
NPSOR-91-025

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A241 928

SOME FOUNDATIONS FOR EMPIRICAL
STUDY IN THE EUCLIDEAN SPATIAL

MODEL OF SOCIAL CHOICE

Craig A. Tovey

August 1991

Approved for public release; distribution is unlimited

Prepared for:
National Science Foundation and the National Research Council.

91-13906

,~I2 012-T



THIS DOCUMENT IS BEST
QUALITY AVAILABLE* THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



NAVAL POSTGRADUATE SCHOOL,
MONTEREY, CALIFORNIA

Rear Admiral R. W. West, Jr. Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research funded by the National
Research Council and National Science Foundation.

This report was prepared by:

CRAIG A-<-iTovEY
Senior Res. Assoc.-NRC Fellow

Revievked by: Released by:

PETER PCRDUE PAUL J. I RTO
Professor and Chairman Dean of Research
Department of Operations Research



Unclassified
Sccurit, Classification of this pae

REPORT DOCUMENTATION PAGE
Ila Report Security Classification UNCLASSIFIED I b Restrictive Markings
2a Security Classification Authority 3 Distribution Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited
4 Performing Organization Report Number(s) NPSOR-91-25 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organszation
Naval Postgraduate School tlfApplicable) OR
6c Address (city, state, and ZIP code) 7 b Address (city, state, and ZIP code)
Monterey, CA 93943-5000
8a Name of FundingSp.ssoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(if Applicable)
National Research Council and NSF OR/I'v
8c Address (city, state, and ZIP code) Washington, DC 20418 10 Source of Funding Numbers

Prograrn Elrncns: Number P r ect No Task No Work Lrut Accezmor No

11 Tide (IncludeSecuray Cassificaon) SOME FOUNDATIONS FOR EMPIRI AL STUDY IN THE EUCLIDEAN
SPATIAL MODEL OF SOCIAL CHOICE
12 Personal Author(s) Craig A. Tovev
13a Type of Report | 3b Time Covered 14 Date of Report (year, rnonth,day) 1 5 Page Count

Technical I Trom o 191, August1
16 Supplementary Notation Th- views expressed in this paper are those of the author and do not reflect the official
policy or position of the Deartnent of Defense or the U.S. Government.
17 Cosati Codes ',ubjzct Terms (continue on reverse if necessary a-d identify by block number)
Field Group Subgroup I Empirical; minimax; supermajority; voting theory; spatial model: yolk: Euclidean;

statistics, social choice; consistent estimators; spatial

19 Abstract (continue on re,'erse if aecessary and identify by block nwt er

Recent results are surveyed, and some new results are given, that contribute towards a theoretical and
computational basis for empirical study in the Euclidean spatial model. The results are of two types: asymptotic
statistical consistency of sample estimators, and algorithric methods for recovering spatial locations and
computing various solution concepts.

The new results are: the asymptotic consistency of the sample yolk center and epsilon-core; NP-completeness
of the 1-dimensional spatial location recovery system: a modification of the Poole-Rosenthal heuristic for
multidimensional recovery; and fast algorithms to compute Simpson-Cramer points and supermajority win sets in
fixed dimension.

20 DistributionAvalabitty of Abstract 21 Abstract Security ClassificaUion

EI] unclassified/unhmied same as report [- D11Cu~er Unclassified
22a Name of Responsible Individual 22b Telephone (Include Area Code) 22c Office Symbol
C. A. Tovey (408) 646-2140 OR/rv
DD FORM 1-473. 84 MAR 83 APR edLon may be used until exhausted security classification of this page

All other editions are obsolete Unclassified



Some Foundations for Empirical Study in
the E-iiide.n Spatial Model of Sociai

Choice*
A

Craig A. Tovey , T,
ISvE and College of Computing"
Georgia Institute of Technology ..

Atlanta Ga 30332 a? ..

July 29, 1991 ', .,*

Abstract
Recent results are surveyed, and some new results are given, that

contribute towards a theoretical and computational basis for empiri-
cal study in the Euclidean spatial model. The results are of two types:
asymptotic statistical consistency of sample estimators, and algorith-
mic methods for recovering spatial locations and computing various
solution concepts.

The new results are: the asymptotic consistency of the sample yolk
center and epsilon-core; NP-completeness of the 1-dimensional spa-
tiai location recovery problem: a modification of the Poole-Rosenthal
heuristic for multidimensional recovery; and fast algorithms to com-
pute Simpson-Cramer points and supermajority win sets in fixed di-
mension.

.presented at the 7th International Symposium in Economic Theory and Econometrics,
St. Louis, May 1991

tResearch supported by a Presidential Young Investigator Award from the National Sci-
,nce Foundation (ECS-8451032), and a Senior Research Associateship from the National
Research Council.

:at the Naval Postgraduate School, Operations Research Department,Monterev CA.
academic year 1990-1991



1 Introduction

Experiments and historical data analysis with the spatial model of voting
call for underpinning theoretical work. Two categories of results needed
to support empirical research, that have only recently begun to receive
attention, are computational methods and statistical convergence.

This paper surveys results of these types, contributes some new results,
and states open problems for further research. We can attempt to give
a fairly complete picture of the current status of this research area, on
account of its newness. We hope that the work surveyed here will aid in
the empirical study of the spatial model, and stimulate additional advances
and applications. In the remainder of the introduction we explain the
motivation for each of the two categories of results, and state the principal
new results given here.

Computational methods. A typical scenario that requires a computational
method arises as follows: a researcher has numerical data giving the loca-
tions of voter ideal points and of the resulting group choice. The researcher
wants to determine whether the outcome lies in a particular solution set,
to test the predictive power of the solution concept. This requires that the
solution set be computed, with respect to the numerical data.

If the number of voters is small this computation can ordinarily be
performed by hand. But as the kiumber of voters grows, the difficulty of
the computation may increase enormously.

We temporarily depart from our scenario to introduce informally some
notions of computational complexity. In the field of computer science, com-
putational requirements are generally measured as a function of the size of
the problem (in this case, the number of voters) (see '15!). Larger size

problems require more computer time: the key question is, at what rate
of increase? Roughly speaking, an algorithm, or computational procedure,
is considered "fast" if it requires computer time growing as a polynomial
function of the problem size. An algorithm is considered "slow" if it re-
quires time growing as an exponential function of the problem size. For
example, a procedure that examined all pairs of voters would require time
quadratic in problem size, and would be fast; a procedure that examined
all subsets of voters would require about 2" time, where n = the number of
voters, and would be slow. There is a corresponding taxonomy of problems:
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a problem is considered "easy" if there is a fast algorithm known to solve
it; a problem is considered "hard" if no fast algorithm is known that solves
it. The "NP-complete" problems are a prominent class of "hard" problems.

Returning to our scenario, we have the unfortunate situation that almost
any solution concept wurth its salt is "hard". This is a consequence of
an observation and a theorem. The observation is, most good solution
concepts coincide precisely with the Condorcet winner, when the latter
exists. The theorem is, it is hard to determine if there is a Condorcet
winner T. Therefore, most good solution concepts implicitly check if a
Condorcet winner exists, and so computing them must be hard as well.

This does not mean that the researcher in our scenario is doomed to
failure. But this does mean that our scenario demands genuine expertise
in computational methods. As researchers begin to work with data from
committees comprised of more than a handful of voters, (e.g. legislative
assemblies), we must pay some serious attention to computational meth-
ods to support this work. Good algorithmic tools are needed to compute
win sets and critical levels for various solution concepts, and to fit spatial
locations to voting data'.

The principal new results in the area of computational methods are:
NP-completeness of one-dimensional recovery of spatial locations from his-
torical voting data; improvements in heuristics for multidimensional spatial
location recovery; fast algorithms to compute Simpson-Kramer points and
supermajority win sets in fixed (low) dimension; fast algorithms to compute
membership and critical levels of epsilon-cores, in 2 dimensions.

Statistical consistency.
Empirical studies with the spatial model will almost inevitably involve

some degree of randomness, due to variations in individual behavior, im-
precision in measurements, use of sample data (e.g. survey or poll data),
and other uncertainties of information. As discussed in [29], we would like

'Fast algorithmic tools are a practical possibility, despite the theoretical "hardness"
just explained. The whole field of heuristics in operations research is devoted to practical
means of overcoming computational difficulty. One reason this is possible is that the
taxonomy given is "worst-case" - many or most numerical cases of a problem may be easy
to solve, even if the problem is hard. For spatial data in particular, the theorem cited
(I) is true only when the dimension is permitted to be large. If the dimension is fixed at
a small level (e.g. 2 in most current empirical studies) the problem, though not trivial, is
technicafly "easy".
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to extract data on the ideal points of committee members or a population,
and make a prediction regarding the outcome based on a solution concept.
Can we be confident that a prediction based on polls taken one day will be
close to the actual results the next day, given the random factors mentioned
(individual variability, incomplete survey information, etc.)?

One approach to this problem is to think of the population's views as
having a probability distribution. When a person responds to a survey or
votes, it is on the basis of a random sample from this distribution. The
problem is then to establish the stability of a solution concept under these
conditions.

In the language of probability and statistics, a finite sample of n points
from a probability distribution p corresponds to an empirical measure U,.
Ths measure puts mass 1In at each of the n sample points. A solution
concept is a function f operating on probability measures, mapping to sets
in 9?" . If we could establish that

lir f(pij) - f(A,) a.e.,

then the sample statistic f(A,) would be an asymptotically consistent esti-
mator for f(A), and we would be confident of the limiting behavior of the
sample solution concept.

Thus the second category of results consists of proofs of consistency of
sample estimators for various solution concepts. The new results include
the consistency of the sample win set under supermajority voting, the yolk
center, and the epsilon-core and critical level.

2 Recovery of spatial locations

In this section we address the problem of "recovering" spatial locations from
votirg data. From a different point of view, we can define the problem as
that of fitting the spatial model to data. The idea is, we have data such
as roll call votes on how each member of a population voted on a set of
issues. We want to determine locations for the voter ideal points, or issue
locations, or both, that best fit the data.

Let us be precise. In the recovery problem, we are given the follow-
ing data: a list of voters indexed 1,.. . , n; a list of proposals 1, ... ,m; a
dimension d; voting data in the form of an n by m matrix A, where
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* A, = 1 if voter i voted for proposalj

* Aij - 1 if voter i voted against proposal j

* Aii = 0 if voter i did not vote on J or the information is not available.

The recovery problem is to specify locations in Rd for the voter ideal
points and for the "yea" and "nay" of the proposals, that best fit the
data A,2 according to some criterion. The simplest criterion would be
to minimize the number of "errors," ie., conflicts between the data and
the model predictions. When this criterion is uscd the problem will be
referred to as the simple recovery problem. More sophisticated weighted
error measures are also possible. For example, one could base the measure
on a probabilistic model of individual choice as in r9,81, (see 22,211).

Some researchers locate ideal points by an analysis of the content of
the proposals 16, e.g. . This method has both potential advantages (use of
expert knowledge, predictive power) and drawbacks (judgement-based, not
easily replicable). The recovery problem defined here may not arise when
Lhis method is used. A constrained version of the recovery problem however
might arise, if proposal content were used to locate the proposals, and then
voting data were used to recover the voter ideal points. This constrained
version can be solved optimally by methods presented later in this section.
iThe content-based method also seems related to the recovery problem in
!'hat the study of good solutions to the recovery problem could help clarify
the understanding of content, see '23" for example.)

The principal results of this section are:

" It is NP-complete (i.e. computationally difficult in the worst case) to
solve the simple recovery problem, even in one dimension.

" In low dimension (e.g. 3 or less) there are computationally efficient
algorithms to optimally recover ideal points given fixed proposal lo-
cations, and vice-versa (recover proposal locations given fixed ideal
points), for the simple recovery problem. Improved heuristic algo-
rithms can then be developed for both simple and general recovery in
low dimension.

The complexity result provides theoretical justification for employing
heuristic methods to solve the recovery problem, such as the alternating



heuristic of Poole and Rosenthal [221. The algorithms here lead to some
refinements of this heuristic.

2.1 Complexity of the simple recovery problem

Surprisingly, the simple recovery problem is not simple, even in one dimen-
sion.
Theorem 1: The simple recovery problem is NP-complete in one dimen-
sion. If the orientation of each proposal is fixed, the problem remains NP-
complete.
Procf: The reduction is from feedback arc set. Given an arbitrary directed
graph G, insert a vertex into each arc. Each arc becomes a path of length
2 and the modified graph G is bipartite. Associate a voter with each node
in the firsL part of G and a proposal with each node in the second part. An
arc from a voter ito a proposal j will mean a yes vote, Aij = 1: an arc from
proposal Jto voter i will mean a no vote, Aj = -1; otherwise A,, = 0. Pad
the voter set with K "ye3" voters, who vote in favor of every proposal, and
an equal number of "no" voters, who vote against every proposal. For large
K these extra voters force the orientation of each proposal. In particular,
K is large enough if K = the number of arcs in C. Without loss suppose
tne yes voters wii be piaced at the bottom of the ordering and the no voters
will be at the top. (This padding ensures that the problem remains hard
even if the proposal orientations are fixed.) Then arranging the voter ideal
points and proposal centers to minimize the number of errors is equivalent
to arranging the vertices of C to minimize the number of downward pointing
arcs. This is the feedback arc set problem on G.

The last step of the proof is to show this is also the feedback arc set
problem on G. Now, minimizing the number of downward pointing arcs is
equivalent to determining a minimum cardinality subset S of arcs in G such
that every directed cycle in G contains at least one member of S. Similarly
let S denote the minimum feedback arc set of graph G. Suppose arc (u, v)
in G corresponds to arcs (u,j), (J, v) in G, i.e., j was the vertex inserted
into arc (u, v). The two arcs (u, j) and (j, v) intersect the same cycles in
C, thus the minimum cardinality S does not contain both. Hence there
exists a 1-1 correspondence between members of S and members of S, and
minimizing S minimize S! as well.

6



Finally we observe that the reduction is legitimate, because the matrix
.4 has size polynomial in G:.

The reduction shows that the recovery problem is similar to the prob-
1cm of determining the Kemeny consensus, and is hard for related reasons
2i. The key similarity is this: in both cases we are attempting to sum-
marize highly multidimensional information from many voters into a single
permutation, and we measure the quality of the summary by counting the
disagreements between it and the original multivoter data. Intuitivelv. this
is why both NP-completeness reductions are from the feedback arc set prob-
lern. where arcs pointing the wrong way are the disagreements. Of course
all NP-complete problems are equivalent in a formal sense; the similaritv
described here is meant to be illuminating, though informal.

2.2 Optimal recovery of ideal points with respect to
fixed proposals

s:ppose the proposal locations are fixed. This could arise if they are exoge-
riotislv determined, or during a step of a heuristic procedure for the recovery
problem as in 21' The recovery problem then reduces to n independent
voter location problems. Conversely, if ideal points are fixed, the proposal
location recovery problem reduces to rn independent location problems. We
note that proposal location in the dual or polar space is identical to voter
location in the usual space. Thus all results in this subsection apply to
b)oth problems.
Theorem 2: The simple recovery problem with fized proposals is NP-
rompiete in arbi:rary dsmension, and nolynornially soi',abie in ariy jired
dim ens ion. The corresponding proposal location recovery problem with fzed
ideal points has the same complexity.

Proof.: Each proposal location can be taken as a hyperpiane in . with
orientation (indicating the "yes" halfspace). If a voter is placed in the
"'wrong" halfspace, an "error" results. The recovery problem therefore is
equivalent to the following: given a collection of linear inequalities, find a
location in Vh that minimizes the number of violated inequalities. This is
NP-complete 11, page 267

In fixed dimension, a well known combinatorial fcratui, (see '3, e.g.')
states that m hyperplanes partition T" into I:'- 0 (7) distinct regions (or



fewer if they are not in general position). Thus the voter must be placed
in one of O(m') possible regions. Obviously the error count is the same
within any region. The region with the least error count is the optimal
solution, and can be found in polynomial time. Z

The Poole-Rosenthal recovery heuristic selects the coordinates of the
locations one dimension at a time. For each dimension, the heuristic al-
ternates between fixing the ideal points and fixing the proposal locations.,
until a locally optimal solution is reached (the method ceases to improve
the solution) '22'. When the coordinates for a dimension have been se-
lected in this way. the heuristic seeks a locally optimal solution for the next
dimension, and so on until all are selected '21,231. When the simple error
count is to be minimized, or the random factor is small,Theorem 2 suggests
an alternate version of this heuristic, in which all dimensions are consid-
ered simultaneously. The more powerful neighborhood structure provided
by Theorem 2 suggests that the alternate version would perform better.
Of course, given Theorem 1, it is unlikely that the alternate version All
:uawys dominate the other in numerical performance. To be sure of domi-

::ance. ~ne could apply the alternate version to the solution generated by
tne original heuristic: this hybrid heuristic would be guaranteed always to
;,erforn at least as well as the original heuristic.

Ti :eorem 2 hold promise for weighted recovery problems, as well. In the
Unweighted recovery problem, the penalty is constant within each polyhe-
,iral region, so one simp!y has to pick the best region. In the more general

wcighted recovery problem, the penalty will vary within each region. If the
p,.nalty function behaves tractably, on one side of the proposal hyperplane
e.g. it is convex), then one simply has to solve a convex minimization prob-

lmrn for each region (the sum of convex functions is convex). This would be
coM putationally feasible in two or three dimensions.

Unfortunately, the most widely used penalty functions are not convex.
Hather, they tend to flatten out far away from the proposal hyperplane.
That is, the penalty for being on the wrong side of the hyperplane is nearly
!he same at distance 100 or 101; simiiariy it isn't much better to be on the
right side at distance 101 than to be on the right side at distance 100. But
.Aere is a big difference between being distance 0 (i.e. on the hyperplane)
and distance I.

For these penalty functions we modify the construction of regions given
in th'e proof of Theorem 2. See Figure 2.2: the penalty function is convex on
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t1 gure 1: Piece-wise linear approximation of non-convex penalty Lnct on

c2e correct side of the hyperplane, but not on the wrong side. Approxjn',ate
'ie penalty on the wrong side by a piecewise linear function. (Note ,ha,
the piecewise function is concave.) For simplicity suppose there is only on
ureakpoint. Now place a hyperplane parallel to the proposal hyperplane. at
(istance corresponding to the breakpoint. If this is done for each proposal.
there will be 2rn hyperplanes in 9P and still only O(m') regions. (The
II-)Per bound will increase by roughly 2J , a modest amount for d = 2 or
2..\,*idllv for dI '2 the number of regions increases by -i little less tran
a iactor of I) WiThin each of these regions, the penalty function will he

It sum of 1'near and convex functions. Now one simply solves the convex
;rogram for each region. If linear programs are desired, approximate the
penalty function on the correct side by a piecewise linear function as well.
I, a hetter fit is desired, one can use piecewise convex instead of piecewise
:iifiar F.inctions. or one can increase the number of breakpoints.

3 Computational methods for Simpson-Kramer
win sets

In this and the next two sections, we consider algorithmic procedures for
computing solution concepts and associated values. The first solution con-
cept we address involves supermajority or a-majority voting.

Fix the voter ideal points V. For ary 1/2 < a < 1 let WV (a) denote
the win set with respect to supermajority rule at level a. Let &'(x) de-
note the smallest supermajority level at which z is undominated (in the
core), inf,{a .r (o)}. Let c'*(V) denote min, a'(x), the smallest level
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at which the core is nonempty. Thus W(a*(V)) is the Simpson-Kramer
minirnax point. These supermajority win sets have very interesting and
powerfui properties, see 117,32,5,4]. In this section we develop computa-
tional methods for these concepts.

There are several related algorithmic problems:

1. Membership: given V, x, and a, is x E W(a)? (Is x undominated
with respect to a-majority rule?)

2. Critical Level: given V, x, find a'(x). (What is the smallest super-
majority level a at which x is undominated?)

3. Win Set: given V, a, find the set W(a) or determine that it is empty.
That is, find some "good" representation of the core for the given
value of a.

4. Minimaz Level 8 Point: given V, find a*(V) and W(a'(V)). (Find
the Simpson-Kramer minimax point and its associated a level.)

As stated in the introduction, all these problems are NP-hard in arbi-
trary dimension (this follows from the co-NP-completeness of determining
if z E ti'(1/2) .1,141). Fortunately, all these problems may be solved fairly
easily in low dimension.

.4lgorithms for (1)-(4)

(1): Membership. The point x is undominated with respect to a-
majority rule iff no open halfspace defined by a hyperplane through x con-
tains more than a Vj ideal points. Therefore we can determine membership
by finding the "densest" open halfspace, the open halfspace containing the
most points of V, and counting the number of points it contains. John-
son and Preparata (14 provide polynomial algorithms to find the "densest"
closed and open halfspaces with respect to a set of points in fixed dimension.
This resolves membership in fixed dimension.

One drawback to the algorithm of [14] is that it is moderately compli-
cated to implement. Here we suggest an alternate algorithm that is con-
ceptually simple, and has the same order of speed on nondegenerate cases.
The algorithm should be easy to implement, particularly as it requires com-
putations similar to those for the yolk. The principal disadvantage to our
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algorithm is its relatively poor performance on degenerate configurations,
although it is still "fast" (polynomial time) for any fixed dimension. In four
or more dnensior:s, the algorithm of [14] would be much faster on highly
degenerate cases.

Construct all the "extremal" or "limiting" hyperplanes through x, and
count the number of ideal points in each halfspace. (A limiting hyperplane
passes through d affinedly independent ideal points in Rd. The point X is
counted as an ideal point, whether or not x E V.) This finds the densest
closed halfspace, with the same time complexity as 1141. The search for a
densest closed halfspace be restricted to just the "limiting" hyperplanes,
even for degenerate configurations, because any hyperplane through x can
be "tilted" so as to touch d ideal points, while keeping at least as many
ideal points in each closed halfspace defined by the hyperplane '25, Lemma
5. Let h denote the hyperplane defining this halfspace, and let Vh denote
the points of V on h, excluding x. If the configuration is nondegenerate, it
is possible to perturb h to a new hyperplane h, which passes through x, and
leaves all the points Vh on its "dense" side. This perturbation is possible
because Vh; = d - 1 when the configuration is nondegenerate.

Note that the fundamental operations involved are: (i) finding the lim-
iting hyperplanes, and (ii) counting the number of points in the halfspaces
so defined. These operations comprise part of the fundamental operations
in yolk computations, which should be an advantage to implementors. (In
addition, one must count the number of points on h to verify Vhj = d - 1,
but this is trivial given (ii). In two (or more) dimensions, the algorithm can
be sped up by a factor of n,/ log n by the preprocessing of V [7 , just as with

-olk computations '31. The algorithm requires time O(nd-1 log n) in the
nondegenerate case (or for the general case, if a densest closed halfspace is
desired), the same as the algorithm of ]14.

It remains to modify the algorithm in the case of degeneracy. If config-
urations are degenerate, it may not be possible to perturb h to get all the
points of Vh on the same side. (Indeed the densest open halfspace might
not be a perturbation of the densest closed halfspace. However, the densest
open halfspace is defined by a perturbation of some limiting hyperplane.)
Fortunately, the problem of finding the best perturbation of h, that which
gets as many points as possible on the dense side, is precisely the densest
hemisphere problem in a lower dimensional space. This simplifies imple-
mentation considerably.

11
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Figure 2: Finding h in 2 dimensions

To be precise, we must find all limiting hyperplanes h, and for each
h find its best perturbation Lt If jVhj = d - 1 this requires no additional
computation. If there are more points on h, we recursively solve the densest
open hemisphere problem at x for the point set Vh, in the d- dimensional

subspace h. The base case of the recursion is two dimensions: when d = 2,
(see Figure 3) h is a line through x passing through 2 or more (other) points
of V. This line is divided into two half lines emanating from x. Select the
half line with the greater number of points. E

Both algorithms extend immediately to the case of weighted voters.

(2): Critical Level. This could be accomplished with binary search on a
us.ng (1). However, examination of either algorithm for (1) shows that they
actually compute a* (x) directly, since they find the densest open halfspace.

(3): Win Set. Find all the "limiting" hyperplanes h (those passing
through d ideal points). Form a list E of all closed halfspaces defined by
these h. Extract a list L of closed halfspaces h' containing an - 1 or
more ideal points. If a point is to be in W(a) it must be in each of these
closed halfspaces, for otherwise some other point could get an + 1 or more
supporters to defeat it. Therefore the win set is the set of feasible solutions
to the linear program that constrains points to be in each closed halfspace
on the list L. E

As a corollary, we find that the win set is a polyhedral set. (This was
established for the special case a = a* by Kramer [171).

(4): Minimax Level. This can be found, in principle, by binary search
with (3). A direct implementation would proceed as follows: sort the list

12



E from (3) (there are O(nd) in this list) in order from largest to smallest
number of ideal points contained (descending order of IV n htj). Perform
binary search on the cutoff point of E. Each "query" for the binary search
solves a feasibility linear program with O(nd) constraints in d dimensions.
(For computational purposes, the dual would probably be faster to solve,
since there are far more constraints than variables in the primal.) El

If preferences are linear rather than Euclidean (see [4]) all these prob-
lems reduce to (2), Critical level. This is because we need to know the
densest halfspace, the open halfspace containing as many preference gra-
dients as possible. As already observed, the densest halfspace problem is
solved in [14' or may be solved with the alternative algorithm described
above for (1).

4 Computational methods for the yolk

The yolk is another important solution concept, motivated by experimental
data and possessed of beautiful theoretical properties [10,18. As with the
Simpson-Kramer minimax point, it is NP-hard to determine the yolk in
arbitrary dimension (any solution concept which coincides with the classical
core, when the core is nonempty, will suffer from this complexity because
it is co-NP-complete to determine if the classical core is nonempty Tl).

For two dimensions, the computational situation is much rosier. Al-
though the extremal median hyperplanes employed in Section 3 are not
enough to determine the yolk [271, there is a polynomial algorithm to com-
pute the yolk radius and center, in fixed dimension [311. In two dimen-
sions, this algorithm requires provably O(n4 -) time, and has even better
time complexity o(n3 + f) VE > 0 (i.e. nearly cubic) if a conjecture of Erd6s,
Lovasz, et al. is true.

We should also remark that the linear program given in [18] is easily
computed and should make an excellent heuristic. It provides a rigorous
lower bound on the yolk radius, and when its solution is exact this event
can be determined in time 0(n 2 ) [31).

Koehler has proposed extending the yolk to n even. The algorithm
cited above also works in this case, with the same time complexity. The
algorithm also works for "supermajority rule" yolks (see [16,281).
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For the 3-dimensional case, the algorithm of [31] has time complexity

0(n'° ) and would not be practical for more than a handful of points. This

case needs more develo" ent but appears to be within reach through either

effective heuristics or an improved optimizing procedure, perhaps making

strong use of the convexity of the yolk radius function.

5 Computational methods for other solution

concepts

The uncovered set
The uncovered set is another solution concept with powerful theoretical

properties. It is defined as follows: alternative x covers alternative y iff x
defeats (is majority preferred to) y, and for all z which y defeats, x defeats

z. An alternative x is uncovered iff there is no other alternative that covers
x '20,191.

The computational picture with respect to the uncovered set is bleak at
present. Hartley and Kilgour [13] show how to find the uncovered set in two

dimensions when n = 3, and their method is not simple. To the author's
knowledge, no efficient general procedure is available even for two dimen-
sions, although no forbidding complexity levels (e.g. NP-completeness)
have been established for the fixed dimensional case, either. This remains
a challenging open problem.

To get an idea of why the problem is not simple, consider the presumably
easier question of determining whether a given alternative x covers another
given alternative y, in two dimensions. For any point z E T' and any
0 < 0 < 27r, let f(z,O) >_ 0 denote the distance from z along the ray at
angle 0 to the first point that z defeats. (Technically f is defined as an

infimum to allow f = 0). It is obvious that z will defeat all points on
the ray past this first point. It is fairly straightforward to see that for
any z, f(z,0) takes the form of a piecewise trigonometric function with
polynomially many breakpoints. Then the question of whether x covers y
is essentially the question of whether the exterior region in the plane of one
such function about x contains the exterior region of another such function
about y. This could be checked in polynomial time, because each pair of
the trigonometric functions will intersect a small number of times, but the
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procedure would be tedious to say the least.
Therefore, to determine whether x covers y is polynomially solvable,

but seems near the limit of computational practicality. Fast methods for
determining the uncovered set in 2-D may be difficult to attain. On the
brighter side, McKelvey [18] provides bour.ds on the uncovered set in terms
of the yolk, which can be computed by the algorithm cited in Section 4.

The epsilon-core
Another solution concept of interest is the epsilon-core: a point x is

considered undominated if there is no point y which is more than E closer
to a majority of the voters. This concept was introduced by Shapley and
Shubick 1261; promising empirical results are given in [241; some motivations
and properties of the epsilon core for the spatial model are given in r301.

The epsilon-core presents the same four algorithmic problems as super-
majority voting. These are,

1. membership: given E,x is x in the E-core?

2. critical level: for given x, find the least value of E for which x is
undominated.

3. win set: for given E, find the epsilon-core.

4. minimum level: find the least value of c for which the epsilon-core is
nonempty.

Here we give here fast computational methods to solve the first two
problems, membership and critical level, in 2-D. At present I do not know
computationally efficient methods to solve the other problems, win set and_
minimum level.
Algorithms for epsilon-core membership and critical level

Membership: For given c, the point x is in the E-core if none of the hyperbolic
regions, with one focus at x and parameter c, contain more than half the
voter ideal points. These regions are all congruent and are found by rotating
a hyperbolic curve around x. The number of points in the region inside the
curve only changes when the curve passes over an ideal point. Therefore we
can restrict our attention to the 2(n - 1) = 0(n) curves that intersect an
ideal point. If none of these contain more than half the voter ideal points,
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then x is undominated. The membership algorithm is therefore O(n 2). (The

same idea works in higher (fixed) dimensions, except one must be careful

if the ideal points are sparse: when n is much larger than d the method

extends easily.) M

Critical level: This is solved by binary search on E, using the membership

algorithm as the query subprocedure. L
As an approximate method for win set and minimum level, the critical

level algorithm could be invoked for each point of a grid. Decreasing the

spacing of the grid would give as fine an approximation as desired.

6 Convergence and asymptotic consistency
of sample estimators

In this section we survey convergence results for several solution concepts,
as motivated in the introduction.

6.1 Simpson-Kramer win sets

There are several related convergence questions here, just as there are sev-
eral related algorithmic questions in Section 3. Corresponding to "Member-
ship" we could define a 0-1 valued random variable which indicates whether
x is an a-majority winner or not. Unfortunately it is not the case that the
sample statistic would be consistent. In fact we could have the sample
statistic converge to 0 a.s., while the distribution value equals 1 (see '29).
The other convergence questions have nicer answers.

" Minimax value: Does a*(p,) --* ()?

" .\[inimax set: Does S,.(u)(#,,) -*

" Critical level: Does a(x,A,) -a(x,)?

" Win set: Does S(a,p,) -* S(a,pi) in some suitable topology?

Demange V- considers a sequence of probability measures un converging to
and shows convergence of Minimax value and Minimax set. The proof ap-

pears to assume continuity of A, and may not apply to the case considered
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here, where A,, is a discrete (empirical) mcasure. Caplin and Nalebuf [5]
establish a.s. convergence of Minimax value under stated assumptions that
g is concave and has compact support. As they comment, however, their
proof applies equally well to the more general case of continuous densities
A with compact support. Moreover, their proof also shows convergence of
Critical level. Convergence of Minimax value for arbitrary A. is proved in
:29 .

Minimax set and Win set are a little different and appear to require
stronger assumptions on As. These questions ask if the location of the so-
lution set converges, rather than if the necessary parameter level for the
nonemptiness of the solution set converges. In !29], convergence of Minimax
set is proved, under the assumption that p is continuous an, has unique
minimax point. Convergence of the Win set will follow from arguments
given here, under the assumption that Az is continuous and has compact
support (see Section 6.3).

6.2 The yolk

There are two related convergence questions for the yolk, pertaining to
its size and location. Let r(,u) and c(m) denote the radius and center,
respectively, of the yolk with respect to a distribution A. Convergence
of r(,,,) to r(gt) (w.p.1) is proved in L30[, assuming js is continuous and
strictly positive in its region of support. If no restrictions are placed on A,
the sample radius r(&,n) may not have a limit. I conjecture, moreover, that
in sufficiently high dimension, it can occur that limsup, r(/,,) < r(A).

Here we prove the convergence of the yolk center.
Theorem 4: If is is positive continuous on R' and has compact support
then limn-., c(p,) -- c(g) a.s.
Proof: We will need two lemmata.
Lemma 1: Let r(z, A) denote the radius of the z-centered yolk. Then
lirnoor(z,A,,) - r(z,p) a.s. uniformly over all z.

(This is proved in 30.)
Lemma 2: The function r(z,p) is continuous and convex in z.

(The proof is easy and found in [31]).
Let c denote c(gs), the center of the distributional yolk. Then r(c, An)

r(u) a.s. by Lemma 1. Now let E > 0 be arbitrary. We will slF-;,.- that for
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all z E d more than distance E from c, eventually z Z c(pn) w.p. 1. This

will imply that c(jp) must almost surely converge to points within c.
Let D denote the set of points in the support of Az, at distance e or more

from c. D is compact so by Lemma 2, r(z,A) attains a minimum value
rD when z ranges over D. By assumption D does not intersect c. Hence
rD > r(ji).

Let 6 = rD - r(b) > 0. By Lemma 1, eventually as n - ox
sup r(z, p.)- r(z, ) <6/3 a.s.

z

So eventually for all z E D and all points p in c we have, a.s., r(z,4,t) >
rD - 61/3 > ro - 2b'3 > r(p,.,). Hence eventually z ( c(A) a.s. since
"c:- is another point p with smaller p-centered radius.

Lemma 3 in 1311 gives a related result: if V is any finite configuration
of ideal points, and V is an arbitrarily slight nondegenerate perturbation
of V, then the yolk radius and center of V can be made arbitrarily close to
the yolk radius and center of V. In the case 1V1 even, the center of V may
not be unique. In this case, the yolk center of iV can be made arbitrarily
close to some (but not any) yolk center of V. This result, too, guarantees
a certain robustness of the yolk solution concept.

6.3 The epsilon-core

In this subsection we show convergence properties related to the epsilon-
core. This solution concept and the a-majority concept have similar prop-
erties.

Let c(x,p) denote the smallest value of e that makes x undominated, let
C (g) denote the smallest value of E for which the epsilon-core is nonempty;
let EC(E,gt) denote the epsilon-core at value E; let EC*(j) denote the
epsilon-core at value C(At).
Theorem 5: If p is continuous on VR and has compact support then with
probability 1,

2. ('U"') - ' ().

3. V.E > 0, EC(e,,) - EC(E,II). In particular, if C(ji) > 0, then

EC'(p,)--, E'C'(,).



4. Va, S(a,gn) Sa

Proof: The key property we rely on is that the probability measure
of the region defined by a hyperbolic hypersurface changes continuously as
the surface is translated continuously through Wa. This follows immediately
from the assumptions. Now apply the uniform convergence of the empirical
measure pn to 1L over all these hyperboloid regions ([30, Lemma 2[) to get
convergence of the critical level E(x,,4) and the minimum level f*.

To prove convergence of the win sets EC(c), we use the same argument
as for the colvergence of the yolk center in the previous subsection. That
is, once we know critical level and minimum level converge, the continuity
of the probability measure, and the compactness of its support, imply that
for all ?7 > 0 eventually all points more than 77 from the win set EC(c, p)
will have critical level greater than e. The same proof works for convergence
of S(a, jz,), the minimax win set, as well. E

7 Computations for large data sets and di-
rections for further research

7.1 Computing solution sets for very large popula-

tions

If a population is very large, even the relatively fast algorithms of section
2 may be too slow for practical purposes. For these situations2 we may
combine the two categories of results in this article, to get fast, accurate
computations. Suppose two random samples of n points are drawn from a
distribution p, leading to empirical measures An and j'4. Suppose further
we are interested in f(g), where the a.s. asymptotic consistency of the
sample estimates f(An) is established. Then since both f(I/n) and f (y'
converge to f(A) a.s., it must be that Jin,-.of(,) = liMn.f(p,) a.s.

Now suppose we have a data for a large population P. The data may
be thought of as a very large sample from some continuous distribution p.
By the asymptotic equivalence between sampling with and without replace-
iicat, we can approximate a sample from A by a sample from P. Think of

2 this idea is due to Richard McKelvey
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P as nu,. To estimate f(P), we draw samples p, from P, and compute
f(p,,). The equality of limits in the preceding paragraph assures us that
(for large enough rn) the sample value f(ju,) is a good estimate of the
value of f(ji,,) f(P). If n is very large, the required sample size rn would
be much smaller than n, rendering the problem computationally tractable.
(Note, if P has multiplicities, this reasoning fails. I think the method would
still work well, but have no mathematical justification, except in the case
of the yolk, where Lemma 3 in [31! would fill in the gap.)

7.2 Directions

This paper has assembled a number of computational and convergence re-
sults in support of empirical research with the spatial model. As indicated
in the text, several computational problems remain open. These include
finding good methods for the uncovered set and epsilon-core win sets, and
aiso for the yolk in 3 or more dimensions.

Regarding convergence results, finding rates of convergence appears to
be an important open research area. If these could be estimated, and the
role of the variance of ji clarified, it should then be possible to construct
statistical tests (e.g. confidence intervals) for empirically computed values
such as the yolk radius and location, or the minimax level.
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