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ABSTRACT

Constructed-response formats are desired

complex and dynamic response processes which

for measuring

require the examinee

to understand the structures of problems and micro-level

cognitive vasks. These micro-level tasks and

their organized

structures are usually unocbservable. This study shows that

elementary graph theory is useful for organizing thesz ~icro-

level tasks and for exploring their properties and relations.

Moreover, this approach enables us to better understand macro-

level performances on test items. Then, an attempt to develop a

general theory of item construction is described briefly and

illustrated with the domains of fraction addition problems and

adult literacy. Psychometric models appropriate for various

scoring rubrics are discussed.
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Introduction

Recent developments in cognitive theory suggest that new
achievement tests must reflect four important aspects of
performance: The first is to assess the principle of performance
on a test that is designed to measure, the second is to measure
dynamic changes in students' strategies, the third is to evaluate
the structure or representation of knowledge and cognitive
skills, and the fourth is to assess the automaticity of
performance skills (Graser, 1985).

These measurement objectives require a new test theory that
is both qualitative and quantitative in nature. Achievement
measures must be both descriptive and interpretable in terms of
the processes that determine performance. Traditional test
theories have shown a long history of contributions to American
-education through supporting norm-referenced and criterion-
referenced testing.

Scaling of test scores has been an important goal in these
types of testing, while individualized information such as
diagnosis of misconceptions has never been a main concern of
testing. In these contexts the information objectives for a test
will depend on the intended use of the test. Standardized test
scores are useful for admission or selection purposes but such
scores cannot provide teachers with useful information for
designing remediation. Formative uses of assessment require new
techniques, and this chapter will try to introduce one of such

techniques.




Constructed-response formats are desirable for measuring
complex and dynamic cognitive processes (Bennett, Ward, Rock, &
LaHart, 1990) while multiple-choice items are suitable for
measuring static knowledge. Birenbaum and Tatsuoka (1987)
examined the effect of the response format on the diagnosis of
examinees' misconceptions and concluded that multiple-choice
items may not provide appropriate information for identifying
students' misconceptions. The constructed-response format, on
the other hand, appears to be more appropriate. This finding
also confirms the assertion mentioned above by Bennett et al.
(1990) .

As for the second objective, several studies on "bug"
stability suggest that bugs tend to change with "environmental
challenges" (Ginzburg, 1977) or "impasses" (Brown & VanLehn,
-1980). Sleeman and his associates (1989) developed an
intelligent tutoring system aimed at the diagnosis of bugs and
their remediation in algebra. However, bug instability made
diagnosis uncertain and hence remediation could not be directed.
Tatsuoka, Birenbaum and Arnold (1990) conducted an experimental
study to test the stability of bugs and also found that
inconsistent rule application was common among students who had
not mastered signed-number arithmetic operations. By contrast,
mastery-level students showed a stable pattern of rule
application. These studies strongly indicate that the unit of
diagnosis should be neither erroneous rules nor bugs but somewhat

larger components such as sources of misconceptions or




instructionally relevant cognitive components.

The primary weakness of attempts to diagnose bugs is that
bugs are tentative solutions for solving the problems when
students don't have the right skills.

However, the two identical subtests (32 items each) used in
the signed-nrumber study, had almost identical true score curves
for the two parameter-logistic model (Tatsuoka & Tatsuoka, 1991).
This means that bugs are unstable but total scores are very
stable. Therefore, searching for the stable components that are
cognitively relevant is an important goal for diagnosis and
remediation.

The third objective, evaluating the structure or
representation of cognitive skills, requires response formats
different from traditional item types. We need items that ask
~evamir~~e tno dAraw flow chartc in which ~omplex relations among
tasks, subtasks, skills and solution path are expressed
graphically, or that ask examinees to describe such relations
verbally. Questions can be ficural resnonce fovrm=2ts in which
examinees are asked to order the causal relationships among
several concepts and connect them by a directed graph.

These demanding measurement objectives apparently require a
new psychometric theory that can accommodate more complicated
forms of scoring than just right or wrong item-level responses.
The correct response to the item is determined by whether or not

all the cognitive tasks involved in the item can be answered

correctly. Therefore, the hypothesis in this regard would be
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that if any of the tasks would be wrong, then there would be a
high probability that the final answer would also be wrong.

These item-level responses are called macro-level respcnses
and those of the task-level are called micro-level responses.
This report will address such issues as follows:

The first section will discuss macro-level analyses versus
micro-level Aanalyses and will focus on the skills and knowledge
that each task requires.

The second section will introduce elementary graph theory as
a tool to organize various micro-level tasks and their directed
relations.

Third, a theory for designing constructed-response items
will be discussed and will be illustrated with real examples.
Further, the connection of this deterministic approcach to the
probabilistic models, Item Response Theory and Rule space models
{(Tatsuoka, 1983, 1990) will also be explained. These models will
be demonstrated as a computation device for drawing inferences
about micro-level performances from the item-level responses.

Finally, possible scoring rubrics suitable for graded,
continuous and nominal response mndels will be addressed.

Macro—- And Micro-level Analyses

Making Inferences On Unobservable Micro-Level Tasks From

Observable Ttem-Level Scores

Statistical test theories deal mcstly with test scores and
item scores. In this study, these scores are considered to be

macro-level 1intormation while the underlying cognitive processes
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are viewed as micro-level information. Here we shall be using a

much finer level of observable performances than the item level

or the macro-level.

Looking into underlying cognitive processes and speculating
about examinees' solution strategies, which are unobservable, may
be analogous tc the situation that modern physics has ccme
through in the history of its development. Exploring the
properties and relaticns among micro-level objects such as atoms,
electrons, neutrons and other elementary particles, has led to
many phenomenal successes in theorlizing about physical phenomena
at the macro-level such as the relation between the loss and gain

of heat and temperature. Easley and Tatsuoka (1968) state in

their book Scientific Thought that '"the heat lost or gained by a

sample of any non-atomic substance not undergoing a change of
state is jointly proportional to the number of atoms in the
sample and teo the temperature change. This strongly suggests
that both heat and temperature are intimately related to some
property of atoms." Heat and temperature relate to molecular
mction and the relation can be expressed by mathematical
equations involving molecular velocities.

This finding suggests that, analogously, it might be useful

to explore the properties and relations among micro-level and

invisible tasks, and to predict their outcomes. These are
observable as responses to test items. The approach mentioned
above 1s not new 1in scientific research. In this instance, our

aim is to explore a method that can, scientitically, explain
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macro-level phenomena -- in our context item-level or test-level

achievement -- derived from micro-level tasks. The method shouid
be generalizable from snecific relations in a specific dcmaln to

general relations in general domains. In order to accomplish our
goal, elementary graph theory is used.

Identificaticn 2f DPrime Subtasks or Attributes

The development of an intelligent tutoring system cr

cognitive erro

N

diacnostic system, involves a painstaking and
detailed task analysis in which goals, sukgoals and various
solution paths are identified in a procedural network (cr a flow
chart). This process of uncovering all possible combinations of
subtasks at the micro-level is essential for making a tutcring
system perform the role of the master teachers, although the
current state of research in expert systems only partially
achieves this goal. According to Chipmar, Davis and Shafto
(1986), many studies have shown the tremendous effectiveness of
individual tutoring by master teachers.

It is very important that analysis of students' performances
on a test be similar to various levels of analyses done by human
teachers while individual tutoring is given. Although the
context of this discussion is task analysis, the methodology to
be introduced can be applied in more general contexts such as
skill analysis, Jjob analysis or content analysis.

Identifying subcomponents of tasks in a given problem-
solving domalin and abstracting their attributes is still an art.

It is also necessary that the process be made automatic and




objective. However, we here assume that the tasks are already
divided into components (subtasks) and that any task in the
domain can be expressed by a combination of cognitively relevant
prime subcomponents. Let us denote these by A,,...,3,

and call them a set of a*tributes.

Determination of Direct Relations Between Attributes

Graph theory is a branch of mathematics that has been widely
used in connection with tree diagrams consisting of nodes and
arcs. In practical applications of graph theory, nodes represent
objects of substantive interest and arcs show the existence of
some relationship between two objects. In the task-analysis
.setting, the objects correspond to attributes. Definition of a
direct relation is determined by the researcher using graph
theory, on the basis of the purpose of his/her study.

For instance, A, - A if A, is an immediate prerequisite of
A, (sato, 1990), or A, - A if A is easier than A (Wise,1981).
These direct relations are rather logical but there are also
studies using sampling statistics such as proximity of two
objects (Hubert, 1974) or dominance relations (Takeya, 1981).
(See M. Tatsuocka (1986) for a review of various applications of
graph theory in educational and behavioral research.)

The direct relations defined above can be represented by a

matrix called the adjacency matrix A = (a, ) where




[ a 1 if a direct relation exists from A, to 3,

.
l a, 0 otherwise

If a direct relation exists from A, to A and also from A, to A,

then A, and A, are said to be equivalent. 1In this case, the

elements a, and a;, of the adjacency matrix are both one.

There are many ways to define a direct relationship between
two attributes, but we will use a "prerequisite" relation in this
paper. One of the open-ended questions shown in Bennett et al.
(1990) will be used as an example to illustrate various new
terminologies and concepts in this study.

Item 1: How many minutes will it take to fill a 2,000-
cubic-centimeter tank if water flows in at the
rate of 20 cubic-centimeters per minute and is
pumped out at the rate of 4 cubic-centimeter per
minute?

This problem is a two-goal problem and the main canonical
‘solution is that:
Net filling rate
Net filling rate

Time to fill tank
Time to fill tank

20 cc per minute - 4 cc per minut -
16 cc per minute

2000 c¢c/16 cc per minute

125 minute.

S W

o

Let us define attributes involved in this problem:

A, : First goal is to find the net filling rate

A, : Compute the rate

A; : Second goal is to find the time to fill the tank

A, : Compute the time.
In this example, A, is a prerequisite of A,, A, is a prerequisite
of A;, and A; is a prerequisite of A,. This relation can be

written by a chain, A, -> A, -> A; -> A,. This chain can be

expressed by an adjacency matrix whose cells are




a;, = a,; = az, = 1, and others are zeros.

o 1 0o o} a
o o0 1 of a
Adjancency matrix A = 0 0 o© 1} A,
o o0 o0 o A,

This adjacency matrix A is obtained from the relationships
among the attributes which are required for solving item 1. The
prerequisite relations expressed in the adjacency matrix A in
this example may change if we add new items. For instance, if a

new item -- that requires only the attributes A, and A, to reach

the solution -- is added to the item pool consisting of only item

1, then A, may not be considered as the prerequisite of 2a; any

more. The prerequisite relation, in practice, must be determined
‘by a task analysis of a domain and usually it is independent of
items that are in an item pool.

Reachability Matrix: Representation of All the Relations, Both

Direct and Indirect Warfield (1973a,b) developed a method called

"interactive structural modeling"” in the context of switching
theory.

By his method, the adjacency matrix shown above indicates
that there are direct relations from A, to A,, from A, to A; and
from A; to A, but no direct relations other than among these
three arcs. However, a directed graph (or digraph) consisting of

A,, A,, A;, and A, shows that there is an indirect relation from

A, to A;, from A, to A,, and A, to 3,.




Warfield showed that we can get a reachability matrix by

multiplying the matrix A + I -- the sum of the adjacency matrix A
and the identity matrix I -- by itself n times in terms of
Boolean Algebra operations. The reachability matrix indicates
that reachability is at most n steps (A, to A), whereas the
adjacency matrix contains reachability in exactly one step (3, to
A) [a node is reachable from itself in zero steps]. The
reachability matrix of the example in the previous section is
given below:

R=(A+I)=(a+I)"=(A+1I)° =....

A, A, A; B

1 1 1 1 A,
R = o 1 1 1 a,
o o0 1 1 A,
o o o0 1 A,

‘where the definition of Boolean operations is as follows:
1+1=1,14+0=0+1=1, 0+ 0 =0 for addition and
l1x1=1, 0x1=1x0=20, 0x 0=0 for multiplication.
The reachability matrix indicates that all attributes are

related directly or indirectly. From the chain above, it is

obvious that although A, and A,,; relate directly A, and A,

relate indirectly.

This form of digraph representation of attributes can be
applied to either evaluation of instructional sequences,
curriculum evaluation, and documentation analysis and has proved
to be very useful (Sato, 1990). Moreover, reachability matrix

can provide us with information about cognitive structures of
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attributes. However, application to assessment analysis requires
extension of the original method introduced by Warfield.

A Theory of Item Design Appropriate For

The Constructed-Response Format

An Incidence Matrix Ir *ssessment Analyvsis

The adjacency matrix (a, ) 1is a square matrix of order
K x K, where K is the number of attributes and a, represents the
existence or absence of a direct directed relation from A, to 3.
Let us consider a special case.

When the adjacency matrix A is a null matrix, hence A + I is
the identity matrix of the order k -- there is no direct relation
among the attributes. Let { be a set (&,, A;,...,A} and L be
the set of all subsets of Q,

L= [{A), {BAy),.-.,{A,A), (B, RgY, oo {BALA, L., A, ()],
rthen L is called a lattice in which the number of elements in L
is 2k.

In this case, we should be able to construct an item pool of
2¥ items in such a manner that each item involves only one
element of L. There is a row for each attribute and a column for
each item, and the element of 1 in (k,Jj)-cell indicates that item

j involves attribute A, while 0 indicates that item j does not

involve A,. Then this matrix of order K x 2k —= or K x n for
short -~ is called an incidence matrix, Q = (qy;) » k=1,...K &
j=1,...n.

For example, in the matrix Q below, k + 1 th column (item
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k + 1) has the vector of (1 1 0 ... 0) which corresponds to the

k + 1 th set, {A,, A,} in L.

i1 i2 . . ik i(k+1) i(k+2) . . . i(2,~1) i(2%
1 0 . .0 1 1 .. .1 o] a,
Q(kxn) =0 1 . . 0 1 0 . . 1 0 A,
0 0 . .0 0 1 . 1 0 | A
o . 1 0 1 . 1 A,

However, if K becomes large, say K=20, then the number of
items in the item pool becomes astronomically large,
2%0=1,048,576. In practice, it might be very difficult to
develop a pool of constructed response items so that each item
requires only one independent attribute. Constructed response
items are usually designed to measure such functions as cognitive
processes, organization of knowledge and cognitive skills, and
-theory changes required in solving a problem. These complex
mental activities require an understanding of all the
relationships which exist in the elements of Q. Some attributes
are connected by a direct relation while others are isolated.

In general, the manner in which the attributes in 0
interrelate, one with another, bear a closer resembla.ice to the
arc/node tree configuration than they do to the unidimensional
chain shown in the previous section.

Suppose we modify the original water-filling-a-tank problem
to make four new items (beyond our original item 1 - page 8),

which include the original attributes.
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Item 2 What is the net filling rate of water if water
flows in at the rate of 50 cc/min and out at the
rate of 35 cc/min ?

Item 3 What is the net filling rate of water if water
flows in at the rate of h cc/min and ocut at the
rate of d cc/min?

Itenm 4 How many minutes will it take to fill a 1,000-
cubic-centimeters tank if water flows in at the
rate of 50 cubic-centimeters per minutes?

Item 5 How many minutes will it take to fill an x cubic-
centimeters water tank if water flows in at the
rate of y cubic-centimeters per minutes?

The incidence matrix Q for the five items will be:

i1 i2 i3 i4 1is

1 1 1 0 0] A,
1 1 0 0 0| &
Q(4x5) = 1 0 0 1 1| 24
1 0 0o 1 o) a

The prerequisite relations among the four attributes are

changed from the "totally ordered" chain, A; => A, -> A; -> A,
to the partially ordered relation as stated below. That is, &,
is a prerequisite of A,, A; is a prerequisite of 3,, but 3, is
not a prerequisite of either A; or A,. The relationship among
the attributes is no longer a totally-ordered chain but two
totally-ordered chains, A, -> A, and A; -> A,.

Tatsuoka (1991) introduced the inclusion order among the row
vectors of an incidence matrix and showed that a set of the row
vectors becomes Boolean Algebra with respect to Boolean addition
and multiplication. 1In this Boolean algebra, the prerequisite
relation of two attributes becomes equivalent to the inclusion

order between two row vectors -- that is, the row vectors A; and
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A; include the row vectors A, and A,, respectively, in the

Q(4 x 5) matrix above.

There is an interesting relationship between an incidence
matrix Q(X x n) and the reachability matrix R(k x k). A pairwise
comparison over all the combinations of the row vectors of
Q(k x n) matrix with respect to the inclusion order will yieid
the reachability matrix R(k x k) in which all the relations
logically existing among the k attributes, both direct or
indirect, are expressed. This property is very useful for
examining the quality and cognitive structLures of an item
poocl.

The adjacency and reachability matrices of the GRE items

given earlier are given below:

0100 [1100
0 00O 0100
A(4x4) = |00 0 1 R(4x4) = {0011
0000 00001

However, the reachability matrix of the case given in Q(kxn)
in which k attributes have no relations will be the identity
matrix of the order k. This result can be easily confirmed by
examining the inclusion relation of all pairs of the row vectors
of the matrix Q(k x n).

Connection of our Deterministic Approach to Probability Theories

Tatsuoka and Tatsuoka (1987) introduced the slippage random

variable S;, wiich is assumed to be independe.t across the items,

as follows:
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If s; =1, then X; = 1 - R; and if S; = 0, then X; = R;.
or, equivalently, §; = lXj - le .
A set (X} forms a cluster around R -- (where X 1is an item

response pattern that is generated by adding different numbers of
slips to the ideal item pattern R). The Tatsuokas showed that
the total number of slippage s in these "Iuzzy" iten patterns
follows a compound binomial distribution with the slippage
probabilities unique to each item. They called this distribution
the "bug distribution."

fHowever, it is also the conditional distribution of s given
R, where R is a state of knowledge and capabilities. This is
called a state distribution for short. Once a distribution is
determined for each state of knowledge and capabilities, then
Bayes' decision rule for minimum errors can be applied to
‘classify any student's response patterns into one of these
predetermined states of knowledge and capabilities (Tatsuoka &
Tatsucka, 1987).

The notion of classification has an important implication
for education. Given a response pattern, we want to determine
the state to which the students' misconception is the closest and
we want to answer the question: "What misconception, leading to
what incorrect rule of operation, did this subject most likely
have?" or "What is the probability that the subject's observed
responses have been drawn from each of the predetermined states?"
This is error diaynosis.

For Bayes' decision rule for minimum errors, the
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classification boundary of two groups of "fuzzy" response
patterns becomes the linear discriminant function when the state
distributions are a multivariate normal and their covariance
matrices are approximately equal. Kim (1990) examined the effect
of violation of the normality requirement, and found that the
linear discriminant function is robust against this violation.
Kim further compared the classification results using the linear
discriminant functions and K nearest neighbors method, which is a
non-parametric approach, and found that the linear discriminant
functions are better. However, the classification in the n-
dimensional space with many predetermined groups (as many as 50
or 100 states) is not practical.

Tatsuoka (1983, 1985, 1990) proposed a model (called ‘'rule
.space') that is capable of diagnosing cognitive errors. Rule
space uses item response functions where the probakility of
correct response to item j is modeled as a function of the
student's "proficiency", (which is denoted by 0) as Pj(e), and
that Qj(6)=1-Pj(9). Since the rule space model maps all possible
item response patterns into ordered pairs of (6,{) and where { is
an index measuring atypicality of response patterns (a projection
operator by a mathematical term), all the error groups will also
be mapped into this Cartesian Product space. The mapping is one-
to-one at almost everywhere if IRT functions are monotone
increasing (Tatsuoka, 1985; Dibello & Baillie, 1991).

Figure 3 illustrates the rule space configuration.
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Rule space can be regarded as a technique for reducing the
dimensionality of the classification space. Furthermore, since
the clusters of "fuzzy" response patterns that are mapped into
the two dimensional space follow approximately bivariate normal
distributions (represented by the ellipses shown in Figure 3),
Bayes' decision rules can be applied to classify a point in the
space into which one of the ellipses shown in Figure 3), (M.
Tatsuoka & K Tatsuoka, 1989; Tatsuoka, 1990).

Kim also compared the classification results using rule
space with Bayes' classifiers =-- the discriminant function
approach -- and the non-parametric K-nearest neighbors method.
He found that the rule space approach was efficient in terms of
CPU time, and that the classification errors were as small as
those created by the other two methods.

Moreove:, states located in the two extreme regions of the 6
scale, tended to have singular within-groups covariance matrices
in the n-dimensional space; hence, classification using
discriminant functions could not be carried out for such cases.
The rule space classification, on the other hand, was always
obtainable and reasonably reliable.

We assumed the states for classification groups were pre-
determined. However, determination of the universal set of
knowledge states is a complicated task and it requires a

mathematical tool, Boolean algebra, to cope with the problem of
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combinatorial explosion (Tatsuoka, 1991).

We utilized a deterministic logical analysis to narrow down
the fuzzy region of classification as much as possible to the
extent that we would not lose the interpretability of
misconceptions and errors. Then the probability notion, used to
explain such uncertainties as instability of human performances
on items, was used to express perturbations.

Correspondence Between the Two Spaces, Attribute Responses and

Item Responses

Tatsuoka (1991), Varadi & Tatsuoka (1989) introduced a
"Boolean descriptive function" f to establish a relationship
between the attribute responses and item responses.

For example, in the matrix Q(4 x 5), a subject who can not

do A; but can do A,, A;, and A,, will have the score of 1 for
those items that do not involve A, and the score of 0 for those
that do involve A,. Thus, the attribute pattern (0 1 1 1)

corresponds to the observable item pattern (0 0 0 1 1).

By making the same kinds of hypothesis on the different
elements of L and applying these hypotheses to the row vectors of
the incidence matrix Q, we can derive the item patterns that are
logically possible for a given Q matrix. These item patterns are
called ideal item patterns (denoted by Ys).

Generally speaking, the relationship between the two spaces,
the attribute and item spaces is not straightforward as the
example of Q(4 x 5). This 1s because partial order relations

among the attributes almost always exist and a given item pool
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often does not include the universal set of items which involve
all possible combinations of attributes.

A case when there is no relation among the attributes

Suppose there are four attributes in a domain of testing,

and that the universal set of items 2° are constructed, then

incidence matrix of 2* items is given below:

111111311
1 2345678901234 5
6100011100011101 A,
0010010011011 00112 A,
Q(4 x 16) = 00010010101 101101 As
t1 0000100101101 111 A,

An hypothesis that states "this subject cannot do A but can

do A;,..A ,, A, ..A correctly" corresponds to the attribute
pattern (1 ...1 0 1...1). Let us denote this attribute pattern
by Y, then Y produces the item pattern X, where X; =1 if item
j does not involve A, and x; = 0 if item j involves A . This

operation is defined as a Boolean descriptive function.
Sixteen possible attribute patterns and the images of f (16

ideal item patterns), are summarized in Table 1 below.

—— . ———————_—— - . — ———— ————————

For instance, attribute response pattern 1 0 indicates that

a subject cannot do A, and A; correctly but can do A, and A,.
Then from the incidence matrix Q(4x16) shown above, we see that

the scores of items 2,4,6,7,8,9 11,12,13,14,16 must become zero

while the scores of 1,3,5,10 must be 1.
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Table 1 indicates that any responses to the 16 items can be
classified into one of the 16 predetermined groups. They are the
universal set of knowledge and capability states that are derived
from the incidence matrix Q(4 x 16) by applying the properties of
Boolean algebra. In other words, the 16 ideal item patterns
exhaust all the possible patterns logically compatible with the
constraints imposed by the incidence matrix Q(4 x 16). By
examining and comparing a subject's responses with these 16 ideal
item patterns, one can infer the subject's performances on the
unobservable attributes. As long as these attributes represent
the true task analysis, any response patterns of the above 16
items, which differ from the 16 ideal item patterns, are regarded
as fuzzy patterns or perturbations resulting from some lapses or
slips on one or more items, reflecting random errors.

A Case When There Are Prerequisite Relations Among the Attribuctes

So far we have not assumed any relations among the four
attributes in Table 1. It is often the case that some at*ributes

are directly related one to another. Suppose A, is a
prerequisite of A,, A, is a prerequisite of A; and A, is also a

prerequisite of A,.

—— - ————— ———— — — o ———— —— e ———— -

If we assume that a subject cannot do A, correctly, then A,
and A; cannot be correct because they require knowledge of A, as

a prerequisite. Therefure, the attribute patterns 3, 4, 5, 9,

10, 11, and 15 in Table 1 become (0 0 0 0) which is pattern 1.
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By an argument similar to the above paragraph, "cannot do A, "
implies "cannot do A;". In this case the attribute patterns 2

and 7, and the patterns 8 and 14 are respectively no longer
distinguishable. Table 2 summarizes the implication of the

relations assumed above among the four attribute set.

The number of attribute patterns has been reduced from 16 to
7. The item patterns associated with these seven attribute
patterns are given in the right-hand column, in which each
pattern still has 16 elements. It should be noted that we do not
need 16 items to distinguish seven attribute patterns. Items 2,
3, 4, 5, 10, and 11 are sufficient to provide the different ideal
"item patterns, (0 0 0 0 0 0), (1 00 00O0O0), (10010 0),
(1 0110), (10000), (111000), (11111 1), which
are obtained from the second through fifth columns, and the 10th
and 11th columns of the ideal item patterns in Table 2.

The seven reduced attribute paterns given in Table 2 can be
considered as a matrix of the order 7 x 4. The four column
vectors, which associate with attributes, A,, A,, A; and 3,
satisfy the partial order defined by the inclusion relation.
Expressing the inclusion relationships among the four attributes
-- A, (column 1), A, (column 2), A; (column 3) and A, (column

4) -- in a matrix, results in the following reachability matrix

R:
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It is easy to verify that R can be derived from the
adjacency matrix of A obtained from the prerequisite relations
among the four attributes; A, -> A, -> A; and A, -> A,

An approach to design constructed-response items for a diagnostic

test.

Notwithstanding the above, it is sometimes impossible to
construct items like 2,3,4, and 5 which involve only one
attribute per item. This is especially true when we are dealing
with constructed-response items, we have to measure much more
complicated processes such as organization of knowledge and
cognitive tasks. In these cases, it is natural to assume that
each item will involve several attributes. By examining Table
2, one can find several sets of items for which the seven
attribute patterns produce exactly the same seven ideal item
patterns as those in Table 2.

For example, they are a set, {(2,3,4,5,10,11}, or
2,3,4,5,13,11}. These two sets of items are just examples which
are quickly obtained from Table 2. There are 128 different sets
of items which produce the seven ideal item patterns when the
seven attribute patterns in Table 2 are applied. This means that
there are many possibilities for selecting an appropriate set of
six items so as to maximize diagnostic capability of a test. The

common condition for selection of these sets of items can be
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generalized by the use of Boolean algebra, but detailed
discussion will not be given in this paper.

This simple example implies that this systematic item
construction method enables us to measure unobservable underlying
cognitive processes via observable item response patterns.
However, if the items are constructed without taking these
requirements into account, then instructionally useful feedback
or cognitive error diagnoses may not be always obtainable.
Explanation with GRE math items

The five items associated with GRE water filling problem are
given in the earlier section. The incidence matrix Q(4 x 5)
produces nine ideal item patterns and attribute patterns by using
BUGLIB program (Varadi & Tatsuoka, 1989). Table 3 summarizes

'them.

- — — - ——— - — A — —— —————

The prerequisite relations, A, -> A, and A; -> A, imply some
constraints on attribute patterns: the attribute pattern, (0 1)

for A,, A, and A;, A, cannot exist logically. A close

examination of Table 1 reveals that the constraints result in
nine distinguishable attribute patterns. They are: 3,5,10 result
in 1 that is (0000); 8 to 2 that is (1000); 9 to 4, (0010); 13 to
6, (1100); 15 to 11, (0011l) and the remaining patterns 7, (1010):
12, (1110); 14, (1011) and 16 (1111). These attribute patterns
are identical to the patterns given in Table 3.

It can be easily verified that the reachability matrix given
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in earlier section (p. 13) is the same as the matrix which is
obtained by examining the inclusion relationships among all
combinations of the four column vectors of the attribute patterns
in Table 3. This means that all possible knowledge states,
obtainable from the four attributes with the structure
represented by R can be used for diagnosing a student's errors.
The five GRE items are good items as far as a researcher's
interest is to measure and diagnose the nine states of knowledge

and capabilities listed in Table 3.

Illustration With Real Examples

Example I: A Case of Discrete Attributes In Fraction Addition
Problems

Birenbaum & Shaw (1985) used Guttman's facet analysis
.technique (Guttman, et.al. 1991) to identify eight task-content
facets for solving fraction addition problems. There were six
operation facets that described the numbers used in the problems
and two facets dealing with the results. Then, a task
specification chart was created based on a design which combined
the content facets with the procedural steps. Figure 4 shows the

task specification chart.

The task specification chart describes two strategies to
solve the problems, methods A and B. Those examinees who use
Method A convert a mixed number (a b/c) into a simple fraction,
(ac+b)/c, similarly, the users of method B separate the whole

number part from the fraction part and then add the two parts
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independently. 1In these cases, it is clear that when the numbers
become larger in a fraction addition problem, then Method A
obviously requires computational skills to get the correct
answer. Method B, on the other hand, requires a deeper
understanding of the number system.

Sets of attributes for the two methods are selected from the

task specification chart in Figure 4 as follows:

Problem: ab/c+de/f Method A Method B
A, cConvert (a b/c) to (ac+b)/c used Not used
A, convert (d e/f) to (df+e)/f used Not used
A; Divide fraction by a common factor used used

A, Find the common denominator of ¢ & £ used used

A; Make equivalent fractions used used

A, Add numerators used used

.AT Divide numerator by denominator used used

A, Don't forget the whole number part used used

B, Separate a & d and b/c & e/f Not used used

B, Add the whole numbers including 0 Not used used

The two methods share all of the attributes in common,

except for B, and B,, A, and A,. The incidence matrices for the

ten items in Birenbaum and Shaw (1985), for Methods A and B, are

given in Table 4.

A computer program written by Varadi and Tatsuoka (BUGLIB,
1990) produces a list of all the possible '"can/cannot"
combinations of attributes, otherwise known as the universal set

of attribute response patterns.
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For Method A, 13 attribute patterns are obtained. The
attribute patterns and their corresponding ideal item patterns
are given in Table 5 where the attributes are denoted by the

numbers 1 through 8 for A, through A;, and 9 and 10 for B, and
B,, respectively. For instance, the second state, 2, has the

attribute pattern 11111110 and the ideal item pattern is

repr ~sented by 111100010.

—— — — —— — —— ——— - - — —— ———— ——————

It is interesting to note that there is no state including

"cannot do an item that involves both of the attributes, A, and
A,, but can do items that involve either A; or A, alone" in the

list given in Table 5. If one would like to diagnose such a
.compound state, then a new attribute should be added to the list.

Another interesting result is that A; cannot be separated
from A, as long as we use only these ten items. In other words,
the rows for A, and A; in the incidence matrix for Method A are

identical. Needless to say, Shaw and Tatsuoka (1983) found many

different errors that originated in attribute Ay, -- making
equivalent fractions -- and they must be diagnosed for
remediation (Bunderson & Ohlsen, 1983). 1In order to separate Ag

from A,, we must add a new item which involves A, but not A,
thereby making Row A; different from Row A,.

Beyond asking the original "equivalent fraction" question,
we now add an item to the existing item pool, which asks, "What

is the common denominator of 2/5 and 1/7?" This is a wuy to test
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the skill for getting common denominators correctly and also
distinguishes the separate skill required for making equivalent
fractions. However, since the solutions to each of these
questions a are so closely related and inter-dependent, it may
not be possible to separate measure the examinees' skills in
terms of each function.

If an examinee answers this item correctly but gets a wrong
answer for items involving addition, such as 2/5 + 1/7, then it
is more likely that the examinee has the skill for getting
correct common denominators but not the skill for making
equivalent fractions correctly.

Thirteen knowledge and capability states are identified from
the incidence matrix for Method B, and they are also summarized
.in Table 5. Some ideal item response patterns can be found in
the lists for both Methods A and B. This means that for some
cases we cannot diagnose a student's underlying strategy for
solving these ten items. Our attribute list cannot distinguish
whether a student converts a mixed number (a b/c) to an improper
fraction, or separates the whole number part from the fraction
part. If we can see the student's scratch paper and can exanine
the numerators prior to addition, then we can find which method
the student used. There are two solutions to this problem. One
is to use a computer for testing so that crucial steps during
problem solving activities can be coded. The second is to add

new items sc that these three attributes, A,, A, and B, can be

separated in the incidence matrix for Method B.
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Example 2: The Case of Continuous and Hierarchically Related
Attributes in The Adult Literacy Domain

Kirsch and Mosenthal (1990) have developed a cognitive model
which underlies the performance of young adults on the so-called
document literacy tasks. They identified three categories of
variables which predict the difficulties of items with a multiple
R of .94.

Three categories of variables are defined:

"Document" variables (based on the structure and
ccmplexity of the document)

. "Task" variables (based on the structural relation between

the document and the accompanying question or directive)

. "Process" variables (based on strategies used to relate

information in the question or directive to information in
the documents" (Kirsch and Mosenthal, 1990, p.5).

The "Document" variables comprise six specific variables
including the number of organizing categories in the document,
the number of embedded organizing categories in the document and
the number of specifics. These three variables are considered in
our incidence matrix as the attributes for "Document" variables.

The "Task" variables are determined on the basis of the
structural relations between a question and the document that it
refers to. The larger the number of units of information
required to complete a task, the more difficult the task. Four
attributes are picked up from this variable group.

The "Process" variables developed through Kirsch and

Mosenthal's regression analysis showed that variables in the
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category of "Process" variables influenced the item difficulties
to a large extent. One of the variables in this category is the
degree of correspondence, which is defined as the degree to which
the information given in the question or directive matches the
corresponding information in the document.

The next variable represents the type of information which
has to be developed to locate, identify, generate, or provide the
requested information based on one or more nodes from a document
hiererchy. Five hierarchically related attributes are determined
from this variable group.

The last variables are Plausibility of Distractors, which
measure the ability to identify the extent to which information
in the document matches features in a question's given and
‘requested information.

A total of 22 attributes are selected to characterize the 61
items. Since the attributes in each variable group are totally
ordered, i.e., A, -> A, ~> A; -> A, -> A;, the number of possible
combinations of "can/cannot" attributes is drastically reduced
(Tatsuoka, 1991). One-~hundred fifty-seven possible attribute
response patterns were derived by the BUGLIB program and hence
157 ideal item response patterns are produced. As was explained
in the earlier section, these 157 ideal item response patterns
correspond to the 157 state distributions that are multivariate
hormal. These states are used for classifying an individual
examinee's response pattern. A sample of ten states with their

corresponding attribute response patterns are shown in
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Table 6 as examples.

- —— - " - = - e - —

As can be seen in Table 6, several subsets of attributes are
totally ordered and the elements of the subset form a chain.
Further 1500 subjects were classified into one of the 157
misconception states by a computer program entitled RULESPACE
(Tatsuoka, Baillie, Sheehan, 1991). The number of subjects who
were classified into one of these ten states are -- 157 subjects
in State No.1l, 46 in No. 4, 120 in No. 11, 81 in No. 12, 37 in
No. 14, 68 in No. 50, 12 in No. 32, 27 in No. 102, 11 in No. 138
and 4 in No. 156.

While the interpretation of misconceptions for these results
-is described in detail elsewhere (Sheehan, Tatsuoka & Lewis,
1991), State No. 11 (into which the largest number of subjects
were classified) will be described here.

"Cannot attributes A;,3 and A" relate directly from A,; to
Ay. Therefore, as represented in Table 6, the statement can be
made that, "a subject classified in this state cannot do a,;, and
hence cannot, by default, do A,." Thus, the prescription for
these subjects' errors is likely to be that they make mistakes
when items have the following specific feature:

....Distractors appear both within an organizing category

and across orgarizing categories, because different

organizing categories list the came specifics but with

different attributes" (Kirsch and Mosenthal, 1990, p. 30).
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Psychometric Theories Appropriate For

A Constructed Response Format

An incidence matrix suggests various scoring formulas for
the items.

First, the binary scores of right or wrong answers can be
obtained from the condition that - if a subject can perform all
the attributes involved in an item correctly, then the subject
will get a score of one on that item; otherwise the subject will
get a score of zero. With this scoring formula, the simple
logistic models (Lord & Novick, 1968) for binary responses can be
uced for estimating the scaling variable 6.

Second, partial credit scores or graded response scores can
be obtained from the incidence matrix if performance dependent on
.the attributes is observakle and can be measured directly. This
condition permits applicability of Masters' partial credit models
(Masters, 1982) or Samejima's General Graded response models
(Samejima, 1988) to data.

As far as error diagnoses are concerned, simple binary
response models always work even when performances on the
attributes cannot be measured directly and are not observable.
However, computer scoring (Bennett, Rock, Braun, Frye, Spohrer,
and Soloway, 1990), or scoring by human raters or teachers can
assign graded scores to the items. For example, the number of
correctly processed attributes for each item could be a graded
score.

Muraki (1991) wrote a computer program for his modified
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version of Samejima's original graded response model (Samejima,
1969). Muraki's program can be used for Samejima's model itself
also.

Third, a teacher may assign different weights to the
attributes and give a student a score corresponding to the
percentage of correct answers achieved, depending on how well the
student performed on the attributes. Thus, the final score for
the item becomes a continuous variable. Then Samejima's (1976,
1988) General Continuous IRT model can be used to estimate the
ability parameter 6. If the response time for each item is
available, then her Multidimensional Continuous model can be
applied to such data sets.

Fourth, if a teacher is interested in particular
combinations of attributes and assigns scores to nominal
categories, say 1 = {can do A, and Az}, 2 = {can do A, and A,)
and 3 = {can do A,, A; and A,},.. so on, then Bock's (1972)

Polychotomous model can be utilized for getting 0.
Discussion

A wide variety of Item Response Theory models accommodating
binary scores, graded, polychotomous, and continuous responses
have been developed in the past two decades. These models are
built upon a hypothetical ability variable 8. We are not against
the use of global item scores and total scores -- e.g., the total
écore is a sufficient statistic for 6 in the Rasch Model -- but
it is necessary to investigate micro-level variables such as

cognitive skills and knowledge and their structural relationships

_____—*A
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in order to develop a pool of "good" constructed- response itens.
The systematic item construction method enables us to measure
unobservable underlying cognitive processes via observable item
response patterns.

This study introduces an approach for organizing a couple of
dozen such micro-level variables and for investigating their
systematic interrelationships. The approach utilizes
deterministic theories, graph theory and Boolean algebra. When
most micro-level variables are not easy to measure directly, an
inference must be made from the observable macro-level measures.
An incidence matrix for characterizing the underlying
relationships among micro-level variables is the first step
toward achieving our goal. Then a Boolean algebra that is
Aformulated on a set of sets of attributes, or a set of all
possible item response patterns obtainable from the incidence
matrix, enables us to establish relationships between two worlds:
attribute space and item space (Tatsuoka, 1991).

A theory of item construction is introduced in this paper
in conjunction with Tatsuoka's Boolean algebra work (1991). If a
subset of attributes has a connected, directed relation and forms
a chain, then the number of combinations of "can/cannot"
attributes will be reduced dramatically. Thus, it will become
easier for us to construct a pool of items by which a particular
group of misconceptions of concern can be diagnosed with a
minimum classification errors.

One of the advantages of rule space model (Tatsuoka, 1983,
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1990) 1is that the model relates a scaled ability parameter 6 to
misconception states. For a given misconception state, which is
error, one can always 1ldentify the particular types of errors
which relate to ability level 6. If the centroid of the state is
located in the upper part of the rule space, then one can
conclude that this type of error is rare. If the centrcid lies
on the 6 axis, then this error type is observed very frequently.

Although Rule space was developed in the context of binary

IRT models, the concept and mathematics are general enough to be
extended for use in more complicated IRT models. Further work to
extend the rule space concept to accommodate complicated response

models will be left for future research.
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Table 1 A List of 16 Ideal Item Response Patterns Obtained from
16 Attribute Response Patterns by a Boolean Description

Function
Attribute response patterns Ideal item response patterns
1 0000 1000000000000000
2 1000 1100000000000000
3 0100 1010000000000000
4 0010 1001000000000000
5 0001 1000100000000000
6 1100 1110010000000000
7 1010 1101001000000000
8 1001 1100100100000000
9 0110 1011000010000000
10 0101 1010100001000000
11 0011 1001100000100000
12 1110 1111011010010000
13 1101 1110110101001000
14 1011 1101101100100100
15 0111 1011100011100010
16 1111 11311111111311111




Table 2 A List of Attribute Response Patterns and Ideal Item
Resrcnse Tatterns Affected by Direct Relations of

Attributes
Original Patterns Attribute Ideal Item Patterns
Patterns
1,3,4,5,9,10,11,15 0000 1000000000000000
2, 7 1000 1100000000000000
8,14 1001 1100100100000000
13 1101 1110110101001000
6 1100 1110010000000000
12 1110 1111011010010000

16 1111 1111111111111111




Table 3

Attribute Patterns

1 1111

2 1
3 1
4 1
S 1
6 1
7 0
8 0
S (0]
* A,

A,

Ag

1

10

Goal is
Compute
Goal is

Compute

Ideal Item Patterns

Can do

Can do
Cannot

Can do
Cannot

Can do
Cannot

Can do
Cannot

Can do
Cannot

Can do
Cannot

Can do
Cannot

Cannot

to find the net filling rate

the rate

to find the time to fill the tank

the time.

Description of States

everything

A, By B

do A,

Ay, By
do Az, A,

do A,

A,, Ay
do A,, A,

A,
do A,, &g,

A3 ’ A4
do A,, A,

A
do A,, A,,

A List of Nine Knowledge and Capability States and Nine
TAeal Item Patterns of GRE-math

A,

do anything




Table 4

2 8/6
3/5

3 10/4
7/4
3/4
2/5
1/2
1/3

3 1/6
10 5/6

W 00 N o Uk WD R

2 8/6
3/5

3 10/4
7/4
3/4
2/5
1/2
1/3

3 1/6
10 5/6

W 0 N o6 it W NP

+ + + + + o+ o+ + o+ 4+

+ o+ + + + + + o+ o+ o+

Method A

3 10/6
1/5

4 6/4
5/4
1/2
12/8

1 10/7
1/2

2 3/4
1/3

Method B

3 10/6

4 6/4
5/4
1/2
12/8

1 10/7
1/2

2 3/4
1/3

Ten Items with Their Attribute Characteristics
by Method 3 and Method R

Ayy By By, By By

Ay
Ay, By, Az, Ay, Ay
A, A,

B,, A;, A, Ay, BA,, A,, B,
same as by Method A

By, Az, 24 A, By, B
same as by Method A

same as by Method A

same as by Method A

B, A,, A;, A, A,, A, B,
same as by Method A

B,, A,, A, A,, B,

same as by Method A




Table 5 A list of all the possible sets of attribute patterns
derived from the incidence matrices given in Table 4

Method A
States Cannot Can Jdeal Item Response Pattern
l none 1,2,3,4,5,6,7,8 111113113111
2 8 1,2,3,4,5,6,7 1111000100
3 4,5,8 1,2,3,6,7 1111000000
4 1 2,3 4,5,6,7,8 0101111101
5 2,1 3,4,5,6,7,8 010111061C1
6 3 1,2,4,5,6,7,8 0101101111
7 3,1 2,4,5,6,7,8 0101101101
8 3,2,1 4,5,6,7,8 0101100101
9 1,2,3,8 4,5,6,7 0101000100
10 1,2,3,4,5,8 6,7 0101000000
11 7,1,2,3,8 4,5,6 0100000100
12 1,2,3,8,7,4,5 6 0100000000
3 1,2,3,4,5,6,7,8 none 0000000000
Method B

States Cannot Can

1 none 3,4,5,6,7,8,9,10 11131111111
2 8 3,4,5,6,7,9,10 1101000110
3 4,5 3,6,7,8,9,10 0111000000
4 9,10 3,4,5,6,7,8 0101110101
5 3 4,5,6,7,8,9,10 0101101111
6 3,9,10 4,5,6,7,8 0101100101
7 3,8 4,5,6,7,9,10 0101000110
8 3,8,9,10 4,5,6,7 0101000100
9 3,4,5,8,9,10 6,7 0101000000
10 7,3 8 4,5,6,9,10 0100000110
11 3,7,8,9,10 4,5,6 0100000100
12 3,4,5,7,8,9,10 6 0100000000
i3 3,4,5,6,7,8,9,10 none 0000000000




Table 6 The Ten States Selected from One-hundred Fifty-seven
Poscible States Yielded by Boolean Operation (via BUGLIB

program)
States Attribute Pattern Directed Direct Relation
Among Attributes
1111111111222

1234567890123456789012
1 No. 1 1111211331311331311111111 None
2 No. 4 11111131111111111110111 None
3 No. 11 11111211111311311100111 Aig => Ay
4 No. 12 1111011111111111100111 Ag —> Ay
5 No. 14 1111011110111111100111 Ajg => Ay
6 No. 30 1111011100111111100111 Ay => Ay, By => By
7 No. 32 1100011100111111100110 Ay => A, => A, Ay > Ay
8 No. 102 1000011111111121111111 A; => A; => A, -> Ag
9 No. 138 1000011111111011110111 A, => A3 -=> A, -> Aq
10 No. 156  1000010000001110000100 A, -> A; -> A, -> A

Ay => By —> Agg
Big => Bz => By T> By
Ay > By




A systematic analysis of task

skill

job

content

identifying prime components, abstracting attributes

and naming them A,,......, A,.

1°°3

/AA
\

\,

Figure 1 Examples of Attributes




Figure 2 An Example of Partially Ordered Attributes
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Figure 3

The Rule Space Configuration.

The Numbers in Nine ellipses indicate error States (a2.g., No. 5 State is
"one cannot do the operation of borrowing in fraction subtraction problems.")
and x marks represent students’ points (4,{).




STARY
METHOD A

oc+ b di-e
et olze

N
F DF METHOD B
. b [
ODd, ? D T
A {
)
ts FIND CD
Y
DIVIDE FRACTION
Y BY CF FIND EF

BORROW FROM THE
WNP (0-1) (U: )

O SUBTRACT
AD\\V"N?P)“E THE WNP
?
B 7 -
1
T ADD SUBTRACT
NUMERATORS NUMERLTORS
1 1
THIS IS THE NUM
OF THE RESULT
Y
COPY C.THIS IS THE
DENO OF THE RESULT
[————_ 1S
DIVIDE NUM e Y NUM 2
L BY DENO DENO 7
N
A ol ) —
ACF . -
DON'T FORGET | N e N YU USEN ¥ oo;a’;rzrai:w
THE WNP FRACTION 7 s 7
Y, N

DIVIDE FRACTION
8Y CF

DONE ¢

Figure 4 Task Specification Chart for Fraction Addition and
Subtraction Problems.

Symbol: used to denote the general fraction form used in
this figure is: a(b/c) + d(e/f); F is fraction; CD is common
denominator; CF is common factor; WNT is whole number part; NUM
is nunerator; DENO is denominator; EF is equivalent fraction.
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