicitly states the constraints (predicates) which
have to be met for the activity of a unit to be correct. It also explicitly
defines the before - after relationship for relevant entities in the unit.
Finally these individual schemas are combined to produce the
configuration which is the specification of the whole system.

The underlying rationale is to ensure that the actions of the system are
defined under all circumstances - both normal operation and error
condition. In Z this concept is expressed by saying that the condition of
the complete system, formed by the combination of the conditions of all
the schema modules and their interconnection, is TRUE.

Now, if the predicate part of a schema is satisfied by an implementation
then the process specified in the schema works succesfully. If the
conditions are such that the predicate is false then, by convention, the
implementation of that process can do anything. However if the schema
is part of a schema expression which overall is true then the overall
action is still defined. Ideally therefore we should define the protocol in Z
in such a way that a failure of a part will still result in the state of the
system being well defined. However we have chosen not to deal with the
error conditions in this report. This decision has been taken so as to
allow the issues arising from defining correct operation, the prime
purpose of this report, to be clearly displayed and not masked by the
syntatic structures needed to specify error condition handling.

This 'totality of possible circumstances coverage' is the central
technique that formal methods uses to achieve reliable operation under
all conditions. Nevertheless it should be remembered that sometimes
real time constraints, like the cpu resources, mean that some of the
desirable precondition tests may have to be omitted in the
implementation, so resulting in weakness or holes in final system.

6

Hence what is desired cannot be achieved in a completely robust
manner.

Finally it should be noted that Z has no concept of time. If it desired to
specify a system in which decisions are made on the basis of time
intervals, then Z cannot capture everything. Timed CSP may be a more
appropriate route.

The Z specification

The Z specification of the modules described earlier is given in appendix
B. From earlier it is apparent that the processes we are trying to specify
are sequences of tests, together with operations which depend on the
outcomes of these tests. An effective way to model such a chain in Z is to
pass the information between the modules in the form of a message and
apply the tests to the appropriate data fields. In this case a schema,
having the structure of an Ethernet packet, is used as the message.

Comments on the specification prom

First we note that in this paper we have attempted to provide an "after
the event" specification - reverse engineering on two levels. The first
level comprised taking the informal algorithm plus English explanation
and constructing a global perspective description in order to understand
the overall process. In the second level a specification, from the local
perspective, suitable for an implementor had to be constructed from the
global pespective. In both cases information from the implementor's
"bottom up" algorithm was being used for the "top down" specifications.

It was necessary to have several discussions with the person who had
implemented this protocol at RSRE in order to elucidate the software
environment that the writers of the protocol clearly assumed. These
were quite enlightening. We agreed that the informal specification had
failings. I made these discoveries by attempting to follow the expected
discipline of Z in being precise in matters when understanding the
operation of the protocol. This had neccessitated the discussions to
establish exactly what was the (unspecified) software environment. He
made the discoveries when faced with the task of implementing the
protocol with all the fine detail that an implementation requires. He said
that he had had to make several implementation decisions in the
absence of explicit detail in the specification. I found myself having to do
the same in the Z specification with regard to the attempted
generalisation to non-Ethernet hardware.

Specific points:

The first was that originally the protocol was only meant to produce the
Ethernet address of an ARPA host running the Internet Protocol (IP).
However in the drafting of the protocol there clearly had been a later
desire to make it more flexible and handle other addressing regimes.
However although this generalisation was attempted (by providing
fields for different hardware spaces in the data part of the packet) it was
not fully attained. This h~s resulted in a protocol that still assumes that

7

its packet traffic is only over an Ethernet, even though it claims
generality in the specification's abstract. This inconsistency has been
modelled in the Z specification by a precondition that requires the
addresses (including Broadcast) in the packet header (called the
Ethernet transmission layer) to be drawn from the Ethernet subset of
possible hardware addresses. In addition the protocol address type of the
sender has to be the same as that which is being sought. This also
restricts its generality although it could be claimed that the purpose of
the resolution module is only to set up addressing information for the
specific protocol packet type in question.

The second point was that the testing cf the validity of some of the
operations was not as complete as may be desired. For example in the
last stage of the protocol the update module receives an address
resolution packet marked "reply". As written in the English description
the module has no way of knowing whether the "reply" is to a request"
actually originated by the the other half of the procedure in the same
machine. The module just automatically updates the table This means
that rogue packets or, worse, malevolent senders could disrupt the
operations of the network by corrupting the address tables using
syntactically correct but invalid "reply" packets. In a similar way the
automatic updating of the table as defined in module
Existing-entry-check would allow bogus "request" packets to corrupt
the table entries.

The third point concerned what checks the module should make on the
supplied data for consistency, eg checking that the format of the protocol
address requested was indeed that of the protocol type declared. We have
the issue here of what a module is expected to check explicitly and what
not. The specification discusses some checks, however in general such
decisions are left to the implementor.

The fourth point concerns failures. As described in the RFC document
there appears to be no explicit failure action in the event of a failure of
the update attempt. To wit, if the higher level service wishes to send a
packet to an address that is not in the local table then the operations
described in this document come into play. However if the update
operation is unsuccessful then the higher level service is not informed
in any way. This means that a subsequent request will be given the same
treatment (ie as if the unknown address had never been looked for
before) and not told that is has been looked for and not found. There is
the chance here of an infinite loop unless the higher level service has
some form of timeout. Now indeed there is a timeout but we are not told
this fact in the RFC document. Hence from the point of view of the
module specifier the specification is incomplete with regard to
operational temporal stability.

General points:

Three general points are raised by this work. The first is that this
protocol was written nearly ten years ago when formal methods of
specifying systems were in their infancy. So the fact that flaws have been

8

found using these techniques demonstrates their usefulness as a design
aid.

The second point concerns the role of a specification in the user-
designer-implementor chain. I think it is fair to say that the ARPA
protocols were written by designers who were also implementors, to be
read by other peer designers who were also implementors. They used a
style of documentation appropriate to that era and that situation of a
concept under development. Unfortunately for others, they kept to the
same style when it came to the final papers which defined the end
protocols. Since those days Software Engineering practice has
progressed. In particular the importance of writing, a specification such
that an implementation can be produced from it without the
implementor having to know exactly where the entity specified fitted into
the whole system. This software practice arises from common
engineering practice where a designer of an entity expresses the design
in the form of a plan, from which others can fabricate the entity. This
practice also covers the situation where a later generation is tasked with
implementing a specification, but who were not involved in its initial
development. If this engineering approach were not to be followed then
it would very difficult to embark on any enterprise whose size and
complexity required teams of people working over several years with any
hope of success.

These points have already been recognised and organisations like the
CCIT' are in the process of using the formal languages such as SDL [5]
and ASN.1 [6] to specify future recommendations.

A third point arose out of comments from others during the work
described in this paper. A position was made that the fact that this
particular protocol had failings was not all that important as the
protocol was merely an add-on to the main protocol suite, (not on the
critical path for the operation of the Arpanet - unless of course an
Ethernet connection was in involved, whereupon it would be on the
critical path). Moreover the intention of the original Request for
Comment was that the contents were a basis for experimentation and
not a final definition. This is a valid position, however the act of
promulgating this unaltered RFC in the DDN handbook meant that now
it was to be taken as a definition of the protocol. For better or for worse it
had been "cast in concrete", weaknesses and all. So it is not
unreasonable to inquire whether as a final definition it is satisfactory
under the criteria of Software Engineering; after all, the users of this
system may be relying upon it for a critical operation.

Conclusions

The overwhelming conclusion is that the attempt to specify this process
in a formal manner clearly revealed weaknesses that were opaque in the
English. Also the task of defining the implementation needs for a node
would have been much easier if the overall specification had been
created in a formal manner in the first place. By using Z the
specification of the individual processes was quickly achieved. However,
as suspected from its state based nature, Z was not able to capture the

9

complete configuration, both sequential and parallel, of the individual
processes as easily. Indeed it was decided, again purely for clarity since
Parallelism can be expressed in Z [7], not to attempt the complete
configuration. For this, languages currently under development like
CSP and its timed variant are needed which are process algebra
orientated and can easily handle parallelism. However this should not
detract from the great gains in conceptual clarity which arose from
using mature Z.

Acknowidgements

I thank Tim Dean, Gill Randell and Ruaridh Macdonald for their
constructive comments during the preparation of this report.

[1] Communicating Sequential Processes, C.A.R. Hoare, Prentice-Hall
International, 1985.

[2] Specification & Proof in Real-time Systems, J. Davies,
D.Phil Dissertation, Oxford University, January 1991.

[3] The Z Notation A Reference Manual, J.M. Spivey, Prentice Hall
International, 1989.

[4] DDN Protocol Handbook, vol 3, DDN Network Information Center,
SRI International, December 1985.

[5] CCITT recommendation Z100, Nov 1988.

[61 CCITr recommendations X208 & X209.

[7] Parallel Refinement in Z, J.C.P. Woodcock, Oxford University,
Private Communication

10

Appendi A

Network Working Group David C. Plummer
Request For Comments: 826 (DCP@MIT-MC)

November 1982

An Ethernet Address Resolution Protocol
-or-

Converting Network Protocol Addresses
to 48.bit Ethernet Address

for Transmission on
Ethernet Hardware

Abstract

The implementation of protocol P on a sending host S decides,
through protocol P's routing mechanism, that it wants to transmit
to a target host T located some place on a connected piece of
1OMbit Ethernet cable. To actually transmit the Ethernet packet
a 48.bit Ethernet address must be generated. The addresses of
hosts within protocol P are not always compatible with the
corresponding Ethernet address (being different lengths or
values). Presented here is a protocol that allows dynamic
distribution of the information needed to build tables to
translate an address A in protocol P's address space into a
48.bit Ethernet address.

Generalizations have been made which allow the protocol to be
used for non-10Mbit Ethernet hardware. Some packet radio
networks are examples of such hardware.

The protocol proposed here is the result of a great deal of
discussion with several other people, most notably J. Noel
Chiappa, Yogen Dalal, and James E. Kulp, and helpful comments
from David Moon.

[The purpose of this RFC is to present a method of Converting
Protocol Addresses (e.g., IP addresses) to Local Network
Addresses (e.g., Ethernet addresses). This is a issue of general
concern in the ARPA Internet community at this time. The
method proposed here is presented for your consideration and
comment. This is not the specification of a Internet Standard.]

11

Notes:

This protocol was originally designed for the DEC/Intel/Xerox
1OMbit Ethernet. It has been generalized to allow it to be used
for other types of networks. Much of the discussion will be
directed toward the 1OMbit Ethernet. Generalizations, where
applicable, will follow the Ethernet-specific discussion.

DOD Internet Protocol will be referred to as Internet.

Numbers here are in the Ethernet standard, which is high byte
first. This is the opposite of the byte addressing of machines
such as PDP-1ls and VAXes. Therefore, special care must be taken
with the opcode field (ar$op) described below.

An agreed upon authority is needed to manage hardware name space
values (see below). Until an official authority exists, requests
should be submitted to

David C. Plummer
Symbolics, Inc.
243 Vassar Street
Cambridge, Massachusetts 02139

Alternatively, network mail can be sent to DCP@MIT-MC.

The Problem:

The world is a jungle in general, and the networking game
contributes many animals. At nearly every layer of a network
architecture there are several potential protocols that could be
used. For example, at a high level, there is TELNET and SUPDUP
for remote login. Somewhere below that there is a reliable byte
stream protocol, which might be CHAOS protocol, DOD TCP, Xerox
BSP or DECnet. Even closer to the hardware is the logical
transport layer, which might be CHAOS, DOD Internet, Xerox PUP,
or DECnet. The lOMbit Ethernet allows all of these protocols
(and more) to coexist on a single cable by means of a type field
in the Ethernet packet header. However, the 1OMbit Ethernet
requires 48.bit addresses on the physical cable, yet most
protocol addresses are not 48.bits long, nor do they necessarily
have any relationship to the 48.bit Ethernet address of the
hardware. For example, CHAOS addresses are 16.bits, DOD Internet
addresses are 32.bits, and Xerox PUP addresses are 8.bits. A
protocol is needed to dynamically distribute the correspondences
between a <protocol, address> pair and a 48.bit Ethernet address.

Motivation:

Use of the lOMbit Ethernet is increasing as more manufacturers

12

supply interfaces that conform to the specification published by
DEC, Intel and Xerox. With this increasing availability, more
and more software is being written for these interfaces. There
are two alternatives: (1) Every implementor invents his/her own
method to do some form of address resolution, or (2) every
implementor uses a standard so that his/her code can be
distributed to other systems without need for modification. This
proposal attempts to set the standard.

Definitions:

Define the following for referring to the values put in the TYPE
field of the Ethernet packet header:

ethertype$XEROXPUP,
ether_type$DODJINTERNET,
ethertype$CHAOS,

and a new one:
ether-type$ADDRESS-RESOLUTION.

Also define the following values (to be discussed later):
ares-op$REQUEST (= 1, high byte transmitted first) and
ares-op$REPLY (= 2),

and
aresjird$Ethernet (= 1).

Packet format:

To communicate mappings from <protocol, address> pairs to 48.bit
Ethernet addresses, a packet format that embodies the Address
Resolution protocol is needed. The format of the packet follows.

Ethernet transmission layer (not necessarily accessible to
the user):
48.bit: Ethernet address of destination
48.bit: Ethernet address of sender
16.bit: Protocol type = ether.type$ADDRESSRESOLUTION

Ethernet packet data:
16.bit: (ar$hrd) Hardware address space (e.g., Ethernet,

Packet Radio Net.)
16.bit: (ar$pro) Protocol address space. For Ethernet

hardware, this is from the set of type
fields etheryp$<protocol>.

8.bit: (ar$hln) byte length of each hardware address
8.bit: (ar$pln) byte length of each protocol address
16.bit: (arp) opcode (ares-op$REQUEST I aresop$REPLY)
nbytes: (ar$sha) Hardware address of sender of this

packet, n from the ar$hln field.
mbytes: (ar$spa) Protocol address of sender of this

packet, m from the ar$pln field.
nbytes: (ar$tha) Hardware address of target of this

packet (if known).

13

mbytes: (ar$tpa) Protocol address of target.

Packet Generation:

As a packet is sent down through the network layers, routing
determines the protocol address of the next hop for the packet
and on which piece of hardware it expects to find the station
with the immediate target protocol address. In the case of the
1OMbit Ethernet, address resolution is needed and some lower
layer (probably the hardware driver) must consult the Address
Resolution module (perhaps implemented in the Ethernet support
module) to convert the <protocol type, target protocol address>
pair to a 48.bit Ethernet address. The Address Resolution module
tries to find this pair in a table. If it finds the pair, it
gives the corresponding 48.bit Ethernet address back to the
caller (hardware driver) which then transmits the packet. If it
does not, it probably informs the caller that it is throwing the
packet away (on the assumption the packet will be retransmitted
by a higher network layer), and generates an Ethernet packet with
a type field of ether.type$ADDRESS_RESOLUTION. The Address
Resolution module then sets the ar$hrd field to
ares_.hrd$Ethernet, ar$pro to the protocol type that is being
resolved, ar$hln to 6 (the number of bytes in a 48.bit Ethernet
address), ar$pln to the length of an address in that protocol,
ar$op to ares op$REQUEST, ar$sha with the 48.bit ethernet address
of itself, ar$spa with the protocol address of itself, and ar$tpa
with the protocol address of the machine that is trying to be
accessed. It does not set ar$tha to anything in particular,
because it is this value that it is trying to determine. It
could set ar$tha to the broadcast address for the hardware (all
ones in the case of the 1OMbit Ethernet) if that makes it
convenient for some aspect of the implementation. It then causes
this packet to be broadcast to all stations on the Ethernet cable
originally determined by the routing mechanism.

Packet Reception:

When an address resolution packet is received, the receiving
Ethernet module gives the packet to the Address Resolution module
which goes through an algorithm similar to the following.
Negative conditionals indicate an end of processing and a
discarding of the packet.

?Do I have the hardware type in ar$hrd?
Yes: (almost definitely)

(optionally check the hardware length ar$hln]
?Do I speak the protocol in ar$pro?
Yes:

14

[optionally check the protocol length ar$pln]
Mergeflag := false
If the pair <protocol type, sender protocol address> is

already in my translation table, update the sender
hardware address field of the entry with the new
information in the packet and set Merge-flag to true.

?Am I the target protocol address?
Yes:
If Merge-flag is false, add the triplet <protocol type,

sender protocol address, sender hardware address> to
the translation table.

?Is the opcode ares-op$REQUEST? (NOW look at the opcode!!)
Yes:

Swap hardware and protocol fields, putting the local
hardware and protocol addresses in the sender fields.

Set the ar$op field to ares-op$REPLY
Send the packet to the (new) target hardware address on

the same hardware on which the request was received.

Notice that the <protocol type, sender protocol address, sender
hardware address> triplet is merged into the table before the
opcode is looked at. This is on the assumption that communcation
is bidirectional; if A has some reason to talk to B, then B will
probably have some reason to talk to A. Notice also that if an
entry already exists for the <protocol type, sender protocol
address> pair, then the new hardware address supersedes the old
one. Related Issues gives some motivation for this.

Generalization: The ar$hrd and ar$hln fields allow this protocol
and packet format to be used for non-10Mbit Ethernets. For the
1OMbit Ethernet <arhrd, arhln> takes on the value <1, 6>. For
other hardware networks, the ar$pro field may no longer
correspond to the Ethernet type field, but it should be
associated with the protocol whose address resolution is being
sought.

Why is it done this way??

Periodic broadcasting is definitely not desired. Imagine 100
workstations on a single Ethernet, each broadcasting address
resolution information once per 10 minutes (as one possible set
of parameters). This is one packet every 6 seconds. This is
almost reasonable, but what use is it? The workstations aren't
generally going to be talking to each other (and therefore have
100 useless entries in a table); they will be mainly talking to a
mainframe, file server or bridge, but only to a small number of
other workstations (for interactive conversations, for example).
The protocol described in this paper distributes information as
it is needed, and only once (probably) per boot of a machine.

This format does not allow for more than one resolution to be
done in the same packet. This is for simplicity. If things were

15

multiplexed the packet format would be considerably harder to
digest, and much of the information could be gratuitous. Think
of a bridge that talks four protocols telling a workstation all
four protocol addresses, three of which the workstation will
probably never use.

This format allows the packet buffer to be reused if a reply is
generated; a reply has the same length as a request, and several
of the fields are the same.

The value of the hardware field (ar$hrd) is taken from a list for
this purpose. Currently the only defined value is for the lOMbit
Ethernet (ares-hrd$Ethernet = 1). There has been talk of using
this protocol for Packet Radio Networks as well, and this will
require another value as will other future hardware mediums that
wish to use this protocol.

For the 1OMbit Ethernet, the value in the protocol field (ar$pro)
is taken from the set ether-type$. This is a natural reuse of
the assigned protocol types. Combining this with the opcode
(ar$op) would effectively halve the number of protocols that can
be resolved under this protocol and would make a monitor/debugger
more complex (see Network Monitoring and Debugging below). It is
hoped that we will never see 32768 protocols, but Murphy made
some laws which don't allow us to make this assumption.

In theory, the length fields (ar$hln and ar$pln) are redundant,
since the length of a protocol address should be determined by
the hardware type (found in ar$hrd) and the protocol type (found
in ar$pro). It is included for optional consistency checking,
and for network monitoring and debugging (see below).

The opcode is to determine if this is a request (which may cause
a reply) or a reply to a previous request. 16 bits for this is
overkill, but a flag (field) is needed.

The sender hardware address and sender protocol address are
absolutely necessary. It is these fields that get put in a
translation table.

The target protocol address is necessary in the request form of
the packet so that a machine can determine whether or not to
enter the sender information in a table or to send a reply. It
is not necessarily needed in the reply form if one assumes a
reply is only provoked by a request. It is included for
completeness, network monitoring, and to simplify the suggested
processing algorithm described above (which does not look at the
opcode until AFTER putting the sender information in a table).

The target hardware address is included for completeness and
network monitoring. It has no meaning in the request form, since
it is this number that the machine is requesting. Its meaning in
the reply form is the address of the machine making the request.

16

In some implementations (which do not get to look at the 14.byte
ethernet header, for example) this may save some register
shuffling or stack space by sending this field to the hardware
driver as the hardware destination address of the packet.
There are -o padding bytes between addresses. The packet data
should be v, wed as a byte stream in which only 3 byte pairs are
defined to be words (arhrd, arpro and ar$op) which are sent
most significant byte first (Ethernet/PDP-10 byte style).

Network monitoring and debugging-

The above Address Resolution protocol allows a machine to gain
knowledge about the higher level protocol activity (e.g., CHAOS,
Internet, PUP, DECnet) on an Ethernet cable. It can determine
which Ethernet protocol type fields are in use (by value) and the
protocol addresses within each protocol type. In fact, it is not
necessary for the monitor to speak any of the higher level
protocols involved. It goes something like this:

When a monitor receives an Address Resolution packet, it always
enters the <protocol type, sender protocol address, sender
hardware address> in a table. It can determine the length of the
hardware and protocol address from the ar$hln and ar$pln fields
of the packet. If the opcode is a REPLY the monitor can then
throw the packet away. If the opcode is a REQUEST and the target
protocol address matches the protocol address of the monitor, the
monitor sends a REPLY as it normally would. The monitor will
only get one mapping this way, since the REPLY to the REQUEST
will be sent directly to the requesting host. The monitor could
try sending its own REQUEST, but this could get two monitors into
a REQUEST sending loop, and care must be taken.

Because the protocol and opcode are not combined into one field,
the monitor does not need to know which request opcode is
associated with which reply opcode for the same higher level
protocol. The length fields should also give enough information
to enable it to "parse" a protocol addresses, although it has no
knowledge of what the protocol addresses mean.

A working implementation of the Address Resolution protocol can
also be used to debug a non-working implementation. Presumably a
hardware driver will successfully broadcast a packet with Ethernet
type field of ether-type$ADDRESSRESOLUTION. The format of the
packet may not be totally correct, because initial
implementations may have bugs, and table management may be
slightly tricky. Because requests are broadcast a monitor will
receive the packet and can display it for debugging if desired.

An Example:

17

Let there exist machines X and Y that are on the same 10Mbit
Ethernet cable. They have Ethernet address EA(X) and EA(Y) and
DOD Internet addresses IPA(X) and IPA(Y. Let the Ethernet type
of Internet be ET(IP). Machine X has just been started, and
sooner or later wants to send an Internet packet to machine Y on
the same cable. X knows that it wants to send to IPA(Y) and
tells the hardware driver (here an Ethernet driver) IPA(Y). The
driver consults the Address Resolution module to convert <ET(IP),
IPA(Y)> into a 48.bit Ethernet address, but because X was just
started, it does not have this information. It throws the
Internet packet away and instead creates an ADDRESS RESOLUTION
packet with

(ar$hrd) = areshrd$Ethernet
(ar$pro) = ET(IP)
(ar$hln) = length(EA(X))
(ar$pln) = length(IPA(X))
(ar$op) = ares-op$REQUEST
(ar$sha) = EA(X)
(ar$spa) = IPA(X)
(ar$tha) = don't care
(ar$tpa) = IPA(Y)

and broadcasts this packet to everybody on the cable.

Machine Y gets this packet, and determines that it understands
the hardware type (Ethernet), that it speaks the indicated
protocol (Internet) and that the packet is for it
((ar$tpa)=IPA(Y)). It enters (probably replacing any existing
entry) the information that <ET(IP), IPA(X)> maps to EA(X). It
then notices that it is a request, so it swaps fields, putting
EA(Y) in the new sender Ethernet address field (ar$sha), sets the
opcode to reply, and sends the packet directly (not broadcast) to
EA(X). At this point Y knows how to send to X, but X still
doesn't know how to send to Y.

Machine X gets the reply packet from Y, forms the map from
<ET(IP), IPA(Y)> to EA(Y), notices the packet is a reply and
throws it away. The next time X's Internet module tries to send
a packet to Y on the Ethernet, the translation will succeed, and
the packet will (hopefully) arrive. If Ys Internet module then
wants to talk to X, this will also succeed since Y has remembered
the information from X's request for Address Resolution.

Related issue:

It may be desirable to have table aging and/or timeouts. The
implementation of these is outside the scope of this protocol.
Here is a more detailed description (thanks to MOONOSCRC@MIT-
MC).

If a host moves, any connections initiated by that host will
work, assuming its own address resolution table is cleared when
it moves. However, connections initiated to it by other hosts

18

will have no particular reason to know to discard their old
address. However, 48.bit Ethernet addresses are supposed to be
unique and fixed for all time, so they shouldn't change. A host
could "move" if a host name (and address in some other protocol)
were reassigned to a different physical piece of hardware. Also,
as we know from experience, there is always the danger of
incorrect routing information accidentally getting transmitted
through hardware or software error; it should not be allowed to
persist forever. Perhaps failure to initiate a connection should
inform the Address Resolution module to delete the information on
the basis that the host is not reachable, possibly because it is
down or the old translation is no longer valid. Or perhaps
receiving of a packet from a host should reset a timeout in the
address resolution entry used for transmitting packets to that
host; if no packets are received from a host for a suitable
length of time, the address resolution entry is forgotten. This
may cause extra overhead to scan the table for each incoming
packet. Perhaps a hash or index can make this faster.

The suggested algorithm for receiving address resolution packets
tries to lessen the time it takes for recovery if a host does
move. Recall that if the <protocol type, sender protocol
address> is already in the translation table, then the sender
hardware address supersedes the existing entry. Therefore, on a
perfect Ethernet where a broadcast REQUEST reaches all stations
on the cable, each station will be get the new hardware address.

Another alternative is to have a daemon perform the timeouts.
After a suitable time, the daemon considers removing an entry.
It first sends (with a small number of retransmissions if needed)

an address resolution packet with opcode REQUEST directly to the
Ethernet address in the table. If a REPLY is not seen in a short
amount of time, the entry is deleted. The request is sent
directly so as not to bother every station on the Ethernet. Just
forgetting entries will likely cause useful information to be
forgotten, which must be regained.

Since hosts don't transmit information about anyone other than
themselves, rebooting a host will cause its address mapping table
to be up to date. Bad information can't persist forever by being
passed around from machine to machine; the only bad information
that can exist is in a machine that doesn't know that some other
machine has changed its 48.bit Ethernet address. Perhaps
manually resetting (or clearing) the address mapping table will
suffice.

This issue clearly needs more thought if it is believed to be
important. It is caused by any address resolution-like protocol.

19

Appendix B

Z specification of RFC826

The given typm

The specification document does not give the number of protocols, the
detailed internal structure of protocol addresses, the types of hardware
and the hardware addresses. So it is appropriate to treat them as sets of
given elements. Hence the given data are:

the types of protocols, the addresses in the formats of those protocols,
the types of hardware and the hardware addresses of the systems.

[PROTOCOLS, PADDRESSES,

HARDWARE-TYPES, HARDWARE-ADDRESSES]

Ethernet addresses are defined as a subset of possible hardware
addresses. The operation requires an explicit protocol sort called
addressresolution,

ether.addresses : P HARDWAREADDRESSES

addressreolution : PROTOCOLS

..... and a hardware address for broadcast messages.

broadcast : ether.addresses

The address resolution module requires two opcodes.

OPCODE ::. REQUEST I REPLY

20

Node characteristics

Each node has a list of node characteristics which are encapsulated in a
single schema. Here the information about the protocols the node
supports and the corresponding address is stored as a partial injection;
partial because not all protocols may be supported, and a function
because different protocols could use the same address for the same
node. Note that the node hardware address is drawn from the given
hardware addresses and not the Ether subset. This is in the spirit of the
generalisation attempt alluded to in the specification document

Hode.dat a
node-protocols: PROTOCOLS -o PRDDRESSES

node-hardware-type : HARDLARETYPES

node-hardwareaddress : HRRDWARERDDRESSES

The address table

Each node has an address table which also incorporates the node's own
characteristics.

The address lookup table, which is at the heart of this protocol, is
modelled as a partial function. The mapping is partial because not all
possible protocols and associated addresses will be stored on the table,
and a function because more than one protocol type and address can
correspond to a given hardware address.

It is convienient to consider two tables. The first is the table of the node
being asked the address question.

Requestortable
addresstable: PROTOCOLS x PDDRESSES

-4+ HARDWAREADDRESSES

Nodedata

The second is the table of another node on the Ethernet which may have
the desired information.

Recipient-toble
addresstable: PROTOCOLS x PRDDRESSES

-s. HARDURRERADDRESSES

Node-dat a

21

Loca table searh

This defines a successful local table search by the (potential) requestor.
If the desired protocol type and address (treated as inputs with the ?
suffix) are known then they will be present in the domain of the table.
The desired hardware address (treated as outpat with the ! suffix) will
be the appropriate element of the table's co-domain.

Successful-local-find

E Requestor.table
wanted-protocol-type? : PROTOCOLS

wantedprotocol-address? : PRDDRESSES

hardware-address! : HARDWRRERDDRESSES

(wanted-protocol-type?, wanted-protocol-address?) c

dom addresstable

hardware-address! =
address.table (wantedprotocol-type?,

wonted-protocoladdress?)

The Ethernet packet

The structure of the relevant parts (the two fields for the byte lengths of
the addresses are omitted) of an address resolution Ethernet packet is
represented as a schema. Note that this does not give the explicit
structure of the packet (ie the ordered bit string), rather it concentrates
on the crucial point that the elements of the schema are distinct.

Ether-packet

eadddest,eadd.sender : ETHER-ADDRESSES
dat .protocol.format: PROTOCOLS

hardw: e-addressspace : HARDUARETYPES

protocoladdress space : PRUTOCOLS

op : OPCODE

hardware-addresssender: HARDWARE-ADDRESSES

protocol-addres3sender : PADDRESSES

hardware-address-target HARDUAREADDRESSES

protocol-address-target PADDRESSES

22

Send request

The Send-request schema specifies the values of a request to all the
other systems on the Ethernet. This asks for the Ethernet address of the
sought after node whose Protocol type and address have been supplied.
The sending of a request is specified by expressing the state of the
etherpacket after the operation, which involved setting the packet type to
be an address resolution request, providing the ether address of the
requestor and the protocol details of the sought after node. Note: an extra
precondition test has had to be added which requires the hardware
address of the sender to be an Ethernet address. This arises from the
partial generalisation inconsistency mentioned in the main text.

Send.request
Requestortable

wanted-protocoltype? : PROTOCOLS

wanted-protocol address? : PADDRESSES

Ether-packet!

node.hardwareaddress c ether-addresses
eaddsender! - node.hardware.address

eadd-dest! - broadcast

data.protocol-format! - addressresolution
hardware-address3space! = node-hardwaretype

protocol-addressspace! - wantedprotocol.type?

op! - REQUEST

hardwareaddress.sender! = nodehardwareaddress
protocol-addresssender! =

node-protocols (wantedprotocoltype?)
protoco1address.torgeti " wanted-protocol address?

23

Receive request

The receive_request schema describes the reception of the address
resolution packet by all the recipient systems on the Ethernet. Here the
conditions for a successful (ie valid) receive (for this RFC protocol) at a
given Ethernet address are specified. These are tests on the Ethernet
packet contents to see if either the Ethernet packet was a broadcast
packet or it was for this particular node (Note: this last test is implied in
the specification document but not explicitly stated). Also further tests
check that the packet is an address resolution packet, that it is for the
hardware type of node and the protocol type that the node supports.

Rece i ve-request

- Recipient-table

Ether-packet?

eadd.dest? - broadcast

eodd.dest? - node.hardware.address

data-protocol-format? - addres3resolution

hardware-address9space? node-hardware-type

protocoladdres3space? £

dom node-protoco]s

24

E]dswng entry ceck

Here the recipient node tests for knowledge of the sender by seeing if the
sender's protocol details, ie type and address, are in the node's own look
up table. If they are then the local table entry is updated by overwriting
the previous entry. Note: this update is done even if the node is not the
one being sought.

Existing.entry.check

A Recipient-table

Ether-packet?

(protocol-addressspace?, protocoladdresssender?)
c dom addresstable

address.table' - addresstable *
((protocoladdres-space?,protocoladdresssender?)

t-+ hardware-address.ender? }
Q Node-data' - Q Mode-data

Add new entry

Here if the sender is not known to the recipient and the node being
sought is indeed that node then its table is updated with the sender's
details.

A dd-new-entry

A Recipient-table

Ether-packet?

(protocol-addressspace?, protocol-addresssender?

4 dom addres3table

protocol-addresstarget? a
node-protocols(protocol-addressspace?)

address-table' - address-table U

{(protcol.addressspace?,protocol-addressender?)
.- hardwareaddresssender?)

9 Node-data' - 9 Mode-data

25

Reply

The last action of the recipient, is to send the desired information back
to the requestor. Here the condition to be met is that the original action
in the packet was a request and that the action is then set to be a reply
with the addresses being assigned to the appropriate parts of the ether
packet.

Reply
Z Recipient-table

Et her-packet?

Ether-packet I

op? a REQUEST
node-hardware-address c ether....ddresseS

.- dd-..sender! - node...hrdware-addre33
eadd..dest! - hardware...ddre33-3ender?

data...protocol-formati - data-.protocol-format?

hardware-addre33-3pace! - hardware..addre3-space?

protocol-addre33-3pace! - protocol...addr33-3pace?

op! - REPLY

hardware..addre33-3ender! - node..hardware..address

protoco1-addre33-3ender! -

node..protocol s protocol-addre3s-3pace?)

hardware...ddre33-target! -hardware...ddres3-3ender?

Prot ocol...ddre33-tar'get 1 protocol-..addr,s-ender?

26

Update tabl

In the last stage the requestor receives the reply and updates its local
address table. The condition tested is that the packet is the reply of an
address resolution packet. The address table is then updated from the
appropriate data parts of the packet.

,Update-tabl e

A Requestortable

Ether-packet?

data-protocol-format? - addressresolution

op? - REPLY

address.table' - addresstable I
{ (protco1addressspace?,protocoaddresssender?)

p-' hardwareaddress.sender }

) Mode-data' - Q Mode-data

27

REPORT DOCUMENTATION PAGE DRIC Reference Number (if known)......-...........

Oveae sa urll claseicaio otsh et...as.....f..ca.....o.....of...s.heetS IFID...............................UN...LASS-I..F..I.ED
(As far as possible this sheet should contain only unclassified information. If it is necessary to enter classified information, the field concerned
must be markd to indicate the classiicationi eg (R), (C) or ().- nl

OrnosN an d xecisetonslt h omncto rtcls~ct F 2,Teadesrslto

Reprt ecrit Cassfiatin itl Cabstfact liati on (UUR, or S)oS

UNCLA UNLIMITED
Foeg agag il i tecs ftrnltos

Cofrne eal

