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PREFACE

Bounded nominal paths can be constructed in the vicinity of the
interior equilibrium point (sometimes called a libration or Lagrange
point) for the Sun-Earth+Moon Elliptic Restricted Three-Body Problem.
Numerical integration 1is used to generate the periodic or quasi-
periodic reference trajectories in this effort, and the numerical data
is then curve fit using a cubic spline routine. The force model used
in this effort includes solar radiation pressure, the gravitational
attractions of the Sun and the Earth+Moon barycenter, and the
centrifugal force associated with rotation of the system. A spacecraft
near a libration point orbit between the Earth and the Sun can study
the interaction of the Sun’s corona with the terrestrial environment
and will thus be of great scientific value.

The spacecraft will, however, drift from the nominal path, and the
forces affecting the spacecraft orbit have differing levels of
uncertainty. Both range and range-rate tracking also include
inaccuracy in the measurement. The accumulated error in the
spacecraft’s position and velocity relative to the nominal path after a
predetermined period of tracking can be computed. This error, or
uncertainty, in the spacecraft state is measured through simulations,
commonly referred to as orbit determination error analysis, and is
presented as either variances or standard deviations of the state
vector elements.

The state uncertainty computed in the error analysis can then be
input to a station-keeping algorithm. The algorithm computes control
manuevers that return the spacecraft to the vicinity of the nominal
(unstable) path. A control algorithm is required for an interior
libration point orbit, and variations in orbital shapes and sizes may
have some effect on the station-keeping costs. Several algorithms are
derived and are used to test differences in station-keeping costs.

This effort 1is supported by the Frank J. Seiler Research
Laboratory and has been conducted as doctoral research under the
direction of Professor K.C. Howell, School of Aeronautics and

Astronautics, Purdue University, West Lafayette, Indiana.
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INTRODUCTION

With the expansion of space exploration programs worldwide,
interest has increased in the design of lnnovative, complex, and yet
low-cost spacecraft trajectories that meet demanding mission
requirements. In most of the missions flown in the last few decades,
the spacecraft spent the majority of the flight time in a force
environment dominated by a single gravitational field. For the
preliminary mission analysis in these cases, additional attracting
bodies and other forces could be modeled, when required, as perturbing
influences. Analysis of some recently proposed and more adventurous
missions, such as those involving libration point orbits. will require
dynamic models of higher complexity, since at least two gravitational
fields are of nearly equal influence cn the spacecraft throughout the
majority of the mission. Thus, trajectories determined for a systenm
consisting of numerous gravitational forces have been of particular
theoretical and practical interest in recent years.

One type of many-body problem, motion within a three-body system
of forces, has a wide range of applications. The general problem of
three bodies assumes that each body has finite mass and that the motion
is a result of mutual gravitatlional attraction. When the mass ouif cne
of the three bodies ls assumed to be sufficiently small (infinitesimal)
so that it does not affect the motion of the other two bodies
(primaries) in the system, the "restricted three-body problem" results.
The primaries can be further assumed to be moving in known elliptic or
circular orbits about their common center of mass. Therefore, the
elliptic restricted three-body problem, where the primaries are assumed
to be in known elliptic orbits, may be considered a reasonably
approximate model for a spacecraft moving within the gravitational

fields of the Sun and the Earth, for instance.




In the _ormulation of the restricted three-body problem, one mass
is def* od as infinitesimal relative to the remaining two masses
(primaries). The primaries, unaffected by the infinitesimal mass, move
under their mutual gravitational attractions. In the elliptic
restricted three-body problem (ER3BP), the primarizs are assum 7’ to
move on elliptic paths. If the eccentricity of the primaries’ orbit is
assumed to be zero, the circular restricted three-body problem (CR3BP)
results. Even for known primary motion, however, a general,
closed-form solution for motion of the third body of infinitesimal nass
does not exist. In the restricted three-body problem (ER3BP or CR3EP],
five equilibrium (libration) solutions can be found. These equilibrium
points, sometimes called Lagrange points, are particular solutions of
the equations of motion governing the path of the infinitesimal mass
moving within the gravitational fields of the primaries.

The equilibrium points are defined relative to a coordinate system
rotating with the primaries. At these locatlions, the forces on the
spacecraft are in equilibkrium. These forces include the gravitational
forces from the massive bodies and the centrifugal force associated
with the rotation of the system. (The addition of solar radiation
pressure to the force model changes the locations of the five lLagrange
points, although they can still be defined, and these solar radiation
effects are discussed in Gordonlx].) The libration points are located
in the plane of primary rotation. Three of the libration points are on
the line between the two massive bodies, and one of these collinear
points is interior to the primaries. The last two points are at the
vertices of two equilateral triangles in the plane of primary rotation.
The triangles have a common base that is the line between the primary
masses.

For the CR3BP, the five libration points are stationary relative
to the rotating reference frame. If the problem is generallzed to the
ER3BP, the 1libration points pulsate as the distance between the
primaries varies with time. In both the circular and elliptic
restricted problems, two-dimensional and three-dimensional
trajectories, both periodic and quasi-periodic paths, can be computed

in the vicinity of these libration points.




Three-dimensional, periodic "halo" orbits in the vicinity of the
collinear libration points have been studied since the late 1960s.
Early work concerning these orbits was motivated by studies related to
exploring the far side of the Moon. These studies were completed in
support of the planned Apollo 18 lunar exploration mission that was
later canceled. Robert Farquhar coined the term "halo” to describe a
three-dimensional, periodic orbit near a libration point on the far
side of the Moon in the Earth-Moon system.[2] These orbits were
designed to be large enough so that the spacecraft would be constantly
in view of the Earth and would thus appear as a halo around the Moon.
A communications station in thls type of orbit could maintain constant
contact between the Earth and a lunar experimentation station on the
far side of the Moon.ta]

Quasi-periodic orbits near libration points are also currently of
great research interest. The variations in size and shape that a
quasi-periodic orbit can exhibit may add valuable flexibility for
mission planning. This type of bounded, three-dimensional libration
point trajectory is called a Lissajous orbit since specific planar
projections of these quasi-periodic trajectories may lock 1like a
special type of "Lissajous" curve. Physicist Jules Antoine Lissajous
(1822-1880) investigated curves that were generated by compounding
simple harmonic motions at right angles, and he delivered a paper on
this subject to the Parls Academy of Sciences in 1857. Nathaniel
Bowditch of Salem, Massachusetts, had conducted some similar work in
1815. Lissajous curves have a wide variety of shapes that depend on
the frequency, phase, and amplitude of the orthogonal components of the

. [4,5])
motion.

When the in-plane and the (orthogonal) out-of-plane
frequencies of the linearlized motion are nearly {(but not) equal, the
resulting path is typically called a Lissajous trajectory.

A method to generate approximations for this type of
quasli-periodic orbital path was developed analytically by Farquhar and
Kamel 1in 1973.[6] They derived a third-order approximate analytic
solution for a transiunar libration point orbit in the Earth-Moon ER3BP
that also included solar gravity perturbations. In 1975, Richardson
and Cary then developed a fourth-order analytic Lissajous approximation

in the Sun-Earth+Moon barycenter system.(7] The notation "Earth+Moon"




indicates that the Earth and the Moon are treated as one body with mass
center at the Earth-Moon barycenter. In consideration of the lunar
perturbation, Farquhar has shown that the accuracy of solutions in the
Sun-Earth CR3BP can be enhanced if the collinear libration points are
defined along the line between the Sun and the center of mass o! ‘he
Earth and the Moon.(m

methods to numerically generate Lissajous trajectories, but the lack of

Since 1975, a few researchers have considered

periodicity of a Lissajous path complicates numerical construction of
bounded trajectories. Howell and Pernicka have developed a numerical
technique for determination of thre:-dimensional, bounded Lissajous

[9-14] Orbits computed

trajectories of arbitrary size and duration.
with their method are used in this effort to define the nominal path
near which the spacecraft will be maintained.

Trajectory determination for a spacecraft that moves under the
influence of a two-body system of forces will, however, be affected by
many sources of error, including tracking errors, modeling uncertainty,
and, possibly, control input errors. Orbit determination error
analysis seeks to quantify the impact of the numerous errors that
affect the motion of the spacecraft. The result of the error analysis
is a determination of the spacecraft position and velocity uncertainty
after some predetermined period of flight during which the spacecraft
is affected by both the uncertainties in the forces and the errors in
tracking data. The combined magnitude of the errors may be found to
vary depending on the size and shape of the spacecraft orbit. A
reduction in, or a more accurate estimation of, the magnitudes of the
individual errors may be possible and could then lead to a significant
reduction in overall vehicle position and velocity uncertainty.

This reduced level of position and velocity uncertainty may, 1in
turn, reduce orbital "maintenance" costs, such as the propellant
required to keep the spacecraft near the nominal orbit. The orbital
maintenance routine is referred to here as "“station-keeping." This
cost is, in part, dependent on the accuracy of the tracking information
because position updates using inaccurate tracking data may result in
inefficient use of control energy and may also lead to unacceptable

spacecraft drift from the nominal path. Other error sources may also




affect spacecraft drift from the (unstable) reference trajectory and,
therefore, may increase station-keeping costs.

This research 1is concerned with developing and evaluating
station-keeping algorithms for libration point orbits. The errors
derived in orbit determination error analysis studies are used as
random inputs in Monte Carlo simulations of the competing
station-keeping algorithms. Other random inputs include solar
radiation pressure uncertainty and control input errors. The output of
the station-keeping trials is a function of the several random inputs
and is consequently treated as a random variable. Statistical goodness
of fit tests and equivalence of means and variances tests can then be
appropriately conducted. The results associated with orbits designed
to be periodic and quasi-periodic orbits are also compared. Chapter 1
briefly summarizes the background of the elliptic restricted three-body
problem. Chapter 2 then derives several station-keeping methods, and,

finally, Chapter 3 covers the results obtained.




CHAPTER 1: BACKGROUND

In this chapter, the elliptic restricted three-body problem and
the associated coordinate systems are reviewed; the equations of motion
for an infinitesimal mass moving in the gravity flields of two massive
bodies are then presented. Next, locations of the libration points are
discussed. The state transition matrix and the construction of bounded
nominal orbits near the collinear Lagrange points are then summarized.
Finally, curve fitting the nominal trajectory 1is covered. A more

thorough discussion of these toplics 1is presented in Gordon.lhls]

A. Elliptic Restricted Three-Body Problem

The elliptic restricted three-body problem is a simplification of
the general problem of three bodles. In the general three-body
problem, each of the three bodies is assumed to be a particle of finite
mass and, thus, exerts an influence on the motion of each of the other
bodies. Neither the general nor the restricted problem of three bodies
has a general closed-form solutlon. However, when problem
simplifications are made, particular solutions can be determined. If
the mass of one of the bodies is restricted to be infinitesimal, such
that it does not affect the motion of the other two massive bodies
(primaries), the restricted three-body model results. The primaries
are assumed to be in known elliptic (ER3BP) or circular (CR3BP) orbits
about their common mass center (barycenter). The problem can then be
completely described by a single second-order vector differential

equation with wvariables appropriately defined for a specitied

coordinate frame.




B. Covurdinate Systems

The two standard coordinate systems used in the analysis of this

problem have a common origin at the center of mass (barycenter) of the

primaries. Primaries with masses m and m, such that mlz m, are
assumed here, although this distinction 1is arbitrary. The
infinitesimal mass 1is denoted as m3. These masses (ml,mz,m3)

correspond to particles situated at points Px’ Pz’ and P3,
respectively. The barycenter 1s denoted as "B," and the resulting
arrangement is shown In Figure 1-1. The rotating coordinate system is
defined as XYeZn and the inertial system is identified as X Y¥.Z.-
Note that both coordinate systems are right-handed, and the x and vy
axes for both systems are in the plane of motion of the primaries. The
X, axls is, of course, assumed to be oriented in some fixed direction;
in this specific formulation of the problem, it is assumed to be
parallel to a vector defined with a base point at the Sun and directed
toward periapsis of the Earth’s orbit. The rotating X axis is defined
along the line that joins the primaries and is directed from the larger
toward the smaller primary. The z axes are coincident and are directed
parallel to the primary system angular momentum vector. The Y, and Yu

axes complete the right-handed xlylzI and nyRzR systems, respectively.




Figure 1-1. Coordinate Systems With Barycenter Origin.




C. Equations of Motion

Newtonian mechanics are used to formulate the equations of motion
for m, (the spacecraft) relative to B as observed in the inertial
reference frame. The sum of the forces on m3 resulting from both the
gravity fields of masses m (the Sun) and m (the Earth-Moon
barycenter) and from the solar radiation pressure can be wused to

produce the following second-order vector differential equation:

1 - 2 - kS
p=—G(—3)d"G( 3)r+(—3)

)

(1-1)

The overbar denotes a vector, and primes indicate differentiation
with respect to dimensional time. All quantities are dimensional, as
appropriate, and the quantity "G" 1is the universal gravitiational

constant. The scalars "d" and "r" in equation (1-1) denote the

magnitudes of the vectors d and T, respectively, as depicted in

Figure 1-1. The dimensionless scalar "k" 1is the solar reflectivity
constant, and "S" 1is the solar radiatlion pressure constant. The
formulation of the solar radiation force model and the values for the
solar radiation constants are derived from previous work by Bell.llé]
The values of the constants are described in Gordon.[“
The position vector p is written in rotating components as
P=XX +yy +z2 (1-2)

where ﬁR,QR,iR are unit vectors. The veloclity and the acceleration of
the spacecraft (particle P3 with mass ma) relative to the barycenter B
as observed in the inertial reference frame can then be described. The

following kinematic expression for p” can be derived:




p” = (x"-0"y-20'y’ -e'zx)QR+(y”+9"x+ze'x'—e'zy)9R+z”’z‘R. (1-3)

Three scaled equations of motion for P3 can be derived using the

the following scaling factors:

(1) The sum of the masses of the primaries equals one
mass unit.

(2) The mean distance between the primaries equals one
unit of distance.

(3) The universal gravitational constant is equal to one
unit by proper choice of characteristic time.

The dimensional equations of motion can be simplified and scaled
by introducing the characteristic quantities defined above and by
introducing the nondimensional mass ratlio u, "psuedo-potential® U, and

the scaled solar radiation constant s:

m2
H = — {1-4)
1 2
and
U = (1-p) PO S 6% (<% + yz y - ks (1-5)

where the dot denotes the derivative with respect to characteristic
time. The scaled solar radiation constant, s, is derived by using the
characteristic quantities described above. Then, the vector magnitudes,

"d" and "r," are written in terms of scaled quantities as:
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[}
"

211/2' (1-6)

[(x + pR)Z + y2 + 2z

[(x ~R +p R)? + y2 + 2212 (1-7)

-
]

The three scalar second-order differential equations that result

can be written in terms of characteristic quantities as

X-20y= i 0y = Ux + 0y, (1-8)
. . . au "

+ 20 X = o -0 =U -6 x, 1-9)
y 3y y (
. _au _ _
4 = =32 = Uz. (1-10)

If the primaries are assumed to be moving in a circular orbit,
equations (1-8), (1-9), and (1-10) reduce to three scalar equations in
the simplified form:

11




x=2y == =Y, (1-11)
- . 8u
+ 2 x = =U, (1-12)
y 5Y y
3 =90y, (1-13)
0z z

The scalar equations can be used to locate the five libration

points in the rotating reference frame.

D. Locations of the Lagrangian Points

By using scalar equations (1-11), (1-12), and (1-13) for motion in
the CR3BP, the locatlions of the stationary equilibrium points can be
determined. Equations (1-8), (1~9), and (1-10) can be used to
determine ratios of distances that are constant in the ER3BP; these
ratios are related to the locations of libration points that have been
defined in the ER3BP and that "pulsate" with respect to the rotating

reference frame as the distance between the primaries varies with time.

1. The CR3BP

In the CR3BP, the five libration points are equilibrium points and
are stationary with respect to the rotating coordinate frame, that is,
they are locations at which the forces on the third body sum to zero.
The arrangement of points and the corresponding nondimensional

distances are depicted in Figure 1-2. Note that three of the libration

points (L1’ Lz’ L3) are collinear with the primaries; one collinear




L5 Y1 Yz
<+—| >
x=L1
Ls I—u —»
X=L2
—>

Figure 1-2. Lagrange Point Locations in the Scaled CR3BP.
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point (L1) is interlior to the primaries. The remaining two points (L4
and Ls) are located at the vertices of two equilateral triangles that
are in the plane of primary rotation and that have a common base
between the primaries.

In the CR3BP, the libration points are stationary in the rotating
coordinate frame. Stationary points are defined as points at which the

relative velocity and acceleration are zero, such that
X=y=z=x=y=2z=0. (1-14)

By using equations (1-14) in equations (1-11) through (1-13), the
useful conditions Ux= Uy= Uz= O are found. The three collinear
libration points can be readily 1located by further noting that

y =z =0 for the points located on the rotating X axis.

2. The ER3BP

Five libration points also exist in the ER3BP, but they are not
stationary relative to the rotating frame; rather, the collinear points
pulsate along the Xo axis, and the trlangular points pulsate relative
to both the xn and the yR axes as the distance between the primaries
varies with time. The equilibrium solutions can be located by using
equations (1-8) through (1-10) to find ratios of certain distances
that are, in fact, constant in the problem. The collinear libration

points in the ER3BP can be found by assuming X # 0, x # 0, and 9 =y =

z=2z=y =12 = 0. The relative locations of the libration points in
the ER3BP are depicted in Figure 1-3.




<4—
Ls RY! RYZ
<+—| >
x=L,=R(I-p-7)
X=L3 R(l—u) >
<
= R(-u-73) X=Lp=R(1-p+7,)

’

Figure 1-3. Lagrange Point Locations in the Scaled ER3BP.
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E. State Transition Matrix

The state transition matrix is used in the calculation of the
acceptable nominal trajectory, and it must also be avalilable at varying
time intervals along the nominal path for orbit determination error
analysis investigations and station-keeping studies. The transition
matrix is derived in connection with a linearizing analysis.

The equations of motion for the infinitesimal mass in the ER3BP
can be linearized about a reference trajectory (nominal path) that is a
solution of the differential equations. The states, three position and

three velocity, and the state vector X are defined as

=y, Xx. =2z, X = i, X = &, x =z, (1-15)

X
fi
x
X
\

and

(1-16)

X1
i
X
x
X
x
x
x

The reference trajectory is defined as ;Rﬂf Therefore, using a
Taylor’s series approach, the expansion about the reference path is

written in the form of the first-order variational equation

LX) =x=A(t) X (1-17)
dt
where x = x - x is understood to be the vector of residuals relative

REF
to the nominal solution, and the matrix A(t) contains the first-order

terms in the Taylor’s series expansion of the equations of motion about

the nominal or reference solution of interest.
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Using equations (1-8) through (1-10), A(t) can be expressed as

Urr+8Q 260

where all four submatrices are dimension 3x3 and

Uxx Uxy Uxz
Urr =|Uyx Uyy Uyz (1-19)
Uzx Uzy Uzz

with

He)

(]

!
O =0
O O
[eNoNe]

In equation (1-19), the notation 1is simplified for the partial

derivatives; for instance

= Uxx.

ax

The matrix A(t) can then be evaluated along the reference trajectory.
The vector differential equation (1-17) governing the state

variations from the nominal path has a solution of the form

17




x(t) = ¢(t.to) X(to) (1-20)

where 0(t,to) is the state transition matrix at time "t" relative to
time "tof' The matrix ¢, then, represents the sensitivities of the
states at time "t" to small changes in the initial conditions. It is

determined by numerically integrating the matrix differential equation

d - _ _
e b(t.to) = ¢(t,to) = A(t) Q(t,to), (1-21)

with initial conditions @(to,to) = I, the 6x6 identity matrix. Thus,
the nonlinear equations of motion in ({(1-8) through (1-10) and the
matrix equation (1-21) combine to result in 42 first-order differential
equations that can be simultaneously integrated numerically to
determine the state vector and its assoclated transition matrix at any
instant of time. The reference trajectorles that are of interest in
this research are generated by a numerical integration method that uses
a differential corrections process developed by Howell and

. -14
F‘ermcka.[9 ]

The orbits include solar radiation pressure forces as
formulated by Be11“6] specifically for an orbit associated with the
interior Lagrange point in the Sun-Earth system. The numerical
integration routines used in this work are fourth- and fifth-order

Runge-Kutta formulas available in the 386-Matlab software package.“7]

F. Bounded Orbits Near Libration Points

The computation of bounded periodic and quasi-periodic orbits in
the vicinity of libration points has been of increasing interest during
the past 100 years. This section first discusses the stability of the
libration points in the CR3BP and the ER3BP. The construction of

bounded orbits near the collinear Lagrange points is then summarized.
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Finally, the specific reference trajectories used 1in the orbit
determination error analysis and station-keeping studies in this work

are introduced.

1. Stability of the Libration Points in the CR3BP

The accomplishments of those researchers who have constructed
bounded orbits near collinear 1libration points are particularly
significant because the collinear points are considered "unstable"
points of equilibrium but with (only) one mode producing positive
exponential growth. Bounded motion in their vicinity, therefore, is
determined by deliberately not exciting the unstable mode. A second
mode produces negative exponential orbital decay and is also
deliberately not excited. In the CR3BP, the remaining four eigenvalues
are purely imaginary. The existence of initial conditions that result
in only trigonometric (sinusoidal) functions as solutions means that
the collinear libration points, while unstable, possess conditional
stability (with proper choice of initial conditions) in the linear
sense. 18

The triangular libration points are marginally stable in the
linear sense for a specific range of primary mass ratio in the CR3BP.
Purely imaginary roots in two conjugate pairs are obtained for u=<.038S,
which is given here to four decimal places and is sometimes referred to

(19 The mass ratios (listed here to three decimal

as Routh’s value.
places), for example, in the three-body systems of the Earth-Moon
(u=1.216 x 10°°), Sun-Earth+Moon (p = 3.022 x 10°®) and Sun-Jupiter
{(u = 9.485 x 10—4) all satisfy the mass ratio requirement for marginal
stability of the triangular points in the linearized model. Natural
satellites, such as the Trojan asterolds or a moon of Saturn, occupy
linearly stable orbits near triangular 1libration points in their

respective systems.
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2. Stability of the Libration Points in the ER3BP

Several researchers have analyzed the stability of the libration
points in the elllptic problem, where both the mass ratio, p, and the
primary orbit eccentricity, e, 1influence stability.“B'ZZI The
instability of the collinear 1libratlon points as determined in the
circular problem for all the values of mass parameter persists for the
elliptic problem; an analysis of the collinear points shows instability
for any combination of the values of both p and e.

The results of a linearized stability analysis regarding the
effects of eccentricity and mass ratio on the linear stability of the

triangular points have been published by Danbylzn

[22}

and then later by
Bennett Both Danby and Bennett have numerically generated graphic
depictions of the linear stabllity reglon in the pu-e plane. For the
eccentricity in the Sun-Earth+Moon ER3BP, the value of u which ensures
linear stability is only slightly less than Routh’s value (decreased by
approximately one percent). An interesting aspect of the u-e stability
region is tha. a range of values of u greater than Routh's value also
defines a region of linear stability for a specific range of values of

e less than .3143.

3. Construction of Bounded Collinear Libration Point Orbits

The initial goal in the process of generating bounded orbits near
a collinear (unstable) 1libration point is to avoid exciting the
unstable mode associated with the linearized motion. The meteoric dust
particles that may be orbiting near Lagrange point L2 in the Sun-Earth
system could only linger near that point if they arrive with the
"correct” initial position and velocity states relative to Lz' The
"correct" initial conditions will only (primarily) excite the stable
modes associated with the linearized motion and not (or minimally)
excite the unstable mode. The degree to which the unstable mode is
excited will determine the length of time that the dust particles

linger near Lz‘
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The third-order analytic representation is used in this work to
provide the 1initial model for the trajectories. The method of
successlve approximations, using the linearized solution as the first
approximation to the nonlinear orbital path, and the method of dual
time scales are used to derive the third-order result.(6'7'231 The
method of successive approximations is used to generate an asymptotic
series in an appropriately small parameter. {The square root of the
eccentricity of the primary orbit, that is the orbit of the Earth-Moon
barycenter about the Sun, is the small parameter used here.) The
method of dual time scales is used to convert the system of ordinary
differential equations into a system of partial differential equations.
In general, the method of multiple scales allows the various nonlinear
resonance phenomena to be included in the approximate analytic solution
and provides a method to remove secular terms. (Here, "secular" refers
to terms that include the time variable and is derived from the French
"siécle" meaning century.)

The analytic solution of Richardson and Cary[7] for the
Sun-Earth+Moon ER3BP has been derived to fourth order, but the third-
order approximation is found to be sufficient for this research.[944]
A numerical Integration algorithm, using a differential corrections
procedure that is desighed to adjust the first guess as obtained from
the analytic approximation, can then be used to nunerically generate
the orbit of Iinterest. A method developed by Howell and Pernicka[gd4]
is used here to generate the orbital paths. Their method initially
employs the approximate analytic solution to compute target points. A
two-level ({(position matching then velocity matching), multi-step
differential corrections algorithm is used to construct a numerically
integrated, bounded trajectory that 1is continuous in position and
velocity. A solar radiation pressure model developed by Bell“6]
also incorporated in the numerical integratlon procedure.

The method of Howell and Pernicka, including solar radiation
pressure, uses an initlal analytic guess that represents a halo orbit
or, alternatively, a considerably smaller Lissajous path. The
higher-order terms tend to slightly alter the first-order periodic or
quasi-periodic path. Consequently, the initial target path for a halo

orbit will generally not be precisely periodic. The two-level,
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multi-step differential corrections procedure then adjusts the initial
analytic target orbit and, therefore, will compute a halo-type orbit
that is nearly (but not exactly) periodic.

4. The Reference Paths Generated for This Work

Precisely periodic halo orbits exist in the CR3BP. They also
exist in the ER3BP, but, in the ER3BP, they are multiple revolution
trajectories with periods much longer than those of 1interest here.
Nearly periodic orbits are more practical in the ER3BP and are much
more likely to be used in mission planning; therefore, the goal here
should be slightly modified to be the comparison of Lissajous and
"halo-type" orbits. The general shapes of the three-dimensional
halo-type and Lissajous orbits can be seen by plotting three
orthographic views of each orbit, using the tabular data from the
numerical integration routine. Figure 1-4 depicts three orthographic
views of point plots for the Lissajous orbit used in this research.
Figure 1-5 contains three orthographic views (on a slightly different
scale) of the conslderably larger halo-type orbit. {Note that, in
general, the amplitude ratio for Lissajous trajectories is arbitrary.
In halo orbits, however, constraining the amplitude ratio results in
equalized frequencies for in-plane and out-of-plane motion.) The
orbits are depicted 1n the rotating reference frame centered at L1'

Both orbits are clearly not periodic; a Lissajous orbit 1is often
called a quasi-periodic path, and these two orbits could clearly be
termed quasi-periodic or Lissajous paths. The major difference between
the orbits is the larger size of the halo-type orbit; however, other
differences are also present. The maximum x and y excursions of the
halo-type orbit are approximately four times as large as those of the
Lissajous path. Furthermore, the direction of motion (clockwise versus
counterclockwise), as viewed in the y-z orthographic depiction, is
different for the two orbits used here. The direction of motion on the
halo-type orbit is counterclockwise in the y-z depiction; the direction
of motion is clockwise in the y-z depiction for the Lissajous path.

(Both orbits include clockwise motion in the x-y depliction.)
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Figure 1-4. Three Orthographic Views of a Lissajous Orbit.
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The two orbits can also be differentiated in terms of the
direction of the maximum z excurslon in the x-z depiction. If the
maximum z excursion is in the positive z direction, the orbit can be
termed a member of a "northern family" of orbits. When the maximum =z
excursion of the orbit is in the negative z direction, the orbit is
termed a member of a "southern family" of orbits. In the x-z
orthographic depiction, the smaller (Lissajous) path can be seen to be
a member of a northern family of orbits, while the halo-type orbit is a
member of a southern family of orbits.

Future work with these two orbits will include studies that
generally reguire access to a nominal path that is at least piecewise
smooth. Some method of curve fitting the numerically integrated data

must consequently be investigated.

S. Curve Fitting the Nominal Path

The primary goal of this work 1is the completion of orbit
determination error analysis for libration point trajectories. The
conventional method for solution of state estimation problems, and the
technique used in this effort, involves linearizing the nonlinear
equations of motion about a reference solution (nominal path) and then
applying linear estimation techniques. The orbit determination process
is thus changed from estimating the state of a nonlinear system to
estimating the linear, time-varying deviations from the reference
trajectory.

The reference solution used in this research is generated by
numerical integration of the nonlinear equations of motion. In one
study, an investigation that used a consistent dynamic model for all
comparisons, Richardson[81 has shown that a slight reduction in fuel
expenditure can be realized if a numerically integrated, rather than an
approximate analytic, nominal path 1is computed. The numerical

(9-14] ;< used here

integration method developed by Howell and Pernicka
to generate a set of reference polnts for both position (three states)
and velocity (three states), relative to the libration point of

interest, at specified times. Time series point plots of all six state
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varilables for approximately a 2-year segment of a Lissajous orbit are
depicted in Figures 1-6 (position states) and 1-7 (velocity states).
The method computes numerical data for the six states in a reference
frame that 1s centered at the libration point (in this case L1) and
that rotates with the primaries. However, the state estimation
techniques and station-keeping algorithms used in this work require
access to a continuous nominal path, rather than point plots, of
acceptable accuracy.

The reference trajectory, represented as a (plecewise) smooth
curve, could be constructed, approximately or exactly, through the
points obtained from the numerical integration routine. The work here
assumes that a curve that passes through the numerical aata (exactly)
is preferred. The erffort required to generate a numerical solution,
including forces modeled consistent with the ER3BP (or even more
accurately modeled with ephemeris data) would seem to be wasted if the
reference curve deviates too far from the numerical data. However, a
method that approximates a smooth curve through the points is also
desirable; that 1is, linear interpolation between the numerical data
points was not considered acceptable. In one study, Pernickatg] found
that station-keeping costs for a libration point orbit were, in fact,
sensitive to the accuracy of the curve fit. Clearly, a piecewise
linear curve fit could not accurately match the concavity of the actual
orbital path between data points, regardless of the size of the time
steps used in the numerical integration routine.

Four methods of generating a curve for the nominal trajectory have
been evaluated: Fourler series, least squares, weighted least squares,
and cubic splines. The states associated with a quasi-periodic path
were thought to be the most difficult to curve fit; therefore, various
Lissajous trajectorles were used to evaluate the curve-fitting methods.
After several curve fitting evaluations, a cubic spline interpolation
routine was selected to be used to model the reference trajectory in
the state estimation simulations. The comparisons of the curve fit

methods are fully described in Gordon.“5]
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G. Orbit Determination Error Analysis Results

Complete, exact knowledge of the state of a spacecraft in orbit is
generally not possible. Individual state variables cannot be measured
precisely, and available measurements are usually some function of
these state variables. For instance, a spacecraft moving along a
libration point trajectory in the Sun-Earth system may be tracked using
range and range-rate measurements containing random errors. The
spacecraft may be affected by forces not Included (or inadequately
represented) in the dynamic model, and model parameters may be
uncertain. By definition, the linearized system of equations used to
model the nonlinear state variations is a further approximation. Also,
actual control inputs may vary slightly in magnitude and direction from
those commanded. These sources of error make knowledge of the
spacecraft state uncertain. Computation of the most likely current
state of the spacecraft in the presence of measurement and model
uncertainty is the focus of orbit determination.

Error analysis involves an investigation of the impact of various
sources of error on orbit determination. The output of an error
analysis, as used in this work, provides the magnitudes of state vector
variances and covariances, thus quantifying the relative contributions
of the significant error sources. This output could then be used to
predict how an improvement in measurement accuracy, for instance, would
lessen state uncertainty. One benefit of more accurate knowledge of
the state might be a reduction 1n statlon-keeping costs. A
mathematical procedure can be developed to combine all information
about the spacecraft state and filter this observed data based on the
varying degrees of uncertainty. The flilter then produces a "best
estimate” of the state and additionally quantifies the resulting state
variable uncertainties in preparation for an error analysis.

The orbit determination error analysis results can, in turn, be
used in Monte Carlo simulations of competing station-keeping
algorithms. The state error levels can be modeled as random errors
Wwith a specified mean and probability distribution. Of course, other

error sources, such as solar radiation pressure urcertainty and control
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input errors, can also be modeled in the Monte Carlo simulations.

24)
Gordon(

discusses the evaluation of several orbit determination
error analysis methods, uses hypothesis tests to determine the means
and probablility distributions of the errors, and computes the error
levels appropriate for use in the station-keeping simulations. The
state uncertainty levels are found to closely follow a zero-mean
Gaussian distribution, and these state error levels are presented in

Table 1 in terms of state element standard deviations.

Table 1. Error Levels Produced from Error Analysis Studies.

One Standard Deviation Levels

Coordinate Halo-Type Orbit Lissajous Orbit
x (km) 1.46 1.25

y (kn) 2.64 3.35

z (km) 4.81 3.19

x (mm/sec) 1.40 1.25

y (mm/sec) 1.85 1.41

z (mm/sec) 2.49 2.51
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CHAPTER TWO: STATION-KEEPING ALGORITHMS

Because of unavoidable errors, similar to those associated with any
space mission, a station-keeping strategy is necessary to maintain the
spacecraft within some predefined torus about the planned nominal path.
The size and shape of the torus are determined by mission objectives
including the possibly related requirements for orbit determination,
scientific experimentation, and minimum fuel expenditv e. For example,
the nominal path may be computed to the highest degree of accuracy to
meet both scientific specifications and tracking considerations. The
size of the torus may then be tailored from "tight" to "loose"
depending on mission objectives and compariso~- of fuel experditures
for various options.

This chapter is organized into six sections. The first section
contains an overview of the general station-keeping problem. The
second section summarizes the derivations of two similar controllers,
one of which has been used for libration point orbit station-keeping
simulations. The next two sections summarize the derivations of two
related control algorithms formulated for this work. Both of these
station-keeping methods 1in the third and fourth sections are

innovations on methods previously derived by Dwived1[25'26] and

Pernlckalg]. The fifth section contains a description of an on/off
controller developed for this work.

The sixth and final section contains comparisons of the control
costs derived from use of the station-keeping methods developed in this
work for both a halo-type orbit as well as a more general Lissajous
orbit. The comparisons require the use of statistical hypothesis tests
similar to those used in the last section of chapter two. A

station-keeping simulation will produce a scalar value for the total
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propellant expended (AVT); also, each separate simulation will be
subject to several random lnputs and can, therefore, be considered a
random trial. A group of random trials (statlion-keeping simulations)
using consistent random inputs can then be treated as a random sample.
The hypotheses tested in this final section pertain to the type of
probability distribution that the random samples most closely focllow

and to equality of population variances and means.

A. Definition of the Station-Keeping Problem

Even for an accurate nominal trajectory, unmodeled as well as
poorly modeled forces on the spacecraft will generally be present, and
the resulting modeling errors may be a contributing cause of spacecraft
drift from the nominal path. As was discussed in Chapter 1, a
trajectory near a collinear libration point is designed to excite only
the stable modes associated with the motion. When the spacecraft
deviates from this nominal trajectory, the unstable mode may be
excited, and drift from the path may then increase exponentially with
time. A station-keeping method can thus be used to combat this drift
and keep the spacecraft acceptably close to the nominal path. of
course, specifications associated with the station-keeping procedure
will influence the deviations from the nominal path. For example, as
the torus about the nominal path is relaxed or as the minimum
acceptable separation time between control inputs is increased, drift
from the nominal path may increase.

How large will the drift be? Table 2 contains the partial results
from several numerical simulations and illustrates the magnitude and
direction of spacecraft drift from a nominal halo path due to
deterministic errors in initial conditions ("Ax") or solar reflectivity
("ak"). For these simulations, the deterministic initial position
errors are computed from a consistent position on the halo orbit. The
units for position deviations are kilometers; the units for velocity

deviations are in millimeters per second.
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Table 2. Nominal Path Deviations due to Deterministic Errors.
(The units for position are kilometers; velocity is
in mm/sec.)
Deviation from the Nominal Path after
ax 20 days 40 days 60 days 80 days
Ak=0 Ak=.13 A8k=0 Ak=.13 Ak=0 Ak=.13 Ak=0 Ak=.13
X 1 4.5 14.6 11.9 59.0 -5.9 122.5 -59.4 242.5
y 1 1.5 -.6 -.9 -14.7 -12.5 -56.7 -35.6 -153.0
z 1 2.1 1.9 2.1 1.0 5.6 3.5 6.9 9.9
x 1 3.3 158 6.8 385 -2.4 64.3 -28.4 116.7
9 1 -.5 -3.8 -1.9 ~13.0 -.9 -26.9 5.0 -61.5
z 1 1 -2 -8 ~-l1.6 -.2 1 -.5 6.4
X 1 38.6 138.2 316.2 677.0
y 1 7.4 -16.8 -94.0 -286.2
z 1 15.0 17.0 13.8 18.1
x 10 44.1  83.9 157.4 317.1
y 10 -4.2 -24.6 -58.9 -151.5
z 10 4.9 -3.2 -3.0 10.4
X 1 278.2 930.2 2253.8 S025.0
Yy 1 39.5 -37.7 -466.5 ~1616.8
z 1 42.6 177.8 116.7 100.5
x 100 81.7 538.0 1088.6 2324.1
9 100 -23.4 -141.2 -378.4 -1051.2
z 100 -18.5 ~-18.9 -43.5 503.2
X 10 20.2 30.3 51.7 98.7 85.6 214.0 141.7 443.6
y 10 7.3 .3 -3.9 -17.8 -33.6 -77.8 -100.6 -218.0
A 10 7.1 .9 -1.9 -3.1 -6.3 -8.4 -4.4 -1.4
X 1 11.6 24.1 27.1 58.9 39.8 106.5 63.1 208.3
9 1 -4.0 -7.3 -9.0 -20.0 -16.1 -42.1 35.8 -102.3
z 1 -4.3 -4.5 -6.3 -7.2 =3.1  -2.8 4.0 11.0]
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Table 2, continued.
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“Deviation from the Nominal Path af ter

20 days 40 days 60 days 80 days
Ak=0 Ak=.13 Ak=0 Ak=.13 Ak=0 Ak=.13 Ak=0 Ak=.13
90.0 100.1 228.1 275.1 491.9 620.3 1035.4 1337.4
33.4 31. -17.5 -31.3 -127.1 -1,..3 -389.6 -507.0
29.6 29.4 -19.8 -20.9 -59.2 -61.3 -54.6 -51.6
48.4 60.9 117.5 149.3 227.4 294.1 470.0 615.3

-19.7 -~23.0 -40.3 -51.4 -83.5 -109.5 -217.2 -283.7
-23.4 -23.7 -31.0 -31.8 -16.0 -15.7 24.5 31.4
124.2 354.3 814.1 1772.0

39.5 -33.4 -208.5 -640.1

42.6 -4.9 -51.0 -43.3

81.7 194.7 387.2 815.8

-23.4 -63.0 -141.5 -373.7

-18.5 -33.4 -19.6 35.4

177.3 187.4 448.7 495.8 999.9 1128.4 2152.9 2455.0
66.2 64.2 -34.4 -48.2 -243.9 -288.1 750.7 -868.0
57.7 57.5 -42.1 -43.3 -125.3 -127.4 117.3 -114.3
94.5 106.9 230.5 262.3 462.0 528.7 1000.0 1124.4
-39.3 -42.6 -79.5 -90.5 -167.8 -193.8 -400.0 -510.4
-47.3 -47.6 -61.8 -62.7 -32.0 -31.7 -100.0 57.1
351.7 361.9 890.0 937.0 2016.2 2144.7 4390.0 4691.8
131.6 129.5 -68.2 -82.0 -477.6 -521.7 -1472.3 -1589.6
1.1 113.6 -86.9 -88.0 -257.5 -259.6 -242.4 -239.4
186.0 199.0 456.6 488.4 931.4 998.1 1998.6 2144.0
-78.6 -81.9 -157.8 -168.9 -336.1 -362.1 -897.0 -963.4
-95.1 -95.4 -234.8 -124.3 -64.2 -63.8 -101.6 1086.6
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Notice that the magnitude of the drift 1is sensitive to both
initial velocity and initial position deviations and that a solar
reflectivity constant error of 13% also has a substantial effect on the
drift. Of course, the drift will undoubtably vary, perhaps in a minor
way, depending on the size and shape of the nominal orbit and the
location on the path at which the deviations are evaluated. Clearly,
however, a spacecraft can quickly move quite far from the nominal path.

One approach that might be considered for a station-keeping
strategy is to redefine the nominal path such that it passes through
the current position. (Some guidance procedures for interplanetary
missions have successfully employed such a scheme.) Unfortunately, an
additional complication associated with a libration point orbit is
that a nominal path cannot generally be defined through all possible
positions. A bounded orbit may not exist through an arbitrary point,
and the computational difficulty required to construct a nominal orbit
through an approximate set of coordinates also makes redefining the
nominal path during flight virtually impossible. Therefore, a
station-keeping algorithm that returns the spacecraft to a torus about
the reference trajectory is essential.

A station-keeping strategy must combat the exhibited drift from
the nominal path while satisfying some predetermined set of
specifications. It is not uncommon for a station-keeping scheme to
include constraints related to quantities such as the timing of
manuevers, control magnitude, and deviation distance from the nominal
path. (Of course, additional types of constraints have been
implemented in other guldance schemes and could possibly prove
beneficial in future libration point orbit studies.) Identifying a
lower bound for such quantities may be necessary to allow time for
orbit determination and to help ensure efficient use of control energy.
Figure 2-1 illustrates the declision process necessary to implement the
minimal restrictions typically used in the control algorithms developed
in this chapter. Each of the decision steps depicted in Figure 2-1 may

serve to delay the input of control force.
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X, = numerical integration initial position INITIAL POSITION ¥ g

t o = numerical integration initial time

X = current position of the spacecraft as the control loop is entered
t = current time when the control loop is entered

Atmin = Minimum control separation time

AV in = Minimum control magnitude

d min = Minimum deviation magnitude from the nominal path

Figure 2-1. Decision Process for Control Inputs.
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For a collinear libration point orbit, a small deviation from the
(unstable) nominal trajectory can lead to rather large drift from the
path in a short time. In effect, the station-keeping algorithm must
combat both the current drift from the path 1in addition to the
exponential increase in the drift that is expected if no correction is
implemented. Any delay in the control actuation may allow the drift to
increase and to thus compound the station-keeping problem. The
magnitude of the drift can be clearly seen in Table 2. Of course, in
such a nonlinear problem, it is possible for the spacecraft to begin
returning to the nominal path on its own. Another possible constraint
for the station-keeping scheme could be a check on the growth or decay
of the drift. This check on the spacecraft’s drift from the nominal
path may serve to delay a control input, or it may prove efficient to
input control energy at the current time to "assist" the drift back to
the path. The optimal timing (now or at some future "best" time) to
implement a given control input is a possible area for future research.

The goal of the station-keeping routine is then to keep the
spacecraft "close enough" to the reference trajectory. The allowable
deviations may depend on the simulation experience with a given control
algorithm and on mission constraints, including the propellant cost
that can be tolerated. The evaluation of various minimal restrictions
is addressed in later sections. When the spacecraft is "near" the
nominal trajectory, it is reasonable to model the deviations from the
reference path using linear analysis. Consistent with such a model, an
investigation of the problem incorporating linear control theory is
thus initiated.

B. Previously Developed Station-Keeping Strategies

Early work by Dwived1[25’26]

resulted in development of a control
procedure that is derived from minimization of a cost functional. His
approach was developed for Interplanetary space flight; however, it
also shows promise as a controller for libration point orbits. The
cost function is defined by weighting both the control energy used at

an initial time and the expected deviations of the spacecraft from the

37




nominal path at two distinct times in the future. The points used to
compute deviations from the nominal path are referred to in this work
as "target points." These points are deflned along the nominal path at
predetermined times that are called "target times." (More than two
target points can be used; this modification proves valuable later in
this eifort.) A veislion i Dwivedl's conbroller, using distinct
manuever times, is summarized here, and an extended derivation used by
Pernickalg] is then also described.

In Dwivedi’s algorithm, the cost function includes several
submatrices partitioned from the state transition matrix. The state
transition matrix is derived, in the usual way, through a linearizing
process relative to the nominal path. For notational ease, the state

transition matrix is partioned into four 3x3 submatrices as

B
k0 ko0
Q(tk,to) = . (2-1)

D
kO kO

Dwivedi’s controller, in this formulation, computes a Av input (a
3x1 vector), with magnitude denoted as Av, for a time denoted as to.
The Av 1is added to the initlial velocity states in the numerical
integration routine in order to change the deviation of the spacecraft
from the nominal path at some future times. In this derivation, Ek is
the position deviation (a 3x1 vector) and 3; is the velocity deviation
(a 3x1 vector) of the spacecraft from the nominal path at time tk, with
k =1, 2, etc. If e, is the residual velocity (a 3x1 vector) and E; is
the residual position (a 3x1 vector) relative to the nominal path at
time to’ then a Av input at to could be used to predict Ek for k = 1,
2, etc. For instance, when the initial position Xy includes an initial
velocity perturbation eo, a delta velocity Av, and an initial position

perturbation SB, the state propagation equation provides:[24]
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(2-2)

As an example, for two target times t1 and tz, and by assuming that 55

is the zero vector,

m = B1oeo + BioAv (2-3)
and
m=B_e + B_Av. (2-4)
2 200 20

Dwivedi’s approach was developed for application to interplanetary
missions and, consequently, 1includes the assumption that position
deviations from the nominal path have a minor effect on spacecraft
drift when compared to velocity deviations. Hence, Eo is allowed to be
the zero vector when deriving equations (2-3) and (2-4) from equation
(2-2). The target times t1 and t2 are computed by adding incremental
times At1 and At2 to to, respectively. For instance, if At1 = 40 days,
At2 = 70 days, and to = 0 days, then t1 = to + At1 = 40 days and the
second target time t2 = to + At2 = 70 days.
The cost function that will be minimized is

J(A_v)=K\7’QE&'+EIR51+E:sEZ (2-5)

where the welghting matrix Q is symmetric positive definite, and the
weighting matrices R and S are positive semidefinite. Equation (2-5)
can be written in terms Av by substituting equations (2-3) and (2-4)
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into equation (2-5). Figure 2-2 depicts a version of Dwivedi’'s
station-keeping routine that allows the control input at a specified
time other than to and that uses two target times, which are actuvally
incremental times At.1 and At2 added to the initial time to'
Determination of the Av corresponding to the relative minimum of

vhis cost functiorn allsws a llnear equaticn for the cptimal contrel

input (E.) to be found: 12,26
v =-[Q+B"RB_+BSB 1" B"RB_ +B'SB ]e. (2-6)
10 10 20 20 10 10 20 20 0

Note that equation (2-6) assumes control implementation at time to.
This derivation could be generalized tc include the possibility of
time-varying weighting matrices and a av input at some time t after to’
and these generalizations could be the subjects of valuable future
research concerning libration point orbital control.

(9,271 modified the above controller to also

Howell and Pernicka
include the effects of position deviations at time to. Dwivedi’s
approach assumes that velocity perturbations have a much greater
propagative effect than position deviations from the nominal path.
Because of the wunstable nature of libration point orbits, it was
reasoned that both position and velocity residuals from the nominal
path should be included in the error propagation equations such as
equation (2-3) and equation (2-4) for Dwivedi’s controller. An example
of the relationship between position and velocity errors at to and the
resulting residuals at varying time steps later was illustrated in

Table 2.
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t
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,S m,

t1
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e 1S m,

€ = VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIMEt. THISISA3x 1 VECTOR.

ﬁ;r = POSITION DEVIATION FROM THE NOMINAL

PATH AT TIME t, IFAV IS INPUT AT TIME t.
THISISA 3 x1 VECTOR.

m1= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t, IFAv IS INPUT AT TIME t.
THIS IS A 3 x 1 VECTOR.

R, S ARE 3 x 3 POSITIVE SEMIDEFINITE
WEIGHTING MATRICES USED IN THE COST
FUNCTION.

Figure 2-2. Dwivedi Control Routine.
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Certainly, both position and velocity offsets from the nominal
trajectory do appear to make a substantial contribution to spacecraft
drift from the nominal path. For this derivation, 50 is the nonzero
position residual vector (3x1) and 30 is again the nonzero velocity
residual vector (3x1) at time to; by using equation (2-2), the

following iwo equa.lcu..s can be derived:

m=B e +B AV +A p (2-7)
1 10 O 10 10° 0
m=B e +B Av + A p. (2-8)
2 20 O 20 20° 0

Figure 2-3 is a depiction of the Howell/Pernicka controller ithal uses a
concrcl input at to and also uses two target times (at predetermined
incremental times beyond to)' The cost function that is minimized

remains as
JWN) =S QA +m Rm +mSh. 2-9)
1 1 2 2

Using equations (2-7) and (2-8) in equation (2-9), the optimal control

is obtained by minimizing the cost function in terms of Av, and it then

[9,27)
becomes

]

A=-(Q+B"RB +B SB I""{(B"RB +B"'SB )& +
10 10 20 20 10 10 20 20 [¢]

(B"RA +B ' SA )pl. (2-10)
10 10 20 20 0




&,= VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t,. THISISA 3 x1 VECTOR.

Bo= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t;. THISISA 3 x1 VECTOR.

m,= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t, IF Av IS INPUT AT TIME t,.
THISISA 3 x 1 VECTOR.

m ,= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t,IFAv IS INPUT AT TIME t,.

THISISA3x1VECTOR.

R, S ARE 3 x3 POSITIVE SEMIDEFINITE
WEIGHTING MATRICES USED IN THE COST
FUNCTION.

Figure 2-3. Howell/Pernicka Control Scheme

43




Clearly, the Howell/Pernicka formula'® 2"

for the optimal control
input 1is slightly more complicated than that derived using Dwivedi’s
approach. The inclusion of the position deviation (Eo) in equation
(2-10), versus using equation (2-6), may be shown, in fact, to reduce
the control costs. Both the Dwivedl and the Howell/Pernicka control
algorithms can be used for quasi-periodic and periodic libration point

(9:27] sed their control law (2-10) for a

orbits. Howell and Pernicka
spacecraft in a halo-type orbit near the interior libration point in
the Sun-Earth+Moon system, and their algorithm was formulated to
include several features. Minimal separation times of up to 80 days
between control inputs were used. This is a realistic feature because
the orbit determination process and the control input computations
require some minimal work time. The 80-day control separation time was
selected to roughly correspond tc the timing between manuevers used for
ISEE-3. They also included a minimal contrcl input ("Av") magnitude in
their formulation. Modern propellant devices do have restrictions
concerning the minimal control energy that can be accurately expended,
and the errors relative to the commanded control may be a function of
the control magnitude. (In fact, the control uncertainty modeled later
in the station-keeping simulations may be inversely related to control
magnitude.) The values that Howell and Pernicka used for the minimal
Av ranged between .01 and .5 meters per second depending on the
specific simulation completed.

Incorporating a torus of acceptable size about the nominal path is
also a useful feature. Howell and Pernicka used a torus that ranged
between O and 100 kilometers in radius. If the specific torus
dimensions were not violated, even when all other conditions for a
control input were met, no Av would be expended. The control costs

found in Howell and Pernicka(%27]

are generally comparable to those
found In other investigations. (These results will be included in the
last section of this chapter.) However, it is noted that simulations
that included tracking and injection errors and a minimum control
separation time of 80 days had relatively high propellant costs. These
propellant costs are also obviously a function of the target point

spacing; therefore, changes in specifications may enable some reduction

44




in the cost. It should also be noted that ISEE-3 was successfully
controlled at a cost that was lower than the propellant cost predicted
by pre-mission station-keeping simulations. Further investigation of
the choices of weighting matrices (both constant ana time-varying), the
number of target points, and the target spacing may prove valuable;
alternatively, a controller that also weights velocity residuals at the

target times may prove to be an improvement.

C. Delta-Velocity Controller I

An innovation ihat also adds velocity residual weighting in the

cost function of the Howell/Pernicka'®?"]

controller provides
promising results. For this controller, the velocity residuals at t1
(denoted by Vx) and t2 (denoted by VZ) are 3x1 vectors that can be

computed as

m A B P
1 10 10 (o]
= _ (2-11)
- e + Av
v o
1 10 10

(2-12)

<1

The cost function for this controller (Delta-Velocity Controller I) is
then

J&) =W Qv +mRMm +VR Y +mSn +vsS v, (2-13)
1 1 1 v 1 2 2 2 VvV 2
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where the added welghting matrices, Rv and Sv, are positive
semidefinite. (This formulation is further complicated by the addition
of two weighting matrices that must be somehow chosen. In general,
there does not appear to be an strategy that can optimally select the
weighting matrix entries for this controller or for the station-keeping
routines of Dwivedi or Howell and Pernicka. Extensive experimentation
in addition to investigator judgement are often successfully used;
however, a selection method for the weighting matrix entries will be a
valu.b.e area of future research.)

Using equations (2-11) and (2-12), the following equations for the

residuals at time t1 and tz can be found:

m=B e +B Av + A p, (2-14)
1 10 O 10 1000

2 20 O 20 20 0 (2-15)
vVv=D e +D Av+C p, (2-16)
1 10 0 10 10°0
v=D e +D Av+C_p. (2-17)
2 20 O 20 20° 0

Recall that t1 and tz are computed by adding incremental times At1
and Atz, respectively, to the initial time to' Figure 2-4 is a
depiction of the Delta-Velocity Controller I that uses a control input
at the initial time to and includes two target times (t1 and ta)' The
weighting of wvelocity errors in the cost function will obviously

complicate the derivation.

46




N
/ = =
t, t, t,
& mRm m,S m,
B v, R¥, A

&,= VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME ,. THISISA3 x1 VECTOR.

P, = POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t,. THISISA 3 x 1 VECTOR.

m, = POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t; IF AV IS INPUT AT TIME t,.
THISISA3 x1 VECTOR.

v, = VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t, IFAV IS INPUT AT TIME t,.
THISISA 3 x 1 VECTOR.

'ﬁz= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t;IFAv IS INPUT AT TIME t,-
THISISA 3 x 1 VECTOR.

V, = VELOCITY DEVIATION FROM THE NOMINAL

2 —
PATH AT TIME t,IFAv IS INPUT AT TIME t,-
THISIS A3 x 1 VECTOR.

R, S, R, SVARE 3 x 3 POSITIVE SEMIDEFINITE
WEIGHTING MATRICES USED IN THE COST
FUNCTION

Figure 2-4. Delta-Velocity Controller |.
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Equations (2-14) through (2-17) can be substituted into equation
(2-13), and the relative minimum of this function of Av (after

considerable algebra) is found to be

Zv=-[Q+B'RB +B"'SB +D'RD + D' SD ] '
10 10 20 20 10 v 10 20 v 20

(BPTRB +B'SB +D RD +D SD' ) e +
10 10 20 20 10 v 10 20 v 20 o]

T T T T -
(BioR Am+ Baos Azo+ Dioncxo+DzoSvczo) po]‘ (2-18)

In the final section of the chapter, this control law will be
shown to provide excellent results for station-keeping of a 1libration
point orbit. However, when the minimum separation time between control
inputs is increased to 60 or 80 days, this controller tends to exhibit
an increase in cost. Perhaps a controller that looks further downtrack

may provide some improvement in control costs.

D. Delta-Velocity Controller 1I

One way to add cost function welghting to residuals farther along
the track would be to Increase the size of incremental times Atl and
Atz. Alternatively, a third target point can be added to the
formulation of Delta-Velocity Controller I; this adjustment can permit
the target times to be approximately equally spaced (an arbitrary
choice) with At1 = 40 days, for instance. This adjustment will be
shown to increase the robustness and decrease the cost of the
station-keeping algorithm, especially when the minimum control input

separation times are extended to 60 or 80 days.
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For this formulation, position and velocity residuals at time t3

are added as 3x1 vectors Ea and 73 to give:

p
1 i 10 10 o ’ (2-19)
v C_ D & * ov
1 10 10
Ez 20 Bz0 30
- (2-20)
v eo + Av
2 20 20
E3 Aw By So
- : (2-21)
v C D & * AV
3 30 30

Figure 2-5 depicts the elements of Delta-Veloclity Controller II that
includes the weighting of velocity errors at the target points, the use
of three target times, and a control input at time to.

The cost function now includes terms for the third time step and

becomes

JAV)=BVQ AV + MR M+ VRV + mMS M+ VS V+mTm+ VTV, (2-22)
1 1 1 vi1 2 2 2V 2 3 3 3 v a3
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t0 t1 t2 t3
) mRm  mSm,  mTm
B V' RY, v, S\, v, TV,

e_0= VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t,. THISIS A3 x 1 VECTOR.

F°= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t,. THISIS A3 x 1 VECTOR.

T = POSITION DEVIATION FROM THE NOMINAL
" PATH AT TIME t,IF AV IS INPUT AT TIME t,-

THISIS A3 x 1 VECTOR.
V.= VELOCITY DEV:ATION FROM THE NOMINAL

" PATH AT TIME t, IFAV IS INPUT AT TIME to.
THIS IS A3 x 1 VECTOR.

er= POSITION DEVIATION FROM THE NOMINAL
PATH AT TIME t, IF &V IS INPUT AT TIME t -
THIS IS A3 x 1 VECTOR.

v_2= VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t, IFAY 5 INPUT AT TIME t,-
THISIS A3 x 1 VECTOR.

53= POSITION DEVIATION FROM THE NOMINAL

PATH AT TIME t, IF & IS INPUT AT TIME t,,.
THIS IS A 3 x 1 VECTOR.

73= VELOCITY DEVIATION FROM THE NOMINAL
PATH AT TIME t, IF AV IS INPUT AT TIME t,.
THISIS A3 x 1 VECTOR.

R Ry,S,S,, T, , ARE 3x 3 POSITIVE SEMI-
DEFINITE COST FUNCTION WEIGHTING MATRICES

Figure 2-5. Delta-Velocity Controller Il.

50




where the added weighting matrices, T and Tv, are positive
semidefinite. The cost function can be written in terms of Av by using
substitutions for Hk and V;, with k = 1, 2, and 3, derived from
equations (2-19), (2-20), and (2-21). The relative minimum of this

function of Bv (after considerable algebra) is found to be

2v=-1Q+B" R B +B"S B +B"TB +D'RD +D'SD +D' TD 1 'x
10 10 20 20 30 30 10 v 10 20 v 20 30 v 30

((BTRB +B'SB +B'TB +D'RD +D'SD +D'TD )o +
10 10 20 20 30 30 10 v 10 20 v 20 30 v 30 [+]

(BTRA +B"s A +BTTA +D'RC +D'SC +D'TC )p ). (2-23)
10 10 20 20 30 30 10 v 10 20 v 20 30 v 30 (o]

The general method described above could certainly accommodate the
inclusion of additional target points. The relative value of using
additional target points and an aigorithm for selecting the weighting
matrix entries both seem to be potential areas for future research.
Preliminary work using entrles from the state transition matrices has
shown some degree of promise in choosing the weighting matrix entries.
Results to date are inconclusive.

The third type of controller investigated is termed an on/off
station-keeping method because the control energy is input as an
acceleration, added for a few days and then removed for varying periods
up to 80 days. The on/off type of controller is fundamentally a
modification of a discrete-time continuous controller that is modified

to be more operationally feasible.
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E. OnOff Controller

The station-keeping method considered for use here 1is state
feedback control computed from minimization of a quadratic cost

(28-31}) (32,331 pave used a similar control

function. Other researchers
scheme for work concerning planned libration point orbits in the
Earth-Moon and Sun-Earth systems. The method has been shown to produce
competitively low control costs; however, this type of scheme has
significant drawbacks for actual implementation. The method as used
here assumes piecewlise constant control inputs, yet thrusters typically
are not designed for constant operation. (This type of thruster is
being developed now, however, for use in the next decade.) Generally,
impulsive control inputs are preferred in practice.

The control strategy considered here incorporates the use of a
torus about the reference trajectory; the control input 1is delayed
until the limits of the predetermined torus are violated. Because of
actual mission constraints, this formulation also includes a specified
minimum number of days between manuevers and a minimum control input
magnitude. Simplifying assumptions, related to accommodation of the
time-varying nature of the residuals, will be discussed later. All of
these minimal constraints and as yet unspecified simplifying
assumptions make this formulation truly "suboptimal" yet
computationally simple; however, a great deal of problem insight can be
gained from this analysis.

Throughout the formulation of all of the station-keeping
algorithms, the reference trajectory is defined by six cubic splines,

one for each of the six states. The continuous, linearized residual

model is given in the following form:

x(t) = A(t) %x(t) + B u(t) (2-24)

a(t) = G(t) x(t), (2-25)
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where

000
000
B=|000
100 (2-26)
010
0 0 1]

and A(t) is the 6x6 Jacobian matrix derived in Chapter 1. The state
feedback gain matrix 1is G(t). For computation of the plecewise
constant suboptimal gains, the system (2-24) 1is discretized to

produce-lzg'al’a‘]

X 0" ®(k+1,k) X *+ BD u(k), (2-27)

where §k is the residual state vector at time step k; ®(k+1,k) 1is the
state transition matrix at time step k+1 relative to time step k; BD is
the discrete matrix derived from B; and u(k) = Gk §k is the
plecewise constant state feedback control. The controt energy is
computed in an optimal way through minimization of a quadratic cost
function.

The feedback gain, Gk, can be calculated by minimizing the

following total cost functlion:

n~-1
Vip) =L (X pQ X + U (k) RUKI, (2-28)
k=0
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where Q iIs the dlagonal weighting matrix for state residuals; R is the
diagonal welighting matrix for control input; n is the number of time
steps used for the control inputs; p is the scalar that can be used to
vary "tightness"; and terminal state constraints are omitted.

The number of time steps needed for a given trajectory is
determined by the time in days between each computed change in control
effort and by the duration of the orbit. For example, a 6-year
trajectory with control inputs computed in 20-day segments would
require n = 108 control time steps. In general, minimization of the
cost function V(p) 1s obtained through a sequence of difference
equations that can be solved by a backward sweep method.[3°’31]

One further computational simplification employed here is to use
the stabilizing steady-state gain solution to the cost function V(p).

This steady-state assumption (n»w) ylelds the following matrix solution

for the state feedback gain matrix Gk:[29l
T -1.T
G =-(R+B K B) B K &(k+1,k), (2-29)
k D k D D k
where
Kk=¢r(k+1,k)Kk¢(k+1.k)-
®" (k+1,k)K B_(R+BF K B ) 'B" K &(k+1,k)+pQ (2-30)
' kD D kD D k ! !

(2-31)

54




Equation (2-30) is the algebraic matrix “Riccati” equation used to
compute optimal steady-state feedback gains. This algebraic matrix
"Riccati"” equation is a simplification of a matrix difference equation
that has a continuous counterpart--the "Riccati" matrix differential
equation used to compute optimal state feedback in continuous
time-varying systems. These matrix "Riccati” equations were so named
by Rudolf E. Kalman in 1960. '

Riccati (1676-1754) of Venice, had considered the solution of a special
(36,37]

In 1724, Jacopo Francesco, Count

form of a scalar differential equation in his work in acoustics.
His equations appeared in many applications related to Bessel
functions. Some 20 years earlier, James Bernoulli (1654-1705) worked

(371 Jean Le Rond

on solutions to a similar differential equation.
D’Alembert (1717-1783) was the first to work on a more general form of
these scalar differential equations and used the name "Riccati
equation" for the equations of that general form.lss]

In thls work, the continuous controller uses piecewise constant
gains. These steady-state gains are computed for time steps of 20 days

in a suboptimal scheme.‘3h38!

The exact equations of motion are
integrated, 1incorporating the control inputs, 1in the elliptic
restricted three-body model using a Runge-Kutta fifth-order numerical
integration routine.

The differential equations to be integrated are then

X-20y-= Ux +0y+ u, (2-32)

;}+2é>'<=uy-éx+u2, (2-33)

z =U + u_. (2-34)
z 3
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The control energy is input through the constant accelerations
denoted in equations (2-32), (2-33), and (2-34) as u, u, and u,
respectively. This state feedback contr- ler, using steady-state
gains, could be formulated to compute a new control Gu every control
time step. The control time step might be every 20, 30, 45, or even 60
days. In this way, a low level of accelerative control energy,
changing periodically, could be used continuously to maintain the
spacecraft within a torus about the nominal path. Figure 2-6 depicts
the control scheme for the discrete-time continuous controller. This
type of continuous controller formulation has shown excellent results;
however, the very low level of commanded control input 1is not
operationally feasible.

A more practical station-keeping algorithm could use an on/off
control scheme that would also incorporate the various minimal control
constraints mentioned previously. Even though an impulsive
(delta-velocity) controller 1is generally considered to be the
currently preferred method for station-keeping, investigation of an
on/uff contioller can lead to valuable problem insight and may someday
prove useful, given future technological advances.

For the On/0Off Controller, the control inputs are set at a
constant magnitude for a given 20-day time period and are then off
(zero magnitude) until certain minimal constrants are met or exceeded.
In this formulation, the control energy is zero unless a specified
acceptable deviation distance from the nominal path is violated, a
minimum control separation time 1s exceeded, and a minimum control
magnitude is surpassed. The On-0Off Controller is depicted in Figure
2-7. The control effort is computed by using the spacecraft’s position
and velocity errors relative to the nominal state at time tk to
calculate uk=kak where Gk is the constant state feedback gain matrix
computed in equation (2-29) for the given control time step, and X, is

the state vector of residuals from the nominal path.
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T = [uy +u} +uf]

t1 - to =t2‘t1 =t3' t2=t4 - t3 =t5' t4=At

At COULD BE 20 DAYS OR 30 DAYS OR 40 DAYS

FOR TH!S RESEARCH, At IS 20 DAYS.

Figure 2-6. Discrete Time Continuous Controller.
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At COULD BE 20 DAYS OR 30 DAYS OR 40 DAYS.....

FOR THIS RESEARCH, At IS 20 DAYS.

Figure 2-7. On/Off Controller.
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The weighting factors (p, Q, and R) in equation (2-28) determine
the contribution to the total cost of deviations from the nominal path
as compared to the costs of the control inputs required to counter
these deviations. The positive scalar weight, p, has been used in

29,31,33
other research( »331

and, for this effort, p determines the
“tightness” of the control; that is, a relatively large value of p
causes residuals relative to the nominal path to be more costly. This
will, in general, force the control algorithm to input comparatively
larger control effort to maintain the spacecraft closer to the nominal
path. The R weighting matrix in the cost function, V(p), in (2-28) is
arbitrarily chosen as the 3x3 identity matrix. This value for R gives
the control input in each direction equal weighting.

The elements in the 6x6 diagonal matrix Q may be chosen in several
ways. One particular method for choosing these entries provided
results that were inconclusive here yet may prove valuable in future
research. For each control time step (20 days), the entries in the Q
weighting matrix were computed in a predetermined way from elements of
the state transition matrix evaluated at that time step. Use of the
sensitivities reflected in the state transition matrix slightly
decreased the total control cost corresponding to this station-keeping
method. This selection method for the elements of the Q weighting
matrix is an area for future investigation and is not presented here.

Secondly, both the continuous and the on/off control methods can
incorporate the estimated off-course deviation from the nominal path at
the end of a control time step In order to modify the control effort
input at the start of the step. This "shooting method" uses the
otherwise planned control input to predict the resulting error at the
end of the control time step or at some point further along the track,
and then adjusts the initial gains to accommodate the predicted errors.
This modification has been shown to substantially decrease the total
control costs as compared tc other adjustments investigated in this
research. The results of several differing station-keeping methods are

now presented in Chapter 3.
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CHAPTER 3: STATION-KEEPING RESULTS AND COMPARISONS

Ideally, the control scheme modifications that are investigated
here and the overall results from this preliminary work should be
compared to other Lagrange point station-keeping results. A criteria
for this comparison could be the magnitude of the total control effort
that is needed to successfully maintain the vehicle, satisfying all
station-keeping requirements, for a 1l’bration point orbit of some fixed
duration. The fixed duration for these comparisons will be a 2-year
segment of the nominal trajectory. The results of the various
station-keeping approaches that are evaluated in this research will be
shown to rroduce excellent results. However, before presenting any
results and then discussing the comparisons, it is necessary to address

two additional questions:

1. Are the Av random variables (approximately) normally
distributed?

2. What is a reasonable sample size?

In this s3section, the results of each 2-year station-keeping
simulation is considered a functic¢n of several random inputs and is,
therefore, treated as a random trial. Each station-keeping simulation
produces a total propellant value (AVT) that is a scalar measure of the
cost of station-keeping for that 2-year period. The simulation that
produces the AVT variable is subject to several random 1inputs and,
consequently, will vary for each Monte Carlo trial (simulation) of the
station-keeping algoritm. Several independent simulations (random
trials), where the input random variables have consistent statistical
characteristics (mean and variance), will produce a random sample of

AvT results (one for each simulation). That is, each station-keeping
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run is treated as a random trial with random variable AvT (the
magnitude of total AV for the two-year orbit), and a group of random
trials for which all the input variables (torus size, tracking error
levels, etc) remain the same are then treated as a random sample. This
resulting sample can then be tested to see if it fits the Gaussian
distribution; the somewhat related question of the required number of
station-keeping runs per sample must then be addressed.

If the results of the station-keeping simulations were simply a
linear combination of Gaussian random variables, the resulting
distribution of AvT would be Gaussian. This simple representation is
not true here; therefore, 1t is necessary to complete a chi-squared
goodness of fit test on the results of several trial runs in an initial
sample. (Certainly, there are other statistical tests that can be
used to determine whether a sample 1is drawn from a Gaussian
distribution; the chi-squared test is not the most powerful, but it is
the most easily presented.) Choosing a sufficiently large sample size,
comparing population means, and constructing confidence intervals can
be simplified by knowing the probablility distribution of the propellant
costs. Hence, the computation of a sufficient sample size apriori will
permit the comparison of station-keeping methods with a minimal number
of simulation runs.

The results and comparisons that follow also include statistical
comparison tests for equivalent variances and equivalent means of the
values for Av.r resulting from station-keeping analyses using Lissa jous
and halo-type nominal orbits. The test for equivalent means between
populations of, say, halo-type and Lissajous orbit propellant costs

(AvT) requires the use of a pooled variance equation.lag]

The pooled

variance equation in turn assumes that the sample variances are from
populations with equivalent varliances; therefore, the statistical
hypothesis test for equal population variances will logically preceed

the test for equal population means.
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A. Distribution of Delta-Velocities

Histograms of Monte Carlo simulations for the Delta-Velocity
Controller II and the On/0Off Controller are shown in Figures 3-1 and
3-2, respectively. The histograms are plotted using ten classes of
equal width. The vertical axis is the relative frequency of the values
of AvT in that class. The propellant costs (values of AVT) for
station-keeping on a 2-year halo-type orbit are plotted along the
horizontal axlis. The class mldpoints are 1labeled; however, the
relative magnitudes of the AvT results for these two controllers should
not be used to compare the two controllers. This comparison of AvT
values for the various station-keeping algorithms will be completed
later in this section. Both histograms show a close resemblance to a
histogram based on the Gaussian distribution. (Recall that the general
shape of a Gaussian distribution is determined by the variance; the
sample mean affects the expected frequencies computed from the Gaussian
probability distribution and thus also helps to determine the shape of
the histogram that could be constructed using expected frequencies.)
In Figures 3-1 and 3-2, the observed frequencies from the sample are
printed above the classes in the histograms. The approximate expected
frequencies, computed from the Gaussian distribution using the means
and standard deviatlions of the samples, are printed in parentheses
below the classes of the histograms.

The chi-squared goodness of fit test is appropriately used here to
verify mathematically that the frequency distribution used to construct
the given histogram fits the Gausslan distribution. In order to
investigate this resemblance, the hypotheses tested and the decision

rule are:

Hypotheses:
Ho:Distribution is Normal.
thDistribution is not Normal.

Decision Rule:
If X2 = xz, conclude Ho'

Otherwise, conclude Hi.
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Figure 3-1. Histogram for Total Delta-Velocities Resulting from use of Controller I.
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Typlcally, the chi-squared goodness of fit test includes the
listing of expected frequencles (Fa) that are computed under the
assumption that the null hypothesis (Ho) is true. The null hypothesis
here is that the distribution of the values of AvT follows the Gaussian
distribution; therefore, the ten class boundaries must be determined in
terms of the standardized normal variable (Z) in preparation for
computation of the expected class probabilities. The class boundaries
in terms of the standardized normal variable can then be used with a
standard table of probability values for the Gaussian distribution to
compute expected probablilitles. The expected frequencies for each
class can then be calculated. The expected frequencies (Fl) and the
observed frequencies (the f1 that can be read directly from the
histograms or frequency distributions) are then used in the computation
of the test statistic. The test statistic X° can be calculated as

(3-1)

Table 3 summarizes the mathematics of the chi-squared goodness of
fit test for the frequency distribution of the Delta-Velocity
Controller II in Figure 3-1.

For this test, the chi-squared random variable (xz) has k-2-1 = 5
degrees of freedom, reduced due to required pooling. (Pooling is
required because the expected frequency in any class must be at least
two for the chi-squared goodness of fit test.) The level of confidence
is 95%. Therefore, xz = 11.07. For the distribution depicted by the
histogram in Figure 3-1,
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Table 3. Chi-Squared Goodness of Fit Test for Figure 3-1.

2
Class Boundaries 2 Values Probability Fi fl Xi
.1415 .1681 - -2.622 .0044 .462}. 1}, 1233
.1645 .1946 -2.622 -1.973 .0200 2.100 1
.1946 .2211 -1.973 -1.325 .0674 7.077 5 .6096
L2211 2477 -1.325 - .676 . 1565 16.433 17 .0196
.2477 .2742 - .676 - .027 .2397 25.169 31 1.3512
.2742 . 3007 - .027 .621 .2440 25.620 20 1.2328
.3007 .3273 .621 1.278 .1673 17.567 22 1.1190
.3273 .3538 1.278 1.919 .0729 7.655 4 1.7447
.3538 .3803 1.919 2.567 .0222 2.331}‘ 3}, 4384
.3803 .4068 2.567 () . 0052 .546 1
(Note: The symbol ®* indicates pooling.) X2=6.639

The other frequency distribution whose histogram is displayed in
Figure 3-2 yields a similar small value for XZ. The decision rule then
leads to the conclusion that the distribution of the AvT values is
normal for both controllers. For normally distributed random
variables, small sample sizes (less than 30) can be used, and there can
still be confidence that the sample means are normally distributed.
Unless the distribution of the AvT values was highly skewed, a sample
size of 30 would generally ensure that the sample means were
approximately normally distributed. Therefore, confidence intervals,
using the standard normal (Z) or student’s (t) distribution can be
readily constructed using sample sizes of 30.

One other restriction on the minimum sample size could be the
required width of the confidence intervals. Specifically, the larger
the random sample size, the narrower the resulting confidence interval
for the mean. The need for a "“narrow" confidence interval must

therefore be weighed against the difflculty in gathering the data. A
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sample, as used here, 1s a group of station-keeping (Monte Carlo)
simulations for which the minimal constraints are the same and the
Input errors have identical means and varlances. A sample can then
also be termed a "case" for later comparison with other cases
(samples). The sample size is denoted here by the symbol "n“, and
sample slzes of 30 are generally adequate to ensure that the sample
means are at least approximately normally distributed. However, this
value of n must also be large enough to make "useful” confidence

intervals.

B. Sample Sizes for Simulation Runs

One goal that motivates the use of several random trials
(simulations) of a station-keeping algorithm is the desire to construct
confidence 1intervals for the mean AVT, here denoted as A; for the
sample. A sample size of perhaps 20 (or even 40) for a normally
distributed random variable may not provide a confidence interval that
is narrow enough for comparison purposes. Too many runs can,
alternatively, be inefficient while adding little to the value of the
study. The selection of an appropriate sample size requires the choice
of confidence level (derived from the selected a risk) and interval
half width (h). The standard deviation of the population is the
parameter ¢ that can be estimated by the sample statistic s (sample
standard deviation). The confidence interval for the actual population
mean u is typically constructed surrounding the sample mean (A;), such
that:

ov + (-2 ¢)/n'%s u s Av + (Z ¢)/n'’?, (3-2)

or

Av -h spusAv+ h. (3-3)
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Therefore,

h = (Z ¢)/n'’2. (3-4)

Solving for n results in the following approximate guideline for

selecting a sample size:

n=(2a)/m s (2 s)2n (3-5)

Notice that this estimate for n uses an approximate value (s) for
o and a judgement concerning the size of an acceptable half width (h).
The Z value is obtained from tables that are available for the
standardized normal variable, using the fact that one-half of the
o risk is placed in each tail of the distribution. By choosing h to be
less than approximately 104 of a A; value that 1is equal to
.2753, h can be selected a3s .020 meters per second. The sample
standard deviation (s) is .0409 meters per second. The standard normal
variable, computed for a = .01 (a level of confidence of 99%), |is
2.576. Hence,

n = [(2.576)(.0409)1%/(.020)% = 27.75 » 28 (round up).

Clearly, this is a very approximate method to select the sample
size n; however, sample sizes of 30 should clearly provide sufficiently
accurate confidence intervals. The value of the half width (h) for a
given confidence interval will depend on the sample's standard
deviation (s). In other samples, it will undoubtedly differ from the
.020 meters per second used in this example. However, knowing that the
AvT random variables are approximately normally distributed and, in one
case, a very narrow confidence interval could be constructed with a
sample size of 28, further Monte Carlo simulations are completed using

30 runs for each sample.
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C. Results and Comparisons

In this sectlion, results from station-keeping simulations are
presented. Each statlon-keeping method discussed earlier is
represented. The results are listed in the order in which the
algorithms were derived, and the population variances and values of the
mean AvT {denoted as A;) are statistically compared for station-keeping
relative to the halo-type or Lissajous orbit defined earlier. The
final subsection provides a survey of libration point orbit
station-keeping costs listed in some other works. Note that the
following notation will be employed in this section for convenience:
Atn‘n is the minimum time between control 1inputs, Avn‘“ is the minimum
control input magnitude, dnln is the minimal distance of the spacecraft
from the nominal path before a control input is allowed (this is then
also the size of the acceptable torus); Av is an individual (vector)
delta-velocity input with magnitude Av; AvT is the (scalar) total
delta-velocity resulting from a single 2-year station-keeping
simulation; "“n" is the number of simulations in a given sample and is
often called the sample size; A; is the (scalar) average of all the AvT
values in a given sample of n simulations; "s" 1is the standard
deviation from the sample of n simulations; and a “"case" is a sample of
n station-keeping simulations for which the means and variances of all

the input variables plus the constraints are held at consistent levels.

1. Delta-Velocity Controller I Results

The first delta velocity controller derived in this work provides
excellent station-keeping costs when the minimum time that must elapse
between manuevers (Atm“) is specified as 40 or 60 days. The results
when Atm‘n is equal to 80 days are less promising; however, these costs
may be substantially reduced by an improved selection method for the
target times (described below) and weighting matrix entries. Both

subjects would certainly be areas for future research effort.
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The target times are chosen for this work depending on the value
of At_lu (which 1s certainly not the only method of choosing the

targets) and are summarized as one of three possibilities:

At = 40 days thent =t + 20 days and t_ = t_+ 40 days,
min 1 Q 2 4]

Atnln = 60 days then t1 = to + 40 days and tz = to + 60 days,

At = 80 days thent =t + 40 days and t_ = t_ + 80 days.
min 1 0 2 0

The weighting matrix entries are held constant for these
comparisons (other methods of weighting matrix computation could also

have been used):

R=100| 1 |,
1
1
R =10 1 |,
v
1
1
s=s=| 1 [,
v
1
.01
Q=101 1
1
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The results of five samples (five cases) with sample slizes of 30
each for the 2-year statlon-keeping simulations are depicted in

Table 4. These cases for Delta-Velocity Controller I are labeled in

the first column as I-1, I-2, etc. The column labeled as “Atm:n"

indicates the minimum separation in days between control inputs for
that case. The column “Avmh;' indicates the minimum control energy in
meters per second that must be exceeded by a computed Av before it will
be implemented. These minimum Av values agree with values used in

other libration point orbit station-keeping studies. (4941 An

investigation by Longuski and Todd[42] also gives considerable insight

into the magnitudes of the various force levels affecting the

spacecraft. Their findings have been used to help determine the
minimum control energy levels that can be used in this effort. The
symbol "dml;' (torus size) 1s in kilometers and indicates the distance

the spacecraft must be from the nominal path before a control force
will be input. All three restrictions (Atmin' Avmln, and dmln) must be
met or exceeded before a control input is possible.

A The average 2-year Av.r for the Lissajoui orbit is indicated by
AVL; for the halo-type orbit, it is denoted Avh. The sample standard
deviations are s for the Lissajous orbit and s, for the halo-type
orbit. Sample means and standard deviations are given in meters per
second. These sample means and standard deviations, as listed in
Table 4, are, in general, not equal for the two different types of
orbit within each case (that is, A;L * A;h and s, * s, within each
case); however, the differences may not be statistically significant.
The significance of the differences will be discussed shortly.

The results depicted in Table 4 are derived from simulations using
the nominal orbits depicted in Figures 3-1 and 3-2. The nominal orbits
are thought to be representative of those being considered for
near-term missions. However, due to the virtually infinite variety of
sizes and shapes for these types of orbits, no claim can be made that

these results would apply to all libration point orbits.
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Table 4. Sample Means and Standard Deviations for Controller 1I.

Lissajous Orbit Halo-Type Orbit
# At Av d Av s Av s

min min min L L H H

(days) {m/s) (km) (m/s) (m/s) {m/s) (m/s)
I-1 40 .015 0 .3276 .0737 . 3395 .0717
I1-2 40 .050 100 .7994 .0903 . 7845 .1099
I-3 60 .015 0 1.0602 . 7597 .8945 .9088
I-4 60 .050 100 1.3909 .5180 1.2804 .3105
1-5 80 .015 0 10.4138 12.8951 13.2013 10. 3289

Table S contains other useful data concerning the Delta-Velocity
Controller 1 samples. This data includes (he range of values for the
random trials within each case. For instance, in case I-1, at least
one of the random trials (one 2-year AVT) for a Lissajous orbit had the
minimum AvT value of .18 meters per second. In the same sample, at
least one run had the maximum AvT value of .49 meters per second. The
range and the standard deviation are both measures of dispersion for

the samples.

Table 5. Ranges for AvT’s and Number of Av’s for Controller I.

Lissajous Orbit Halo-Type Orbit
Average
At Av Torus av Range Av Range  Number
min min L H
(days) (m/s) (km) (m/s) (m/s) (m/s) (m/s) of Av's
I-1 40 .015 0 .3276 .18-.49 .3395 .23-.54 14-15
I-2 40 .050 100 . 7994 .65-1.00 .7845 .59-1.03 10-11
I-3 60 .015 0 1.0602 .26~-2.92 .8945 .27-4.46 9-10
I-4 60 .050 100 1.390" .62-3.02 1.2804 .74-2.01 8-9
I-S 80 .015 0 10.4138 .72-31.9 13.2013 .63-35.3 7-9
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The average number of individual Av’'s applies to both the
Lissajous and halo-type orbits; it is the median number of control
inputs required for the 2-year statlion-keeping simulations within a
given case (sample). Notice that in case I-5, one or more of the 30
random station-keeping trials required only 7 manuevers over the 2-year
period.

It is now straightforward to test whether the "type" of orbit
(Lissajous or halo-type) affects the resulting 2-year station-keeping
costs. The statistical test for equal means assumes approximately
equal sample variances, hence that will be a natural first test to
conduct. The statistical hypothesis test for equal variances assumes
that the test statistic (s:/si) follows Fisher's F probability
distribution. The F distribution has two types of degrees of freedom
(numerator and denominator) and is tabulated also in terms of the level
of confidence. The auegrees of freedom are 1 less than the respective
sample size (which is n) for the numerator and denominator samples; so
that the degrees of freedom in this example are 29 (which is n-1) for
both the numerator and denominator. An F statistic denoted by
F}zg,zm.995) indicates 29 degrees of freedom for both the numerator
and denominator and a level of confidence of 994. The a risk is then
.01 and is divided equally between lower and upper bounds in the
decision rule. The test statistic is F' = (s:/si), and the hypotheses

and decision rule are:

Hypotheses:

f=o}
S
H

65 (Vvariances for halo-type and Lissajous orbits are equal.)

Decision Rule:

If F = (sz/sz) s F
H L

conclude H .
(29, 29, .005) o

(29,29, .995)°

Otherwise, conclude H1
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In the work that follows, the lower F statistic in the decision rule is

labeled as Flow; the upper F statistic is denoted Fup. The F

distribution value is F = 2.7. The value of Fl is
o

= F
(29,29, .995) up w

derived from the value of Fup and is given by F
1/72.7 = .3704.

= F
(29,29, .005) low

The cases I-1 through I-5 in Table S can now be analyzed for equal
variances. The numerical results and the hypothesis test conclusions

are summarized in Table 6.

Table 6. Results of Equal Variance Tests for Controller I.

# (mj;) (mj:) Flow F‘ Fup Conclusion
I-1 .0737 .0717 .3704 .9465 2.7 Ho
I-2 .0903 . 1099 .3704 1.4812 2.7 H0
I-3 . 7597 .9088 .3704 1.4310 2.7 HO
1-4 .5180 .3105 .3704 .3593 2.7 H1
I-5 12.8951 10. 3289 .3704 .6416 2.7 HO

Thus, in four out of the five cases, the variances can be assumed
to be equal. In general, there is some finite risk of finding in favor
of H1 even when Ho is true; however, this a risk (.01) was chosen to be
very low in this case. The hypothesis tests for equal population means
corresponding to case 1-4 should only continue if some rough
equivalence of variances can be determined for it. Further samples in
this case could be compiled so that the hypothesis test for case I-4
could be redone, and this could result in substantial problem insight.
However, the failure by a small margin for the hypothesis test for only
this case could uiso allow the use of a more liberal and general rule
of thumb: if the sample variances are within approximately one order

of magnitude, the pooled variance equation can be correctly wused.
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Therefore, the hypothesis test for equal population means may be
pursued in all of these cases I-1 through I-S.

The statistical hypothesls test for equal population means (pL for
Lissajous and Hy for halo-type orbit delta-velocities) assumes that the
difference between the two population means 1s distributed according to
the Student’s t distribution. The test statistic is t' and is a
function of the difference between the sample means (A;H-A;L).

The pooled variance equation is

(n -1)s% + (n-1)s2
= L L H__H (3-40)
(nL-l) + (nH-l)

where the number of random trials for both Lissajous (nL) and halo-type

(nH) orbits is 30 in this work. The test statistic is

- (AVH-AVL)

s (1/n +1/n )1/2
c L H

The hypotheses and decision rule are:

Hypotheses:

lepL # “H'
Decision Rule:
»
If -t =t =1t, conclude Ho'
Otherwise, conclude Hl.

The o risk of .01 is again equally divided in both tails of the t
distribution. For this hypothesis test, the degrees of freedom are

equal to (n -1) + (n -1), and the t statistic is +t = 2.66.
L H {.995,58)

75




The numerical results and the conclusions are depicted in Table 7.

Table 7. Results of Equality of Means Tests for Controller I.

# A;L Azﬂ -t t. t Conclusion
(m/s) (m/s)
I-1 . 3276 .3395 -2.66 .6314 2.66 Ho
1-2 . 7994 . 784S -2.66 -.5736 2.66 H0
1-3 1.0602 .8945 -2.66 -.7661 2.66 Ho
I-4 1.3909 1.2804 -2.66 n/a 2.66 n/a
I-5 10.4138 13.2013 -2.66 .9241 2.66 o

The hypothesis test conclusions are then, in general, that there
is no significant statistical difference between the 2-year
station-keeping costs for the Lissajous and halo-type orbits identified
in the study when Delta-Velociiy Controller I is used. The entries

n/a" in Table 7 are for the case [-4 for which the hypothesis test
2 2

for equivalent variances led to the conclusion in favor of leo-H # o -
.

If the variances were pooled, t for this case would be -.9853, and .he

conclusion would also be in favor of equal means (HozuL = pH).

Now that the statistical hypothesis tests for equal population
variances and equal population means between halo-type and Lissajous
orbits have been completed for this controller, two more short analyses
seem appropriate. Station-keeping error analysis wlll look at the
station-keeping (propellant) costs that can be attributed to each error
source. Finally, confidence intervals for the mean AvT cost for each
case can be constructed here and used later in the comparison
subsection. A limited station-keeping error analysis for this
station-keeping method has been conducted, and the results are shown in
Table 8.

This error analysis seeks to quantify the relative contributions

of the individual error sources modeled in the simulations. The data

in Table 8 corresponds to results for the halo-type orbit shown in




Figure 1-5. The injection and tracking error levels are those computed
in the chapter two orbit determination error analysis of this work for

a halo-type orbit, and the results found here are compared to those

Table 8. Station-Keeping Error Analysis Results.

~ Contribution “

Error Source This Work Sim6[62]
Injection Errors 2.5% n/a
Control Errors (10%) 2.0% 10.0%
Tracking Errors 55.9% 50.0%
Solar Reflectivity

Uncertainty 35.0% 15.0%
Force Model and

Integration 4.6% 25.0%

found in Simé.(4°]

The major difference between the error analysis in
this work and the station-keeping error analysis in Simé is that his
study uses random solar reflectivity errors with a standard deviation
of 2.5% versus the 13% used here. A second difference is that this
work also includes gravitational parameter uncertainty in the tracking
error levels. {The nominal orbit used in Simé may also be slightly
different from the halo-type orbit used here.) Because of the
increased level of solar reflectivity and gravitational parameter
uncertainty, the overall error level is considerably larger, and the

smaller contributors (such as control errors and integration errors)

provide ¢ relatively smaller percentage of the total control costs.
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Lastly, confidence intervals for the mean AvT used in both types
of orbits can also be constructed. The form of these confidence

intervals used later in this chapter are

Lower Limit Upper Limit

s 172 ° 1/2
Lissajous orbit: AvL + (-t SL)/nL sp s AvL + (t sL)/nL
-~ 1/2 ~ 1/2
Halo-type orbit: AvH + (-t sH)/nH ] H, = AvH + (t sH)/nH .
The t statistic will have nL-l and nH—l degrees of freedom for the
Lissajous and halo-type orbits’ confidence intervals, respectively. An

a risk of .01 is used to give a t statistic of 2.462. The numerical

results are depicted in Table 9.

Table 9. Confidence Intervals for Controller I.

N Lissajous Orbit (m/s) Halo-Type Orbit (m/s)
Lower Limit Upper Limit Lower Limit Upper Limit
I-1 .2946 . 3607 .3073 .3717
1-2 .7588 . 8400 .7351 .833%
1-3 . 7187 1.1020 . 4860 1.3030
I-4 1.1581 1.6237 1.1408 1.4200
I-5 4.6175 16.2101 8.5585 17.8440

Notice that there is considerable overlap of the intervals in each
case for the halo-type and Lissajous orbits. These 99% confidence
intervals can be used later to compare the station-keeping costs of
Delta-Velocity Controller 1 with several other approaches such as Delta

Velocity Controller II.
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2. Delta-Velocity Controller II Results

The formulation of Delta-Velocity Controller II requires the
selection of seven weighting matrices (two more than are needed for
controller 1I). The formulation also requires the determination of
three target times. The weighting matrices used for these simulations

were set for all trials at:

1
R=1001] 1 |,
1
1
R =10 1 |,
v
1
1
s=s=| 1 |,
v
1
1
I=T = 1 ,
v
1
.01
Q=101 1
1
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The target times are selected such that if

= =t = =
At_in 60 days then t1 'o+ 25 days, tz to+ S50 days, and t3 to+ 75 days,
or

At =80 days then t =t + 30 days, t_=t + 60 days, and t_=t + 90 days.
min 1 0 2 o0 3 0

This second delta-velocity controller has been evaluated under
similar test conditions as in cases I-4 and I-5 for the first
delta-velocity controller. Here, they are labeled as cases II-1 and
I11-2, respectively. (See Table S5 for parameter selections in cases
I-4 and I-5.) Cases I-4 and II-1 differ only in the selection of
weighting matrices and target times; case II-2 uses a larger Avan and
larger dmn than case I-5. Clearly, the same hypothesis tests can be
conducted on these controller II cases, and confidence intervals can
also be constructed. Some of the numerical results for cases II-1 and
I11-2 are summarized in Table 10. The notatlon used here is identical

to that used for Table 4.

Table 10. Sample Means and Standard Deviations for Controller II.

Lissajous Orbit Halo-Type Orbit

# At Av d A; s A; s
min min min L L H H
(days) {(m/s) (km) (m/s) (m/s) (m/s) (m/s)
I1-1 60 .050 100 . 8450 . 1603 .8124 .1233
I1-2 80 .050 100 1.0852 . 4682 1.0740 .3436

The average Av.r for case I-4 was 1.3909 meters per second for the
Lissajous orbit and 1.2804 mete per second for the haln-type orbit.
The improvement in station-keeping costs is significant and perhaps
indicates that future work with this controller may be qulte valuable.
Other numerical results for Controller II are listed in Table 11. The

notation used here is identical to that used in Table 5.
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Table 11. Sample Ranges and Number of Control Inputs for Controller II.

Lissajous Orbit Halo-Type Orbit

Average

# At Av d av Range Av Range Number
min min min L H

(days) (m/s) (km) (m/s) (m/s) (m/s) (m/s) of Av’'s

II-1 60 .050 100 .8450 .57-1.15 .8124 .62-1.08 7-8

I1-2 80 .500 100 1.0852 .49-2.40 1.0740 .63-2.03 7-8

Both cases show that some simulations 1incorporating this
station-keeping strategy require as few as seven manuevers over the
entire 2-year simulation. The range of AvT values for both halo-type
and Lissajous orbits is again listed as another measure of the samples’
dispersion. The data in Tables 10 and 11 can now be tested for
equality of variance and equality of population means between halo-type

and Lissajous orbits within each case.

Initially,

the hypothesis that the population variances are equal

is tested.

The hypothesis test procedures and the notation are

identical to those used for these tests when evaluating results from

use of Controller I.

The hypothesis test and the decision rule are

summarized below; the numerical results and conclusions are listed in

Table 12:

Hypotheses
H:o° = o
0O H L

H :vz % 02
1 H L
Decision Rule

If ¥
(29,29, .005)

2,2
s (s8/8) s F , conclude H .
( H L) (29,29, .995) ¢ (]

Otherwise, Conclude Hr
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Therefore, with 99% confidence, it can be concluded that the
population variances are equa. when considering cases II-1 and II-2
(resulting from use of the Delta-Velocity Controller II). Once
population variances are found to be equal, the pooled variance can be
calculated and the hypothesis test for equal population means can be

completed.

Table 12. Results of Tests for Equal Variances for Controller II.

s s
L H *
# (n/s) (m/s) Flow F Fup Conclusion
I1-1 .1603 .1233 .3704 .5916 2.7 Ho
11-2 .4682 .3436 .3704 . 7339 2.7 HO

Again, the hypothesis test for equal population means is conducted

using the t distribution. The hypotheses and decision rule are

Hypotheses:

HI:“L # by
Decision Rule:

*
If -t =t s t, conclude Ho'

Otherwise, conclude Hl.

The a risk of .01 is again equally divided in both tails of the t
distribution. The degrees of freedom are, for this hypothesis test,
equal to (n -1) + (n -1) and the t statistic is #t = *2.66.

L H (.995,58)
The numerical results and the conclusions are listed in Table 13.
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For Delta-Velocity Controller II, the results clearly indicate
that the means for bnoth types of orbits for cases II-1 and II-2 are
equal with a 99% level of confidence. Now, in order to prepare for
later cost comparisons, confidence intervals for the mean propellant

costs can be constructed.

Table 13. Test Results for Equality of Means for Controller II.

# A;L A;H -t t’ t Conclusion
- (m/s) (m/s)
I1-1 .8450 .8124 -2.66 .4486 2.66 HO
I11-2 1.0852 1.0746 -2.66 .0344 2.66 Ho

The confidence intervals within both cases can be easily
formulated, again using the t distribution. An a risk of .01 is used
to give a t statistic of 2.462. The computed intervals for cases

that include both Controllers I and II are listed in Table 14.

Table 14. Confidence Intervals for the Mean for Controller II.

# Lissajous Orbit (m/s) Halo-Type Orbit (m/s)
- Lower Limit Upper Limit Lower Limit Upper Limit
I-4 1.1581 1.6237 1.1408 1.4200
II-1 L7729 L9171 .7570 .8678
I-5 4.617S 16.2101 8.5585 17.8440
I1-2 .8747 1.2957 .9200 1.2285

Clearly, Delta-Velocity Controller II exhibits a great improvement
over Delta-Velocity Controller I for cases involving Atml;= 80 days,
that 1is, a minimum control input separation time of 80 days. The
improvement may not completely be due to the added complexity of
Controller 11. In fact, Controller 1 may yield much improved costs
when alternative weighting matrix entries and target times are

selected. This is certainly an area for future inquiry.
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3. State Feedback Controllers

The state feedback controller formulated in this work can be used
as a Continuous Controller or as an On/0ff Controller. The results
associated with use of the On/Off Controller are primarily summarized
here. The Continuous Controller was developed in early research and
did not incorporate the realistic constraint of a minimum control
level, nor the use of a minimum deviation distance relative to the
nominal path. The station-keeping costs resulting from simulations
that incorporate the Continuous Controller are quite low; however,
spacecraft thrusters that can deliver continuous low thrust are not
currently operational, but are 1In development for use in the next
decade. The low level of thrust that may be required to implement the
Continuous Controller may still be too low for the engines currently in
development, and the computed thrust level may be of the same order of
magnitude as the uncertainty levels of other forces on the spacecraft.
As noted previously, in an Important work concerning this topic,
Longuski and Todd[42] have done extensive research in the area of
quantifying the various force levels on a spacecraft in orbit in this
solar system. The results of their work are used to help determine the

minimal control energy that is practical for this controller.

a. Continuous Controller Results

The costs resulting from application of the Continuous Controller
are briefly mentioned here, and the preliminary results from one Monte
Carlo trial appear in Table 15. These values are computed for a
spacecraft on the 2-year Lissajous path (depicted in Figure 1-4) in the
vicinity of the interlor libration point defined for the Sun-Earth+Moon
system. The error models for each of the six states are listed
vertically in the same order as the elements appear in the residual
state vector; that is, x,y.z,&,&,i. Tracking and injection errors are

modeled at different levels and are thus listed separately. The errors
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are represented in terms of mean and variance in the form N(p.ozh
where, of course, the mean is u and the variance is wz.

The error levels used in Table 15 are clearly not those listed in
Table 1 from the orbit determination error analysis investigation
briefly described in Chapter 1.[24] This preliminary continuous
control work was completed well before the error analysis was begun.
Further work on the Continuous Controller is not anticipated at this
time; the 1initial, partial results are only presented here for
information and comparison purposes. The injection errors agree with

those found in Rodriquez-Canaballaz], and the tracking errors

correspond to those of Simé[4°] for a libration point orbit.

Control input errors are computed as a percent deviation from the
control command. The control errors are then input independently into
each channel. The control inputs are continuous and at a constant
magnitude in each control channel for either 30-day or 45-day steps in
this study. The control inputs are then recalculated and input at the
next computed level for the following 30 or 45 days. This method of
computing control inputs is continued throughout the 2-year orbit.

Position errors are expressed in kilometers ard velocity errors in

meters/second.

Table 15. Control Costs Assocliated with the Continuous Controller.

Bias and Random Error Sources Two-Year AvT(meters/second)
lggection Tracking ) Control
N(100,0) N(O,I.S:)
N(100,0) N(O,Z.g )
N(100,0) N(0, 15%) . _
N(.05.0) N(O,.OOlz) N(0, 3%) .1422 (30-Day Steps)
N(.05,0) N(O,.OOlz)
N(.05,0) N(0, .0037)
SAME AS SAME AS SAME AS
ABOVE ABOVE ABOVE -5362  (45-Day Steps)
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The constant acceleration (in meters per second per second) used
by the controller over a given period is easily converted to a Av value
for comparison with other controllers. The acceleration 1is constant
over a given time step, and the equlivalent delta-velocity can be
computed by multiplying the constant acceleration by the duration of
the time step in approprlate units.

The method used here provides results that are approximately equal

(33] In that study, an integral

to those presented in Breakwell et al.
quadratic cost function is minimized to compute optimal state feedback
control for a perlodic halo-type orblt near the translunar libratlion
point in the Earth-Moon system. The control accelerations of about
1078 g's listed in Breakwell et al are sllightly higher than the
8.0x10~° g’'s that are approximately required for the method used here.
It is interesting to note that the solar reflectivity uncertainty at
the two standard deviation level is approximately 4.0x107° g's for this
spacecraft in the libration point orbit.laz] A portion of the
difference in required control levels may be attributed to the much
larger value of u in the Earth-Moon system versus the Sun-Earth+Moon
three-body problem; the orbit used in Breakwell et al is also larger,
in relation to the relative size of the respective three-body systems,
than the nominal path used here. In addition, Breakwell et al assume
that the only nonzero entries in the state error weighting matrix Q
(that appears in the quadratic cost function) are those associated with
position errors; velocity errors are unweighted.

The results listed in Table 15 clearly show that the Continuous
Controller can maintain the spacecraft near the nominal Lissajous path
for 2 years at a very low cost. However, operational requirements
suggest that the On/Off Controller that incorporates the use of some
minimum time between manuevers, minimal control input magnitudes, and a
minimum deviation distance from the nominal path should be
investigated. This On/0Off Controller, while still using constant
accelerative inputs over disjoint time periods, may more closely model

possible thrust devices being developed now for use in the next decade.
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b. On/0ff Controller Results

The control costs assocliated with the On/Off Controller are larger
than those found for cases that incorporate the delta-velocity
controllers in this work. For comparison purposes, the accelerative
inputs have been converted to equivalent delta-velocities and have been
summed to reflect a 2-year total. The AvInln value can also be
converted in a similar way to find minimal accelerative force levels.
For instance, a minimum Av of .015 meters per second is eauivalent to a
minimum constant acceration of approximately 8.681x10"° meters per
second per second input for 20 days. A minimum Av of .025 meters per
second 1s equivalent to a minimum constant acceleration of
approximately 1.4468x10°° meters per second per second. The results
from simulations in two cases that incorporate the On/Off Controller
are summarized in Table 16. The notation is identical to that used in

previous sections.

Table 16. Mean and Varlance Levels Associated with On/0Off Controller.

Lissajous Orbit Halo-Type Orbit
# At Av d Av s A; s
min min min L L H H
(days) (m/s) (km) (m/s) (m/s) (m/s) (m/s)
III-1 20 .015 100 . 3255 .0428 .3661 .0785
111-2 40 .025 100 .7033 .2788 .6999 .2340

The equivalence of the population variances for Lissajous and
halo-type orbits can now be tested. Again, Fisher’'s F test is used to
test for equal population variances. The a level is set at .01, and

the hypotheses and decision rule are given as:
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Hypotheses:

H :02 * 02.
1 H L
Decision Rule:

If F s (s2/s%) s F
H L

conclude H .
(29,29, .005) 0

(29,29,.995)"
Otherwise, Conclude H1'

The numerical results and conclusions of the hypothesis tests for
equal variances are listed in Table 17. The notation is identical to
that used in previous sections.

For both cases, the statistical hypothesis test for equality of
population variances within each case for both Lissajous and halo-type
orbits results in the conclusion that Ho is, in fact, true. Notice
that, if a slightly larger o« risk were used, cases III-1 and III-2
would indicate that the two populations do not have equivalent
variances. However, for these cases, we can, in fact, use the pooled
variance equation and can then proceed with the tests for equal

population means.

Table 17. Test Results for Equal Varlances for the On/Off Controller

s s

) L H * .

# (n/s) (m/s) Flow F Fup Conclusion
I11-1 .0488 .0785S .3704 2.5876 2.700 Ho
I1I1-2 .2788 .2340 .3704 . 7044 2.700 HO

The next step 1n this analysis is to test for equivalent AvT
population means. The test again uses the student’s t distribution,
and an a value of .01 is used. The hypotheses and the decision rule

are given by:
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Hypotheses:

Ho:uL = My

leuL # “H'

Decision Rule:

E ]
If -t =t =t, conclude Ho.

Otherwise, conclude H1'

The « risk of .01 1is again equally divided in both tails of the t

distribution. The degrees of freedom are, for this hypothesis test,

equal to (p -1) + (n -i1) and the t statistic is =*t = 12,66,
L H {.995,58)

The numerical results and the conclusions of these tests are listed in

Table 18. The notation used here is identical to that used in previous

sections.

Table 18. Results of Tests for Equal Means for the On/Off Controller.

# A;L A;H -t t' t Conclusion
- (m/s) (m/s)
I11-1 . 3255 .3661 -2.66 -2.49 2.66 Ho
I11-2 .7033 .6999 -2.66 .1011 2.66 Ho

For both control options III-1 and 1II-2, the conclusion is that
the population means are equal with 99% confidence. Clearly, with an «
risk slightly greater than 1%, control option I11I-1 would lead to the
conclusion that the two populations have unequal means.

It might be interesting to end this section with a short
comparison of costs produced using the On/0ff Controller with those
resulting from simulations with the Delta-Velocity Controller I. This
comparison should be completed with the note that the two types of
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controllers (delta-velocity and on/off) are, in fact, fundamentally
different. Some cases are compared in Table 19 by using confidence
intervals for the mean. The significant overlap of the confidence
intervals for cases I-1 and III-1 and for cases [-3 and III-2

illustrate the similarity in control costs.

Table 19. Comparison of Costs Resulting from Use of Controller 1 and
the On/0ff Controller.

# Lissajous Orbit (m/s) Halo Orbit (m/s)

Lower Limit Upper Limit Lower Limit Upper Limit
I-1 .2946 . 3607 .3073 L3717
I1I-1 .3063 .3477 . 3309 .4013
I-3 .7187 1.1020 . 4860 1.3030
I11-2 .5789 .8286 .5947 .8051

In comparing the station-keeping costs, the agreement observed
between results from use of these two differing methods is interesting.
However, the On/0ff Controller produces costs that are somewhat higher
in general than Controlier II, and its performance when the minimum
manuever separation time is extended to 60 or 80 days is disappointing.
Future work in this area is anticipated and may prove valuable. The
last section of this chapter contalns a survey of the station-keeping
costs found in several other libration point station-keeping studies.

It also includes some of the results from this work.

4. Survey of Libration Point Orbit Station-Keeping Costs

For completeness, it ls important to consider how libration point
orbit station-keeplng costs can be compared. Certalinly the cost of
maintaining the spacecraft in orbit for 2 years could be a common
comparison value. However, the real difficulty here ls also closely

related to the focus of the error analysls investigations in Chapter 1
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of this work. A general lack of consistency in input error levels for
both orbit determination error analysis and station-keeping studies for
libration point orbits has been noted. Some of this inconsistency can
be attributed to differing equipment and missions. Some cannot. Two
papersls&ja] concerning the same set of studies, for instance,
disagreed on the varlances assoclated with the tracking errors that
were used in the station-keeping simulations.

Most studies do not address the fact that the control costs from a
sequence of Monte Carlo station-keeping simulations are random
variables. Each random trial will provide a different result. It is
assumed here that the results published in most studies are actually

[9, 27] has

the sample means of the statlon-keeping costs. One study
provided substantial statistical detalls in an excellent
station-keeping study that could allow the construction c¢f confidence
intervals for the mean costs in that work. Such completeness of
data presentation 1is in general lacking in other station-keeping
studies, and any assumptions that must be made about the data will be
stated clearly in this work.

The results of several statlion-keeping studies are presented in
Table 20. The methods are listed in order of publication date; each
reference is listed by its bibliography number and below it is the date
of publication. Actual flight data 1is glven for ISEE-3. The input
error levels, if available, are included as standard deviations in
the order consistent with the residual state vector (x,y,z;ﬁ,&,i), with
position state errors given in kilometers and velocity state errors
given in milimeters per second. The standard deviations for solar
reflectivity uncertainty are listed as a percent of the nominal value.
The control uncertainty is a one standard deviation error listed as a
percent of the commanded control, usually input independently in each

of the three possible channels.

91




Table 20.

Survey of Station-Keeping Costs for Two-Year Halo Orbits.

SUN-EARTH L1 HALO ORBIT STATION-KEEPING ERRORS AND CONTROL COSTS

Solar 2-Year
Reflectivity Control Cost
Sourcc Tracking Errors Uncertainty Errors (m/s) Remarks
{65] 3,30,30 km; N/A 104 15.24 At-ln=30 da
(1977) 15,15,30 mm/s 26.60 At-‘n=60 da
ISEE-3 N/A N/A N/A 15.0 Actual
[79,80] Flight
(1982) Data
[60] 2.7,3.9,3.4 km; 10% N/A .08 4 cn/s/yr
(1984) 2.4,3.5,1.3 mn/s
[62] 1.5,2.5,15 Kkm; 2.5% 2.5% 0.4 20 cm/s/yr
(1986) 1,1,3 mw/s
(63] 1.7,2.2,5.5 km; S.0% 2.5% 0.4 .7-.8 m/s/
(1987) 1.4,1.4,2.4 mm/s 4 yrs
f64]  |(x,y,2)"|s 20 km; 5.0% 5.0 1.3 4 m/s/
(1989) |(x,y,2)"|s 15 mw/s 6 yrs
[12,91]) 1.5,2.5,15 kn; N/A 2.5% 0.8 At-in=60 da
(1990) 1,1,3 mm/s (one of
many cases)
This 1.46,2.64,4.81 km; 13% 10.0% 0.81 At.ln=60 da
Work  1.4,1.85,2.49 mm/s (.76-.87)
1.1 At . =80 da
(.92-1.23) ™"
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The station-keeping expenses are listed as 2-year costs. When a
study has printed the statlion-keeping cost for other than a 2-year
value, this cost is computed and the actual cost from the study is
included in the "remarks" column. For the control costs computed in
this work, both the mean value and then the 99% confidence interval
limits (in parentheses) are listed. If the level of errors used in a
given study is not avalilable, an "N/A" is indicated in the appropriate
column. The error levels used to model orbit injection errors are not
listed in Table 20. In most of these studies, injection errors were
modeled at the same level as tracking errors. In some cases, the
injection errors were modeled at slightly higher levels; however, at
these higher levels, the Iinjection errors generally contribute only
about 15% or less to the station-keeping costs.

Clearly, there appears to be a wide disparity in the
station-keeping costs predicted for a spacecraft in a halo or halo-type
orbit near L1 in the Sun-Earth system. Some of these differences can
be explained by the disagreement in error levels; some can be
attributed to the variety of station-keeping algorithms. Also, these
studles do not consider the same nominal orbit. A control cost such as
the 0.8 meters per second for 2 vyears found in Howell and

Pernicka[9’27]

seems to be quite reasonable. This cost is certainly a
great improvement over the 7.62 to 13.3 meters per second per year
predicted for ISEE-3 and the actual mission results showing
approximately 30 meters per second expended for less than 4 years on
station. Further work developing station-keeping routines that can
tolerate longer minimum times between manuevers (Atmin), increased
error levels, and the inclusion of a larger dm“‘ may be beneficial

Investigations concerning the "optimal" selection of weighting matrix
entries may enable existing methods, such as those described in this
work, to provide much improved results. Furthermore, the selection of
target times and control input times for these methods may also be

fruitful areas for future research.
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