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The Remote Atmospheric Processing and Information Display
(RAPID) System haa been developed at the Geophysics Dirsctorate of
Phillips Laboratory to provide an environment for the creation and

‘testing of image processing techniques of remotely sensed data.

The first objective of RAPID was to provide nowcasts of cloud and
precipitation fields. This is done for cloud fields by tracking
and extrapolating contours of infrared bright temperatures from a
gesostationary satellite. Precipitation fields are forecast by
tracking and extrapolating radar reflectivity contours. Currently,
there are three techniques in RAPID to extrapolate the frfuture
position and shape of contours. The three techniques are the Whole
Contour, Segmentation, and Statistical Extrapolation methods. The
are all similar in that the contours are represented
mathematically, the mathematical features are extrapolated out in
time, and forecasted features are used to construct the forecast
contour. Tests of the three techniques were conducted using data
from the GOES satellite (IR) and the Phillips Labaratory’s 1l0-cm
Doppler weacher radar. The initial results indicate that, for both
gatellite and radar data, all three methods do show skill with
respoct to perasistence and produce forecasts that are comparable to
wach other.
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1. INTRODUCTION

In the next few years civilian and
military weather forecasters will see a
significant increase in the amount of data
available for short-term forecast

preparation. This increased data incluces
WSR-88D (RNEXPAL} voppler radars, avtcmated
field observing stations, lightning
detection networks, and mesoscale

numerical models. While the additional
data shculd help, it might be hard for the
forecaster to assimilate it all because
short-term forecasts, in order to be oif
any use, must be made quickly. To assist
the BAir Force weather forecaster make
cptimal use of this wealth of data the
Gecophysics Directerate of Fhillips
Laboratory {formerly the Air Force
Geophysics Laboratory) initiated the
Advanced Metecrological Processing System
(AMFS) project. The objective of AMPS is
to integrate current and future sources of
weather information and produce preoducts
that are directly applicable to forecast

problems (Chisholm et al., 1989). Since
AMFS products are being designed to
operate at base forecast offices,
techniques developed need to run in a

worksetation environment.

A significant portion of the current
AMFS effort has been devoted tc the
nowcasting (0-2 hours) of «cloud and
precipatation fields. Accurate nowcasts
of precipitation and clouds would help
promote more effi~ient air terminal and
range operations. In addition, short-term
forecasts of heavy precipitation are an

important part of flash flcod forecasting.
Within

AMFS this research effort is
divided into two parts. One part is the
detection and forecasting of the

initiation of convective development by
the use of a mesoscale 4-D assimilation
medel {Cotton et al., 1988). The second
effort, which will be discussed here, is
the objective tracking and forecasting of
existing cloud and precipitation

areas,
This is the initial prcblem that the
Remote Atmospheric Processing and
Information Display (FAFID) system wag

develecped to handle. FAFID forecasts the
motion and evolution of clovd fields by

tracking and forecasting contours of
infrared brightness temperatures from
geosynchronous satellite data.
Frecipitation fields are forecast by using
radar reflectivity contours. Currently,
RAFPID has three different forecast
mcthodologies stor extrapolating the motion
of radar and satellite contours. In this
paper we will describe the Furrent
implementation of RAFID and fprovide the
results of an evaluation of the forecast
techniques.

2. BACKGROUND

The extraction of motion of features
of remotely sensed data has been going on
for over 20 years. Leese et al. (1971)
used a cross-correlation technigque on
geosynchronous satellite data in order to
estimate upper level wind speeds from
cloud moiion. ruench and Eawkins (1979)
applied the idea to the problem of shott-
term forecasting of cloud areas using
Geostationary Operational EnvironmenYal
Satellite (GOES) wvisible data. Using
radar data, Bellon and Austin (1978)
employed the cross-correlation technique
in what was probably the first automated
precipitation forecasting system. In ?he
Short Term Autormated Radar Fredictioen
(SHARP) system the vector that produces
the highest cross-correlaticn is used ?o
uniformly translate the radar image. This
type of system is well suited to
widespread stratiform precipitation where
the precipitation fields tend to move
uniformly and there is not much
precipitation echo growth, decay or sh§pe
evolution. The NEXRAD storm tracking
algorithm, develcped primarily for severe
storms and based cn the work of Bjerkaas
and Forsyth (19€0), has the ability to
track and forecast individual storm cells,
1t objectively tracks a storm cell by a
nearest-neighbor technique and forecasts
the future
extrapolation. 1In the United Kingdom, the
operational FRONTIERS system (Howes,_lQEB)
tracks features detected by gecstationary
satellites and a netwerk of radars. Due
to the large scale that FRONTIERS operates

on, the forecasting of individual features .

is necessary. This is done by linear

centroid position by linear
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extrapolation of

features selected
interactively by the forecaster.
Andersson and Ivarrson (1991) have

developed a probabilistic short-~term
precipitation forecasting technigue that
uses 850 mb model output winds to give the
current rainfall field a uniform
translation.

3. DESCRIPTION OF RAPID

The initial hardware configuration of
RAPID has been described by Sadewski et

al. (1988). Originally it was planned
that the image processing be donz on an
Adage 3000 image processor. wWhile the

Adage is still part of the configuration,
all the image processing described here is
done on a MicroVAX III GFX workstaticn.
The main reascns for this are the ease of
software develcpment on the workstation
and the fact that a base weather station
will more 1likely have access to a
workstation like the MicroVAX IIXI than to
a high powered image processgor. The RAFID
workstation is part of a VAXcluster of
computers in the Air Force I..ilevactive
Mztevrological System (AIMS) based in the
Ahtrospheric Sciences division of the
Gecphysics Directorate. Through the
cluster RAFID can access real-time
satellite data from the Geophysics
Directeorate GOES ground station. Data can
also be acguired via a 9600 bpi land line
from the Gecphysics Directorate 10 cm
wavelength Dcoppler Weather Radar located
20 miles away in Sudbury, Massachusetts.
The Sudbury radar is configured much like
the WSR-88D redars. The AIMS cluster
currently provides real-time links to the
FAY 604 data line and the State University
of ©New York at Albany’s Lightning
Detection Network. In addition, an Air
Force HARutomated Weather Distributicn
System (AWDS) terminal that provides
conventional observations, model generated
analysis and forecast gridded fields is
co-located with AIMS.

The RAFPID software package (Bianco
and Huang, 19%0) takes satellite and radar
fields and transforms them into Cartesian
coordinate planes. The GOES =satellite
data is converted from its distorted
planer ccordinate system to a Larbert
conformal conic projection. The Larbert
projection was chosen because many of the
synoptic displays available from AIMS are
in that coordinate system. The
transformation to Lambert grid is done by
determining the latitude and longitude for
each grid locaticn in a 25€x256 element
grid of 8 km resclution. The GOES line
and element for that latitude and
longitude is fcund and its valve is
assigned to the particular pixel on the
larbert grid. This conversion currently
takes a lcng time on the workstation and
must be done for every image because of
satellite drift. Hcpefully, when GOES-
KEXT is operaticnal, a more eificient
method of using look-up tables can be used
since GNFS-NEXT will have a more advanced
cn-board navigation capability. The radar
Cartesian grid i" atcuasl) a cinmposite

reflectivity display. To construct the
display Cartesian grids for every
elevation angle in the radar’s volume 3can
are produced using a bilinear
interpolation scheme. Then, for each
horizontal pixel location in the composite
grid, the highest reflectivity value over
that point is assigned to the pixel. For
the SHARP system, Bellon and Austin (1978)
used 3 km Constant Altitude Flanned
Fosition Indicator (CAFFI) displays
because of the 1loss of 1low elevation
features at far range using single 1low
elevation scans. The composite
reflectivity product is used here because
it uses all the information available in a
volume scan. Given that the highest
elevation in some of the volume scans
received from the Sudbury radar is 4.5%, 3
km CAPP1 displays would 1lead to a
substantial data gap around the radar.
Using the composite reflectivity display
also has the advantage that it is an
existing NEXRAD product. Orice in a
Cartesian grid both the satellite and the
radar images are put through one pass cof a
median box filter to smceth out contour
edges and clean up ncise. The filtering
allows subseguent p..cessing to be faster
since very =small scale fcalures are
eliminated. This does not affect the
forecasts since the forecast techniques
that we are using do not try to resclve
features as small as what we are
eliminating.

The satellite brightness temperatures
are contoured every 2°K  *he radar
reflectivities are contoured for every 5
dBz. Contours that are less than 16
pixels in circumference are eliminated.
Currently, individual ccntours are tracked
manually. The RAFID forecaster can
display as many images of a particular
seguence as he or she wants (three at a
time) and manually select a conlour ot
interest to track, with the aid of a
mouse . when a contour is selected for
tracking the x and y Ilccations of its
boundary are stored and vused by the
forecast techniques.

Three different forecast techniques
have been implemented and are being
evaluated on  RAPID. The forecast
techniques in FRAPID are designed to track
and forecast the motion of individuval

contours c¢n an image. In addition, the
forecast modules forecast the shape and
size evoluticn of the contours. In

general, each technique is similar in that
it can be broken down into three basic
steps 1) define the contour. by
mathematical features, 2) extrapolate the
mathematical features, and 3) construct
the forecast contour from the extrapolated
feature values.

3.1 Whole Contour Technique

Detailed descriptions of the Whole
Contour Technique have previcusly been
presente by Hejdeman el ai. (1990) and
Bianco and Huang (1990). A contcur is
mathematically described by cverlaying it
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Fig 1. An example of a GOES IR brightness
temperature contour boundary overlaid con a
x-y grid plane.

on a x-y grid as shown in Figure 1. Each
location aleng the contour will then have
an x and y location value associated with
it. From the leccation values the
individual x and y functions are available
as shown in Figure 2. The Fourier phases
and amplitudes for each of the functions
are calculated. The number of waves used
to describe the contour shape is
determined by the forecaster. The contour
centroid, aspect ratio, and area are also
calculated for each contour. Values for
several observations of a single contour
are obtained and the features are forecast
vsing linear extrapolation. The forecast
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contour is conatructed by taking ‘the
extrapolated Fourier phases and amplitudes
and using an inverse Fast Fourier
transform to determine the x and y contour
boundary locations. The forecast shape is
then scaled by the extrapolated aspect
ratio and area. Finally, the contour is
displaced from its original location to
its forecast position using the
extrapolated centroid position.

3.2 Adaptive Exponential Smoothing
Technique
Another way to mathematically

describe the shape of a contour is by the
length of lines radiating from the contour
centroid. The Adaptive Exponential
Smoothing (AES) technique of Kavvas (1988)
uses the length of 16 lines that extend
from the centroid to the contour boundary
at fixed equal angles from each other
(Figure 3). For each observed contour the
length of each line is recorded along with
the centroid position. These 17 features
are then extrapolated. The extrapolation
is done by adaptive expcnential smcothing.
This is essentially a weighted 1linear
least-squares fitting preocedure with an

exponentially discounted smocthing
ccefficient. The value of the smoothing
coefficient is determined by the

forecaster and can vary between 0 and 1.
A low value of the smoothing coefficient
makes the extrapolation more responsive to
older observations, while a higher value
ruts more emphasis on newer cbservations.
Because strict linear interpolation is not
employed it is hoped that accounting for
the growth and decay of precipitation and
cloud areas will result in more accurate
forecasts. The forecast contour is
constructed by plotting the forecast
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The functicns of x and y for the contour boundary shown in Figure 1.
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Fig 3. An example of a contour being

described by the Adaptive Exponential
Smoothing and Segmentation techniques.
The contour is described by the centroid
location and the length of lines from the
‘centroid to the contour boundary (After
Bianco and Kuang, 1890).

centroid pesition and
extrapolated 1line segments from the
centroid. The forecast contour boundary
is completed by connecting the endpoints
of the line secments.

laying out the

3.3 Segmentation Technique

The Segmentation technique described
by Bianco and Huang (1990) essentially
uses the scame method as the Adaptive
Exponential Method to mathematically
describe contours and construct forecast
contours. The only difference is that the
Segmentation method allows the forecaster
to select the angle displacement between
line segmente, which in effect determines
hew many line segments are used to define
the contour. For extrapolation the
segmentation method uses a linear least-
squares fitting technique.

4. FORECAST EVALUATION

In evaluating the forecast techniques
currently available on RAPID there are
three main cbjectives. First, to
determine the optimal value or range of
values of the selected input parameters
for each technique. The second objective
is to compare the forecasts of tle three
techniques generated by RAFID with
persistence to see if the techniques show
any skill. Our third objective is to

Technique
whele Contour

Adaptive Exponential
Sr~nthino

Segmentation

Table 1. ]
the values used in the evaluation.

Input Farameter

Smonthing Ccefficieint

compare Lhe techniques with each other to

determine if there is one technique that
can be the focus of future refinement.

For each technique forecasts were
made and verification results processed
for various parameter values |using
different forecast lead times and
different numbers of observations for the
extrapolation. The range of parameter
values tested for the three techniques is
given in Table 1. The bounds were chosen
based on a preliminary look at a subset of
the radar and satellite evalration
results.

To conduct the evaluation, satellite
and radar data were acquired ¢ . provide a
test data set. Satellite data from the
Geophysics Directorate GOES ground station
were archived on a case by case basis in
the spring of 1990. The data ingested
into RAPID was 4 km resolution data from
the IR 11 pm channel. The field of view
was centered over Marseilles, Illinois
(42°21" N, 88°41’W) in order to minimize
the satellite viewing angle distortion.
Eight days of data were archived and 40
cases of contours of IR Dbrightness
temperature were selected to be tracked
and forecasted. The archives of the
Geophysics Directorate’s Sudbury radar
were searched for cases where the radar
was in a continuocus NEXPAD-type scanning
mode and had trackable reflectivity
contours that stayed within the radar
viewing domain for at least 40 minutes.
Eight days of data produced 17 trackable
contours. The relatively small number of
trackable contours identified is more a
reflection of limitations imposed by our

verification scheme than of limited
applicability of the techniques.
4.1 Evaluation Methodoloqy

For the purposes of comparing

forecasts made by the techniques, each
pixel of the domain comprising the radar
or satellite image (256x256 pixels) was
considered a categorical forecast and
observation point. By comparing the
position of forecast contours with the
verification imagery valid for the same
time each pixel could be assigned to one
element of a two by two contingency table
(see Figure 4). Yote that while correct
forecaste of non-events (box d in Figure

Bounds

Maximum Wave Number 1-5

.2 - .4 (by 0.05)

Displacement Angle 5°¢ - 20° (by 5°)

The uvser supplied parameters for each technique and the bounds on

P
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Fig 4. Schematic of hypothetical forecast
and observed radar reflectivity contours
and associated contingency table.

4) are important components of many skill
scores (Mason, 1982 and Schaefer, 199%0),
including them in our pixel by pixel
evaluation resulted in artificially
inflated scores. The scores used in this
evaluation are thus restricted to use of
the first three elements of the
contingency table.

. Bias is the ratio of the number of
pixels forecasted to contain radar
reflectivity values above a specified
threshold, to the number observed (bias is
Greater than one for overforecasts and
less then one for underforecasts),

bias = (a4c)/(a+b). (1)

Falce alarm ratio (FAR) ranges from 1
(worst) to 0 best,

FAR = ¢/ (c+a). 2)

Frobability of detection (FOD) raznges
frem 0 (worst) to 1 {best),

FOD = a/(atb). 3)

The Critical Success 1Index (CSI)
(Dcnaldson et al, 1975) combines elements
of the FOD and FAR and ranges from 0
(worst) to 1 (best),

CSI = a/(a+b+c). (4)
Care must be used when interpreting

CS1 =scores. Comparing CSI sccres for
forecasts on different data sets is not

WHOLE CONTOUR

{4 OF WAVES RADAR SATELLITE
1 0.33 0.44
2 0.34 0.44
3 0.32 0.43
4 0.32 0.43
5 0.31 0.43
Table 2. Average Critical Success Index

scores for forecasts of the wWhole Contour
Technique using varying numbers of waves
to describe the contour.

valid. Therefore, sccres from the radar
and satellite cases should not be compared
with each other.

Persistence forecasts were also
generated and evaluated using the
procedure outlined above. For our purpose
persistence is defined as the most recent
observed contour. For example, if you
have observed contours at time 1,2, and 3
and you want to make a forecast for time
4, the persistence forecast is simply the
observed contour at time 3.

4.2 Evaluation Results

First, the forecasts were run using
each technique on all satellite and radar
data while varying the technique dependent
input parameters values. The recsults are
in Takles 2 -~ 4. Clearly, while there is
some variation in the forecast accuracy as
measured by CSI, the differences are small
enough that they cannot be considered
significant.

The parameter values ascsociated with
the highest CSI scores in the radar and
satellite data sets for each technique
were used to compare the techniques. The
results of the comparisons are shown in
Figure 5 for the radar data. While all
three of the techniques seem tc le roughly
egquivalent in score it should be noted
that all the techniques for both radar and
satellite data produce forecasts that are
substantially better than persistence.

FAR and POD scores for the
Segmentation method on radar data (Fig. 6)
show that the forecast technique has a
high probability of detection of over 70%

ADAFTIVE EXFCRENRTIAL SMOOTHING

SMOOTHING RADAR SATELLITE
COEFFICIENT

0.20 0.24 0.34

0.25 0.28 0.37

0.30 0.30 0.39

0.35 0.30 0.39

0.40 0.29 0.38
Table 3. Average Critical Success Index
scores for forecasts of the Adaptive
Exponential Smoothing Technique using

different smoothing coefficients.




SEGMENTATION
DISPLACEMENT RADAR SATELLITE
ANGLE

5° 0.33 0.44

10° 0.35 0.44

15° 0.35 0.37

20° 0.36 0.43
Table 4. Average Critical Success Index

scores for forecasts of the Segmentation
Technique using different values of the
displacement angle.

for the first 30 minutes. However, in
that same time period the FAR rises from
under 40% at 12 minutes to near 60% at 30
minutes. The  Adaptive Exponential
Smoothing and Whole Contour Techniques
exhibited similar tendencies for the radar
cases. The high values of the FAR
indicate a systematic over-forecasting of
the contour size. This is also reflected
in the bias scores for the radar forecasts
which average over 1 for each of the
techniques.

Figure 7 shows the comparison of the
forecast technigues for satellite data.
The techniques are approximately equal in
forecast accuracy for the first two hours,
after which the Adaptive Exponential
Smoothing technique starts to perform
worse than the others. The differences
between the forecast techniques and
persistence is smaller than compared with
the radar data set. However, the largest
difference between the techniques and
persistence in the satellite data set
occurs in the important 1-2 hour time
frame. Figure B8 shows the FOD and FAR
scores for the Segmentation technigue on
satellite data. The POD scores for the
early forecast times are lower than they
wvere for the radar data but remain
relatively level. The FAR increases as
the forecast lead times become greater,
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thus reducing the CSI scores. As with the
radar data the increasing FAR scores are a
result of systematic over-forecasting of
the contour area as indicated by bias
scores cver 1.

5. SUMMARY AND CONCLUSIONS

A workstaticn-based system for making
short-term forecasts of cloud and
precipitation fields using remotely sensed
data has been described. Three different
techniques for forecasting the fields have
been evaluated. Overall the forecast
techniques produced forecasts that were
generally supericr to persistence. The
techniques as presently configured can be
applied to radar data in situvations where
there is a need for a high probability of
detection and a relatively high false
alarm rate can be tolevated. The
evaluation results do not reveal which

yarameter values provide the best
forecasts nor do they reveal which
technique can be considered the best. On

an individual forecast basis there are
rituations where one of the techniques
rriows much better results than the others.
Jt may be that =single no nethod performs
the best under all conditicns.

6. FUTURE PLANS

Evaluation of the sheort-term
ferecasting techniques described here will
coentinue on  FEAFID using an  enlarged
ratellite data base to include data from
all seasons. With a larger data base we
might be able to stratify the results and
determine under what cenditions a
rarticular technique and or parameter
value gives the best results. The
ultimate goal 3is to come up with an
algorithm and product that can be
implemented into AWDS when it begins to
receive Geostationary Satellite data.
Further evaluation and implementation of
cne of the forecast technigues into NEXPAD
will be handled by the Grocund Based Remote
Sensing branch of the Gecphysics
Uirectorate.

A new effort involving FAFID will be
to incorporate data from polar orbiting
satellites, the lightning detection
networks, model fields generated Dby
locally run mesoscale models, and global
circulation models available from AWDS to
help detect areas of precipitation where
there is no ground-based radar data.
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