
Technical Report
CMU/SEI-91-TR-21

8 ESD-91-TR-21AD-A242 1

Durra: An Integrated Approach to
Software Specification, Modeling,
and Rapid Prototyping

Mario R. Barbacci
Dennis L. Doubleday

Charles B. Weinstock
Randall W. Lichota

September 1991

X, 'X1

/ xx

91- 14020?'/1!/!/i 11I!'IIi IlJ!!j/,'A.".

,,.1 -I 4O2O ,l:r lll!ill/i,



ti fo!-.rig iatement of assurance is more than a statement required to comply with the federal law This is a sincere statement by the university to assure that all
rcr!o afre included in the diversity which makes Carnegie Mellon an ecting place Carnegie 1r llon wishes to include people without regard to race, color, national

set. handicap, rel ion, creed, ancestry, bolief, age. veteran status or sevual orientation

(Jar 3ge Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admissions and employment on Ihe basis of race.
(c;r,!i. national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 end Section 504 of the
Pefabiltaton Art of 1973 or other federal, state, or local laws or executive orders In addition. Carnegie Mellon does not discrimIlnte in admisrsiOns and employment on
the .ias of religion, creed, ancestry, beliet. age, veteran status or sexual orientation In violation of any federal, state, or local laws or executive orders. Inquiries concern.
Pj application of this policy should be directed to the Provost, Carnegie Mellon University. 5000 Forbes Avenue, Pitburgh, PA 15213, telephone (412) 2688684-kr the
V,cen President for Enrollment, Carnegie Mellon University. 5000 Forbes Avenu, Pittsburgh, PA 15213 telephone (412) 2662056



Technical Report
CMU/SEI-91-TR-21

ESD-91-TR-21
September 1991

Durra: An Integrated Approach to Software
Specification, Modeling, and Rapid

Prototyping

Mario R. Barbacci
Dennis Doubleday

Charles B. Weinstock
Randall W. Lichota

- ' h" 'Distributed Systems

.. . . . . .t a

'-,.. .' " - Approved for public release.

Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213



This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

hale, J.Z~a, M or, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the Department of Defense.

Copyright © 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
G,-r iment sagncy personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: National Technical Information Service, US. Department of Commerce,
Springfield, VA 22161.
Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.



Table of Contents

1 Introduction 1

2 An Overview of Durra 3

3 Behavioral Specifications 7

4 Durra Development Methodology 9
4.1 Application Deve!opment 9
4.2 Prototype Development 10

5 Related Work 13

6 Conclusion and Future Extensions 15

References 17

CMU/SEI-91 -TR-21



ii CMU/SEI-91 -TR-21



List of Figures

Figure 2-1 Durra Task Description Template 3
Figure 3-1 Timing Expression Language Syntax 7
Figure 3-2 Example of a Simple Timing Expression 8
Figure 4-1 Durra Development Model 10

CMU/SEI-91-TR-21



iv CMU/SEI-91 -TR-21



Durra: An Integrated Approach to Software
Specification, Modeling, and Rapid Prototyping

Abstract:Software specification, modeling, and prototyping activities are often
performed at different stages in a software development project by individuals
who use different specialized notations. The need to manually interpret and
transform information passed between stages can significantly decrease
productivity and can serve as a potential source of error. Durra is a non-
procedural language designed to support the development of distributed
applications consisting of multiple, concurrent, large-grained tasks executing in
a heterogeneous network. Durra provides a framework through which one can
specify the structure of an application in conjunction with its behavior, timing,
and implementation dependencies. These specifications may be validated by
passing behavioral and timing information associated with each Durra task
description to a run-time interpreter. Similarly, software prototypes may be
constructed by directing this information to a suitable source code generator.
We have already developed an interpreter and source code translator for a
language based on simple timing expressions. We are presently constructing
a source code generator for a more complex language defined by SMARTS
(the Specification Methodology for Adaptive Real-Time systems developed by
Hughes Aircraft Company). 1

1 Introduction

This paper discusses the relationship between software specification, modeling and prototyp-
ing activities as part of a real-time system development strategy. Most often these activities
are performed at different stages in a software development project by individuals who use dif-
ferent specialized notations. The need to manually interpret and transform information passed
between stages can significantly decrease productivity and can serve as a potential source of
error. Tne recent development of commercial executable specification tools represents an ini-
tial semi-automated link between specification, modeling and prototyping activities. Many of
these tools use a graphical notation based on real-time structured analysis to represent soft-
ware models and provide a built-in simulation capability [7]. Unfortunately, these tools have
been shown to be relatively ineffective for performance modeling where computational accu-
racy, response time and resource contention are of principle concern [8]. Moreover, the pro-
totypes generated from realistic software specifications tend to be much too inefficient for real-
time applications.

1. An earlier version of this paper was presented at the 2nd International Workshop on Rapid System Pro-
totyping and will appear in the workshop proceedings.

CMU/SEI-91-TR-21 1



We believe that these problems are largely due to the fact that the formalisms upon which
most executable specification tools are based represent too high a level of abstraction. We feel
that to effectively link specification, modeling, and prototyping activities, integration must occur
at the level of a technical architecture. This corresponds to a software architecture augmented
to include formal descriptions of task behavior. We believe that Durra, currently under devel-
opment at the Software Engineering Institute, can provide this integration. Durra is a task-de-
scription language intended for developing distributed applications implemented by large-
grained tasks [4]. This is a non-procedural language, separate from the various programming
languages used to develop the component tasks. Using Durra, the developer specifies the ap-
plication structure and the resources allocated to the component tasks independently from the
coding of the individual components. Durra also allows one to specify the conditions for system
reconfiguration as well as their nature (e.g., to implement mode changes and/or fault recov-
ery).

Although Durra is hardware independent and can be used on a variety of processors and com-
munication networks, for the purpose of our explanation we assume an abstract machine with
multiple non-homogeneous processors, a local area net to allow direct communication be-
tween processors, and an operating system or runtime executive running in each processor
and providing reliable communications facilities.

2 CMU/SEI-91-TR-21



2 An Overview of Durra

Durra was designed to support the development of distributed applications [3]. An application

is specified in Durra as a set of task descriptions that prescribes a way to manage the resourc-

es of a heterogeneous machine network. Syntactically, an application description is a single
task description and can be used as a component task for larger applications. As shown in Fig-

ure 2-1, a Durra task description is a compilable template that defines the properties of a task's
implementation. Task descriptions provide information about the interface, behavior, at-
tributes, and internal structure of a task. They may be used as building blocks for application-

descriptions or larger, compound task-descriptions.

task task-name (paramet'r-list)

ports

port-declarations

behavior

specification-list

attributes

attribute-value-pairs

components

components-declaration

structures

component-connections

reconfiguratlons

condition-action-pairs

clusters

clustercomponentassociations

end taskname;

Figure 2-1 Durra Task Description Template

In Durra, interconnections between tasks are denoted by links each representing an instance
of a channel. A channel may be considered a conduit through which data is passed from one
task to another. Channel descriptions are compilation units that define the properties of chan-
nel implementations and are syntactically similar to task descriptions, the only difference being
that they lack the components, structures, and reconfigurations sections. Channel descrip-
tions are used to construct application descriptions and compound task descriptions.

CMU/SEI-91-TR-21 3



Interface information takes the form of unidirectional, typed port declarations as shown on iie
following page.

ports

inl: In heads;

out1, out2: out tails;

A port declaration specifies the direction and type of data moving through the port. An in port
takes input data from a channel; an out port deposits data into a channel. Note that the port
types are not built into the language; they must be declared b,; the user.

The behavior part consists of a list of name/value pairs dcr."oting formal properties of the com-
ponent. For demonstration purposes, we have developed a simple language based or I;ming
expressions which describes the behavior of a task in terms of the operations it performs on
its input and output ports. This language is described in more detail in the section which fol-
lows.

As shown below, the attribute part consists of a list of name/value pairs denoting miscella-
neous properties of a component (i.e., task or channel). Attributes play a central role in the
constructiun of software prototypes by providing a link to pre-existina library components.
Each component within a library is assumed to have both a description (specified in the Durra
language) an J an implementation (expressed in a suitable programming language). When en-
tering a component into the library, the developer assigns each attribute an property value.
When a task or channel name is referenced within the component section of a compound task
description, the desired value of the property is specified. Example attributes include author,
version number, programming language, procedure or pa'kage name (associated wit the im-
plementation), and processor type:

attributes

author = "rwl";

packagename - "Data-Manager";

SortingAlgorithm = "Quicksort";

Descriptions of simple tasks and channels (but not compound tasks) may be customized
through the use ot formal parameters. The latter consists of a list of typed parameter names
that can be used in simple task or channel descriptions anywhere a value of the appropriate
type is allowed. The actual parameter value is specified as part of the task or channel instan-
tiation. The parameter types (INTEGER, REAL, STRING, and IDENTIFIER) are built into the
language and should not be confused with port types which must be specified by the user.

Parameters allows one to abstract away some of the details of interface declarations, thus pro-
viding an additional measure of flexibility in constructing application descriptions. Moreover,
parameters provide a means for constructing generic channel descriptions in which the port

4 CMU/SEI-91 -TR-21



type and bounds need not be fixed. When completed, our implementation of the Durra com-
piler and library will include a set of generic channel descriptions (and their associated imple-
mentations) that will support some of the commonly-used forms of inter-task communication.
As an example, a description of a generic broadcast channel is shown below.

channel broadcast (number of sources: integer,

porttype: identifier)

ports

input: In porttype;

output[.. number of sources]: out port-type;

end broadcast;

Structural information describes the internal components of a compound task and serves to
distinguish a compound task from a simple task or a channel (i.e., channel descriptions cannot
contain structural information). This information is comprised of three parts:

1. The component section enumerates the task and channel instantiations used
as internal components.

2. The structure section describes how these internal components are connect-
ed to form a configuration.

3. The reconfiguration section describes the conditions under which the struc-
ture of an application can vary during execution (there can be one or more of
these configurations in a structure section).

Durra provides developers with a means for specifying both the conditions for reconfiguration
and the nature of the reconfiguration.

As noted earlier, the Durra language provides a mechanism for identifying and selecting com-
ponents from a library. These are identified via templates of desired properties that the Durra
compiler matches against templates of reusable program elements. Components are entered
into a library by compiling their Durra description, and are subsequently selected by submitting
an application or compound task description to the Durra compiler. The components refer-
enced within this description are specified as component selections. These are expressed as
templates which syntactically resemble a primitive form of component description (i.e., the in-
terface, attribute, and behavior parts may be present but the component, structure, and recon-
figuration information may not be specified).

In general, a given task might have multiple implementations that differ according to the algo-
rithm used, performance, processor requirements, or version of the code. In order to select
from alternative implementations, a task selection must be provided which lists the desirable
features of a suitable implementation. A task description matches a selection if the ports have
similar message types and direction (input or output), if the behavioral specifications of the
task description imply the behavioral specifications of the task selection, and if the attribute

CMU/SEI-91-TR-21 5



expression in the task selection (a predicate on attribute names and values) yields true when
evaluated in the context of the task description attributes (list of name/value pairs). During a
library search, zero, one, or more than one candidate task description can be found to match
a given task selection. Anything but exactly one match is considered an error although the se-
verity of the error varies with the nature of the mismatch.

6 CMU/SEI-91-TR-21



3 Behavioral Specifications

In principle, a wide variety of formal methods may be used to define the behavior of Durra

tasks. To demonstrate the potential utility of Durra as a specification and modeling tool, we

have initially focused on the implementation of a simple timing expression language which de-

scribes the behavior of a task in terms of the operations it performs on its input and output ports

[5]. A timing expression may be used to describe the patterns of execution of operations on

the input and output ports of a task and, thus, specifies its behavior as seen from the outside.

Timing : StatementListsemico lon

Statement loop-statement I
repeat statement I
whilestatement I
if-statement I
put-statement I
get-statement I
wait-statement I
delay-statement I
signal-statement

loop-statement LOOP StatementListsemicolon END LOOP

repeatstatement REPEAT IntegerExpr loop-statement

whilestatement WHILE BooleanExpr loop-statement

ifstatement IF BooleanExpr
THEN StatementListsemicolon

{ ELSE StatementListsemicolon I

waitstatement WAIT "" "BooleanExpr "," ArithExpr ")"

put-statement PUT " "PortName { "," TypeName
","' IntegerExpr ) ) ")"

get-statement GET " PortName I ","' TypeName
.","' IntegerExpr } } ")"

delaystatement ::= DELAY "" "ArithExpr { "," ArithExpr }

signal-statement SIGNAL "" "IntegerExpr ")"

Figure 3-1 Timing Expression Language Syntax

As shown in Figure 3-1, the timing specification language consists of a small number of imper-

ative statements which may be used to specify a sequence of event expressions. A basic

event expression is either a channel operation (specified using the GET and PUT primitives),

a SIGNAL, or a DELAY directive. The latter causes the execution of a task to be delayed an

amount of time that may be fixed or may correspond to a random number, drawn from a uni-

form distribution between two specified limits. The SIGNAL statement sends a specified signal

CMU/SEI-91-TR-21 7



to the Durra runtime system and is intended to facilitate reconfiguration. An example of a sim-

ple timing expression appears in Figure 3-2.

The iteration statements (LOOP, REPEAT, and WHILE) indicate sequences of statements to

be executed multiple times. These may be used to specify that a sequence of statements is to

be repeated while a condition is true (WHILE), for a fixed number of times (REPEAT), or in-

definitely (LOOP). The WAIT statement delays the execution of the task implementation until

a specified Boolean expression is true. This expression is evaluated repeatedly until it yields

true (the amount of time between retries may be specified).

The GET and PUT statements specify the port input and output operations respectively. A

GET statement reads a message from an input port. If the type name is specified, a check is

made that the message received is of that type. If the message size is also specified, a test is

made to see whether the message received has the specified size. A PUT statement gener-

ates a message of a given type and size and sends it to an output port. If the port is declared
in the Durra task description to be of a union type (i.e., messages of more that one type may

be accepted), the type name denotes the actual message type. Similarly, if the type defines a

data representation of variable size, the message size denotes the actual size. Note that both
the message type and size can be left unspecified if the Durra compiler would be able to de-
duce this information from the port declaration.

signal (0) ;
if sizeof(tl) > 20 then
repeat 20 loop

put (pl,tl, 20);
get(p2,t2);
end loop;

wait(20 > currentptimre, 10);
delay (20,30);
end if;

Figure 3-2 Example of a Simple Timing Expression

Timing specifications may be used to drive a run-time interpreter or a source-code generator

that translates the specification into a corresponding Ada implementation of the task. The code
generator produces the main unit of the program (a procedure) and imports additional support

packages (e.g., Durra interface, Calendar, System). The procedure can be compiled and
linked by a suitable Ada development system and stored in an object code library. This is dis-
cussed in more detail in the following section.

8 CMU/SEI-91 -TR-21



4 Durra Development Methodology

4.1 Application Development
There are three phases in the development of an application using Durra: (1) library creation,

(2) application creation, and (3) application execution. During the first phase, the developer

creates implementations for the various tasks that will be executed in the heterogeneous ma-

chine. For a given task, there may be many implementations differing in programming lan-

guage (e.g., C or Ada), processor type (e.g., Motorola 68020), performance characteristics, or

other properties. For each implementation, a task description must be written in Durra, com-

piled, and entered in the library. The description may include specifications of a task imple-

mentation's performance and functionality, the types of data it produces or consumes, the

ports it uses to communicate with other tasks, and other miscellaneous attributes of the imple-

mentation.

During the second phase, the user writes an application description. Syntactically, an applica-

tion description is a single task description and could be stored in the library as a new task
which could then be used as a component task for larger applications. The Durra compiler
uses a set of rules to select task descriptions (and their associated implementation) from a li-
brary basec on the specified interfaces (typed message ports), attributes (name/value pairs),

and behaviors (formal specifications). As shown in Figure 4-1, the Durra compiler groups the
application components into clusters, generates "code frames" that link each cluster into one
Ada program, and generates the main units using structural information contained in the ap-
plication descriptions. This imposes a restriction that components must be written in Ada or in
a language that can be linked with and invoked from Ada procedures.

To retain the advantages of reusability and reconfigurability, all information about network re-

sources and application components and structure is hidden in the body of the generated
frames (the main unit in each cluster). Application components communicate using Durra mes-

sage-passing primitives but these are implemented either as local procedure calls (when com-
municating with tasks in the same cluster) or remote procedure calls (when communicating
with tasks in a different cluster). The decision as to which version is used is based on the cur-
rent configuration of the application and is transparent to the application tasks.

During the final stage the application is executed. A set of cluster launchers (one per machine)

start the task implementations. The Durra runtime supports communication between tasks and
provides for dynamic reconfiguration.

CMU/SEI-91-TR-21 9



Application

FDurra) generator

T Durra t
S ompleri Sounces v io enteuators compiler

Object code libraries

Durra Library

c ato sk f scriptiomonns. oilsrt h prahw aecetda drga

Appl. descrinptions Processors in C t [

Messages

Figure 4-1 Durra Development Model

4.2 Prototype Development

The task matching mechanism outlined above works exclusively with Durra task selections

and task descriptions. The task implementations (i.e. the real programs) are not part of the se-

lection process. An important consequence of this separation between the task description

and its implementation is that it is not necessary to have implementations of all the compo

nents to construct an application prototype. These can be built using early implementations of

component tasks or component emulators driven by behavioral specifications. Component

emulation can be used to model software designs and to experiment with alternative specifi-

cations of critical components. To illustrate the approach we have created an Ada program

that interprets timing expressions of the form described in Chapter 3 [2].

10 CMU/SEI-91-TR-21



The ta.-K emulator described above provides natural support for system development method-
olog!es based on successive refinements, such as the Spiral method [6]. Users of the spiral
model selectively identify high-fisk components of the product, establish their requirements,
and then carry out the design, coding, and testing phases. It is not necessary that this process
be carried out through the testing phase -- higher-risk components might be identified in the
process and these components must be given higher priority for development. Durra allows
the designer to build mock-ups of an application decomposed into tasks specified by their in-
terface and behavioral properties. Subsequently, an application can be emulated by interpret-
ing the timing expressions for the yet-to-be written implementations.

The result of the emulation would identify those tasks whose timing expressions suggest are
more critical or demanding and thus more likely to affect the performance of the entire system.
The designers can then experiment by writing alternative behavioral specifications for each of
these tasks until a satisfactory specification (i.e., template) is obtained. Once this is achieved,
the designers can proceed by replacing the original task descriptions with more detailed tem-
plates, using the structural description features of Durra. These more refined application de-
scriptions can be emulated again and alternative behavioral specifications of the internal tasks
created until a satisfactory internal structure (i.e., decomposition) has been achieved. This
process can be repeated as often as necessary, varying the degree of refinement of the tasks,
and even backtracking if the timing constraints become unsatisfiable. It is not necessary to
start coding a task until later, when its specifications are acceptable, and when further decom-
position of the task is not required.

Once experimentation with component emulators has helped to establish the principle timing
trade-offs, a prototype can evolve to include real component implementations. If the tasks
were to be handcoded, errors might be introduced if the coder misunderstood the behavioral
specifications used to drive the early prototypes. This can be avoided if formal specifications
of behavior can be processed by suitable source code generators. Using Durra as a driver, a
component can be generated by extracting the formal specification of the component from a
task description, feeding the specification to the source code generator, and storing the result-
ing program in a library. To demonstrate the concept we have built a tool that generates Ada
programs whose behavior is also specified by timing expressions. These programs perform
input and output operations but do not execute code between input or output operations (tim-
ing expressions do not describe algorithms). These programs are useful nevertheless as an
intermediate step between application prototypes using emulated components and the final
application, and can be used as guides to programmers.

Since code frames are generated automatically, changes in the application structure and
available resources can be captured in a Durra application description and a new set of frames
can be generated, linking together the (unmodified) application components. This capability,
in conjunction with support for behavioral specifications based on timing expressions, permits
evolutionary prototyping to be carried out. Each of the application tasks would be distributed
among multiple machines just as for the target system (except for possible differences in the
processor/interconnection). Thus much of the structure of the application is directly imple-

CMU/SEI-91-TR-21 11



mented in a distributed environment. Initially, the computational and logical components of
each task would be simulated. Gradually they would be replaced by implementations that have
been derived using source code generation.

In most instances the time required to emulate the behavior of a task will differ from the exe-
cution time of the task's ultimate implementation. Accordingly, we will be implementing a glo-
bal simulated clock as part of a prototype application. As the prototype evolves to include a
greater number of task implementations, the simulated clock will become an increasingly less
important factor in timing validations. Eventually, when these prototypes are transitioned to a
production system, the simulated clock will disappear altogether.

12 CMU/SEI-91-TR-21



5 Related Work

At the technical architecture layer, there has been very little work directed towards developing
a comprehensive env. ' nment which will aid in the specification, implementation, and valida-
tion of a software architecture for real-time distributed applications. CONIC [10), for instance,
focuses primarily on the problem of dynamic reconfiguration of real-time systems. Originally,
CONIC restricted tasks to be programmed in a fixed language (an extension to Pascal with
message passing primitives) running on homogeneous workstations. This restriction was later
relaxed to support multiple programming languages.

MINION [11] consists of a language for describing distributed applications and a graphics ed-
itor for interactive modification of the application structure. MINION allows a user to expand,
contract, or reconfigure an application in arbitrary ways during execution time. Hermes [13]
hides from the programmers all knowledge about storage layout, persistency of objects or
even operating system primitives. Processes communicate through ports, connected via mes-
sage queues although the semantic of queue operations are similar to an Ada entry call/accept
mechanisms, albeit the binding of processes to ports is dynamic, as in Durra, CONIC, and
MINION.

RNET [12] is a language for building distributed real-time programs. An RNET program con-
sists of a configuration specification and the procedural code, which is compiled, linked with a
run-time kernel, and loaded onto the target system for execution. The language provides fa-
cilities for specifying real-time properties, such as deadlines and delays that are used for mon-
itoring and scheduling the processes. These features place RNET at a lower level of abstrac-
tion, and thus RNET cannot be compared directly to Durra. Rather, it can be considered as a
suitable language for developing the runtime executive required by Durra and other languages
in which the concurrent tasks are treated as black boxes.

Maruti [14] is an environment intended to support hard real-time distributed applications that
have security and/or fault tolerance requirements. Maruti also supports heterogeneous oper-
ation through a common message interface. While these represent important similarities with
Durra, it should be pointed out that Maruti differs in that it constitutes an operating system in
its own right. By contrast, Durra is intended to support the development of distributed software
architectures for a variety of possible machine configurations.

MIDAS [1] represents an approach to the design of distributed real-time systems based on the
iterative refinement of performance models. While this approach is not specifically described
as a form of prototyping, it shares with Durra the concept of combining task implementations
with simulated components. MIDAS also uses the concept of a simulated clock but differs in
supporting general-purpose distributed simulation through checkpointing and rollback (Durra
as yet only supports distributed simulation for cases where timing dependencies can be re-
solved). In addition, MIDAS does not support the generation of code from model specifica-
tions, it does not provide a means to specify reconfiguration, and it does not support the use
of multiple behavioral specification languages.

CMU/SEI-91-TR-21 13



Techniques for generating large-scale multitasking Ada applications has been developed by
Noah Prywes and others at the University of Pennsylvania. Individual tasks are described in a
non-procedural language based on algebraic specification methods. This language forms part
of MODEL which provides automated checking and compilation of specifications into sequen-
tial Ada, PL/1, or C code [15]. Communication between tasks is specified in a dataflow lan-
guage called CSL. A Configurator program is used to validate CSL dataflow graphs and gen-
erate an Ada shell to control task execution. This shell also implements communication be-
tween tasks (including interprocessor communication).

Prywes approach shares several common elements with Durra. Each module produced by the
MODEL compiler is considered a separate distinct procedure. These are subsequently equat-
ed with tasks during the construction of CSL descriptions. Moreover, CSL tasks may be man-
ually constructed as well as generated from model descriptions. In effect, these would corre-
spond to Durra Task Implementations. Other commonalities with Durra include the use of stan-
dardized interface procedures to implement intertask communication and the provision for
alternative communication implementations selectable via attributes.

Prywes approach differs from Durra primarily in the areas of communication and reconfigura-
tion. In regard to the former, Prywes employs a number of built-in assumptions regarding the
manner in which tasks communicate. For example, files (which correspond to Durra channels)
can implement the transfer of data between tasks in one of four predefined ways. Durra, while
also providing a small set of predefined channel behaviors, permits a user to define additional
channel implementations. Because the Configurator is intended to automatically synthesize
CSL descriptions into a set of communications procedures and tasks, arbitrary file behavior
cannot be supported. Thus Durra provides the potential for greater tailoring of communica-
tions-oriented software at the expense of automatic generation. It is possible, however, to "re-
use" additional channel implementations by placing these into the Durra library and defining
for each a corresponding attribute.

In addition to the differences in intertask communication, Durra differs from CSL by providing
a means to describe reconfiguration actions to be carried out at run time. This allows one to
specify the migration of tasks between processors to support load balancing or recovery from
run-time faults. The version of the Durra compiler under development will initially generate Ada
software that supports one model of task migration.

14 CMU/SEI-91-TR-21



6 Conclusion and Future Extensions

Durra is a non-procedural task-description language specifically designed to support the de-
velopment of large-grained distributed applications. A task-level application description pre-
scribes a way to manage system resources and includes behavioral and structural descrip-
tions of the tasks, their mapping to processors, and their communication characteristics. Ex-
pressing a software architecture in Durra is reasonably straightforward because the structure
of an application is expressed separate from its behavior. In addition, the Durra runtime sys-
tem supports the construction of distributed Ada programs and thus provides a mechanism for
prototyping applications for a distributed environment. Consequently, an application can
evolve as its requirements change or are better understood. This may entail changes in the
application description, selection of alternative task implementations from a library, and their
connection to reflect alternative designs.

Task emulation and source code generation represents two methods for using Durra as a pro-
totyping tool. Generated programs can serve as an intermediate step between application pro-
totypes using emulated components and the final application. While our demonstration system
uses timing expressions as the behavioral specification language, Durra can be easily tailored
to support the use of other languages for which interpreters or source code generators exist.
We are in the process of modifying the Durra tool suite to permit inclusion of other kinds of
behavioral specifications in task descriptions in lieu of timing expressions. The next type of be-
havioral specification which will be supported is the Restricted Activity Graph notation defined
by SMARTS [9].

CMU/SEI-91-TR-21 15



16 CMU/SEI-91 -TR-21



References

1 R.L. Bagrodia and C.C. Shen. "MIDAS: Integrated Design and Simulation of Distributed Sys-

tems." IEEE Transactions on Software Engineering. To appear in the October 1991 issue.

2 M.R. Barbacci. "MasterTask: The Durra Task Emulator." CMU/SEI-88-TR-20 (DTIC: ADA199
429). Software Engineering Institute, Carnegie Mellon University, July 1988.

3 M.R. Barbacci, D.L. Doubleday, and C.B. Weinstock. "Application-Level Programming." Pro-
ceedings of the 10th International Conference on Distributed Computing Systems. Paris,
France. May 1990.

4 M.R. Barbacci and J. M. Wing. "Durra: A Task-Level Description Language." Proceedings of

the 16th International Conference on Parallel Proces j;. St. Charles, Illinois. August, 1987.

5 M.R. Barbacci and J.M. Wing. "Specifying Functional and Timing Behavior for Real-time Ap-
plications." Proceedings of the Conference on Parallel Architectures and Languages Europe
(PARLE). Springer-Verlag, Lecture Notes in Computer Science, volume 259, part 2. 1987. pp.
124-140.

6 B. W. Boehm. "A Spiral Model of Software Development and Enhancement." Computer, vol-
ume 21, number 5. May 1988.

7 D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman and A. Shtul-Trauring.
"STATEMATE: A Working Environment for the Development of Complex Reactive Systems."
Proceedings of the 10th International Conference on Software Engineering. 1988. pp. 396-
406.

8 A. H. Muntz. "Specification and Design Methodologies for Semi-Hard Real-Time Control Sys-
tems." Doctoral Dissertation. University of Southern California, Los Angeles, California. May
1990.

9 R.W. Lichota and A. H. Muntz. "Specification Methods and Mapping Techniques for Transi-
tioning from Requirements to Implementation." Proceedings of the 3rd Workshop on Large
Grain Parallelism. Pittsburgh, PA. October 10-11, 1989.

10 J. Kramer and J. Magee. "A Model for Change Management." Proceedings of the IEEE Work-
shop on Trends for Distributed Computing Systems in the 1990"s. September 1988. pp. 286-
295.

11 J.M. Purtilo and P. Jalote. "An Environment for Prototyping Distributed Applications." Pro-
ceedings of the Ninth International Conference on Distributed Computing Systems. Newport
Beach, CA: IEEE Computer Society. June 1989. pp. 588-594.

12 C. Belzile, M. Coulas, G.H. MacEwen, and G. Marquis. "RNET: A Hard Real Time Distributed
Programming System." Proceedings of the 1986 Real-Time Systems Symposium. IEEE
Computer Society Press. December 1986. pp. 2-13.

13 D.F. Bacon, R.E. Strom, and S.A. Yemini. Hermes User Manual. IBM Thomas J. Watson Re-

search Center, 1988.

CMU/SEI-91-TR-21 17



14 0. Gudmundsson, D. Mosse, K. T. Ko, A. Agrawala, and S. Tripathi. "MARUTI. A Platform for
Hard Real-Time Applications." 1989 Workshop on Operating Systems for Mission Critical
Computing. September 19-21, 1989.

15 Y. Shi and N. Prywes. "Generating Multitasking Ad i Programs from Hidh-Level Specifica-
tions." Proceedings of the Third 'nternational Conference on Ada Applications and Environ-
ments. Manchester, New Hampshire. May 23-25, 1988. pp. 137-149.

16 Y. Shi and N. Prywes, "Generating Multitasking Ada Programs from High-Level Specifica-
tions," Proceedings of the Third International Conference on Ada Applications and Environ-
ments, Manchester, New Hampshire, May 23-25, 1988, pages 137-149.

18 CMU/SEI-91 -TR-21



UNlIMITED. UNCLASSIFIED
SECURrTY C.ASSI ICATION OF TriIS PAGE

REPORT DOCUMENTATION PAGE
Ia REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUION/AVAILABIITY OF REPORT

N/A Approved for Public Release
.2h I)iIA S.IFI('AI'ION/1.)OWNGRADING SCH:DULE, Distribution Unlimited
N 'A

PFRFORMING ORGANI/.ATION REPOrT N.MBER(S 5. MONITORING ORGANIZATION REPORT NU-MBER(S)

ESD-91 -TR-21
CMU/SEI-91 -TR-21

6a NAMr. OF PERIlOR.MING ORGANIZAION 6b. OFFICE SYMBOL 7a. NAME OF MONTFORING ORGANIZATION

Software Engineering Institute (if alicable) SEI Joint Program Office
SEI

: XI]DRt-SS (Ct. SLate and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

9a NAME OFF-TUN DING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORG ;17,-NION (if appLicable) F1962890C0003

SEI Joint Program Office ESD/AVS

9c ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Carnegie Mellon University PROGRAM PROJECT TASK WORK UNTI
Pittsburgh PA 152' 7 ELEMENT NO NO. NO NO.

63756E N/A NIA N/A

I . TITIE (Include Security Classification)

Durra: An Integrated Approach to Software Specification, Modeling, and Rapid Prototyping

:2 PERSONAL AUIIOR(S)

Mario R. Barbacci, Dennis Doubleday, Charles B. Weinstock, and Randall W. Lichota
13a TYPE OF REPORT l3b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

Final FROM TO September 1991
If, SUPPLEMfENTARY NOTATION

I' COSATI CODES 18. SUBJECT TERMS (Contmue on reverse of neessary and identify by block number)

FIELD GROUP SUB. GR. Durra, software specification, software modeling, prototypes, real-time
systems, distributed systems

19 ABS-RAC- (Conunue on reverse if nece ry and identify by block number)

Software specification, modeling, and prototyping activities are often performed at different stages in
a software development project by individuals who use different specialized notations. The need to
manually interpret and transform information passed between stages can significantly decrease pro-
ductivity and can serve as a potential source of error. Durra is a non-procedural language designed
to support the development of distributed applications consisting of multiple, concurrent, large-
grained tasks executing in a heterogeneous network. Durra provides a framework through which one
can specify the structure of an application in conjunction with its behavior, timing, and implementation

(please turn over)

X) IISFRI1,L'YION/AVAIIABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

tJASS[FIED/UNLIMlTED SAME AS RPT] DTIC USERS * Unclassified, Unlimited Distribution

2 NAME I. RILSPO)NSIII-. INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22c. OFFICE SYMBOL

Charles J Ryan, Major, USAF (412) 268-7631 ESD/AVS (SEI

DD FORM 1473, 9 3 APR EDION of I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURrTY CLASSIFICATION OF TI IS



ABSTRACT ---conunued from page one, block 19

dependencies. These specifications may be validated by passing behavioral and timing informa-
tion associated with each Durra task description to a run-time interpreter. Similarly, software pro-
totypes may be constructed by directing this information to a suitable source code generator. We
have already developed an in. .preter and source code translator for a language based on sim-
ple timing expressions. We are presently constructing a source code generator for a more com-
plex language defined by SMARTS (the Specification Methodology for Adaptive Real-Time
systems developed by Hughes Aircraft Company). 1

I. An earlier version of this paper was presented at the 2nd International Workshop on Rapid System Prototyp-
ing and will appear in the workshop proceedings.


