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Abstract

Scan Directed Load Balancing is a new, locality-preserving, dynamic
load balancing algorithm for grid-based computations on mesh-connect-
ed parallel computers. Scans are used to efficiently determine what areas

of the machine are heavily loaded and what areas are lightly loaded,

and to organize the movement of data. Data is shifted along the mesh

in a regular fashion to balance the load. The Locality Property of the

algorithm guarantees that all the neighbors of a data point on the grid

are stored either on the same processor, or on a processor that is directly
connected to it.

C- j Scan Directed Load Balancing is applicable to both SIMD and MIMD

, r mesh-connected parallel computers, and has been implemented on the

f, MasPar NIP-I. We present some theoretical bounds achieved by the

I"' algorithm as well as the algorithm's performance on a particular im-

age processing problem, edge-directed diffusion. Our experiments show
C that the algorithm is effective in improving the load distribution for real

P. problems, while the efficiency of the original grid-based computation is

preserved by the locality property.
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Introduction

A large class of scientific and engineering problems can be solved by
repeated local computations at every point of data arranged in some
regular grid. A classic example is the explicit solution of differential
equations such as those describing the diffusion of heat through a sur-
face. Other examples include the simulation of cellular automata and
operations on image data. In each case the computation at a given grid
element is local because it depends only on the element and its nearby
neighbors on the grid.

A mesh-connected parallel computer is characterized by processors ar-
ranged in a regular grid with an interconnection network providing local
communication between adjacent processors in the grid. Global com-
munication between arbitrary processors is achieved by routing data
over successive links in the network. Global communication delays scale
with the number of processors whereas local communication delays are
not subject to such a relationship. Consequently grid-based computa-
tions that are local in nature are ideally suited for execution on mesh-
connected computers when the data grid can be put into correspondence
with the mesh structure of the machine. Indeed the earliest demonstra-
tions of success with scalable parallel computers were on such problems: Ac'-3~y7 For
heat diffusion on Illiac IV (131 and Ising spin computations on the DAP NT:IS - -'(11]. DTFJ :/s:A3 -

In this paper we are concerned with techniques to efficiently execute a U,:a'r,:, :, -
class of such local computations in a setting where the data grid is large
relative to the number of processors, and the local computations exhibit . _ .
fixed points which, when attained, do not require further recomputation By
while data values in the local neighborhood remain unchanged. iJst't)' ,,

Since, in a computation on a large grid, each processor is responsible .. . . .
for multiple data points, the presence of local fixed points makes possible r .
a more efficient execution technique in which each processor only evalu- -1

ates "active" points in the portion of the grid for which it is responsible. Dist
The problem arises, however, that the distribution of active points may
become unpredictable as the computation evolves and may be highly .[irregular. Consequently, a static assignment of grid points to processors " !t _i
may lead to uneven numbers of active data points at each processor, re-

ducing the efficiency of the parallel computation. In the worst case one
processor holds all the active points, and no parallel speedup is attained/ -
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Symbol Value or Definition Explanation
k 1... dimension of the mesh and data
z 0... k - I index over dimensions
pI p > 1 number of processors
i, O... p - 1 processor index along dimension z
I [io.... ik-I] processor index
I, [(p- 1),... (p- 1)] maximum processor index
pI ... processor at index I
Pr(s) ... hyperplane pt where Is = i
At ... active points on processor P1
Ato, EiA, number of active points
nk  ... number of data points

h. 0... n - 1 data index along dimension x
H [ho... h-] data point index
Dif ... data point at index H
p(H) i - H - I mapping of data points to processors
6k buffet space per processor

I1 ... max data index on x-hyperplane i
g1 ... 17(0) index over data points in processors i
d.(i, g.) ... data hyperplane at index g, in p,(i)
G [go ... &.. g-] data point index within a processor

6(U, V) EIU, - V Manhattan distance between U and V
v(V) ( V' : 6(V, V') = 1) indices of neighbors of index V
maz(A) MAXjE(i_..)Aj max-reduction across axis z of A
W. (i, g) maz.(A) activity of data x-hyperplane (i, g)

Sz., E^z,=P,,(n)Wz.h activity of processor z.hyperplane a
A maz 1 (A)/p average load per processor hyperplane
D nk/p points per processor per dinension
a.,(V) z'<,Vj left-to-right plus-scan of V
L. o',(maz.(A)) activity over hyperplanes <
F, A * i - L, active point flow, i to i -

A/(b" - D) load equivalent of inactive data point

Table i
Notation



at all.
To maintain parallel efficiency, a dynamic load balancing strategy

can be used to redistribute the data grid over processors periodically
in response to the observed distribution of active points. Dynamic load
balancing strategies have been studied extensively (e.g. 151,[3]) for large.
grain computations in small-scale parallel systems where communication
is not a limiting issue. In such a setting, migration of a computation
away from the data it references is not considered to be a critical issue.
In a scalable parallel system, however, this migration leads to the loss of
the local communication property, reducing the scalability of the com-
putation. This paper presents a dynamic load-balancing technique that
preserves locality of communication in the computation.

The technique is applicable to mesh-connected MIMD or SIMD ma-
chines, including boolean hypercube machines, although the implemen-
tations reported on in this paper are for the MasPar MP-I, a two-
dimensional mesh-connected SIMD machine. The load balancing com-
putation uses global information to balance the load over the full ma-
chine; all global communication is in the form of scans (parallel prefix
operations), which are efficiently implemented on scalable machines [2].

The rest of this paper is organized as follows. The next section de-
scribes our assumptions and gives some definitions and notation (in Ta-
ble 1) to be used in subsequent sections. Section 3 describes Scan Di-
rected Load Balancing in one-dimensional arrays of processors, and Sec-
tion 4 extends Scan Directed Load Balancing to k dimensions. Section 5
presents some experimental results from two-dimensional load balancing
in an image processing problem. The last section reviews the charac-
,teristics of Scan Directed Load Balancing and points out directions for
future research.

Decomposition of Data into Processors

We assume the data D is arranged in a k-dimensional grid in which every
axis has length n for a total of N = n k elements, and that the computa-
tion will be carried out on a k-dimensional mesh-connected machine M
with P - pk processors, with p < n (for p > n load balancing is trivial).

The dimensionality of the target machine mesh is the same as the di-
mensionality of the data grid for simplicity of exposition. Standard mem-



ory virtualization techniques can be used [6] to simulate a k-dimensional
mesh efficiently in a lower-dimensional mesh, and grid embedding strate-
gies exist (7] to simulate a k-dimensional mesh in a higher dimensional
mesh (such as a boolean hypercube). A grey-code embedding insures
that the constant cost for local communication in the k-dimensional
mesh is preserved. These methods and the techniques to be presented
are also readily generalized to handle a rectangular processor mesh or
data grid.

A domain decomposition up maps each element index H = [ho, ..., hk-]
of the grid D to a processor index Is(H) in M. The hierarchical decom-
position u(H)i = LhiJ partitions D into k-dimensional subcubes of
approximately equal volume (to be precise, each side of the subcube has
length In/pi or rn/pl). This decomposition minimizes communication
in the evaluation of a local function applied at every point on the data
grid.

The hierarchical decomposition is an instance of an orthogonal de.
composition. A decomposition i of D is orthogonal if it can be writ-
ten as p([ho, ...,hk-i]) = [po(ho), ...... i-(hj-_], where po_ ... L-_ are
functions with domain O..n - I and range 0..p - 1. In other words, an
orthogonal decomposition maps each dimension of the data grid inde-
pendently. If each of the functions p, is monotonically nondecreasing
and surjective, then neighboring points on the data grid will always be
found in the same or neighboring processors in the machine.

Scan Directed Load Balancing maintains an orthogonal decomposition
p that varies in response to the measured distribution of active cells.

We can restate these definitions more formally using the notation in
Table 1. Each step of the computation we are load balancing is of the
form D"7+ - f(D D (H)) for some function f, where H ranges over
the data point indices, and t'(H) is the set of indices which form the
neighborhood of H. At all times we will want the decomposition p of D
to respect the following property.

Locality Property: The processor distance between DH and each o:
the 2k points in D,(1) is either 0 or 1.

We assume that the grid is initially decomposed hierarchic:,Ily into
the machine.



LEMMA I Given n > p, the hierarchical decomposition in which index
H = !hi..hk] is assigned to processor pl, where = [i ... ik] and i, =

Lh,. J, has the Locality Property.

Proof The processor distance between the data point with index H and
any one of its neighbors with index H' is 6(pj(H),p(H')) = 6(1,1').
From the definition of neighbors (Table 1) we know that 6(H, H') = 1,
so 3z : (h - h' 1 1) A (Vy i z, (hy = h')). From the definition
of i, and from h. = h',, it follows that iY = LhynI = Lh' j = i' .

Therefore, 6(1,1') =i, - i'zJ = ILh4PJ - Lh'=.-J1. Since n > p, either
6(1, I') = 0 or 6(1, I') = 1 and the locality property holds. 0

The following conditions on p are preserved by the load balancing
algorithm, and are sufficient to ensure that the decomposition has the
locality property.

For any data index H = [ho, ..., hi,] and any axis 0 :< z < k

(1) h, < h'. = p(H). < p(H').

(2) h, = h', j p(H), = u(H'),

and for any processor index I

(3) 3H : p(H) = I

Figure 1
Locality Constraints

LEMMA 2 If the locality constraints hold. p(H), < p(H')r- =, hz < W,.

Proof Given p(H), < p(H'),, h' < h. violates constraint 1, and h =
h' violates constraint 2; therefore, p(H), < p(H'), :, h, < h. 0

THEOREM 1 If the Locality Constraints are satisfied, the Locality Prop-
erty holds.

Proof If Theorem 1 didn't hold, it would be possible to destroy the
locality property without violating any of the constraints. Then there



would be at least two data points, DH on processor I = p(H) and
its neighbor DH' on processor I' = p(H'), such that (a) 6(H,H') =
1(bydefinitionofv.) and (b) 6(1, I') > 1. Then either (1) I and I' differ
only in dimension z so that Vy # z, (iy = i'1 ), or (2) I and I' differ in
at least two dimensions z and y.

If (1), assume without loss of generality that i, < i4. By (b), 4- ,>
1, so there is some processor J, i. < jt < i, that by Property 3 holds at
least one data point Dl,,, H" such that J = p(H"). Then, by Lemma 2,

h, < h", < h', and 6(H, H') > 1, which contradicts (a).
Conversely if (2) holds, I and ' are different in at least two dimen-

sions z and y. By definition of 6, since 6(H, H') = 1, H and H' differ
in at most one dimension, z, so either z 6 z or y : or both. If z 6 z
then h, = h' violates Constraint 2 since u(H)z # u(H'),; likewise if

Y0 Z.
Therefore, the Locality Property is preserved by any algorithm that

respects the Locality Constraints. 3

One-Dimensional Scan Directed Load Balancing

This section describes Scan Directed Load Balancing for cases in which
k = 1, so the computer is a linear array of processors and the data is a
linear array of data points.

The code for one-dimensional Scan Directed Load Balancing has two
steps, shown in Algorithm 1. The first step does storage comiputation,
by computing the difference between the old mapping I = p(H) and
the new mapping I = p'(H). More exactly, what is computed is the
number of active points that must be transferred between every pair of
contiguous processors; we call this quantity the flow of active points
between processors. A scan gives the load to the left of each processor:
the difference between this and the desired load gives F,, the flow of ac-
tive points between processors. The second step does data movement,
shifting the data from one processor to another until each data point
Dm is in processor p,(H). The function put() puts the leftmost data
point of each active pi onto the rightmost end of the data buffer of p,_1;
the function get() takes the rightmost data point from pi- and stores
it as the leftmost point in pi.

In the computation step, the number of active data points that must



1. Compute flows
Li a (A) activity to left of processor i

A .- (Lp- I + Ap.)/p A broadcast to all processors
if (A < 1) then abort load balancing endif avoid underflows
Fi.- iA - Li flow from processor i to i - 1

2. Shift data
forall (i) in parallel

while (Fi > 1/2) tested by each processor
if active (Do) then F A- F,- I endif

put ()
shift-left Di  shift own data buffer left by 1

endwhile
while (F < -1/2)

shift-right D shift own data buffer right by I
got 0)
it active (Do) then Fi - F1 + 1 endif

enduhile

endfor

Figure 2
Algorithm 1. One-dimensional Scan Directed Load Balancing

I * ii r amsI 1 eIC1 ~ e[E
Proc. indexi 0 1 2 3 4 5 6 7

Activity A 2 0 0 1 0 1 2 2
Left.activity L 0 2 2 2 3 3 4 6

Optimal foad A 1 1 1 1 1 1 1 1
ActptflowF 0 -1 0 1 2 2 2 1

Figure 3
Example of I-dimensional load balancing on a linear array of 8 processors, showing
initial distribution (top) and final distribution (bottom)



flow through the left boundary of each processor is computed from the
processor index, the average number of active data points per processor,
and the number of active data points to the left of the processor. The
broadcast operation by which A is communicated to all processors can
be implemented by a right-to-left copy scan. The computation step
checks that the average load is at least one; if it is less than one, any
adjacent active data points would be distributed over more than two
processors, violating the third locality constraint, so the load balancing
is aborted. The computation step for a simple example is shown in detail
in Figure 3, together with the results of the storage movement step.

The storage movement step has two phases. First, processors with
F > 0 shift points to the left until Fi active points have been shifted.
Then, processors with F < 0 take points from the left until -F active
data points have been shifted. Since F0 and Fp are both zero, after the
shift there are Li + Fi = iA (actually, LiAJ < Li + F, < fiAl) active

points to the left of each processor i, at which point the load is balanced.
If only active points are shifted, no processor will ever have to hold more
active points than it already has or [Al, whichever is greater, as long
as all processors with F > 1/2 shift on every cycle in the first phase of
data movement, and all processors with -F < -1/2 do likewise in the
second phase.

Although Algorithm 1 achieves perfect load balance to within integer
constraints, there is no limitation on the number of inactive data points
that may end up in a single processor. For example, if all the active data
is in one half of the machine and an equal amount of inactive data is in
the other half of the machine, an even load distribution will push all the
inactive data into the single processor at the inactive end, which can be

a problem since the per-processor memory of highly parallel computers
is often limited.

Some programs have an uneven distribution of data points but an even
load per data point, and these programs will balance storage by balanc-
ing the load. Other programs have an even distribution of points but
an uneven distribution of load per data point, and for these, prevention
of buffer overflows is important. Algorithm 2 avoids buffer overflows by
giving a load value to inactive data points; this insures that no processor
will have more than b total points, where b is the maximum number of
points that a processor can store.

Algorithm 2 is similar to Algorithm 1. The computation phase first



1. Compute flows
Li- o,(A) activity to left of processor i
A - (Lp-I + Ap-)/p A computed on processor p - I
if (A < 1) then abort load balancing endif avoid underflows
a .- A(b - D) p - 1 computes, broadcasts a
A- Ai + aDi compute modified load
Li- aj(A') new load to left of processor i
A' .- L,_./p A' = Ab/(b - D)
Fi -iA' - L! flow from processor i to i - 1

2. Shift data
forall (W) in parallel

while "(Fi > (I + a)/2) tested by each processor
if active (DO) then F - Fi - (1 + a)
else Fi - F -a endif
put ()
shift-left Di shift own data buffer left by I

endwhile

while (Fi < -(1 + a)/2)
shift-right Di shift own data buffer right by 1
get ()
if active CDO0) then Fi - F, + (I + a)
else Fi - F + a endif

endwhile
endfor

Figure 4
Algorithm 2. One-dimensional Load Balancing with Limited 2uffers



computes a, the pseudo-load value for inactive processes. The value of
a is selected to be such that if any processor has b inactive processes,
its total pseudo-load is exactly A', or, conversely, any processor with
pseudo-load A' and no active processes has exactly b data points. Since
any processor with pseudo-load A' and any active points has fewer than
b points, this guarantees that no processor will ever need to store more
than b points.

The only difference between the storage movement phases of the two
algorithms is the amount by which the flows, Fi, are updated when
shifting out an active or an inactive data point.

Algorithm 1 computes a redistribution that gives a perfectly balanced
load (within integer constraints) of

_. Ai _<

since A - 0.5 < Ai < A + 0.5 and A is an integer.
Algorithm 2, on the other hand, only guarantees that

_1+a l+a
A +c <AX <A',+ I

2 - '- 2

where A' A+aD. If each active point has a load of I, the pseudo-load
of an active point is 1 + a and Ai : A',/(I + a). Since a = A/(b - D),
if b > D), a is small and the performance of the two algorithms is
comparable; if D is close to b, the maximum load on any processor may
be noticeably higher than the average load.

The exact bound for Ai in terms of A, a, and D is

Ai , A + aD + (1 + a)/2
- 1+a

which can be reformulated to exclude the artificial factor a and give

Ab + (A + b- D)/2
- A+b-1

If most data points are active, A D and the bound reduces to A, <
A+1/2, which is the bound for Algorithm 1. The worst-case performance
is obtained when b - D, in which case Ai < D, the best bound that
can be given, simply means very little redistribution is taking place and
a processor may happen to have all of its D data points active. This
corresponds to intuition, since if little or no buffer space is available, load



balancing is unable to contribute much to performance because there is
no flexibility in distributing data.

Finally, the next theorem shows that the above load balancing algo-
rithms satisfy the. Locality Constraints and therefore preserve the Lo-
cality Property.

LEMMA 3 The putC) and get() operations preserve the first Locality
Constraint.

Proof The definition of put() says that put() transfers the leftmost
data point on one processor into the rightmost end of the data buffer
of the neighbor to its left; this preserves property 1, since each buffer
in each processor acts like a FIFO queue and no data point can ever
"pass" another data point. The same is true of got(), which proves the
lemma. 0

THEOREM 2 Algorithm I preserves the Locality Property.

Proof To prove that Algorithm 1 preserves the Locality Property, as-
sume that the distribution to which Algorithm I is applied already sat-
isfies the Locality Constraints. The first constraint is preserved b Al-
gorithm 1 since the only data movement operations are performed by
put() and get(), which by Lemma 3 preserve the locality constraints.
The second constraint is trivially true in one dimension because there are
no dimensions orthogonal to the axis along wL .h the load is balanced.
The third constraint is satisfied by avoiding underflow: after the !oad is
balanced each processor has a load between [A], and LAI; if 1 < Lij,
each processor at, the end of the balance will have at least one ac...e
data point, thus satisfying constraint 3. In the case that .4 < I, no load
balancing is done a-id constraint 3 is preserved. 0

LEMMA 4 Algorithm 2 preserves the Locality Property.

Proof Constraints I and 2 are _iatisfied as for Algorithm 1. Constraint 3
is satisfied because the load on each processor is at least .4' - (1 + a)/2;
since A,' = A + a and A > 1, the load is at least I + a - (1 + a)/2 =
(1 + a)/2 > 0. Since every processor has a nonzero pseudo-load, every
processor has at least one data puint. 0



While interest in one-dimensional scan directed load balancing might
seem academic, there are actually many problems that can use just such
a scheme. Simpler variants of Algorithm 1 have been used for garbage
collection and storage management on both the Connection Machine
[21 and on the FFP Machine [9] [1]. In addition, Algorithms 1 and 2
can be used on any computer composed of a linear array of processors;
any multi-dimensional data set can be mapped to such a computer by a
suitable function.

Scan Directed Load Balancing for Higher Dimensional
Meshes

The algorithms for one-dimensional Scan Directed Load Balancing can
be used with slight changes for meshes of dimension k > 1. In this
case both the processor mesh and data grid have the same dimen-
sion k. Multidimensional Scan Directed Load Balancing simply applies
the one-dimensional algorithm to each dimension of the grid indepen-
dently. When balancing dimension z, for instance, the algorithm treats
the k-dimensional data as a single linear array of (k - 1)-dimensional
hyperplanes and balances the load by shifting along z so that each hy-
perplane of processors has the same load.

The algorithms use local addresses for the data points, so a point on
processor P1 is identified by the index G within the processor, so that the
pair (I, G) uniquely identifies a data point. A hyperplane of processors
is identified by the single index i and the dimension x to which it is
perpendicular, whereas a hyperplane of data is identified by tile two
indices (i,g) and the dimension z.

The algorithm first reduces the loads on the processors to a single
vector of loads by computing the hyperplane loads W1,(ig) for each data
hyperplane; W,(i, g) is the maximum number of active points with x-
coordinate (i,g) within any single processor. W",(i, g) can be computed
using segmented max-scans. The vector S,.i gives the load of each x-
hyperplane of processors.

Once a single load has been computed for each hyperplane of proces-
sors, each hyperplane is treated as a point in the one-dimensional load
balancing algorithm, as can be seen by comparing Algorithm 3 to Algo-
rithm 1. The main difference is that in the one-dimensional case each



f orall (z E {I...k))
1. Compute flows in dimension z

forall (g E {0...i1z(i)}) loop over data indices
14"i.9 - maz,(A.(g)) activity on data hyperplane d,(i, 9 )

endfor
S, - E,(W,,,) activity on hyperplane p,(i)
Li - oi(Si) activity over hyperplanes p,(j), j < i
A - (Lp- I + Sp-)/p broadcast to all processors
if (A < maz(h,)) then abort andif avoid underflows
Fi - iA - Li flow from hyperplane p.(i) to pr(i - 1)

2. Shift data along dimension z
forall (i) in parallel

while (Fi > W.0/2) tested by each processor
F - F - W,,o
put () put hyperplane d.(i, 0) to processors p,(i - 1)
shift-down Di, Wi shift to fill hyperplane d (i, 0)

endwhile
Vp - Wi-I,.o-1) load of topmost data of p(i - 1)

while (Fi < -WVP/2) tested by each processor
shift-up Di, W shift tc, clear hyperplane d,(iO)
get () get hyperplane d.(i - 1, Wp) into d,(i,0)
F, - F + W.. o
V.- - pz(i - I) may or may not call get ()

endwhile

endfor

endf or

Figure 5
Algorithm 3. Scan Directed Load Balancing for more than one dimension



point has a load of either 0 or 1, whereas in the multi-dimensional case
each hyperplane of data may have a load considerably greater than 1;
the loop termination and underflow prevention conditions of Algorithm 3
reflect this difference. Note that the functions get ) and put C) now
move hyperplanes of data (rather than data points) between processors.

Algorithm 4 is the multi-dimensional analogue of Algorithm 2, and
a straightforward extension of Algorithm 3, and is omitted for brevity.
Each processor is assumed to have a k-dimensional buffer for data of
size bk.

The underflow condition in Algorithms 3 and 4 compares the active
load to the maximum number of data points in a cell over all data
hyperplanes perpendicular to the axis being balanced. As long as the
average load is greater than this number, no data hyperplane will ever
need to be distributed to more than one hyperplane of processors, which
preserves the third Locality Constraint.

Unlike the one-dimensional case, the improvements in load balancing
that are given by the multi-dimensional algorithm cannot be as neatly
bounded as in the one-dimensional case. The reason for this is that the
algorithm evens out the row and column loads independently, and in the
worst case this may not be effective in optimizing the load per proces-
sor. An obvious worst case is when the entire load is evenly distributed
among the processors in one diagonal of the mesh: since no amount of
orthogonal shifts is going to improve the load balance, Scan Directed
Load Balancing computes flows of zero. Such worst cases are rare in
practice, as can be shown by our experiments.

Experimental Data

An example of a computation to which these techniques can be applied is
the edge-directed diffusion operation in image processing [12]. Edge-
directed diffusion operates on image data arranged as a grid of intensity
values (pixels). At each iteration a pixel's value is set to be a weighted
average of the values of its neighbors and itself, with neighbors whose
value differs greatly (i.e. those defining an edge) having low weight.
Whenever the averaging operation yields a value that is within some
threshold c of the current value, the value is not updated and the local
averaging function has achieved a fixed point.



When applied to an image such as the one in Figure 6, most pixels are
modified on early iterations. Thereafter, activity tends to cluster into re-
gions surrounded by edges, spreading slowly between regions. The com-
putation terminates after some predetermined length of time or when
all pixels have reached a fixed point. The result on the sample image is
shown in Figure 7. The algorithm smooths noise in areas of the image
that don't have sharp edges, but does not blur the edges themselves, so
the overall sharpness of the image is preserved. Edge-directed diffusion
is used at the University of North Carolina [4] for removing noise from
medical images such as those produced by CT scanners.

Scan Directed Load Balancing has been used to optimize edge-directed
diffusion. The algorithm has been coded to run on the MasPar MP-1
[10], a parallel SIMD computer with 4096 processors laid out in a 64 x 64
2-dimensional mesh. Each processor of the MP-I has a 4-bit wide ALU
and connections to 8 neighbors, 4 in the orthogonal and 4 in the diagonal
directions.

Even though the MP-I provides a general-purpose router which is
much faster for sending small amounts of data long distances, the rela-
tive speed and bandwidth of the mesh connection is much greater, so the
diffusion program uses only the mesh for communication. The image is
divided into tiles and the program performs the diffusion independently
on each tile after copying the pixels from the edges of each of the 8
neighboring processors. The subdivision of the image into contiguous
rectangular tiles minimizes the distance over which communication oc-
curs and the total bandwidth of communication, so that significantly
more time is spent computing the diffusion than communicating pixel
values. Under these circumstances, load balancing can be useful in im-
proving the performance of the program, as long as speedup given by
load balancing is greater than the additional overhead due to load bal-
ancing.

The diffusion program was run on 32 medical and test image files of
sizes 512 x 512 pixels (large), 400 x 448 pixels (medium), and 256 x 256
pixels (small). On the 64 x 64 processor MP-1 this gives per-processor
image sizes of 8 x 8, 6 x 8, and 4 x 4 pixels respectively.

For each image, the performance of the diffusion algorithm alone was
compared to the performance of the diffusion algorithm with load bal-
ancing. The two measures of performance we use are the maximum
load on any given processor averaged over all diffusion cycles, and the
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Figure 6
The original image

Figure 7
The image after running Edge Directed Diffusicin
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actual time it took to complete the diffusion. The first measure is an
indication of how successful the load b.'lancing algorithm is in reducing
the load of the processors. The second measure takes imo account the
costs of performing the load balancing and is a more accurate measure of
the success of this implementation of Scan Directed Load Balancing in
improving overall performance. Since different implementations might
be more or less efficient than the present one, the first measure is more
useful in assessing the algorithm's potential for improving performance,
whereas the second measure gives the actual performance of the current
implementation on the available hardware. Figures 8-10 give the actual
measurements.

Each graph shows the performance of the load balancing algorithm
for Scan Directed Load Balancing applied every iteration of the diffusion
algorithm, every other iteration, every fifth iteration, and so on. The
vertical axis gives the ratio of the cost using load balancing to the cost
without load balancing.

The first observation is that there is a very wide spectrum of per-
formances, from abysmal to very good. It was mentioned at the end
of the previous section that performance cannot be predicted for the
multi-dimensional case; an additional problem is that present load is
not always an accurate predictor of future load, and so the algorithm
occasionally makes the load worse than it was.

On average, the algorithm is quite effective in reducing the load. More
important, the average load decreases monotonically as the algorithm is
applied more and more frequently, which indicates that the algorithm
reliably improves the load balance.

The average time is a shallow V-shaped curve, since more frequent
applications of the algorithm mean not just better performance on the
diffusion task but also higher overhead for the load balancing. For the
present implementation, the optimal ratio of diffusion to load balancing
cycles is in the neighborhood of five. The next section discusses ad-
ditional hardware that could be provided to make it advantageous to
run load balancing on every diffusion cycle and to reap all the potential
benefits of load balancing.

Another interesting comparison is between images of different sizes.
A comparison of the graphs for the performance on the small and large
images shows that both the time and the load are better on the large
images. The better load performance on large images can be explained
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by considering that the granularity of load balancing is finer on the larger
images and the load balancing algorithm therefore can allocate the load
more accurately. The better time performance on larger images is due
to both the finer granularity and the fact that each diffusion cycle takes
longer, so the overhead of load balancing is less significant than on the
smaller images.

The better time performance on the one-dimensional load balancing
is due in part to less overhead for the load balancing itself, and in part
to reduction in the overhead of loop processing. The NIP-I provides
local indirect addressing, which is used to build a worklist, but worklist
processing is a noticeable fraction of the processing time, and applying
the load balancing algorithm in only one dimension brings many of the
benefits of Scan Directed Load Balancing while reducing many of the
costs of two-dimensional load balancing. The average load is higher in
the one-dimensional case, however, as might be expected from the fact
that not all the benefits of load balancing can be realized.

Summary and Concluding Remarks

The organized synchronous character of Scan Directed Load Balancing
is a quite different from the distributed, demand-driven nature of many
popular load balancing algorithms [8] [31. Scan Directed Load Balancing
does not require any kind of tuning and provides predictable performance
for any range of loads. This predictable performance is particularly
useful for parallel computers with large numbers of nodes and small-
grain processes, in which an algorithm that isn't centrally organized
may not be as quick at evening out load imbalances.

Scan Directed Load Balancing uses barrier synchronization and syn-
chronous transfer of per-process data to guarantee that no shift will ever
overflow a data buffer, and pseudo-loads for inactive processes if such
processes are present. The pseudo-load mechanism trades off proces-
sor activity for processor space to simultaneously bound both load and
buffer space. This algorithm does not always achieve perfect balance;
interesting open questions are whether the optimal distribution that re-
spects buffer size constraints can be efficiently computed in parallel, and
whether the optimal distribution has better worst-case performance than
Algorithm 2.



Scan Directed Load Balancing preserves the Locality Property, which
simplifies programming of many problems and makes it easier to add
load balancing to existing programs. The Locality Constraints guar-
antee nearest-neighbor access of neighboring data points, which is very
well suited to SIMD-style conflict-free access of data over a mesh for
programs that do mostly Local Communication. Guaranteeing the Lo-
cality Property by the Locality Constraints in multi-dimensional meshes
can lead to load imbalances that can't be corrected, independently of
the algorithm used to balance the load. Careful study of the Locality

Constraints to reduce this problem may yield new algorithms that might
be less generally applicable (since the SIMD style of mesh usage would
have to be abandoned) but have better worst-case performance.

The measured performance of Scan Directed Load Balancing shows
that such worst cases are rare in practice, and that the algorithm as it
stands can effectively reduce the load of an average computation. The
measured performance also shows that the present implementation is
too slow to produce significant improvements for the anisotropic diffu-
sion problem; this could be rectified either by improving the software
implementation or by providing specialized hardware support for scans
and shifts. The MasPar MP-1 currently uses the mesh for both scans
and shifts; since these mechanisms are crucial to the performance of
Scan Directed Load Balancing (as well as other algorithms), quantifying
the advantage of hardware-assisted scans or shifts is a very important
next step in our work. Also important is to test the Load Balancing
algorithm on other applications so the performance of the algorithm it-
self can be evaluated independently of the specific problem. In general,
the performance of Scan Directed Load Balancing should improve as the
grain of the processes increases, and since the processor grain in edge
directed diffusion is quite small (a diffusion cycle for one pixel is only
a few operations), it is reasonable to expect that the algorithm will be
effective for a wide variety of computations.

Scan Directed Load Balancing is a minimalist load balancing algo-
rithm. It is well-suited for both SIMD and MIMD, is effective for both
linear arrays and multi-dimensional meshes, only uses scans for com-
putation, broadcasting and synchronization, and can be used to load
balance any mesh-based program that is computation intensive. As a
result, Scan Based Load Balancing is useful over a wide range of ma-
chine architectures and computations, and especially appropriate for



fine-grained computations on massively parallel architectures.
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