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Chapter 1

Introduction

In this report, the interaction of electromagnetic fields with objects composed of
chiral media is analyzed using eigenfunction and method of moments techniques.
The term chiral media was first used by Jaggard, Mickelson, and Papas in 1979
[1], who defined chiral media as consisting of macroscopic chiral objects randomly
embedded in a dielectric. The word chiral describes something that is handed, i.e., an
object whose mirror image can not be produced solely by rotating and translating
the original object. An example of chiral media is shown in Figure 1.1(a). For

comparison, an artificial dielectric is shown in Figure 1.1(b).

1.1 What i1s Chiral Media

Chiral media are a class of artificial dielectrics that exhibit optical activity, a property
of many biological and chemical substances which occurs naturally almost exclusively
at optical frequencies [2]. Optical activity is a reciprocal property characterized by
differing wave numbers for right and left circularly polarized waves. One effect is to
cause a linearly or elliptically polarized wave to rotate its axis of polarization as it
propagates through the optically active medium; this is known as optical rotation,
circular birefringence, or circular double refraction [3]. The other effect, circular
dichroism, is the difference in the attenuation rates for the right and left circularly

polarized waves, thereby causing a linearly polarized wave to degenerate into an




(a) (b)

Figure 1.1: Examples of (2) a chiral medium composed of a three-dimensional array
of randomly orientated helices and (b) an artificial dielectric composed of a three-
dimensional array of spheres.

elliptically polarized wave. The Faraday effect is similar to optical activity, except
the latter is reciprocal and can occur in isotropic as well as anisotropic media, while
the former is nonreciprocal and occurs only in anisoiropic media.

To put chiral media in perspective with respect to other media, consider the con-
stitutive relationships for the major subdivisions of media shown in Figure 1.2. The
constitutive relationships for bianisotropic media, the most general media, are shown
at the top of the figure, where the explicit dependence of the constitutive parameters
on space, time, etc., has not been shown for clarity (4, 5]. Research on bianisotropic
media can be applied to chiral media since chiral media is a scalar version of bian-
isotropic media [6]—[18]. The first set of equations shown for bianisotropic media
can be written as

cD P L E
= (1.1)

H M Q cB

where cD and H have the same units (4/m), E and cB have the same units (V/m),

and in combination they each form six-dimensional vectors (tensors of rank one).




BIANISOTROPIC
cD=P.-E+L-cB D=¢¢-E+¢-H
or
H=M-E+Q ¢cB B=C-E+pu-H
ANISOTROPIC BIISOTROPIC
D=¢ E D=¢E+£fH
B=1-H B=CE+uH

ISOTROPIC CHIRAL
D=¢E D=¢E-;(B

1 .
B=uH H=:B-jLE

Figu;e 1.2: Constitutive relationships for the major subdivisions of media.




Of particular importance is that all of the constitutive parameters have the same
units and together form a six-dimensional tensor of rank two. That the constitutive
parameters P and Q individually are three-dimensional tensors of rank two is well
documented in the literature on bianisotropic media; however, that the constitutive
parameters L and M individually are pseudotensors of rank two is often neglected.
This characteristic is important because pseudotensors are not invariant with respect
to improper coordinate transformations. A coordinate transformation is improper
if the determinant of its Jacobian is negative; one example is the transformation
to create the image of an object (6, sec. 2.6, 6.2], {19, pg. 813|. This translates
into a minus sign as was shown in 1971 by Kong when developing image theory for
bianisotropic media [11]. A similar result is developed in Section 2.5 for chiral media
using the volume equivalence theorem of Section 2.4. The same result can also be

obtained by using the fact that £, is a pseudoscalar (pseudotensor of rank zero).

1.2 Overview

The remainder of this chapter presents historical background on the constitutive
relationships for chiral and optically active media, as well as an outline of the work
on chiral media. Chapter 2 presents background electromagnetic theory for chiral
media. The geometries studied in this report are shown in Figure 1.3. Figure 1.3(a)
shows the cylindrical geometry for which Bohren [20] developed an eigenfunction so-
lution for scattering by a normally incident plane wave. This solution was used as the
base for developing the solution for scattering by the multilayer circular chiral cylin-
der presented in Chapter 3 and shown in Figure 1.3(b). The eigenfunction solution
by Bohren was also used as the reference solution when developing the pulse-basis
point-matching inethod of moments solution for scattering by an inhomogeneous
object composed of chiral media in free-space presented in Chapter 4 and shown in
Figure 1.3(c). Chapter 4 also presents a pulse-basis point-matching method of mo-

ments solution for scattering by an inhomogeneous object composed of chiral media




in the presence of a perfecily conduciing half-plane as shown in Figure 1.3(d). This
solution could be generalized for scattering in a half-space and verified using the
image theory for chiral media developed in Chapter 2 and shown in Figure 1.3(e).
Chapter 5 presents a spectral-domain Galerkin method of moments solution for a

microstrip transmission line on a chiral substrate as shown in Figure 1.3(f).

1.3 History of Constitutive Relaiionships for Op-
tical Activity

This section presents a brief history of the constitutive relationships for optically
active media. In the fields of biology, chemistry, and physics, optical activity has been
studied since early in the nineteenth century [2]. However, it was not until nearly a
century later that researchers began to develop theories for natural optical activity
in terms of electromagnetic wave theory. The early theories were based on classical
mechanics [21, pg. 616-635]; later, quantum mechanical theories were developed
[21, pg. 703-723]. In these theories, optical activity is the result of a second-order
term in the dispersion formula. This causes a time-harmonic electric field to create
not only an electric dipole but also a linked magnetic dipole. The reverse is true for
a time-harmonic magnetic field. In 1937, Condon (3, 22] summarized the quantum
mechanical theories for natural isotropic optical activity and presented constitutive

relationships of the form

D = e£+f1t—g%—? (1.2a)
£

where g is the rotatory parameter and f is small with only a second order effect on

the phase velocity and no effect on optical rotation.




O .

a) Eigenfunction b) Multilayer

) Method of Moments d) Half—plane
O — T ..
TS S S S S S

(e) Image Theory (f) Microstrip

Figure 1.3: Overview of geometries studied in this report.

6




In 1959, Moilitt and Moscowitz extended this work with constitutive relationships

of the form
Diw,t) = e(w)Blwt) + f(w) H(w,t) — gw) gH(wrt)  (130)
B(w,t) = u()H(w,1)+ () B(w,t) + 9(w) oBw,t)  (1.3b)

where the time-dependence was not dropped (23, pg. 652]. They showed that the
real and imaginary components of the constitutive parameters €(w), p(w), f(w), and

g(w) are related by the Kramers-Kronig relations [5, 6]

Clw) = % / 2¢"(s) 4 (1.4a)

82 — w?

() = -2 [

where ((w) = {'(w) — j¢"(w) and { = ¢, p, f, g. Moffitt and Moscowitz showed that

(1.4b)

82—'(4.12

the optical rotation is proportional to g’ and the circular dichroism is proportional to
g"; therefore, these two measured quantities are related by Kramers-Kronig relations.
This is true because f is small and affects only the average phase velocity with a
second order eflect. This can be seen by examining the wave numbers for right (kp)

and left (k;) circularly polarized waves propagating in an optically active media

described by Equation (1.3):

2 2

kr = w\/ue——{;-{-gc—g (1.52)
2 W

kL = W ;l,e—;:-{——c—. (15b)

The factor kp — k;, contains only g, and it is this factor that is responsible for optical
rotation and circular dichroism. Additional information on optical activity and how
the constitutive equations are derived can be found in the previously mentioned

references and [24]—[36].




1.4 Microwave Models for Optical Activity

The optical activity of helical molecules led researchers to consider large-scale mod-
els at microwave frequencies. Some of the earliest experimental work on this topic
was done in 1920 and 1922 by Lindman (37, 38], who measured the rotation of
microwaves propagating through randomly oriented copper helices. In 1956, Win-
kler [39] repeated Lindman’s work and obtained slightly different results. Similar
measurements were done in 1957 by Tinoco and Freeman [40] for oriented arrays of
helices. They showed that the array of helices rotated the polarization of incident
plane waves over a wide frequency range. The strongest optical rotation and cir-
cular dichroism corresponded to the case of A = 2L/k, where k = 1,2,3,... and
L is the length of the wire in the helix. However, these researchers were interested
in how their results matched models for optical activity, not in the electromagnetic

properties of arrays of wire helices.

1.5 Electromagnetic Scattering and Optical Ac-
tivity
One of the first researchers to study scattering by optically active bodies using

electromagnetic wave theory was Bohren; a previous researcher used the approximate

Mie scattering technique [41]. Bohren used constitutive relationships of the form

42, 43]

D = ¢eE4+aeVXE (1.6a)
B = pH+8uVXH (1.6b)

where a and 3 are the parameters which account for the optical activity. The pa-
rameters a and 3 are equal in the absence of an externally applied magnetic field.
His work on scattering by electromagnetic waves was limited to eigenfunction solu-

tions for homogeneous spheres [42], spherical shells [44], and cylinders [20]. He also

R N N AN I B BN G B B .




preseutcd an approxiinate solution for arbitrarily shaped inhomogencous bodies us-
ing the Rayleigh-Debye approximation, which is valid only for small bodies with low
density [45]. However, his interest in optically active bodies was based on modeling

the measurement of biological particles such as viruses [46].

1.6 History of Chiral Media

The history of chiral media starts in 1979 with the introductory paper by Jaggard,
Mickelson, and Papas [1]. They examined the approximate scattering by a single
perfectly conducting short wire helix and concluded that a randomly oriented col-
lection of such objects would behave macroscopically as a medium with constitutive

relationships of the form

D = ¢E-j¢B (1.7a)
1
H = B-j¢E (1.7b)

where £, is the chirality admittance and the e’** time convention is used. The next
paper on chiral media was not published until 1982 and considered the transition
radiation generated by a charged particle passing through a plate composed of chiral
media [47]. Later research has extended this work to Cerenkov radiation in infinite

chiral media [48, 49].

Chiral Interfaces and Slabs

Silverman, in 1985, examined scattering by an achiral/chiral interface, where the
chiral médium was described by either the Condon (Equation (1.2) with f = 0) or
the Born (Equation (1.6) with 8 = 0) forms of the constitutive relationships [50].
Additional research has been done on scattering by achiral/chiral interfaces [51]—
[57], chiral/chiral interfaces [58], the interface of mirror-conjugated chiral media [59],
and periodic achiral/chiral interfaces [60]. Researchers have also studied scattering

by chiral slabs [54, 61] and chiral slabs backed by perfect conductors [62]—[64].
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Related research has studied wave propagation along a chiral slab [65]. Creation of

an anisotropic chiral slab using slabs of uniaxial media has also been studied {66].

Scattering by Chiral Bodies

Research on scattering by objects composed of chiral media has expanded since the
early work by Bohren [20], [42]—[45]. In 1985, Lakhtakia, V. K. Varadan, and V. V.
Varadan presented results for scattering by spheroidal objects using the T-matrix
method [67]. Later work by Uslenghi extended the spherical problem to a single
chiral layer on a sphere with an impedance surface [68). Related work has been done
on the eigenmodes of a perfectly conducting sphere filled with chiral media [{69).
Research by the author, presented in Chapter 3, extended the homogeneous circular
cylinder studied by Bohren [20] to a multilayer circular chiral cylinder with the center
cylinder described by an impedance surface [70]. Additional work by the author,
presented in Chapter 4, extended scattering to objects of arbitrary cross-section
using the volume equivalence theorem [71, 72]. Numerical results were presented
for two-dimensional objects in free space [71, 72] and in the presence of a perfectly
conducting half-plane [73]. An alternative approach requiring fewer unknowns has

been developed by Rojas [74].

Basic Research

The majority of the early research concentrated on the electromagnetic properties
of infinite chiral media [75]—[87] and the Dyadic Green’s functions for one, two,
and three dimensions [88)]—[90]. There is the possibility that this research may be
applied to modeling vegetation layers for remote sensing [88]. This research has been
applied to antennas radiating in infinite chiral media [91, 92] and in the presence of a
chiral sphere [93]. Related research has been done on a point dipole radiating inside
a chiral sphere [94]. Surface integral equations have been developed for scattering

by perfect electrically conducting bodies in an infinite chiral medium [95).
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Construction of Chiral Media

Research into the construction of microwave chiral media has been limited to the-
oretical studies of scattering by beaded helices (96, 97] and measurements of chiral
media constructed with wire helices embedded in a dielectric [61, 98, 99]. Related
research has studied the mixing of small chiral bodies in an infinite chiral media

(100, 101).

Applied Research

In 1988, an excellent introductory article on chiral media was published by Engheta
and Jaggard [102]. Since then, research has expanded into parallel plate waveguides
[103], circular waveguides [104]—[109], periodic structures [110], lenses [111], and

microstrip antennas on chiral substrates (112, 113].

11




Chapter 2

Theory

This chapter presents electromagnetics theory for the analysis of the interaction of
electromagnetic fields with objects composed of chiral media. Section 2.1 presents
the constitutive relationships and basic notation for chiral media. Section 2.2
presents a techrique for transforming the coupled wave equations of chiral media
into a set of uncoupled wave equations in terms of right and left circularly polarized
waves. Section 2.3 presents circular vector potentials which have properties similar
to those of the usual magnetic and electric vector potentials, except that they result
in circular rather than linearly polarized fields. This property makes them useful
for field expansions in chiral media. Section 2.4 presents the volume equivalence
theorem for chiral media, which is used in Chapter 4 for a method of moments cal-
culation of scattering by arbitrarily shaped bodies. The volume equivalence theorem
is also used in Section 2.5 to develop image theory for a chiral body over a perfectly

conducting electric or magnetic ground plane.

2.1 Constitutive Relationships

This section presents the constitutive relationships and notation used in this report.
All fields and currents are considered to be time harmonic with the e’*! time depen-

dence suppressed. The constitutive relationships for a chiral or an isotropic optically
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t
V

active medium [0, scc. 8.3] cau be written as

D = ¢E - 3B (2.1a)
H = -B_jtLE (2.1b)
p

where g is the permeability, € is the permittivity, and the pseudoscalar £, is the
chirality admittance of the medium. The medium is lossy if u, €, or €. are complex. If
§. = 0, then Equation (2.1) reduces to the constitutive relationships for an isotropic
achiral medium. To simplify the following developments, Equation (2.1) can he

written as

D = ¢E—-julH (2.2a)
B = pH+ juéE (2.2b)

where the eflective permittivity, €., of the chiral medium is defined as

€ = €+ 'LL£C2. (23)

2.2 Chiral Wave Equation

This section presents the wave equations for chiral media and a technique for trans-
formitg the coupled E and H wave equations into uncoupled wave equations in
terms of right and left circularly po'- .zed waves, which can be solved by the classi-
cal approach.

Regardless of the medium, the fields (E, B, D, H), produced by the impressed

electric and magnetic currents (J', M'), are related by Maxwell’s equations [114],

-VXE = juB+M (2.48)
VXH = jwD+J (2.4b)
V:-D = »p ' (2.4¢)
V.-B = 0 (2.4d)
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where p is the electric charge density given by p = jV - J/w.
Now consider a chiral medium with constitutive parameters (u, €, €.). The fields
(E, H) produced by (J', M') in the chiral medium are obtained by substituting

Equation (2.2) into Maxwell’s equations resulting in

-~ VXE = jwpH —wpé{ E+ M (2.52)
VXxH = jweE+wptHA+ T (2.5b)
V-E = p/e (2.5¢)
V-H = —jtp/e (2.5d)

Equation (2.5) can be written in matrix form as

V X = (K] + (2.6a)

H H J
v |B) -° ( ! ) (2.6L)

H €\ -3¢
where _
wpé. —jwp -
Kl=| " } . (2.7)
i JWE, wﬂ&c

Using Equation (2.6), the source-free wave equation is

() ()
v + (K] =0. (2.8)
H H

Following the work of Bohren [42, 43], although for constitutive relationships differ-

ent than those used here, the coupling caused by [K] in the wave equation can be

removed by diagonalizing [K] such that

knr 0
(K] = [A] [ ] [A)7". (2.9)
0 —k;

Using linear algebra techniques, [A] is found to be

11 ]
(2.10)

j/nr' _j/nr

(4] =
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with the chiral wave inpedance given by

©
Ne = V[; (2.11)
and the chiral wave numbers given by
kr
= wy/pec  wp. (2.12)
ki

Substituting Equation (2.9) into Equation (2.8) and multiplying through from
the left by [A]~! results in
E k 0
DA I R
H 0 —k

2
E
(4] = 0. (2.13)
H
To simplify Equation (2.13) define

(2)-()
(4]~ - (2.14)
H E.

where E; and E; can be shown to be the electric fields of right and left circularly po-

larized waves with wave numbers ki and k; , respectively (43]. Then, the uncoupled

source-free wave equation in chiral media is

E k2E
vilf e TR =0 (2.15)
E, KE,

Multiplying Equation (2.14) through from the left by [A] gives

L E) e
H j/nc “j/nc EL

Substituting Equation (2.16) into Equation (2.6) results in the uncoupled Maxwell’s

equations for chiral media

v | B \ _ | kB L [ Logne ([ M (2.17a)
E. ) -k EL 2 Ll —In J
v.|Br \ _ oo rende) (2.17b)
EL } 2 l+nc£c
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From Equation (2.16), the magnetic fields are given by

He ) _if Br | (2.18)
H, Te \ ~E

The total electric or magnetic field is the sum of the right and left circularly polarized

electric or magnetic fields

E = Er+E; (2.19&)
-~ Hp+H,. (2.19b)

2.3 Circular Vector Potentials

This section develops the right and left circular vector potentials, which simplify the
field expansions for chiral media. These potentials are analogous to the magnetic
(A) and electric (F) vector potentials. In an homogeneous source-free achiral region

the magnetic vector potential A is obtained by solving the wave equation
VIA+KA=0 (2.20)

where VX A = B, V- A = —jwued, and & is the electric scalar potential [115].
However, in an homogeneous source-free chiral region, the corresponding wave equa-
tion is

VA +2wpf VXA+EA=0 (2.21)
using the same definitions as used for Equation (2.20) and the constitutive rela-
tionships for chiral media. Solutions for equations of this form are known |78, 88];

however, an alternate solution is presented below based on the same method that

was used in the previous section to uncouple the wave equation for chiral media.
Following the techniques used for vector wave functions [114, sec. 7.1] the right

(R) and left (L) circular vector potentials are defined as

R = é'&[)(kn) (222&)
L = ay(k) (2.22b)
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where a is an arbitrary constant unit vector and (k) is a solution of the scalar wave
equation

V2yY(k) + k*y(k) = 0. (2.23)
From these vector potentials the right and left circularly polarized electric fields are

formed using

Er = VX (R+ El—v x R) (2.24a)
R

E, = Vx (L - %v x L) . (2.24b)
L

The right (or left) circular vector potential component R, (or L,) produces a right
(or left) circular to y field RCy (or LCy ), just as the magnetic vector potential

component A, produces a transverse magnetic to y field TM;-.

2.4 Chiral Volume Equivalence Theorem

This section develops the volume equivalence theorem for chiral media [114, sec. 1.6],
[115, sec. 3-11], [116], [117], [118, p. 327]. The volume equivalence theorem allows
a chiral scatterer to be replaced by free space and equivalent electric and magnetic
volume polarization currents (J, M). From Maxwell’s equations the incident or

free space fields, denoted (E', H'), of the impressed electric and magnetic currents
(J', M') are related by
~VXE = jwpH +M' (2.25a)
VxH = jwgE +J (2.25b)
where (po, €5) are the constitutive parameters of free space.
Now consider an inhomogeneous chiral medium with constitutive parameters

(1, €, €). The total fields, denoted (E, H), produced by (3, M') in the inhomoge-

neous chiral medium are given by Equation (2.5) and can be written as

~-VXE = jwuoH+ jw(p — po)H — wpé E+ M (2.262)
VXxH = jweE+ jw(e — €)E +wptH+J' (2.26b)
17




where jwpyH and jweyE have been added and subtracted from the right hand sides
of Equations (2.26a) and (2.26b), respectively, to simplify the next step.

By definition the scattered fields, denoted (E°, H), are the difference between
the total fields and the incident fields,

E° = E-FE (2.27a)
H® = H-H. (2.27b)

Subtracting Equation (2.25a) from (2.26a), Equation (2.25b) from (2.26b), and mak-
ing use of Equation (2.27) yields

~VXF = jwpHS + [ju(p — po)H — wput E]. (2.28a)
V xH®° = jweE® + [jw(e — &)E + wpé H] (2.28b)

By comparing Equation (2.28a) to (2.25a) and Equation (2.28b) to (2.25b), it
can be seen that the scattered fields appear to be produced by the equivalent electric
and magnetic volume polarization currents

J = juw(le.— )B4+ wpéH (2.29a)
M

il

jw(p ~ po)H — wpé E (2.29b)

radiating in free space. Note that (J, M) are nonzero only where the parameters of

the inhomogeneous chiral medium differ from those of free space.

2.5 Image Theory for Chiral Media

This section develops image theory for a chiral body over an infinite perfectly con-
ducting electric or magnetic ground plane (119]. Image theory defines an equivalent
problem for currents and material bodies over an infinite ground plane, in which the

ground plane is removed and replaced by the image of the currents and material

bodies.
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A chirai medium was originally deflined as consisting of macroscopic chiral objects
randomly embedded in a dielectric {1]. From this definition, the image of a material
body consisting of chiral media does not have the same material parameters as the
original body, since the image body consists of macroscopic chiral objects of the
opposite handedness.

The chiral volume equivalence theorem, developed in Section 2.4, is used to
replace the chiral body by free space and equivalent electric and magnetic currents.
Next, conventional image theory is used to replace the ground plane by conventional
image currents. Finally, the chiral volume equivalence theorem is used to replace
the image currents by the image of the original chiral body.

Figure 2.1(a) shows the original problem consisting of the impressed currents
(J',M’) producing the total fields (E,H) in the presence of a chiral body with
material parameters (p,¢,€.) over an infinite perfectly conducting electric ground
plane at y = 0. For simplicity, the ambient medium is considered to be free space
with material parameters (po,€). In Figure 2.1(b), the chiral volume equivalence
theorem is used to replace the chiral body by free space and the equivalent electric
and magnetic volume polarization currents given by Equation (2.29).

In Figure 2.1(d), conventional image theory for currents is used to replace the
ground plane by (J*,M"), the image of the impressed currents, and (J',M’), the
image of the equivalent currents, which are related to the total fields (E,H) in the

upper half space by

J;,“-(::,—-y,z) = Fjw(e. — €)En(z,y,2) FwpbHur(z,y,2) (2.30a)
My (2, —y,2) = tjw(p - po)Hyyv(z,y,2) FwpbcEna(z,y,2z)  (2.30b)

where the subscripts H and V refer to the horizontal (&, 2) and vertical (§) vector

components, respectively. The image fields below y = 0 are given by

E;f,"(z?_y’z) = :FEH,\'(%y,Z) (2318.)
Hill,\'(z’—y?z) = :tH][‘r(-‘D,y,Z) (231b)
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Figure 2.1: Image theory for a chiral body over a perfect electric conductor de-
rived using the chiral volume equivalence theorem and conventional image theory
for currents.
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Figure 2.2. Image theory for a chiral body over a perfect magnetic conductor.

Combining Equation (2.30) and Equation (2.31), (J',M’) are related to (E',H’) in
the lower half space by

J(z,-y,z) = jw(e. — €)E'(z,—y,2) - wpé H'(z, -y, z) (2.32a)

M'(z, -y, z) = jw(p — po)H'(z, —y,2) + wpé E'(z, ~y, z). (2.32b)

Finally, comparing Equation (2.29) with Equation (2.32) shows that the image of
the chiral body has material parameters of (u,€,—¢.), as shown in Figure 2.1(c).
Similarly, as illustrated in Figure 2.2, the image of a chiral body over a perfectly
conducting magnetic ground plane also has material parameters of (g, ¢, —fc).

This section has developed image theory for a chiral body over an infinite per-
fectly conducting electric or magnetic ground plane. In both cases it was shown that
the image of a chiral body has the same material parameters as the original body,
except that the chirality admittance of the image is the negative of the original. In
essence the mirror image of a chiral object is that object, such as a helix, with the

opposite handedness.
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Alternatively, the same results can be obtained using tensor analysis and the fact
that . is a pseudoscalar (pseudotensor of rank zero). Pseudoscalars, unlike scalars
(tensors of rank zero), are not invariant with respect to coordinate transformations.
The image of the chiral body is obtained by spatial inversion, an improper coordinate

transformation, which introduces the sign change [6, sec. 2.6, 6.2, 8.3], (19, pg. 813].
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Chapter 3

Scattering by a Multilayer
Cylinder

This chapter presents an efficient recursive eigenfunction solution for scattering by
a multilayer circular chiral cylinder, with or without a surface impedance center
cylinder, for transverse magnetic (TM) and transverse electric (TE) normal incidence
plane waves, as shown in Figure 3.1. The special cases of zero or infinite surface
impedance correspond to a perfect electric or magnetic conducting center cylinder,
respectively.

The solution for scattering by an M layer chiral cylinder requires finding an
eigenfunction expansion in each layer, then matching continuity of tangential electric
and magnetic fields at the M interfaces. The M = 1 or homogeneous cylinder has
been analyzed by Bohren [20]. In that case, solving directly for the four unknown
coeflicients is manageable. However, if even one more layer is added the coefficients
in the eigenfunction expansion are algebraically complex and unwieldy to find. This
can be seen in Appendix A, which presents an eigenfunction solution for scattering
by a perfectly conducting cylinder coated by a single homogeneous layer of chiral
media. An alternate technique is to set up and numerically solve a 4M x 4M
matrix equation which enforces boundary conditions at the M interfaces. To avoid
the computer CPU time and storage associated with large matrix equations, here

we generalize Richmond’s method [120, 121] to apply to multilayer circular chiral
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(Lo, €5)

Figure 3.1: Geometry of a general multilayer circular chiral cylinder with a surface
impedance center cylinder.
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cylinders. The present technique requires the multiplication of M 4 x 4 matrices
to determine the coefficients in the eigenfunction expansion. The difference between
the solutions for TM and TE incident plane waves is extremely simple, differing by
only a plus/minus sign at one step in the solution. Further, the addition of a surface

impedance center cylinder involves only one additional matrix multiplication.

3.1 The Eigenfunction Expansion

In this section, the eigenfunction expansion for a general multilayer circular chi-
ral cylinder, with or without a surface impedance center cylinder, is presented by
expanding the electric and magnetic fields in terms of right and left circularly polar-
ized waves using the notation presented in Section 2.2. The geometry of the cylinder
is shown in Figure 3.1, where the constitutive parameters and the outer radius of
layer m are (gm, €m, €m) and r,, where m = 1,2,..., M. The right and left wave
numbers of the mth layer, kj} and kJ", and the wave impedance, 7,,, are defined by
Equations (2.12) and (2.11). Note that m = 1 is the innermost material layer and
m = M is the outermost material layer. The outer radius of the impenetrable surface
impedance center cylinder, when included, is denoted r,. The external medium is
free space, with parameters (o, €), wave number k, = w,/fi¢€;, and characteristic
impedance 7, = \/m

First, consider the fields external to the cylinder. These fields may be expanded
as an infinite sum of vector wave functions, M, and N,,, which are related by [114,

sec. 7.1]:

VxN, = kM, (3.1a)
V xM, = kN,. (3.1b)

These vector wave functions are solutions to VX VX C—-k?C=0and V-C = 0,

where C = M,, or N,,. In cylindrical coordinates, they may be written as
NO(k) = 2e™°Z{P(kp) (3.2a)
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MP(k) = b 20 (kp) — & &2 (kp) (3.2b)
P

where Z{) is a Bessel function of type p (Z{" = J,, Z{¥ = Y,, Z¥ = HY,
Z() = H(®) and the prime indicates the derivative with respect to the argument.
In the case of a TM, plane wave normally incident from ¢ = 180°, the incident

fields may be written as [115, sec. 5-8]

E = zelhr= Z FT"NO (ko (3.3a)
1 :

H = -g—e-J*°f= Z i "M (3.3b)
o M= — e

where Equation (3.3b) is obtained from Equation (3.3a) using H = :_%V X E and
V XN, = %;iM,,. For the TE; case, to maintain the symmetry of the solution, the

incident fields are

E' = gjethr = Z F"MU) (k) (3.4a)

1 — *j —jk().‘l'_ ] c—n (]

H = z-e = Z N (k). (3.4b)
o TIUn-_c,C

Due to the chiral cylinder the scattered fields will have TM; and TE; compo-

nents; therefore, the scattered fields are expanded as

E° = Z i [an N (ko) + 5, M) (k)] (3.5a)
HS = ;O Y [a.M{O (ko) + NEO (ko)) - (3.5b)

In the chiral cylinder, the eigenfunction expansion must account for the rotation
of polarization inherent to chiral media. In a z-independent problem, this results
in a coupling between the TM; and TE; fields, which prevents the eigenfunction
expansion from being written as a simple superposition of TM; and TE fields, as
was done in Equation (3.5) for the scattered ficlds in the free space region. How-

ever, the eigenfunction expansion can be written as a superposition of right and left

26




circularly polarized fields. This is depe by combining the vector wave functio:.c, M,

and N,,, to form right and left circularly polarized vector wave functions [20]

EY), = M®(kg)+ NO (k) (3.62)
EY, = M®(ky) - NO (k) (3.6b)

which satisfy the vector wave equation (2.15) and Maxwell’s equations (2.17a) and
(2.17b) in a source-free chiral region. Then, the fields in layer m of the chiral cylinder
may be represented as

B" = 3 5 [erE, + 7L + £7EY), + o EL) (3.7)

n=-—oc

B = L3 o [rEl, - arE) + frE, - rES)] (3b)

Mmp="cc
where the ¢, d™, f7, and g are unknown coeflicients and Equation (3.7b) is
obtained from Equation (3.7a) using Equation (2.18) of Section 2.2. Note that
the fields in each layer of the chiral cylinder are expanded in terms of inward E("
and outward E(" propagating right Eg and left E, circularly polarized waves, thus
requiring four coefficients per layer.

Expanding Equation (3.7) to get an explicit representation for the field compo-

nents in each layer produces:

Er = _z_ P CR AT B AT
+fTHO (ko) — gn HO(kPp)| ™ (3.82)
HY = LS [ene + nGge)
+inHO(kgp) + 5w HO(KTp) ¢ (3.8b)
ED = - % 5 [ ikie) + 405 0)
) HEmHE(kRp) + g HO ()] 7 (380)
e S R ACDEE AT
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+ i HB (R p) — 9,",'H.‘,""(k;f‘p)] e’"? (3.8d)
ED = z ‘Z J(kZ’p) i‘l%fn(kl"p)

k" H (k7 p) + %::H,(.”(k;t’p)] ne’™  (3.8e)
R L

H,'," = Z ] Ju(kip) — mJ"(kl P)
MnfP n=_"x R

k" H?(kjtp) - %Hﬁﬂ(k;:'p)} ne®.  (3.8f)
R L

3.2 Determining the Coeflicients

This section presents a recursive technique for determining the coefficients of the
eigenfunction expansions presented in the previous section. These unknowns in-
clude ', &', fI', and g in each of the M layers as well as the a, and b, from
Equation (3.5). This technique is a generalization of that developed by Richmond
for achiral multilayer circular dielectric/ferrite cylinders [120, 121]. The unknown
coefficients are determined by applying the boundary conditions of continuous tan-
gential electric and magnetic fields at the boundary of each layer, which can be

written as

Ert' = EP (3.92)

ET*' = Ep (3.9b)

HM' = HP (3.9¢)

HI*' = HY. (3.9d)
28
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Using Equation (3.8), the boundary conditions can be expressed as

Pcm+1

dm+1
[zm+] | = [2"]

fm+l

gm+1

where

[ J(kRe)  —du(kpe)  HO(kp)
g = | k) 6T EPGR
;‘;J,,(k,'?p) anJ,.(k;j'p) anH'(})(kEp)
o dn(kRp) —-dn(kTp) = HO(KRp)

C

dm

[ In ]

—-HP'(kTp) |

m
n

n

m
n

m

_Hr(lz)(kzlp)
HP' (kT p)
e HP (KT p)

(3.10)

(3.11)

The resulting relationship between the coeficients for layers m and m + 1 can be

represented in matrix form by

m+1 1

K
m+ 1

dy

fm+1
n

m+1
| 9n

where

-

dm

n

m

| gn

m
[ <

ol

[ym) = [zm] " 7).

After simplification' the matrix [Y™] is given by

US(RY XSO R)
X((RL)  ULD)
~USN(R)  -XED(L,R)
| -X{(R,L) UML)

[ym] =

U{")(R)

X,(;l"!)(R, I)
~U{)(R)

—XMM(R, L) UML)

X{(L,R) |
U§H(L)
—X,(14‘])(L, R)

o

(3.12)

(3.13)

(3.14)

'The symbolic algebra program MACSYMATM supplied by Symbolics, Inc. of Cambridge,

Mass. greatly aided in this simplification.
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where
m+1 [
U(p‘q)(s) TS T | Mma
4 |
km+lr '7,' {
XPO(ST) = TRT T | TIm+
a8, T) 5 |

and S, T are L or R.

+1| - [Z2P(kPrn) 20 (K2 7,)

~ 2P (kT 1) ZO (kT 7,n)]

~ 1| - [20(kpr) 20 (7 )

+ZP(kZ ) 28 (K7 1o )]

3.2.1 Perfectly Conducting Center Cylinder

(3.152)

(3.15b)

If the innermost cylinder is a perfect electrical conductor, the boundary condition

of zero tangential electric fields at p = ry can be written in matrix form as

H®(klro) —Hﬁ?)(kzru)] [ ! J

H®'(kfro) HP'(k}ro)

9

_ {—anhm Jukiro) } [ ]
~ (ko) =ikl | | d

using Equations (3.82) and (3.8c).

Solving Equation (3.16) for f! and g, in terms of ¢! and d! produces

[ !
9

Y5 Yy || e
Y§ Yo || dn

where
1
Y =~ [Jalkkro) HO (K ro) + T (khro) B (kL ro)]
YY = —2-7
2 - Wk;JTOAn
_2]'
N &
Yi rkkroA,
Vi = =~ [Ja(klro) B (ko) + Tkt ro) HO (ko)
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(3.18b)
(3.18¢)

(3.18d)




and

An = H,(lz)(k;{Tu)Hy(lz)l(klru) + H'(12)I(k;{ru)H'£2)(k}lru). (3-19)

To definc & [Y'] that can be used with Equation (3.12), Equation (3.17) can be

written as
cn cn
d! d!
"= (3.20)
n 0
9n | 0
where
[ 1 0 o o
0 1 0 0
[¥] = (3.21)
Y Y 0 0
i Y, Y, 0 0

3.2.2 Surface Impedance Center Cylinder

If the innermost cylinder is described by TM and TE surface impedances the bound-

ary conditions at p = r, are given by [122]

El
Zre = -4 (3.22a)
El
Zry = 2% 3.22b
™ Hals ( )

where the perfect electric conductor in Section 3.2.1 is the special case of Z7g = 0
and Z7p = 0.
Using Equation (3.8) these boundary conditions can be expressed as
Zre L [ u(kima) + dLJu(kEr) + £ B hro) + 2 HE (kL )] =
[ch Tt (khro) + diT(kbro) + £LHO (khro) + g HO'(kEr)]  (3.23a)
va;—'l [edn(klro) = dhdy(kiro) + fo HP (khro) — gy H® (k] ro)] =

[ehJn(khra) = didn(kiro) + £y HO (ko) - g HO(kir)] . (3:23)
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As in Equation (3.16), the relationship between the inward and outward propagating
waves in region 1 can be obtained by relating f! and g, to ¢! and d) by writing

n

Equation (3.23) in matrix form as

[ Zrgd HO (kyro) — HO(kfro) ZTE:,%H,‘,”(k‘Lru)-H,(f”(kiru)][ }

—Z]'A["-{-H,(lz)'(k}zro) -— H,(,z)(k};ru) ZTM%Hr(Iz)’(k}JTU) + Hy(.z)(k}ﬂ'()) g,‘l

| Tulkkro) = Zredda(kkro)  Ji(kire) — Zred Ja(kiro) c (3:24)
Jn(kiro) + Zrar L Jn(klro) —Jn(kiro) = ZrarJu(kire) | | dn

Solving Equation (3.24) for f} and g}, as was done for Equation (3.16), results

in [Y"] matrix elements given by

yo — _ alkhro) HO'(klro) + J, (ko) H (kL o) (1+Z”Z”’)
31 A 1’2
" 1
+n2i [Zr£du(k}yro) HO (kL ro) — ZrarJo(kiro) HE (k) ro)] (3.252)
| &An
- ZrEZTAM 25
» = - \1- 3.25b
N e v (3.25b)
ZreZrM 2j
4t - _ _ .2
T (1 uh )Wk}?TUAn (3.25¢)
yo _ _ In(kiro) B (kpro) + Iy (kyro) B (kpro) (1+ZTEZ”')
; An i
+ ,,22 [Zrdn(kiro) HO (kkro) — Zraid, (kiro) HP (kkro)] (3.254)
158n .
where

An = [P Ko HE (ko) + H (kiro) HD (ki o) (”@fm)

M
- %l [Zr 6 H® (kkro) HE) (ke ro) — Zrn B (klro) H®" (kL 7o) - (3.26)
1

A perfect magnetic conducting center cylinder is the special case of the surface

impedance boundary condition where Zrg = Zrp; — oo.
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3.2.3 Material Center Cylinder

If there is no center impenetrable cylinder, i.e., region 1 extends to the origin, then

the requirement of finite fields at *he origin forces f! = g! = 0, i.e., no outward

propagating waves in region 1. To use the same formulation as in Equation (3.20),

define Y] by

1 0 0 0 |
0o 1 0 0
V] = (3.27)
0 0 0 0
0 0 0 o

3.2.4 Exterior Region

By defining the exterior region to be layer M + 1, the relationship between the
coefficients for layers 1 and M + 1 is given by

{ Cﬂ’“ - (Xu X2 Xz Xy, 11 c -
d:l+l _ X2! X22 X23 X2-4 d,‘l (328)
far Xn Xs2 Xz Xy 0
! 9,’.”” ) | Xn X X Xy 11 0 )
where the matrix [X] is given by
] = ) =] ] ] ] (329)

Note that Equation (3.28) applies for chiral cylinders with or without a surface
impedance center cylinder by the proper choice of [Y?]. Requiring the different
represent;a.tions for fields in the exterior region to be equal, i.e., E' + ES = EM*!

and H' + HS = HM*', results in the following relationships between (a,,b,) and

(cAr+1, dAT+1, fM+1, ghIs1);
TA
Tnlkop) +anHE(kop) = (el = dl*) Ju(hop)
+ (F)H = gh'*) HP(kop)  (3.30a)
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1F
rm——
i (kop) +ba H® (kop) = (cA*' + d3/+") J (kop)

+ (£ 4+ gl ) P (kop)  (3.30D)

TE
r—N e
To(kop) +b, HP (ko) = (e + di'*") Ju(kor)
+ (£ 4 gh*') HO (kop) (3.30c)
TN

e e,
Jo(kop) +an HP (kop) = (Cﬁ'“ - dﬁm) J.(kop)
+ (£ - gt HP'(kop)  (3.30d)

TAI TE
e =

where the and indicate terms that are nonzero for TM; and TE; incident

fields, respectively. From Equation (3.30) the coefficients ¢}’*' and d)/*' are given

by

M+l = % (3.31a)

—dMNHt = ﬂ:% (3.31b)

where the plus and minus signs of + are used for TMz and TE; incident fields,
respectively.

Using Equations (3.28) and (3.31) the solution for the coefficients ¢} and d in

layer 1 is
X2t X
1 22 12
¢, = — - 3.32
" 2(X11 X22 — X21X2) (3.32)
dl = Xo & X, (3.32b)

_2(X11X22 — X21X12)

where the plus and minus signs of + are used for TM; and TEz incident fields,

respectively. From Equation (3.30) the coefficients for the scattered fields are

an = fi* - g)! (3.33a)
by = fMH!1 4 gt (3.33b)
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These coeflicients have the following properties:

a_, = a, (3.34a)
b, = b, (3.34b)
a,,(TEz) = b,,(TMz). (3.34C)

As a result of Equation (3.34c), the cross-polarized echo widths of circular cylinders
for TMz and TE; incident plane waves are identical.
In summary, Equation (3.33) provides the unknown coefficients in the eigenfunc-

tion expansions for the scattered fields given by Equation (3.5), which can be written

E. = ﬁe_jkopfj iné (3.35a)
: T Vrk v 2 o8

23 e~ Jkop < .
j E; \/— Z bneJnd’ (335b)

using the large argument approximation for the Hankel function. In addition, the

in the far field as

Ey, =

internal fields are found using Equation (3.7), where the coefficients are found using

dm d,
o= = e e el ) (3:36)
i g J L 0 J

3.3 Numerical Results

This section presents numerical results for TMz and TE; scattering by several dif-
ferent multilayer circular chiral cylinders in free space. Comparison is made with
similar multilayer achiral cylinders in each case. For convenience, all data is at a

frequency of 300 MHz. The chiral parameters used in this section obey the limit set

in [102] of |&| < \/e/n.
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3.3.1 TM; Incident Plane Wave

This section presents the bistatic scattering patterns for a low-loss two-layer chiral
cylinder with and without a perfectly conducting center cylinder for a TM; incident
plane wave with comparison to equivalent achiral cylinders. Figure 3.2 shows the
co-polarized and cross-polarized bistatic echo widths for a TM; plane wave (E! =
e%7) incident upon the chiral cylinder with a perfect electric conducting center
cylinder. The outer radius is 1.25 free space wavelengths. The curve marked ‘Achiral
(¢- = 0)’ is the bistatic echo width for an identical multilayer cylinder with the
chirality admittance set to zero in both layers. The chirality of the material clearly
caused a significant change in the co-polarized scattered fields while generating a low
level cross-polarized scattered field. The chirality admittance in the inner and outer
layers is 65% and 33%, respectively, of the theoretical maximum of |{.| < \/6/7 set
in [102].

Figure 3.3 shows the co-polarized and cross-polarized bistatic echo widths for
chiral and achiral cylinders with the same geometry as those in Figure 3.2 except
that the conducting center cylinder has been replaced by the same material as the
inner layer. Note that the co-polarized and cross-polarized fields are of comparable
magnitudes, indicating that the chirality of the cylinder has caused a significant
rotation in the polarization of the scattered fields. In addition, the bistatic pattern of
the achiral cylinder has more lobes than that of the chiral cylinder. This is unusual
because the chiral cylinder is larger electrically, since one of the two wavelengths
in chiral media is always smaller than that of the corresponding achiral media;
therefore, its pattern should have more lobes. Figure 3.4 shows this point more
clearly using a polar plot where, because of symmetry, the upper half shows the
co- and cross-polarized bistatic echo width for the chiral cyiinder and the lower half

shows the echo width for the achiral cylinder.
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Figure 3.2: The co-polarized and cross-polarized bistatic echo width of a two-layer
chiral cylinder with a perfect electric conducting center cylinder for a TM; incident
plane wave. 37
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Figure 3.3: The co-polarized and cross-polarized bistatic echo width of a two-layer
chiral cylinder for a TM; incident plane wave.
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Figure 3.4: The bistatic echo width of the two layer chiral and achiral cylinders
shown in Figure 3.3 for a TM; incident plane wave.
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3.3.2 TE; Incident Plane Wave

This section presents the bistatic scattering patterns for a high-loss two-layer chiral
cylinder with and without a perfectly conducting center cylinder for a TE; incident
plane wave. Internal fields and approximate surface currents on the center cylinder
are presented for the chiral cylinder with the perfectly conducting center cylinder.

Figures 3.5 and 3.6 are similar to Figures 3.2 and 3.3, except that they are for
the TE; polarization and for higher loss chiral media. In these figures the cross-
polarized fields are greater than the co-polarized fields for angles between 20 and 70
degrees, indicating that the chirality of the cylinder has caused a significant rotation
in the polarization of the scattered fields. The chirality admittance in the inner and
outer layers is 23% and 80%, respectively, of the theoretical maximum of |{,.| < \/e/-;t
set in [102].

Figures 3.7 and 3.8 show the near zone electric and magnetic fields along the
positive y axis for the chiral and achiral cylinders of Figure 3.5 with the perfect
electric conducting center cylinder. At the two material boundaries, y = 0.75 and
y = 1.25 meters, £, and H, are discontinuous as required. At the boundary between
free space and the outer material layer, the E, and H, fields of the achiral cylinder
exhibit a much smaller slope discontinuity than the fields of the chiral cylinder.
Interestingly, these same fields at the inner material boundary, y = 0.75 meters,
exhibit almost no slope discontinuity in both cylinders. However, the related E, and
H, fields exhibit sharp slope discontinuities at both boundaries of the chiral cylinder.
In Figure 3.7, the magnitude of H, at the surface of the conductiﬁg cylinder is greater
than that of H,. This means that at the point (z = 0,y = 0.25m), the J, surface
current on the conducting cylinder is greater than the J,, i.e., the J, surface current.
For a conducting cylinder coated with an achiral material only the J, surface current
will be nonzero for a TE; incident plane wave as shown in Figure 3.8.

Figure 3.9 shows the tangential magnetic fields at the surface of the conducting

center cylinder for the chiral and achiral cylinders shown in Figure 3.5. The J,
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Figure 3.5: The co-polarized and cross-polarized bistatic echo width of a twe layer
chiral cylinder with a perfect electric conducting center cylinder for a TE; incident
plane wave.
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Figure 3.6: The co-polarized and cross-polarized bistatic echo width of a two layer
chiral cylinder for a TE; incident plane wave.
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Figure 3.7: Internal fields along = = 0 for the chiral cylinder shown in Figure 3.5.
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Figure 3.8: Internal fields along = = 0 for the achiral cylinder of Figure 3.5.
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Figure 3.9: Internal Hy and H, fields at the surface of the conducting cylinder for
the geometry shown in Figure 3.5.




current is greater than the J, current over the entire surface of the conducting
cylinder in the center of ‘the two-layer chiral cylinder, even though the J, current
is zero on the surface of a conducting cylinder at the center of an identical achiral
cylinder.

Figure 3.10 shows the near zone electric and magnetic fields along the z axis,
for the geometry shown at the top of Figure 3.5 with the perfect electric conducting

center cylinder.

3.3.3 Chirality Versus Scattering

This section examines the effect of the chirality admittance on the backscatter and
bistatic scattering patterns. First, a homogeneous chiral cylinder with g, = 2,¢, = 3,
and a radius of 0.15 meters is examined over the range of £, = 0 (achiral) to the
theoretical maximum of [{.| < \/;/—p = 0.00325 [102], for lossless and lossy media.
Figure 3.11 and 3.12 present the co- and cross-polarized backscatter echo width
versus the magnitude of the chirality admittance for TM; and TE; incident plane
waves. In all four cases, the cross-polarized echo width increases rapidly as §.
increases and equals the co-polarized echo width when £ is approximately 18% of
the theoretical maximum. The most interesting case of the four is the TE; plane
wave incident on the loss ' chiral cylinder. In this problem the backscattered field
is entirely cross-polarized for a small range of the chirality admittance. Figure 3.13
shows the co-polarized bistatic scattering pattern of this cylinder for a TE; incident
plane wave for the full range of {.. Even through the achiral (¢, = 0) bistatic
scattering pattern has no deep nulls, this figure shows that deep nulls will occur
for certain ranges of {.. Interestingly, nothing significant happens at the theoretical
maximum of |{,] < \/e_/; set in [102].

Next, a homogeneous chiral cylinder with g, = 2,¢, = 3, a radius of 0.15 meters,
and a perfectly conducting center cylinder of radius 0.05 meters is examined over the

range of .. Figures 3.14 and 3.15 present the co- and cross-polarized backscatter
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Figure 3.10: Internal fields along y = 0 for the chiral cylinder shown in Figure 3.5.
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Figure 3.12: Backscatter echo width versus the magnitude of the chirality admittance
for TE; incident plane wave.
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Figure 3.13: Bistatic echo width versus ihe magnitude of the chirality admittance
for TE, incident plane wave.

50




echo width versus the magni‘ude of the chirality admittance for TMz and TE7 inci-
dent plane waves. In all four cases, the cross-polarized echo width increases rapidly
as £, increases and equals the co-polarized echo width when §. is approximately 40%
of the theoretical maximum. As the radius of the conducting cylinder is increased,
the thickness of the coating is reduced and less material interacts with the incident
field, thereby producing less cross-polarized scattered fields. This relationship is
easily seen when comparing Figures 3.11 and 3.12 with Figures 3.14 and 3.15.
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Figure 3.14: Backscatter echo width versus the magnitude of the chirality admittance
for TM; incident plane wave.
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Backscatter versus Chirality
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3.4 Summary

This chapter has presented an efficient recursive eigenfunction solution for scattering
by a general multilayer circular chiral cylinder, with or without a surface impedance
center cylinder, for a TM; or TE; normal incidence plane wave. The internal fields
were expanded as inward and outward propagating right and left circularly polarized
waves, using circularly polarized vector wave functions, resulting in four unknown
coefficients in each layer. The resulting solution requires the multiplication of M 4x4
matrices for an M layer cylinder. The TE; solution differs from the TM solution
by only a plus/minus sign at one step. Including a surface impedance center cylinder
requires only one additional matrix multiplication. An examination of coefficients
responsible for the scattered fields showed that the cross-polarized bistatic echo
width of circular cylinders is identical for TM7 and TE; incident plane waves.
TMz and TE; bistatic scattering patterns for two-layer chiral cylinders with and
without a perfectly conducting center cylinder were presented as reference solutions.
These patterns demonstrated that the chirality of these cylinders caused a significant
rotation in the polarization of the scattered fields. More significant was the effect
of the chirality on the internal fields. In one case, more J, than J; current was
induced on the perfectly conducting cylinder coated by two layers of chiral media
for a TE; incident plane wave, even though the achiral problem would have induced
no J, current on the conducting center cylinder. The chirality admittance in these
cases was greater than 50% of the theoretical maximum of [¢.| < \/;7; set in [102].
To examine the relationship between the magnitude of the chirality admittance
and scattered fields, backscatter and bistatic scattering patterns were presented for
the full range of .. Even through the achiral bistatic scattering pattern may have
no deep nulls, the co-polarized bistatic pattern for a chiral cylinder can have deep
nulls for certain ranges of {.. In one case the backscattered field was entirely cross-
polarized for a small range of the chirality admittance. The cross-polarized backscat-

tered fields increased in similar fashion for all of the geometries examined as {. was
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increased. The rate of increase was dependent on the an.cunt of chiral material,

since chirality is a bulk effect.
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Chapter 4

Scattering by an Arbitrary
Cylinder

This chapter presents a pulse-basis point-matching method of moments solution [123,
124] to the two-dimensional problem of scattering by an isotropic inhomogeneous
chiral cylinder of arbitrary cross section in free space or in the presence of a perfectly
conducting half-plane. The method of moments solution for scattering by a chiral
cylinder is obtained using the volume equivalence theorem developed in Section 2.4 to
replace the chiral scatterer by free space and equivalent electric and magnetic volume
polarization currents (J, M), as shown in Figure 4.1. By enforcing the volume
equivalence theorem in the chiral scatterer, a pair of coupled vector integral equations
for the currents (J, M) are obtained. These coupled vector integral equations are
equivalent to six coupled scalar integral equi tio.., for (Jy, Jy, J.) and (M., M, M.),
which are solved using a pulse-basis point-matching method of moments solution.
This problem could be formulated in terms of surface currents on the chiral cylinder
[74, 80, 95). The main advantage of the volume formulation is that it can more easily
r 7" inhomogeneous media.

The electric surface currents on the hall-plane are not explicitly included as
unknowns in the method of moments solution. Instead, their effects are exactly

accounted for by including the half-plane Green’s function in the kernel of the integral

equation [125, sec. 8.3]. Efficient techniques for accurately evaluating the integrals
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Figure 4.1: Volume Equivalence Theorem (a) Original problem: impressed currents,
half-plane, and chiral scatterer. (b) Equivalent problem: scatterer replaced by free
space and the equivalent currents.

in this Green’s function are presented in Appendix B. In the free space problem the

half-plane Green’s function is replaced by the free space Green’s function.

4.1 Derivation of General Integral Equations

This section develops a set of coupled integral equations for the equivalent electric
and magnetic currents representing a chiral scatterer in free space or in the presence
of a perfectly conducting half-plane. In the original problem of Figure 4.1(a), the
impressed currents (J', M') radiate the total fields (E, H) in 2 medium which is
free space except for the perfectly conducting half-plane and a chiral scatterer with
constitutive parameters (g, €, €.) confined to the region R. The scatterer may
be lossy and inhomogeneous. As shown in Figure 4.1(b), the volume equivalence
theorem developed in Section 2.4 is used to replace the chiral scatterer by free space

and the equivalent electric and magnetic volume polarization currents

J = juwle — ¢)E +wpéH (4.1a)

M Jw(p — po)H — wpé E (4.1b)

It

confined to the region R.
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In the equivalent problem of Figure 4.1(b), the total fields (E, H) at any point
in space are given by

E = E+E'+EM (4.2a)
= H'+H!+HM (4.2b)
where (E', H'), (E¥, H?), and (EM, HM) are the fields radiated by (J°, M'), J, and
M, respectively, in free space or in the presence of the half-plane. Then, substituting

Equation (4.2) into Equation (4.1) yields
~E -EM - [H' + HM] 4 agd = E +cH' (4.32)

~H' - HM - ¢y [E' + EM] 4+ ayM = H' 4+ oy E' (4.3b)

in region R, where ci, ¢pr, ag, and ap; are defined by

ce = ;JT“:-"S—EU—) (4.4a)
e = —j—w(%b%;)—) (4.4b)
ag = 3;(—6:1-—60) (4.4¢)
ay = 3;—@1_—#(3 (4.4d)

Equation (4.3) can be considered to be a coupled integral equation for (J, M) since
the fields (E?, H?) or (EM, HM) can be written as integrals, over the region R
containing the chiral scatter, of J or M, respectively, dotted into the appropriate

dyadic Green’s function [126]. For example, EM could be written as
EM(r) = / M(r') - G(r,r') dv, (4.5)
R

where 1’ is the source point, r is the field point, and G is the electric field dyadic
Green’s function for the magnetic source radiating in free space or in the presence

of a perfectly conducting half-plane.
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4.2 Integral Lquations for a Two-Dimeusional

Body

In this section, the general integral equation of the previous section, Equation (4.3),
is simplified for the case of normal incidence scattering by chiral cylinders of arbitrary
cross section. Since this is now a two-dimensional problem, there are some simpli-
fications from the general three-dimensional case. In particular, the TM currents
(J:y M., M,) generate only the (E,, H,, H,) fields and the TE currents (M,, J,, J)
generate only the (H,, E,, E,) fields. In this case, Equation (4.3) reduces to the

following six scalar equations valid in R:

—E* —EM: _EMv _cp(HM: + H* + H) 4 apJ, = E! 4 cpH! (4.6a)
—H> — M= _ gMv _ ¢y (EM: 4 EJ= + EV) 4 oM, = H! 4+ cyEL (4.6b)
—-H]: — H): — H)v —cp((E}* + EJF + EJ¥) + ayM, = H,+cnE| (4.6¢)
—cy(EZ + EMe 4 EMY)Y— HM: _H)s —H]v + ayyM, = H!+cyE! (4.6d)

—cp(H* + HM= + HMv) — EM: — Els —Elv v agJ, = E.+ceH. (4.6e)

~cp(H) + HM= + H)v) - EM: — E)s — EJv +agJ, = E,+ccH,. (4.6f)

In Equation (4.6), the superscript indicates the source and the subscript the field
component. For example, H;* is the § component of the magnetic field of J, and E'
is the & component of the electric field of (J', M') in free space or in the presence
of a half-plane. For normal incidence scattering by achiral cylinders, the TM and
TE currents are uncoupled and can be determined separately [127]-[129]. However,
Equation (4.6) shows that the TM and TE currents are coupled for chiral cylinders,

and it is therefore necessary to solve for all currents simultaneously.
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Figure 4.2: A trapezoidal cross section cylinder split into N smaller trapezoidal cells.
4.3 Method of Moments Solution

The pulse-basis point-matching method of moments solution of Equation (4.6) is
presented in this section. For convenience, the chiral cylinder is restricted to be
composed of one or more blocks of trapezoidal cross section. Without loss of gener-
ality, consider a single trapezoidal cross section cylinder as shown in Figure 4.2. The
trapezoid is split into N smaller trapezoidal cells by dividing the opposite sides of
the trapezoid into equal segments. These cells must be sufficiently small so that the
electromagnetic fields and the constitutive parameters of the chiral cylinder can be
considered as essentially constant within each cell. For a pulse-basis point-matching
method of mements solution of scattering by achiral cylinders, the maximum dimen-
sion of the cells is typically less than one-tenth of the wavelength in the material.
The region occupied by the nth cell is denoted by R, and has cross-sectional area
A,. Now define the volume electric and magnetic current pulse expansion functions
forn=1,2,...,N as
) 1/A. A/m’,  within R,

P = (4.7a)
0, otherwise
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PV - 1/A, V/m", within R, (4.7)
0, otherwise.
The equivalent electric and magnetic currents can then be expanded as
J = 2J,+yJ, +2J,

N N N
= &Y CouP! +9 Y CmP] +23 C.nP] (4.8a)

n=1 n=| n=|I

M = aM,+yM,+z2M,
N N N

= &Y K.PY+§Y KnuP) +2Y K..PM. (4.8b)

n=1 n=1 n=1
Note that for N cells there are 6 N unknown coefficients: C,n, Cyn, Ciny Keny Kyn,
and K,, (n = 1,2,...,N).

The pulse-basis point-matching method of moments solution is obtained by sub-
stituting Equation (4.8) into Equation (4.6) and requiring the resulting six equations
to be exactly satisfied at the centroid of each of the N cells. This transforms Equa-
tion (4.6) into a 6N x 6N system of simultaneous linear equations which can be

compactly written in matrix form as
(Z+AZ|I=V. (4.9)

This equation c'n be symbolically decomposed into submatrices representing the

relationships between the TM; and TE; fields and currents

[ 1T
TM/TM TM/TE ™ ™M
= . (4.10)
TE/TM TE/TE TE TE
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4.3.1 The Impedance Matrix [Z]

For an inhomogeneous chiral cylinder, the impedance matrix [Z] can be written as

a 6 x 6 block matrix

le Z12 Z]3 CEZ-l-l CEZ~l5 CEZ-IG
Zy Z Zyy |CmZsy Crlss Chrrlses
Zs Z3; Zss | CriZes CrnZes Chrrles

(2] = (4.11)
CrmZy CraZyy CrnZis| 2y Zys Zye

CEZ21 CEZ22 CEZ23 ZS-I Z55 Z56

CeZyy CgZs; CpZs| Ze Zgs Zes

where each of the Z;; is an N x N matrix, where the m,n element is the negative

F; field of the Pj(,,) current expansion function evaluated at the centroid of the cell

m, i.e.,
Zijimmy = —Fi(Pjm)| (4.12)
where
r E,, i1=1
H,, 1=2
H, 1=3
Fi =9 (4.13)
H, i1=14
E, 1=5
| Ey, 1=6
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and
2P/, =1
éP']l”, 1=2
gpPM, ;=3
Pi=1 """ (4.14)
2P£’a J=4
2P’ j=5
| 9P, j=6

form,n =1,2,...,N. For example, the m,n element of Z;3 is — H,(# P}') evaluated
at the centroid of cell m.

The Cg and Cj; are N x N diagonal matrices given by

cEI] 0
Ceg = {4.152)
0 CEI]\'
ch] 0
Cyn = (4.15b)
i 0 CI\I|N

where cE‘m is cg from Equation (4.4) evaluated at the centroid of cell m and similarly
for cp ,‘m.

The computational effort to obtain the free space impedance matrix [Z] can be
reduced by recognizing simple relationships between the Z,; block matrices. Let
(EY,HY) and (EM,HM) denote the free space fields of the arbitrary electric and
magnetic currents J and M, respectively. Then, directly from Maxwell’s equations,

it can be shown that if J is numerically equal to M, then
EM = _HJ (4.16a)
HM = EY/5, (4.16b)

where 1y = y/po/€ is the characteristic impedance of free space and = should be
read “numerically equal”. Examining Equations (4.13) and (4.14), and noting that
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P = PV yields

n

[ ] ] 7
Z.H Z45 Z4(; '?IO'ZH _ZIZ _Zl.'l
Zsy Zss Zss | = | —Zu 2y w2y |. (4.17)
Zey Zes Zes —Z3 773 Zs; 173 Z33

4.3.2 The Impedance Matrix [AZ]

The impedance matrix [AZ] is a 6N x 6N diagonal matrix given in block matrix

form as
AZy, 0
AZy 0
[AZ] = . (4.18)
AZ,, 0
0 AZss

L 0 AZSG ]

Each of the AZ,’s is a N x N diagonal matrix given by

a'II/A' 0
0 a:‘lN/Al\'

where A,, is the cross-sectional area of cell m and a,-l is given by
m

l ag] , fori=1,5,6 (4.20)
a;| = m .
m a,\,l , fori=234,

where a;;l is ar; from Equation (4.4) evaluated at the centroid of cell m and similarly

for a]\]' .
m
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4.3.3 The Current Vector /
The current vector I is defined as a 6 element block vector
_ . .
K,
K
K

«

(4.21)

N

C.
.CU.

where the coeflicients C.pn, Cyn, C.ny Kiny Kyn, and K,,, (n = 1,2,...,N) of Equa-
tion (4.8) are contained in the length N column vectors C., C,, C., K., K,, and

K, respectively.

4.3;4 The Voltage Vector V

The voltage vector V is also defined as a 6 element block vector

[ Ei+CeH! |
H! + C\EL
H” * C’”E'? (4.22)
H! + C\E!
E! + CpH:
| E, + CeH, |

where the terms E;,E;,EZ,H;,HL,H ! are length N column vecvors consisting of
the fields of the impressed currents (J',M') evaluated at the centroid of cell m =
1,...,N. For example, the mth element of E! is the 2 component of the electric
field generated by the currents (J',M'), evaluated at the centroid of cell m. C and
C\s are the N x N diagonal matrices defined in Equation (4.15).
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Figure 4.3: A TM; plane wave normally incident upon a tapered chiral slab.

4.3.5 Scattered and Internal Fields

Equation (4.9) can be solved for the current vector I which, when substituted into
Equation (4.8), provides an approximation to the equivalent electric and magnetic

currents (J, M). The scattered fields are simply the fields of (J,M).

The total internal fields at the centroid of a cell are given by

ik — po)d + pEM
w |(ec = €0)(1 — po) — 12|

H - — dle )M+ utd (4.23b)

w {(ec = eo) (1 — o) — p2E°]

E =

(4.23a)

where (p,¢€.,€.) and (J,M) are evaluated at the centroid of the cell.

4.4 Free-Space Numerical Results

This section presents numerical results for TM and TE scattering by a variety of
chiral cylinders in free space. All data is at a frequency of 300 MHz, and includes
both echo width and internal fields.

Figure 4.3 shows a TM 7 polarized plane wave normally incident upon a chiral slab

(E! = e’*¥ where k; is the free space wave number). The center section of the slab
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1s 0.82 meters wide and (.01 meters thicik. The tapered scctions are cach 1.2 meters
long. The slab is lossless with parameters of ¢, = 1.5, u, = 4.0, and §, = —0.0016
A/V. Near the origin the fields for the tapered slab should approximate that of an
infinite slab of uniform thickness 0.04 m. Figures 4.4 and 4.5 show a comparison of
the method of moments solution for the total fields of the tapered slab to the exact
solution developed in Appendix C for the infinite uniform slab along the line z = 0.
The phase of the fields has been normalized by dividing fields by e/*¥, i.e., the phase
of a plane wave propagating in free space in the —§ direction. The incident electric
field is a z polarized plane wave. When this wave hits the uniform slab it produces
a purely z polarized reflected wave, resulting in a partial standing wave pattern to
the right of the slab. As the wave enters the slab, the polarization begins to rotate,
causing the & component of the electric field to increase, and the z component to
decrease. Finally, as the wave exits the slab it is a linearly polarized wave, but with
its polarization rotated from 2. The solution for the tapered slab has a small
polarized back scattered field which is not present for an infinite slab.

Next the method of moments solution is compared to the exact eigenfunction
solution [20] for the bistatic echo width of a 0.1 m radius circular chiral cylinder.
The inset in Figure 4.6 shows a TM; plane wave (E! = e~7%%) incident upon a cir-
cular cylinder approximated by a number of trapezoidal cells, corresponding to the
method of moments expansion functions. Denoting d as the maximum dimension of
the cells, Figure 4.6 shows the eigenfunction and method of moments solution for
d = 0.2A,, (18 cells) and d = 0.1A,, (63 cells). A,, denotes the minimum wavelength
for left or right circularly polarized plane waves in the chiral media. For the ma-
terial parameters in Figure 4.6, A,, = 0.301 meters. Note that as the number of
cells increases, the method of moments solution approaches the exact eigenfunction
solution for both the co-polarized and cross-polarized scattered fields.

A comparison of the eigenfunction and method of moments solution for the

bistatic echo width for a TE; plane wave (H! = e™/*7/n,) incident upon a 0.15
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Figure 4.4: The magnitude and phase of the E, and E, fields along the y-axis for
the tapered chiral slab shown in Figure 4.3.
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Figure 4.5: The magnitude and phase of the H, and H, fields along the y-axis for
the tapered chiral slab shown in Figure 4.3.
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Figure 4.6: The co-polarized and cross-polarized bistatic echo width of a circular
chiral cylinder for a TM incident plane wave.
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Chiral Cylinder, radius = 0.15 meters
Uy =2, tan 6,,=.05, Freq.=300 MHz
€ =3, tan 6,=.05, £.=.002
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Figure 4.7: The co-polarized and cross-polarized bistatic echo width of a circular
chiral cvlinder for a TE; incident plane wave.
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m radius lossy circular chiral cylinder is shown in Figure 4.7. Note that the cross-
polarized field is greater for most angles than the co-polarized field, indicating that
the chirality of the cylinder has caused a significant rotation in the polarization of
the scattered fields. For comparison, the echo width for an achiral cylinder, obtained
by setting {. = 0, is also shown. A segment size of 0.05 ), was required to obtain a
well converged result, where A,, = 0.228 meters for the material parameters shown.
The backscatter (¢ = 180°) echo width for this geometry was highly sensitive to the
segment size and in Figure 4.7 the greatest error occurs at ¢ = 180°. The backscat-
ter echo width of this cylinder was examined in Figure 3.12 of Chapter 3 for the
full range of {. and found to be highly sensitive to the value of ¢ in the region of
§. = 0.002. The sensitivity of this cylinder to segment size may be related to the
sensitivity in ¢, in the same way the calculated scattering from a resonant body is
sensitive to minor changes in its materials and geometry, as well as the method used
to calculate the scattering.

The magnitude of the internal fields along the cylinder’s centerline are shown in
Figure 4.8. As the incident H, field propagates through the cylinder, the H, internal
field decreases and the E, field increases due to the chirality of the material. This is
in addition to the effects due to the cylindrical geometry. The most significant effect
of the chirality, besides generating cross-polarized fields, is to reduce the effective
wavelength in the cylinder, as well as the actual wavelength in the medinm. For
the achiral cylinder, the actual material wavelength is 0.408 meters with a spacing
of 0.12 to 0.15 between ‘he peaks and valleys of the internal fields. The Fight and
left wavelengths of the chiral medium are 0.228 and 0.730 meters, respectively. The
spacing between peaks and valleys of the internal fields varied between 0.03 and 0.09
meters, with 0.05 meters being typical. Based on the achiral cylinder, the spacing
should have been 0.067 to 0.084 meters. The chirality caused approximately a 25%
reduction in the effective wavelength in the medium beyond that predicted based

on the smallest chiral wavelength. This becomes very important when choosing the
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Chiral Cylinder, radius = 0.15 meters
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Figure 4.8: Internal fields along y = 0 for the chiral cylinder shown in Figure 4.7.
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cell size to use for a method of moments solution. For the point-matching pulse-
basis solution used here, the cell size for the achiral cylinder should have been 0.041
meters, using a ten cells per wavelength rule. Using the same rule, the cell size in
the chiral cylinder should have been 0.023 meters. However, after adjusting for the
observed reduction in the effective wavelength in the chiral cylinder, the cell size
should be 0.017 meters. Overall, the chirality caused a factor of 5 increase in the
number of cells needed for the method of moments solution.

Figure 4.9 shows the bistatic echo width for a 0.1 m x 2.0 m chiral slab with a
TM plane wave incident at 30° from the £ —axis. The cell size of the basis functions
is 0.057 A,,, where A,, = 0.35 meters for the material parameters shown. As in the
previous figures, the chirality has generated a substantial cross-polarized field. The
magnitude of the internal fields along the 2 —axis of the slab are shown in Figure 4.10.
As the E, incident field propagates along the slab, a H, internal field is generated
by the chirality of the material. Figures 4.11 and 4.12 show the bistatic echo width
and internal fields for the 0.1 m x 2.0 m chiral slab shown in Figure 4.9 for a TE,
plane wave incident from 30° off the z—axis. The co-polarized bistatic pattern in
Figure 4.11 is very similar to the co-polarized bistatic pattern in Figure 4.9. The
cross-polarized bistatic patterns are almost identical. In Figure 4.12, the internal
fields also show almost the same patterns as in Figure 4.10, except E and H are
reversed. As the H. incident field propagates along the slab, a E, internal field is
generated by the chirality of the material, just as in Figure 4.10.

Figure 4.13 shows an inhomogeneous chiral slab, identical to that shown in Fig-
ure 4.9 except that £ = 0.0005 A/V for z > 0, and £, = —0.0005 A/V for = < 0,
with a TM incident plane wave from 30° off the z—axis. The most significant
change from Figure 4.9 is that the field scattered back along the z—axis is 20 dB
lower. The magnitude of the internal fields along the £ —axis of the slab is shown in
Figure 4.14, which is similar to Figure 4.10 except that the H, field, which increased

along the slab in Figure 4.10, decreases suddenly at the interface between the two
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Figure 4.9: The co-polarized and cross-polarized bistatic echo width of a 0.1 m x 2.0
m homogeneous chiral slab for a TM; plane wave incident at 30° off the x-axis.

75




Chiral Slab
Ue=2, €=3, £&=0.0005
Freq.=300 MHz
20—

(V/m)

5x100 cells

[E|

nlHl (V/m)

210 -05 0.0 05 10

x (m)

Figure 4.16: Internal fields along y = 0 for the homogeneous chiral slab shown in
Figure 4.9.
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Figure 4.11: The co-polarized and cross-polarized bistatic echo width of a 0.1 m x
2.0 m homogeneous chiral slab for a TE; plane wave incident at 30° off the x-axis.
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Figure 4.12: Internal fields along y = 0 for the homogeneous chiral slab shown in
Figure 4.11.
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Figure 4.13: The co-polarized and cross-polarized bistatic echo width of a 0.1 m x
2.0 m inhomogeneous chiral slab for a TM 7 plane wave incident at 30° off the x-axis.
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chiral materials in Figure 4.14. Figure 4.15 shows the inhomogeneous chiral slab
of Figure 4.13 with a TE; incident plane wave from 30° off the z—axis. The most
significant change from Figure 4.11 is that the field scattered outside the main broad-
side beam is at least 5 dB higher for both co- and cross-polarized fields. Comparing
Figures 4.13 and 4.15, the cross-polarized scattered fields are significantly different,
unlike in previous comparisons between the cross-polarized fields for TM; and TE,
incident plane waves. This means that Equation (3.34c), which showed that the
cross-polarized bistatic echo widths of circular cylinders for TMz and TE; incident
plane waves are identical, is only true for circular cylinders. However, Figures 4.16
and 4.17 show that the cross-polarized backscattered fields are identical for TM
and TE7 incident plane waves. The numerical results used to generate Figures 4.16

and 4.17 matched within 0.003 dB and 0.01° for magnitude and phase, respectively.

4.5 Half-Plane Numerical Results

This section presents numerical results for TMz and TE; scattering by two geome-
tries, a chiral slab on a half-plane and a double-wedge covering the tip of a half-plane.
All data is at a frequency of 300 MHz. The chiral parameters used in this section
obey the limit set in [102] of |¢.| < \/%

Figure 4.18 shows the backscatter echo width pattern for a TM; plane wave
(E: = e‘j"°(’c"s"’i+”5i“d’i)) incident upon a lossless chiral slab at the tip of a perfectly
conducting half-plane. The slab is 1 meter wide and 0.2 meters thick, with parame-
ters of ¢, = 4.0, u, = 1.5, and £ = 0.002 A/V. For comparison, the echo widths of
the achiral slab and of the bare half-plane are also shown. Although the half-plane
is the dominant scatterer, the presence of the chiral slab does produce a significant
change to the echo width. In particular, the chirality produces a cross-polarized
component to the echo width which, in the region ¢' < 120°, is of comparable mag-

nitude to the co-polarized echo width. This cross-polarized field is a direct result of
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Figure 4.15: The co-polarized and cross-polarized bistatic echo width of a 0.1 m x
2.0 m inhomogeneous chiral slab for a TMg plane wave incident at 30° off the x-axis.

82

1

1

i

1

1

1

1

|

|

> 1
i

1

1
1
1

i

i

i

i




Chiral Slab
Mr=2, €=3, §.=0.0005
Freq.=300 MHz
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Figure 4.16: The co-polarized and cross-polarized backscatter echo width of a 0.1 m
x 2.0 m homogeneous chiral slab for a TM; plane wave incident at 30° off the x-axis.
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Figure 4.17: The co-polar. ~d and cross-polarized backscatter echo width of a 0.1 m
x 2.0 m homogeneous chiral slab for a TE; plane wave incident at 30° off the x-exis.
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Figure 4.18: The co-polarized and cross-polarized backscatter (¢ = ¢') echo width
of a lossless chiral slab at the tip of a perfectly conducting half-plane.
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the rotation of polarization which occurs in a chiral medium. The magnitude of the
internal {iels along the center line (y = 0.1 m) of the slab is shown in Figure 4.19 for
¢' = 60°. Again, the cross-polarized fields (E,, E,, H,) are a result of the rotation
of field polarization in the chiral medium, and are of comparable magnitude to the
co-polarized fields (E,, H,, H,).

Figure 4.20 shows the bistatic scattering from a perfectly conducting half-plane
with a lossy chiral double-wedge covering the tip. The double-wedge is ? meters widc
and has a maximum thickness ot 0.08 meters at the center. The upper graph shows
the co-polarized and cross-polarized bistatic echo widths for a TM; wave incident
from 180° (E! = e 7*7). The bistatic echo width for an identical achiral (¢, = 0)
double-wedge and for the bare half-plane is also shown for comparison. The lower
graph displays the same data for a TE; wave incident from 0° (H! = e’*7). In
each case, the chiral double wedge causes a significant modification to the scattering
from the half-plane. For example, for the TM; case, the chiral wedge reduces the
edge on backscatter (¢ = 180°) echo width from -8 dB/m to about -60 dB/m, while
the achiral value is about -16 dB/m. The chirality also produces a significant cross-
polarized component for both the TM; and TE; cases. Again, these cross-polarized

fields are a direct result of the rotation of polarization in chiral medium.
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Figure 4.19: Internal fields along y = 0.1 meters for the chiral slab and half-plane
geometry shown in Figure 4.18 with a TM; incident wave from 60°.
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Chiral Tipped Half—Plane
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Figure 4.20: The co-polarized and cross-polarized bistatic echo width of a perfectly
conducting half-plane with a chiral double-wedge at the tip.
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4.6 Sumnary

This chapter presented a hybrid integral equation method of moments/Green’s func-
tion solution to the problem of TM; and TE; scattering by an inhomogeneous chiral
cylinder of arbitrary cross section in free space or in the presence of a perfectly con-
ducting half-plane. The volume equivalence theorem for chiral media was used to
formulate a pair of coupled vector integral equations for the equivalent electric and
magnetic volume polarization currents representing the chiral cylinder. For chiral
cylinders, this pair of vector equations was shown to be equivalent to six coupled
scalar equations, which included coupling between the usual TM and TE polariza-
tions. These equations were solved by the method of moments, and numerical data
was shown illustrating the convergence and accuracy of the method of moments
solution. As in the previous chapter, the chirality of the cylinders caused a signif-
icant rotation in the polarization of the scattered fields. The result was that the
cross-polarized fields, in the near and far zone, can be as large or larger than the co-
polarized fields. In addition, the numerical results showed that the cross-polarized
backscatter echo width of at least one noncircular geometry is identical for TM,
and TE; incident plane waves. An examination of the internal fields of one chiral
cylinder showed that the number of cells needed in the method of moments solution
increased by a factor of 5. Part of this increase is due to the short wavelength of
one of the circular polarizations in chiral media. The remaining increase remains
unexplained and may be due to the interaction of the two circular polarizations with

different wavelengths.
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Chapter 5

A Microstrip Line on a Chiral
Substrate

This chapter presents a spectral-domain Galerkin method of moments solution for a
microstrip transmicsion line on a chiral substrate. Most chiral guided wave structures
have bifurcated modes [103]-[109], i.e., pairs «f modes with the same cutofl frequency.
The chiral microstrip line does not have bifurcated modes; thus, the dispersion
curves are single valued. However, the longitudinal fields and currents each contain a
significant asymmetric component which is not present for an achiral microstrip line.
Similarly, the transverse fields and currents both contain a symmetric component
which is absent in the achiral case.

The propagation constant and currents for the microstrip line are calculated us-
ing the spectral-domain approach [130, 131], which is a Galerkin method of moments
solution where the impedance matrix and fields are calculated by numerically eval-
uating the Fourier transform of a spectral Green’s function. This Green’s function
accounts for the effects of the chiral snbstrate and the perfectly conducting ground
plane. The chiral substrate causes the additional longitudinal asymmetric and trans-
verse symmetric field componeats, requiring the expansion for the longitudinal and
transverse currents to contain both even and odd components. This requirement

is satisfied by expanding each current in terms of Chebyshev polynomials weighted
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Figure 5.1: Microstrip line on a grounded chiral slab.

by the edge conditions [{131]-[135]. A detailed discussion on edge conditions can be
found in {136, pp. 385-387].

5.1 Microstrip Field Expansions

The geometry of the problem and the field expansions for each region are presented
in this section. The open microstrip line on a grounded chiral slab is shown in
Figure 5.1, where the slab (region II) has constitutive parameters (g, €, £.) and
thickness T'. The right and left wave numbers, kr and k;, and the wave impedance,
7., are defined in Equations (2.12) and (2.11). The microstrip line is W wide,
infinitely thin, and perfectly conducting with a current distribution of J(z)e %2,
Region I (y > T) is free space, with parameters (uo, €0) and wave number k, =

wy/po€y-

5.1.1 Field Expansions in the Free Space Region

First, consider the fields in region I. Since this is a source-free achiral region, these
fields may be expanded as the sum of a TM;- field and a TE,- field [115, sec. 3-12].

These fields may be constructed from the magnetic and electric vector potentials
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given by
R oc
A = 2£ejk,,7/je—j(k,ﬂkywkxz)dkx (5.1a)
™
F o _g_ejk,’r/ﬁwe—-j(k:2+kvu+kz‘)dk1 (5.1b)
T

where k, = —; m, satisfying the wave equation and the radiation con-
dition (see Appendix E}. The functions A and F are the Fourier transforms of A,
and F, with the term e~7%v#+¥:2) factored out, and are determined by enforcing the
boundary conditions at y = T. The TM;- fields are obtained from Equation (5.1a)
using H=V X A

H o= Lot [k Aetmshutogy, (5.28)
™
H =0 (5.2b)
H = 21r ik T/k A emilkezthyy+kaz) g (5.2¢)
) ejku ~jlksz+kyy+k:2)
B = - — /kkAe whhes) gp (5.2d)
kT -
R N Y B (5.2¢)
T W€
s ~j(kzz+kyy+k:z)
E. = 3~ — / kk,Ae dk,. (5.21)

The TE,- fields are obtained from Equation (5.1b) using E = -V X F

E. = *g’j,;ej"”T / k, F e itherthyvthes) g, (5.3a)

E, =0 (5.3b)

B, = Lo [k Feitherttuiigy, (5:3¢)
92




.7 et T kez+kyy+k
H, = L /k k, F emitkezthyythes g (5.3d)
Wity
j bt T _
no- L2 fppenonenn,
j et (kex+kyy+k
He = 5 /k b F emilkerthovrkes) g (5.30)
0

5.1.2 Field Expansions in the Chiral Slab

In the chiral slab, the fields are expanded in terms of the right and left circular
vector potentials developed in Section 2.3. To satisfy the boundary conditions of
zero tangential electric field at y = 0, a quasi-TM;- field can be formed by the sum
of a RC, field and a LCy field. These RCy- and LC) fields are formed from the

vector potentials

Ryn = 21/ rcosk, py eIzl dp, (5.4a)

Lyn = '-*-_/ Qnrcos ky Ly e I\Fe2rhesidge, (5.4b)

where k, p = —j\/k2 + k? — k} and k, = —j\/k2 + kZ — k}. The resulting field is

a TMy- field if §, = 0; hence, the name quasi-TMj-. Similarly, = cuasi-TE,- field can

be formed from the vector potentials

- oo _ k .
Ry = %/QE"‘B" sin ky gy eI hemther) g (5.5a)
s v.R
- oo _ k
Lye = -;;/QL—,;—[— sink, p y e tkertkez)gp (5.5b)
—o0 vl

The functions QM and QE are determined when enforcing the boundary conditions

aty="T.




The quasi-TM,, electric fields are calculated by substituting the RC, and LC,

vector potentials from Equation (5.4) into Equation (2.24) of Section 2.3, producing

T (kK :
Ep, = 5‘27; /QM ( Ik ¥R sink, gy + k. cosky g y) e ikexthaz) gl (5.6a)
R
1 7= K4k .
Eny = 5 / Onr e I; : cos ky gy e~ kTt gk, (5.6b)
T = (kk .
Ep, = 5‘7; / Qs ( k”'R sink, py — k,coskyr y) g Ikexthaz) g (5.6¢)
R
i F = (kK
E . = 2'7—” / Qs ( ky‘l' sink, .y — k,cosky y) gl kerthaz) gL (5.6d)
L
1 7= K+k |
Ey = 5, /QM Ik, 2 cos k. y e krhet) dk, (5.6e)
_J T~ ko kyr . —j{ksT+k,z2)
E, . = . Qnr w, Sin kyLy+kzcosky,rLy]le dk,. (5.61)
L

Similarly, the quasi-TE, electric fields are calculated by substituting the RC,- and
LCy vector potentials from Equation (5.5) into Equation (2.24), producing

i T~ (kK .
Er., = I / QE R sin kyry — ke cosk, py | e ttkertheD) gl (5.7a)
27!'_ ky'R '
1 T = kX+k? :
— Tz LRI —J(k,1+k,z)dkr .
ER,y 21r—/ Qe PR € (5.7b)
i Ta (_tkn ke thsz)
Ep, = ——/QE -~ sink, gy — k. cosky py | e 7T dk, (5.7¢)
27r_oo kyr '
i [ = (kk -
E . = I /QE L sin kyLy+krcosk,ry e kerthar) g (5.7d)
21!’_oo ky'L
1 [~ k2+k? .
E,, = —— /QE : 1% sin ku,Lye"(“”"'k")dk, (5.7€)
27 k,.L
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T = k. k
E,., = 2i /QE (— p L sin kyry+k,cosk, y) e M kertkar) gp (5.71)
W_x vyl

The magnetic fields can now be determined using Equation (2.18) of Section 2.2

Hpy :;j_ Ex (5.8)
H, e\ -E, | ‘

5.2 Coeflicients of the Field Expansions

This section presents the solution for the coeflicients in the field expansions. Once
these coefficients are known the fields may be calculated in any region. The co-

efficients are determined by enforcing the boundary conditions at the interface of

y=T:

E! = E! (5.9a)
E! = EV (5.9b)
H! = H!" - J,(z)e 7% (5.9¢)
H!' = H!' 4 J (z)e % (5.9d)

where J,(z) and J.(z) are the components of the current J(z) on the microstrip
line. The fields in region 1 (E!, E!, H!, H!) are the sum of the appropriate field
components from Equations (5.2) and (5.3). The electric fields in region 11 (E!/,
E!!') are the sum of the appropriate field components from Equations (5.6) and
(5.7). The magnetic fields in region 11 (H!', H!") are determined using the same
field components and Equation (5.8).

To solve the boundary condition equations using the spectral-domain approach
(130, 131], Equation (5.9) is Fourier transformed from the space domain (z) into the

spectral domain (k,), evaluated at y = T, and after some simplification, results in

k. k,

WE

A-kF = Qun(k;C* + kA" )+ Qe(k,B* — kA7) (5.10a)

95




kk, ~ = ~ ~
YAtk F = Qu(kCt ~ ko AT) + Qp(-k BT ~ kA7) (5.10b)
€0
- keky - 2, Qe -
jh A+ j—2YF = Q"(—k,c- —k,A%) + QL(—sz- +k,AY) =T, (5.10¢)
Wy e e
- kk, = ) O -
—jk A+ jLEF = Q“(qc,c- + kAT + QE(k,B' + kAT +J,  (5.10d)
wpy e Ne
where
A* = cosk,gT £ cosk, T (5.11a)
k k
B* = X nk, 2T+ —sink,, T (5.11b)
ky.R ky,l,
+ ky\R . ky,L .
C* = ——sink,gT + —sink,;T. (5.11¢)
kr kp

The qualities J, and J, are the Fourier transforms of the components of J(z) and

are defined by

1 7~ .
Iz = 7 T.2 k:r _]krrdkx- .
Jeo(z) 2W_/ Jea(ke)e (5.12)
Equation (5.10) can be rewritten as
k, - ~ ~
VY4 = QMC+ —QeA” (5.13a)
wey
—F = QA+ QEB+ (513b)
k= = C° <= AY kJ. —kJ.
Y F = —Qp— 4+ 2= ="7 13
]wﬂu O Ne s Ne * kI +k: (5:13¢)
- s At = BT kJ.+ ko
A = _ - — .13d
J Q@r m Qk m T (5.13d)

where, for. example, Equation (5.13a) was obtained multiplying Equation (5.10a)
by k. and Equation (5.10b) by k,, adding these products, and dividing through by
k2 + k2. After eliminating A and F, Equation (5.13) can be written in matrix form

as
.7.%:‘104'—&:—: —jy,;?A_+l:—: QM B 1 -ka:—kIJ.I (5.14)
jlra- - ghopryat | Q| KK kJ -k
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Equation (5.14) can now be solved for Qs and QL In order to find the fields due

to the # and 2 compouents of the current, Qs and Qr are written as

Qn = Quz+Qnre (5.15a)
Qe = Qr:+Qk. (5.15b)
where
- J, k At we B~\]
= |~k [j—LBt+ )-k,('—u-— ) 5.16
Q1. 2A [ (me e J k, — ( a)
~ J, k At we B~\]
s = o |—k {j—B* + )+k,('———‘3A-— ) 5.16b
Q1 oA [ ( Wit e J k, 7 /| ( )
~ Jx . AY k c-\]
Qex = 1 [“"z( %G—UC*Jr . )JrkJr (];iA_— ; )J (5.16¢)
y < [
—~ -z . A+ -
Gp. = 2 [k( Yoot 4 ) +k, (jﬂA- _¢ \,] (5.16d)
2 ky Te Wiy Ne |
(5.16e)
and
A (k2 2 € €o . k2 €o ky € ..
= ,+kz) ;(1'}'3)“;‘(1—5) + ;—;U-Fk—'p— (5.178,)
0 Y 2 By
S = coskyrT cosk,, T —G* (5.17b)
1/( kr k k,r k
+ _ 2 R My L wR L . .
G* = 5 (ky,R " + kn ku‘L)sm kyrT sink, 1T (5.17¢)
k
U = %"'RE sin k, T cosk, T + -i’-f sin k, 1T cos ky rT (5.174)
k k
Vv = P RR sin k, T cos ky (T + ;—L—L sin k, 1 T cos ky rT (5.17e)
Y I’y

with k, = w/pe; = (kg + k)/2.

5.3 Electric Fields at the Interface

This section uses the results of the previous section to calculate the E, and F,

fields at the interface, which are used in the method of moments solution for the
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propagation constant k, and the current J(z) on the microstrip line. These fields are
presented below in terms of the even and odd components of the Fourier transforms
of these fields generated by & and 2 polarized traveling wave line sources at the

center of the strip (z =0,y = T)

- k ;
El, = ;15 [(kiw—; + kz“—?) (1-8)- L (KU + kfv)1 (5.18a)
0 Y c )
= 1 WweEy k ] ]
El: = —||K—+ khi) 1-8)— = (KV + KU 5.18b
o= g |(eseri)a-s-Levery)|  eas
- - k.k, ; ]
Bl = El==2 [(:Z - %) (1-8)+ -;—(v ~U) (5.18¢)
(¢) y C b
~ - 2k k
Jz - J. - ey
E:, = —-E,=7] . G (5.18d)
- - k2 — k2
J: — E'Jz — e | - .
Ez,e z.e 7 TICA (5 186)

where G, S, U, and V are defined in Equation (5.17). For example, the E, field
generated by the surface current J,(z) is given by

1 7= ~ - -
(@)= o [ [Edilh) + EL(ko)] Julke) e/ m ) dk, (5.19)

oo

where EJ: and E,Jjo are the even and odd components of the Fourier transform of
the E, field due to a 2 polarized traveling wave line source at ¢ = 0 and y = T.
In a conventional achiral microstrip line E,’fo, E’ffo, E’f;, and E’i’e are zero, causing
J.(z) and J,(z) to be even and odd functions of z, respectively. However, this is not
true for a chiral microstrip line, thereby requiring a set of even and odd expansion

functions for each current component.

5.4 Method of Moments Solution

The basis functions and impedance matrix for a Galerkin method of moments so-

lution are presented in this section. The @ and z components of the current are

expanded as

Ne )
Jx(z)e_jk’z = Z I n Jz.n(c) e ke (520&)
=0
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N: ‘
Jo(z)e ™t = N I, Joa(z) e (5.20b)

n=0

where I, , and I,, are the unknown coefficients. The basis functions J,, and J,,

are Chebyshev polynomials weighted by the edge conditions [131]-[135]
4 U,(2z/W)
= Vi- w)? .
nyn(z) 1I'W n + 1 (2:1:/ ) (5 213’)

Jon(z) = —7r—2w7T,,(21:/W)/ 1— (22/W)? (5.21b)

where 7,(z) and Un(z) are Chebyshev polynomials of the first and second kinds,
respectively. A detailed discussion of edge conditions is presented by Van Bladel
(136, pp. 385-387]. From Appendix F, the Fourier transforms of the basis functions

are

Jn+l(krw/2)
k,W/2
Jonlks) = j"Ju(k.W/2) (5.22b)

Jon(ks) = 25" (5.22a)

where J,,(z) is an nth-order Bessel function. The first four basis functions for each
current component are shown in Figure 5.2, where the functions have been normal-
ized using z’ = z/W. The primary advantage of these basis functions is that they
have closed form Fourier transforms while matching the edge conditions. In addition,
although these basis functions are not orthogonal, they are sufficiently orthogonal
that the I, and I,, of Equation (5.20) are relatively insensitive to the number of
terms used in the expansion. This is shown in Table 5.1 of Section 5.6.

The coefficients I, , and I, ,, are found by using the method of moments to enforce
the boundary condition of zero tangential electric fields at the surface of the perfectly

conducting microstrip line, i.e.,

El*(z) + E}*(z)
E}«(z) + E]*(z)

0 (5.23a)

0 (5.23b)

for (] < W/2 and y = T. Using Galerkin’s method of moments, which uses weight-

ing functions equal to the basis functions, Equation (5.23) can be written in block
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LONGITUDINAL TRANSVERSE

z'/v1—z'? z'v/1 — 22

(222 - 1)/v1 = o7 (42 = 1)WI= 27

........................................

(42" — 32')/v/1 — =2 (82" — 4z')y/1 — 2
Figure 5.2: First four basis functions for the longitudinal and transverse current
components.
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matrix furi as

Zez Lz
ZZI' ZZZ

1L
= (5.24)
1, 0

where I, = [I,p.. .I,‘N,]T and I, = [L,,.. .I,,N,]T. The zz block is given by

’V Z:rz(O,O) Z:rz(O,N,)
Zee - : (5.25)
lzz:(A',,O) Z:tz(l\',,/\r'z)
where
w2
Zsmm) = — / E)(2) Jom(z) € da. (5.26)
-2

The term e’*:* occurs in Equation (5.26) because the basis and weighting functions

are of the form
Jon(z) €77k (5.27)
and the inner product used for the method of moments solution is [118, sec. 12.2.7|
W/2
(w(z)g(2) = [ w(z)-g(e)de. (5.28)
—1/2

Using Equation (5.19) to calculate E/:, Equation (5.26) can be written as

ej(k; —kz)z %

Zesmm) = — 5 / El(k:)Jon(ke) Joun(—k:) dk..  (5.292)

—o0o
Impedance elements in the remaining blocks are obtained in a similar fashion and

are given by

eiltki-k)s F_ .
Zecmmy = — g [ Elr(ke)Ton(ke) Jem(—ks) dke (5.29b)
jky=ka)s F - -
Zostmm) =~ / EJe (k)T (k) Jem(—ke) dke  (5.29¢)
eilki=ka)e F_ -
Zummy = — g [ Bk onlke) Tum(~he) dhs. (5.200)
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The values of k, for which Equation (5.24) can be solved are the propagation
constants of the microstrip line. From linear analysis, Equation (5.24) can only be
solved if the impedance matrix is singular, i.e., the determinant is zero. Once the
propagation constant k, is found, the coefficients I, , and I,,, can be found. One of
the most accurate techniques for this problem is singular value decomposition {137,

sec. 2.9]. Any matrix, Z, can be factored such that

zZ=Ux VT (5.30)

where

1
U'v =vlv = (5.31)
1
and
w
Y= . (5.32)
Wn

If a matrix is singular, at least one w, will be zero. Then, the :th column of V' is a

vector in the null space of Z and is a solution for the vector

l . J
. (5.33)
1,

In practice, the w, will be not exactly zero, but it will be numerically small.

5.5 Evaluating the Microstrip Integral Equations

This section is concerned with the efficient numerical evaluation of the electric fields

and the elements in the impedance matrix. For example, E/* and Z,, are given by

1 T - = :
Js _ Js —j(kez+k,2)
El'(z) = 272/ EJ:(k.) J(k,) € dk, (5.34a)
R () Fo(ks) Tu k) d
L = S [B) L) Tk e (s0)
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where the reference to the particuiar eiements of the impedance matrix has been
dropped for convenience. As in Equation (5.19), the Fourier transforms for the

electric fields and currents can be decomposed into even and odd components:

El*(k:) = EJi(k:)+El(k.) (5.35a)
Jolkz) = Joelks) + Joo(ks) (5.35b)
jx(_kz) = jx,e(kx)_jz,o(k:t)' (535C)

Equations (5.35a) and (5.35b) can be combined as

EJeielks) = Eli(k:) Joo(ke) + Bli(ke) T.o(k:) (5.362)
EJ.,o(ks) El (k) Joolke) + Elx (k) T, o(k:). (5.36b)

Then, Equations (5.34a) and (5.34b) can be written as

oQ
Exj’(:c) = -}/E]"'e(k,) cosk,z e %% dk,
o

am

/ seolks) sink,z e** dk,  (5.37a)
0

J(k:—kz)z ®
Zoo = T [EJurelhe) Teclhs) dk,

0

eJ(k k:)z °c~ -~
P / EJsolks) Joolks) dk..  (5.37b)

0
Equations for the remaining electric fields and impedance elements can be written

by changing the references to # and z in Equations (5.37a) and (5.37b).

Numerical Integration

Efficient numerical integration of Equations (5.372) and (5.37b) requires careful ex-
amination of the kernels of the integrals. First, consider the region where k, is
small. Surface wave poles exist in the region between k, and the maximum of kg,

ki, where A of Equation (5.17a) goes to zero. These singularities can be avoided by

103




S Re(k.)
gko max(kR, kL) 2 max(kn, kL)

Figure 5.3: Integration contour to avoid surface wave poles.

using the integration contour shown in Figure 5.3. Figure 5.4 shows the integrand of
the self-impedance of the Maxwellian (J, o) current distribution for k, = 0 to 1000,
a propagation constant of k, = 349.3 (A,/Ay = 0.6) and several values of £, from 0.0
to 0.005 (the limit set in [102] is |¢.| < \/;E = 0.0053). The approximate locations
of ky, k2, and 2k, are shown along the Re(k,) axis for refeience, where k, = 209.6
and k; = 419.2 = w, /e for a frequency of 10 GHz, ¢, = 4, g, = 1, T = 3mm, and
W = 3mm. The limit of |¢.| < \/5/7 corresponds to kry = k2(v/2 £ 1). Due to the
wide variation of the integration kernel shown in Figure 5.4, Romberg integration
was chosen for the integration contour shown in Figure 5.3.

Next, consider the region where k. is large. The expressions in Equation (5.18)

have the following asymptotic behavior:

Elx o« k, (5.38a)
El o« 1/k, (5.38b)
El = El x1 (5.38c¢)
Elx = —Ex «1/k, (5.38d)
El: = E* «1. (5.38e)

The remaining terms in the integrals of Equation (5.37) are sine, cosine, and Bessel
functions. Since the asymptotic form of a Bessel function consists of a cosine function

divided by the square root of the argument, all the integrals in Equation (5.37) ean
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Figure 5.4: Integrand of the self-impedance of a Maxwellian current distribution
(Z.:(0,0)) for a normalized guide wavelength of 0.6 (k,=349.3) and a range of chirality
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be written for large k, as

/;1? cos(w k; + a) cos(wqrk, + B) dk, (5.39)
0 I

where P = 0.5,1.5,2.5 for electric field calculations and P = 2,4 for impedance
calculations. For achiral impedance calculations P is always 2, because ITJIJ'O is zero
for achiral microstrip lines. The closed form of Equation (5.39) is presented in
Appendix H in terms of sine, cosine, and Fresnel integrals. Since the expressions
of Equation (5.18) approach their asymptotic forms in Equation (5.38) much more
rapidly then the Bessel function approaches a cosine function divided by the square
root of the argument, the use of these asymptotic forms is limited by the asymptotic
form of the Bessel functions.

In the intermediate region between 2maz(kg, k. ) and the start of the asymptotic
region, the integrals in Equation (5.37) are similar enough to the asymptotic forms
that the number of integration points needed can be predicted from the frequency
of the two sinusoids in the integral, i.e., |w; + w;| and |w; — w3|. An alternative
approach for integrating the self-impedance of the Maxwellian current distribution

(Z,z(o‘(,)) is presented in Appendix G.

5.6 Numerical Results

This section presents numerical results demonstrating the accuracy of the method
of moments solution, and also some effects of chirality on a microstrip transmission
line. To simplify comparisons all results are for a substrate of thickness T = 3 mm,
¢, of 4, and g, of 1, with a microstrip line of width W = 3 mm. Since the microstrip
current can only be found to within a constant, all currents are normalized so that
I,, = 1. When plotting currents or fields, the real part is shown as a solid line, and
the imaginary part as a dashed line. The initial data will illustrate the accuracy of
the method of moments solution by showing that it satisfies the boundary condition

of zero tangential electric field on the perfectly conducting strip.
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The longitudinal current on a thin achiral microsurip iine is essentialiy the Max-

wellian distribution 1/4/1 — (22/W)2. The transverse current is an odd function
satisfying the edge condition /1 — (2z/W)?, similar to the J,; expansion function
of Equation (5.21a). Figure 5.5 shows the longitudinal (E,) and transverse (E,)
electric fields at the interface (y = T') when these two expansion functions are used
in the solution for thin chiral and achiral microstrip lines. Note that this solution
produces essentially zero tangential electric field on the strip for the achiral case,
but not for the chiral case. This indicates that the method of moments solution
for the achiral case is essentially correct. However, the relatively poor field match
for the chiral case indicates that it is not correct, and thus more expansion func-
tions are needed. The real asymmetric E, field component shown in the upper left
graph is due to the chirality of the substrate. This field component is unaffected in
the solution by even J, and odd J, expansion functions, thereby requiring odd J,
and/or even J, expansion functions for a reasonably physical solution. The imagi-
nary symmetric E, and real asymmetric E, field components for both the chiral and
achiral cases are virtually identical, indicating that modest chirality produces only
a relatively small perturbation in the currents and fields.

A more accurate approximation for the currents is shown in Figure 5.6 using ten
longitudinal and ten transverse expansion functions. The left-hand graphs show that
the fields nearly satisfy the boundary condition of zero tangential electric field on
the microstrip line. The corresponding currents are shown in the right-hand graphs.
The even transverse current component, which occurs solely because of the, chirality,
is significantly larger than the odd transverse current component. The calculated
propagation constant for the chiral microstrip line using twenty expansion functions
differs only slightly from that of the achiral microstrip line shown in Figure 5.5. The
imaginary part of k,, corresponding to attenuation on the line, is negative and of

the order 10-8.
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Chiral & Achiral Microstrip Line
Two Lowest Achiral Expansion Functions
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Figure 5.5: E, and E, fields at y = T for identical chiral and achiral microstrip
lines, solved using the two lowest order expansion functions.

108




Chiral Microstrip Line
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Figure 5.6: Fields and currents at y = T for a chiral microstrip solved using ten J,
modes and ten J; modes.
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The variation of the propagation constant and the current coefficients with re-
spect to the number of basis functions used is shown in Table 5.1 for the geometry
and material parameters in Figure 5.6. Accurate calculation of the propagation con-
stant requires very few expansion functions as seen in Table 5.1. However, accurate
calculation of the imaginary part of k, requires an accurate representation of the
current on the microstrip line, which is dependent on the width of the microstrip
line in wavelengths. For comparison, Figure 5.7 shows the electric fields and currents
for the microstrip line examined in Figures 5.5 and 5.6 at 5 GHz.

The dispersion curve shown in Figure 5.8 shows the normalized guide wavelength
(Ag/Ay) for the fundamental mode of a chiral microstrip line, for a range of chiral
parameters. The case {. = 0 corresponds to an achiral line. As seen in Figures 5.5
and 5.6, the chirality of the substrate significantly modifies the fields and currents of
the microstrip line even for small chiral parameters. However, as Figure 5.8 shows,
the propagation constant is not significantly affected unless the chiral parameter is
a significant fraction of its maximum value set in [102] of & .., = \/e—/;, which in
this case is 0.0053.

Figure 5.9 shows the relationship between substrate thickness and normalized
guide wavelength for chiral and achirai microstrip lines at frequencies of 0.5 GHz
and 2 Ghz. The relationship between microstrip line width and normalized guide

wavelength is shown in Figure 5.10 for the same frequencies.

5.7 Summary

This chapter has presented a spectral-domain solution to the problem of propagation
on a microstrip transmission line on a chiral substrate. Circular vector potentials
were used to expand the fields in the chiral substrate. The primary effect of the
chiral substrate is to generate asymmetric longitudinal and symmetric transverse
fields. This effect could significantly alter the properties of microwave and higher

frequency devices constructed on a chiral substrate.
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Chiral Microstrip Line
€=4, Ue=1, T=3mm, W=3mm
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Figure 5.7: Fields and currents at y = T for & chiral microstrip at 5 GHz solved
using ten J, modes and ten J, modes.
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Chiral Microstrip Line
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Figure 5.8: Normalized guide wavelength (A;/A¢) versus frequency for the funda-
mental mode of chiral and achiral microstrip lines, for a range of chiral parameters.
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Chiral Microstrip Line
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Figure 5.9: Normalized guide wavelength (A\;/Ay) versus substrate thickness for the
fundamental mode of chiral and achiral microstrip lines at two frequencies.
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Chiral Microstrip Line
€=4, U=1, T =3 mm
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Figure 5.10: Normalized guide wavelength (A;/Ao) versus microstrip line width for
the fundamental mode of chiral and achiral microstrip lines at two frequencies.
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Chapter 6

Conclusions

In this report, the interaction of objects composed of chiral media with electromag-
netic field- was analyzed using eigenfunction and method of moments techniques.
The historical basis for the constitutive relationships used for chiral media was dis-
cussed in Chapter 1. These constitutive relationships were shown to have a direct
relationship to the constitutive relationships for optically active media, which can
be derived using quantum mechanics.

Chapter 2 presented one method for solving the wave equation in chiral media.
Key parts of this method were then used to develop circular vector potentials, which
produce circularly polarized fields useful for field expansions in chiral media. Next,
the volume equivalence theorem was developed for chiral media using the same
procedure as that used for achiral media, and then was used to develop image theory
for chiral media.

An eigenfunction solution for scattering by a multilayer circular chiral cylinder
with a center cylinder described by an impedance surface was developed in Chapter 3.
The essential difference from achiral eigenfunction solutions was the use of circularly
polarized vector wave functions. The formulation was such that the TEz solution
differed from the TMz solution by only a plus/minus sign at one step. Previous work
required completely different solutions for TMz and TE; incident plane waves. An

examination of the scattered fields showed that the cross-polarized bistatic echo
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width of circular cylinders is identical for TMz and TE; incident plane waves. The
most significant result of this chapter was the effect of chirality on the internal fields.
In one case, more J, than J, current was induced on a perfectly conducting cylinder
coated by two layers of chiral media for a TE; incident plane wave, even though
the achiral problem would have induced no J. current on the conducting center
cylinder. An examination of the relationship between chirality and scattered fields
found that even through the achiral bistatic scattering pattern may have no deep
nulls, the co-polarized bistatic pattern for a chiral cylinder can have deep nulls for
certain ranges of {.. In one case the backscattered field was entirely cross-polarized
for a small range of the chirality admittance.

A pulse-basis point-matching method of moments solution for scattering by an
inhomogeneous object composed of chiral media in free-space or in the presence of a
perfectly conducting half-plane was presented in Chapter 4. The numerical results
showed that the cross-polarized backscatter echo width of at least one noncircular
geometry is identical for TM; and TE; incident plane waves. However, the cross-
polarized bistatic echo-width can differ, which is in contrast to the circular cylinders
of the previous chapter. An examination of the internal fields of one chiral cylinder
showed that the number of cells needed in the method of moments solution increased
by a factor of 5. Part of this increase is due to the short wavelength of the circu-
lar polarized fields in chiral media. The remaining increase remains unexplained
and may be due to the interaction of the two circular polarizations with different
wavelengths.

A spectral-domain Galerkin method of moments solution for & microstrip trans-
mission line on a chiral substrate was developed in Chapter 5. The propagation
constant of the transmission line showed only a minor change due to the chirality
of the media. In contrast, the fields were significantly changed. These fields can
be divided into the symmetric and asymmetric field components. The symmetric

field components were only slightly affected by the chirality of the media. However,
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the asymmetric field components were due in entirely to the chirality of the media.
These asymmetric field components would significantly affect the coupling between

microstrip lines on a chiral substrate.
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Appendix A

Scattering by a Chiral Coated
Perfectly Conducting Cylinder

This appendix presents an eigenfunction solution for scattering by a perfectly con-
ducting circular cylinder coated by a single homogeneous layer of chiral media. The
development is similar to the more general case of scattering by a multilayer circular
chiral cylinder presented in Chapter 3. The geometry of the coated cylinder is shown
in Figure A.1, where the constitutive parameters of the chiral coating are (p,¢,§.)
with an outer radius of b meters. The right and left wave numbers, kr and k;, and
the wave impedance, 7., of the coating are defined by Equations (2.12) and (2.11).
The perfectly conducting cylinder has a radius of a meters. The external medium is

free space, with parameters (uo, €p), wave number ky = w./Ho€y, and characteristic
bl b} 7 b

impedance 7y = /po/€o.
External and Internal Field Expansions

This section presents the eigenfunction expansions for the fields external and inter-

nal to the chiral coated cylinder. The external scattered fields are expanded as in

Equation (3.5)

S [an NG (ko) + b, M (k)] (A.1a)
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(p.e,&)

Figure A.1: Geometry of a chiral coated perfectly conducting cylinder.

oc

HY = L1 3 57 [aaM{(ko) + 8NEI (ko)) (A.1b)

M n=—cc
where N,, and M,, are defined in Equation (3.2).
Using the right and left circularly polarized vector wave functions (20] from Equa-

tion (3.6), the internal fields are expanded as

E = Y i [caER)+daEL), + haER), + LEY)] (A.2a)
H = 23 i [cER - d.EL) + hED —LED) . (A2D)

TM ; Incident Field

This section presents the solution for a TMz plane wave normally incident from

¢ = 180°. As in Equation (3.3), the incident fields are expanded as

E = ze~TkoT — E ]'—"Ng)(ko) (A3&)
1 ) | &=

H = —g—etm =L 5 j-"MO(k). (A.3b)
No Mn=_o

The unknown coefficients are found by enforcing the boundary conditions of con-

tinuous tangential electric and magnetic fields at p = b and zero tangential electric
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fields at p = a. The scattered field coefficients, a,, and b, are given by
v _ BOL)ATY + BO(R)BM + BO(L)CTM + BIY(R)DLY
e = ATM
pTM 257.
" TwpebAIM

. [Xr(z2’2)Ur(;"') + X'(.IJ)U'(12.2) _ X'(‘I,Z)U'(12.l) _ A"(12,1)Ur(11.2)] )

The internal field coefficients c,,,d,, hn, and [, are given by

JIM 23, BZM
" wwpeb ATM
dT™™ — 257, AZM

- Twuyb ATM

pTM 2jn. DIV
" Twpyb ATM

_ 2in. CaM

[TM
" rwpob ATM

where
ATV = — [W(L)ATM + W(R)BIM + WA(L)CTM + W(R)D]Y]

and

ATM X(z,z)v(l)(R)+ 2 V(:’.)(L)_X(z.l)vu)(}z)
n n wkpa " " "

BTM _ X(’"z)V(')(L) + 2 V(2)(R) _ X("")V(z)(L)
n n n WkLa n n n

cr™ — X(Dy@Y(R) - 2 VO(L) — X0DV)(R)
n n n ‘n_kRa n n n

D™ _ X("')V(Z)(L) _ 2 V(l)(R) _ X(“)V(')(L)
n n n WkLa n n n

W(S) = },’fzw(ksb)ﬂs.ﬂ'(kob)—z,&")'(ksb)H,(f’(kub)
(8

Vi(s) = 'Zfzsp"(ksb)ﬂf,”(kub)—z,s"’(ksb)H,&”'(kub)
(V)

121

(A.4a)

(A.4b)

(A.5a)

(A.5b)

(A.5¢)

(A.5d)

(A.6)

(A.78)

(A.7b)

(A.T¢)

(A.7d)

(A.7e)

(A.7f)




BW(S) = %Z,(]’)(ksb)J,’,(kUb) Z0V (ksb)J(kob) (A.7g)
(8]

XP9 = ZW(kpa)Z9 (kpa) + 2P (k1a) 20 (kra) (A.7h)

U = ZP (kb Z9 (kpb) — ZP (kb 29 (kpb). (A.7i)

TE; Incident Field

This section presents the solution for a TE; plane wave normally incident from

¢ = 180°. As in Equation (3.4), the incident fields are expanded as

E = ket = 5_: 3T M (k (A.82)
H = zlehr_ L Z 5T N (k). (A.8b)
o nUn——oc

The unknown coefficients are found by enforcing the boundary conditions of con-
tinuous tangential electric and magnetic fields at p = b and zero tangential electric

fields at p = a. The scattered field coefficients, a,, and b, are given by

oTE = pTM (A.9a)
AD(L)ATF + AQ(R)BIE + AQ(L)CIE + AP(R)D]E

Ne (A.9b)

TE
b," =

The internal field coefficients c,.,d,,, k., and [,, are given by

ab = "?Z;bizz (A.10a)

aTE = :‘j:ubﬁ;i (A.10b)

RTE = Wijz:b—:%; (A.10¢)

nE o= }%ZEZZ (A.10d)
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where

and

ATE

n

X2AW(R)
XEWPL)
XYW (R)

XIwW(L)

2w (L)

Wkna

_2WEN(R)

kaa

2W (L
| 2W(L)

rkra

2W (R
L WOR)

1rk1,a

ALF = = [VUD)IATE + VIO(R)BIE + VA(L)CTF + VIO(R) D"

- XEOWH(R)
- X{HWP(L)
- X(M2WLNR)

n

- XEOWL)

e 20 (ksb)Jn(kob) — Z0)(ksb)J.(kob).

o
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(A.12a)

(A.12b)

(A.12¢)

(A.12d)
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Appendix B

Evaluating the Half-Plane
Green’s Function Integrals

The Green’s function for a z polarized line source in the presence of a perfectly

conducting half-plane involves the integrals [125, 8.3]

x e_j"’.'

Si(a,B) = /Wdu’ (B.1)
for ¢+ = 1,2. This appendix presents new and efficient techniques for accurately

evaluating these integrals. For a lossless ambient medium o and 3 are real numbers.

The range of a that needs to be explicitly considered can be restricted to a > 0

using [138]
Si(a,B) = Sw(B) - Si(—a,B) (B.2)
where 1 = 1,2 and the S,,(3) are defined by
S1(B) = Si(-o00,08) = 126167/2}{("’) (Bz ) (B.3a)

S?U(‘.J) = S2("°°a ﬂ)

s (5) o ()] o

Figure B.1 shows the real and imaginary parts of the integrand of Equation (B.1)
fori =1 and 8 = 1. The singularities caused by 8 can be seen in the lower graph
at u = +j. The branch cut caused by the square root can be seen in both graphs

starting at the singularity v = —j. Figure B.2 shows the best regions for each
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Figure B.1: The real and imaginary parts of the integrand of the half-plane integral

fori=1and 8 =1.
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1216 o

Figure B.2: Regions for each method of evaluating the S, integrals in the half-plane
Green’s function for a z polarized line source.
method of evaluating the S; integrals. These methods are presented in the following

sections.

Method I: Numerical Integration (|a| > 1.6, all 3)

This section presents a numerical integration technique for S; and S, requiring far
fewer points then previous approaches {129, 138, 139]. Using the change of variables
u? = z and z = a®~jt, where the second change of variables corresponds to changing
the integration path for z to the contour z = a® to —joo + a? to 0o, Equation (B.1)

can be rewritten as

et T e’ dt
Si(e,B) = —j 2 b/ (a2 — jt+ B2)~1/2 \/aZ — jt (B4)

where the portion of the path at infinity does not contribute to the integral. Fig-
ure B.3 shows the resulting contour in the complex u plane. These integrals are now

in a form suitable for Gauss-Laguerre Quadrature, which can be written as [140, sec

25.4.45) | |
/f(z)e"dz = Z:w.‘f(zr) + Ry (B.5)
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Figure B.3: Integration contour in the complex u plane.
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where w; and z, are given in [140, table 25.9] for N = 1,...,10,12,15 and Ry is the

remainder. In our case a very conservative upper limit on Ry is given by

4

OO for S,

a2+4N
IRl <{ (B.6)
(N)?2(2N+1) for S,.

204 +4N

\

Empirically the N required for a relative error of é in either S; or S, is approximately

given by

N =~ -.1-log,,6(.16 — .03log,,$)

1 2.3 .89 1.1
— [1.5 —~ — +log,, & {1.6 + — +log;, 6 (.35 - —) }] (B.7)

|| || le| |ex|
for 0 < 8% < 2 and by

1 .04 1 0.7
N=x~.4- Tal [1.2 T Tal + logw6{2.5 L + log,, 6 (.18 — —) }] (B.8)

|al |af

for B2 > 2. These equations were developed for N =1,...,10,12,15 and 0.00001 <
6 < 0.01.

Method II: Exact Integration (3 = 0)

This section presents the special case of 3 = 0, where the S;’s can be exactly inte-

grated
Si(Jal,B) = %El(of) (B.9a)
1 ) ]
Sa(lal,B) = 5e —-]2-E,(a2) (B.9b)

where E;(z) is the exponential integral given by

Ei(2) = 7e

x

—ju

du. (B.10)

u

as defined in (140, sec 5.1].
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Method III: Small Argument Approximations
(la] <16,82<7)

This section presents efficient small argument approximations for the integrals S,

and S; when a and § are small. In this region the integrals are evaluated using
1 .
Si(a,B) = ES,-U(ﬂ) — sign(a) AS(0, |al, B) (B.11)

where i = 1,2, the S,y are defined in Equation (B.3), and the AS; are defined by

se1?

AS(0,a,8) = ] e

/ Wdu. (B.12)

The AS; can be evaluated using the Taylor series expansion for e=*’ and inte-

gration by parts. For AS,, where B # 0, this gives

2
! a o el 5
B1+,| (E) +1) ~ b y/o? + 8 (B.13)

where a, and b, are computed using reverse recursion and the relations

AS5,(0,lal,8) = a1ln (

0 = 1_+_.2n.—1
n = 2 on?

n—1

B? anyy (B.14a)

02 bn+]. (B.l4b)

b, = an—3j =

The reverse recursion is started at n = N, where ay = by = 1. Then the relative

error, §, is approximately given by

§ < gy o " (B.15)
2N! -
§ < iN—N)!aﬂ”‘. (B.15b)

For AS;, where 3 # 0, the same technique produces

|a|

AE (a) + 1) + g (i) B

ASz(Os lalyﬂ) = —J¢ In (
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where ¢, and d; are computed using reverse recursion and the relations

. 2n+1 2
n — n 7 . 4N n .1
c 1+12n(n+1)ﬂ Cn+1 (B.17a)
1
d] = C +]Z 02 d2 (B17b)
d, = =l 4., forn>1 (B.17¢)
n = Cn ]n(n+ 0 a dyyy; forn . 17c

The reverse recursion is started at n = N, where ¢y = dy = 1. Then the relative

error, &, is approximately given by

1 2A7
§ < m Qa (BlSa)
@N+1)!  x
& FNEY + 1) g, (B.18b)

Due to the relative size of the terms in Equations (B.13) and (B.16), Equa-
tions (B.15a) and (B.18a) provide very accurate estimates on § for a given a; how-
ever, Equations (B.15b) and (B.18b) give very conservative estimates on § for a given
B. Empirically, the N required for a relative error of § in S, is approximately given

by

(B.19)

N 0.85 - 123 8"+ 7.70 a for S,
20-1208""+741a for S,
where N~ is rounded up to N = 4,8, or 13 (i.e. if N* = 4.1, then N = 8).

Method IV: Small/Large Argument Approxima-

tions
(la] <1.6,8°>7)

This section presents efficient small/large argument approximations for the integrals
S: and S; when a < § and § is large. Again Equation (B.11) is used as in the previ-
ous section. Then AS; is evaluated using the binomial expansion for (u? + §2)'/%™
and integration by parts. For AS, this gives
1 ] a —sa?
AS;(O,a,ﬂ)z‘-B—‘ e,F(a)—-Z? fae™? ] (B.20)
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where e, and f, are computed using reverse recursion and the relations

(2n-1)? 1
ép = 1+]T @ En41 (B21a)
2n — 1 o?
fn = €én— mn —,B-; fn+l (leb)
and F(a) is the Fresnel integral given by
F(a)= /e_jUQdu. (B.22)
0

The reverse recursion is started at n = N, where ey = fy = 1. Then the relative

error, §, is approximately given by

(2N)? 1
4 (2N)! a?N-2
For AS, the same technique produces
1 3 a —ia
ASy(0,a,8) = e g1 F(a) —Jy 7 hy e (B.24)
where g; and h; are computed using reverse recursion and the relations
(2n-1)2n+1) 1
gn = 14 in 7 gn+1 (B.25a)
2n+1 o?
hn = Gn — —2n— E n+1- (B25b)

The reverse recursion is started at n = N, where gn = Ay = 1. Then the relative

error, §, is approximately given by

(2N + 1)(2N)!2 1
42N N13 [N

4(2N + 1) a?N-2

_5' 4N N12Z  [gIN-2

5 < (B.262)

6 (B.26b)

Empirically, the N required for a relative error of 6 in S, is approximately given by

3.2 —20.8 §°2%5 + 2352 for §
N~ { g o191 (B.27)

6.1 — 24.4 %1%+ 200 §; for S,
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where N~ is rounded up to N = 4,8, or 13 (i.e. if N* = 4.1, then N = 8).

In summary, this appendix presented new and efficient techniques for accurately
evaluating the integrals needed for the half-plane Green’s function of a line source.
For a given relative accuracy, these approximations are much faster then the tech-

niques presented in previous work [129, 138, 139].
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Appendix C

Chiral Slab and Normal Incident

Plane Wave

This appendix presents the solution for a plane wave normally incident on a chiral

slab in free space, and in a form simpler than available in [54] and [62]. Consider

a right circularly polarized wave normally incident on the chiral slab as shown in

Figure C.1. The incident, reflected, internal and transmitted fields are given by

E
E’
E"
E"
Et

= (& —jz) ek (C.1a)
= R (& —jz)e kv (C.1b)
= Tin (& — j2) ™Y (C.1c)
= Rin (& —j2) e *1¥ (C.1d)
= T (2~ jz) ey (C.1le)

where ky, = w /o€y, k2 = wy/B2€2, krL = ke £ ke, ke = wy/pe, ke = wpé., and
€. = € + pué.’. Simple matching of fields at the boundaries produces

Tl'nt =
Rint =
T =

R =

M2 + N
T —— C.2a
o, (C.22)

n2 — Ne
T —— C.2b
2n, ( )

ikl 4 R e-ikol
L (C.2c)
e’k \ ny cos k.l + jn. sin k.l

Nesf — Mo ikol (C.2d)

Nefs + Mo
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Figure C.1: Geometry for an infinite chiral slab

7, + jn. tan k.l
“Be + jna tan k.l

where 1y = \/po/€v, 9 = \/1L/€c, 2 = \/12/ €2, and L is the thickness of the slab. For

the case of a left circularly polarized wave, replace k¢ by —k in the above equations.

Negf = M (C.2¢)

If medium 2 is a perfect conductor, 7.;; = jy.tank.l. For a linearly polarized
plane wave the solution is simply the sum of the right and left circularly polarized

solutions.
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Appendix D

Fields of Circular Vector
Potentials

This appendix presents the fields produced by the circular vecicr potentials devel-

oped in Section 2.3. For the & right circular vector potential

R = & (asink, py + beos k, py) e 7 (kr=tks2)

the field components are

k? + k? .
., = ——T : AL (esinkypry +bcosk, ry) g I kezthaz)
R
k. k ) k.
E, = —j [(ak, -b k:R)sm kyry+ (bk, +a :;”R)cos ky, r y]
e-j(k,r+k,z)
k. k. . k. k.
E. = - [(a P bk, r)sink, py + (b . + ak, p)cosk,p y]

e ilksz+ksz)

For the & left circular vector potential
L==&(asink,,y+bcoskyy) g~ i(ksztksz)
the field components are
K4k,

E, = —E—— (a sin ky,L v+ bcos ky.L y) e-j(k,z+k,z)
L
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(D.3)

(D.4a)




(s
L

k.k )
E, = —j [(akz +b kZ.L )sink, .y + (bk, — Ycos ky 1, y]

e—j(k,.r-\Lkzz)

Kok, . k. k.
E. = |(a wL)sink, .y + ( wL)cosk, Ly
kL kL

o ilksz+kzz)

For the y right circular vector potential
R =g (asink, gy + bcosk,py) g i (kaxthsz)

the field components are

k.kyr k.k
E, = [(ak + b= kR )sin kyry+ (bk. —a 'k;j'R)cos ky r y]
e—j(k,1‘+k;z)
k?
E, = ke + 2 (asinky py + beos k, py) e herthe2)
R
yR . ky sz
E, = (ak; — b )sm kyry+ (bk; + a . Ycosky, ny

e—j(k,1+kzz) .

For the ¢ left circular vector potential

L= f/ (a sin ky,L v+ bcos ky.L y) e_j(sz'*’kzz)

the field components are

k. k . k.k
E. = j [(akz - b kz’[‘ )sinkyr y+ (bk; +a k;'L )cos ky.1 y]

e“j(kr1+kxl)

2 | 2 A
E, = - k’:; k, (asink,;y + beosk, y)e I kemth:2)
. ky,L . k
E. = —j (ak,+bk—Lk,)sm k,ry+ (bk, aE—k L)cosk, Ly

e—j(k,:r-{-k, 2)

For the z right circular vector potential

R=2z2 (a sin ky.R y+ bcos ky.R y) e—j(k:1+kzz)
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(D.4c)

(D.5)

(D.6a)
(D.6b)

(D.8a)
(D.8b)

(D.8¢)

(D.9)




the field components are

k:k. : k:k.
E,. = — [(a . + bk, r)sink, ry + (b-‘k: — aky r)cos ky r y]

R
g I (keztksz2) (D.10a)

E, = j|(ak:+ bky'sz )sink, gy + (bk; — aky'sz Jeosk, Ry
kR kR

e~J(kextkez)  (D.10b)
k2 + k2 g

E, = e (asinky,py+ beosk, ry) g Ikextkaz) (D.10c)

For the 2 left circular vector potential
L = z(asink, y+ bcosk,y) g (ke +hsz) (D.11)

the field components are

k. k.

kzk.
E, = [(a ”

ki

~ bk, )sink,y+ (b + ak, 1 )cosk, y]

e=itkeT+k:2) (D 12a)

) k,p k.. . , k, Lk,
E, = j [(alcjr - b—”I:—'L——) sink, ;y + (bk; + ay—’:“L—) cosk, L y]
g ilk=x+k:2) (D .12b)
k2 + k2 .
E, = ——I——;L’“ (asink,,y+bcosk,Ly) e J(keztkaz) (D.12¢)
L
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Appendix E

Spectral Domain Fields in a Half
Space

This appendix examines the wave numbers of a spectral domain field in a half space

of y > 0. Assume a spectral domain field given by
b= /,J}(kj)e-j(krr+kyy+kzz)dkr (E.1)
where
ky = kI+kI+k (E.2)
For +2z propagation, with k. = 3, — ja.,
—jk,z

e = g™ g I8t (E.3)

which requires that both a, and 3, be greater than zero. The fields must decay as

y — oo, therefore ay > 0, using k, = 8, — ja, and
e vy = e IBuy, (E.4)

Take k, and k, to be real, then from Equation (E.2)

ki = K2+B2-al+pi-al (E.5a)
0 = —j2a,8, — j2a.B.. (E.5b)
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From Equation (E.5b)

a.f,
ﬁy - = a,
therefore
B, <0
and

—y/k2 — k2 — k2 for k24 k2 <Kk}

k, =
’ {—j,/kgmg—kg for k2 + k2 > k2.
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Appendix F

Fourier Transforms for Microstrip

Problems

This appendix presents some of the Fourier transforms used in microstrip problems

and how they are obtained. The Fourier transform

/ Ju(ae) e dz =
e 0

(=7)" 2 Tn(b/a) bia for |b| < a

for |b| > a

(F.1)

where T, is a Chebyshev polynomial of the first kind, can be obtained directly from

[141, sec. 6.671.8-10).

The Chebyshev polynomials of the first and second kinds have the following

properties

Tn(cosb) =
Un-1(ccs ) =

:i% [sin 8U,_1(cos §)] =

As a consequence of Equation (F.2c)

dii; (VI=22U,i(2)) =

Starting with
Jn(at) ‘-f_’ (—J)
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—n

n2Tn(w/a)
Va? = w?

cos né

sin né

sin 8

nT,(cosf).

T.(z)
V1-z?

for lw| < a

(F.2a)
(F.2b)

(F.2¢c)

(F.3)

(F.4)




use Equation (F.2c) to get

Jn(at) NN (—j)”;—ja% [\/a2 - w? U,,_l(w/a)] for |w| < a. (F.5)

The derivative property for Fourier transforms is

(~30)1(t) 2 < F(w). (F8)

Comparing Equation (F.5) and (F.6) the following relationship can be obtained
j Fo_an—2d
ZJ,.(at) — (=J) — [\/a"’ — w? U,,_I(w/a)] for |w| < a. (F.7)

which can be written as

s -1 2 —
/ J,,(a:c)e—jbrdz - (=7 5var — b Un_y(b/a) for |b| < a (F8)
e T 0. for [b] > a
Edge Modes
Edge modes on microstrip lines can be represented by
L - - d (F.9a)
Vate = Ya-o Y- '
AR S— (F.9b)
Va—-w  Va?l—w?  Val—uw? .

From Equation (F.4), the Fourier transforms of these edge mode functions are given

by

— <
L gat) - jadi(at)] 2o | Vere Trlel<a (F.10a)
2 0 for [w| > a
1 e f <a
= [Jo(at) + jad(at)] <2 s forle (F.10b)
0 for |w| > a.

Fourier transforms for these and more complicated edge mode type functions can

also be calculated using Equations 3.384.1 of [141].
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Appendix G

Numerical Integration for the

Self-Impedance of the Dominant

Microstrip Current

This appendix presents a technique which can be applied to the integration of the

self-impedance of the Maxwellian current distribution on a microstrip line. This is

the Z..(.0) term of Section 5.4 and can be written as

T fks kW
2200 = / A 5 ) cos? (——2— — 1) dz
0 I

k 4

where f(k,) approaches a constant for large k,.

Consider the integral
I= / f(z)dz
0
where f(z) ox 27° for a > 1 and large z. The integral can be written as

I = I(X) + L(X) + I.(X)

where

=

L
e

A
h

[ f(z)dz

X
X

+
>4
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(G.4a)

(G.4b)




8

I(X) = [ fe)ds. (G.4c)
X¥a
Next, define a constant ¢ such that
X+a
L(X)=¢ / z ™%z (G.5)
X
then
_ 1(X)
Do e (©9
For large =
Io(X) =~ ¢ f 2 %de (G.7a)
X+a
hi(X) (G.7b)

(1+a/xy"' -1

This technique is used by integrating to a point X, integrating the additional
distance A, and using Equation (G.7b) to estimate I(X,) and repeating for X, =
Xo+A. By comparing Io(Xy) and Io(X,) an estimate of the error can be obtained.
For the microstrip impedance problem, A would be chosen as the length of one

or more cycles of the sinusoid, in this case A = n x #F and the first X would be

chosen to be near a null. Fo. .his special case of a = 2, I,(X) is given by

LX) = 1(X) . (G.8)
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Appendix H

Generalized Sine and Cosine

Integrals

This appendix presents generalized sine and cosine integrals which are extensions of

the sine and cosine integrals

T cost
Ci(z) = —/53:— dt
si(z) = ——/E%l—t dt
. ki3
= Sl(Z) — '2—

and the Fresnel integrals

S(z) = [sinct?dt=-—r ds
.0/ 2 21.'-0/ Vs

= feos T ar - L
C(z)—0/c0s2t dt 27ru/\/§ds

as defined in {140, sec. 5.2, 7.3].
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(H.1b)

(H.1c)

(H.1d)

(H.2a)

(H.2b)

A




The first extension is for higher powers in the denominator

si(z, P) =

Ci(z,P) =

where si(z,1) = si(z) and Ci(z,1) =

ocsint sin z
nE _l[t,,l+szP—1)
T cost 1 c 1
0s 2 .
Tz = P71 [t”" — si(z,P - 1)

2

Ci(z).

The second extension is to double cosine and sine functions

oC

CC?:(Z, P,wlsaywhﬂ)

CSi(z, Pyw;, a,wy, ) /—cos (wit + a)sin(wt + G) dt

Each of these functions can be writtza as the sum of four terms

CCi(z, Pw,,a,w;,8) = CCi 4+ CCi+CCi3+ CCiy
CSi(z,P,w,,a,wg,ﬁ) = CS‘L] + CSlg + CSZ! + CS!;

where
CCi, = ﬁ(ﬁz_—ﬂ) lwy — w2|"7" Ci(|wy — w2|z, P)
CCi; = cos(_a2+@_) lwy + we|F7! Ci(|wy + wolz, P)
cCin = =SB )™ siffunr — wilz, P)
CCiy = —iill(az—-*-@ lwy + wa|F ! si(|wy + walz, P)
cSi, = —&S(“{—ﬁ) w, — wp| "1 8i(lwy — walz, P)
CSi, = -cfs(a—;-@ lwy + wa|F~! si(|w; + walz, P)
CSi, —fi“%—"i) lwy — w7 Ci(jwy — walz, P)
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- / El— cos(w t + a) cos(wat + B) dt

(H.3a)

(H.3b)

(H.4a)

(H.4b)

(H.5a)
(H.5b)

(H.6a)

(H.6b)

(H.6¢)

(H.6d)

(H.6e)

(H.6f)

(H.6g)




sin{(a + )

0514 = - |w1 +UJ2'P-1 Cz(|w1 +(-|J2|Z,P)

2

with adjustments for special cases:
wy — wy < 0: change sign on CCt; and CS7,
wy + wy < 0: change sign on CC1, and CSi,
wy —w, =0: CCi3=0,CS%i;, =0, and

. cos(a—p) 2'F
COn = ——5— 91
. sinfa-pg) 2'7F
O = 2 P-1

wp +wy = 0: 0014 = 0, 0522 = 0, and

CC22 =

2 P-1
. sin(a+B) 2'F
G5 = 2 P-_1
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Appendix I

Evaluation of the Microstrip
Impedance Elements in the
Spatial Domain

This appendix presents spatial domain equations and sample numerical results used
to verify elements of the method of moments impedance matrix presented in Chap-
ter 5. Since the spatial-domain Green’s function for a microstrip line does not exist
in closed form, a substrate with material parameters (py, €) is necessary to evaluate
the impedance matrix in the spatial domain for simple tests. The resulting problem
can be decomposed into the self-impedance of a strip in free space, and the mutual
impedance of the strip and its image. The geometry of the equivalent problem is
shown in Figure 1.1.

The first test involves numerical integration of the self-impedance of J, current

modes. The self-impedance of a J, current mode in free space is given by

g w2 w2
— (2) ’ ' ;
Z...=F L ”//2 uan (klz — o)) J.() dz' W(2)dz  (1.1)

and the mutual impedance of the current mode and its image is given by

, W2 w2
Zpsi = —k—-'f— / / HP k(2 — 2')2 + 442) J.(2') dz’ W, (z) d (1.2)
—-W/2 -W/2

using Equation (J.15b) and the Z,, equivalent of Equation (5.26).
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8>

Figure 1.1: Equivalent geometry for self-impedance of J, microstrip current mode.

For W = 0.1, T = 0.1, k, = 10.479 (500 MHz), k, = 10k, and J,(z') =
W.(z) = 1/W, numerical integration of Equation (I.1) plus Equation (1.2) using
Gaussian Quadrature with 280 and 288 points’ results in a value of Z,. = —j17663,
which differs from the spectral domain value of Z,, = —517596 by 0.4 percent. For
J.(z) = W, (z) = ll(w\/m), the same numerical integration results in a
value of Z,, = —;18849, which differs from the spectral domain value of Z,, =
~719012 by 0.9 percent.

The second test involves closed form integration of the self-impedance of J.
current modes using the small argument approximations for Hankel functions. The
@-component of the electric field at the surface of the strip shown in Figure 1.1 due
to a J, surface current is given by

wy2 )
E.(J.) = 4:4.% e~ ka2 / [kf HP (kip) +% H (kp)| J.(z') da' (1.3)
-1/2
using Equation (J.13a), y = ¥, and letting T — oo so that the image current does
not contribute to the electric field at the strip. For k, = 0 and J,(z') = 1/W, then

"The logarithmic singularity of the Hankel function is avoided by using a different number of
points for the each of the double integrals.
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Equation (I.3) reduces to

"
—k, /21

{2) _
¥ | T H®(ky|z — 2']) dz’ (1.4)

E.(J:) =

Using the small argument approximation for the Hankel function and integrating,
Equation (I.4) is approximately given by

o WHy ] 1 B 1
Ex(J2) ~ 8  2mweW |z —W/2 <+ W/2|° (1:5)

For point-matching with k, = 0, the self-impedance of a J, current mode is

approximately given by

Wity 72
~ ) I.
=0 8 rweW? (1.6)

For a frequency of 500 MHz, W = 0.06, and T — oo, Equation (1.6) gives a result
of Z,., = 493.5 — 76358, compared to Z,,, = 465 — 75449 using spectral domain
integration.

For a weighting function in the shape of a triangle given by

5 (W/2 —-z) for G<z<W/2
W.(z) = (1.7)
72 (W/2+z) for —W/2<z<0
the self-impedance of a J,; current mode is given by
Y- S LR Ty (1.8)
e 8 TweW?

For a frequency of 500 MHz, W = 0.06, and T — oo, Equation (1.8) gives a result
of Z,,, = 493.5 — 78813, compared to Z,,, = 490 — 37976 using spectral domain
integration. For T = 0.1, the mutual impedance of the image can be calculated by
numerically double integrating Equation (J.13a) multiplied by the weighting func-
tion, resulting in Z,,; = 101.4 + j528.2, compared tc Z,,; = 102 + 7529 using

spectral domain integration by subtracting the impedances for T — oo and T = 0.1.
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For k., # 0 and J,(z') = 1/W, Equation (I.3) reduces to

W2
— 2 (2) )
E(J) = [k “/2 HO (ke — «'|)de
-1ty
/2 1
(2) ! !
+k, “/72 oo A (ke zl)dz]. (1.9)

Using the small argument approximations for the Hankel functions and integrating
Equation (1.9) with the triangular weighting function given in Equation (I.7), the

self-impedance is approximately given by

Zrss

k
k? - ol TR
yP—E Z(W j= W[ + ln2+ln 5 w])

w16
+ky (k,? ~ iy n 2)] (1.10)

where v = 1.781.

For a frequency of 500 MHz, W = 0.06, T — oo, and k, = 0.1k,; Equation (1.10)
gives a result of Z,,, = 498.4 — j8817, compared to Z,,, = 495 — ;7969 using
spectral domain integration. For T = 0.1, the mutual impedance of the image can
be calculated by numerically double integrating Equation (J.13a) multiplied by the
weighting function, resulting in Z,,; = 94.4 + 7530.2, compared to Z.,, = 95+ 7530
using spectral domain integration by subtracting the impedances for T — oo and
T = 0.1. Changing the parameters to W = 0.03 and k, = 0.5ky; the results
are Z,;, = 616.9 — 735330 using Equation (I1.10) and Z,,, = 616 — 33952 using
spectral domain integration. The mutual impedance of the image for T = 0.1 was
Z:r; = —89.2 + 7560.3 numerically and Z,,, = —89 + j560 by spectral domain
integration.

The integrals of the small argument approximations of the Hankel functions used

in this Appendix are summarized in Appendix L.
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Appendix J

Two-Dimensional Traveling Wave
Electric Currents

This appendix presents the fields of a two-dimensional traveling wave electric current
given by
I(x') = I(p') e 7+ (J.1)

in a two-dimensional region, R. The vector potential of an arbitrary current in a
volume V with a wave number k is calculated using

—jkr

A(r) = 4% / I(r) f;r— v’ (J.2)

wheic © — |r — r'|. Since the region is independent of 2, the z integration of Equa-

tion (J.2) can be done using

s oo = e A k) (J3)

from Appendix K, where

r o= Jpt4(z—2') (J.4a)
p = Je—z)+(y-y) (J.4b)
ke = Jk? k2. (J.4c)
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The resulting equation for the vector potential of an arbitrary traveling wave electric

current in a z-independent region is given by

Alp) = =2 e [ HP (ki) 3(p') dR. (J.5)
R
The 2-independent component of the current can be written in rectangular co-
ordinates as

J(p') = 2J:(p") + §Jy(P") + 2J.(P") (J.6)

where each component produces a vector potential of the same polarization, i.e.,

2J.(p') — zA.(p) (J.7a)
¥Jy(p) - §A,(p) (J.7b)
zJ.(p)) — 2A.(p). (J.7¢)

The electric and magnetic fields are calculated from the individual vector potentials
using H=V X A and E = —jwpA + 7:T(V(v -A).

The fields of a @ polarized traveling wave current are

H = —jk.A9- 6(;?; z (J.8a)
_ -3 ,  0%A;\ . O0%A, . g 0AL
E = -~ (A,k + 52 ) z+ 528y Yy — jk, 5. 2 (J.8b)

where the explicit dependent on p has been dropped for clarity. Similarly, the fields

of a ¥ polarized traveling wave current are

0A

_ . A y a
H = jkAz+ 52 2 (J.9a)
-j 62Ay . 2 62Ay - . 6Ay -
= — | Ak —jk.— .
E e | 520y z+ | Ayk” + 5y? y — jk. 3y z (J.9b)
and the fields of a z polarized traveling wave current are
0A, . 0A, .
H = 3y vl | (J.10a)
_j . aAz - . aAz - 2 2 ~
= —=|~jk.7— & - jk,— k* — 22, .
E we[ jhgy & = kgt + (K - k) A2 (3.10b)




The partial derivatives in Equations (J.8)-(J.10) reduce to the derivatives of
H®(k.p) given below:
0

z—z

2B (kp) =~k — H (kp) (J.11a)
-‘9—H(,2>(k,p) - R YV H® (kp) (J.11b)
By " p
0’ z—zYy-9y) |2
%Hén(km) = k,( ,))2 ) ;H,(z)(k,p)—k, H((,z)(k,p) (J.11¢)
6‘.’

r— 2V — (y — y')?
—6;:;}1(()2)(19117) = k ( ) p? y v) H,(?')(k,p)

—2')?
H (—;—) HP(kp)  (J.114)

52

Oy

—_ 4" _ _ ph\2
HO (k) = Ky (y -9) pa(w z')? HO (k)

KUY g kp).  (1te)

For example, the & and z components of the electric field produced by the

traveling wave electric current

3p) = & J,(p') e (4.12)
in a region R are given by
R | (- E=2E) P k)
e = H.‘”(k,p)] J(p) AR (J.130)
E,(J,) = _kike e / 2= H® (kp) J.(p) dR'. (J.13b)
dwe P

R

The @ and 2 components of the electric field produced by the traveling wave electric

current

3(p) = £ J,(p) e (J.14)




in a region R are given by

k. k . -z ' ’
E.(J.) = —%mi e"k“/m p:c H®(kp) J.(p') dR - (J.15a)
R
E(J.) = - 4; —mz/Hy (ko) J.(p') dR'. (J.15b)
R
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Appendix K

Spherical Wave Spectrum of a
Cylindrical Traveling Wave

This appendix develops a spherical wave spectrum of a cylindrical traveling wave
starting with the cylindrical wave spectrum of a spherical wave given by
—iky/p?+(2=2")? 1 7 , ,
: = o [ B (VR = wt)ei o (K.1)
o oer A,
which can be developed using Equations (5-136), (5-137), and (5-138) of [115, p.

244] and is given in abbreviated form in Equation (5-139) and in Equation (6.614.4)

of [141]. Let
e~ Ik +(=2 )
f(z) = m (K.2)
p z—z
and
Flw) = gﬂgﬂ(p\/m —wh)e i, (K.3)
Now, using the Fourier transforms
17 ‘
fz) = o / F(w)e™ dw (K.4a)
Flw) = / f(z)e " dz (K.4b)
the final relationship is obtained:
° emiky/ArE=
e v dz. (K.5)

™ st
" O ET) e = |
5 (p ) J \/;)2 (2= 2)
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Equation (10) of [139] incorporates a similar result with v = —jw.

156

|




Appendix L

Small Argument Approximations
for Integrals of Hankel Functions

This appendix presents small argument approximations for several integrals of Han-

kel functions multiplied by other functions, using

2

HP(:) ~ l—j;ln—;—z (L.1a)
z .2

H) =~ 5 tiss | (L.1b)

where v = 1.781.

a 2 k
[ e~ ) ! = 2032 [(a - ) 17 -

k
+(a+z)In 22—"3 +al - 2a] (L.2)
a 1 (2) ’ [ ._2_[ 1 1 ]
_[Iz—z’l HP (klz — 2']) de’ ~ ha + j = | — = —— (L.3)

a

f 1
[ [ HPkiz - 2') de’ w(z) do ~ 2a - j%—? (-1—61 +3n2+1n 7ka) (L.4)

-a —a

a a Ot g T
_'/_-/lz—z'l H\” (k|lz — 2'|) d2’ w(z) dz = ka ]wkaln2 (L.5)
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where

1
a?

1
PY]

2 (
(

a—z) for 0<z<a

a+z) for —a<z <0,
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Appendix M

Limitations of the Reciprocity
Theorem in Two-Dimensions

This appendix examines the limitations of the reciprocity theorem in two-dimensions

and shows a practical example where the reciprocity theorem is not valid [142]. First,

we will derive the reciprocity theorem following the classical approach [115, sec. 3-8].

Consider two time-harmonic sources a and b with electric and magnetic current

densities (J°,M®) and (J°, M®), respectively, radiating in a region containing a linear

isotropic inhomogeneous medium (g, €). Source a or b radiating alone in the region

produces the fields (E®, H*) or (E®, H?), where the fields are related by

V X H® = jweE® + J°
~V x E® = jwpH® + M®

or

V X H® = jweE® + J°
-V X E® = jupH* + M}

respectively.

Equations (M.1) and (M.2) are combined using the vector identity

V. (AXB)=B-VXA-A-VxB
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resulting in
V-(EPxH°)=H"-VXE'-E’.V xH°
= —jwpH* -H® — H*-M® — jweE’-E° —Eb.J° (M.4)
and
V.- (E*xH)=H'-VXE*-E*-V x H°
= —jwpH’ - H® — H*.M° — jweE*-E* —E*.J* (M.5)
Subtracting Equation (M.5) from (M.4) yields
V-(E'xH-E*°XH)=H*M*-H*-M'4+E°.J° - E*.J° (M.6)
which is the point form of the Lorentz reciprocity theorem.
Applying the divergence theorem to Equation (M.6) yields

ﬁ(E'U(H“—E"XH")-dS:
S

H° - M*-H*-M*4+E*-J°—E*.J%) dv (M.7)
I )

where S is a closed surface over the volume V and dS is the outward normal at S.
This is the general form of the Lorentz reciprocity theorem [131, pg. 49].

The sources a and b are confined to volumes V, and V}, enclosed by surfaces S,
and S,, respectively, as shown in Figure M.1, where volume V,, is the source-free
region, enclosed by the surface £ + S, + Si. Since (J°,M®) and (J°,M?®) are zero in
Vo, the right-hand side of Equation (M.7) is zero for V = V{, resulting in the Lorentz
reciprocity theorem for a source-free region

ff(B* x B - B x H¥) -d5 = 0. (M.8)
E4+5.+S,

For sources of finite extent in all three-dimensions, the surface ¥ is taken to be

ﬁ(bena—EaxH")-dszo (M.9)

Lreoo
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Figure M.1: Sources a and b in a region enclosed by the surface X.
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is used to reduce Equation (M.8) to

(f(B* xB" ~E° xH) -ds = - (f(E° x H* - E* x W) -dS  (M.10)
Sa Sp

which is often written as

J{// (E°-3° B M7) do = /‘// (E*- 3 — Ho - M) do (11)

using Equation (M.7).
However, for sources of finite radial extent in two-dimensions, the source-free

volume V,, is a cylinder with two axial voids and the suface ¥ is the outer surface of

this volume and can be decomposed into three surfaces:

2=+ Lo + T e (M.12)

The radiation condition only applies for the surface ¥,_,,, so the reciprocity theo-
rems of Equations (M.10) and (M.11) are not valid for general sources of finite radial
extent.

Next, we will consider under which conditions the surfaces ¥,_,, and ¥,_._,, do

not contribute to Equation (M.8). This contribution is given by

Jl (B xm" - B x ) -as + [[ (B x B~ B x BY) 45, (M.13)

2—00 ) JFFPY
Ti= most common fields in two-dimensions can be described as traveling wave
fields where the only 2 variation of the fields is e=?*:2, The two limiting cases are
TEz and TM fields, where k, = 0, and TEM fields, where k, = k = w,/i€. Since
the regions of interest are source-free, i.e., the surfaces ¥,_, and I,_._, the fields
can be represented as the sum of the fields generated by the magnetic and electric

vector potentials (115, sec. 3-12] given by

A = 2¥(z,y)e (M.14a)
F = 2®(z,y)e 7%, (M.14b)
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The resulting fields are given by

Jwe
—_ _i,a_é + ‘@
= oy ' Yoz
1 L 0¥ Y, ., —jkaz
+jwe —jk# - — jk.g 3y +z (k - k,) ‘I’] } e (M.15a)
H = VxA—jweF+-v(—.v'.—F—)
jwp
_ J(;0% _ 0%
- Oy Yoz
1 , ,aq’ . .aq’ A 2 2 —jkzz
o ~ikib 5 — ik 5+ (k* - k2) @]}e . (M.15b)

First, individually consider the surface integrals of Equation (M.13) point-wise
(E*xH* - E* xH') - 2 (M.16)

where % is from dS = zdzdy. Using Equation (M.15), the first term can be expanded
in rectangular coordinates as

o%t kb ovwb 0%t kb owt ”
b ).z = —— 22" |g 227 | g\ ikl
(EXH)z {( Oy weaz)m-'_(az weay)y}e %

oV k298 . (090 k2 08°\ .\ .
{(ay wp 33)2_(32 T on 33/)”}3 Bt

_ 8%t oy _ 0%t o
- 0y 0z Oz Oy
N k¢ [(0%°6%° + odb 64’“)
dy Oy 8z Oz
kb (¥t 8¥e §Y¥bev°
+ +
Oz Oz Oy Oy

kakb a‘I’b 0@0 6‘Pb 6@0 (ke b
z 2 — - (kz+k:)z
k? ( 0z 0y By Oz )}e - (M18)

wp

WwEe
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The second term may be obtained in a similar fashion. Then Equation (M.16)

reduces to
(E* x H* — E* x HY) 2 = e~J(ki+k): {

1 k2k? 0%t 9v° 3 0%t 5y B 0%t 5P N o’ 6%
k2 Oy Oz Oz Oy 0z Oy 8y Oz

o | 1 0%t 63 Od*H%° 1 owb v Gt oy
+(k1 k‘) [w[.l, ( Oy Oy + 0z Oz we \ Oz Oz + dy Oy - (M.19)

Equation (M.19) is zero for TEM fields, where k, = k. Using Equation (M.19),

Equation (M.13) is zero for traveling wave fields where k% = —kb, and as a spe-
cial case, TEz and TM fields where k? = k> = 0. Under limited special cases,

Equation (M.19) may be zero for general traveling waves.

Microstrip Transmission Line

The method of moments solution of a microstrip transmission line is one case where
the limitations of the reciprocity theorem are important. This problem consists of
finding the electric field of a traveling wave current when calculating the method of
moments impedance matrix. This is one case where the Galerkin method of moments
impedance matrix is not symmetric. To avoid the complexity of the microstrip
Green’s function, consider the mutual impedance between the currents &J,(z)e™7*=*

and 2J,(z)e~7*+* in free space using Equations (J.13b) and (J.15a)

w2 [, W2
_ _Jk:kl z—2 (2) o "Nt
2, = / e /-——lz—z’lﬂl (klz — 2'|)J.(2')dz'| J.(z)dz  (M.20a)
-2 | -W/2
w2 [ ik We
- _ _Jk:k T . g
Z.. = “/72 o ‘42 o H (ke = &/)Je(2)de | J(=')dz' (M.200)

where k, = \/k? — k2. In this special case Z,, = —2Z,,. Clearly, for a microstrip
line the relationship would be more complicated, but definitely Z,, # Z,,, except in

limited special cases.
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