1

€y

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A242 113
LT

20
PO

DTIC
J

ELECTE |
% NOV08 1991 ¥ |
U

THESIS

INTERFACE-DRIVEN SOFTWARE
DEVELOPMENT TOOL

by
Heung-Taek Kim

December, 1990
C. Thomas Wu

Thesis Advisor:

Approved for public release; distribution is unlimited.

91-14323
LR 91 10 28 090

Unclassificd
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMDB No 0704.0188

1a REPORT SECURITY CLASSIFICATION
Unclassified

1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution is unlimited

3 DISTRIBUTION/AVAILABILITY Of REPORT
Approved for public release:

4 PLHFORMING ORGANIZATION REPORT NUMBER(S)

|

S MONITORING ORGANIZATION REPORT WUMBER(S)

G0 WAME OF PERFORMING ORGANIZATION

Naval Postgraduate School CS

6b OFFICE SYMBOL
(1t applicable)

73. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS (City, State, and ZiP Code)

Monterey, CA 93943-5000

7b ADDRESS (City, State, and 2IP Code)

Monterey, CA 93943-5000

Ba. NAME OF FUNDING /SPONSORING
ONGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢. ADDRLSS (Crty, State, and 21P Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO NO

TASK WORK UNIT
NO ACCESSION NO

11. TITLE {Include Security Classification)

INTERFACE-DRIVEN SOFTWARE DEVELOPMENT TOOL

12. PERSONAL AUTHOR(S)

Kimn, Heung-Taek

13a TYPE OF REPORT
Master’s Thesis

13b TIME COVERED
FROM T0

December 1990

14. OATE OF REPORT (Year, Month, Day)

15 PAGE COUNT

103

not reflect the official policy or pos
Govermment.

T6 SUPPLCMENTARY NOTATION The views expressed

it

in

Fhis thesis are those of the author and do

ion of the Department of Defense or the U.S.

17 COsAall CODES
FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and idenufy by block number)

Visual Interface, Database Management System,
Human-computer interaction, Prototype

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

We live in an age where the volume of paper-based information is steadily expanding. Personal
computers have a great potential as tools for managing information. Effectiveness of using personal
compulers is determined by how casy it is to use them, since majority of the end-users are not computer
cxperts. Compared with the advances in software design, the important issue of computer interface has
begun to be addressed recently. There has been a research joining the database with the graphical
interface to give uscrs an casy-to-use method for accessing the database. With this, users navigate
through the database by following the links from one piece of information to the ncxt. There are several
classes of softwares (languages) to build visual user interfaces: traditional, object-oriented, and interface-
driven languages. In this thesis, we used an interface-driven software named Guide to build a prototype
visual user interface to analyze the effectiveness of intcrface-driven software.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT
I unCLASSIFIED/UNUMITED (D SAME A5 RPT

] oTIC USERS

Unclassified

21 ABSTRACT SECURITY CLASSIFICATION

722 MAME OF RESPONSIBLE INDIVIDUAL
C. 'Thomas Wu'

22b TELEPHONE (Include Area Code)

(408)646-3391

22¢ OFFICE SYMBOL

q

DD form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFED

Approved for public release; distribution is unlimited.
INTERFACE-DRIVEN SOFTWARE DEVELOPMENT TOOL
by
Heung-Taek Kim
Captain, Republic of Korean Army

B.S., Korea Military Academy, 1985

Submitted in partial fulfillment

of the requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1990

v %y Tt

Heung-Taek Kim

Approved by: m

C. Thade Wu, Thesis Advisor

Aeapny GO5A

Myung W. Suh, Second Reader

2B, I M

Robert B. McGhee, Chairman, Department of Computer Technology

ABSTRACT

We live in an age where the volume of paper-based information is steadily expanding.
Personal computers have a great potential as tools for managing information. Effectiveness
of using personal computers is determined by how easy it is to use them, since majority of
the end-users are not computer experts. Compared with the advances in software design,
the important issue of computer interface has begun to be addressed recently. There has
been a research joining the database with the graphical interface to give users an easy-to-use
method for accessing the database. With this, users navigate through the database by
following the links from one piece of information to the next. There are several classes of
softwares (languages) to build visual user interfaces: traditional, object-oriented, and
interface-driven languages. In this thesis, we used an interface-driven software named
Guide to build a prototype visual user interface to analyze the effectiveness of interface-

driven software.

TABLE OF CONTENTS

I INTRODUCTION ..ottt sntesinse st e s n e senesasane
A. BACKGROUND ..ottt sttt st e sts s e sane s
B. SCOPE OF THESIS ...ttt ettt r e sn e sae s
C. THESIS ORGANIZATIONcooiiiiiiiinincteeeree e et s eee e
O. VISUAL INTERFACE FOR DATABASEccoociiiiiieineceneeeeee e

A. BACKGROUND ...ttt et sr et st se s

A. GUIDE AND ITS ENVIRONMENTccccoomiiiininnninneee e ereseeeseanens
L. MS-WINAOWS ...oeiiiiiniiiiiciii ittt e e e e e,
2. System Requirementsccoviiviininiienniccieecee et

B. FEATURES OF GUIDEccooiiiiiii e

v

Iv.

1. Traditional LanguUagesc.... cocereereinmiinniicreconiissesnississinsssesssssssssessnssnees 13

2. Object-Oriented Languages ...t ceesseessenns 14

3. Interface-Driven Languagescccceccceeniiiiiiriecrninniinnicinececssenecse s 14
DESIGN CONSIDERATIONSceiiiirientenereseceteesnesresseeeseeeseesse s aecesaesesssnens 18
A. GUIDELINES FROM HUMAN INTERFACES PERSPECTIVE 18
1. About HUMAN ...ttt et se et s e cana s s 18

2. GUIEIINES ..ottt e s e e e e e 18

@. CONSISIENICYeeoiniiieiiitieeiie ettt ce st st et e e et s esaesae et e e et e snneeaeeeneeen 19

D. COMPIELENESSoveevviiiiiiiiii et 19

c. Layering of Functionalityccccceeviriiiiiiiiicreeee e 19

d. Useful Feedback ...t e 19

3. USE Of JCOMS .ottt et et b e s s 20

a~. Make Icons Easy t0 USecccooiieviiiiiiiiirnrienee ettt 20

b. Avoid Misleading AnAlOZIEScccevvreerrierieeeireeiirreereeiecreesseessvaeensens 20

c. Keep Population Stereotypescccccocveeivcinininecesieeicecenenieeree e 20

d. Use for Appropriate Purposeccccocciievcnininiiininececcsiceeeen 21

B. PRINCIPLES FROM PREVIOUS WORKcccccovevrmmcennineneerecerneeienne 21
L POANCIPIE T oot et 21
2.Principle TT ..o e 22

3. Principle III ..o e 22

4. Principle IV ..o 22

5. PrNCIPIE V oo e 23

6. Principle VI ...ttt 23

C. PRINCIPLES DEVELOPEDccccoociiiiiiiiiiiicciecr et 23
1. Principle VII ..ot e st srn st 24

2. Principle VIIT ...ttt e 24

3. PANCIPIE DXt e 24

4. Principle X ..o 25

V. IMPLEMENTATIONoooiiiiiiiiiniitiierieseesestessesseesesaestesseessesesesensesesesnensesnes 26
A. INTERFACE-DRIVEN SOFTWARE DEVELOPMENT TOOL 26
1. Classes of Softwares For Building Graphical User Interface 26

8. TOOLKILS ...ttt 26

b. User Interface Management Systemsc.ccoccccvevmniiimnniciinicnecsnnennnen. 27

2. Evaluation of Guide and LOgIiXcccccvviiiiiiiinneiiiierre e 28

a. Compatibility between Guide and Hypercard ... 29

B. PORTING IMAGES FROM MACINTOSHccocevmiiniininnceiecrinteneceeneas 31
C. DEVELOPMENT METHODOLOGYcccoevniinmincniniienneiesccenesnenne 32
1. Creation of DOCUMENLSc.uovimiiiiiiiiceciicctece e 32

2. Creation of BULIONSccoiiiiiiiiiiiieeeet et st 32

3. PrOGIamIMINGoooviiiiiiiiiiiiii ettt s s s saae s s s e e 33

4. Creation of Frames ... 36

5. Behaviors of BUttons ... 37

vi

D. GO_FOTWALA ...cocoiicvirieiiiiecieiree e eecire e e e e s s svttree e s srereransesesesesansrnnenesees sannns 38

C. GO_BACKWALIAoocoivviiieiieirireecccere e rteerssnte s s evr e e e e raeee s ssaeeess s e eeannns 38

A EXIE oot e e e en e eane 39

€ HEID (oo 40

1 30 5 5 11 SO T U OO UO OO P OO PRI 41

€. Informationcoviiiiiiiii e 41

D. SAMPLE SESSION ...ttt ettt s ss e e et eesane e 41

VI. CONCLUSIONSiiertecteenteie ettt e e se et et e se et et e sasnssasesaeenbeestnsraaneen 61
APPENDIX A - PROGRAM LISTScooiiiiiiiiiiitcincteictneseee et 62
LU OTAMT Loniiiei ettt ettt re e s e e e s rae s e e e s e b te e e e bt e s s s bt aeasbases st baasesaaaaensssrae e s snreanannne 62
2. DECK PIOfile ...ttt 80
3. Inlet Gearbox Assembly BreakdOWnc.ccccooiiveieveriiniieninenieneiesreseei et esaans 82
GUHEIP .o e sttt et e 84
5. Information on Inlet Gearbox Assemblycccccovviiiiiieiiiniiciiie e, 87
LIST OF REFERENCES ..ottt sttt steteestesta s sssesenesn e e e e ssesraees 89
INITIAL DISTRIBUTTON LISTcovoiiiiiiiiirrieiincenenr et st secesesnsssnesssesseansans 91

vii

LIST OF FIGURES

Figure 2.1 GLAD ..ottt s st see st se sttt en et et 9

FIGUIE 2.2 ATEOS .oiicciiiiiiiiiiiiiciinit ittt st st e et st e e s e e s neesasbseassbbe s ase s srnesnes 9

Figure 3.1 Layers for MS-windOWSccooiiiiiiiiiiiiiecciieeie e e 16
FAGUIE 3.2 GLOSSALY wvvovveveeeeerereeeeseeeesesmensesseeessssmssssesemssesessssossssssssssesssesseseseon S 16
Figure 3.3 Control Pamnelccoocoiiiiiiiiiiiiiiiniinie e sveessteesses e e ssseesasesvees 17
Figure 5.1 Layers for MS-Windows Applicationscccceceeerreeerienceeveneecceneneenes 44
Figure 5.2 Dynamic Data Exchange under MS-Windowsccccoeeoovvviivevieiiineeeen. 44
Figure 5.3 Definition within a Documentc..ccccoovuiiiiieniice e 45
Figure 5.4 Invisible Graphic Elementccoccovivirinnnneneinnenieneienieecrseseeesenennes 45
Figure 5.5 Not Modeled DialogUecoooiviiiiiiiieiiieiieeee et eeeeae e 46
Figure 5.6 Set Document Dialoguecccoooiimiioiiiiiicieeec e 46
Figure 5.7 ODbjJect StIUCUTEcccccniiiriiiiiiiirreceieee e sr s ere e sesaeeres 47
Figure 5.8 Graphic File Listc.ccocviiiiiiirce e 47
Figure 5.9 Documents and Frames...........cccoouiiiinierieeiciecieeiceeece et cae e 48
Figure 5.10 Mouse Pointer Pattern Changecccoccovvrvieiicieinie e 43
Figure 5.11 Set Mouse Pointer Pattern Dialoguec.ccccoooeveiiieiiiiiiiieceee e, 49
Figure 5.12 Exit DIialogUeccocoiviiiiiiiiiiiicit et v 49
Figure 5.13 System BOX ...oocicoiiiiiiiiiiiiiiiii ettt ettt 50

Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33

Figure 5.34

HEID ettt ettt 50
Print DIBlOGUEccooiviiiiiiiiecieie ettt ee e e sre et en e 51
Information Documenton on Inlet Gearbox Assembly Breakdown 51
The First Framecoooiiiiiiciii e 52
Battle_Group_zule ... 52
FFG-7 Side Profile ..ot e 53
Deck_profile ..o e 53
Engine Room Level Selectioncccccevvvvieviiieniieeniiiieceieecrie e 54
Engine Room Lower Level Portccccooviiniiniiieeec e 54
Gas Turbine Module ..o S5
LM2500 Gas TUurbineccccccoverveenirvienicnnininnninessiesreseeseeene e caeerae s 55
GTRB Exploded VIiew ... e 56
Inlet Gearbox ASSEMDILYoccviiiiieicieceeeeeee e 56
Equipment INfOrmationo.ccceviieniinneenone ittt eaeene 57
COSAL INfOIMAtION ...c..couieiiriiriiiieneiiiniire oo sieni st e steeeeesse s e eaessss e ereanas 57
Navsup Form 1250-1 Informationcceceiveviicimecnnecinccceseeneceennes 58
APL IDfOrmationc.ocoovereeiineeiesecencneteentene sttt ena 58
Not Modeled ... e 59
Help on Document (I)ccoooiiiiiiiiiiiiiiitccie e 59
Help on Document (II)ocooiiiiiiiiiiiee e 60
Save or Not DIialogueccccoveriiiiiie i 60

ACKNOWLEDGEMENTS

I would like to express sincere thanks to those who helped me in every aspect. 1
would like to present great thanks to my thesis advisor Professor C. Thomas Wu, and the
second reader Professor Myung W. Suh for their help to finish this thesis.

I would like to thank my family, especially my beloved wife In-Sook Lee for her
ungrudging assistance, my big boy Hong-Bae Kim, and a cute little girl Da-Hae Kim.

And I would like to thank all my families and acquaintances staying in Korea
praying for me and my family.

Finally, I would like to appreciate my country, Republic of Korea, and the United

States of America which have given me a chance to study at Naval Postgraduate School.

I. INTRODUCTION

A. BACKGROUND

We live in an age where the volume of paper-based information is steadily expanding,
yet our capacity for dealing with it has not kept pace. Personal computers have a great
potential as tools for managing these information. Effectiveness of using personal
computers is determined by how easy it is to use them, since majority of end-users are
not computer experts. The potentials of this amazing machine are not limited by its
power to compute, but rather by its power to communicate with its human users.
Compared with the advances in software design, the important issue of computer interface
development has begun to be addressed only recently. There has been a research
joining the database management systems with the graphical interfaces to give users a
more convenient, comfortable, and easy-to-use method for accessing database systems.
The database management systems developed so far have interfaces dealing only with text
information. This new approach can deal with not only text information but also
graphics, sound and other types of media that can be attached to computer systems.
B. SCOPE OF THESIS

This thesis explores a framework for the visual interface for accessing databases and
develops a generic visual interface which can be used to navigate through information
systems. In the course of developing the implementation, we tailored this interface to a

1

real database system, Superbase 4 developed by Precision, Inc., and could communicate
with that database through this interface. But, in this thesis, we are only concerned with
the development of generic visual interface: we do not discuss the specific implementation
issues related to any specific database system.

C. THESIS ORGANIZATION

Chapter II consists of five sections. In the first section, we will discuss about the
visual interface. In the second section, we will introduce related works. And in the third
section, we will introduce the concepts of the object-oriented language. And in the fourth
section, it will talk about the benefits of building interfaces based on object. In the fifth
section, we will discuss our approach.

Chapter III consists of three sections. In the first section, we discuss about a Guide’s
working environment. In the second section, some strong points using the hypermedia
software, Guide, will be introduced. And in the third, we compare three different classes
of languages used for building user interfaces.

Chapter IV consists of three sections. In the first section, we will discuss the rules
or guidelines in developing user interfaces based on human factors engineering. In the
second section, we will explain the principles that has been developed as guidelines to
build visual user interfaces. In the third section, it introduces more principles that the
author has developed during the implementation of the thesis.

Chapter V consists of four sections. In the first section, it talks about the

interface-driven software development tools. In the second section, it talks how we

ported some of works from other system. In the third section, the details of development
methodology will be discussed. And in the fourth section, a sample session will be
provided.

Chapter VI conclude- with a summary discussion of the thesis and possible future

researches.

II. VISUAL INTERFACE FOR DATABASE

A. BACKGROUND

The easy-to-use, direct manipulation interfaces let the user operate directly on the
objects that are visible on the screen, performing rapid, reversible, and incremental
actions. Unlike traditional information retrieval systems in which users access
information using Boolean operations on keyword strings, users of graphical user interface
are free to move between arbitrary chunks of information by simple click of a mouse
button. Users navigate through the information database by following the links from one
piece of information to the next. Such an architecture encourages users to find
information by following a meaningful path from one chunk of information to another
until they reach their objective.

The research on a visual interface for database has been motivated by the lack of an
easy-to-learn and easy-to-use query facility for accessing databases, although relational
query languages such as SQL and QUEL are much better languages than those for
network and hierarchical systems. [Ref. 16]

For database systems to become fully useful as information managers, end-user
participation is indispensable. End users of databases typically have a good understanding
of their application environment, but little familiarity with database technology.

Therefore, we must rely on data processing professionals to develop an application

4

software. Such arrangement is prohibitively expensive for the coming decades of
information explosion.

Thus we need a different way of user-interaction tool for data definition and
manipulation. The key to the coherent interface must be a simple visual representation

of database [Ref. 16]. Hence the users can visually interact with the system with ease.

B. RELATED WORKS
1. GLAD
One of the current visual-interface system is GLAD (Graphics LAnguage for
Database) which was developed by Professor C. Thomas Wu at Naval Postgraduate
School in Monterey, CA. GLAD has facilities for data definition, minimal data
manipulation, on-line help system, and is able to store and manipulate graphic images as
a part of database [Ref. 17]. Figure 2.1 shows one of its screen dump.
GLAD has been developed and implemented using object-oriented programming
environment, and Actor as its language.
2. ARGOS
This implementation has been developed based upon the concept of paperless
information management being developed for the United States Navy guided missile
frigate. It presents graphical representations of equipment such as pictures and other
interface factor such as audio to supplement the text information contained in the
database. It was developed on Apple Macintosh using Hypercard as its environment and

Hypenrtalk as its language. Hypercard provides a set of tools to support rapid prototyping

and implementation ideas.[Ref. 6] Figure 2.2 shows a sample session of the Argos
implementation.
C. CONCEPT OF OBJECT-ORIENTED LANGUAGE

In object-oriented language, all conceptual entities are modeled as objects. An
ordinary integer or string is as much as an object as is a complex assembly of parts, such
as an aircraft or a submarine. An object consists of some private memory that holds its
state. The private memory is made up of the values for a collection of instance variables.
The value of an instance variable is itself an object and therefore has its own private
memory for its state.

The behavior of an object is encapsulated in methods. Methods consist of code that
manipulates or retumns the state of an object. Methods are a part of the definition of the
object. Methods, as well as instance variables are not visible from outside of the object.
Objects can communicate with one another through messages. Messages, together with
any arguments that may be passed with messages, constitute the public interface of an
object. For each message to be understood by an object, there is a corresponding method
that executes the message. An object reacts to a message by executing the corresponding
method and retuming an object in response.

A system such as databases may contain an even larger collection of objects. If every
object is to carry its own instance variable names and its own methods, the amount of
information to be specified and stored can become unmanageably large. For this reason,

similar objects are grouped together into a class. All objects belonging to the same class

are described by the same instance variables and the same methods. They all respond to
the same messages. Objects that belong to a class are called instances of that class. A
class describes the form (instance variables) of its instances and the operations (methods)
applicable to its instances. Thus, when a message is sent to an instance, the method that
implements that message is found in the definition of the class. The instance variables
and methods specified for a class are shared (inherited) by all its subclasses (children in
parent-child pair of a class hierarchy).
D. BUILDING INTERFACES BASED ON OBJECTS

An object-oriented architecture has been shown to be suited to interface construction
[Ref. 8]. Objects are natural for representing the user interface element and supporting
their direct manipulation. The experience shows that, compared with a procedural
implementation, user interfaces implemented in object-oriented approach are significantly
easier to develop and maintain [Ref. 14]. The user communicates with the system, which
is represented on the screen as a world composed of active objects. Each screen object
has its visual representation which defines its appearance, its relation to other screen
objects, and a functional role which govems its behavior.
E. OUR APPROACH

To develop a visual user interface in this thesis, we depend on Guide as a working
environment and Logiix as a programming language, developed by OWL International
Inc.

Guide is designed around an object-oriented information model which presents

information as a series of linked "objects" and manages the relationships between them.
Every component in a Guide document, whether it is a single word, phrase, paragraph or
graphic, is represented as an object. Guide and Logiix are not a true object-oriented
environment and language, since it does not possess a clear and explicit concept of class,
inheritance, method, and message which were detailed in the above section. Guide
provides a variety of object types which perform different functions such as buttons.
Using a mouse, users click on buttons to display linked objects. Using the familiar
document metaphor, information in Guide is structured so that users can select the

subjects to display and the level of detail appropriate for their particular needs.

Create MNodify Open Remove Quit Jfl Help

GLAD Databases

AHLS Wellcopter 0B
HBOS Sales
:PS leliluulnmm ¢
ine Yalley Furniture Co.
Test Connection 0B ¢ HELP
University Datadase

CANCEL

&hlnbﬂmd npbllmllnm_
Utli2ing fdvenced
Mulumvnm wthnn!qu

Figure 2.2 ARGOS

III. GUIDE AND ITS STRENGTH

A. GUIDE AND ITS WORKING ENVIRONMENT

1. MS-Windows
Windows is a visual extension of MS-DOS that layers itself upon DOS to provide
users with a friendly, graphical interface. Figure 3.1 shows a graphic depiction of this
concept [Ref. 17]. In Windows, users can execute multiple programs simultaneously in
an integrated environment which gives a consistent interface to all the applications.
Windows does not require users to memorize command line commands and their syntax.
This helps users learn all MS-Windows applications at dramatical speed.

2. System Requirements

To run Guide version 3.0, the system must meet the following requirements [Ref.
81
* A high-resolution enhanced graphics adapter(EGA) or VGA display(color
display is recommended).
* MS-DOS version 3.1 or higher.
* MS-Windows version 2.03 or later.
* A hard disk with at least 2MB of free space.

* At least 640 KB of memory.

10

* The printing device specified when installing MS-Windows.
* A pointing device such as mouse which is compatible with MS-Windows.

B. FEATURES OF GUIDE

Conventional textual documents are limited by a left-to-right, top-to-bottom sequential
structure. By contrast, Guide documents allow users to move from one topic(object) to
another in a non-sequential fashion. [Ref. 8]

Guide documents contain objects. Objects can be single words, sentences, paragraphs,
a graphic, or even a collection of graphics. Just about anything that may be selected with
the mouse can be made into an object. Objects in Guide are composed of three
components: data presentation attributes, and behavioral attributes. The data component
is the text or graphic that appears on the screen when the object is displayed.
Presentation attributes apply primarily to text objects determining how the data is
displayed such as text styles, color, and so on. Behavioral attributes define the events that
take place when an object is displayed or activated using the mouse.

Guide objects can be linked together. The link starts with one object, the source, in
one file and finishes at another object, the target, in another file. Links are automatically
created between expansion buttons and expansions when objects are defined. For nore,
reference, and command buttons, link must be created manually.

Centain objects that are live and can be activated with the mouse are called buttons.
Guide documents can have four different types of buttons: reference buttons. expansion

buttons, note buttons, and command buttons. Reference buttons present cross-reference

11

information in the same document or in another document. Note buttons present
information in a temporary pop-up window, which is useful for providing supplementary
information such as footnotes or definitions of terms. Command buttons pass instructions
contained in a definition to executable files called interpreters, LAUNCH3.EXE,
OPCL3.EXE and SERIAL3.EXE. Users can launch any applications (either MS-Windows
or non-MS-Windows) with the launch interpreter, LAUNCH3.EXE. Users can control
any serial peripherals connected to the serial port of the computer with the interpreter,
SERIAL3.EXE. OPCL3.EXE is an interpreter which allows users to use certain
commands, such as open or close, in the definition of a command button. Expansion
buttons present more detailed information being "hidden" behind them. The information
hidden behind them is called the expansion which also contains either text or graphics,
or both.

Guide provides a transparent graphic element, called an invisible, with which users
place a button on a background graphic in a specific location.

Users can include graphics in a Guide document. The following types of graphics
can be imported into Guide: bit-mapped files (BMP), MS-Windows metafiles (MTF),
tagged image file format (TIFF) files, and PC-Paintbrush files (PCX, PCC). There are
two kinds of graphics: external and internal graphics. An external graphic has a link from
a document. An intemal graphic is a part of document being copied into it without being
linked. Guide keeps the information about a graphic element, such information as

whether it is external or internal, and so on.

12

Documents have a natural hierarchical structure that divides topics into related groups,
such as chapters, sections, and so on. Frames provide a way to structure a document by
dividing it into an easily manageable chunk of related information.

Users can easily change the way how windows in Guide looks on the screen with
options. They can also arrange the windows neatly on the screen in a cascading
formation.

The group is a way of making objects mutually exclusive. Grouping is an effective
way to minimize the amount of data readers must shift through at one time.

Users can use the Guide glossary to store items that they use frequently such as
objects such as buttons, and, nearly anything they use frequently reducing the amount of
time they spend on repetitive activities [Figure 3.2].

A control panel is a Guide document containing buttons (icons) that control the
display of information giving users options for the actions such as moving forward or
backward through frames, and so on [Figure 3.3].

C.LANGUAGE COMPARISONS IN TERMS OF VISUAL INTERFACE

This section will discuss the advantages and disadvantages of different kinds of
languages in terms of their use to build visual interfaces.
1. Traditional Languages
Traditional languages, such as Fortran and Pascal, state what should happen rather
than how to make it happen. The interfaces supported by traditional languages are

usually form-based. The user types text into fields or selects options with menus or

13

buttons. There are also often graphical output areas for use by applications. The
application is connected to the interface through global variables that are set and accessed
by both the application and interface. The advantage of traditional language-based
interfaces is that they free the designers from worrying about the sequence of events, so
they can concentrate on the information that is passed back and forth. The disadvantage
is that they support only form-based interfaces. Hence other interfaces must be
hand-coded in the graphical area provideu to applications. They also provide only
preprogrammed, fixed types of interactions. [Ref. 14]
2. Object-Oriented Languages

Object-oriented languages, such as Smalltalk and Actor, provide an object-oriented
framework in which the designer programs the interface. Typically, there are high-level
classes that handle default behavior. The designer specializes these classes to deal with
behavior specific to the interface, using the inheritance mechanism built into
object-oriented languages. These systems can handle highly interactive,
direct-manipulation interfaces, because there is a computational links between the input
and the output that application can modify to provide semantic processing.

Although these systems make it much easier to create interfaces, they are
programming environments and as such are inaccessible to non-programmers. [Ref. 14]

3. Interface-Driven Languages
One of the interface-driven language is Guide. The interface-driven languages are

interactive graphical systems for designing and generating graphical user interfaces. They

14

provide flexibility to the system designer while minimizing the amount of code the
designer must write. Their primary goal is to provide a simple, interactive way in which
a dialogue developer can specify application interfaces. Once the style of the interface
should determined by the developer, he or she should be able to describe with these
languages any interface that could be coded by hand.

They provide a great deal of freedom in representing the control path and
parameters for action routines. The developer may refer to application constants, types,
variables, and function in defining the interface. This ability greatly reduces the number
of steps needed to define the interface. Actions are provided to perform application
functions based on inputs and application values. Multiple control paths may be
represented by the dialogue developer based on inputs, application values, and end-user
characteristics. Inclusion of a developer-defined end-user profile allows the developer to
represent different interfaces within a single system for different end-users. Various
interaction styles and devices can be used, including menus, forms, picking, and keyboard.
The developer may choose among any that are suited to a task and may allow the

end-user to choose among several styles or devices to provide a particular input. [Ref. 10]

15

USERS

WINDOWS

Figure 3.1 Layers for MS-Windows

SR

Guiee

ﬁt:llo Edk Seath Nedgre Dkpity Feomet Font Make Yhidew

F1=HELP

=l

Gidte Glaccary

Ghesgtry Reme:
finebtrrtican
Bactrack (con il
Civcw lown
Convol Panel ieen
Copy lcon

cli=N
| (o]
o)

L_ter] [aeay]

[oves |

l:&! Selecflan

Figure 3.2 Glossary

10

Culde

i

Hie EdR Search Navigete Displsy Formst Fent Make Window

FisHELP

s [v [t

Figure 3.3 Control Panel

17

1V. DESIGN CONSIDERATIONS

A. GUIDELINES FROM HUMAN FACTORS PERSPECTIVE

The following description is based upon human factors engineering to build efficient
and useful user interfaces. The appropriateness of a user interface depends heavily upon
the tasks, the users, and the environment. Therefore, no single user interface can be
equally appropriate for all applications. But some general guidelines for good user
interfaces can be identified with the help of human factors engineering.

1. About Human

During the learning process, users build mental model of how the system behaves.
That is, they create representations in their minds of what the system can do, what actions
cause what effects, and why those actions cause these effects. Then the models embody
the users’ understanding of the system. [Ref. 12].

The mental model represents a physical system or software with some plausible
cascade of casual associations, reflecting the user’s understanding of what the system
contains, how it works, and why it works that way. The mental model can be run with

trial, exploratory inputs and observed for its resultant behavior.
2. Guidelines

Following guidelines have been suggested to increase the ability of user’s mental

18

models. As such, these guidelines can be helpful in designing user interfaces.
a. Consistency

User interfaces must present consistent information. There are two
consistencies ic consider: internal and external consistencies. Intemal consistency is the
variance in the behavior of the software itself. The use of modes, where things work
differently depending on which mode the user is in, reduces the reception of intemal
consistency. External consistency is the extent to which the software behavior matches
other things the user already knows from other contexts. One way to increase extemal

consistency is providing the user with appropriate metaphors.

b. Completeness

Even a simple system must be complete. If the user has to switch often from
one program to another just to perforrn what the user consider to be a single task, the
mental model for that system will be more complex.

Providing clear boundaries for the software with a sufficient amount of
functionality within those boundaries makes it easier for users to form mental models.

c. Layering of Functionality

One way to make a simple appearance of a system is to have layer of

functionality. Basic functions are available at the surface layer of the user interface,

while putting more advanced functions in deeper layers.

d. Useful Feedback

19

Explanatory error feedback and help messages can help users construct mental
models of a system. And, users should be allowed to select the amount of explanation

they prefer so that different users can build their mental models at ease.
3. Use of Icons

Human factors engineering strongly recommend the use of icons in user interfaces
to represent objects and actions. In general, icons make the interpretation of information
on a display more direct and easier to learn and use.

There are some rules or suggestions for building interfaces with icons. [Ref. 13]

a. Make Icons Easy to Use

The meanings of the icons must be leamed. What is obvious to the designer
may not be obvious to the user. It should be able to develop libraries of tested icons that

have been standardized for specific purpose.
b. Avoid Misleading Analogies
If users understand the meaning of an icon, they develop expectations of how
they can be used based on their understanding of how things work in the real world.
Therefore, we must put the meanings of the real world into icons.
c. Keep Population Stereotypes
A person has his own expectations of how an icon will behavior or can be
acted on. Therefore, we have to keep the population stereotypes about compatibility

between controls and displays to provide adequate information.

20

d. Use for Appropriate Purposes
In some cases, using icons may not result in a better performance. For
example, in calculation, user can do better using numeric key boards than pointing

iconized numeric key boards on screen.
B. PRINCIPLES FROM PREVIOUS WORK

The following principles 1 through 6 have been proposed during the development of
GLAD. Because the visual interface research is in the early stage, there has not yet been
a clear understanding of what constitutes a good user interface [Ref. 3]. And, no single
set of interface rules can be optimal for all environments. However, the identification of
some design principles will help developers in building better interfaces, and making users
accept the interfaces without much confusions, and naturally. Some of these principles

are employed in this implementation while some are not.
1. Principle I

"Be able to provide more information when asked.”

This principle dictates the inclusion of a simple help system, a confirmation for
important processing such as deleting a data file or termination of the running session,
explanatory errors, help messages, and so on. When users take an action, the system
must provide a feedback to convince them that a desired action has been taken. For
example, if users want the screen dump to the printer, the system must provide a dialogue

asking how it should be printed, how many copies to be printed, how it should look like

21

(portrait or landscape), asking go ahead or cancel, and so on. If the system says
anything about what it does, then the users will be convinced that their jobs are taken care
of. This may be analogous to the saying that the system must provide an appropriate
feedback mechanism.

2. Principle 11

"Be able to recover from the unintended or erroneous operation.”

There must be a mechanism to prevent the system from un intended or erroneous
operations so that it maintains consistency. For instance, suppose that a user has removed
a data item during the session. And when that user want to exit the system, he must be

requested to confirm the removal before exit to operating system.

3. Principle III

"Be able to perform the same operation in more than one ways."

For example, instead of selecting the Quit menu option, users may select the
Close option under the system menu box. Or users may double-click the system menu
box to exit the system.

By allowing more than one ways of carrying out the same operation, users will
be able to use the one that they feel most comfortable with. This helps in supporting a
larger number of users. For example, the novice users may prefer using the Quit menu.
But as they become more proficient in interacting with the system, they may prefer to

close by double-clicking the system menu box.

4. Principle 1V

22

J

"Be able to perform the logically equivalent operations in a consistent manner."
As a matter of fact, the consist~ncy in the screen representation and in the
navigation through an application should always be expected. Therefore, users will easily
remember from one use to the next. For example, the same system menu box and the Exit
menu choice will appear in every window. If users know how to use them in one

window, then they know how to use them in any other window of the system.

5. Principle V

"Be able to display multiple information at the same time."
Providing the capability of displaying multiple information will allow the users

to see information in various degree of details.

6. Principle VI

"Be able to display multiple views of the same information."

Multiple display of the same information provides a confidence to users by
allowing them to verify the information with another view of the information. For
example, if it provides a numerical data, and also a graphical data, users will understand

the information clearly and surely.

C. PRINCIPLES DEVELOPED

The following principles have been developed during the implementation of this
thesis. Some of principles may overlay with those presented above; but they are intended

for highlight somewhat different design goals.

23

1. Principle VII

"Users can customize the interface.”
Users can customize the system environment for easy use of
the system. Otherwise the users have to be accustomed to the system that has been

developed by others, violating the concept of easy-to-use philosophy.

2. Principle VIII

"The interface must be understood easily and clearly.”

It must be stated that a user interface should always have its full meaning and,
therefore, it must be understood clearly. If the interface is too complicated, the users
need guidelines when to use which and what it means making things even more
complicated. For the good user interface, users can understand the meanings and
behaviors of interfaces easily and clearly at one glance,like the traffic signs. That is, the
user interface must be natural for users.

3. Principle IX

"Do not include interfaces which are useless or have no functions."

Some tunctions may be redundant with other functions. Some functions may be
too hard to use or too difficult to learn how to use, so people simply avoid them. Some
functions are not needed: for example, there are navigation icons which include left arrow
to go to the previous screen, right arrow to get the next screen, termination icon, a icon

which tells it goes to the first screen and to the last screen, and so on; but there can be

24

a methodology to go to the next screen not by using the right arrow but by using the
word(s), phrase, sentence, or graphic element; then the right icon may be useless or less

meaningful to use. Such functions should not be included in the user interface.

4. Principle X

"The interface must attract users’ attention.”

To be a good user interface, the interface must provide a mechanism which make
users pay their attention when they are on buttons or any other areas that have some
functions or some sort of behaviors. This includes the change of mouse pointers, having

different character styles or colors, and so on.

25

V. IMPLEMENTATION

In this chapter, we discuss the details of the implementation effort.
A. INTERFACE-DRIVEN SOFTWARE DEVELOPMENT TOOL
Interface software is often large, complicated, and difficult to debug and modify.
And interface software is difficult to write because frequently it must control many
devices, each of which may be sending a stream of input events asynchronously. An
application’s interface can account for significant amount of codes. The easy-to-use,
direct-manipulation interface-. in many modem systems let the user operate directly on
objects that are vic'b!. on the screen, performing rapid, reversible, incremental actions.
Interfaces are i.ot only difficult to create, but there are no design strategies that guarantee
the resrinng interface will be easy to learn or easy to use. To address the problems,
many tools have been created to make interfaces cheaper and easier to design and
implement.
1. Classes of Softwares for Building Graphical User Interface
We can classify softwares into two categories with which we can construct
graphical user interfaces. They are toolkits, and user interface management systems [Ref.
2, 14].
a. Toolkits

A toolkit is a library of interaction technique. An interaction technique is a

26

way of using a physical input device to input a value, along with the feedback that
appears on the screen. Some of the interaction techniques include menus, scroll bars, and
on-screen buttons operated with the mouse. This provides programming abstractions for
constructing user interfaces. The examples of these softwares include the X toolkit.
These toolkits include objects that are composed of the data to be edited such as text,
bitmaps, and more complicated objects such as spreadsheets. These objects can be
embedded in multimedia documents. Programmers can specify constraints between
objects. The constraints assure that a graphical object stays within a prescribed area or
that two visually connected objects stay connected when one or the other is translated.

The disadvantages of using toolkits are that they provide limited interaction
styles and are sometimes expensive to create and difficult to use. A toolkit typically
includes many interaction procedures that implement many interaction techniques. It is
often not clear how to use those procedures to create desired interfaces.

b. User Interface Management Systems

A user interface management system is an integrated set of tools that help
programmers create and manage lots of aspects of interfaces. These are, in general,
characterized by the separation of the code which implements the user interface to an
application from the code for the applicaiion itself and the specification of the user
interface at a higher level of abstraction than general-purpose programming languages.
They minimize the interaction between the application and the interface to maximize their

independence. And they usually emphasize abstracting the syntax and semantics of the

27

user interface.

Its primary purpose is that the interface developers and even end-users can
design and modify the interface quickly without requiring experienced programming skills
or knowledge of the application. They use special-purpose languages or other
representations mechanisms such as finite-state transition diagrams to describe the
appearance of the interface and the kinds of interaction it supports. And the specifications
are interpreted at run time.

The example of this class includes the Graphical user interface management
system. It lets users define the interface, at least partially, by placing objects on the
screen with a mouse. Because the visual representation of the interface is one of its most
important aspects, a graphical tool is the most appropriate way to specify that
representation. It lets the users place interaction techniques such as menus, buttons, and
scroll bars on the screen.

2. EVALUATION OF GUIDE AND LOGIIX
Guide is an interface building software that can be run on the IBM personal
computer or compatibles. The IBM PC has not provided a powerful environment for
graphical user interface without the use of specialized software such as Microsoft
Windows. Therefore, Guide has to work through an additional layer of software
[Figure5.1]. This makes the application slow, since the command has to be interpreted,
and received at each layer.

Users can manipulate text, data, graphics, or combinations of these on screen, and

28

move easily among different types of information with varying levels of detail without
much knowledge of systems software or experience with application development.

As stated in the previous section, Logiix is a special-purpose programming
language embedded in Guide. It allows the interface to be built in a simple and intuitive
way. Logiix syntax is similar to the Pascal and C programming languages. Logiix
provides an event-driven processing. The event is a user’s selection of what he/she
wants. This provides a flexible structure for building the user interface. That is, what
the developer has to do is only specifying what should happen, not how it has to be
happened. A Logiix program is a list of instructions contained in the definition of a
Guide command button.

One of the strong point of using Guide and Logiix is dynamic data exchange
(DDE). It provides a way to communicate with other MS-Windows applications via MS-
Windows. Figure 5.2 illustrates how DDE works under MS-Windows. DDE in Logiix
provides the interface to allow Guide to act both a DDE client and a DDE server.

a. Compatibility between Guide And Hypercard

Because this implementation has gotten some works from the Argos
developed by using Hypercard on an Apple Macintosh, it will be an interesting work to
compare between Guide and Logiix, and Hypercard and Hypertalk [Ref. 6].

Guide has a data structure called a document. In a document there is at least
one frame of information. Therefore, there can be as many frames as possible. In

Hypercard, it provides a stack which consists of cards. A stack is a Hypercard document

29

and a collection of cards. A card is a basic unit of information in a stack. A card can
contain buttons, texts, and graphics.

A button can be placed on a object in a2 Guide document. As we mentioned
above, the buttons can open another document, another frame, or launch another
application. Hypercard has the same buttons doing the same work as Guide does. With
Guide buttons, we can manipulate the buttons such as the change of the appearance of
buttons using pop-up menus. In Hypercard, how a button looks depends on its button
style using dialogue box.

We refer to programs behind command buttons as a definition in Guide. And
in Hypercard, it is called a script. It is a sequence of English-like statements that respond
to events such as the user’s clicking on a button. In script, there is a collection of
handlers which is a program responding to an event.

In Guide, we can create a link from one object (button) to another which may
be in the same document or in another document. A link can be created in Hypercard
from a button to a card or stack. After a link is placed, clicking the button takes the
same action as Guide button does. We can lock the Guide document by setting a check
mark on the Lock Diagram to prevent its contents from unintended or unauthorized
changes, still let buttons work. There is a field in Hypercard to lock or unlock to control
changes to a stack and a card especially for texts.

A Logiix program is contained in the definition of a Guide command button.

Then it is passed to Logiix. The program is compiled into a intermediate stack-based

30

machine language. Then it is interpreted and executed by a pseudo-machine. The Logiix
program is submitted by clicking on a command button, compiled and executed in a
single step. Each Logiix program, function, for each button is recognized by the file
called GUIDESS.
In Hypertalk term, a message is an announcement that an event has occurred.

A handler is a respond to an event. Event is such as the clicks on a button. Hypercard
determines what object the user has acted on and uses this as the address for the message.
Then Hypercard will send the message to one of its objects. When an object receives a
message, Hypercard searches the object’s script for a handler with the same name. When
it matches, Hypercard runs any Hypertalk statements in the handler until it encounters an
end statement.
B. PORTING IMAGES FROM MACINTOSH

Argos on Apple Macintosh has lots of picture to build its visual interface. Those
pictures have been ported to IBM PC compatible for this research. They were uploaded
to VAX 11-785, the computer science department’s main computer, then downloaded to
PC. They are drawn using Macintosh MacPaint. Therefore, we had to convert them to
be used on PC. They were converted using a conversion software called The Graphics
Link version 1.50 developed by TerraVideo Inc., into Microsoft Windows Paint format
with extension MSP. These MSP graphic files were edited by Microsoft Windows Paint
to make them bitmap images. After those works, they have been used to make frames

and documents.

31

C. DEVELOPMENT METHODOLOGY
1. Creation of Documents

The fundamental element in this implementation is a document. A document can
contain either text or graphics, or both. Several graphics are linked to the document and
they are left as external graphics. It is good for developer to change the content of the
graphics not touching the document. For example, info.gui has an internal graphic which
is a part of its document, and if we want to change the content of the internal graphic,
we must create or modify separated graphic file then relink it to the document. However,
with external graphic, it is not needed to relink the graphic file to its document. The
document uses already established link.

Once we create a document, there must be a definition associated with it. That
is, each document has its own definition containing all the definitions in a document
[Figure 5.3]. The definition contains programs, in this implementation, a program in
Logiix, which determine buttons’ behaviors. For the command button, it is a program
(script). For example, the definition on the DECK.GUI shows all of its definitions which
specifying which button does what [see Appendix A.2].

2. Creation of Buttons

As mentioned in Chapter III, anything that can be selected with the mouse can
be made into an button. That is, we can break information into objects and we can attach
attributes to them. Attributes determine objects behavior, presentation and how they

relate to other objects. If an object is activated by mouse click, we refer to it a button.

32

To create buttons, we must deactivate all objects using freeze provided in menu.
We can place a button on a background graphic in a specific location, not the whole
graphic into a button. We can use a transparent graphic element called an invisible which
has handles. We can overlay the invisible on a graphic element to make part of graphic
element into an object. For example, the frame of BATTLE_GROUP_ZULU is one
complete graphic. Each ship model is a separate button created from an invisible overlaid
on them [Figure 5.4]. To make an object button, first we select an object then choose a
command for type of button we want to make - reference, expansion. note, or command
button. For example, on the frame of BATTLE_GROUP_ZULU, all the ships and icons
have command buttons. For the object that is surrounded by box, we can navigate
through it because the author has defined more detailed frame beyond it. And the rest
of objects has not yet been defined for more navigation, therefore they simply show an
dialogue box saying "Not Modeled" [Figure 5.5].

3. Programming

Logiix is not an object-oriented language though its environment, Guide, has the
concept of an object. Therefore, there is no code sharing between objects. Although two
or more buttons take the same action, the same code has to be written for each object.
As an example, to print out the window screen dump, we have to write the same program
wherever it is needed. However, LOGiiX provides editing feature which is not a code
sharing, to do this in different concept. They are copy and paste functions. Once a

program is written and the same program is needed elsewhere, we can copy and paste it

33

to the desired place. It helps developers to reduce their effort in writing the same code

repeatedly.

The most common usage of Logiix in this implementation is as the following:

#Logiix
function main()
begin
statement_1;
if (comparison) then
begin
statement_1;

We can use the menu commands provided in Guide such as open, close, print,
g0 to next or previous frame, and so on. The commands operate exactly as if a user
selects the menu item manually by clicking on them. It helps the designer to develop
easy interface so that users do not have to select from the menu item. The following
piece of Logiix program illustrates the usage of these.

#logiix
function main()
begin
return_value = answer(l, "PRINT",
"Do you want to print it ?");
if (return_value = 1) then
begin
DoMenuld(1008),
end;
end

34

For the traditional or object-oriented languages, the developer has to program
what they want to have for attributes of screen displays, such as cursor pattern, object
behavior, title bars, scroll bars, and so on. For example, if we want to have the maximize
box on a window, the Actor, an object-oriented language, has to have a following
definition:

Def create(self, par, wName, rect, style)

{

Acreate(self:Window, par, wName, rect,
style bitOr WS_MAXIMIZEBOX)

)

In Guide, such function is provided within its pop-up or pull-down menus. For
example, if we want to display the scroll bar, we use the pull-down menu and set the
attribute by simply clicking on it [Figure 5.6].

To implement a dialogue box on the screen, the C++ code should be the
following [Ref. 14]:

const int space = round(.25*inches);
ButtonState* status;
Frame* frame = new Frame(
new VBox(
new VGlue(space, vfil),
new HBox(
new HGlue(space, 0),
new Message("hello world"),
new HGlue(0, hfil)
)9
new VGlue(2*space, 2*vfil),
new HBox(
new HGlue(0, hfil),
new PushButton("goodbye world", status, false),
new HGlue(space, 0)

35

)
new VGlue(space, vfil)

)
);
Before we write this C++ program, we must have the corresponding object structure as
shown in Figure 5.7 [Ref. 14].
But using the Logiix syntax, its equivalent code might be:

#logiix

function main()

begin

messagebox("hello world");
end;
4. Creation of Frames
We can think of frames as chapters of a book. That is, frames provide a way to

structure a document by dividing it into chunks of related information that is easily
manageable. It is really manageable because we can treat a frame as one piece of
information, otherwise we must use scrolling bars through an entire document. For
example, the document START.GUI consists of several frames which are actually bit-map
graphic files such as OPEN.BMP, BATTLE_GROUP_ZULU.BMP,etc [Figure 5.8]. We
can handle these graphic files one at a time. However, if we do not make these files
frames, and put them all into a document, then we must use scroll bars which is a time
consuming and a boring work. Figure 5.9 shows the frames and documents in this

implementation. Users can move from one frame to another in sequential order as they

are constructed. It is provided in the menu commands such as Previous Frame, Next

36

Frame, First Frame, and Last Frame. In this implementation, we utilized only the first
three commands. Each frame is inserted using insert frame and place menu command.
If the inserted file is too big (depending upon the system implemented) to fit into
memory, then the system creates a link from a document to that file. Then every time
when the file has to be displayed. it is placed into memory, and removed from memory
after then.
5. Behaviors of Buttons
In this section, I will explain the behaviors of each button and how they support
the principles that satisfy a good user visual interface.
a. The Mouse Pointer Patterns
The mouse pointer pattern changes depending upon where it is placed on the
screen. This improves the appearance and reinforce the purpose of an object, and it also
bring attention to that object. Figure 5.10 illustrates the change of mou‘se pointer pattern
over a button. And the Figure 5.11 shows how we can change the pattemn using set
cursor dialogue as it has to be over buttons. This supports the user principle VII,
customization. Even if an application developer follows every rules and guidelines of a
standard user interface, the usability of the system must still be determined empirically.
And standards do not guarantee that people will like an application or be able to use it
efficiently. Thus, a system has been developed on expectations of populations and , it is
not always true that every user will satisfy in every details. It is necessary for users to

customize the system so that they can take full advantage of it. It is easy and interesting

37

work to customize the system in this working environment as mentioned in subsection 4
above. This supports the principle VIII, the interface must be easily understood, and the
principle X, the interface must attract user’s attention.
b. Go_Forward
Go_Forward button is indicated by boxed graphic elements or different

character styles or both [see Figure 5.3]. Clicking on this button, the system shows more
detailed interface about the object (real-world model). This button does exactly what the
menu item Next Frame does selected manually. It moves from current frame to next
frame. The button on the frame is created by inserting invisible graphic element and
overlaying it on the desired position. Its definition looks like:

#logiix

function main()

begin

DoMenuld(1034);
end

c. Go_Backward
The icon indicated by a left arrow is used to go backward from the current
frame [see Figure 5.3]. It has a command in its document definition like:
#logiix
function main()
begin
DoMenuld(1033);
end

With the Go_Forward and Go_Backward, the information or interface is

navigated sequentially, except termination in some aspect, as it has been constructed.

38

This implies the concept of visual interface for database, saying that users navigate
through the information database by following the links from one piece of information
to the next.

Though this implementation is not complete with database management
system, users can move from one piece of information (frame) to another seeking what
they wanted.

d. Exit

Users can terminate the running of system and exit to the operating system
(MS-DOS). The icon is indicated a left arrow with a vertical bar {Figure 5.12].
Associating with Go_Previous icon, it goes to the first frame then asks if the user really
wants to exit to the operating system (MS-DOS). If the user click on the OK button, the
system saves all the changes and exits to operating system, otherwise, clicking on the
Cancel it remains the running state. For the Logiix program for this button in definition,
it looks like:

#logiix
function main()
begin
return_value = answer(l, "EXIT",
"Do you want to exit the system 7");
if (return_value = 1) then
begin
closeAll(1 + 256);
end;

end

The behavior of this button supports the principle I, the interface must

39

provide more information when asked, and II, recovery from unintended operation. It
asks if a user wants to exit or not, not simply exiting to operating system, Therefore, it
provides a mechanism that prevents the user from unintended exit by requesting the
confirmation of the user’s will.

For the experienced users, they can use the system box or a menu command
to exit the system [Figure 5.13]. It is a function provided by an MS-Windows by double
clicking on the system menu box or selecting the Close command form File menu. The
provides a variety way of operating the system for different level of users. Therefore, it
supports the Principle III, performing the same operation in more than one way.

e. Help

Help has been provided for every frame. Figure 5.14 shows the HELP icon
and its contents. It just explains the behaviors of each button. This help button opens
a document which consists of three frames: help on help, help on document(I), and help
on document(Il). These three frames are linked forward and backward. And the
meanings of the icons on help document are the same as the ones on the regular
document described above. This meets the principle IX, the interface must be understood
easily. Therefore even the novice users can use the system without much confusion,
because they can guess what it means and do what they guess. And it also supports the
principle IV, consistent interface. Because the system uses the same interface for the
same operation in a consistent manner, the users do not have misunderstanding or

confusion when navigating through the system.

40

f. Print
The Print icon is also shown on every frame. Clicking on this button, it asks
if users want to print the current frame out to the printer [Figure 5.15]. If the users
answer OK, it shows a print dialogue box. If the users do not want to print out the
screen, they can click on the Cancel button. It also supports the Principle I, providing
more information when asked, I1, recovery from unintended operation, and I'V, consistent
interface for equivalent operation.
g. Information
In this thesis, the author has implemented the database accessing interface
which does not really access a real (relational) database system. It only provides an
environment for the future utilization. Therefore, the data that you can get is not from
a real database system, but they are actually graphics files created by using Microsoft
Paintbrush. And if there must be some changes for these data, then the user must use the
Microsoft Paintbrush or compatible graphic softwares.
Clicking on the information icon on the
INLET _GEARBOX_ASSEMBLY_BREAKDOWN, denoted by INFO, it invokes another
document called INFO_INLET.GUI [Figure 5.16]. The other frame except this one, they
do not provide any information. Clinking on those says "Not Modeled” [see Figure 5.4],
because it is just an interface which does not access any information database.

D. SAMPLE SESSION

We can run the system by tvping "win guide start.gui" at the DOS prompt. Then the

41

MS-Windows will open the Guide’s work environment and again opens the document
START.GUI. It displays its first frame in start.gui [Figure 5.17]. Throughout the demo
we will see some buttons already made, and we can click on the boxed graphic element
to go ahead. Now, lets click on the eye-shaped place. Then it will open the next frame
named BATTLE_GROUP_ZULU will be displayed with almost the same interface
[Figure 5.18]. Among different ships, there is a ship surrounded by box. Again it has
button to go further. Click other ships will cause the system to print a message, Not
Modeled [see tigure 5.4]. Clicking on the boxed ship will open the next frame called
FFG_7 SIDE PROFILE [Figure 5.19]. On this frame we will see a small ship icon in
inversed mode. Clicking on this will open a frame called DECK PROFILE ([Figure 5.20].
It is a view of the ship from the sky. To go back to the previous side view frame, we
use a return button, left arrow with its tail up. We are using different button to go back
at this moment. The top view frame is in different document called
DECK_PROFILE.GUI. When we click that inversed small ship, it actually opens another
document, not just displaying its next frame in the same document. We can navigate in
this fashion from the first frame to the desired frame. Figures 21 through 26 illustrate
the navigation path. On this frame, clicking on the info button will open another
document called INFOINLE.GUI. Only this button shows some information in this
impiementation [Figure 27 through 31]. The information has been made using MS-
Windows PaintBrush. Because it does not access a real database, there is no way to show

what this interface works but this way.

42

When we want to go back to the previous document, we can use the leftarrow button.
It does backtrack from the current frame to the previous frame in the same derninent
which is different from that of return button. This button is seen in almost every frame.

Clicking on the help icon, it opens a document called HELP.GUI [Figurz 5.14 and
Figure 5.32 through 5.33]. When you finish reading the help messages, you will be
returned to the previous document by clicking on the RETURN icon again [see Figure
5.16]).

Now lets click on the PRINT icon. It prints the current window out to the default
printer as we went over in the above section [see Figure 5.15]. If you want to terminate
the session while you are in the system, you can do this by clicking on a button with an
arrow and a vertical bar. It will ask you whether you really want to exit to the operating
system or not. Suppose we are at DECKPROFILE frame. Then we have two documents
opened, one is START.GUI and DECK.GUI which are separate documents. If you click
on the EXIT icon to finish your work at this moment, the system takes care of all
document that you have been working on. If there has been any changes into any
document, the system saves any changes if we click on the yes on the dialogue [Figure

5.34].

43

Users
(Applications)
(Guide)
MS-Windows
\)
|\
_ -

Figure 5.1 Layers for MS-Windows Applications

MS-Windows

Guide

(=)

]
MS-Windows Applications

Figure 5.2 DDE under MS-Windows

44

o

Interface-DtNven SW. Development Teel

ENGINE ROOM LOWER LEVEL POR]
[Dehnilions for C4..|B-AND-W\START.GUI
flogi
{erlpa)
function man()
begn
doMenuld|1034);
end

+
aéi

ALogik
{erlipo)
function man()
begn .
- messageBor"Nol Modeled."):

fend Sfiro lﬁﬁ%

Figure 5.3 Definition in a Document

Interfsce_Driven V. Develvoment Tosl

Y ROVP
1SS EY IS0 (M0 62 W55 VISR (T X))
[] [] » ’
.m
UBS CALLAGH AN (146 7N)
W RURRRLOOCE | WSHEVITT (0 4)
| _Hhi-r
1SS JARRLTT A1) 59 USSENTDDAD UT 1020)

VREHELL (00 1D)

G 4 B 5,

Figure 5.4 Invisible Graphic Element

45

Imertace-Otiven SW, Development Tual

EEC] AIDF PROFIE

- Net Medeled.
K
™ [_D_J —
1 [GaMf L
T Tt

@) L

Figure 5.5 Not Modeled Dialogue

[

Interiace-Ditven 3V, Development Tool

4

Gulde; Set Decument Optlony

Wisdew Style =
H Mugmize U scron Bor -
& Jroe Bor Caneel
B X Qose Box
O Thin Berder Maximize Bax O Matz Detsalt

Fie: C4, ATANDADECK.GUI

Coplion: hnl:rlu:—ﬂrivcn 5YY. Develapmenl Tasl

O sty Bock Isbe 0
X Save Window Pochioa
[J share Definltions In this decamest

[Full Path Reterenees Jo his dacument

4

Figure 5.6 Set Document Dijalogue

40

Figure 5.7 Object Structure

APLI.BW 75026 10/23/90 20:99 A,

BATT.BMHP 71110 10/29790 24:10 .A..
COSAL_1.8HP 7h782 18/23/90 20:49 .A..
DECK.BHP 71110 10719790 12:43 .A..

ENGINE.BHP 71110 10719790 14:12 .A..
EQUIP_1.BHP 76006 10/23/90 20:50 .4..

ERLLPD.BHP 71190 10719799 14:14 .A..
FFG7.BHP 71110 10/19/90 14:15 .A..
FORNS_1.BMP 90934 10/23/90 20:51 .R..
GAS.BHP 71110 10/19/90 14:25 4.,
GTRB.BMP 71110 10723790 21:03 .A..

INLET.BHP 71110 10/21/99 23:02 .A..
142500809 71110 19705799 0:02 .A..
- |HY_FRAME.BMP 22478 10729/90 20:55 .A..
OPEN.BNP 71110 10722798 13:32 .A..

Figure 5.8 Graphic Tiles Made into Frames

47

START

DECK
—) Negwe

swine X pmse Y noaw
I HELP

oanase ki mede KX poee

LL Uret: LU o 7)) o

INFO___ | INLET

fuffulfn]] wooe

Figure 5.9 Documents and Frames

-f Imteriece_Driven 8Y. Development Toel

DATTLE GROUP ZULY

%$ MY JIRSEY GR 42 VS YISO (EV 00

W ATRI S SCALGRI I)

—inalll

USS ML (005 19) g, 5 AL 116 331 UGS CAPIOND UF 10%0)

Y Gk

Figure 5.10 Mouse Pointer Pattern Change

48

o intertace-Driven SYY. Derelepment Too!

Set Cursor
o e Lavsl
N por Lovel
Pect Side oKk | ol
7 .
H Cancet
Lower Levd

Porl i ‘W ety
ankellE

Figure 5.11 Set Mouse Pointer Pattern Dialogue

-] imerlace-Driven SW. Develapracet Tool

[TEREICE-DRTNER 8V, DEVELORAENT 04

al Bar

Do you want to exh the cycten ¢

[oc] [emer]
-

el il

Figure 5.12 Exit Dialogue

49

Isterfece-(Oriven OW, Dovelvsrncnt Tasi
Move CirieF7
Size Cin+F8 LECH PROOLE

Mipimize Ctri+FY
Maximize CtrleF10

Close Ctri+F4
Switch To... CiritEse

\

¢ o e 3] B

Figure 5.13 System Box

- HELP

HELP OR AILP

é lnum Exft Be help window.
* "I]” 0" Go to previaus help window.
. NIXT cet nexd hetp windon. Ll

% Plll! Print the cerrent heip window,

R pES

Figure 5.14 Help

50

-l lateracc-Oriven SW. Development Tuol ¢

NGINE ROOM L SELECETION

Uooer Leve! = PRINT

Port Side pirLevel
ﬁi 00 you want ls printtnia 7 pib0 Stde

par
Forl e ~ ~—Jwerave

Stbd 8ide

Gk 5

Figure 5.15 Print Dialogue

of Inerface_Driven SYY. Development Tool ¢

MNLET GEAR BOX ASSEMBLY

o INFORMATION |-

« BREHEE
Leas

¢ e[&

Figurc 5.16 Information Document on Inlet Gearbox Assembly
Breakdown

51

- Intorface-Diivan EW. Develapmont Tool 3

(RTERTACE-DRIVEN SN, DENELOTWENT [00k

) JH] =

Figure 5.17 The First Frame of Sample Session

-T Interface_Driven 8W. Development Tool
BATTLE GROUR ZULV
X% MY JERRLY (642) U8 YIKSOR (CVN 00
-m USS CALLACHAN 006 394)
V5 APREXH PURKE (006 51) USS HEVITT () %6)
% ESIRKTTMG S UG CAPIRAND UF 1067)
I TY)
B
G o 4 B B

Figure 5.18 Battle Group Zulu

52

e inferfece-Driven SW. Development Tool

o R
Deck Prefile

7
/
-7
rd
7

AN [MAN | X
e e [

o) e 4 [F] B

-

Figure 5.19 FFG-7 Side Profile

-] intertsceDriven SW. Development Tos!

DECK PROAILE

¢) J4]!

Iigure 5.20 Deck Profile

53

Imerisce-Driven SY. Development Tool

ENQINE RQOM LEYFL 3EJ FCETION

Upper Lovel

Port 6ide ~~~—__ Uppar Lovel

9ibd Side
Laver Levd _ Lawertevel
po” gdc Stbd Side

@ e ¢ (1] B

ol

Figure 5.21 Engine Room Level Selection

interdace-Driven SW. Developmenl Tool

] reirle Al Cooler
[T e l:z’
’ 'l llﬂl ll
‘oraold | Tark *1T] T
L
wrihr |

cPp Hyi- il Prp Mo e e,
n éﬁg‘.ﬂt A fyrmer- | Yl Pro P-‘w - Che.Prp.
. ‘N{G

teters”]

on
Mlnanrs
Perunr e
LA
" Mo
i

"-\.m Hidr 0f Sowp Tark,
rcrr oK trnetien Box

-htﬂl

Figure 5.22 Engine Room Lower Port

54

interisce-Dilven SW. Developmen! Too!

“

CAS TURBINE MODULE

L2500 Ga¢
TURBINE
ENGINE

o e« F &

Figure 5.23 Gas Turbine Module

Interfsce-Diven 8. Development Tool

1112520 GAS TURBINE

Combustor Section

Compresyor Seclon Turbine Section

G e« F 5

Figure 5.24 LM2500 Gas Turbine

55

al intertace-Driven SW. Development Tool 3
OTAB EXPLODED VIEW
o by w e e
4 :\\: v, *
ad i
Contortaly bt Canaressir Foter
Trurster, ' ot
ko e o E&"‘.’.’;“&m;‘"
Cosing
nat
X
Figure 5.25 GTRB Exploded View
-[Interface_Driven 8\W. Development Toel

INLET GEAR BOX ASSEMBLY

¢ e (&

Figure 5.26 Inlet Gearbox Assembly

56

Equiptnent

Uit N60248 ewii 2941 1AA PrimeKer (Y325
Parent APL TYFe 4 fhae NS
art 693170005 cAr ALT Flag
et D111F30€9325% SCAT COS Ty pe
73014 or sr. 000001 ap.co*
watn 5-250-0-C DataOriy LF PH RIH
wC EQPT Instal Etalug FIR Esenlisl Y
wCCHPT vaLersacr M sic DAUWM
Pacenl 3N RRV scur J
n ALSR Lstdae 05221
Sellact i .N Usdate JCN Last User Update IMP
10 MN PHPLN GTHU (3325 jesu G345
Tape (1ol
faatienstO0EC_ GTJIE 1A GHBBQL&ML—‘- =
o) g
S

Figure 5.27 Equipment Information

COSAL

itenfiome GEANDOXASSY, INLET ARL 633170005 |
Steck Number 5120001187079 e 30
Part Number | 20102602 FST1 91662
Unit of tssue EA Allowed Oty 000
Allowance Code ApplicalionOty 001
Source Code PA Hainl Code &z
Hall Control Codo Recaversbilily (ode 2
Hotl Content Code CIPRT

« £ &,

Figure 5.28 COSAL Information

37

Mavaup Form 1250-

1 Rey Babv [2.00p00le [3.Urgy | AMD [6 Lemation] 5,814 | O O DL
0718 1EMUT L |
8.t ttiere JRelUSym] 3TPR T 10 MA/ARL/ZCE 0D, lnr Q]2 183 .00 At [0, Poste
CEARNOXASSY RITIZON0S | R/c - »on 0/
- (T {S 12, Lewi Suold [E.
3. e J:h.t‘o'%llhmbk.jﬂ L Levis Conl S0l T pir “C
NG07 R ERT EEERs e B w) me foew [
Slaok Humber 4175, T%5. 1. .
'8.4C |10.C0G 130 MCLYy, pop T MM 25.3ALN/iFATT [unk riee Fxted Pre fre
FA_ 180 313 Joui a7 3| EA
11, P ks 0. N XU th By
31 HEND BY
tuo
wit
00C [RB (¢ v|[3rc] UWC | $nonte | serial | &) 3] g s [rnelDast| Pres|FIR T A
DUN| DINT |8 U] v] aoress |0 rpojo
S ne G ylo|v

4

Figure 5.29 Navsup Form 1250-1 Information

frL

Nomenclelure GEANBOX ASSY. INLET ~ GTRB MDL 7LM25001B10)
AFL 603170006 HIIN 006026006 Population 000002
C6 H FscH (7402 EQUCNT o©02
LSSC AA Flop N 1D CODE
AINAC 3P Section AtL COL NUH
Cherocteristics
NAVCOM PLAN- MFR DWG-
121062 MFR [D4.21082606
ReR SN0 oz oo FUhS.
Lost Update User Last Updete Dale 87207

r &]

Figure 5.30 APL Information

58

=| Lociix

Not Modeled yet. E

K
CEPD
«.n

Figure 5.31 Not Modeled dialogue

=] HELP

»

HELR QN ROCUMENT (1)

HELP et neipwindow,

|« TERNIHAIE enc the 10DS eoceion.
* PREVIOUS oDispiay the previous dacument

window,

& an B

Figure 5.32 Help on Document (1)

59

»

al HELP

LELP QN ROCHHENI CI1)

*i Go-Last Go to tho very last window.

.g. PRINT cuck on this buttan wiil print the
current window oulto printer.

"ﬂORHﬂIIOH Display Informaillon manuse

relating 10 cutrent window.

¢ an B

Forsbustor

B4

Figure 5.33 Help on Document (m

-1 Imertace-Driven 8W. Development Tosl

INTERFACE-DRIVEN SY. DEUFLOFMENT 100

=)

CALA\WORK\START. .éUI

r)’_u J Lr_«j [OonuI]

@ De you want to save changes made to

B~ — Al

o b 7 B

Figure 5.34 Save or Not Dialogue

60

VI. CONCLUSION

We need tools to keep wp the pace with the increasing amount of information. The
traditional database systems are limited in their ability in dealing with a record-based
data, and the users have to be familiar with database technology to take a full advantage
of database systems as information managers.

Therefore, in this regard, we have built a visual interface with which end-users can
manipulate the information being visually represented on the computer screen. So, the
users can navigate through the database by following the links from one piece of
information to the next. This increases the end-users’ paticipation, thus can be a more
powerful information.

Since we have employed a windowing software, MS-Windows, we can build
graphical interfaces on IBM PC’s and compatibles which are widely used. And, since we
used an interface-driven software which provides the concept of object, it supports rapid
prototyping and incremental development.

The possible following research will be combining the interface frame with real

database systems supported by MS-Windows, such as Superbase 4.

61

APPENDIX A.- PROGRAM LISTS

1. Start

#Logiix
{open, go to next frame}
function main()
begin
doMenuld(1034);
end

#Logiix
{open, ask to exit}
function main()
begin
retl := answer(1l, "EXIT", "Do you want to exit the system ?7");
if (retl = 1) then
begin
close All(1+256);
end;
end

#Logiix
{open, open help windows}
function main()
begin
open("help.gui”,0,1);
end

#Logiix

{open, ask to print)

function main()

begin
Ret2 := answer(1,"PRINT", "Do you want to print this 7");
if (ret2 = 1) then

62

begin
doMenuld(1008);
end,;
end

#Logiix
{open, dialog box for "info")
function main()
begin
messageBox("Not Modeled \nNo Information.");
end

#Logiix
{battle, open help windows }
function main()
begin
open("help.gui”,0,1);
end

#Logiix
{battle, ask to print)
function main()
begin
ret3 := answer(1,"PRINT", "Do you want to print this ?");
if (ret3 = 1) then
begin
doMenuld(1008);
end,;
end

#Logiix
{battle, go to next frame)
function main()
begin
doMenuld(1034);

63

end

#Logiix
{battle, go to previous frame)
function main()
begin
doMenuld(1033);
end

#Logiix
(oattle, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{battle, display message box}
function main()
begin

mes ageBox("Not Modeled.");
end

#Logiix
{bartle display message box}
function main()
begin

mes -ageBox("Not Modeled."”);
end

#Logii

{battle, display message box]
function main()

begin

messageBox("Not Modelzd.");
end

#Logiix
(battle, display message box}
function main()
begin

messageBox("Not Modeled.”);
end

#Logiix
{battle, display message box}
function main()
begin

messageBox("Not Modeled."),
end

#Logiix
{battle, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix

(battle, dialog box for info}
functior: main()

begin

messageBox("Not Modeled \nNo Information.");

end

#Logiix

{battle, ask to exit)

function main()

begin
doMenuld(1032);

65

ret4 := answer(l, "EXIT", "Do you want to exit the system ?7");
if (ret4 = 1) then
begin
closeAll(1+256);
end,;
end

#Logux
{ffg-7, go to previous frame}
function main()
begin
doMenuld(1033);
end

#Logiix

{ffg-7, ask to exit)

function main()

begin
doMenuld(1032):
ret> := answer(l, "EXIT", "Do you want to exit the system ?");
if (ret5 = 1) then
begin

closeAll(14256);

end;

end

#Logiix
{ffg-7, ask to print}
function main()
begin
ret6 := answer(1,"PRINT", "Do you want to print this ?");
if (ret6 = 1) then
begin
doMenuld(1008);
end,
end

66

#Logiix

{ffg-7, open "deck.gui"}

function main()

begin
open("deck.gui",0,1);

end

#Logiix
{ffg-7, open help windows}
function main()
begin
open("help.gui",0,1);
end

#Logiix
{ffg-7, dialog box for info)
function main()
begin
messageBox("Not Modeled\nNo Information.");
end

#Logiix
(ffg-7, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{ffg-7, display message box}
function main()
begin

messageBox("Not Modeled."),
end

67

#Logiix
(ffg-7, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{ffg-7, go to next frame}
function main()
begin
doMenuld(1034);
end

#Logiix
{engine rm level, go to previous frame}
function main()
begin
doMenuld(1033);
end

#Logiix
{engine mm level, ask to exit)
function main()
begin
doMenuld(1032);
ret7 := answer(l, "EXIT", "Do you want to exit the system ?");
if (ret7 = 1) then
begin
closeAll(1+256);
end;
end

#Logiix
{engine rm level, ask to print}
function main()

68

begin
ret8 := answer(l,"PRINT", "Do you want to print this 7");
if (ret§ = 1) then
begin
doMenuld(1008);
end;
end

#Logiix
{engine rm level, open help windows}
function main()
begin
open("help.gui”,0,1);
end

#Logiix
{engine mm level, dialog box for info}
function main()
begin
messageBox("Not Modeled \nNo Information.");
end

#Logiix
{engine m level, go to next frame})
function main()
begin
doMenuld(1034);
end

#Logiix

(engine m level, go to next frame}
function main()

begin

69

doMenuld(1034);
end

#Logiix
{engine m level, display message box}
function main()
begin
messageBox("Not Modeled.");
end

#Logiix
{engine rm level, display message box}
function main()
begin
messageBox("Not Modeled.");
end

#Logiix
(engine rm level, display message box}
function main()
begin
messageBox("Not Modeled.");
end

#]_ogiix
{erllpo, go to previous frame}
function main()
begin
doMenuld(1033);
end

#Logiix
{erllpo, ask to exit)

70

function main()
begin
doMenuld(1032);
ret9 := answer(1l, "EXIT", "Do you want to exit the system ?"),
if (ret9 = 1) then
begin
close AlI(1+256);
end;
end

#Logiix
{erllpo, ask to print)
function main()
begin
retl0 := answer(1,"PRINT", "Do you want to print this 7");
if (retl0 = 1) then
begin
doMenuld(1008);
end;
end

#Logiix
{erllpo, open help windows)
function main()
begin
open("help.gui",0,1);
end

#Logiix
(erllpo, dialog box for info}
function main()
begin
messageBox("Not Modeled\nNo Information.");
end

#Logiix
{erllpo, go to next frame)

71

function main(}
begin

doMenuld(1034);
end

#Logiix
{erllpo, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{erllpo, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
(gas turbine, go to next frame}
function main()
begin
doMenuld(1034);
end

#Logiix
(gas turbine, go to next frame}
function main()
begin
doMenuld(1034);
end

#Logiix

72

{gas turbine, go to next frame}
function main()
begin
doMenuld(1034):
end

#Logiix
{gas turbine, go to previous frame)
function main()
begin
doMenuld(1033);
end

#Logiix
{gas turbine, dialog box for info)
function main()
begin
messageBox("Not Modeled \aNo Information."),
end

#Logiix
{gas turbine, ask to print)
function main()
begin
retll := answer(1,"PRINT", "Do you want to print this ?"),
if (retll = 1) then
begin
doMenuld(1008);
end;
end

#Logiix
{gas turbine, ask to exit)
function main()
begin
doMenuld(1032);
retl2 := answer(i, "EXIT", "Do you want to exit the system 7");

73

if (retl2 = 1) then
begin
close All(14+256);
end;
end

#Logiix
{gas turbine, open help windows}
function main()
begin
open("help.gui”,0,1);
end

#Logiix
{Im2500, go to next frame}
function main()
begin
doMenuld(1034);
end

#Logiix
{Im2500, open help windows)
function main()
begin
open("help.gui”,0,1);
end

#Logiix
{Im2500, go to next frame)
function main()
begin
doMenud(1034),
end

74

#Logiix
{Im2500, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix

{Im2500, ask to exit}

function main()

begin
doMenuld(1032);
ret13 := answer(1, "EXIT", "Do you want to exit the system ?");
if (retl3 = 1) then
begin

close All(1+256);

end;

end

#Logiix
{Im2500, dialog box for info)
function main()
begin
messageBox("Not Modeled\nNo Information.");
end

#Logiix
{Im2500, ask to print)
function main()
begin
retl4 := answer(1l,"PRINT", "Do you want to print this ?");
if (retl4 = 1) then
begin
doMenuld(1008);
end;
end

75

#Logiix
{1m2500, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{Im2500, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{Im2500, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Loguix
{1lm2500, go to previous frame}
function main()
begin
doMenuld(1033);
end

#Logiix
{gtrb, display message box}
function main()
begin

messageBox("Not Modeled.");
end

76

#Logiix

{gtrb, open "inlet.gui")

function main()

begin
open("inlet.gui”,0,1);

end

#Logiix
{ gtrb, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{gtrb, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{gtrb, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{gtrb, display message box)
function main()
begin

messageBox("Not Modeled.");
end

77

#Logiix
{gtrb, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{gtrb, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{gtrb, display message box)
function main()
begin

messageBox("Not Modeled."”);
end

#Logiix
{gtrb, display message box)
function main()
begin

messageBox("Not Modeled.");
end

#Logiix
{gtrb, go to previous frame)
function main()
begin
doMenuld(1033),
end

#Logiix

78

{gtrb, ask to exit}
function main()
begin
doMenuld(1032);
ret]l5 := answer(l, "EXIT", "Do you want to exit the system ?7");
if (retl5 = 1) then
begin
close AlI(1+256);
end;
end

#Logiix
{gtrb, ask to print)
function main()
begin
retl6 := answer(1,"PRINT", "Do you want to print this ?"),
if (retl6 = 1) then
begin
doMenuld(1008);
end;
end

#Logiix

(gtrb, open help windows)

function main()

begin
open("help.gui”,0,1);

end

#Logiix
{ gtrb, dialog box for info)
function main()
begin
messageBox("Not Modeled\nNo Information.");
end

79

2. Deck Profile

#Logiix
{deck, retum to main program}
function main()
begin
close(0,1+256);
end

#Logiix
{deck, ask to print}
function main()
begin
retl7 := answer(l, "PRINT", "Do you want to print this ?");
if (ret17 = 1) then
begin
doMenuld(1008),
end;
end

#Logiix
{deck, open help windows}
function main()
begin
open("help.gui”,0,1);
end

#Logiix
{deck, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix

80

{deck, display message box}
function main()
begin

messageBox("Not Modeled."”);
end

#Logiix
{deck, display message box}
function main()
begin

messageBox("Not Modeled.");
end

#Logiix

(deck, open information window}
function main()

begin

open("info.gui",0,1);

end

#Logiix
{deck, ask to exit}
function main()
begin
ret18 := answer(l, "EXIT", "Do you want to exit the system ?7");
if (retl8 = 1) then
begin
closeAll(1+256);
end;
end

81

3. Inlet Gearbox Assembly Breakdown

#Logiix
{inlet, return to main program}
function main()
begin
close(0, 1+256),
end

#Logiix
{inlet, open information window)
function main()
begin
open("infoinle.gui",0,1);
end

#Logiix
(inlet, ask to exit}
function main()
begin
ret19 := answer(1l, "EXIT", "Do you want to exit the system ?");
if (retl9 = 1) then
begin
closeAll(14256);
end;
end

#Logiix
{inlet, ask to print}
function main()
begin
ret20 := answer(l, "PRINT", "Do you want to print this ?");
if (ret20 = 1) then
begin
doMenuld(1008),
end;
end

82

#Logiix

{inlet, open help window}

function main()

begin
open("help.gui”,0,1),

end

83

4. Help

#Logiix

{3, go to next frame)

function main()

begin
doMenuld(1034);

end

#Logiix
{3, go to previous frame}
function main()
begin
doMenuld(1033);
end

#Logiix
{2, go to previous frame)
function main()
begin
doMenuld(1033);
end

#Logiix
{2, go to next frame) -~
function main()
begin
doMenuld(1034);
end

#Logiix
{1, go to previous frame)
function main()
begin
doMenuld(1033);
end

84

#Logiix

{1, go to next frame}

function main()

begin
doMenuld(1034),

end

#Logiix
{1, return to mairi program)
function main()
begin
close(0,1+256);
end

#Logiix
{2, return to main program}
function main()
begin
close(0,1+256);
end

#Logiix
{3,return to main program|
function main()
begin
close(0,1+256),
end

#Logiix

{1, ask to print}
function main()
begin

ret2] := answer(1l,"PRINT", "DO you want to print this ?");

if (ret2l = 1) then
begin
doMenuld(1008);

85

end;
end

#Logiix
{2, ask to print}
function main()
begin
ret22 := answer(l,"PRINT", "DO you want to print this 7");
if (ret22 = 1) then
begin
doMenuld(1008);
end;
end

#Logiix
{3, ask to print)
function main()
begin
ret23 := answer(1,"PRINT", "DO you want to print this ?");
if (ret23 = 1) then
begin
doMenuld(1008),
end,
end

86

5. Information on Inlet Gearbox Assembly

#Logiix

{info_inlet)

function main()

begin
open("cosal_1.gui",0,1);

end

#Logiix
{info_inlet)
function main()
begin
messageBox("Not Modeled yet.");
end

#Logiix

{info_inlet)

function main()

begin
open("forms_1.gui",0,1);

end

#Logiix

{info_inlet}

function main()

begin
open("apl_1.gui",0,1);

end

#Logiix
{info_inlet)
function main()
begin

close(0,14256);
end

87

#Logiix

{info_inlet)

function main()

begin
open("equip_1.gui",0,1);

end

88

10.

11.

12.

13.

LIST OF REFERENCES

Andrew Monk, "Fundamentals of Human-Computer Interaction,” Academic Press,
Inc., 1984.

Brad A. Myers, "User-Interface Tools: Introduction and Survey,” IEEE Software,
Jan. 1989.

C. Thomas Wu, "Development of a Visual Database Interface - An Object-oriented
Approach,” NPS. Monterey, CA.

Duff, C., et al, "Actor Language Manual," The Whitewater Group, Inc., 1989.

David Maier, Zacob Srein, Allen Otis, Alan Purdy, "Development of an
Object-oriented DBMS," ACM, 1986.

Dan Shafer, "HyperTalk Programming,” Hayden Books, 1989.
Dave Thomas, "What’s in an Object,” Byte, March 1989.

George Copeland, David Maier, "Making Smalltalk a Database System,” ACM,
1984.

"Guide 3.0 Reference Manual,” Precision. Inc., 1990.

H.R. Hartson and D. Hix, "Human-Computer Interface Development,” ACM
Computing Surveys, Vol.21, No.1, March 1989.

J. Banerjee, H. Chou, Jorge F, Garza, W. Kim, D. Woelk, N. Ballou, and H. Kim,
"Data Model Issues for Object-Oriented Application,” ACM Transactions on Office
Information Systems, Vol. 5, No. 1, Jan. 1987.

Kathleen Potosnak, "Mental Models: Helping Users Understand Software,” IEEE
Software, Sept. 1989.

Kathleen Potosnak, "Do Icons make User Interface Easier to Use 7" IEEE Software,
May 1988.

89

14.

15.

16.

17.

Mark A. Linton, John M. Vlissides, and Paul R. Calder, "Composing User Interfaces
with InterViews,” IEEE, Feb. 1989.

Mahesh H. Dodani, Charles E. Hughes, and J. Michael Moshell, "Separation of
Powers,"” Byte, March 1989.

Thomas Atwood, "Applying the Object Paradigm to Databases,” Computer
Language, Sept. 1990.

William Geobel Anthony Sympson III, "Graphics Interface for Attribute Based Data
Language Queries from a Multi-lingual, Multi-model, Multi-Backend Database
system over an Ethemet Network,” Masters Thesis, Naval Postgraduate School,
Monterey, Ca., Dec. 1989.

INITIAL DISTRIBUTION LIST

. Defence Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

. Dudley Knox Library

Code 52

Naval Postgraduate School
Monterey, Califomia 93943-5002

. Curriculum Office, Code 37
Computer Technology

Naval Postgraduate School
Monterey, Califomia 93943-5002

. Professor C. Thomas Wu (Code CS/Wq)
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5002

. Professor Myung W. Suh (Code AS/Su)
Administration Science Department
Naval Postgraduate School

Monterey, California 93943-5002

. Professor Kyung-Chang Kim (Code CS/Ki)
Computer Science Department

Naval Postgraduate School
Monterey, Califonia 93943-5002

. Professor Dong-Soo Kim (Code ME/Km)
Mechanical Engineering Department
Naval Postgraduate School

Monterey, Califomia 93943-5002

91

10.

11.

12

Captain Jae-Du Jung
SMC 1504, Naval Postgraduate School
Monterey, California 93943-5002

Captain Jung-Hyun Park
SMC 1818, Naval Postgraduate School
Monterey, California 93943-5002

Korea Military Academy Library
P.O. Box 77, Gong-Neung Dong,
No-Won Gu, Seoul,
South-Korea, 132-240

Army Central Library

Army Heaquarter, Bu-Nam Ri,

Du-Ma Myeon, Non-San Gun, Chung-Nam,
South-Korea, 320-919

Captain Heung-Taek Kim

267-9, Kan-Seok Dong, Nam-Dong Gu,
In-Cheon, South-Korea

92

