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ABSTRACT

This thesis expands upon previous work in applying
aggregation and shrinkage techniques tc Marine Corps cfficer
attrition rate estimators. Until now, estimation was Lased
upcn available annual data, failing to consider within year
seasonality as a factor. Exploring modern short-term
forecasting techniques which include a seasonal factor, this
research applies seasonality on a quarterly basis with
conversion flexibility to any desired cycle.

We introduce and compare two models: the Harrison-Stevens
Multi-State Bayesian model and the Winters Three-Parameter
Exponential Smoothing model. Both methods provide capable
forecasting and demonstrate the necessity of including
seasonality. The Harrison-Stevens approach has the advantage
of providing a posterior distribution rather than a point
estimate, and proves to be the superior model when forecasting

beyond one period.
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THESIS DISCLAIMER

The reader 1s cautioned that computer programs developed
in this research may rot have been exercised for all cases of
interest. While every effort has been made, within the time
available, to ensure that the programs are free of
computational and 1logic errors, they cannot be considered
validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

A. GENERAL

This thesis investigates the use of modern short ternm
forecasting within the framework established to build an
attrition rate generator for a large scale manpower flow
model; specifically the officer force of the U.S. Marine
Corps.

The Marine Corps is continuing the process of automating
their manpower planning, programming and budgeting processes
with the recently developed and highly organized Officer
Planning and Utilization System (OPUS). As this centrally
organized system evolves, more efficient methods of
anticipating personnel attrition from the Corps are needed.

Attrition includes those 1leaving the service thrcugh
retirement, resignation, discharge, disability or similar
reasons. The Navy Personnel Research and Development Center
(NPRDC}, San Diego, Calirfornia, recently terminated efforts in
forecasting attriticn through the Marine Corps Officer Rate
Projector (MCORP). Decision Systems Associates, Inc. (DSAI),
of Rockville, Maryland, has been granted the contract for
future implementation of their forecasting Officer Rate

Generator (ORG).




Accurate forecasting of officer lossesc 1s extrerecly
important to the manpower planner. In military manpower
systems, most personnel flows are initiated by the creaticn of
vacancies within the system. Lcssec in the paygrade hilerarcuy
trigger promotions from lower grades. Vacancles generate a

need for new accessions to replenish the force. The lead time

in this ©process 1is great, thus qualit.- fcrecasts are
essential. Underestimates of 1losses lead to toco few
accessions, erroneous budget projections, and untimely

readiness problems. Overestimates of losses can cause excess
accessions, promotion delays, underutilized personnel and
increased costs. The problem is compounded in that most
accessions begin at the lowest pay grade of Second lLieutenant
and s.cwiy work their way up to the highest ranks over a
period of many vears.

The presc¢ .t attrition rate generator calculates empirical
attrition rates wusing historical data with user-defined
weights and threshold parameters (Seigel, 1983). This
subjective input makes the currenct gererator susceptivie to
unintentional misuse. In support of the ORG, Professor Rcbert
R. Read cf the Naval Postgraduate School has been wcrking on
a number of modern techniques applied to the prcblem of
estimating attrition rates for the numercus cells that appear
in manpower planning models. Speciai attention has been given
to the "small cell" problem; i.e., officer categories that

normallv contain a few personnel. These cells are numerous,
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and uistorical empirical rates for therm are generally unctal.

1 -

due to sporatic data. In addressing this probler, the

contract granted to DSAT specifically reguirer the

irplementaticn of shrinkage technriques develcped by Prcfesscr

Read and Major J. Misiewicz (Misiewicz, 19&%). Thelr sclu%!

"
I

)

to the "small cell" problem is explained in Chapter I11.
Due to data constraints, Misiewicz' thesis application isc
based upon annual data and cannot provide for attrition

variability due to different seasonal periods. It must L

afl

considered that attrition rates may be seascnally dependent.
In our study, the readily available data requires that we
approach officer attrition using the calendar year kroken down
into three-month periods (quarters) and analyze various
seasonal forecasting techniques. The more refined ckjective
of the Marine Corps is to develop the capability to forecast
attrition on a monthly basis with projections to any future

nonth desired.

B. BACKGROUND

Eight Master's theses have been produced by this prehect.
Each has made important contributicns to the understanding of
the preblers assoclated with the "small cell".

Majer D. Tucker provided detailed background into the
larine Corps officer structure and the marpower planning
process (Tucker, 19259). He provided baslic attrition rate

thecory and calculated attriticn rates in several formats H¢




tested three estimation scheres: maximunm likelihocd, Jarmcs-
Stein, and minimax for a few selected paygrades and rilitary
occupaticnal specialties (MCS3). His results strongly suprort
use of James-Stein estimation of attrition rates. Minimax wars
discarded as being too conservative for small cell use.

Major J. Robilnson introduced the Efron-Morris limite:
translation shrinkage alternative to augment the James-Ste.r
estimator (Robinson, 1%&86¢). He performed a more thorouah
validation using both original and transformed scale, and
while confirming Tucker's results, he could not provids
consistent stable estimates fcr small cells.

Captain C. Dickinson continued the application cf

i

shrinkage methods to estimating officer attrition rate:

f

(Dickinson, 19€6). He applied the previously used methods and
an empirical Bayes estimator to a n»w and refined data base
which recorded "man-guarters" rather than "fiscal" data. Thic
approach was competitive with previous methods but instakility
remained.

The next three studies used ad hoc methods to deal wit?
the 1idea of cell aggregation. When applying shrinkage
methods, aggreqgation of cells with low perscnnel inventory
into sets of cells with larger inventory is required. It was
believed that a mathematical approach to this question would
give relief to the instability proklem encountered by others.
The objective 1is to use cells which demonstrate similar

2

trition behavior.
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The first attempt to treat the aggregation problen was H.
Anin Elseramegy (Amin Elseragemy, 1985). His use of the
Classification and Regression Tree (CART) progranm in forming
aggregates of cells exhibiting homogeneity of behavior in
attrition proved difficult. Efforts to learn the syster,
computer memory space on the IBM 3033, and randcm partiti
of data in this "top-down" system was limiting. The resulting
aggregations were awkward and generally unusable.

Substantial progress in the aggregation problem was made
by R. Larsen (Larsen, 1987). Using a second, more refined
d.ta base, he applied a hierarchical clustering algorithm and
exposed the relative importance of some special MOS cells and
years commissioned service (YCS) interva: s. The separation of
the aviation community into several groups explained much cf
the instability encountered in earlier studies. Larsen's work
provided the framework for the cell aggregation algorithnm
developed by Misiewicz.

D. Hoganr turned his attention to alternative methods for
attrition estimation (Hogan, 1986). Believing the existence
of u time series effect, Hogan explored an exponential
smoothing technique. This technique provided a way to update
estimates yearly with the passage of time through a weighted
smoothing constant, a«. The results indicated that exponential
smoothing gave relief to the problem of estimating rates using

large time lags but with inconsistent results. Further study

™




into exponential smoothing is contained in this thesis angd
discussed in Chapter V.

A logistic regression alternative was explored by N. Yecin
(Yacin, 1987,. This study provided some quantitative resuits
regarding similar attrition behavior with respect to years
commissioned service (YCS).

J. Misiewicz built upon the results of these previous
studies. 1Initially he integrated two efforts:

® the aggregation of cells 1into groups that exhibit
hcmogeneity of attrition behavior, and
® the development of "shrinkage" estimation techniques for
use in the individual groups.
A heuristic algorithm was developed and tested to treat the
aggregation problem with empirical Bayes methods used to serve
the multi-cell estimation requirements needed to preserve
fidelity. In essence, it is a modification of the Larsen
procediure. His results indicate stability in estimating
attrition rates for low inventory ceclls but presented no clear
favorite among six estimation methods. DSAI 1is presently
integrating the Larsen-Misiewicz small cell algorithm into the
ORG using the transformed scale, time dependent variance
methed. Chapter 1III is an amplification of Misiewicz!

etforts. (Misiewicz, 1989)
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C. OBJECTIVE

This thesis continues ongoing research in the develcpment
of the Officer Attrition Rate Generator for the U.S. Marine
Corps. Successful effort has been given to refining an
aggregation and shrinkage technique for handling the inherent
problen of forecasting in a small cell environment. General
stability is achieved through MCS and YCS grouping which
replaces the earlier ad hoc methods that led to historical
instability concerns.

The objective of our work is to tune the aggregation and
shrinkage algorithm developed by Major John Misiewicz, then
focus on estimation techniques which consider seasonality
forecasting factors. Two specific techniques are developed.

They are based upon:

® Winters Three Parameter Seasonal Exponential Smoothing
Model.

® Multi-parameter Estimation and Forecasting using the "P.
J. Harrison and C. F. Stevens" approach in a finite-state
model.

he algorithm developed by Misiewicz is moditied to view

forecasting from a "quarterly" perspective. A new data tape

is provided by MIIS, Headquarters, U.S. Marine Corps to assist
in this work, providing twelve years of data rather than ten
years as used in previous work. Most of Major Misiewicz's
work with small cell aggregation and expansion techniques will
remain intact, with moderate modifications of the expansion

parameters.



The Winters Seasonal Exponential Smoothing technique is
appropriate for seasonal time series data. It uses three
separate smoothing constants to describe the level of the
series, a linear trend, and a multiplicative seasonal factor.

Harrison and Stevens describe a new approach to short-term
forecasting, based upon Bayesian principles in conjunction
with a multi-state data generating model. The various states
correspond to the occurrences of transient errors and step
changes in trend and slope. The basis for this method is
founded upon what is commonly referred to as "Kalman Filters"
and should provide the following advantages:

® Recognition and responsiveness to transient errors and
sudden changes in trend and slope.

® Increased sensitivity when true trend, slope and step
changes occur.

¢ A joint distribution rather than a single-figure forecast.

® Known values for seasonality which can change with
additional data sets.




II. DATA BASE

A. GENERAL

Previously, the works of “.arsen and Misiewicz used a
refined data base compiled by NPRDC. It contained ten years
of inventory and attrition data from 1977-1986. The inv~n*ory
ata provides annual totals of officer inventory in units of
man-quarters and was obtained from the Headquarters Master
File (HMF). The attrition data was accumulated in man-years
from the Quarterly Statistical Transaction File (STATS). To
be used together, the inventory data was divided by four in
order to convert to an annual (but not integer-valued) figure.

With NPRDC no longer on contract and DSAI not expecting to
ocbtain a usable monthly data base until September 19290, we
allied with MIIS, Headquarters, U.S. Marine Corps, Washington
D.C., for the preparation of a new data base. The NPRDC data
base contained annual attrition and inventory data by YCS,
paygrade, MOS, sex, commissioning source, education level and
service component. With multiple data base problems in
conjunction with limited time and resource, this degree of
detail was determined to be too ambitious.

Oour objective was to obtain a central inventory and
attrition value for each quarter on cells defined by MOS,

paygrade, YCS, and service component. Unfortunately, the only




available inventory measures are instantaneous. At best, the
data base includes a snap-shot of the inventory on the final
day of the quarter and a tally of attrition over each cell.
Since attritions are not included in the inventory value, the
question arises as to what wvalue to use for quarterly
inventory: the snap-shot value alone, or the snap-shot value
plus the quarterly attritions. Because many Marines
transition in and out of a cell during a period with only a
w being attritions, our computations are based upon the end-
of-period value. Numerous problems were encountered with this
data base, most notably lost records and significant attrition
rate outliers. To deal with these problems, it was necessary
for us to develop an outlier identification and replacement
system. Other discrepancies noticed include:
¢ Some negative value entries are listed for YCS (we assume
and change these to the equivalent positive value).
¢ In many senior officer records secondary MOS rather than
primary MOS are listed (without primary MOS information,

these records are unfortunately ignored).

® Listing o¢f nonexistent MOS (we also ignore these records).

These discrepancies were dealt with individually.

B. FILE DEVELOPMENT
Appendix A displays a sample of the data found on the tape
provided by Headquarters, U.S. Marine Corps. The output

displays a single entry with the corresponding description of

10




what each field represents. Each entry is generally described
as a count of attrition and inventory for a given cell defined
by period, paygrade, YCS, MOS, and service component. The
coding of the data base is identical to that in previous work
with the following exceptions:
¢ The data base contains only paygrades 01 (Second
Lieutenant) through 05 (Lieutenant Colonel).
® Some paygrades are followed by the code "E" to signify
prior enlisted Limited Duty Officer (LDO). As in prior
studies, we will limit our work to unrestricted officers,
therefore, these data entries will be ignored.
® YCS is truncated to an integer rather than rcunded as in
prior work. This is compensated for in the FORTRAN
program MCFIND which develops our data base.
® Actual primary MOS designations are used rather than
substitute codes, e.g., 0302 is listed for basic infantry
officer rather than 013 as found in prior work.
® Service component is given a code of "1" to represent an
officer with a regular commission, and "2" to represent an
officer with a reserve commission.
® The period is designated using the last two digits of the
year and the two digits of the final month of the quarter

(e.g., 7903 represents the first quarter of 1979, 8612

represents the fourth quarter of 1986).

In orde. to make the data base usakle, a FORTRAN prog.anl
named MCFIND (Appendix B) was written which reads all records
in the main data base and develops a source data base (example
in Appendix A) for our actual use 1in the forecasting
algorithm. As in prior work, only unrestricted MOS fields are

considered; therefore, many records are eliminated from

consideration. 1In addition to correcting the YCS entries this

11




program selects and compiles the appropriate source data base
by reading the records of only the applicable paygrades (Ol

through 05) and MOS (those listed in Table 1 of Appendix C).

C. OUTLIER iDENTIFICATION AND REPLACEMENT
1. Policy Requirement

The existence of inventory outliers in the data base
is evident and is critical. The outliers usually relate to
system undercounts. Discussion with MIIS personnel at
Headquarters, U.S. Marine Corps yields the recognition of
periods of data omissions for reasons which ave unsurlzained.
In some cases the undercount in small while in certain cases
in which a significant inventory is known to exist, few or
ncne were recorded. In order to use the data base provided,
it 1s necessary to develop a policy to identify and replace
these outliers.

2. Outlier Identification

Using periodic (quarterly) data, cross-classified by
paygrade and MOS group, we apply our outlier identification
nrocedures to the inventory values. This particular
aggregated classification of the data base is created using
our FORTRAN program MCMATX (Appendix B). Our purpose for
using this macro cross-classification is to provide for a
larger and more stable basis of outlier identification. The
outlier identification procedure is simple. For each paygrade

in a given MOS group, we find the inventory median over all




periods; an outlier ic identified as being any period with an
inventory deviating from the median by more than two times the
interquartile range. This paygrade/MOS group/pericd
combination is then +tagged as an outlier. This tag
additionally identifies each corresponding small cell (those
further characterized by YCS, specific MOS and service
component) outlier.
3. Outlier Replacement

Having identified the outlier cells, our first
1e outliier cell with the median
inventory (target inventory) taken over all cells having the
same paygrade/MOS group over the ithree corresponding periods
both previous to and following the observed outlier. This
aggregate inventory level can then be extended to the smaller
classification including YCS (paygrade and MOS group is
further refined) and service component. While this approach
is sound given an adequate sample size, such a sample did not
always exist. Specifically, in the 12th period (the fourth
calendar quarter of 1980) the inventory recorded for Captains
of all MOS is ten or fewer.

An alternative replacement methed is implemented which
replaces the tagged outlier cells with the mean inventory and
attrition values taken over the preceding four periods and
succeeding four. Because there are no four succeeding periods

in the case of period 45, three are used instead. Though

13




biased, this method is simple and is only applied in a few
rare incidents as discussed later.
4. Application

The identification of inventory outliers is
accomplished by using an APL function named OUTLY (Appendix
B) . In order to minimize the impact of implementing our
outlier identification and replacement policy on the integrity
of the source data base, not all identified outliers are
rerlaced using the described method. Many outliers are on the

A

he inventory distribution, and are assumed to be

Py - d
c VUL U

joF

1igh si
accurate values. Some outliers are on the low side but
represent trends in the data or may only occur in a small
number of MOS groups. We only adjust those outliers in which
undercounts are suspected across the spectrum of all MOS
groups according to the procedures described. Specifically,

the cells determined to be faulty and selected for adjustment

are shown in Table 1.

TABLE 1. OUTLIER IDENTIFICATION

] PAYGRADE I OUTLIER PERIODS
2nd Lt 45
ist Lt 45
Captain 12 14 45
Major 8 12 14 45
|[ LtCol 14 45

14




III. AGGREGATION AND SHRINKAGE PROCEDURES

A. GENERAL

This section summarizes the combined works of Misiewic:z
and Larsen as it pertains to cell aggregation and expansion
procedures. Cell aggregation is the collection of cells
possessing homogeneity of behavior with respect to attrition.
In the original MCORP model, cells were aggregated by pcoling
several into a single cell in order to meet a user-defined
minimum inventory threshold. This single cell was then used
to determine the attrition rate estimate for the original,
user targeted cell. Rather than aggregating into a single
cell, the Larsen-Misiewicz' procedure pools cells into subsets
of cells meeting user-defined specifications described belcw.
This 1is necessary to provide the proper setting for the
application of shrinkage techniques. Cell expansion prcvides
the means by which cells are selected for aggregation so as to
meet user specifications and "shrink" individual cell averages

towards a more statistically stable "grand mean".

B. EXPANSION

Larsen's application of a hierarchical <clustering
algorithm to the NPRDC data set provided a major breakthrough
in cell aggregation. His analysis developed the general idea

of a hierarchy cf MOS groups, with each Marine Corps primary




MOS belonging to one cof fourteen small MOS groups, one of six
large MOS groups, and one of four major MOS groups.
Misiewicz' modifications to the original grouping are rinimal
and 1is displayed 1in Table 1 of Appendix C. Table 2 of
Appendix C displays the YCS expansicn bounds which reflect the
maximum expansion allowed from the 1. itial YCS defined cell.

The expansion process is an extension of the Small Cell
Override Methodology used by NPRDC. Expansicn invoclves
finding more cells to be used to produce a number of cells
with similar attrition characteristics. The end ckbjective is
to produce a collection of cells having moderate perscnnel
inventories whose attrition rates can ke “shrunk'" towards the
weighted grand mean. Greater stability for the attrition
rates 1s achieved 1in this way. Expansion can be achieved
using MOS and YCS. MOS expansion takes place on the range
from the small group to the large group and then to the major
MOS group. With YCS, we expan?d one year at a time over the
allowable bound, usually in an alternating fashion. If the
user-defined year is given as YCS,, the expansion proceeds tco
YCcs..., ¥C5..., ¥CS..., YCSs,..., etc. As the expansion process
continues cn the YCS scale, aggregation is recomputed at each
step in the process.

The manpower planner initiates the shrinkage process by
defining a cell for which an attrition rate estimate is

required. He then defines the minimum cell inventory




threshold, denoted as T., as well as a minimum number cf cells
in the aggregate subset which muct exceed the cell inventory
threshold, denoted as K..

Since expansion is only made upon MOS groups and YCS, all
other defined categories remalin fixed. Whereas Misiewicz
defines these categories as paygrade, service component and
commissioning source (and additionally discusses sex,
education and others), because of our data base, we have
modified the algorithm to consider only MOS, YCS, paygrade and
service component. The steps of the expansion are summarized

in the feollowing six stages:

¢ Stage 1 - Locate the small MOS group which contains the

user-defined MOS. The MOSs in this group specify the
initial cells for the user-defined YCS, paygrade, and
service corponent. These cells are aggregated to obtain

cells with average inventory greater than or equal to T-.
If the number of aggregated cells exceeds K., stor,
otherwise continue to stage 2.

¢ Stage 2 - Expand by incrementing YCS one year at a time
according to the bounds in Table 2 of Appendix C for all
MOSs in the small MOS group. After each increment,
aggregate and check to see if T. and K are achieved. If
so, stop, otherwise continue to increment YCS. 1If the YCS
bound 1is reached before meeting user specifications,
retain the cellc 1identified in stages 1 and 2, and
continue to stage 3.

¢ Stage 3 - Expand to the large MOS group for the single
defined YCS, aggregate to attain cells with average
inventory of at least T., then check to see if K. cells

have been achieved. If so, stop, otherwise continue to
stage 4.

® Stage 4 -~ Expand by incrementing YCS for the large MOS
group as was done 1n stage 2. After each increment of
YCS, perform aggregation to obtain cells of minimum size
T, then check to sce if K cells are obtained. If so,




stop, otherwise continue to increment YCS. If the bound
is reached before meeting user specifications, retain the
cells identified and continue with stage 5.

® Stage 5 - Expand to the major MOS group for the defined
YCS. Aggregate and check as 1in stage 3. If the
specifications are not met, go to stage 6.

¢ Stage 6 - Expand by incrementing YCS for the major MOS

group as was done for the large group in stage 4. If the
YCS bound is reached before obtaining enough aggregated
cells, stop. No more expansion is allowed. The user

thresholds are unattainable.

It is important to note that the cells identified by
previous stages are retained to subsequent stages to maintain
the greatest degree of homugeneity. We desire to locate as
many cells from the small MOS group as possible prior to
expanding to the large MOS group. But, when aggregating
cells, it is important to note that all prior aggregation is
discarded. The pooling of all currently identified cells

enhances greater flexibility and optimality in the aggregation

algorithm.

C. AGGREGATION

wWhile the expansion stages seek to achieve the threshold
levels specified by the user, those cells with inventory less
than T. must be gathered into larqer, aggregated cells whose:
combined inventory meets or exceeds T.. To 1limit the
expansion to as few additional MOSs and YCSs as possible, we

desire to maximize the number of aggregated cells at any stage
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of the expansion. Misiewicz successfully employs a heuristic
"greedy" algorithm to approximate optimality in aggregation.

A summary of the heuristic algerithm is as follows:

® Given a set of cells S, partition them into two subsets;
S., consisting of cells of inventory creater than T., and
S,, consisting of cells of inventory less than T.. Those
cells of S, are then moved to the set K, and counted
against K.

® The remaining cells in S, are ordered by inventory size.
Selecting the cell of greatest inventory, c,, find the
smallest cell remaining which when united with c¢., results
in a cell inventory at least T.. This combined cell is
then moved to K, and the prccess continues.

¢ If no single cell when combined with the cell having c,
exceeds T,, then combine the +two cells of greatest
inventory, then find the smallest cell remaining which
when united with these two cells, results in a cell
inventory at least T,, and so forth.

® Continue this procedure until the sum of all cells
remaining in S, do not add to T;. They are then
aggregated to the cells in K according to order, e.g., the
largest remaining cell in S, is aggregated to the smallest
aggregated cell in K, etc.

& When the number of aggregated ce’ls in K does not meet the
specifications o©of K, expansion is required, all
identified cells are retained, but the aggregation of
cells is discarded.

Misiewicz used ad hoc methods for sclecting values for T.
and K., and limited the normal range from five to thirty. He
further constrains T, to be less than or equal to K,. Appendix
B cor+ains our modified FORTRAN version of the Misiewicz

algorithm (MC90). This algorithm is suited to our data base

and allows quarterly estimation of attrition rates.
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IV. SEASONALITY

A. GENERAL

While the results obtained by Misiewicz show promising
stability of estimators for a single year lead time, it is
felt that better estimators for shorter periods may be
achievable through analysis of seasonal behavior. A main
advantage in applying the Harrison-Stevens approach to short-
term forecasting (Harrison-Stevens, 1967) or the Winters'
method of exponential seasonal smoothing (Makridakis and
Wheelwright, 1978) is the incorporation of a value to account
for variability between seasons. These methods are explained
in Chapter V.

Common examples of seasonality are recognized when
discussing monthly rainfall over a ten year period, quarterly
home sales over a six-year period, or daily amusement park
attendance over the eighteen-week summer. A snapshot look at
the Marine Corps officer attrition data for any given year
will show differing levels between the four quarters of that
year. In general, we find that attrition rates are
consistently highest during the third quarter of the calendar
year and lowest during the first quarter of the year. This
phenomena is present for many reasons, but may be generalized

by two factors:
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® There exists a higher number of contractual expirations
during the summer months due to the high rate of entries
during the summer.
® Many officers choose to terminate service during the
summer months for family convenience, (e.g., when the
children are out of school for the summer break).
Since efforts are directed toward establishing forecasts by
some period of time, it would be desirable to find a seasonal
factor which improves the forecast for each quarter. Some
applications of ORG require monthly estimation.

For seasonality to be applicable, it is desirable to show
that there is dependency between forecasting factors and
seasonality. With periodic homogeneity (stationarity) from
one season to the next, our seasonal factors (s,(k),
k=1,2,3,4}) of the Harrison-Stevens approach, or the seasonal
index ({S(k), k=1,2,3,4} of the Winters forecasting method,
would be equal to one. The variable k, used in conjunction
with the seasonal factors, represents the four quarters of the
year. Failing stationarity, our approach to seasonality
analysis has been wide in scope, including use of:

® A single set of four seasonality values held constant over

all periods (one for each quarter of the calendar year).

¢ A simple set of seasonality values which are updated over
each subsequent period.

® Seasonality values which are updated based upon retention
rates rather than attrition rates.

¢ A complex set of seasonality values which are cell (PG,
MOS, YCs, and SC) specific and updated quarterly.
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® Seasonal values S, scaled with two alternative constraints
given as:

2 Sk (4.1)

(4.2)

—
A2
1]

[

In our analysis of seasonality, we have looked at all of the
above, and in numerous combinations. The least complicated
method would be to calculate four constant seasonal values for
officer attrition over the life of the system where the
average of these values is equal to one. While this method,
discussed in the next section, fails due to instability in the
season values, it can be used to initialize other systems.
The values are then updated at each period in the process.
This procedure is discussed next. The final method discussed
mirrors that of the preceding section with the main difference
being that the product of the seasonal values equals one
rather than the average equalling one. For the mathematical
computations of this method, we are required to base the
seasonal values on the officer continuation rate rather than

the complementary attrition rate.
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B. SEASONAL VALUES CONSTANT OVER CELIL TYPES

The simplest approach in dealing with seasonality is to
estimate a set of seasonal values for each of the four
periods. We define p,., as the attrition rate for each MOS
group/paygrade combination (i,Jj) and season k. Let p.. be the

quarterly average attrition rate over the four seasons. It is

most convenient to have seasonal constants s.,...,s, which do
not depend on (i,Jj), such that p. = p..s,. This also includes
the special case of stationarity when all s, = 1. As a forral

test of this hypothesis we have

Hot Pjsy

X - k 4.3
Hyt Piep # P ( )

where E. is the null hypothesis.

In testing the hypothesis of equation (4.3), we estimate

p... with

By = = (4.4)

where y., is the attrition values and n,., is the inventory

values. Also,

Z Yize

- ¥
>N
)4

(4.5a)

B
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§k=____;i_ (4.5b)

where a subscript dot indicates summation over all values of
that index. The s, estimates are indicated in Table 2.
The test statistic is then computed and compared to the

x%4e, Or the normal approximation for large degrees of freedom.

The test statistic is

(Bisp - D802
Ts - n,,, —Piik 15 Tk (4.6)
EEZA: VD38 (1 - Pis )

with the degrees of freedom, df = IJK - 3 = 277.

TABLE 2. CONSTANT SEASONAL VALUES

‘ QUARTERLY I 1st QTR 2nd QTR 3rd QTR 4th QTR
’ Loss Yy , ' 3497 5733 6198 4870

Inv'try n , |l 3,792,668 | 3,922,789 | 3,838,841 | 3,816,026
Y i/ N, .0009220 | .0014615 | .0016188 | .0012762
0.6987 1.1075 1.2267 0.9671

Seas'ty §;




It was decided to try this method (eguation 4.3) for fixed
ranks, i.e., separate tests for individual fixed paygrade 7.
Figure 1 gives a sample output comparing the test statistic to
the computed %° values for individual MOS group/paygrade
combinations. It is evident that a constant set of seasonal
values supports the null hypothesis when specifically
forecasting attrition rates for the ranks of Major and
Lieutenant Colonel, but fails due to instability in the lower

officer ranks.

HYPOTHESIS TESTS FOR SPECIFIC PAYGRADES
(.05 Level of Significance -- 39 degrees of freedom)

2ND LIEUTENANTS

THE TEST STATISTIC IS 283.03798

CHI SQUARE CRITICAL VALUE 54.51346
IST LIEUTENANTS

THE TEST STATISTIC IS 55.93979

CHI SQUARE CRITICAL VALUE 54.51346
CAPTAINS

THE TEST STATISTIC 1S 61.40886

CHI SQUARE CRITICAL VALUE 54.51346
MAJORS

THE TEST STATISTIC IS 33.91452

CHI SQUARE CRITICAL VALUE 54.51346

LT COLONELS
THE TEST STATISTIC IS 24.34368
CHI SQUARE CRITICAL VALUE 54.51346

Figure 1. Hypothesis Test on Paygrades
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Testing this hypothesis on multiple ranks in combination
fared no better, with Majors and Lieutenant Colonels 1in
combination being the only case in which the null hypothesis
could not be rejected. Example outputs are displayed in

Figure 2. The overall test of equation (4.6) failed as well.

HYPOTHESIS TESTS FOR PAYGRADE COMBINATIONS
(.05 Level of Significance -- 81 degrees of freedom)

IST LIEUTENANTS AND CAPTAINS

THE TEST STATISTIC IS 122.93209

CHI SQUARE CRITICAL VALUE 102.93406
IST LIEUTENANTS AND MAJORS

THE TEST STATISTIC IS 148.78286

CHI SQUARE CRITICAL VALUE 102.93406

CAPTAINS AND MAJORS

THE TEST STATISTIC 7° 131.91607

CHI SQUARE CRITICAL VALUE 102.93406
MAJORS AND LT COLONELS

THE TEST STATISTIC IS 64.60643

CHI SQUARE CRITICAL VALUE 102.93406
CAPTAINS AND LT COLONELS

THE TEST STATISTIC IS 117.27334

CHI SQUARE CRITICAL VALUE 102.93406

Figure 2. Hypothesis test for Grade Combinations

C. PERIODIC UPDATES TO SEASONAL VALUES WITH A MEAN OF ONE
In many applications, seasonal factors tend to be constant
from y ar to year. When viewing the trend of demand for a

product, or the trend of attrition rates from the Marine

[N
[




Corps, changes cf season patterns are likely but inherently
difficult to detect quickly. When seasonal factors change,
means of modifying them are regquired.

To initialize seas»onal values, the maximum likelihood
estimator discussed in the previous section 1is used.
Following each periodic forecast, we update all four season

values as follows. Let:

d, current attrition rate,
m, = current trend value,
k = season (k =1,2,3,4},

A, seasonal update factor.
Let
dC
e, = — - 8 4.7
Sy K ( )

represent the difference between the crude estimate d,/m, from

the current data, and the current seasonal estimate §, . We

update the four seasonal values as follows:

8§, + A,ep (z=k),

New &, =4, A e (z % k) (4.8)

For quarterly data, Harrison and Scott find values of A,

in the range 0.1 to 0.3 useful (Harrison and Scott,1965).
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D. MULTIPLICATIVE SEASONALITY PROCESS ON CONTINUATION RATES

Since the modelling of the attrition process can be viewed
as Bernoulli trials of a Binomial process, it is natural to
consider a multiplicative version of the seasonality
adjustment from year to year. Further studies by Harrison and
Scott find that the multiplicative model may be more suited
for most seasonal data. Because of the computations involved,
we are required to view this process from a continuation rate
rather than attrition rate perspective. The rationale is as
follows:

Let g =1 - p be the yearly continuation rate, where p is
the yearly attrition rate; let n, be the quarterly personnel
inventory values; and let y, be the personnel losses for the
quarters where (k = 1,2,3,4}. The estimated quarterly

continuation rates are computed as:

g, =1- Yk for k=1,2,3,4 (4.9)

Iy

and, by independence of time periods, the estimated yearly

continuation rate is:
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(4.10)

Q»

1}
:jn
3]

e

e
t
[uy

Any inhomogeneities in the quarterly rates are attributed to

seasonal factors; therefore:

g, = g’ s, where g = Vg (4.11)

=K

is the seasonally adjusted quarterly continuation rate. It

follows that:

q = qu quk—qnsk (4.12)

which implies that the product of the seasonal factors is

equal to one.
A basic and initialization estimate of the {s,} values can

be made using modified minimum %® procedures. Specifically,




(4.13)

A LaGrangian term is included to treat the constraint. So
minimize

r

¢ = anlﬂ' _ Skq + l; ln(sk) , (4-14)

7 x by

then, the estimators which minimize (4.14) satisfy

X=_.—'I k:llzl (4‘15)

)
N
da

Since the product of the four seasonal values is equal to one,

equation (4.15) can be multiplied over all seasons to obtain

n o8
X‘:Hgkl‘[[ {_q]=@H£:_ (4.16)
k
From equations (4.15) and (4.16), we can solve:
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] _JT_ , (4.17)
\l—AI p}:

Through reduction, the seasonal values may bec computed using

equation (4.17) to form egquation (4.18):

4 | z
5, = 2k I (4.18)
n: N

cr we may accept the ad hoc estimation based upon egquation
(4.19) (which we choose to do 1n our model) to solve the

seasonal values in equation (4.20):

§~LVA. = (}"p = — ’ (4-19)
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e = (4.20)

n, - ¥,
VI =5

The multiplicative version of periodic updating is

weighted with its prior caiculation and is generally:

s.= (s P s, )P (4.21)

for some 0 < f§ < 1.0, where s,., is the seasonal value for the
previous year during this quarter, and S,” is the seasonal
adjustment based upon the immediate data.

As this method is based upon continuation rates, the

attrition rate forecast is simply found from:

r,=1-¢'s, . (4.22)

I

i

Some final noctes need to be made regarding the
mathematical feasibility of this approach. Obviously, there
must be a positive inventory value fcr each n, cor else we
would be attempting division by zeroc when computing the
continuation rates. Additionally, the continuation rate
cannot be zero (attrition of the entire cell inventory), as it

is used in the denominator when updating the seasonal values.




We observe six instances out of 3080 MOS/paygrade/season data
observations where the continuation rate equals zero (y = n =
1). We choose to compensate in these irregular instances
using the LaPlace Law of Succession whereby the inventory is
incremented by two and the continuation is incremented by one,

so that we have

(4.23)
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V. ESTIMATION METHODS

A. WINTERS THREE PARAMETER SEASONAL EXPONENTIAL SMOOTHING

Exponential smoothing methods are appropriate for time
series that have a constant mean or a mean that changes
gradually with time. Three linear exponential methods are
examined by Makridakis and Wheelwright in an attempt to deal
directly with non-stationary time series that exhibit a
significant trend. They differ from single exponential
smoothing in that they introduce additional formulas that
estimate the trend so that it can be subsequently used to
improve forecasting efforts.

In developing the Winters model we build upon Brown's One
Parameter Linear Exponential Smoothing which was used by
Hogan. With D, given as the attrition rate in period t, the

equations used in Brown's mcdel are:

E.=aD, + (1 - @a)E,; (5.1)

E{=aFE,+ (1 - a) E/, (5.2)

where E,” is the single exponentially smoothed value of D in
time t, and E, is the double exponentially smoothed value of

D for that time period;

34




b, = 1‘fa (E, - E) (5.3)

where b, is an estimate of trend:;

a

.= E.+ (E., - E) =2E, - E/ (5.4)

where a, is an estimate of the intercept; and finally, the

forecasts are found using:

(5.5)

where u is the number of periods ahead to ba forecast.

The first equation is simply the formula used for single
exponential smoothing. The next serves to smooth the values
of the first equation. It is introduced to estimate the trend
through the concept of lagging values. Equation (5.3) divides
the factor « by 1-a, then multiplies by the difference between
the single and double exponential smoothing wvalues. This
results in a trend for a single period. Equation (5.4) then
makes an estimate for the present level intercept of the data
using the same concept of equation (5.3). In order to
forecast, equation (5.5) is used starting from the current
level, a, and adding as many times the trend, b, as the number

of periods ahead one wants to forecast. This is, therefore,
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a direct adjustment for the trend factor which may exist in
the data.

As with Brown's method, Holt's two parameter 1linear
exponential smoothing method estimates and uses the trend in
forecasting. The difference in these two methods is that Holt
introduces a term for the trend (T,;) and an additional
smoothing constant f. The three equations in Holt's model

are:

) (5.6)

T,=B(E, - E, ) + (1~-PB)T,,, (5.7)

D*,.,=E, + uT,. (5.8)
Holt uses the difference between two successive
exponential smoothing values, which have been smoothed for
randomness in equation (5.7), to estimate the trend in the
data. Using the smoothing constant, B, multiplied by this
difference, and (1-Bf) by the o0ld estimate, we get the
smoothing trend which includes reduced randomness. To compute
the forecast in equation (5.8), the trend is then multiplied
by the number of periods ahead that one desires to forecast

and then the product is added to E, which is the current level

of the data that has been smoothed to eliminate randomness.
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In comparison with Brown's model, Holt's model has the
disadvantage of requiring two parameter specifications (a and
) whose values need be optimized if the mean squared error is
to be minimized. On the other hand, one has the opportunity
of applying different weights to randomness and trend
depending upon the specific data involved.

Winters' exponential smoothing is an extension of Holt's
linear exponential smoothing. Its applicability in our study
is its inclusion of a seasonality factor.

The estimate of seasonality is given by an index S,, which
fluctuates around the value of 1. The equations in Winters'

method are:

D
Se=PBp==+(1-PB)S,.. (5.9)
E, =
DE
E,=a—"5 + (1-a)(E.; + T, (5.10)
T, =y(E, - E,,) + (1 -y)T,, . (5-11)
Dy = (E: +u’l,) Sepeu (5.12)

The form of equation (5.9) is similar to that of other

exponential smoothing equations, i.e., a value is multiplied
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by a smoothing constant B, and is then added to its previous
estimate multiplied by (1 - p). D/E, is used rather than
either variable independently so as to express the value as an
index rather than in absolute terms. Winters' equations
differ from Holt's in the introduction of the seasonal index
S.- Thus, equaticns (5.10), (5.11) and (5.12) obtain
estimates of the present level of the data, the trend, and the
forecast for some future period (t + u). To remove the
seasonal effects which may exist in the original data D,,
equation (5.10) has D, divided by the seasonal index S,.,
where L is the length of seasonality, or number of periods
experienced before returning to a period with similar
characteristics. A forecast is then obtained in equation
(5.12) in a similar manner to that used by Holt. However,
this estimate for the future period (t + u), is multiplied by
the last seasonal index S,.,,, to readjust the forecast for
seasonality. Our Winters FORTRAN algorithm is included in
Appendix B.

The Winters' model is more difficult to optimize because
it has three parameters. Values for the randomness smoothing
constant «, the seasonality smoothing constant B, and the
trend smoothing constant ¥ must be found to minimize the mean
squared error. Makridakis and Wheelwright suggest that the
values for B and y are usually smaller than a. They suggest

a normal a value ranging from 0.1 to 0.3. Hogan correctly
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recognized instability of an optimal « when viewing the
spectrum of MOS groups. For a single value a, he reluctantly
suggests 0.4 be used. Through our own sensitivity analysis
discussed in the next chapter, we chose to select values for
a of 0.45, B of 0.35, and y of 0.10 though we admit that there
is room for future analysis and refinement of these

estimations.

B. HARRISON-STEVENS MULTI-PARAMETER ESTIMATION

P. J. Harrison and C. F. Stevens of Imperial Chemical
Industries, Ltd., describe a method of short-term forecasting
based on the use of Bayesian principles in conjunction with a
multi-state data-generating process (Harrison and Stevens,
1971). The various states correspond to the occurrence of
transient errors and step changes in trend and slope.

1. Basic Model

For the basic model, we define:

d, = posterior attrition rate,
m, = posterior trend value,
b, = posterior slope value,
s, = posterior seasonal factor.

Then the basic model is a generating process defined by:

d, = m.s, + €, (e~N(0; V,))
m,=m_, + b, +y, (y~N(O; V) (5.13)
b, =b,, + 38, (6 ~N(0; Vy))

where:
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€, = observational noise,
Y. = trend perturbation,
6, = slope perturbation,

and the random components €, ¥, and 8 are assumed to be
independently and normally distributed with zero means and

known, but not necessarily constant, variances V,, V_, and V,.

yr
The posterior distribution is used to assess errors in the
forecasts. Also, as 1is usual 1in Bayesian procedures, the
posterior values become the prior values for the time step
update.

Harrison has shown that given a generating process of
this type with constant variances, and ignoring the seasonal
effect s,, the optimal least-squares predictor is equivalent
to that of the Holt system described earlier (Harrison, 1967).
In the Harrison-Stevens model, we change notation slightly,
replacing a« and B with the smoothing constants A, and A,, these
being functions of the variance ratios; Vv, /V, and V,/V,.

Normally the parameters A, and A, determine the
sensitivity of a system. Conflict arises between a sensitive
system which responds dquickly to real changes, and an
insensitive system which does not react to noise and transient
errors. One is more likely to overswing while the other is
too slow to catch up with the data. Since we are more likely
to experience transient error than changes in trend or slope,
we err on the side of insensitivity. When 1large changes

occur, we either accept slow correction to the desired level
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or utilize a method of monitoring forecast errors with manual
adaptivity. The Bayesian multi-state system is capable of
overcoming these difficulties, being adaptive to trend and
slope as well as responsive to transients.
2. The Multi-State Model

In equation (5.13), we see that the generating process
is characterized by the noise component €, which affects only
the current observation. A large €, has the appearance of a
large transient error with no effect on the future of the
system. We also have the perturbation terms y, and 8, which
affect the future course of the system. A large y, causes a
permanent step change to a new level, and a large §, causes a
change in slope. The multi-state model supposes that there is
not one but a number of possible distributions from which
these values are generated at each observation. Since we have
distinguished four process states; no change, step change,
slope change, and transient, we formalize the multi-state
model as follows:

n, = probability of occurrence of the jth state
{3 =1, 2, 3, 4}

€, ~ N(0; Vv, 7)
Y, ~ N(O; V.Y(j)) (5.14)
&, ~ N(0; V7))
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which produces the random components €., y,, and &  when the
system is in state j at time t. As recommended by Harrison
and Stevens, we define the variances in terms of ratios of the
basic noise V,, a value of the basic variability of the
process in its normal state. Testing the sensitivity of this
variance law, Harrison-Stevens applied a range of incorrect
values and experienced minimal forecasting impairment when
only a short stabilizing lead interval was provided (one to
five forecast periods). As amplified in Chapter VI, we could
not verify these findings and instead rely on the variance law

obtained from Misiewicz. The variances are then defined as

follows:

(7 _ (7)
w R,
Vy(f’ = Ry’f’ v, (5.15)

. .
Vy' = Ry V,

using the parameters defined in Table 3.

Given this type of generating system we can never know
the values of m, or b, at any time t. But we can express our
knowledge about m, and b, in terms of a distribution which is

continually modified with each successive attrition rate

observation d,, d..., . .
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TABLE 3. STATE PARAMETERS IN THE HARRISON-STEVENS MODEL

| State Prob. R, R, R, '
Nu <hiange 0.900 1 0 0
Step Change 0.003 1 100 0
Slope Change 0.003 1 0 1
Transient 0.094 101 0 0

With the generating process of equation (5.13), the
joint distribution of (m,b) at time (t - 1) is bivariate
normal, as is the posterior distribution at time t.

In developing the joint distribution, we lc*:

e.=d, - (m,_, + b.1) s, (5.16)
r 7
' r Ir,.
R =! 11 1z ) (5 17)
er rzzJ
and:
v v
vel ™ "f], (5.18)
Vb Vet
where:
I, = Vo ¥ 2V, + Vi + XQ - Vy
I, =V + VvV, + (5.19)
I, = Vi v Vo
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Further:

‘ (5.20)

We then have the joint posterior distribution at time t given

by:
m,=m._, +b,_, + A e,
b, =b,, + A4e,
Var, e = T11 ~ Afve (5.21)
Vmb,: = I12 - AJ_.AZ Ve
Vep e = Iy — A7V,

At this point, we introduce the distribution notation
use by Harrison-Stevens to formalize the relationship between
the prior and posterior distributions. In the multi-state

model where we have a mixed prior distribution specified by:

n
(m,_,. b)) = Y aine (5.22)

a1
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one component of the prior corresponds to each state of the
process, with:

d..,’ = probability (posterior to d,.,) that the
process was in state j at time step (t-1),

(b [
=1
t-1

We then complete the posterior distribution as:

state j parameter values at time step (t-1).

(m..b.|d) ~ Y a7 N(oT) (5.23)

1,7

where ¢.“*9 is obtained from ¢...'"’, v, v.*, and V', and

p.*7 is the state transitional matrix developed by:
= ol ~&; 1 (5.24)
= Ly miiex .
P = Qg J{ P zve} 2m v,

A complex mathematical problem develops when an 'N-
component' prior proceeds through this process to become an
"N posterior. As we continue to generate further, it
becomes N°, N*, etc. To overcome this mathematically correct
yet complex process, the posteriors are condensed to create an
approximate bivariate normal distribution of the same form as
the prior distribution. Using subscripts, we show the
condensed state probability and bivariate values of the trend

and slope:
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. (1,3 _11,3)
E L .

{4)
m.o =
< 3 ! 5.25
d: ( )
Z (1,7 (i,
p:1 J)Dcl J
3y _ 1
b, = (3 !
g

and one example from the variance-covariance matrix calculated

from the multivariate values:

¥ P D s nT -t
Iy i 5.26
Vet = — ( )

With this process the more relevant information
corresponding to the current process state is carried forward,
and the posterior 1is in the proper form for the process to
continue indefinitely.

Finally, our forecast for time t is calculated by:

di =Y g m + b7 s, . (5.27)

cr .

Our FORTRAN algorithm is contained in Appendix B.
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VI. VALIDATION PHASE

A. GENERAL
With two alternative estimation techniques, we require a
method of determining their individual effectiveness as well
as their relative effectiveness to the forecasting model. We
employ two Measures of Effectiveness (MOE) to achieve these
results:
¢ Mean Squared Error (MSE)--an average measure of the
difference between the forecast attrition and the actual
attrition rate after being squared.
®¢ Mean Absolute Deviation (MAD)--an average measure of the
magnitude difference between the forecast attrition and
the actual attrition rate in absolute terms.
Each MOE is dependant upon the difference between the actual
period attrition rate and the model forecast attrition rate.
To validate the presented estimation techniques, we weighted
the differences between the actual attrition rates and the
forecast attrition rates. Assuming the forecast has

negligible variance, then:

Var (A-F) = Var (1) = %‘—? ,

where:

Actual attrition rate,
Forecast attrition rate,
Inventory level of the forecasting cell,

3 m
o
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n = Inventory level of the forecasting cell,
p = Probability of attrition, and
qg=1-p.

Then the normalized Error of Forecast (EOF) is

1
EOF = (A-F)xy —2— . (6.1)
\ £xgq

Values for p and g are lacking, but the product 'pg' should
not wvary much; certainly not as much as n. We therefore

modify our calculation for EOF as:

EOF = (A-F) xy/n (6.2)

which provides a more stabilizing verification value than the
simple difference. This EOF is the foundation of remaining

validation.

The validation phase encompasses the following objectives:

¢ Compute values for the constant parameters presented in
both the Harrison-Stevens and the Winters techniques.

® Compare Harrison-Stevens and Winters forecast results.
Design an experiment to compare the performance between
the following four treatments: The Winters Exponential
Smoothing technique with seasonality updates; Winters
technique without using a seasonal factor; Harrison-
Stevens Multi-parameter Estimation technique with seasonal
updates; and Harrison-Stevens technique without using
seasonal factors.

® At each observation period, compute a forecast for the

subsequent four periods. Analyze the forecast
distributions when estimating further into the future.
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Since the data available 1is used both to establish
parameter criteria and to test the model techniques, a means
of cross-validation is required. Additionally, assuming
possible error in setting initial parameters, some lead time
is reguired to allow the process to stabilize. Since we are
working with 48 periods, our ad hoc solution is to use the
first eight periods to stabilize the process. The next ten
periods are used to select and tune parameters, and the final

30 periods are used for cross-validation of our forecasting

results.

B. PARAMETER ESTIMATION
1. Winters Parameters

The three constants included in the Winters
Exponential Smoothing Technique are: @, the randomness
smoothing constant; B, the seasonal smoothing constant; and v,
the trend smoothing constant. Our objective is to select
those constant values which tend to minimizing the difference
between the actual and forecast attrition rates over the wide
range of paygrade/MOS group combinations. Lacking time to
explore the possibilities of an optimization algorithm and
knowing from Hogan's experience that it is unlikely that an
optimal solution would approach a single set of values, we
explore forecasting results through nested DO LOOPS within our
forecasting algorithm. Figures 3 shows a sample output of the

minimum MAD obtained for a given set of constants for a
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particular MOS group and paygrade (MOS group 3; rank of
Major). The low values tend to cluster around the minimum
value. This is consistent for all MOS/paygrade combinations
tested, but unfortunately, not all MOS/paygrade outputs
cluster about the same constant values. It is difficult to
select one set of values, but as in Hogan's experience, we
reluctantly do so, and set a = 0.45, f = 0.35, and ¥ = 0.10
for our cross validation.
2. Harrison-Stevens Parameters

Harrison and Stevens present a number of parameters,
most of which we accept as given. Since we use the
multiplicative seasonality method, the two values of most
concern are V,, the basic variance law for attrition, and B,
the seasonality update weighting value.

As previously mentioned, we are unable to confirm the
Harrison-Stevens claim that a minor lead time compensates for
V, selection error. From Misiewicz, we estimate the true
value of V, to be approximately 0.01. Through sensitivity
analysis of the first few small MOS dgroups, we observe MAD
value fluctuations from 3% to 14% for varying values of V,.
With all other values held constant, results are compared for
V, set equal to 0.0001, 0.001, 0.01, and 0.1. Complicating
matters still, V, and P proved strongly correlated when
repeating the clustering parameter optimization procedures

described above for the Winters parameters. We choose to rely
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C. TECHNIQUE COMPARISON

In order to obtain some quantitative worth of seasonality,
we compare each estimation technique while using seasonality
factors against the same techniques without the use of
seasonality. Figures 4 and 5 display the measure of
effectiveness for 70 cases (14 MOS groups times five
paygrades). As expected, seasonality improves the forecast
for most MOS/paygrade combinations as measured by the MAD and
MSE. However, the degree of improvement is not as great as
that which 1is expected, and there exist cases where
nonseasonality outperforms seasonality techniques. Figure 6
displays the comparison when seasonality factors are used
between the Winters and the Harrison-Stevens techniques.
Again, the resulting differences are not as great as expected,
with Harrison-Stevens holding a slight edge.

To measure whether this difference is significant at the
90% confidence level, an Analysis of Variance is performed,
with the results displayed in Figure 7. With the knowledge
obtained from the MOE plots, it is not surprising that ANOVA
concludes that we cannot reject the null hypothesis, i.e., the

techniques cannot be separated statistically.

D. FORECASTS BEYOND THE NEXT PERIOD
The final area of analysis examines forecasts beyond the

next calendar period. Without a seasonality factor, future
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Figure 4. Plots of Winters MOEs

53
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Figure 6. Plots of Winters vs. Harrison Stevens MOEs
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ANOVA TABLE: BETWEEN ALl FOUR TREATMENTS

SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.002965157 3 0.0009883857 0.10402369
WITHIN 2.622426057 276 0.0095015437

TOTAL 2.625391214 279

ANOVA TABLE: BETWEEN WINTERS TREATMENTS

SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.000531796 1 0.000531797 0.055200235
WITHIN 1.329485192 138 0.009633951

TOTAL 1.330016988 139

ANOVA TABLE: BETWEEN HARRISON-STEVENS TREATMENTS

SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.001895421 1 0.001895421 0.202304747
WITHIN 1.292940865 138 0.009369137

TOTAL 1.294836286 139

ANOVA TABLE: BETWEEN THE TWO SEASONALITY TREATMENTS

SOURCE SUM OF SQR DF MEAN SQR

BETWEEN 0.002469978 1 0.0024699780 0. 257012677
WITHIN 1.326226277 138 0.0096103353

TOTAL 1.328696255 139

Figure 7. ANOVA Between Differing Forecast Techniques

projections are linear with trend-dependant slope.
Multiplicative seasonality allows us to shed linearity in
favor of a weighted forecast which 1is dependant upon the
seasonal factor.

Winters and Harrison-Stevens are each capable of
forecasting as far into the future as the user desires. It is
natural to assume that the further into the future one
forecasts, the less reliable the results become. We test the
Winters and Harrison-Stevens models using 30 periods of data.
For each period t, a forecast is made for the following four
periods, t+1, t+2, t+3, and t+4. Figures 8 displays a partial

output of the Harrison-Stevens EOFs obtained for a particular
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MOS group/paygrade combination. The following example
provides a visualization of improving forecast in the nearer
periods. Compare the EOFs when forecasting for the 11th
period. In period t = 7, the t+4 EOF represents the forecast
error for period 11. In period t = 8, the t+3 EOF now
represents period 11. In period t = 9, the EOF is t+2, and in
period t = 10, the EOF is in t+l1l. The result for this example
shows that as the forecast period draws nearer, the EOF
decreases from 0.462, to -0.097, to 0.047, to 0.002. Using
the average of the EOF absolute values as the MOE, Figure 9
presents the results expected. For each seasonal technique,
there is an improvement as we forecast periods which are

nearer to the present period.

SAMPLE EOF PROJECTIONS OUT FOUR PERIODS

t t+l t+2 t+3 t+4

5 0.06354 -0.02900 0.89280 -0.26160C
6 0.00779 0.54802 -0.50548 0.11972
7 0.31360 0.23659 0.60275 0.46215
8 -0.24404 0.246Z0 -0.09650 0.56540
9 0.26845 0.04728 0.44275 -0.01953
10 0.00171 0.03610 -0.20234 0.08523
11 0.14652 0.02766 0.15643 -0.19487
2 0.07762 0.35258 0.07406 0.27510
3 0.03807 -0.31529 -0.12837 -0.27556
14 -0.20124 -0.11518 -0.27620 -0.44428
15 -0.02032 -0.25272 -0.40429 0.30848
16 -0.22514 -0.12923 0.23481 0.06135
17 -0.16356 -0.09883 -0.29731 -0.30556
18 0.085¢82 -0.12510 -0.16466 -0.15071
19 -0.19320 -0.22819 -0.24045 0.04632
20 -0.05956 0.24759 0.41768 0.13648
21 0.00524 0.08994 -0.12723 -0.10115
22 0.06678 -0.25627 -0.27049 -0.16744

Figure 8. Sample EOF Projected Four Periods
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Average Absolute EOF Forecasting Out Four Periods

Technique t+l t+2 t+3 t+4

Winters 0.1633 0.1894 0.2142 0.2373
Harrison-Stevens 0.1382 0.1471 0.1601 0.1621

Figure 9. Improved Forecasts in Nearer Periods

A comparative analysis between the Winters and Harrison-
Stevens seasonality techniques is made for periods t+2, t+3,
and t+4. Figures 10 through 12 graphically display the
increasing superiority of the Harrison-Stevens technique when
projecting further into the future. To verify this
observation statistically, a oneway ANOVA test is made. The
results shown in figure 13 indicate statistical significance
between the two techiques for all three projections at the 90%
confidence level. Additionally, we observe a strengthening of

this significance as we project further out.

E. ERROR OF FORECAST ANALYSIS

An analysis of the EOF values is conducted to identify the
presence of a distribution. Our theory is based upon the
assumption that the error in forecasting is normally
distributed. For future application of the techniques
presented in this research, the normality assumption
previously discussed is verified using a quantile plot of the
Harrison-Stevens EOF data against the normal distribution.

With a simple square root transformation (reattaching the
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Figure 10. Harrison-Stevens vs. Winters EOF: period t+2

signs after transforming the EOF magnitudes), we obtain an

excellent fit to the normal distribution.
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WINTERS VS HARRISON—-STEVENS MAD: FORECASTING T+3
MOS GROUPS 1 -~ 14
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Figure 11. Harrison-Stevens vs Winters EOF: period t+3

WINTERS VS HARRISON—-STEVENS MAD: FORECASTING T+4
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Figure 12. Harrison-Stevens vs Winters EOF: period t+4
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ANOVA TABLE: WINTERS VS HARRISON-STEVENS (T + 2)
SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.062544721 1 0.062544721 4.371881748
WITHIN 1.974246338 138 0.014306133
TOTAL 2.036791059 139
ANOVA TABLE: WINTERS VS HARRISON-STEVENS (T + 3)
SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.102343967 1 0.102343967 5.185222873
WITHIN 2.723791788 138 0.019737622
TOTAL 2.826135755 139
ANOVA TABLE: WINTERS VS HARRISON-STEVENS (T + 4)
SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.198180206 1 0.198180206 9.027351471
WITY IN 3.029556181 138 0.021953306
TCLAL 3.227736387 139
Figure 13. ANOVA Comparison in Future Forecasts
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VII. CONCLUSION

Majors Randy Larsen and John Misiewicz made significant
strides in applying aggregation and shrinkage techniques for
officer attrition rate estimations. While achieving
estimation stability for the small cell problem, the results
were based upon annual data and failed to consider seasonality
as a factor. Our data allows us to successfully introduce the
seasonality factor on a quarterly basis with flexibility of
conversion to any cycle desired.

While we are grateful of Corporal Dean Hupp, MIIS,
Headquarters, U.S. Marine Corps, and his efforts in preparing
a usable data base, his resources were 1limited and many
shortcomings exist which require sensitive manipulation. The
available modified data base proves usablie for model
validation but would not serve well for actual forecasting.
DSAI expects to have a quality data base by October 1990, and
we recommend that it be used to verify our parameter
estimations and modelling conclusions.

In general, the data base supports the use of seasonality
factors for each MOS group/paygrade combination. How to
incorporate seasonality into a model is open to debate. We
recommend that the multiplicative approach be used and that a
welighted update of the values be done at each period in the

process.




The Winters Exponential Smoothing approach for estimating
attrition rates is introduced to establish a baseline for the
Harrison-Stevens approach. Our expectation of the Winters
method was that it would present good forecasting results, but
that it would not be competitive with the Harrison-Stevens
technique. Using either MSE or MAD, forecasting is improved
when seasonality 1is used. Further, the Harrison-Stevens
approach yields better forecasts than the Winters method.
While differences 1in the one-period forecasts are not
statistically significant, we find this significance
strengthened with each subsequent period estimated. Each
method is capable of forecasting as far into the future as
desired, and when forecasting out +two or more periods,
Harrison-Stevens 1is statistically superior to the Winters
method. In addition, Harrison-Stevens provides a posterior
distribution rather than a point estimate. It is recommended
that the Harrison-Stevens Seasonal Multi-State Bayesian
approach be used as the base model in the Marine Corps Officer
Rate Generator.

Finally, we recommend that additional sensitivity analysis
be conducted on remaining parameters used in the Harrison-

Stevens model when a more sound data base is available.
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A.

APPENDIX A

SAMPLE DATA ENTRY

= 1 or

Column

1 2 Calendar Year

3 4 Ending Month of Observed Quarter

6 7 Years Commissioned Service (YCS)

9 10 Paygrade (01 = 2nd Lt, 02 = 1lst Lt, etc.)
12 15 Primary MOS (Actual USMC Codes)

17 Service Component (Regular Commission

Reserve Commission = 2)
19 22 Number of Attritions this Quarter
24 - 27 Ending Inventory this Quarter




B.
1 2 23 4
7 5 € 2
Column
1 - 4
6
8 - 9
11
12 - 14
14 - 18
19 - 21
22 -~ 25
26 - 28
29 - 32
47 - 49
50 - 53
114-117

1

Primary MOS

Paygrade

YCS

8

Service Component

Attrition
Inventory
Attrition
Inventory
Attrition

Inventory

Attrition

Inventory

Inventory

for

for

for

for

for

for

for

for

for

1st

1st

2nd

2nd

3rd

3rd

2nd

2nd

4th

SAMPLE SOURCE DATA BASE

8 4

Quarter
Quarter
Quarter
Quarter
Quarter

Quarter

Quarter

Quarter

Quarter

& 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2% 30 31 22 2

4 g & 3 1 ¢ 2

1978

1978

1978

1978

1978

1978

1879

1979

1989
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APPENDIX B

A. FORTRAN PROGRAM: MCFIND

C ---
10

CH#x

C

C

o

Y % ok

*e

SUBROUTINE MCFIND(MOS, SG,LG,MG)
FIND LOCATION OF MATCHING MOS IN GROUP TABLE. RETURN GROUP NG
PARAMETER (NMS=80, NG=14, NLG=6, NMG=4)
INTEGER*2 MOSGR(2,NMS), LGRP(NG), MGRP(NLG)
INTEGER SG,LG,MG
COMMON /MOSTBL/ MOSGR, LGRP, MGRP
DO 10 I=1i,nHs
IF(MOSGR(1,1) .EQ. MOS) THEN
SG=MOSGR(2,1)
LG=LGRP(SG)
MG=MGRP (LG)
RETURN
ENDIF
CONTINUE
SG=0
LG=0
MG=0
WRITE(6,%) '*%x%%* MOS NOT FOUND IN GROUP TABLE:' MOS
END

SUBROUTINE MOSGET(IX, MOS,IG,LG,MG)
PARAMETER (NMS=80, NG=14, NLG=6, NMG=4)
INTEGER*2 MOSGR(2,NMS), LGRP(NG), MGRP(NLG)
COMMON /MOSTBL/ MOSGR, LGRP, MGRP
MOS=MOSGR(1,IX)

IG=MOSGR(2,IX)

LG=LGRP(IG)

MG=MGRP (LG)

END

BLOCK DATA
PARAMETER (NMS=80, NG=14, NLG=6, NMG=4)
INTEGER*2 MOSGR(2,NMS), LGRP(NG), MGRP(NLG)
COMMON /MOSTBL/ MOSCR, LGRP, MGRP
DATA MOSGR/302,1, 8C2,2, 1302,2, 1802,2, 1803,2,
108,3, 202,3, 2502,3, 2602,3,
3415,4, 4002.4, 4302.4, 5803,4,
402,5, 3002,5, 3060,5, 3502,5, 6002,5,
7204,6, 7208,6, 7210,6, 7320,6,
750Y,7, 7511,7, 7522,7, 7542,7, 7543,7, 7545.7, 7576,7,
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*  7521,8, 7523,8,
*  7556,9, 7557,9, 7562,9, 7564,9, 7565,9, 7566,9, 7587,9,
% 7508,10, 7509,10, 7563,10, 7581,10, 75863,10, 7584,10,
*  7585,10, 7586,10, 7588,10,
* 101,11, 201,11, 301,11, 401,11, 801,11, 1301,11, 1801,11,
*  2501,11, 2601,11, 3001,11, 3401,11, 3501,11, 4001,11, 4301,11,
*  4401,11, 5801,11, 6001,11, 7201,11, 7301,11, 9901,11,
*  7580,12, 7597,12, 7598,12, 7599,12,
*  7500,13, 7510,13, 7520,13, 7540,13, 7550,12, 7560,13, 7575,13,
* 440214 /
c
DATA LGRP/1,1, 2,2,2,2, 3,3, 4.4, 5,5,5, 6 /
DATA MGRP/1, 1, 2, 2 3, 4 /
END
B. FORTRAN PROGRAM: MCMATX
C --- PROGRAM TO CREATE 3-DIM MATRICES MOS X PG X QUARTER
C --- JUNE 1990 LCU MARINE CORPS
C ---  PROVIDES SGI/SGL FOR ALL DESIGNATED GROUP OVER 48 PERIODS
C --- PARAMETER MXY MUST BE UPDATED TO REFLECT EXACT NO. YEARS OF DATA
C - .-

PARAMETER (MXY=48, NSG=14, NLG=6, NMG=4, NPG=5, NQ=4)

INTEGER MOS,PG, YCS, SVC, SG,LG,MG, GROUP

INTEGER INV(MXY), LOSS(MXY)
REAL SGI(48,NPG)
REAL SGL(48,NPG)

DO 3 GROUP = 1,NSG

N

DO 6 I = {

DO 7 J ,
SGL(1,J)
SCI(I,J)

7 CONTINUE
6 CONTINUE

[
A

, MX
1

PG
0
0

NR- O
NYR=MXY/4
DO 10 1=1,999999

5 READ(1,100,END=%99) PG,MOS,YCS,SVC,INV,LOSS

NR=NR+1
CALL MCFIND(MOS, SG,LG,MG)
IF(SG.NE.GROUP) GO TO 5

C --- SUMMARIZE FOR EACH QUARTER
C MYY3=MXT-3
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DO 20 J=1,M¥Y
SGI(J,PG)=SGI(J,PG) + INV(J)
SGL(J,PG)=SGL(J,PG) + LOSS(J)

20 CONTINUE
10 CONTINUE
C ---
999 CONTINUE

DO 40 J=1,NPG
DO 50 K=1,48

Cxxdxsxx  JF(SGI(K,J).FEQ 0.) SGI(K,J)=1
50 CONTINUE

c -
C --
200
201
202
100
3
C.
(1]
[2
{3
Ly
E&
5
[7
£8,
Eg
1
D.
¢ --
C o--

40 CONTINUE

WRITE MATRICES OUT AS 2-DIM MATRICES ONE FOR EACH QTR

WRITE((10+4GROUP),202) GROUP
WRITE((30+GROUP),202) GROUP

DO 200 K-=1,48

WRITE((10+GROUP),201) (SGL(K,J),J=1,NPG)
WRITE((30+GROUP),201) (SGI(K,J),J=1,NPG)
CONTINUE

WRITE(6,%*) ' %=%% RECORD READ=',6NR
FORMAT(S5F10.0)

FORMAT(//,3X,'DATA FOR GROUP ',13,/)
FORMAT(I1,14,12,11,9614)

REWIND(1)

CONTINIULE

ELD

APL PROGRAM: OUTLY

) vV OUTLY X-X;ORDER;MED;IQR

1 DED<CORDERL (oX)+21+0RDERL (o)

) «(ORDEK +2)+0RDER pX)+2)+41])+2
] [0@+0RDEREE8§RXO.75]—OEDERE(pxg*u] 1)

; sEb+(<§LQ@x~3 | (X-MED))- (1Qitx3))

1 WHERE<(SEEz0)/1pSEE

1 ORDER

] SEE

0] gHERE

FORTRAN PROGRAM: MCFX

PROGRAM TO FIX D2TA BoSE MCY0OC BY CHANGING CERTAIN ValULS

- TO THE AVERAGL OF o QTRS BEFORL AL AFTEK.
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JULY 1990 LCU MARINE CORPS
--- PARAMETER MXY MUST BE UPDATED TO REFLECT EXACT NO. QTRS OF DATA

OO0
'
[
'

PARAMETER (MXY=48, NSG=14, NPG=5, NQF=4, SGSIZE=NSG*MXY*NPC)
INTEGER MOS,PG, YCS, SVC, SG

INTEGER INV(MXY), LOSS(MXY)

INTEGER QT (NPG,NQF)

DATA QT/45,45,12,8,14, 0,0,14,12,45, 0,0,45,14,0,

* 0,0,0,45,0 /

c

C --- FIX INDIVIDUAL RECORDS ON UNAGGREGATED DATA BASE
CALL FIXREC(QT,INV,LOSS,NPG,NSG,NQF, MXY)
END

c

SUBROUTINE FIXREC(QT,INV,LOSS,NPG,NSG,NQF, MXY)
C --- FIX EACH RECORD FROM SOURCE DATA BASE
INTEGER MOS,PG, YCS, SVC, SG
INTEGER INV(MXY), LOSS(MXY), QT(NPG,NQF)
REWIND(1)
DO 10 1I=1,999999
READ(1,100,END=999) PG,MOS,¥YCS,SVC,INV,LCSS
IF(PG.LT.1 .OR. PG.GT.5) GO TO 10
CALL MCFIND(MOS, SG,LG,MG)
IF(SG.LE.O0) GO T0 10
C --- FIX TIME SERIES
DO 20 K=1,NQF
1Q=QT (PG ,K)
IF(IQ.GT.0) THEN
11=1Q-4
I2=1Q+4
IF(I2.GT.MXY) 12=1IQ+3
INV(IQ)= .S5*(INV(IL)+INV(I2)) + .5
LOSS(1GQ)= .5%(LOSS(I1)+L0SS(I2)) + .5
ENDIF
20 CONTINUE
WRITE(2,100) PG,MOS,YCS,SVC,INV,LOSS
10 CONTINUE

wn

999 CONTINUE
100 FORMAT(I1,I4,12,11,9614)
END

E. FORTRAN PROGRAM: MC90

C --- PROGRAM TO ANALYZE MARINE CORPS PERSONNEL INVENTORY
C --- AND ATTRITION DATA.
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OO0

SEP 1987 REVISED FOR NEW DATA BASE FORMAT BY L. URIBE
MAY 1989 REVISED FOR AGGREGATION ALGORITHMS L. URIBE
MAY 1990 REVISED FOR NEW DATA FORMAT L. URIBE
PARAMETER MXY MUST BE UPDATED TO REFLECT EXACT NO. OF QTRS

PARAMETER (MXX=200, MXY=48, MXR=2000)

INTEGER SYCS(31), NYCS

INTEGER SYCSG(31),SYCSL(31),SYCSM(31),NYCSG,NYCSL,NYCSM
INTEGER SMOS(80), NMOS

INTEGER SVCMP(5), NSC

INTEGER SGRD |
INTEGER*2 VYC(50)

REAL INV(MXX,MXY),Y(MXX,MXY), SINV(MXX,MXY),SY(MXX,MXY)
INTEGER DATA (MXY)

REAL XTB(M¥X) ,VXTB(MXX) ,XEB(MXX) ,A(MXX)

INTEGER*2 PTRTBL{MXX, 2),INDX(MXX), MKG(M¥X), RETTBL(MXR,S5)
INTEGER*2 PTBL(MXY, 3), BKTBL(MXX,3)

REAL AVINV(MXY), RETINV(MXR)

EQUIVALENCE (RETTBL. INV)

DATA MKG/MXX*0/

DO 1 I=1,MXX
DO 2 J=1,MXY
SINV(I,J)=0
SY(1,J)=0
INV(I,J)=0
Y(I,J)=0
CONTINUE
CONTINUE

INITIAL VALUE FOR AGGREGATION ESTIMATION PERCENTAGE
AGGPCT=0.9
ICYCLE=1

CALL GETPAR(AIMIN,NO,KNMOS,SMOS NYCS,SYCS,SGRD,

* NSC,SVCMP, 1IGR,LG,MG)
--- MAJOR GROUP IS MG, LARGE GROUP LG, GROUP IGR, YCS BLOCK IY

WRITE(6,%) * '
WRITE(6,*%) '---- GR,LG,MG=',IGR,LG,MG
WRITE(6,*) ' '
READ EVAL TABLE. SELECT ONLY RECS PASSING SELECT CRITERIA

CALL READET(RETTBL,RETINV ,MXR,MXY,NRET,6SGRD,NSC,SVCMP,MG)
RC=0

IGX=IGR

LGX=0

MGX=0

NYCSG=1
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C ---
10

x

C
20

C ---

SYCSG(1)=SYCS(1)
NYCSL=1
SYCSL(1)=SYCS(1)
NYCSM=1
SYCSM(1)=SYCS(1)
NCTOT=0
NC=NCEVAL(AIMIN, IGX, LGX,MGX,NYCSG,SYCSG,RETTBL,RETINV,NRET ,MXR ,
AGGPCT, IGR,LG)
DO WHILE NCTOT<NO & RC=0  (EXPAND AS LONG AS NO NOT MET)
IF(NC .GE. NO) THEN
WRITE(6,*) '$GG EVAL NC,SYCSG=',NC, (SYCSG(II),II=1,NKYCSG)
GO TO 60
ENDIF
IF(NYCSG.EQ.1) THEN
CALL GETVYC(SYCS(1),LG,NYE,VYC)
WRITE(6,*) '=== VYC=', (VYC(I),I=1,NYE)
ENDIF
CALL EXPAND(NYCSG,SYCSG,VYC,NYE,IGX,LGY,MG¥,LG,MG,RC)
IF(IGX .EQ. 0) GO TO 20
NC=NCEVAL(AIMIN, IGX,LGX,MGX,NYCSG,SYCSG,RETTBL,RETINV,NRET ,M¥R ,
AGGPCT, IGR, LG}
GO TO 10

NCTOT=NC

WRITE(6,*) '$$G EVAL NC,SYCSG=',NCTOT, (SYCSG(II),II=1,NYCSG)
EXPAND TO LARGE MOS GROUP

WRITE(6,%) ' '

WRITE(6,*) ’'=== EXPANDING BY LARGE GROUP:‘ LGCX

NC=NCEVAL(AIMIN, IGX,LGX ,MGX,NYCSL,SYCSL,RETTBL,RETINV NRET, MXR,

30

AGGPCT,IGR,LG)
IF((NCTOT+NC) .GE. NO) THEN
WRITE(6,*)’'SLL EVAL NC,SYCSL=', (NCTOT+NC), (SYCSL(II),II=1,NYCSL)
GO TO 60
ENDIF
IF(NYCSL.EQ.1) CALL GETVYC(SYCS(1l),LG,NYE,VYC)
CALL EXPAND(NYCSL,SYCSL,VYC,NYE,IGX,LGX,MGX,LG,MG,RC)
IF(LGX .EQ. 0) GO TO 40
NC=NCEVAL(AIMIN, IGX,LGX ,MGX ,NYCSL,SYCSL,RETTBL,RETINV NRET ,MXR,
AGGPCT, IGR,LG)
GO TO 30

NCTOT=NCTOT+NC
WRITE(6,*) '$$L EVAL NC,SYCSL=' ,NCTOT, (SYCSL(II),I1=1,NYCSL)
EXPAND TO MAJOR MOS GROUP
WRITE(6,*) * '
WRITE(6,*) ’'=== EXPANDING BY MAJOR GROUP:' MCX
NC=NCEVAL(AIMIN, IGX,LGX ,MGX,NYCSM,SYCSM,RETTBL,RETINV,NRET ,MXR,
AGGPCT, IGR,LG)
IF((NCTOT+NC) .GE. NO .OR. RC .NE. 0) THEN
WRITE(6,%*)'SMM EVAL NC,SYCSM="', (NC+NCTOT", (SYCSM(II),I1=1 NYCS¥)
GO TO 60
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70

80

90

100

ENDIF

IF(NYCSM.EQ.1) CALL GETVYC(SYCS(1l),LG,NYE,WYC)

CALL EXPAND(NYCSM,SYCSM,VYC,NYE, IGX,LGX,MGX,LG,MG,RC)

NC=NCEVAL(AIMIN, IGX,LGX ,MGX ,NYCSM, SYCSM,RETTBL,RETINV NRET MR,
AGGPCT,1ICGR,LG)

GO TO 50

EXPANSION FINISHED
IF(RC .NE. 0) THEN

WRITE(5,*) "*** REQUIRED NO MAY NOT BE MET: NO,NC=',NO, (NC+NCTOT)
ENDIF

WRITE(S5,*) '‘ESTIMATED NUMBER OF CELLS =',NC+NCTOT
WRITE(S5,*)
WRITE(5,*) 'ENTER 1 TO CALL READER, O TO CHANGE EXPANSION’
READ(5,*) NPICK1
IF(NPICK1 .EQ. 1) THEN
GO TO 80
ELSE
WRITE(5,*) 'AGGPCT IS CURRENTLY =', AGGPCT
WRITE(5,*) "ENTER NEW VALUE FOR AGGPCT’
READ(5,%*) AGGPCT
GO TO 5
ENDIF
WRITE(S5,*) 'CALLING READER’

CALL GETMOS (SMOS,NMOS,MGX,LGX,MG,LG, IGR)

CALL READER(INV,Y,MXX ,MXY,NMOS,NYCSG,NYCSL,NYCSM,NSC,
* SMOS,SYCSG,SYCSL,SYCSM, SGRD, SVCMP,NRC, PTRTBL, LGX,MGX,
* IGR,LG,NPT,PTBL,SINV,SY)

CALL AGGREG(INV,Y MXX,6MXY,SMOS, SYCSG,
* NRC, NRCOLD,PTRTBL, INDX,AVINV,6AIMIN,6MKG)

WRITE(5,*) 'NUMBER OF CELLS =' NRC
WRITE(S, *)
WRITE(5,*) 'ENTER 1 TO CONTINUE, O TO CHANGE EXPANSIOXN'
READ(5,*) NPICK2
IF(NPICK2 .EQ. 1) THEN
GO TO 100
ELSE
WRITE(5,*) 'AGGPCT IS CURRENTLY =', AGGPCT
WRITE(5,%*) 'ENTER NEW VALUE FOR AGGPCT'’
READ(5,%*) AGGPCT
ICYCLE=ICYCLE+1
GO TO 5
ENDIF

CONTINUE
WRITE(6,201)'EXPANSION INFORMATION:'
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WRITE(6,203)'ACTUAL NO. OF CELLS USED= ' ,NRC
WRITE(6,202)'MOS GROUP #',IGR,' YCS''S USED=',
* (SYCSG(I1),I=1,NYCSG)
IF(LGX .GT. 0) THEN
WRITE(6,204)'LARGE MOS GROUP #',1LG,' YCS''S USED=",
* (SYCSL(1),I=1,NYCSL)
ELSE IF(MCX .GT. O) THEN
WRITE(6,204) ' LARGE MOS GROUP #',LG,’ YCS''S USED=',

* (SYCSL(I),I=1,NYCSL)
WRITE(6,204) 'MAJOR MOS GROUP #',MG.' YCS'’S USED=",
* (SYCSM(I),I=1,NYCSM)
ENDIF
o R T T L
STOP
C
Ckx%*% CALL MC87BZ(INV,Y,NRC,MXY,XTB,VXTB,XEB,A,M¥X,MYY)
C
CALL BKDOWN(PTBL,NPT,PTRTBL,NRCOLD, INDX, MKG 6 MxX¥ , MXY,
* SINV,SY,INV,Y, BKTBL,NBK )
C

201 FORMAT(/1X,A)

202 FORMAT(1X,A,I2,A/1X,18(13))
203 FORMAT(1X,A,I2)

204  FORMAT(1X,A,I11,A/1X.18(13))

END
C
FA o YR S S b sk B ok S o o S ok o S S S S S T b S S S s S S S S A R e o e e e e e Sk
C

SUBROUTINE EXPAND(NYCSX,SYCSX,VYC,NYE,IGX,LGX,MGX.LG,MC . RC)
C --- EXPAND YCS IF FEAS, ELSE EXP MOS TO LG/MG & BACKTRACH YCS
INTEGER SYCSX(31), NYCSY
INTEGER*2 VYC(NYE)
C --- FIND POSITION OF ORIGINALLY REQUESTED SYCS(1)
IY=0
DO 10 I=1,NVE
IF(SYCSX(1) .EQ. VYC(I)) IY=I
10 CONTINUE
IF(IY.EQ.0) GO TO 30
--- FIND NEAREST NOK-ZERO YCS TO USE FOR EXPANSION
DO 20 I=1,NYE
J=1Y-1
1IF(J.GE.1) THEX
IF(VYC(J).GT.0) GO TO 50
E'DIF
J=1v+1
IF(J.LE.NYE) THEX
IF(VYC(J).GT.0) GO TO 50
ENDIF
20 CONTINUE
30 CONTINUE
e WRITE(6,%) '---- YCS ENPANSION FINISHED: Iv-'. TY

o«
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C --- NO MORE YCS EXPANSION POSSIBLE. SEE II MOS EXP. FEASIBLL
IF(IGX.GT.0) THEN

Cc --- EXPAND FROM GROUPS TO LARGE GROUP LGX. BACK YCS
IGX=0
LGX=LG
ELSE IF(LGX.GT.0) THEN
cC --- EXPAND FROM LARGE GROUP LGX TO MAJOR GROUP MGX. BACK YCS
LGX=0
MGX=MC
ELSE
RC=1
ENDIF
RETURN
C
C --- EXPAND WITH YCS IN POSITION J & CLEAR VYC(J)

50 CONTINUE
NYCSX=NYCSX+1
SYCSX(NYCSX)=VYC(J)
VYC(J)=0
EXND
C
S o T A S S o e S S S S S S B R e S b S o Sk ok s s S s e Yok
C
FUNCTION NCEVAL(AIMIN, IGX,LGX ,MGX,NYCSX,SYCSX,RETTBL,RETINV,
* NRET,MXR,AGGPCT, IGR,LG)
C --- COMPUTE EST. NO. CELLS TO OBTAIN WITH CURRENT SELECTION
INTEGER SYCSX(31),NYCSX
INTECER*2 LGRP(14),MGRP(6)
INTEGER*2 RETTBL(MXR, 5)
REAL RETINV(MXR)
LO0GICAL ACCEPT
NCEVAL=0
IF(IGX.EQ.O0 .AND. LGX.EQ.OQ .AND. MGX.EQ.0) RETURN
TAINV=0.0
DO 100 I=1,NRET
¢ --- SCREEN ON YCS
DO 10 J-1,NYCSX
IF(RETYBL(I,2) .EQ. SYCSX(J)) GO TC 13
10 CONTINUE
GO TO 100
C --- SCREEN ON MOS BY GROUP, LG/MG DEPENDS ON IGX,LGMN. MCH
15 CONTINUE
MOS=RETTBL(1,1)
IGP=RETTRL(I,3)
LGP=RETTBL(I .4)
MGP=RETTBL(I,5)
ACCEPT=.FALSE.
IF(MGX .CT. () THEX
IF(MCP B, MCX JAND. LGP .MF. LG) ACCEPT=_TRUL.
ELSE
IF(LCX .CT. 0O) THEN




IF(LCG
ELSE
IF(IGP
ENDIF
ACCEPT
IF(ACC

IF(RETINV(I)
IF(MGX.GT.0) WRITE(6, %)
NCEVAL,MOS ,RETTBL(1,2),1GP, LGl , MCP

ELSE

ENDIF

ENDIF
100 CONTIKU
--- FINAL E
IF(AIMI
WRITE(
END
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INTEGER
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DAT:
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P LEQ. LGX .AXND. IGP KZ.

ICGR) ACCE
LEQ . IGX) ACCEPT=.TRUE.

ED
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#2 YCSB(XYE,NYE ,NYEG). VYC(NYE},
SYCS

Ly

i

+ AGGPCT*TAINV/ATY
"NCEVAL , TAINV, IGX, LG MCGx=" ,NCEV.L,TATNV

TPV

m

.....

"NCEVAL MOS  YCS,IGP, LGP MCGP=" |

LGEX /%)

EX/4.4,4,2,1. 2/

SE/1.2,3.4,5,6, £.9.17,11,12,12,14,15,14 .17 .18 1¢
WA 20,21,22.03,24,25.12%0, 26 17
1.2,3,4,5, £.9,10,11.,22,13,14,15.1€6,17,18.1%,1%"
6,7,16%0 200,21,22,23,24,25,12°0), 26 170
,2,0,4.5,6, £,9.10,11,12,13,14 15 1 17 181
7,17%0 20,21,22.,23.24,25,12%0, 26,100,
12,2, 6,78, .10, 11,1,.13.14,15.16, 17,18 1% 1>
4.5 16%0 200,21.,22.23.24.25 1000 24,1740
o LAST DIMENSICH TN WCS EXPANSION TAELY

Er i onss

,,,,,

AND MARE

Copy

ey




C

END
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C

C
C

SUBROUTINE READET(RETTBL,RETINV,M¥R,MXY,NRET,SGRD, NSC,SVCMP, MG,
INTEGER INVENT(100), LEAV(100)
--- READ TABLE WITH ALL EXISTING COMBINATIONS FOR SELECTION CRITEKIA
--- ACCEPT RECS WITH MATCHING PG,MG,SVC. ACCEPT ALL YCS
INTEGER SVCMP(5), NSC, SVC
INTEGER SGRD, PG
INTEGER MOS,YCS
REAL RETINV(MXR), Al
INTEGER*2 RETTBL(MXR, 5)
NRET=0
DO 10 I=1,999999
READ(1,101,END=999) PG,MOS,YCS,SVC, (INVENT(E),K=1,MyY),
* (LEAV(K) ,K=1,M3Y)
IF(PG.LT.SGRD) GO TO 10
IF(PG.GT.SGRD) GO TO 999
CALL MCFIND(MOS, IGR,LG,MGY)
IF(MGX .NE. MG) GO TO 10
DO 20 J=1,NSC
IF(SVC .EQ. SVMP(J)) THEN
NRET=NRET+1
IF(NRET.GT.MXR) STOP 555
RETTBL(NRET, 1)=MOS
RETTBL(NRET, 2)=YCS
RETTBL(NRET, 3)=IGR
RETTBL(NRET, 4)=LG
RETTBL(NRET, 5)=MC
RETINV(NRET)=AVG (INVENT, M¥7)
WEITE(6,104) NRET,MOS,YCS.IGR,LC.MG RETINV(NRET)
GO TO 10
ENDIF
20 CONTINUE
10 CONTINUE
Gt CONTINVE
101 FORMAT(I1 14,12,11,20014)
S FORMAT(61¢, F9.21
EXND

FUNCTION AVEOIV N
INTECER IVN)
ANV G
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SUBROUTINE GETPAR(AIMIN,NO,KMOS,SMOS,NTCS,SYCS,SGRD,
* NSC,SVCMP, 1IGR,LG,MG)
C --- GET SELECTION CRITERIA FROM USER AND VALIDATE

INTEGER SYCS(31), NYCS

INTEGER SMOS(80), NMOS

INTEGER SVCMP(5), NSC

INTEGER SGRD

WRITE(5,*) ' ENTER THRESHOLD MIN. FOR AVERAGE INVENTORY'
READ(5,*) AIMIN

WRITE(5,*) ' ENTER THRESHOLD MIN. FOR NUMBER OF CELLS’
READ(S5,%) KO

WRITE(5,*) ' THRESHOLDS TO USE AIMIN, NO=',6AIMIN,6NO

C
WRITE(S5,%*) ' ENTER MOS (ONLY 1 ACCEPTED)'
NMOS=1
READ(5,*) SMOS(1)
WRITE(6,%*) ' MOS SELECTED:', SMOS(1)
CALL MCFIND(SMOS(1), IGR,LG,MG)
WRITE(6,%*) ' GROUP TO USE:', IGR
IF(IGR.EQ.0) THEN
WRITE(S,*) '#%%% ERROR - INVALID MOS SELECTEL:', SMOS(1,
STOP
ENDIF
C
WRITE(5,%) ' ENTER YCS (ONLY 1 ACCEPTED)’
TYCS=1
READ(5,*) SYCS(1)
WRITE(6,*) * YCS SELECTED:', SYCS(1)
C
WRITE(5.*) ' ENTER GRADEL'
READ(5,*) SGRD
WRITE(6.%) ' GRADE SELECTED’, SGRD
-
WRITE(5,%) ' ENTER NO. OF SVC. COMPS & ARRAY (1-3, 4=142, S=4Ll)’
READ(5,%) NSC, (SVCMP(I), I=1,hSC)
C -<- EXPAND 4 TO 1,2 AXD 5 TO 1,23

DO 10 I=1,NSC
IF(SVCMP(I) . EOQ. 4 .OR. SVCMP(I1).ED. 5) THEX
NSC=SVC¥P(1)-2
DO 15 J=1,L5C
SVCMP{J)=1J
CONTINUE
¢ TO 11
EXNDIF
10 CONTINUE
11T CONTINUR
WRITE(H %) ' SERVICL COMPONENTS SELECTED'. (SVCMP{l), 1-1.%NS")

P
[

WRITE76,101) 'TEST CASE INPUT PARAMETERS:'
WRITE(A 107, "INVENTORY THRESHOLL- ' ATMIN,
: "THRESHOLD NG, OF CELLS 7 NG
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WRITE(6,103) ’'MOS= ',SMOS(1),'YCS= ' ,SYCS(1l), 'GRADE= ', SGRD
WRITE(6,104) 'SERVICE COMPONENTS= ', (SVCMP(I),I=1,NSC)

101 FORMAT(1X,A)

102 FORMAT(1X,A,F4.1,7X,A,12)
103 FORMAT(1X,A,I5,2(5X,A,12))
104  FORMAT(1X,A,15(13))

END
C
B R R R S L T T LI NN NN
C

SUBROUTINE GETMOS (SMOS ,NMOS, MGX,LGX, MG,LG,IG)
C --- BUILD SMOS ARRAY BASED UPON EXPANSION

INTEGER SMOS(80)

NMOS=0

DO 10 1=1,999999

CALL MOSGET(1, MOS,IGP,LGP,MGP)
IF(MOS.LE.O) RETURN
IF(MGX.GT.0 .AND. MGP.EQ.MGC .OR.
LGX.GT.0 .AND. LGP.EQ.LG .OR.
* IGP.EQ.IG ) THEX
NMOS=NMOS+1
SMOS (KMOS )=MOS
ENDIF
10 CONTINUE

END

C

SUBROUTINE READER(INV,Y, MXX,MXY,KMOS ,NYCSG,NYCSL,NYCSM.NSC,
* SMOS,SYCSG,SYCSL,SYCSM, SGRD, SVCMP ,NRC, PTRTBL, LGX , MG,
* IGR,LG, NPT,»TBL, SINV,SY)

REAL INV(MXX,MXY),Y(MXX,MXY), SINV(MXX MXY),K SY(M¥X 6 MYY)

INTEGER INVENT(100), LEAV(100)

INTEGER*2 PTRTBL(MX3, 2), PTBL(M¥J,3)

INTEGER SYCSG(*), SYCSL(*), SYCSM(*)

INTEGER SMOS(*), NMOS

INTEGER SVCMP(*) 6 NS5C

INTEGER SGRD

INTEGER YCS,PG,MOS,SVC

REWIND 1
DO 6 I=1,MxX
DO 5 J=1 M¥Y
INV(1,J)=0.0
Y(1,3)=0.0
SINV(1I,J)=0.0
SY(1,J)=0.C
CONTINUE
6 CONTINUE

78




@I

ICR=0
NRC=0
NPT=0
ICNT=0

1 READ(1,101,END=999) PG,MOS,YCS,SVC, (INVENT(I),I=1,MXY),

(LEAV(TI),I=1,MXY)
ICR=ICR+1
CHEC¥. 1IF RECORD MEETS SELECTION CRITERIA. OTHERWISE REJECT.

IF(PG .LT. SGRD) GO TO 1
IF(PG .GT. SGRD) GO TO 999

CALL MCFIND(MOS, IGP,LGP,MGP)
IF(IGP.EQ.0) GO TO 1

IY=0
IF(MGX .GT. 0) THEN
IF(LGP .EQ. LG) THEN
CALL CKTBL(YCS,NYCSL,SYCSL,IY)
ELSE IF(MCP .EQ. MGX) THEN
CALL CKTBL(YCS,NYCSM,SYCSM,1IY)
ENDIF
ELSE IF(LGX .GT. 0) THEN
IF(IGP .EQ. IGR) THEN
CALL CKTBL(YCS,NYCSG,SYCSG,IY)
ELSE IF(LGF .EQ. LGX) THEN
CALL CKTBL(YCS,NYCSL,SYCSL,IY)
ENDIF
ELSE
IF(IGP _EQ. IGR) CALL CKTBL(YCS,NYCSC,SYCSG,IY)
ENDIF
IF(IY.EQ.0) GO TO 1

CALL CKTBL(MOS,NMOS,SMOS, IM)

IF(IM.EQ.0) THEN
WRITE(6,*) '#%%* ERROR IN MOS SCREENING #*#**' MOS
WRITE(6,*) 'NMOS,SMOS=', NMOS, (SMOS(I),I=1,6NMOS)
GO TO 1

ENDIF

CALL CKTBL(SVC,NSC,SVCMP,1S)
IF(IS.EQ.0) GO TO 1

RECORD ACCEPTED - INSTALL IN INV,Y,SINV,SY, PTRTBL AND PTEL
ICNT=ICNT+1

Tw=1S

MINV=CINV(PTRTBL, MXX,NRC, IM,6IY,-99)

MV=GINV(PTBL, MXX NPT,IM.IY,6IW)

CALl INSINV(PTRTBL, M XY ,NRC,MINV,IM, IY,-99 INV INVENT)
CALL INSINV(PTBL., MM, MNY ,NPT,MV, IM.IY. IW,SINV/ INVEXNT:




CALL INSY(MXX,MXY,MINV,Y,LEAV)
CALL INSY(MXX,MXY,MV, SY,LEAV)

GO TO 1
C
999 CONTINUE
WRITE(6,%) * '
WRITE(6,*) 'TOTAL RECORDS READ =' ICR
WRITE(6,*) 'TOTAL INV. MOS/YCS COMBINATIONS=' ,NRC
WRITE(6,*) 'TOTAL INV. MOS/YCS/IW COMBINATIONS=' NPT
WRITE(6,*) 'TOTAL RECORDS ACCEPTED =’ ICNT
C --- TERMINATE IF NO DATA COLLECTED
IF(NRC .EQ. 0) THEN
WRITE(6,*) '***xx NO DATA MEETS SELECTION REQS'
STOP
ENDIF
C

WRITE(6,*) ' *%%% PTRTBL TABLE *%%%’
DO 200 I=1,KRC
WRITE(6,131) I,(PTRTBL(I1,J),J=1,2)
200 CONTINUE
WRITE(6,*) ' %%%% PTTBL TABLE %%’
WRITE(6,132) (1,(PTBL(1,J),J=1,3),(SINV(1,J),J=1, 10),1=1 XPT)

101 FORMAT(I1,14,12,11,20014)

121 FORMAT(A8,1316)

122 FORMAT(A8,716, 5X, 1216)

131 FORMAT(I4, 216)

122 FORMAT(I4, 316, 10F7.2)
ND

SUBROUTINE CKTBL(SRC,NTBL,TBL,IX)
INTEGER TBL(NTBL), SRC
DO 10 1I=1,NTBL
IF(SRC .EQ. TBL(I)) THEX
I¥=1
RETURXN
ENDIF
10 CONTINUE
I1X=0
EXND
Foksk o ok ok o sk ok Sk sk S ok o ek ok S S ko Sk b ek Sk Sk St
C
FUNCTION CGINV(PTBL, M ,NPT, IM,IY,IW)
C --- FIND LOCATION OF INVEXTORY ENTRY FOR MGS,YCS,SVC COMBINATIONS
C --- 3RD DIMENSIZN CHECKED ONLY IN CASE 1w>0
INTEGER*2 PTBL(MXX, )
DO 10 I=1,NPT
IF(PTBL(I, 1) .EOQ. IM .AND,
PTBL(I, 2) .EO. IT ) THEN
IF(TW. LT.O JOR. (1W.CT.0O .AND. PTBI.(L, 2).F0. 1w Thinx




GINV=I
RETURN
ENDIF
ENDIF
10 CONTINUE
GINV=0
END

SUBROUTINE INSINV(PT,MXX,MXY,N,K,IM,IY,IW,INV, DATA)
C --- ACCUMM INTO KTH ENTRY. INSTALL IN POINTER TABLE IF NOT PRESENT
REAL INV(MXX, MXY)
INTEGER*2 PT(MXX, *)
INTEGER DATA(MXY)
IF(K .EQ. 0) THEN
Cc --- ADD NEW ENTRY
N=N+1
IF(N .GT. Md3) THEN
WRITE(6,%) '#*%% ERROR - TOO MANY INV. COMBINATIONS' 6N
STGP
ENDIF
K=N
PT(K, 1)=1IM
PT(K, 2)=1IY
IF(IW.GT.0) PT(K, 3)=IW
ENDIF
DO 130 IT=1,MXY
INV(K,IT)=INV(K,IT) + DATA(IT)
120 CONTINUE
END
R R B g R B B e e L P USRS S PSS
C
SUBROUTINE INSY(MX3 ,MXY,K,Y,DATA)
C --- ACCUMM INTO KTH ENTRY FOP. LOSS
REAL Y(MXX, MXY)
INTEGER DATA(MXY)
IF(K .EQ. O0) RETURN
DO 10 IT=1,MXY
Y(K,IT)=Y(K,IT) + DATA(IT)
10 CONTINUE
ND
R e R B g e L L e e S D U s T S T SR L G A R A N R R
SUBROUTINE AGGREG(INV,Y, MXX,MXY,SMOS,SYCSG,
* NRC,KNRCOLD, PTRTBL, INDX,AVINV, AIMIN MK(C)
C --- COMP. AVERAGE INV. & SORT
REAL INV(M¥X, M¥Y), Y, MXY), AVINV(MI)
INTEGER*2 PTRTBL(M>Z, 2), INDX(:DX),MKG(MXZ)
INTEGER SYCSG(*), SMOS(*)
REAL*8 TINV,TY

¢ --- RESET MKG (NECESSARY WHEN CYCLING THRU AGGPCT VALUES)

g1




DO 10 I=1,MXX
MKG(1)=0
10 CONTINUE
TINV=0
TY=0
DO 100 I=1,NRC
C --- FIX INV. ENTRIES LOWER THAN CORRESP. LOSSES & COMP. AVG INV.
AI=0
DO 201 J=1,MXY
IF(INV(I,J).LT.Y(I,J)) INV(I,J)=Y(1,J)
AI=AT+INV(I,J)
TINV=TINV+INV(TI,J)
Y= TY+ Y(I,J)
201 CONTINUE

AVINV(I)=AI/MXY
INDX(I)=I
100 CONTINUE
WRITE(6,%) '===== TOTAL INV,Y=',6TINV,KTY
c
C --- SORT ASCENDING BY AVG INVENTORY
CALL SORT2(AVINV, INDX,NRC)
C
NS1=0
C --- DISPLAY TABLE IN SORT SEQUENCE
CALL DSPTBL(INV,Y,AVINV K PTRTBL,INDX,AIMIN, NRC,MiG,MX¥ MXY.
% SYCSG, SMOS )
o

DO 200 K=NRC,1,-1
IF(AVINV(K) .GE. AIMIN) THEN
cC --- MARK AS MEMBER OF SET SO
MKG (K)=32767

ELSE
c --- INITIAL COUNT OF MEMBEKS OF SET Si
NS1=K
GO TO 202
ENDIF
200 CONTINUE
202 CONTINUE
C --- DO AGGREGATIONS WITHIN SET S1 UNTIL NO MORE POSSIBLE (KF GE 0)
KF=-1
C --- DO WHILE KF<9

300 IF(KF.GE.O) GO TO 310
CALL AGG1(AVINV,INDX,MKG,NS1,INV, Y, 6 MXX 6MXY,AIMIN, KF)

GO TO 300
310 CONTINUE
C --- DISPLAY TABLE AFTER 1ST AGGREGATION
7ok CALL DSPTBL(INV Y ,AVINV, PTRTBL, INDX AIMIN, NRC,6MKG, MMX 6 MYY,
*EK K SYCSG,SMOS )

IF(NS1.EQ.NRC) THEXN

WRITE(6,%) '¥**%¥x SET SO EMPTY. NO CELLS ABOVE THRESHOLD'
STOP
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400
122
123

ENDIF

DO AGGREGATIONS FROM SET S1 INTO SET SO UNTIL NO MORE POSSIBELE

KF=1
DO WHILE KF>0

IF(KF.LE.O0) GO TO 330
CALL AGG2(AVINV,INDX,MKG,NS1,NRC,IKNV, Y, M3 MXY, KF)
GO TO 320
CONTINUE
DISPLAY TABLE AFTER 2ND AGGREGATIOX
CALL DSPTBL(INV,Y,AVINV,PTRTBL, INDX ,AIMIN,NRC MG MM MY,
* SYCSG, SMOS )
MOVE VALUES GE ATMIN TO BEGINNING OF ARPAYS
CALL CMPRS(INV,Y MXX ,MXY, NRC,NRCOLD,AIMIN,6 AVINV)
DISPLAY TABLE AFTER MOVING VALUES.
DO 400 K=1,6NRC
WRITE(6,122)K,AVINV(K), (INV(K,J),J=1,12 )
WRITE(6,123) ( Y(K,J),J=1,12 )
CONTINUE
FORMAT(/15,14X,F8.3, &X, 12F¥7.2)
FORMAT( 33X, 12F7.2)
END
ek dkkdok ok ko

SUBROUTINE AGGL(AVINV,INDX,MKG,KS1,INV,Y,MX ,M¥T,AIMIN KF)
DO ONE PASS OF AGGREGATION
REAL INV(MXX, MXY), Y, MXY,, AVINV(MY)
INTEGER*2 INDX(MXX) ,MKG(MXX)
KF=0
CIi=0
DO 10 I=NS1,1,-1
IF(MKG(I).EQ.J) THEXN
IF(KF.EQ.0) THEX
THIS WILL BE THE COLLECTING CELL
KF=1I
CI=AVINV(I)
ELSE
IF(CI+AVINV(I).LT.AIMIN) THEN
ACCUM. WITH CELL KF TEMPORARILY. SET TEMP. POIN
CI=CI+AVINV(I)
MKG(I)=-¥F

-

ELSE

FIND SMALLEST CELL TO ADD

CALL AGGLA(AVINV MKG,T,CI,AIMIN, FF M2
ELDIF

IF(CI.CE.AIMIN) THEN
MAFKE THIS AGGREGATION PERMANENT AND EXIT
AVINV(KF)=CI
CALL AGGIB(INDX MKG,FF, INV, Y MJY Mo
NS1=NS1-1
MVG(KF)=32767
KF=-1
RETUR:




ENDIF
ENDIF
ENDIF
10 CONTINUE

IF(KF.EQ.O) RETURN
C --- CLEAR TEMPORARY POINTERS LEFT. THIS WAS AN UNSUCCESSFUL AGGREC.
PO 20 I=1,NS1
IF(MKG(I).LT.0) MKG(I)=0
20 CONTINUE
END
C Frdddkkdbrktrdd
SUBROUTINE AGGlA(AVINV,MKG,ILAST,CI,AIMIN, KF, 6 MXX)
C --- FIND SMALLEST CELL TO ADD AND SET TEMPORARY POINTER
REAL AVINV(MXX)
INTEGER*2 MKG(MXX)
DO 10 I=1,ILAST
IF(MKG(I).EQ.0) THEXN
IF(CI+AVINV(I) .GE. AIMIN) THEN
CI=CI+AVINV(I)
MKG(1)=-KF
RETURN
ENDIF
ENDIF
10 CONTINUE
WRITE(6,*) ’'*x%* ERROR IN AGGlA. NO VALUE FOUND ##3'
STOP
END
(ol X R I
SUBROUTINE AGG1B(INDX,MKG.KF,INV, Y MXY, K M¥X)
C --- MAKE AGGREGATION PERMANENT
REAL INV(MXX, MXY), Y(MXX, MXY)
INTEGER*2 INDX(MXX) 6 MKG(M¥X)
K=INDX (KF)
PO 10 I=1,KF-1
IF(MKG(I) .LT. 0) THEN
IF(MKG(I).NE.-KF) STOP 777
MKG(I)=KF
L=INDX(I)
DO 20 J=1,MXY
INV(K,J)=INV(K,J)+INV(L,J)
Y(K,J)= Y(K,I)+ Y(L,J)

20 CONTINUE
ENDIF
10 CONTINUE
END

C Fodkdrkkdkdhkdhdhhrx
SUBROUTINE AGG2(AVINV, INDX ,MKG,NSI,NRC,INV,Y MNX MXY, KF)

€ --- DO ONE PASS OF AGGREGATION FROM SET S1 TO SET SO

C --- ON EACH PASS ONE ELEMENT OF S1 IS TAKEN & ADDED TO SMALLEST OF SO
REAL INV(MxX, MXY), Y(MMX, MXY), AVINV(MXX)
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INTEGER*2 INDX(MXX) ,MKG (M)
KF=0
- FIND ELEMENT OF S1 (ONLY THOSE WITH POINTER MKG(1)=0)
DO 10 I=1,NS1
IF(MKG(1).EQ.0) THEN
KF=1
GO TO 12
ENDIF

10 CONTINUE
12 CONTINUE

- IF KF STILL O THEN NO MORE ELEMENTS IN S1 LEFT
IF(KF.EQ.0) RETURN

- FIND SMALLEST ELEMENT OF SO AND ADD TO IT. ONLY WITH MEC(I)=3C

ISM=KRC
SMALL=AVINV(ISM)
DO 20 I=1, NRC
IF(MKG(I).EQ.32767) THEX
IF(AVINV(I) . LT.SMALL) THEXN
ISM=1
SMALL=AVINV(I)
EXDIF
ENDIF

26 CONTINUE

--- JOIN ELEMENT KF TO ELEMENT 1SY

AVITV(ISM)=AVINV(ISM) + AVINV(KF;
MKG(KF)=1ISM
L=INDX(KF)
K=INDx(ISM)
DO 30 J=1,MXY
INVIK, T p=IRV(F.J)+I5V{L,J)
Y(K,J)= Y(K.J)+ Y(L,J)

2% CONTINUE
END
Sk ko koot

SUBROUTINE CMPRS(INV,Y MEX MXY,NRC.NRCOLD,AIMIN AVINV)
REAL INV(MXDI, MMy}, YOMMA, MMY, AVINV (MM
- COMPRESS INV,Y IN PLACE. MOVE ALL ROWS GE AIMIN TO TOP
NRCOLD=XRC
NRC=0
DO 10 I=1,NRCOLD
AT=CAINV(INV, T, ML M)
IF(AI .CE. AIMIN) THEX
TRANSFER ACTIVE CELL I --->» LRZ
NRC=LRC+1
AVINV(NRC ) =41
DO 20 J=1, MY
INV(NRC,J=INV{1,])
Y(NRC,J)= Y(I,J)
CONTINUE
EXNDIF




10 CONTINUE
END
R T T T ST
FUNCTION CAINV(INV,I MXX MXY)
REAL INV(MXX, MXY)
--- COMPUTE AVERAGE INVENTORY FOR ROW I
CAINV=0
DO 10 J=1,MXY
CAINV=CATINV+INV(I,J)
10 CONTINUE
CAINV=CAINV/MXY
END
L R L T T
SUBROUTINE DSPTBL(INV,Y,AVINV,PTRTBL, INDX,AIMIN, NRC 6MFG , MX3 , MXY,
SYCSG, SMOS)
--- DISPLAY TABLE IN SORT SEQUENCE
REAL INV(MXX, MXY), Y(MXX, MXY), AVINV(M¥)
INTEGER*2 PTRTBL(MXX, 2), INDX(MXX),MKG(M)
INTEGER SYCSG(¥*)
INTEGER SMOS ()
INTEGER TIATT(2)
CHARACTER*1 STI
WRITE(6,121)
WRITE(6,*) ’'INV. THRESHOLD MIN. VALUE=', *IMIN

WRITE(6,%) ' I INDX AVG MKG INVENTORY /LOSSES'
Bp) 200 K=1,NRC

STi='

I=INDX(K)

AT=AVINV(K)

IF(Al .LT. AIMIN) STI='$'

IATT(1)=SMOS(PTRTBL(I,1))

IATT(2)=SYCSG(PTRTBL(1,2))

WRITE(6,122)K, I AT MKG(K) ,STI, (INV(I ,J),J=1,10 ), (IATT(J).J=1,2).
* PTRTBL(I,1),PTRTBL(I,2)

WRITE(6,123) ¢ Y(I,J3),3=1,10)

200 CONTINUE

FORMAT(///)
FORMAT(/215.F8.3 ,19.1X A7, 10F7.2. S¥. 6I5)
FORMAT ( 30X, 10F7.2)
END
E R e B S S B b U g
SUBROUTINE SORT2(Y,INDX, N)
--- INPLACE SORT USING SHELL ALGORITHM skt
--- SORTS ON Y AND DOES SAME REORDERING ON INDEMES INDX
REAL Y(N),TEMP
INTEGER GAP
INTEGER*2 INDX(N), ITEMD
LOGICAL EXCH

—
SRR Y
Ny o

Lo N




GAP={(%/2)
5 IF (.NOT.(GAP.NE.0)) GO TO 500
10 CONTINUE
EXCH=. TRUE.
K=N-GAP
DO 200 I=1,K
KK=1+GAP
IF(.NOT. (Y(I).GT.Y(KK))) GO TO 100
TEMP=Y(I)
Y(1)=Y(KK)
Y (K¥.)=TEMP
ITEMP=INDX (1)
INDX (I)=INDX (KK)
INDX (KK)=ITEMP
EXCH=.FALSE.
100 CONTINUE
200 CONTINUE
TF (.NOT.(EXCH)) GO TO 10
GAP={GAP/2)
GO TO 5
500 CONTINUE
RETURXN
END

SUBROUTINE BKDOWN(PTBL,NPT,PTRTBL,NRC, INDX,MKG, MXX, MXY,
* SINV,SY,INV,Y,BKTBL,NBK )

--- BREAKDOWN AGGREGATED VALUES BY THE 3RD DIMENSION SVC/CS
REAL INV(MXX,MXY),Y(MI,MEY) . SINV(MXX,MXY),SY(MXX,MXY)
INTEGER*2 PTRTBL(MXX, 2), INDX(MXX), MKG(MXX)

INTEGER*2 PTBL(MXX, 3), BKTBL(MXX,3)
REAL*8 TINV,TY
NBK=0
--- TRAVERSE MKG ARRAY AND BUILD BKTEBEL
PO 10 I=1,NRC
IF(MKG(T).NE.32767) THEN
ICELL=MEG (1)
ELSE
ICELL=T1
NDIF
IX=INDX(I)
IM=PTRTBL(IX,1)
IY=PTRTBL(IX,2)
CALL BLDBK(ICELL,IM,IY,PTBL,NPT,MxX BKTBL,6NEK)
10 CONTINUE

--- DISPLAY BKTBL PRIOR TO SORTING
WRITE(6,101) (1, (BKTBL(I,J),J=1,3), I=1,NBK)

CALL SORT3(BKTBL,NBK, MXX)
WRITE(6,101) (I,(BKTBL(I,J).J=1,3), I=1,NBK)

--- SUMMARIZE SINV,SY INTO INV,Y FOR MATCHING ENTRIES IN BHETBL
CALL SUMBK(BKETEL NBF, M}, SINV.SY,INV, Y, MxY)
WRITE(6,102) (I,(INV(I.J),J=1.12 ).(BKTBL(1,J).,J=1,2), I=1.NBK
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WRITE(6,102) (1,( Y(I,J),J=1.12 ), (BKTBL(I,J), J=
101 FORMAT (14, 316)
102 FORMAT(l14, 12F7.2,10X,214)

o

END
SUBROUTINE BLDBK(ICELL,IM,IY,PTRL, NPT M¥X,6 BX¥TRL NBK)
INTEGER*2 PTBL(MXX, 3), BXTBL(MXX. 3)
--- RECORD ALL ENTRIES IN PTBL WITH MATCHING IM,IY IN BKTEL .
DO 10 I=1,NPT
IF(PTBL(I,1).EQ.IM .AND. PTBL(I.2).EQ.IY) THEX
.- INSTALL WITH CELL ID, IW & POINTER
NBK=NBK+1
BKTBL(NBK,1)=ICELL
BKTBL(NBK,2)=PTBL(I,3)
BKTBL(NBK,3)=1I
ENDIF
1G  CONTIKNUE
END
FH K AFFXFF XK KL

SUBROUTINE SORT3(T,N MX};
--- INPLACE SORT USING SHELL ALGORITHM skdsik
--- SORTS ON 1ST 2 COLS. OF T & DOES SAME REORDERING ON 3RD COLUM::
INTECER*2 T(MXX,3), ITEMF
INTEGER GAF
LOGICAL EXCH

GAP=(N/?2
5 IF (GAP.EQ.0) GO TO 500

e CONTINUE

EXCHi - . FALSF.
K=N-GATD
DO 200 I-1,K
KK=1+GAP
IF(T(1,1).CT.T(KK,1) .OR.
(T{1,1) . EQ.T(KK,1) .AND. T(I,2).GT.T(FL.2)) ) THEY
IT1=T(I.1)
IT2=T(1,2)
1T3=T(1,3)
T(1,1)=T(¥E. 1)
T(I,2)=T(KK,2)
T(1,3)=T(KK,3)
T(KK,1)-IT1
T(KK,2)=1T2
T(KK.3)=1IT3
EXCH= . TRUE.
ENDIF
200 CONTINUE
IF (EXCH) ¢0 TO 10
GAP=(CAP/2)
cn TO 5 .
0 CONTINUE

88




RETUR™
EXD

SUBROUTINE SUMBK(BKTBL,NBK 6 MrX
CREATE AGGREGATED ARRAYS INV,Y FROM CELL & 3RD DIM.

STRV MM, MY, SY (M
. , ) .

REAL INV (MO, MEY) , Y (M, MEY),
INTEGER*2 BKTBL(MXX,3)
REAL*E TINV,TY
IP=0
I1=-1
12=-1
TINV=0
TY=0
DO 10 I=1,NBK
IF(BKTBL(1,1) .NE.I1 .OR.
C ~-- CHANGE OF CELL,
IP=1P+1
I1=BKTBL(«,1)
I2=BKTRBL{I . Z;
DO 15 J=1,M¥NY
INV(IP,J)=0
Y(IP,T)=0
1% CONTINUVE
BKTBL(IP,1)=11
BKTBL(IF,2)=12
ENDIF
ACCUMULATE
I3=BKTBL(I,3)
D2 20 J=1 MXY

CSINY, SY  INY Y MM )

BKTBI.(1,2) . NE.I12) THEX
v IDENTIFIERS

INVIP . J)=INV(IP . J)+SINV{I3.J

Y(IP.J)= Y(IP J)+
TINV=TINV+SINV(I3,J)
TY= Ti+ SY(I3.,J)
20 CONTINUE
10 CONTINUE

NBK=1P

WRITE(6,%) ’'==== TOTAL INV,Y AFTER BREAKDOW:N~' TINV.TT
EXD

F. FORTRAN PROGRAM: WSEAS
PROCRAM WSEAS
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WINTERS THRIE PARAMETER FORECASTING MODEL

VARTABRLES USED

No= NUMBEP OF

SEASONS = 4

)
SY(IZ2. 1)
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MX
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* TMAXY = PERIODS OF AVAILABLE DATA #
* ALPHA= SMOOTHING CONSTANT w
x BETA = SMOOTHING CONSTANT *
w GAMIIA= SMOOTHING CONSTAN *
* D() = CURRENT ATTRITIOQN IN PERIOD T *
® DF() = FORECAST ATTRITIOl IN PERIOD T *
* EOF ()= TRANSFORMED ERROR OF FORECAST *
* MAD ()= MEAN ABSOLUTE DEVIATION O FORLCAST

T e ek v 3 5k 3 ok ok 3 ok ok ok b sk vk ok Sk ok o 9% ok Skt a e b ot ok ol st ale S sl v e S ke ok e S e s ah S v b e v e S e e s et v

Input Initialization

INTECGER N, TMAX
PARAMETER (v = 4, TMAY = 48)
/*48=Qtrs on Tapex/

INTEGER I, K, L, M, KK, AL, BET, CAM
REAL ALPHA, BETA, GaMMa, INDEL(-3:TMAN) . SMOOTH(O:1ra)

+ TREND(O:TMAX ), INV(TMaM>, LOS(TMAX), DINV(3), DLUb(
+ A(N), F(N), EOF(N), D(TM~AN). DF{TMAN+4)., MAD(4 SL(-,

* // Initialize values smoothing constants //

ALPHA = G .45
BETA = 0.35
GAMMA 0.10

* // DO LOOP to Run Validation on each Rank of Current MO0S Group //
DO 1 K¥ = 1.5

// Bootstrap INDEX and TREND to initiate Seasonality flow //
DO 51 = 5,8
INDEX{I) = 1.00
5 CONTINUE

TREND(E) = 0.01
DO 6T =14
AD(I) = 0.0
MSE(I) = 0.0
6 CONTINUE
// Read Data; Must have min INV() = 1. Compute Attrition Rutc

DO 10 1 = 1,TMAX

READ (11,101) (DLOS(J), J=

READ (13,101) (DINV(J), J=

LOS(I) = DLOS(KK)

INV(T) = DINV(KK)

IF (INV(I) (LT. 1.0) INV(I) = 1.0

D(I) = LOS(1) / INV(1)

IF (D(I) .GE. 1.0) D(I) = (LOS(I)+1Y / (INV(I)+2)
10 CONTINUE

1.5
1.9

an




REWIND(11)
REWIND(13)
1¢1 FORMAT (5F10.0)

* // Winters Forecast Computations //
SMOOTH(&) = D(9)
DO 15 1 = 4, TMaM
SMOOTH(I) = (ALPHA * D(I) / INDEX(I-4)) + (1-aLPisi>

+ (SMOOTH(I-1) + TREKD(I-1))
TREND(I) = GaAMMA * (SMOOTH(I) - SMOOTH(I-1)) + (1-GArM~
-+ TKEND(I-1)
INDEN(1) = (BETA * D(I) / SMOOTH(I)) + (1-BETA) * INDEN(I-4)
* INDEX(I) = INDEX(I - 1)

DF(I+1) = (SMOOTH(I) + TREXND(I1)) * INDEX(I-2)

* /. Compute EOF and Sum the MAD //
I ottt oool. 9) JAND. (1 .LE. 38)) THEN

F(1l) = DF(I+D

A(L) = D(I+1)

DO 20 M=2,XN
DF(I14M) = (SMOOTH(I) + M * TREND(I)) * INDEN(I+M-)
F(M) = DF(I1+M)
AMY = D(I+M)

20 CONTINUE

DO 25 M = 1,4
IF (F(M) .GE. 1 0000) F{) = 0.9%9vu
IF (F(M) .LT. 0.0001) F(M) = 0.00
EOF (M) = (A(M)-F(M)) * (INV(I+M))=™*.5

MAD(M) = MAD{M) + ABS(EQOF(M)/30)
MSE(M) = MSE(M) + ((EOF(M)**2)/30)
25 CONTINUE
ENDIF

1> CONTIKNUE

WRITE(14,125) (MAD(M), M=1,4)
125 FORMAT(2X,4(F12.6))

WRITE(15,126) (MSE/M), M=1.4)
126 FORMAT(2X,4(r12.6))

1 CONTINUE
STOP
END

G. FORTRAN PROGRAM: HSSEAS

PROGRAM HSSEAS

R R B L S L S S B N S S B S S SUSUSUNCURC AN LR PAa
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HARRISON STEVENS: SHORT TERM FORECASTING MODEL

*%% MULTIPLICATIVE SEASONALITY ON CONTINUATION %%+

VARIABLES USED *
N = NUMBER OF STATES = & %
PI(J) = PROB OF STATE J: J = 1,2,...,% %
RE() = RATIO PARAMETER ON OBSERVATIONAL NOISY *
RG() = RATIO PARAMETER ON TREND PERTERBATION *
RD() = RATIO PARAMETER ON SLOPE PERTERBATION %
VO = VARIANCE LAW %
D() = CURRENT CUNTINUATION RATE FOR PERIOD T *
VCE = VARIANCE IN OBSERVATICNAL NOISE (CURRENT) *
VD = VARIANCE IN SLOPE PERTURBATICN %
VG = VARIANCE IN TREND PERTURBATION *
MC = CURRENT TREND VALUE 5
BC = CURRENT SLOPE VALUE %
VCMM = CURRENT COV MATRIX ELEMENT (1.1) %
VCMB = CURRENT COV MATRIX ELEMENT (1,2) AKD (2.1)%
VCBB = CURRENT COV MATRIX ELEMENT (2,2) !
S() = SEASONAL VALUES %
QTR = PRESENT SEASON *
Q.) = UPDATED STATE PROBABILITY
R11()= SUM OF VAR/COV MATRIX ELEMENT (1.1) :
R12()= SUM OF VAR/COV MATRIX ELEMENT (1,2), (2.1)%
R22()= SUM OF VAR/COV MATRIX ELEMENT (1,1) *
VE() = EXPECTED OBSERVATIONAL NOISE %
M() = EXPECTED TREND VALUE %
B() = EXPECTED SLOPE VALUE *
Al() = SMOOTHING CONSTANT =
A2() = SMOOTHING CONSTANT 2
VMM ()= NEXT COV MATRIX ELEMENT (1,1) %
VMB ()= NEXT COV MATRIX ELEMENT (1.2) AND (2.1% =
VBB()= NEXT COV MATRIX ELEMENT (2.2) =
DF() = FORECAST CONTINUATION RATF
EOF = ERROR OF FORECAST (TRANSFORMED)
MAD = MEAN ABSOLUTE DEVIATION OF FORECAST

Input Initia

lization

INTEGER N, TMAX

PARAMETER (X

INTEGER 1. J
REAL*E RE(N)
S(4), INV

= 4, TMAX = 48)
/*48=Qtrs on Tape¥/

, T, QTR, REPLY, KX, KKV

, RG(N), RD(N), PI(N). D(TMAX),

(TMAX), VCE(N), VG(N), VD(N),

MC(N),

VCMB(N), VCBB(N), Q(N), ET(N), CNST, RI11(N. N

Rea \u,i\/ .

B R R e R g e R B R R G R T SRR S

LOS (TMAY ), MSt ‘4.

BC(X), VCMM (M,
RI12/N NM V%

Vi, i), s Ui, iy, AN, o, MAD(4), MIN.N)Y. BN Ny,
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K5
w

v

+ VMM(N,N), VMB(N,N), VBB(N,N), P(N,N), EH(TMAX), DF(TM~A 1),
+ A(N), F(N), EOF(N), DENOM, SOLD(N), BETA, DLOS(5), DIXNVi3)

Vo = .001
BETA = .35

5 CALL EXCMS(’'FILEDEF 10 DiISK VARIABLE DATA A')

// Read in Harrison Stevens Parameters //
DO 10 J=1,XN
READ(10,*) PI(J), RE(J), RG(J), RD(J)
10 COXNTINUE

// Loop To prerform Forecast for each of 5 Ranks in this MCS Group //
DO 1 KK=1,5

/7 Read in Data from GRP* MAT Files; Do Not Let INV{() = 0 //
DO 8 T = 1,TMAX
READ (11.201) (DLOS(J), J=1,
READ (13,201) (DINV{J), J=1
LOS(I) = DLOS(KK)
INV{I) = DINV(KE)
IF (INV(I) .LT. 1.0) INV(I) =10
8 CONTINUE

)

5
15)

201 FORMAT (5F10.0)

“REWIND(10)
REWIND(11)
REWIND{(13)

// Compute Continuation Rates; Do not allow D{) - 0 7/
DO 11 T = 1,TMAX
D(1) = (INV{1)-LOS(I)) / INV(I)
IF (D{I) .LT. .00001) D(1) = (INV(I)-LOS(I)+1)/(INV(I)+2)
11 CONTINUE

DO 12 1 = 1,4
MAD(I) = 0.0
MSE(I) = 0.0

12 CONTINUE

T =3

// Compute Initial Seasonal Values based upon Continuation //
DENOM = 1
DO 14 K=G,12
DENOM = DENOM * D(¥K)
14 CONTINUE
DO 15 K=1,4
S(K) = (D(K+8)) / (DENOM** 25)
15 CONTINUE
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/7

+

//

// //

40

// /

+
+ +

Flag a Conditional //
DO 20 J=1,N
IF (RE(N) + RG(N) + RD(N) + 0.0001 .LT. RE(J) + RC({J) +
RD(J)) THEN
WRITE(*,*) 'Error Statement re: Parameters’
GOTC 1000
ENDIF
Define Variances in terms of Ratios of the Basic Noise VO /7
VCE(J) = RE(J) * VO
VG(J) = RG(J) * VO
VD(J) = RD(J) * VO

Inirialize Values for the Condensed Parameters //
MC(J) = D(J) / S¢J)
BC(J) = 0.
VCMM{J)y = 0
VCMB(J) 0]
VCBBE(J) = O
Q(J) = PI(J

CONTINCE

(o)

i

)

Start Iterative Algorithm //
CONTINUE

Set Proper Season //
QTR = MOD(T,4)
IF (QTR .EQ. 0) QTR = 4

DO 40 I=1,N

Check to Prevent Computer Precision Errovr, ET ---> ZERO /-
IF (ABS(D(T} ((MC(I)+BC(I))*S(QTR)+.00001)) .LT. .00001) THEX
ET(I) = 0
ELSE
ET(I) = D(T) - (MC(I) + BC(I)) * S(QTR)
ENDIF
CONTINUE

for Summing, set CNST = 0 //
CNST = 0.0

DO 60 I=1,N
DO 50 J=1.N
R1i(1,J) VCMM(I) 2.0 % VCMB(I) + VCBB(I)
VG(JY + VD(J)
R12(1,J) VCMB(1) + VCBB(I) + VD(J)
R22(1,J) = VCBB(I) + VD(J)
VE(I,J) = (S(QTR)**2) ¥ R11(I1,J) + VCE(J)

AL(I,J) = S(QTR) * R11(1,J) / VE(I,J)
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A2(1,J) = S(QiR) * RIZ{1,J) / VvE(l1l,])

// Joint Posterior Distribution at Time t //
M(I,J) = MC(I) + BC(l) + Al(I1,J) » ET(I)
B(1,J) = BC(I) + A2(I1,J) * ET(I1)
VMM(I,J) R11(I,J) - (AL(1,J)**2) * VE(I,J)
VME(1,J) R12¢(I1,J) - A1(1,J) * A2(1,J; * VE(I.,D)
VBB(I,J) = R22(1,J) - (A2(1,J)**2) * VE(I,J)

I

i

// Develop the State Transitional Matrix //

// Check to Prevent Computer Precision Error, b --> ZERO J/
IF ((ET(I)**2/(2*VE(I,J))) .GT. 50.0) THEXN
P(1,J) = 0.0

ELSE
P(1,J)=Q(I) * PI(J; * EXP((-(ET(I)**2))/(2 * VE(1.J)»
+ / SQRT(6.28318 = VE(I1,J))
ENDIF

CNST = CNST + P(I1,J)

56 CONTINU
A0 CONTINUE

// P(1,J) scale change //
DO 80 1=1,N
DO 70 J=1,N
P(1,J) = P(1.,J) / CKST
e CONTINUE
&0 CONTINUE

Perform the Condensation Step //
DF(T+1) = 0.0
DO 120 J=1 N
QL) 0.
MC(J) 0.
BC(J) 0.
VeMM ()
VCMB(J) 0.0
VCBE(J) 0.0
DO 90 1I=1,N
Qi) = QW) + P(L,J)
aQ CONTINUE

n
DO

)

]

0.0

i

It

DO 100 I=1,N
MC(J) = MC{J) + P(I1,J) * M(I.J) / Q(J)
BC(J) = BC(J) + P(I,J) * B(I,J) / Q(J)
100 CONTINUE

// Develop the Variance-Covariance of Condensed Valucs /)
DG 110 I=1,N
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I

verm ) VCMM{T) + P(I,J) » (VMM(T J) 4+ (O(MoD,0,

+ - MC(ID) )2y / Q(J)0)
VCMB(J) = VCMB(J) + P(1,J) * (VMB(1.7) 4 ((M(1.J)
+ - MC(J)) * (B(1.,J) - BC(J)) / Q{I))3
VCBB(J) = VCBB(J) + P(1,J) * (VBB(1,J) + (((R(1.J)
+ - BC(I)*#2) / QI ))

110 CONTINUE

* // Compute the forecast for time T+1 //
IF (QTR .EQ. 4) QTR = 0
DF(T+1) = DF(T+1) + (Q{(J) * (MC(J) + BC(J)) ¥ S{QTW+_.}:
120 CONTINUL

// Compute Error of Forecast out next four periods //
IF ((T .GE. 9) .AXND. (T .LE. 38)) THEX
F(1) = DF{T+1)
A(l) = D(T+1}
DO 122 K=2.4
A(K) = D(T+r)
IF (QTR+K .LE. 4) THEX

F(K) = F(1) * S{QTR+K)
ELSE
F(E) = F(1) * S(QTR-44F)
ENDIF
122 CONTI:UE
DC 123 K = 1,4
.,

// Prevent Divide bv zero //
1F (F(K) .GE. 1.0000) F(K) = 0.99¢99
IF (F(K) .LT. 0.00001) F(K) = 0.00001
EOF(K) = (A(K)-F(K)) * (INV(T+K))**.5

// Sum to Compute the MAD and MSE //
MAD(K) = MAD(K) + ABS(EOQOF(X)/30)
MSE(K) = MSE(K) + (EOF(K)**2)/30
123 CONTINUE
WRITE(12,124) (EOF(K), K=1,4)
124 FORMAT (2X,4(F12.5))
ENDIF
IF (QTR .EQ. 0) QTR = 4

* // Check Stopping Rule //
IF (T .LT. TMAX) THEN

// Record the old Seasonal Values //
DO 127 K = 1,4
SOLD(K) = S(K)
127 CONTINUE

* /7 Update New Seasonal Values based upon Continuation’’
DENOM = 1
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DO 125 K=1,4
IF ((T+¥-4) .GT. O THEX
DENOM = DENOM > D{T+k-4)
ELSE
DENOM = DENOMw#=«?
ENDIF
123 CONTINUE
DO 126 K=1.4
IF ((T+F-4) .LT. 1) GOTO 1246
IF ((QTR+¥)Y .LE. 4) THEX
S(QTR4E) = (D{T+K-4)  / (DENOM»* 25)
FLSE
S{K+QTR-4)
ENDIF
12¢ CONTINUE

I

i

(D{T+K-4)) / (DENOM=#% 23

/

/7 Complete Weighted Update of Seasonal Values /7

DO 128 K = 1.4
S(KY — (S{H)**BETAY & (SOLDM#*(1-BETA
128 CONTIXNUE

(&)

o |
i
-
-+
b

/ **Continue Iterative Process#» //

GOTO 94a
ENDIF

100 CONTINUE

WRITE (14 ,1001) (MAD(E», B-1.45
1001 FORMAT(2X.4(F12.3)

WREITE(15,1002) (MSE(E). F=1.43
1002 FORMAT(2M .4(F12.5)"
1 CONTINUE

STCP

EXNI




TABLE 1. MOS GROUPS

APPENDIX C

Group Name MOS's Sm Lrg Mjr
MOS MOS MOSs
Grp | Grr |Grp !
Combat 0302 1 I
1 ;

Combat Support 0802 1302 1802 1803 2
Combat Service 1 0108 0202 2502 2602 3 1 }‘
r
Combat Service 2 3415 4002 4302 5803 4 5 ’
Combat Logistic 0402 3002 3060 3502 6002 | 5 ﬁ
Air Control 7204 7208 7210 7320 6 I

Fixed Wing Pilot | 7501 7511 7522 7542 7543 | 7

7545 7576 3
F-18 Pilot 7521 7523 8 ;
Rotary Wing 7556 7557 7562 7563 7564 | 9 2
Pilot + 7565 7566 |
4 1
NFO + 7508 7509 7581 7583 7584 | 10 ’
7585 7586 7587 7588 i
Basic Ground 0101 0201 0301 0401 0801 ?
1301 1801 2501 2601 3001 | 11 I
3401 3501 4001 4301 4401 ;
5301 6001 7201 7301 9901 ;
. 5 3 !
Student Aviator 7580 7597 7598 7599 12 |
i
l
Basic Pilot 7500 7510 7520 7540 7550 | 13 :
7560 7575 (
Lawyer 4402 14 6 4 l
!
9g




TABLE 2. YCS EXPANSION BOUNDS

! MOS Groups Small MOS YCS Group Bounds

! Groups

== —

i Fixed Wing 7. 8, 14 (1-6,8-19) (7, (20-25) (26

ﬁ Pilots, Lawvers

| Rotary Wing 9, 10

| Pilots, Naval (1-5,8-19) (€,7) (20-25) (2¢)
E Flight Citicers

© ALl Others 1-6, 11-13 (1-3,6-19) (&4,5) ( 0-25; (26>
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