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Itis desired to transfer vibration damping technology in a timely manner within the aerospace
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An Identification Technique for Damped Distributed
Structural Systems Using the Method of Collocation

R. Chanderl, M. Meyyappa2 and S.V. Hanagud3
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ABSTRACT

An identification scheme in the frequency domain, suitable
for one-dimensional distributed structural dynamic systems with
damping is considered. For this purpose, the form of a model
representing the behavior of an Euler-Bernoulli beam is assumed
to be known in the frequency domain. Also, the response of the
system 1is assumed to be given at discrete locations along the
beam. Quintic B-splines are then used to obtain a continuous
representation of the response and its derivatives. The system
parameters appearing in the governing differential equation are
considered to be spatially varying functions. Cubic B-splines are
used to approximate the parameter space, and their derivatives
are obtained from such approximations. The method of collocation
in conjunction with the equation error approach is then used to
estimate the unknown parameters, which are the unknown
coefficients of the parameter splines. A numerically simulated
response of an Euler-Bernoulli beam in the presence of viscous
damping is considered to validate the identification scheme. The
estimated values of mass, stiffness and damping are discussed.

1 Aerostructures, Inc.
1725 Jeff Davis Hwy. Suite 704
Arlington, VA 22202.
(703) 979-1600
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INTRODUCTION

Damping 1is inherently present in virtually all types of
structures encountered in practice. Hence, an adequate
regresentation of damping and suitable methods to accurately
quantify it are essential. In the recent past, there has been an
increased interest in the study of distributed damping. For
structures  that can be modeled as continuous systens,
discretization reduces modeling accuracy. In such cases, if the
form of a model representing the physical system is known along
with the initial and boundary conditions, tha actual dictributed
system itself can be considered without resorting to
approximations. A distributed representation is likely to yield
more accurate predictions of the system behavior. Identification
techniques suitable for distributed structural dynamic systems
have been reported in the last decade [References 1-8].

At nresent, there are only very few techniques available to
identify the unknown parameters of distributed structural
dynamic systems in the presence of damping. Among these, the
finite element and spline-based techniques have received
considerable attention. The finite element techniques are
primarily concerned with systems that include proportional or
general viscous damping. A detailed discussion of such methods is
presented in Reference 9. In the spline-based technique, time-
domain data of the systems are used. The parameters are
considered to be either constant or spatially varying functions,
and also include different damping mechanisms [Reference. 5]).
Also, in most of the available techniques some of the parameters
are assumed to be known a priori.

In this vein, an identification technique that employs
frequency dJdomain data is discussed in this paper. For this
purpose, the form of a model representing a distributed dynamic
system within the framework of the Euler-Bernoulli beam theory
was assumed to be known. The damping of the system was included
using the linear viscous damping model. Also, the acceleration
response was assumed to be given at discrete locations along the
beam. The parametars appearing in the model were taken to be
spatially varying functions. Quintic and cubic B-splines were
then used to obtain approximate representations of the response
and parameters, respectively. Their higher order derivatives were
then obtained from such representations. These approximate
functions were then substituted in the original distributed
modei, and using the collocation method a set of algebraic
equations was obtained. The equation error approach was then used
to estimate the unknown parameters, which are the coefficients of
the parameter splines. The validity of the identification scheme
was demonstrated using numerically simulated data, and the
estimated values of mass, stiffness and damping are discussed.
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For this purpose, none of the parameters vas wos>uned to be Known
a priori.

PHYSICAL SYSTEM MODEL

The primary objective of the work presentad 1.1 this paper
was to develop an identification schease sultewis for a one~
dimensional dynamic system in tuae piezeccs 2 danping.  The
dynamic system was assumed to pe modelad within tne framework of
the Fuler-Bernoulli beam theory. The external damping to the
system was included using the linear viscous damping model. A
form of the equation governing the behavicor of sucn systems was
assumed to be known a priori in the freguency domaln and can be
written as follows:

a2 /ax2 [El(x)dza*(x,w)/dxz} s

[julh (k) - wlqA(x)]a(x,w) = -wlF(x,w) (1)
where a*(x,w) is the acceleration response dus to the applic
forcing function F(x,w), x is the axial dictance, and w» is the
frequency in radians/second. The beam was assumed to be
cantilevered at x=0 and free at x=L, where L is the length of the
beam. EI, Cy and pA are the stiffness, damping and mass
distributions, respectively, and were assuwed to be continuous
functions in x. These are the unknown parameters to be estimated.
Also, in equation (1), the initial conditions wecre taken to be
equal to zero.

Due to the popularity of acceleration as the most often
measured quantity, it was chosen as the response variable in the
model. For identification purposes, it was assumed to be known at
as many frequencies as required. In general, it is not possible
to have a continuous measurement of the response, hence it was
assumed to be known at only a discrete number of locations. From
this information, an approximate continuous representation was
obtaired and used in the identification scheme. To this effect,
quintic B-splines were used to obtain a continuocus response from
the discrete data at each frequency.

Also, each of the parameters appearing in eguation (1) was
approximated using cubic B-splines due 1o their continuous
nature. The task of parameter identification then reduces to
merely estimating the unknown coefficients of the cubic spline
functions. The method of collocation in conjunction with an
equation error approach was used for this purpose. Frequency
response functions at discrete locations along the length of the
beam for an impulse lcad applied at a known locaticn were used a:c
the data in the identification schene.
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expressions satisfying the cantilevered boundary corditions were
used in this paper.

$1(x) = B12(x) - (9/6)B_1°(x) + (65/2)B.5°(x)

S

$2(X) = Bo2(x) - (L/8)R 1 (x) + (57608 32 (x

p 5 D - : P
¢N(X) - By (X) 4 (3/2)Bny K)o+ ST RN SN
5,

{

ON-1(X) = BN 17(x) - 2Bnyp ()

BN-2(X) = By.p (%) - (1/7)Pnyy (%

$i(x) = Bis<x), | T T R (s)
Substituting the expressicns for 4;(x; tfrom equatiocn (%) in
equation (2), for a given set of measured responses at the knot
locations i=0,1,2,...,N at a given frequency, the coefficients

aj(w) in equation (2) can be uniquely obtained. The higher order
derivatives of the response involved in equation (1) could then
be simply obtained by differentiating equation (2) as many times
as required.

PARAMETER SPLINES

The unknown structural parameters present in equation (1)
were represented as follows.

M
8P (x) =T ;P ci(x), p = 1,2 and 3.
i=0 (6)

where <1), 6(2) ang ¢(3) represent EI, Cy and pA, and ﬁi(l), &1(2)
and 44 are their corresponding coefficients. The value of M in
equation (6) depends on the number of knot locations at which the
parameters were identified. For a rapidly varying cross-sectional
beam, a large value of M 1is required for an accurate
identification. In the present case, the number of locations at
which the parameters were to be identified was taken to be equal
to the number of locations at which the response was known. The
approximating basis functions Ci(x) were taken to be cubic
B-splines and are defined as follows [Reference 10].

ci3(x) = 1/m3 {(x—xi_2)+3 CA(xeXi) e+ b(xexg),

1

LOXERD) 0 (g (7




where

3 i .
(X-X{)47 = XXy, it x =z x4
O, otherwise

Since the parameter Knots were assumed to ccincide with that
of the response knots, eguation (6) could be rewritten as

, N+1 i
8P ey = Va4, P o (&)
PN

1= -y

To obtain a unigue soliuticn for the dj’s 1in equation (8), the
following interpolatory cenditions were to he satistied.

P B! BN .t,_\!>,
s txy o= 1 ‘ + { i (%) U Wy
- ! N+l N+l
ip! ip i (p)
bl twy o= d i b 4 SR + d [ (x PR
! i ; N+DON+]
o (p P! 1)
o (x; = d ERCE O & I T o I vd 0 (=) AT X e Xnao
! -1 ) Q N+l N+L
“ip! pr (pr (p) ’
M po= o 1 v CoowY o4 +d L ) YOX e Ve
! i ) N+1 5v)

£9)

where a " ’ " de.ntes the firest derivative with respect to the
. . . R
axial coordinate. Now, define a vector (& Y’y as

The above vector, which also includes the firat derivatives of
the parametors ¥ ) oand w-l, Is the unknown quantity to bhe
identified.

(A

IDENTIFICATION BCHEME

Equation (9) can be written in the matrix form as




s
—
S~

. . » . - o . . R
Substituting from equation (11} for (Jd'P'y, ejuatics (80 a3 its

derivatives were written in the matrix form as

6P (x) = jcoon T hostery

8 Py~ oo Tt b
8 P (x) = e o Tiet T ate (12
Equation (12) was evaluated at the knot locations .o, ., an=d
the following equations were obtained.
8PY oy = pTia i g
¢ Py = o TP ar ke
67 Py = (urTiatP)y at weyy (13)
where
(Pt = (c(x)1Tcty ! at xexp
QT = ¢ e Tery ! at X=Xy
(Rt T = ¢ e Tic* b an ey (14)

The dimensions of each of the above vectors is 1 « (W+3).

A term a*kl was defined as the guantity a*(x,.) in equation
(3) evaluated at a given location x; and fregquency «j. Eqguation
(13) was combined with this definition, and equation (1) was
rewritten as follows.

NI 3

lPk)T(G*(l))(a*kl)”” + 2{Qk)T(6 Ca ) + ';RkﬁT(t? i +

(Pt T w1 20630y 4 50p16™(2))) 2% = By (15)

where Fy) 1is the force appl%ed av location xp ana at treguency
wi. In equation (15) both a’y; and Iy, are complex quantities.
Hence, they cculd be separated intc real and imaginarv parts as

* R 1
a Ll maykl tjagl
and R .
Frp = Fxr + JF e

(9]

Using the above definition, equation (1
written as

could be tinally

A=




R e1Re) T 01’ (R3) g o (D)
(2) FRyq
') -
I
Fr1
(Rz)Tkl wl(R3)Tk1 -wlz{RalTkl 9(3)
(17)
where
R = P T 2@ T
(Rk)T(aRk1)"
(R Ter = (r Tl v 2Tl T 4
(Ri) Tl
(R3)Tp = (P T(alyy)
(Re) 1 = (P T (alyp) (18)

Equation (17) was obtained for a single frequency. Similar sets
of equations could be written at other frequencies. Combining the
different sets at various frequencies, the resulting equations
could be written as follows.

(Cglt8) = (Fg) (19)

[C¢y] 1is the coefficient matrix of dimension 2(N+3)n x 3(N+3),
where n is the number of frequencies used in the estimation. (4§}
and {Fy) are respectively the paramster and force vector of order
3(N+3). A least-square soiution {4} for equation (19) could be
written as follows.

1 T

(6%) = CoL cp ¢4t Fy (20)

NUMERICAL REBULTS
The identification scheme discussed in the previous section

was demonstrated using simulated data for a cantilever beam with
the following properties.

L = 0.61m
EI(x) = 18.01%10% _1-(x/2L)]% ~-m?
pA(X) = 4.22 [l-(x/2L)]1% N/m
Cy(x) = 17.3 [1-(x/2L)]% N-sec/m?

The above parameter distributions correspord to a beam of
linearly varying cross section from tip to root, with the
dimensions at the tip being half of those at the r»ot. The beam

A




was subdivided into 12 regions (N=12), and an independent finite
element program was used to calculate the response at the
resulting 13 knots. The assumed impulse was applied at the eighth
interior knot xg (Figure 1). The first three natural frequencies
of the beam determined from the finite element program were found
to be 36.9Hz, 155.9Hz and 387.4Hz, respectively. In the
identification, the frequency response data in the following
frequency bandwidths at 1Hz inter/als were used:

25-34Hz and 39-48Hz (regions surrounding the first mode)

144~153Hz and 158-167Hz (regions surrounding the second
mode)

376~385Hz and 390-399Hz (regions surrounding tine third mode)

Including the data in the immediate vicinity of the modal peaks
resulted in less accurate estimates of damping, hence they were
oritted. The probable cause for this phenomenon is the fact that
the frequency response function tends to vary rapidly around the
modal peaks for lightly damped structures, increasing the error
in the response close to the peak regions. This in turn could
significantly reduce the parameter estimates.

It can be seen from Figures 2-4, that the estimated values
are in excellent agreement with the actual values used 1in
generating the frequency response functions at the interior
knots. Unacceptable mass and damping estimates at the root
location were obtained and are not shown in the figures. This
phenomenon may be due to the little or no contribution of these
parameter values at the root to the error in satisfying the beam
differential equation. Since the parameters are calculated by the
subsequent minimization of this error, the procedure yields
highly inaccurate estimates at these locations.

SUMMARY AND CONCLUSIONS

A spline based identification technique in the frequency
domain that is suitable for damped distributed structural dynamic
systens was developed. A beam whose behavior can be modeled
within the framework of the Euler-Bernoulli beam theory was
considered for the identification scheme. The parameters were
allowed to vary linearly along the length of the beam. The
infinite-dimensional response and parameter spaces were
approximated by quintic and cubic B-splines, respectively. A
Galerkin type weighted residual procedure was used to estimate
the unknown parameters. Simulated frequency response data for an
impulse applied at a known location were used to validate the
technique. Acceleration response data around the first three
modes of the beam were employed to estimate the mass, stiffness
and damping properties. None of the parameters was assumed to be
known a priori. The estimated results showed excellent agreement
with the actual values at all the interior locations of the beam.
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Correlation Techniques To Determine Model Form In
Robust Nonlinear System Realization/Identification
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ABSTRACT

The fundamental challenge in identification of nonlinear dynamic systems is determining the
appropriate form of the model. A robust technique is presented in this paper which essentially
eliminates this problem for many applications.

The technique is based on the Minimum Model Error (MME) optimal estimation approach.
A detailed literature review is included in which fundamental differences between the current
approach and previous work is described. The most significant feature of the current work is the
ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the
nonlinearities, in contrast to existing nonlinear identification approaches which usually require
detailed assumptions of the nonlinearities. Model form is determined via statistical correlation
of the MME optimal state estimates with the MME optimal model error estimates. The example
illustrations indicate that the method is robust with respect to prior ignorance of the model, and
with respect to measurement noise, measurement frequency, and measurement record length.

1 Graduate Resarch Assistant; NASA Graduate Researcher
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INTRODUCTION

The widespread existence of nonlinear behavior in many dynamic systems is well-
documented, e.g, Thompson and Stewart [1]; Nayfeh and Mook [2]. In particular, virtually
every problem associated with orbit estimation, flight trajectory estimation, spacecraft dynamics,
etc., is known to exhibit nonlinear behavior. Many excellen: methods for analyzing nonlin-
ear system models have been developed. However, a key practical link is often overlooked,
namely: How does one obtain an accurate mathematical mode! for the dynamics of a particular
complicated nonlinear system? General methods for actually obtaining accurate models for real

physical systems are not nearly as widespread or weil developed as are the techniques available
for analyzing models.

Accurate dynamic models are necessary for many tasks, including basic physical understand-
ing, analysis, performance prediction, evaluation, life cycle estimation, control system design,
etc. For example, most filter design assumes white process noise, yet many nonlinear effects are
inherently non-zero mean; e.g., quadratic nonlinearities are always positive. In order to obtain
a model with truly zero mean process noise for filter design purposes, ali of the quadratic terms
(and many other norlinearities) must be well modeled. However, the complexity of many real
systems greatly diminishes the possibility of accurately constructing a dynamic model purely
from analysis using the laws of physics.

Identification 1s the process of developing an accurate mathematical model for a system,
given a set of output measurements and knowledge of the input. Many well developed and
efficient identification algorithms already exist for linear systems (e.g., [3]-{7]). These often
may be employed to model nonlinear systems when the system nonlinearities are small, and/or
the system operates in a small linear regime. However, linearization does not work well (if
at all) in every application, and even when it does provide a reasonable approximation, the
approximation is normally limited to a small region about the operating point of linearizaton.
Consequently, there is a real need for nonlinear identification algorithms. If nonlinearities are a
predominant part of a system’s behavior, using a linear model to describe such a system leads
to inconsistencies ranging from inaccurate numerical results to misrepresentation of the system’s
qualitative behavior. Many important characteristics of nonlincar behavior, such as muliipic
steady-states, limit cycles, hysteresis, softening or hardening systems, chaoz, tc., have no linear
equivalent. Since nonlinearities are seldomly easily characterized, identification techniques may
prove beneficial in developing accurate mathematical representations of nonlinear systems.

Numerous methods for the identification of nonlinear systems have been developed in the
past two decades. Many of these techniques are reviewed in Matke, Juang and Gawronski [8],
Billings [9], and Bekey [10]. Most methods fall iato one of the following categories:

O describing the nonlinear system using a linear model

O the direct equation approach

O representing the nonlinear system in a series expansion, and nbtaining the respective coef-
ficients either by using a rezression estimation technique. bv minimizing a cost functional,

TN




by using correlation techniques, or by some other approach

00 obtaining a graphical representation of the nonlinear term(s), then finding an analytical
model for the nonlinearity

With such diversity of nonlinear identification techniques, the choice of a particular algorithm
may be based on criteria such as: the degree to which prior assumptions of the model form
affect the user’s effort in applying the algori:hms; the number of iterations required; the
sensitivity to the presence of measurement noise in the data; the number of state measurements
needed; whether or not knowledge of the initial conditions is required; the kind of forcing
input(s) required or permitted (step, white gaussian noise, sinusoidal, etc.); the ability to handle
hysicritic or discontinuous nonlinearities; the degree of a priori knowledge of system properties
required; and the computational requirements. Most algorithms differ widely in at least some of
these comparisons; the choice of a particular technique depends on the needs of the particular
application.

Among the methods which linearize the nonlinear system are those presented by Jedner and
Unbehauen [11] and Ibanez [12]. Jedner and Unbehauen represent a nonlinear system, which
may often operate in smali regions around a number of operating points, by an equivalent number
of linear submodels. It is assumed that the system operates at only a few points. Although the
model may work well for controller design, the points at which the system is operating must be
known and the linear models apply only within the operating regions. Ibanez takes a slightly
different approach by assuming the system response to be periodic at the forcing frequency. An
approxiimate transfer function is constructea. ‘the transfer function is dependent on the amplitude
as well as on the exciting frequency and is valid only within the region of exciting frequencies.

The direct equation approach is used by Yasuda, Kawamura and Watanabe [13], [14]. The
input and output measurements of a dynamic process are expressed in a Fourier Series using, for
example, an FFT algorithm. The system nonlinearity is represented as a sum of polynomials with
unknown coefficients. Applying the principle of harmonic balance, the polynomial coefficients
as well as the other system parameters are obtained accurately. Knowledge of the nonlinearity
is needed to construct the polynomial. Truncation in the Fourier Series expansion of the input
or output may lead to error.

The regression estimation approach is used by Billings and Voon [15) and Greblick and
Pawlak [16]. Billings and Voon use the NARMAX model (Nonlinear Auto Regressive Moving
Average model with eXogenous inputs) to represent the nonlinear system. A stepwise regression
method determines the significant terms in the NARMAX model. Then a prediction-error
algorithm provides optimal estimates of the final model parameters. Greblick and Pawlak
represent the linear dynamic submodel by an ARMA model and the nonlinearities by a Borel

function. A non-parametric kernel regression estimation is employed to obtain the final analytical
model.

Kortman and Unbehauen [17] and Distefano and Rath [18] use the minimization of an error
cust function o5 a means of obtaining the coefficients of the functions used to represent the
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system are then estimawd using .cast squares. Even though the algoritiin woiks weil :n the
presence of noise, the nonlinear form must be known a priorl.

Methods for the identification of nonlinear systems have also beer de-cicpsd based on
the extended Kalman filter. The extended Kalman filter 1s the iinzar saman flter applied
to nonlinear systems by linearizing the nonlinedr maodel into 4 tayior sevies expansion about
the estimated state vector. Yun and Shinozaka {25} apply the =xiended Kalmar filter for the
parameter estimation of a quadratic termn. The state vector is augmented by including the
unknown parameters in addition to the state variables. Through a szries of iterations. the response,
as well as the unknown parameters, are estimated by the Kalman filter. Amoeng its disavantages
are high sensitivity to initial conditions, in particular if the nitial conditions are barely known.
The nonlinear form must be chosen a priori in order to estimate the corresponding parameter(s).

Hammond, Lo and Seager-Smith [26] use an optimal control technique based on optimal
control methods employed for linear system deconvolution. The form of the linear model is
assumed to be known as well as the input and the output. A cost functional consisting “of
the weighted sum of the square ¢f the error (between the actual and esumated output) yields
an optimal estimated inpui. The estimated input and the actual inpui are used w vviain the
nonlinearity as a function of the state variables. Although no previous assumption is made of
the nonlinearities, there is no provision to deal with noise.

All of the techniques outlined above have proven useful in certain applications. However,
all of them are subject to one or more of the following shortcomings:

1. The form of the nonlinearity (quadratic, cubic, exponential, etc.) must be assumed a prior.
This is a very serious drawback, because the identification algorithm can only attempt to
find the best model in the assumed form. If the form is assumed incoirectly, the resulting
model may be so poor as to be useless, or it may appear to fit the data well enough that
the user erroneously concludes that the correct modeil has been obtained. Atso, for many
techniques of this type, the effort required to test a given form is considerable, which greatly
diminishes the effectiveness since multipie form tests are less likeiy to be conducted.

2. Techniques which attempt to avoid the problem of a priori model foar assumption through
the use of series expansions generally eliminate any possibility of understanding the under-
lying physics. Thus, although a good fit of the data might be achieved using a sufficient
number of terms in the series, physical insight is lost. Moreover, large sysiems and/or par-
ticularly complicated behavior may require that a very large number of terms be used to
obtain a given level of accuracy.

3. The presence of noise in the measurement data is not nigorousty treated, yet noise 1y gonerally

unavoidable.

4. Initial conditions must be known in order to implemeni the algonthm.

5. The algorithm can only be impleniented if the data is cbtained using Yoy spedidic svstem
excitations.
The algorithm of the current paper compures tavoribiy with exisiing elgonitras o mest of
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the categories listed above. It s rebust with eapest 1o mmacure Tl tnes nim TEQUITE
knowledge ot the intiai conditions; is independent of the {Sroing (b, o 0 nedueds, assumes
that it is known); is not computationally prohibitive; and, most fimporveaiy, i reguires minimal
a priori assumptions regarding ihe form of the model or the systom properties in 3207, using the
correlation technique outlined in the next section, the algorithm oy
to ever assume the nonlinear model form.

i'ninates the need

The identificaticn algorithm is based on a combination of Min‘rmum Mode: #ivor (MME)
state estimation, correlation techniques, and least squares. MME was frst o sembed 2 Mook
and Junkins {27]. The MME combines the available measwemente snd an aszinned model of
the system to produce optimal estimates of the states and the modei emror. The astumed model
represents an initial attempt to modei the system using direct analysiz, bul may be extremely
poor. Given the noisy output measurements of the system, MME estimares (0 stite histories as
well as the error in the assumed model. In previous work, the correcr form and corresponding
parameters of the nonlinear mode! were then estimated in a tial-and-error {ashion, by assuming
a nonlinear (in the states) form of the error terms, and then determining the best least-squares
fit between the state estimates and the model error estimates. Thus, althoigh e ¥ME portion
of the algorithm did not require the moedel form 1o be assumed, the subseguent e as-squares fit
between the state estimates and ihe model error estimates did. In Mook [28] i1 was shown that
this approach could accurately identify terms in a Duffing oscillater. in b+ greserce of noise and
sparse measurements. The method worked well even when only o cmde nioxiel of the dynamic
system was assumed, ard the error model used for the least-squares fit contained numerous terms
in addition to the correct one(s). Later, in Mook and Siry [29]. a su»ple barmonic oscillator
with quadratic feedback was simulated on an analog computer. The algominin was shown to
accurately icentify the nonlinear model from analog measuremoats

In this paper, the identification of the model from the MME-produced »uzie ang model error
estimates is improved by usinz comrelation technigues o selet e form ~\i P OOl T e,
The correction terms, when added (o the ninally assumed model, yield v e wouct of the
systeri. The correction terms may consist of & canpination of lincm 2l 0

iy

pingar luaciions.
An extensive library of linear and nonlinear functions has been awrmbizd. The correlation
technique is used to sclect the true forms from the library. Gven w'eon ohe true foom of the
nonlinearity was not present in the library, the correlation techricn s oe s Jhe closest formys),
typically. the first term{s) in the Tavior Series expansion. Oroe oo orae, o ee bren selected by
the correlation algorithm. wasr squnres s used to deserraine ‘

TSR

IDENTIFICATION ALGORITHM
In this section, the identiication algonthm 1s explumed. Firs, S0 Mol wechmque is brniefly
reviewed, and then the correlation technique used to automare oo w27 ey Aewermination s

explained in detail

The MME may be sumimariced as foillows (o mere foeat 7 esses may he found




in Mook and Junkins [27]). Suppose there 1s a nonlmear system whose cxaci analynaeal
representation is unknown, but for which output 'neasurements are avaiable. Using hawever
means are available (analysis, finite elemcats, etc.), a system model is consurucred. As shown
in [27]-[29], the MME works well even if this systemy imodel 1s poor. The MME combines the
assumed model with the measurements to produce optimal estimares of ¢ the Ltie trajectories,
and (ii) the error in the model. In the present work, thess ste dae mesde! eooor esdinates are
used for system identification.

Consider a forced nonlinear dynamic system which may be modeled 1 state-spece form
by the equation

Z(t) = Az(t) + E{t) + fla(t), 2(0)) (1)

where z(t) is the n x 1 state vector consisting of the systein staics, 4 Is die » < 1 siate mauix,
F(t) is an n x 1 vector of known external excitation, and f{«c(i),2(¢)) s an n < 1 veotor which
includes all of the system nonlinearities. Statc-observable discrete time domain measurements
are available for this system in the form

F(te) = g (2(te),te) v, fo S e S Uy (2)

where §(t;) is an m x 1 measurement vector at ume ti, g, is the ac-urate medel of the
measurement process, and v, represents measurement noise. », is assumed to be a zero-mean,
gaussian distributed process of kncwn covariance R, The measurement vector y(t,) may
contain one or more of the system states. To implement MME, assume that a mcdel, which
is generally not the true system model because of the difficulties inherent in obtaining the true

system model, is constructed in state-vector form us
z(t) = Az(t) + E(¢) (3)

Here, we show a linear model because in practice, lincurization is the most cemmion approach
to modeling nonlinear systems. MME uses the assumed linear madel in Eq. (3) and the noisy
measurements in Eq. (2) to find optimal estimates of the states and ot the maodel error.

The model error, which includes the unknown nonlinear erms of the svstem. 135 represented
by the addition of a term to the assumed linear model as

(t) — Az(t) + Fit) + d(t) (4)
where d(t) is the n x 1 model error to be esiimuicd ziong with the sates,

A cost functional, J, that consists of the weighted integrnd squure of the e eora i plas
the weighted sum square of the measurement-minus-estimated measurement restdudia, s fonned:

M .
J = Z{{g(u) ~ g TR G) g ) 10
k=1

S




where M 1s the number of vedsaremertumes std) v e oo L R S T

H d
weight matrix 10 be deteriinod
J s minimized with respect (o the mode! errar torr, 470 Y : SRR

minimization lead to the following two point bourdary volve oet o s Cicering

{301),

z(t Az(e) - Ft) s dit) {5a)
At ATy (5h)
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cL
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where A(t) is a vector of costutes (g R , P e miodeld
error are prodaced by the soiuuon of iy two Dot Do T e e e e estimales

depend on the particular vaiue of 37 The woluion s repea soue ot e ohraiped

HS

which produces state eximuics whion Sotisty the “ornroe o 0 s L T,

According to the covinanie constani, the tcasaress o o SO mzasurement
residual covanance murrix muss match the measivement o 0 - S urieace matrx,
This may be written as

Y t B : /,”,! Pt lr* A - ' - 6
Z_J( k- sz_‘w,_i:,(.‘-':.‘l k; EA“\:," Jr‘\ R '())
During the minimization v weieht Woicvaried unat the sove o0 - 0 0 e e pon sance

constraint, 1e., the left nund side of Bg. vy v approsumetedy « poen o e et s ade The

model error s, therefore, the mamamuom adiostment e e pusder co eted srates
to predict the measuremo et woh aperogpately the wase oo e W LTI N 87T,

The TPBVP reprosein o v, Maso /Stcontor g : S eneeguently,
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a change in the other variable. The cross-correlation coetticient between two discrete variables,
say z and y, is defined as (see Newland {32} or Wite {33))

. :
=108 - 2)(y - y)
C(z,y) = &2=L - (7}
oLoyNn
where n is the number of data points and the o erbar denov the mics of those 10

is the standard deviation cf the variable z and is defined as

C(z,y) is a measure of the linear relationship between variables = and y. The value of ¢ 1oy
lies in the range —1 < C(=z,y) < 1. If, for instance, changes in the value of z correspond 1o
perfectly predictable (linearly) changes in the value of y, where the changes in both vunubies
are of the same sign, then the value of C(z,y) is 1. If the changes are of opposite wivn but
still perfectly predictable, then the value of C(z,y) is -1. If changes 1n the values of z and y
tend to correspond in sign but are not perfectly predictable, then 0 < C(z,y) < 1. If changes
in the vaiues of z and y tend to be of opposite sign but are not perfecly predictable, then
-1 < C(z,y) < 0. If there is no linear relationship between the values of z and y, then
C(z,y) = 0. For example, suppose z and y are multiples of each other, z ~ K =y, where K
is an arbitrary constant of proportionality. Then
n =12
Clay) = &Eam 2] (8)
Zj:x K(:Ej - z)?

The true functional form of the model error can be found by calculating the correlation ot the
MME model error estimates with functions of the MME state estimates. If the tunctional torm of
the actual system is used, and if the estimates from MME are perfect, then C(z,y) - 1.0. Thus,
an algorithm may be constructed which performs nonlinear system identification by (1) utilizing
the MME to process the available measurements and the inttial model in order to produce state
estimates and model error estimates, and (ii) testing the correlation between the state ostiniates
and the model error estimates using a “sufficient number™ ot functional forms so thuat the sctual
form is included among those tested. The MME does not require that the correct tarm of the
model be kncwn a priori. The correlation tests may be performed using an existing hibrary of
nonlinear functional forms, without input from the user. Thus, if the librarv is conipicte in
the sense that it contains the actual model form), the identification of the nonlinedr model is
accomplished, yet at no point in the algorithm is the user required to assume the corrert model
form.

The success of the algorithm is determined by the ability of the MME (0 prodice o

R
state and model error estimates, and by the completeness of the library of nonlinear tuncions
to be used in the correlation test. We now address these issues in order.

The MME has been shown to consistently produce suite and model error estimutes of high
accuracy in the presence of high measurement noise, low measurement frequencs aind pocr
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initial model [27-29]. Generally, however, some noise is still present in both the state estimate
and the model error term, although these noise levels are considerably less than the noise in the
original data. Let the model error term be given by Zcorrection = © + £ where £ is the noise.
The cross-correlation between the error term and the test functicn y becomes

Cla,y) = Yz =)y —9) + 200, f(yj - ) .10 (@

noyyJo + L Y0, (2%(z - 2) + € ’

As long as the noise is negligible all terms containing ¢ are small and affect the resuit only
slightly. Thus, the correlation calculated for the actual function is close to, but not exactly equal
to, 1, while the correlation calculated for incorrect terms remains cloze to 0. If the level of noise
.s excessive, say, of comparable magnitude to one or more of the actual nonlinear model terms.
then the ability of the correlation test to distinguish this term from similar wrms may be greatly
reduced or eliminated. However, subsequent least-squares fit of the terms hoy, in every case
tested, correctly selected the actual nonlinear function from among those which the correlation
test could not distinguish. An example of this is shown in the next secton.

The issue of completeness of the library is now addressed. The error term may be composed
of more than one function from the library, or the actual function may be missing from the
library. Consider first the case where the actual error is a combination of tibrary terms, say, two
terms. The error term may be WIitten Zcprrection = 1 + 9 and the cross-correlation has the form

Yoz — &)y — 9) + 2t (205 — Z2)(y; — §)

C(z,y) =
na,\/a,,z + 02,2 + ,l, Sok=12(zik + 21)(zon + Z2)

(10)

The cross-correlation is highest for the term which constitutes the 1argest part of the error. Thus,
it is desirable to execute the algorithm iteratively. The library term which constitutes the largest
portion of the actual model error is identified first and then added to the MME model. The
entire process (including MME) is then repeated, so that new state and model error estirnates are
obtained (note that the change in staic estimates should be minimal, while tiie change in model
error estimates should be a large reduction in magnitude). The largest term remaining in the
model error is identified in each pass, then added to the initin]l MME m:.«",

An alternative to iterative application of the algorithm 1s to test the comrelation of combi-
nations of the library functions. An algorithm can be constructed which tests every possible
combination of the functions explicitly contained in the hibrarv. Thic approach has not been
attempted in the examples which rfollow.

If the actual model error is not present 1n the library, then test cascs show that the highest
correlaticn values are calculated for the terms in the senes expansion of the actual function.
Thus, for example, if t' actual model error was of the torm 2. (s} "ot sinf{zY was not present
in the library, the correlation coctiicients are highest for the ermis z. 7%, 2%, etc. However, the
test described by Eq. 7 is very fast, so the hbrary may contamn o vere isrge pamber of terms.




The final step in the identification procedure is to use a least-squares algorithm to fit the
model error to the functional forms (i.e., perform parameter identification once the true nonlinear
form has been determined). The error term is expanded into a combination of the functional
forms such as

d(t) = afi(z(t)) + Bfa(z(t)) + vfa(z(t)) + ... (11)
where a, B3, v, ... are unknown coefficients to be determined by least squares, and f,, f,,
f3, ... are functions which are selected as a result of the correlation test (often, however, only

one function is used at a time). Other parameters may be present inside the functions (such

as, for example, coefficients of exponents). Eq. (11) may be sampled repeatedly (using the
MME estimates) to obtain

d(t1) = efi(z(t1)) + Bfa(z(t1)) + 7 fa(z(t1)) + - ..
d(tz) = afi(z(t2)) + Bfa(z(t2)) + v fa(z(t2)) + ...

d(t;) = afi(z(t)) + Bfz(t))) + v fa(z(tr)) + ...

or, in matrix form,

Dy = MixpPpy (12)

where P =[a B v ...T isthe vector of coefficients for the terms in d(t). Since estimates of
d(t) are available continuously throughout the time domain, the parameter [ may be chosen quite
large to improve the least squares fit. Generally, because of the potential jump discontinuities
in the model error estimates at the measurement times, it is desirable to pick the least squares
sampling times in Eq. (12) at points other than the measurement tim--. The least squares
estimate is found by minimizing the following cost functional with respect to P:

®=[D-MPT[D- MP (13)
The solution is given by
P=(MTM)"*MTD (14)

If the functions include parameters to be estimated, the equivalent nonlinear least-squares problem
1s constructed.

The multiple shooting algorithm presented by Mook and Lew [31] was used to obtain the
MME solutions used in the tests presented in this paper. It was assumed in the examples that
MME obtained the dynamic error term without knowledge of the boundary conditions on z,
so some distortion of the correction term at the initial and final times was expected due to the
constraints of Eqs. (5e-5f), i.e., by assuming no state knowledge is available at ¢y or ty, we

constrain A(tp) = 0 and A(ts) = 0. Therefore, in all test cases, the initial and tinal ten percent
of the correction term data was ignored in the least squares fit.
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EXAMPLES

For illustrative purposes, the irae system was chosen as o simple barmonic oscillator with
various forms of nonlinear fecaback. T2 true Svatem can he madeiad o

N 0 IN(=\,{ 6
(‘U} (\_»—v-l 0) (‘v)w \j‘(:r,u)/} ( )

AN

—
o

where z is position, v is velocity and the dot indicates differentiation with respect w tine. For
simplicity, the system was unforced. The terrn f(z,v) reprosents the nonlinear terms 10 be
identified by the MME-based igentification algorithrr. Measutements were gergvated from the
true system, Eq. (15), with different kinds of nonlinear functions f{z v). The ability of the
identification algorithm to identify the mode] with no prior knowledge of [z o) is tested. Table
1 shows the functions used in each simulaiion. Note that the unknown ¢rror term may be a
combination of linear and nonlinear funcuons. Tabie 1 also shows the initzal conditions and the
amount of noise used to generate measurements for each test. The noise ievels represent the
percentage of the peak system response {actual percentages are higher fer the majority of the
measurements since the response is only ut peak ainplitude for brict peiiods,

Table 1
SUMMARY OF TEST CASES

TEST # | TRUE ERROR: f(xv) | x(©) 1 v | NOISE

1 3.0%x*x 0.175 0 0

2 01 F ¥ x*y 0.175 { - 0

3 -0.5*cos(x)*cos(v) 0.175 0 0

4 -1.0*v*sin(x) 0.175 0 : 0

5 1O0*x*x - 0.25%y 0.350 » TL G

6 Lok - O *an(v) | 0873 | L-CT—
7 -1.0/cos(x) - 1 O*sin{v) i 1.750) 1 ’ ‘~ _’l.«...._
8 R BN “‘;' __7::
9 SR Ux - DL.25%y ().350 ' ; %

10 MR - 01w N A

The assumed model used for the MTE saplyvas onsstes o0t vabanped inear oscillator
part of the syster,

N i 1Y [,
DN IS T (16)




For each test, 200 measurements of position were obtained from the digital simulation of Eq. (15)
at a sampling rate of 10 Hz. The functional form of the dynamic error, f(z,v), was determined
solely from the least-squares fit of the functions identified during the correlation tests on the
MME state and model error estimates obtained using only the model in Eq. (16).

A library of functions was built consisting of approximately 300 of the most commonly
found nonlinear and linear forms. For a particular test, after the model error term was found
from MME, it was correlated with each one of the functions in the library. The correlation test
of the entire library of functions did not take more than a few seconds to execute, since the
calculations are simple. The functional form of the unknown nonlinear term was chosen as the
one for which the absolute value of the cross-correlation coefficient was closest to 1. Table 2
shows the results for all 10 tests, including the true dynamic error, the highest cross-correlation
coefficient obtained, the corresponding functional form, and the respective coefficient computed
from the least squares fit. The star (*) indicates tests performed from noisy measurements.

Table 2.
IDENTIFICATION RESULTS FOR EACH TEST CASE

TEST# | TRUE ERROR(S) [ C(d(1),H | SELECTED L.S.

1 3.0*x*x 0.999 x*x 2.99

2 -0.1%x*x*y 0.999 x¥x*y -0.10

3 -0.5*cos(x)*cos(v) 0.999 | cos(x)*cos(v) -0.49

4 -1.0*v*sin(x) 0.999 v*sin(x) -1.00

5 -1.0*x*x 0.999 X*x -0.99
-0.25%v 0.746 v -0.24

I 6 -1.0*x*x*x 0.936 x¥x*x -1.00
-0.1*tan(v) 0.999 tan(v) -0.10

7 -1.0/cos(x) 0.927 1/cos(x) -0.99

-1.0*sin(v) 0.999

sin(v) -1.00

3.0*x*x 0.797 X*x 3.12
9+ -1.0*x*x 0.937 x*x -0.90
-0.25*v 0.772 \ -0.22
10* -1.0%*x*x*x 0.838 X*x*x -0.98

-0.1"‘tan$vz i‘Q.583 tan(v) -0.10

For tests 1, 2, 3, and 4, the exact form of the nonlinearity was contained in the library and
the measurements did not contain noise. The calculated value of C(d(t), f) was 1 for the true
forms. In test 8, the library contained the exact form of the nonlinearity but the measurements
contained significant noise. The correlation for the correct term was much higher than for any
other term, but was approximately 0.8 instead of 1 due to the noise. In the cases where the
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error term consisted of two functions but the measurements were noise-free (tests 5, 6 and
7). C(d(t), f) was close to one for both funcions after applying the algorichm iteratively as
described in the previous section.

When noise and more than one function was present in the dynamic error term (tests 9 and
10), the maximum value of the cross-correlation coefficients dropped cignificantly and in some
cases did not immediately identify the actual form over other similar forms. As an example,
Table 3 shows the top five cross-correlation values for the identification of the ien(v) term in
test case 10. Note that the functions with the highest cross-correlation values are all similar in
form to tan(v), and the corresponding correlation coefficients are of similar magnitude. Since
C(d(t), f) did not clearly identify tan(v) as the missing term, the five functions yielding the
highest C(d(t), f) values were individually least-squares fit to the model! error term. In all cases
(i.e., repeatiny this test for a number of different random noise samples). the function with the
smallcst least squares error cost was the correct function (tan{v)). Thus, the least-squares fit
of the parameters to the functional forms also serves as a second test if the correlation test is
inconclusive due to high noise levels.

Table 3.
HIGHEST CROSS-CORRELATION COEFFICIENTS
OBTAINED FOR THE TA:l(V) TERM OF TEST CASE 10

[_FUN_CH—ON—W LE- T L.S. costJ
tan(v) 0.583 -0.104 0.588
v 0.584 -0.119 0.623
V*Cos(x)*cos(v) 0.584 0150 | 0659
v*cos(x) 0.586 -0.126 0.607
sin(v)*cos(x) 0.586 -0.133 (_).E’Ei

The number of data points used in the MME algorithm was irrelevar' » long as there were
enough points to reasonably span the qualitative aspects of the uvstem (e ..., sinusoidal terms
cannot be identified if the data only spans a small fraction of the perind).

If the exact functional form of the dynamic error term was not in whe function library, the
correlation procedure would pick the first term in the Taylor Scnes capuansion of the exact form.
For example in a test case where the dynamic error teri corresponderd ) zxain(v) and z*sin(v)
was deleted from the library, the function with the largest C(d{t}, f) was « » v. Similarly, in
several examples which are not shown the magnitude of the tates. = and v, were small. Thus,
the trigonometric functions of position and velocity were appro<is 2io0v 30 1o the first term in
their Taylor Series expansions, t.e., cos(zj = 1.0, sin{z} = r. cosir i =2 1.9 and sin(v) = v. In
these cases, assumptions of linearity are clearly valid, and are not ot tyierest in the present work.




SUMMARY AND CONCLUSIONS

In this paper, an algorithm based on the MME estimation technique, coupled with correlation
tests and least squares, has been developed for identification of nonlinear systems. The results
of the examples indicate that the correlation technique applied to the MME-produced state and
model error estimates enables the form of the modei 0 be accurately determined, thus eliminating
the requirement that the form be assumed a priori. Once the form is determined, the least-squares
fit provides excellent parameter identification. In cases of high noise, where the correlation test
may not be able to distinguish the actual form from similar forms, the least-squares fit also
proved to be a reliable second test for determining the actual form.

At no point in the algorithm is the user required to assume the form of the model, representing
a tremendous advantage over existing techniques, including the previous MME-based work. The
MME does not require an accurate model in order to produce accurate state and model error
estimates, and the correlation tests are automatically performed on a large existing library of
functions. Additional functions and more sophisticated methods of combining existing functions
can be added to the correlation testing portion of the algorithm (the authors are currently pursuing
this), virtually eliminating the likelihood that the actual model error terms are not tested.
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SYSTEM LEVEL DESIGN AND ANALYSIS OF
TRUSS STRUCTURES DAMPED BY VISCOUS STRUTS

Y. C. Yiu
Structural Dynamics, Space Systems Division, Dept. 62-18, B/104
Lockheed Missiles & Space Company, 1111 Lockheed Way, Sunnyvale, CA 94089
Telephone : 408-742-4048

ABSTRACT

A procedure is presented to design passive damping into large truss structures
using viscously damped struts to enhance vibration attenuation or stability of
controls system. A method is derived from the equations of motion using
Rayleigh-Ritz method to relate the approximate contributions of a viscously damped
strut to the system level modal damping ratios and frequencies. Strut placement
locations, the total number of struts required and the damping characteristics of
struts can be easily identified and calculated. The procedure consists of three steps:
1) extract structural characteristics from the undamped baseline finite element
model, 2) on 2 mode by mode basis, perform damping design using the derived
equations to meet system level requirements and 3) update finite element model to
include damping mechanism and perform verification analysis using complex
eigensolution.
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INTRODUCTION

Truss systems are often used for large space structures because of weight efficiency. These
structures often have many flexible modes within the disturbance and control bandwidth. For
stringent performance requirements, tight joints are required for precision truss structures. The
intrinsic structural damping associated with this tvpe of structure may be very low (less than 0.1%
equivalent viscous damping!) and the dynamic responses under operational forces can be
significantly amplified. Passive vibration control is a cost effective and reliable way to suppress
dynam.ic responses and also provide additional stability margin to the controls system. Struts with
g?od stiffness and damping characteristics can significantly enhance the performance of this class
of structure.

Struts with imbedded viscoelastic muierials have been successfully designed, tested, and
integrated into truss structures?3. Viscoelastic materials are often frequency and temperature
dependent4. However, design procedure and approximate anal,ticai methods’ for this type of
structure have been quite well established. Test results from demonstraticn structural articles
compared favorably with analytical prediction3.

Precision struts with build-in fluid viscous damping chamber have been built and tested. They
were demonstrated to be quite effective in provided stiffness and damping®. This class of struts
can be characterized by a small nu..uar o1 frequency independent physical parameters. The
dynamics of this class of struts is well understood’. The analytical mciliods for structures with
viscous damping, though more complicated and not commonly used, has a solid mathematical
foundation. This paper presents a simple three-step procedure to design viscously damped struts
into a large truss structure. Based on the baseline undamped structural model, the most effective
strut placement locations, the key stiffness and damping strut parameters and the number of struts
required are determined. Only simple design iterations are required to optimize the design. The
engineering design is then verified by the rigorous analytical method.

ANALYSIS OF DAMPED STRUCTURES

It is essential to understand the analysis of a damped structure before designing such a structure
to meet the design objectives. A complex structure is modeled by a finite element model with nxn
matrices. The governing differential equations of a structure with viscous damping are given by:

Mu+Cu+Ku = pg) (1)

The damping matrix is due to viscous dashpots in the structure. The intrinsic damping is assumed
to be negligible or added at the modal level. It is unlikely that the dashpot locations and
characteristics result in a damping matrix which is mass or stiffness proportional, or satisfies
Caughey's orthogonality condition®. Classical normal modes do not provide uncoupled scalar
equations to Equation (1). The solution to Equation (1) is often obtained in the first order form by
rewriting the equation as:

[w o] [&] + [5 Ml 6] = (8]0 @




In order to uncouple the matrix equation, a complex eigenvaluc problem for the large 2nx2n
matrices? must be solved.

a5 -

Both the eigenvalues and eigenvectors are coinplex. The corresponding undamped natural
frequencies and modal damping can be computed from the complex eigenvalues:

; = ‘“vRiz + "Iiz (4a)

- AR,
& = 24 (4b)
;

The modal damping is embedded in the real part of the eigenvalue. For a passive stable system,
the real parts of the eigenvalues are always non-positive. The introduction of viscous dampers in
the finite element model also results in the presence of overdamped modes with zero vibratory
frequencies and large damping coefficients. The techniques in selecting an accurate and efficient
algorithm for complex eigensolution computation is quite important but not elaborated upon here.

This procedure is mathematically rigorous and gives the correct solution to Equation (1).
However, it is quite curcpntationally intensive for large structures . Also, from the design point of
view, it does not offer much insight into the behavior of the structures, and does not help
synthesizing and optimizing passive damping design for structure. However, once the damping
design is complete, the complex eigensolution should be performed tc verify the passive damping
design.

TRUSS STRUCTURES

If a undamped truss structure has n degrees of freedom, the equations of motion are given by:
My + Kjyuy = pg(®) (5)

The small amount of intrinsic damping in the structure is inserted at the modal level. A few elastic
struts are replaced by viscously damped struts to enhance the damping in the structure. For design
purposes, it is assumed that the truss behavior is governed by the axial properties of the struts.
Then, a typical viscous strut can be characterized by a three-node model with an internal dashpot’.
The modified structure requires additional degrees of freedom to model the dashpots in the finite
clement model. Let the additional nv degrees of freedom be represented by u,. The governing
differential equations are now given by:

[0t ) [at]+ [em e 2] 6]+ [k k 2] (8] = [B1eo ©

Equation (6) describes the behavior of a structure yet to be designed. The damping design will
entail the locations, number, mass, damping and stiffness properties of the viscous struts. Unlike
the viscoelastic struts, all the structural properties specified in Equation (6) are frequency
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independent. Using engineering assumptions, a design procedure can be derived to approximate
the solution to these governing equations.

In order to utilize the information of the baseline structure to help the damping design, it is
important to recast Equation (6) into the same number of degrees-of-freedom as the baseline
structure. Assuming the mass at the internal degrees of freedom of the struts is small and the
internal dynamics of the struts is not important to the solution, then for a harmonic force input this
condiuon is swiililanzed a».

My 0 ][“1} [C'n C'u] [“1] [K n K 12][ } = [P i
[ 0 M'pliy " [Cy Clyllig )T LKy Kyyfluy| = [0]’3 (Ta)
22 = 0 (7b)
The u, degrees of freedom can be condensed out by vsing the second matnx equation of Equation
(7a):

u; = (imC'zz + K'zz}'l (imC.ZI + K'Zl) ug (8)
Backsubstitute u, into the first matrix equation of Equaticn (75} and collecting termis, Equation
(7a) can now be represented by:

Mu,+ Ku, = peiot (9a)
In this form, the stiffness matrix is complex:

K = KR+iK! (9b)

ii is alsu a function of brth the stiffness and damping characteristics of the struts (u; degrees of
freedom). Despite the dissimilarity in appearance, Equations (7) and (9) are identical descriptions
of the same system. Equation (7) is the preferred form for analytical computation while Equation

(9) is very useful to guide the damping design. For damping design, there is no need to form K
explicitly. Instead, the contribution of each strut element to K is evaluated individually. The
contribution of each strut to system level damping can be assessed through its contribution to K.

STRUT CHARACTERISTICS

In order to design damping at the system level, the damping and stiffness characteristics of the
damped struts must be totallv understood. A ciass of viscously damped struts can be represented

by three frequency independent parameters’ as shown in Figure 1.

kg B (1)
y i
jw m ~ (L
/"ED""’\/\/”

}—-b u (l)
Figure 1. 3-Parameter 2 D()Fs Viscous Stiut Model
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The dynamic characteristics of this class of strut were derived based on a similar method such
that the results can be used for system level damping design. The stiffness and damping
characteristics of the struts are summarized here. The strut is represented by a complex stffness:

k = kR(1+in) (10a)
where,
21,2 2
R - kl(:x k(2 + (1+K)(cw) } (10b)
(cw)? + x2k,2
2(c)k
_ a<(cw)ky (100)
K2k;2 + (1+x)(cw)?
)
K = K| (10d)

Normalized design curves, optimum strut damping and damping bandwidth can be found in
Reference 7. The maximum loss factor, Nepr is governed by X only:

K
or = 2\J 1+x

and the frequency at which this maximum loss occurs, ®,,, is governed by the damping
coefficient:

(11a)

= RE' (11b)
14k !

mop =

A simple 3-parameter viscous strut model allows a simple strut representation for system level
design and a simple strut performance specification for component level design.

APPROXIMATE ANALYSIS OF DAMPED STRUCTURES

From a practical standpoint, if a few struts are replaced by damped struts to increase system
damping, say to around 10%, the basic undamped structural characteristics shoula not be changed
significantly. Based on this assumption, the Rayleigh-Ritz method can be used to compute the
approximate solution to Equation (1)!0. This not only expedites the computation significantly but
it also provides a direct physical insight into the "modal” damping synthesis of the structure. The
undamped normal modes are used as the basis vectors (generalized coordinates):

m
"=Z¢|Qa=¢q (12)
i=1
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where the eigenvalue problem is performed at a selected frequency of interest:

KR ¢, = @2M ¢, (13)

In practice, the mode shapes of the baseline structure are used to start the design process. Then
Equation (%) is approxiniated oy:

STMOq+OTK® g =~ T pg() (14)

For design purposes, assume the coupling between generalized coordinate does not significantly
affect the dynamic response. The approximate uncoupled equations of motion are therefore-

6TMo;q; +0;TKoyq; = ;T pg(v) (15a)

[(w?¢T™Mo; + 0;TRR;) + i (0,7 KF ;)] gjeiet = ¢;T peior (15b)

The equivalent "modal” Cliasacteristic of the generalized coordinate can be found by equating the
complex stiffness to a single degree of freedom system at resonance frequency:

[(-02%0,2) + i (2,00,)] g0t = B g 6

The "modal” frequency of the modified structure can therefore be approximated by:

@ = \/%TT_KS;% (17)

but the change in structural weight of the struts with respect to the overall structural and non-

structural weight is often very small such that ¢iTﬁ¢)i = 1. The equivalent damping near
resonance can therefore be approximated by:

E - 1 6;TK!0;
1 (.I%Z

(18)

[$S]]

ELEMENT MODAL CONTRIBUTION

Based on this approximate analysis method, it is possible to assess the contribution of a
viscous strut at a given location to the system level damping and stiffness change. Decompose the
global stiffness into element stiffness contributions (ne = number of elastic elements and nv =
number of damped struts):

- ne v nyv ]
K = LX{ kj+ }:1 k“,(m)]nz,l n,(w) kR {w) (19)
= J:-_- J=
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The "modal” stiffness is given by:

ne nv .
@2 = ¢iT['§, kj+ > k“,(w)]m (20)
=1 1

The normalized "modal" stiffness contribution of the j-th viscous strut to the system is given by:

TkR 6.
eij = 9‘—5;5& (218)
The normalized "inodal” stiffness contribution is also identical to the "modal"” stain energy (MSE)
ratio;

1, TCR
.. _¢.Tk 0;
g =g — = 2 (21b)

2 wij 7 &2

The "modal” damping ratio contribution of the j-th viscous strut to the system is given by:

LR
Fo_MeTkT0  g;my
T2 g2 T2 22)
The system level damping from all the viscous struts is therefore simply given by:
1 nv
Ei =3 €;M; (23)

The assumptions used in deriving these approximations provides a very simple concept for
damping design. It is clear from Equation (23) that there are three key parameters in system level

modal damrping design: the strut locations, €;;, the strut loss factors, j» and the total number of
viscous struts, nv. For a given mode, the strut location with the highest strain energy ratio is the
most effective location in providing damping. This location has the maximum relative
displacement, hence relative velocity, to activate the viscous damper. The strut with higher loss
factor also provides higher system level damping. The contribution of each damped strut to the
system level damping is proportional to the strut loss factor and the modal strain energy ratio.
System level damping can also be increased by incorporating more struts. Of course, as the most
effective locations are occupied, the effectiveness of an additional strut is diminishing as the modal
strain energy ratio is declining.

SYSTEM LEVEL DAMPING DESIGN PROCEDURE

In the beginning of a design cycle, the baseline structure is modeled and analyzed. The
performance of the structure is not satisfactory and higher damping is reauired in a few modes to
reduce the dynamic responses or stabilize the control system. Consequently modal damping ratios
are specified as design requirements. The modal properties of the baseline structural mode! can be
used to stari the design process. The modal strain energy ratio of each strut member is computed:
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g = (24)

1} - (Ikz

A typical modal strain erergy distribution is shown in Figure 2. For the mode of interest, rank

strut members in descending order of modal strain energy ratios as shown in Figure 3. The order
of the struts should be noted as shown in Table 1.

Table 1 Strut Modal Strain Energy Data

Strat Order ff 1 2 3 4 5 6 7 8 9 10 11 12
Stut No. || 17 15 18 9 12 8 13 16 11 14 7 10

MSE }10.17010.143} 0.105 | 0.098] 0.077 | 0.073} 0.073 | 0.061 | 0.052 § 0.034] 0.027 | 0.027
Cum MSE0.17010.314] 0.418 | 0.516] 0.593 | 0.666 ] 0.739 | 0.800] 0.852 | 0.886] 0.914 | 0.941

If only one type of strut, with component loss factor m, is used, compute the cumulative sum
of the the ranked modal strain energy ratios:

(25)

M-

€& = ij
=1

A typical plot of the cumulative strain energy of the ranked struts is shown in Figure 4.

Assuming a realistic strut loss factor, and working with realistic static and dynamic strut
stiffnesses, find the suitable k; and kj by using Equations (10) and (11). Determine the frequency
characteristics of the strut by defining the ¢ parameter in Equation (11b). Iterate if necessary to
optimize the strut design. Compute the dynamic stiffness and loss factor at the frequencies of
interest. A typical strut loss factor curve is shown in Figure §.
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The system level modal damping for 1 number of struts is given by:

o3

(26)

Eij =

The system level damping is a product of strut loss factor and contributions from participating
struts, i.e. higher strut damping requires less members and vise versa. Iterate to determine the
necessary component loss factor and number of struts to meet the design requirement on a mode by
mode basis. Candidate struts for each modes are identified.

€1

Candidate struts from all the modes are included in the final design to meet the design

requirements. The modal strain energy ratios, €;, of these struts are computed as shown in Figure
6. The approximate system level damping is given by:

1
& = N E 27
0.4
§ 034 3
3 03 5
.
2 [43]
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Figure 5 Strut Loss Factor vs Frequency Figure 6 Struts MSE Ratio vs Mode Number




The system level damping is a product of the strut loss factor at the modal frequency and the
participation of the selected struts at the system level. The modal strain energy ratios with respect
to frequency are shown in Figure 7. The system level damping curve, Figure 8, is simply the
product of Figures 6 and 7.
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2 024 2004 -
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Figure 7 Struts MSE vs Frequency Figure 8 Predicted System Level Damping

The approximate system frequencies can be predicted by considering the "modal" stiffness
contribution of the viscous struts and the relative change in dynamic axial stiffness:

SN oy o

As can be seen from the derivation of this procedure, quite a few assumptions were used in
order to establish this simple procedure. As in any design process, iterations are required to refine
the initial design. The number of struts and the strut parameters may be optimized. Also, for
better damping prediction at different frequency ranges, the baseline finite element model can be
updated to reflect the dynamic strut stiffness in accordance with Equation (10b) so that the strain
eniergy distribution is better represented at the frequency ranges of interest. The effect of modal
damping coupling can also be evaluated if necessary. However, it may be more expedient to let the
verification analysis provide the final verdict. Generally speaking, if the damping is well
distributed, it is closer to a proportional damping case. However, if only a few dampers are used
to provide a substantial amount of damping to the system, the damping marix can be quite non-
proportional. If the strut placement also changes the mode shapes of the structure substantially, the
original mode shapes are not a good approximation. An updated finite element model should be
used as the baseline model.

When a good, practical and balanced damping design is in hand, the finite element model is
updated to include all the viscous struts which are modeled by elastic and viscous elements as
shown in Equation (6). This model removes all the assumptions imposed during the design
process and provides the best engineering predictions of the behavior of the structure damped by
viscous struts. The system damping and frequencies of the passively damped structure can he
computed from the complex eigenvalues using Equations (4a) and (4b). The verification analysis
is an important step to the design process.

There can be many variations to the method presented. Different struts with different stiffness

and damping characteristics can be added to the structure due to the geometric difference of struts
to be replaced. If damping is to be optimized over a wide frequency range, struts with different
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frequency characteristics can be used. However, the basic principles are still the same. The
procedure can be modified to accommodate such special circumstances. A summary of the design
and analysis procedure is provided in Table 2.

Table 2. Summary of Design and Analysis Procedure

1. Understand damping design requiremer.ts.
2. Perform eigenvalue analysis of baseline structural model to get w, and ¢;.

Compute modal strain energy ratios of strut members, €;;.

3. Rank strut members in descending order of modal strain energy ratios for modes
of interest.

4. Compute cumulative sum of the ranked modal strain energy ratios, €;,, for modes
of interest.

5. Assume a physically achievable strut loss factor, 1. Estimate required dynamic
stiffness. Iterate to find the ky, k, and ¢ parameters to obtain static stiffness,
maximum loss factor and frenuency characteristics nf struts. Compute the loss

factors at the frequencies of interest, n1(w;).

6. Find the number of struts required to meet the damping requirements for the given
modes. For each mode, locate the struts. The set of viscous struts is all the
members 1¢quired for all the modes.

. Compute the modal strain energy ratios of the set of viscous struts, €;.

7

8. Compute the predicted system level damping, 1(w;)€;.

9. Iterate upon the number of struts, strut locations, and strut parameters as necessary.

0. Iterate upon the accuracy of mode shapes and modal strain energy distributions at
selected frequencies if necessary.

11. Update finite element model to include dashpots and perform complex eigenvalue

problem to verify damping design.
12. Iterate as necessary to correct for any deficiency from complex eigensolution.

TRUSS DESIGN EXAMPLE

A small example is included here to illustrate the method. A 3 bay truss with 13 nodes and 60
active degrees of freedom is used. The first two bending modes of the structure are 21.3 Hz. The
goal is to design 5% viscous damping into the system. For the mode of interest, a bottom
longeron member has significant amount of modal strain energy. One damped strut is used to
replace the original strut. The damped strut is designed to have k; = 110,491 1b/in, k, = 114,955
1b/in, ¢ = 839.88 Ib-sec/in. This corresponds to a loss factor of 0.36 in the member at the
frequency of interest. The updated finite element model now has 122 equations in the first order
form. The solution from the complex eigenvalue problem is summarized in the Table 3. The

results are very satisfactory considering that only very little amount of computation required to
arrive at this design.

Experience in working with large truss structures showed that the design procedure is quite
effective and the design prediction and analytical solution are often quite close.
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Table 3 Comparison of Design Prediction and Analytical Solution

Parameters Design Goal Eigensolution Error
Frequency 21.3 Hz 2195 Hz 3%
Damping 5% 5.45% 9%
CONCLUSION

A comprehensive design and analysis method for integration of viscously damped struts into
large precision truss structure is presented. The method is based on an approximate solution to the
governing differential equations using the Rayleigh-Ritz method. Simplification to a practical
design procedure is facilitated by making relevant engineering assumptions for the struts and the
truss behavior. The method effectively uses the modal data from the baseline structural model. A
simple design procedure is use to determine the strut placement locations, the strut stiffness and
damping parameters, and number of struts required to meet the design objectives. Upon
completion of a damping design, a rigorous verification analysis is performed to check the passive
design. Therefore all the assumptions used in the design process will not affect the accuracy of the
analytical prediction. The method is simple, efficient and accurate, and has been used for large
structures with good success.




Symbols

C,c

1]

-
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NOMENCLATURE

viscous damping matrix, coefficient

forcing function

imaginary unit, \‘ -1

identity matrix

stiffness matrix, stiffness coefficient, strut axial stiffness

mass matrix, mass
spatial force vector
time, second
displacement vector
element strain energy

non-dimensional frequency parameter for viscous strut
strain energy ratio

eigenvectors, eigenvector matrix

loss factor

non-dimensional stiffness ratio viscous strut

viscous damping ratio

eigenvalue, eigenvalue matrix

forcing frequency or natural frequency when used with index, radian/second
denoting modified elements

Subscripts

Q B Hk—.u—.

Q

P

N de Coo <

1 T 1 1 (I | 1

Wnn i

for the i-th mode

the j-th strut element

number of viscous struts in descending order of modal strain energy
number of modes in solution

single degree of freedom system, pertaining to original component
condition at maximum loss factor

viscoelastic

displacement

velocity

damping ratio
baseline degrees of freedom, or outer spring of viscous strut
additional degrees of freedom for dashpots, or inner spring of viscous strut

Superscripts

I
R
T

Imaginary
Real
matrix transpose
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ABSTRACT

The paper deals with the possible overestimation of the damping ratio, when
evaluated from autocorrelation functions in the time domain, because of a bias caused
by a triangular window.

Some theoretical considerations permitted to evaluate a lower bound for the sampling
period over which it has been possible to estimate the damping ratio with acceptable
errors and therefore to limit the effects of the above said bias.

Several numerical examples singled out its possible effects on the modal parameter
estimations and gave quantitative evaluations of it. Firstly numerical data regarded
single degree of freedom systems in function of the sampling period, afterwards two
modes have been considered. This last example is also presented with a high random
noise added to the original impulse response, and that because the autocorrelation
permits to clean up the noisy signal. In addition when more modes are present in the
baseband the problem could become critical: in fact the mode with the highest time
constant and therefore, in general, the one with the lowest frequency, is exposed to bias
errors which, in case of a large oversampling, become completely unacceptable.
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Nomenclature

natural frequency (Hz)

sampled impulse response

lag index

index of samples

sampled triangular window

expectation value

maximum number of lag points

number of points contained in the impulse response
residue magnitude

sampling period (s)

limit sampling period (s)

sampled autocorrelation function relative to h[n]
estimated autocorrelation sequence

error in the natural frequency estimation
error in the residue magnitude estimation
error in the damping ratio estimation
viscous damping ratio

decay rate (rad/s)

time constant (s)

limit time (s)

damped angular frequency (rad/s)
natural angular frequency (rad/s)

|. Introduction

Correlation functions play an important role in diverse areas of science and
technology, in particular they are commonly utilized in Modal Analysis to obtain
Frequency Response Functions (FRFs) [1 to 4]. Besides, Autocorrelation Functions
(AFs), derived from Impulse Responses (IRs), could be used to get modal parameters,
i.e. natural frequencies and damping factors, directly in the time domain. This approach
can turn out to be useful when the impulse responses are corrupted by a very high
additive random noise [5], as it happens for data gathered from flight tests; in fact,
evaluating autocorrelation functions, it is possible to remove an uncorrelated noise

present in the original impulse response.

Autocorrelation functions are generally estimated by a relationship that introduces
a bias consisting 1n a triangular window around the origin ot the time axis.
For a sampled signal. the maximum time lag - given by the sampling period times
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the number of points whereof the signal is shifted with respect to the origin - where the
autocorrelation is estimated from the available data, must satisfy some constraints. It
not only ought to be of the order of one tenth of the data block length in order to avoid
instability in Power Spectral Density estimates [6], but it must be also chosen in such
a way that the exponentially decaying envelope of the autocorrelation is smaller than
the contribution of the triangular window. So if the number of the lag points is
determined in function of the available number of the total points of the original IR, the
sampling period, in addition to the Shannon condition, that determines an upper limit,
must also satisfy a lower limit, which permits to estimate the damping ratio with
acceptable errors.

In this paper the evaluation of the above said parameter is derived, for each mode,
from the instantaneous envelope and phase of the autocorrelation function, which in tum
are obtained via the Hilbert transform [7,8].

2. Theoretical considerations

In order to discuss our subject, let us consider the impulse response - sampled over
N points - of a real mode derived from a single degree of freedom system:

h[n} = R e”*" sin[w,(nT,)] 0<n<s(N-1) (1)

where n is the sample index, T, is the sampling period, o is the decay rate and w, is the
damped angular frequency.
The autocorrelation sequence can be estimated by the following relationship:

N-m-1 2
b m1 - [}ﬁ] Y hin] hin+m] @
n=0

valid for 0<m<(N-1), where m indicates the number of lag points of which ore
sequence is shifted with respect to the other (the time lag is therefore given by mT,).
Since the autocorrelation is an even function:

)
pyL-m)=p,[m]

and in addition we are only interested in the sequence relative to m>0, Eq. (2) is
completely sufficient for our purpose.
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Although the relationship above mentioned is frequently utilized, in fact it provides
a true autocorrelation sequence (the matrix formed with its elements results to be always
positive semidefinite), this estimate is biased by the triangular window:

= |- 4
wim] ll N] @)

As for N+w the window is identically equal to the unit, the autocorrelation estimate
(2) results asymptotically unbiased {9,10]. Thus the expectation of the estimated
sequence is given by the product of the actual autocorrelation times the window:

E {sbm)} = p,Im]- wim) )

If the maximum lag index M is small enough in comparison with N, the estimate

given by Eq. (2) is an acceptable approximation of p,{m] and, under proper conditions
[5], it can be written as follows:

R2 -o(mT,))
p,Im] = N'lr “a® « cos | w,(mT,)-arctan | -~ )
s 40\/02+w§ Ya

When the viscous damping model is adopted, the decay rate and the damped angular
frequency can be written as follows:

o={w, @)

and

w,=w y1-¢2 ®

where { is the damping ratio, thus relation (6) reduces to:

1
NT, 4{w, Wy

bh[m] _ ‘ \ Rl\_//l _i—‘l e-a(mf,) . cos [wd(mTJ)-arCtan [__0;_] } (9)

Besides, if the damping ratio is small such that its square value is negligible with
respect to the unit, relationship (9) is further simplified:
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R2
4NT o

(10)

bylm] = e °°S[wd (mn)]

in fact, the damped and the natural frequencies are practically equal and for the above
said position:

arctan | —% = arctan({) = 0 (11
Vi

Actually, owing to the presence of tne vias mentioned above, the decaying of the
function results greater than the one due to the exponential term appearing in relations
(6), (9) and (10). Because our interest is devoted to estimate the decay rate, or better
the damping ratio, it is necessary that the contribution of the triangular window is
negligible with respect to the one of the exponential decay. A limit time (7,,) can be
derived from the following relationship (Fig.1):

o [1_1;'-;] (12)
T

triangular window
'd

: Clim
exponentially decaying envelope T

-0t :
e =

Limit fime

Figure 1 - Limit time evaluated at the maximum time lag.
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that - in function of the sampling period, of the maximum number of lag points and of
the total number of samnles - becomes:

M (13)
)

Performing the natural logarithm, it is possible to derive a relation between the
system time constant (7,=1/0) and 7, :

Tim _ I [1_%] (14)

Therefore the limit time ought to be in the order of [(1/10)7.] or less, supposing M
much lower than N, so that the coniribution of the iiangular window is small enough.
Thus the limit sampling period, evaluated for the maximum value of the lag points, is

given by:
(15)
(T = - [7] n -5 ]

Since 7. is unknown "a priori", it is necessary to have a rough knowledge at least
of its order of magnitude, anyway once the natural frequency and the damping ratio
have been estimated, it is possible to check the limit sampling, in fact if (T )y,
evaluated introducing into relationship (15) the estimated time constant, is not
sufficiently less than the sampling period actually employed, a longer T, must be used.

When several modes are contained within the baseband, (T )y, 1s constrained by the

highest time constant, that is - supposing the damping ratio almost equal for each mode
- by the mode with the lowest natural frequency.

3. Numerical tests

Data sequences presented in the following numerical simulations are formed by 4096
points, whereas the number of lag points of the autocorrelation function has been
chosen equal to 512 in order to get the Hilbert transform by a standard FFT software.
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All the impulse responses considered hereafter have the same amplitude: R=10,
even when two modes are presented.

In Tab.1 estimates from the autocorrelation of an impulse response representing a
real mode with a very low natural frequency and a light damping ratio ( the input modal
parameters are: f,=0.71 Hz and {=0.003) are shown:

Table 1 - Modal parameter estimates from a highly truncated impulse response
versus the sampling period.

‘ To| R | la®]| & | 1 f i el )
0.150 10.00047 0.47 107 0.71 0.46 107 0.30002 102 0.59 10?
0.100 10.00142 0.14 10! 0.71 0.47 10? 0.30007 10? 0.23 10"
0.050 10.04965 0.50 0.71 0.62 10° 0.30406 107 1.35
0.030 10.32771 3.28 0.71 0.17 10° 0.33171 10 10.57
0.020 10.80397 8.04 0.71 0.34 10? 0.39330 10 31.10
0.015 11.25559 i2.56 0.70996 0.51 10 0.47019 10 56.73
0.010 11.95407 19.54 0.70973 0.39 10! 0.64287 10 114.29

Since the baseband is 2 (Hz), the sampling period must be less than 0.195 (s),
because a sampling factor equal to 2.56 has been considered. On the other hand T,
should be greater than the limit time 0.0195 (s), derived from Eq.(15). Actually up to
T,=0.050 (s) errors on { are negligible, on the contrary for decreasing sampling periods
higher and higher damping ratios have been obtained, owing to the presence of the
triangular window.

The amplitude R has been achieved through es*iniates of the decay rate and of initial
values of the autocorrelation function, Eq.(10).

Natural frequencies have been instead evaluated with :mmaterial errors for all the
cases presented.

The truncation at the end of the maximum time lag does not affect the modal
parameter estimates, in fact they have been carried out in the time doinain with the
Hilbert approach [7,8] (Appendix).

The same case 1s also shown in Tab.2, where estimates have been carried out in the

frequency domain, using 400 spectral lines, with the commercial software SMS Modal
3.0 [11):




Table 2 - Damping ratio estimations in the frequency domain.

T, (s) 0.150 0.100 | 0.050 0.030 0.020 0.015 0.010
0.00300 |{ 0.00300 | 0.00305 | 0.00337 | 0.00404 | 0.00490 | 0.00703
le,| (%) l - 1.67 12.33 34.67 63.33 134.33

Errors on the damping ratio are in agreement with the ones obtained by the time
approach: the FRF results to be biased, in fact the triangular window, due to the
uncertainty principle [12,13], broadens the peaks and therefore an overestimation of ¢
occurs. For the first two sampling periods no errors could be evaluated because of the
limited number of decimal digits provided by the software outputs.

Amplitudes have not been reconstructed because they are not only altered by the
errors on the decay ratio estimates, but they are also modified by the effects due to the
truncation of the autocorrelation function at the end of its observation time [14].

Another example, with a greater decay rate ( f,=8.25 Hz and {=0.01 ), is presented
in Tab.3:

Tabie 3 - Estimates from a higher decay rate irapulse response.

T, (5) ol (B | | lel (B ¢ e (%)
0.020 10.00123 § 12.33 10" 8.24959 | 0.5010% | 0.10001 10" 0.14 10!
0.010 10.00031 0.31 107 8.24959 | 0.50 107 0.10001 10" 0.90 10?
0.005 10.00083 0.83 10° 8.24958 0.50 107 0.10002 10 0.17 10¢
0.001 10.21345 2.13 8.25043 0.52 107 0.10544 107 5.44
0.0008 10.28766 2.88 8.24636 0.44 10" 0.10940 10 9.40
0.0005 10.54330 5.43 §.28293 0.34 0.12641 10" 26.41
0.0003 12.76663 27.67 8.200648 0.53 0.21966 10" 119.66

In this case a baseband of 10 (Hz) has been considered, therefore the Shannon
sampling period is cqual to T.=0.039 (s), on the contrary the limit sampling time
equals 0.0005 (s). As in the first Table, errors on ¢ increase as the sampling time
lowers and unacceptable values have been obtained for T, equal or less than the limit
value. The order of magnitude of e, is simifar to the one gained for the first example.

In the next Table two modes in the baseband of 10 (Hz) have been considered,
modal parameter estimates achieved from autocorrelation functions of impulse responses
with the same amplitudes and the same natural frequencies of the previous examples,
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but with the damping ratio equal to 0.003 for both the modes, are shown (Tab.4):

Table 4 - Modal parameter evaluations for two modes present in the same baseband
(10 Hz) versus the sampling period.

T, mode R lex| (%) f, le] (%) ¢ le | (%)
S |
1st 10.19364 1.94 0.71 - 0.31820 102 6.07
0.035
2nd 10.00335 0.33 10" 8.24995 6.06 10" 0.30006 10* 0.21 10!
Ist 10.32731 3.27 0.71 - 0.33169 10 10.56
0.030
2nd 10.01256 0.13 8.24993 8.49 i0* 30025 167 0.85 10
Ist 10.52615 5.26 0.71 - 0.35444 10? 18.15
0.025
2nd 10.00393 0.39 10" 8.24990 1.21 10? 0.30009 10° 6.30 10"
Ist 10.80372 8.04 0.71 - 0.39328 10° 3110
0.020
2nd 10.00082 0.82 10° 8.24989 1.33 10° 0.30003 10° 0.88 10°
1st 11.26584 12.66 0.70996 5.63 107 0.47096 10* 56.99
0.015
2nd 9.97821 0.22 8.24984 1.94 10° 0.29935 10 0.22
Ist 11.97794 19.78 0.70973 3.80 10? 0.64517 10° 115.06
0.010
2nd 9.95462 0.45 8.25002 2.42 10 0.29848 10° 0.51

For sampling period up to the limit value 0.0195 (s), due to the first mode (i.e. the
one with the lowest decay rate), errors on { increase to about 30% for the first mode,
whereas they remain negligible for the second mode. In any case errors on natural
frequencies are always irrelevant and therefore the ones on the amplitude are practically
related to the errors on the correspondent {’s. Obviously for shorter T,’s, errors on the
damping ratios of the first mode result higher and higher, whereas for the second mode
they always remain small. Due to the presence of more modes in the baseband, and
since the Hilbert transform approach works on the single mode, a suitable filter must
be applied. In particular, an adaptable cosine tapered filter has been used: its width has
been chosen taking into account the shift of the peaks in the frequency domain, owing
to the different sampling periods. Estimates from the previous two modes, when they
are added to an uncorrelated random noise, with zero mean and standard deviation
equal to 50% of the common impulse response amplitude. are shown in Tab.5 (Fig.2
shows the time history relative to T,=0.02, whereas its autocorrelation is presented in
Fig.3):
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Table 5 - Effect of a high random noise on parameter estimates of the modes
presented in Tab.4.

T, mode R x| (%) f, lel (%) ¢ le;| (%)
Ist 9.97203 0.28 0.71019 2.63 107 0.32681 10° 8.94
0.020
2nd 12.32280 23.22 8.25263 3.19 107 0.34667 10° 15.96
Ist 11.54107 15.41 0.71043 6.06 10 0.48112 107 60.37
0.015
2nd 9.32304 6.77 8.25823 9.98 107 0.24305 10 18.98
Ist 11.68375 16.84 0.70958 5.92 107 0.60516 10 101.72
0.010
2nd 8.69748 13.03 8.24198 9.72 10° 0.24436 10 18.55

In this case the effect of the added noise, on the damping ratio estimations, is
especially significant for the second mode because its impulse response is more rapidly
damped out. Besides, even if the residues of the two modes are equal, the initial
amplitudes of the autocorrelation functions - derived by filtering - result to be
completely different: in fact - for the sake of simplicity - considering each mode
independently and not taking account of the cross-correlation terms, autocorrelation
amplitudes are inverse functions, being all the other values common, of the relative
decay rates and so the second mode could have a much smaller amplitude than the first
one:see Figs.4 and 5 for the filtered autocorrelation functions and Figs.6 and 7 for the
relative envelopes.

4. Conclusions

In the use of an approach based on autocorrelation functions of impulse responses
in order to obtain - in the time domain - the modal parameters, a possible source of
error In the damping ratio estimation is connected with a bias due to a triangular
window positioned around the time axis origin. Owing to this bias, it is necessary to
evaluate - for example at the maximum time lag where the autocorrelation function is
calculated - a minimum sampling period (lower limit), suitable to analyze the signal and
in particular to estimate the decay rate and consequently the damping ratio. Although
the value of this sampling period is a function of the unknown signal time constant,
nevertheless it is possible, starting from an its first estimate, to update the value of the
sampling period and so to eliminate bias errors. In this way, the peculiar advantages
deriving from the use of autocorrelation functions - especially it evaluated from highly
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noisy impulse responses - to estimate modal parameters, and in particular damping
ratios, can be thoroughly exploited.
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Figure 2 - Impulse response of Tab.$, relative to T,=0.02 (s), contaminated by a
random noise.
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Figure 3 - Autocorrelation estimate of the time history presented in the previous Fig.
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Appendix: Hilbert transform and modal parameter estimation

The time sequence (10) can be considered as an amplitude modulated signal with
the carrier equal to the damped angular frequency and the modulating signal equal to
the decaying exponential function: [R¥(4NT,0)] exp(-omT,). Since the spectrum of this
last function is unbounded, relationship (10) and:

2
pnlm] = 415T - e . sin[wd (mT,)] (A1)

are not strictly a pair of Hilbert transforms. Nevertheless, under proper conditions [8],
the Bedrosian theorem [15,16] can be applied at least in the iimit sense, thus the
complex signal:
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- ,-o(mT,) " -
Z[m]N4NTo ¢ {cos wd(mT,.)]+131n[wd(m7})] }—
s (A.2)
- R2 e-u(mT,) eju‘(mT,)
4NT o

can be considered as analytic.

It is easy to recognize that the magnitude of z[m] represents the modulating function,
whose decay rate could be directly estimated from the straight line:

2
In|z{m]| = In R -omT (A.3)

whereas its argument is the instantaneous phase, the slope of which gives the damped
angular frequency:

Arg{zlm)} =w,mT, (A.4)

Consequently, it is possible to achieve the natural angular frequency:

oo (A.5)

and the damping ratio:

(-2 (A.6)

The residue magnitude R can be evaluated introducing the known values and the
estimate of o, achieved from the envelope, into the initial amplitude of Eq.(10).

Good estimates of the parameters mentioned above can be gained performing least
squares regressions on the two straight lines represented by Eqs.(A.3) and (A.4).
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DYNAMIC MODULI OF FLUOROCARBON
COMPOUNDS
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ABSTRACT

Viscoelastic polymers are frequently used to eliminate harmful or annoying noise
fields in an environment which contains solvents or gases at elevated temperatures.
The frequency range over which the particular polymer performs as a sound isolator,
an absorber, or a damper may vary by orders of magnitude. Hence, a polymer
family which is resistant to many common solvents and exhibits high loss factors
distributed over several frequency decades covering the audio band should find many
applications. Fluorocarbon elastomers such as copolymers of vinylidene flouride and
hexafluoropropylene are such a family. Presented in this paper will be the results
of an initial examination of the dynamic moduli, consisting of the elastic and loss
components, of six different commercially available family members. The magnitude
of the peak loss factor is found to vary between approximately 1.1 to 1.4, and its
location by more than two decades in the frequency domain.
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Passive Vibration Damping with Noncohesive Granular Materials

M. Abdel-Gawad
Rockwell International Science Center
Thousand Oaks, CA 91360
(805-373-4220)

Abstract

Dynamical systems comprised of noncohesive solid particles cffer
a promising approach for passive vibration damping as an
alternative where viscous or viscoelastic materials become
ineffective at high or low temperatures or in a hostile
environment. We are employing a vibrating bar apparatus to
understand damping mechanisms in such systems and to identify
important parameters for use in the design of efficient methods
for controlling damaging vibrations in high speed aircraft and
Large Space Structures. In systems involving solid particles
rubbing and colliding with each other, loss of mechanical energy
can be substantial but the mechanisms are complex and not fully
understood. The material parameters we have been studying include
grain size and shape, intrinsic grain density, packing density,
and friction coefficient. Measurements on a variety of noncohesive
granular materials show that damping is both frequency and
amplitude dependent which indicates the combined effects of
frictional and viscous-like damping mechanisms. Considerable
mechanical energy loss results from friction by particle sliding,
rolling and by transfer of inertia at collisions between the
grains. Relatively low packing densities and fine grain size seem
to be favorable properties for maximizing vibration energy losses,
at least for the materials examined and in the frequency range,
strain amplitudes and vibration modes employed. Microstructures
which enhance internal surface area and resistance to compaction
are favorable properties for promoting high mechanical energy
loss. A full understanding of the mechanisms may provide the data
necessary for designing and manufacturing damping materials
tailored for use in applications where conventional viscoelastic
materials are ineffective.
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Introduction

Potentially destructive vibrations often take place in aerospace
structures and components. Vibration induced cracks occur in the
aircraft affecting structural elements, aircraft skin and
antennas. When aircraft operate at very low temperatures
conventional damping materials based on viscous or viscoelastic
mechanisms are transformed from their rubbery or transitional
state into their glassy state where they lose their effectiveness.
Serious cracks have been known to develop in aerospace components
operating at high temperatures and hostile environments. Vibration
problems are also anticipated in advanced launch systems and are
pervasive in many other industrial applications. The use of
noncohesive granular materials as a damping medium offers a
promising approach for damping vibrations in situations where
cenventiconal materials cannot be used.

The objectives of this work are to a) understand damping
mechanisms in oscillating particles set in motion by a vibrating
structure, b) identify critical parameters needed for design of
effective damping systems, and c) acquire the knowledge necessary
for recognizing potential applications and limitations of this
technique.

This work is based on two studies performed independently at the
Rockwell Science Center (1-3) and Rocketdyne divisions (4).

We learned from previous studies on elastic wave attenuation in
rocks with a4 wide range of cohesiveness that damping increases
supbstantially with the increase in crack density and inversely
with the strength of bonding at grain interfaces. The presence of
even small amcunts of water adsorbed on silicate grains causes
considerable weakening of the interface bond and dramatically
increases the damping factor (1/Q). Damping mechanisms in
semi-consolidated materials were found to be complex, involving
both internal friction and viscoelastic-like effects. In
noncohesive materials with solid particles rubbing on and
colliding with each other, loss of mechanical energy can be

il

substantial; but the effects of various parameters on damping are

complex snd ot en work in opposite directions. This paper reports
progress toward understanding the effects of some microstructural
parameters on ddarping in relation to frequency and strain
ampllitiade.

Measurements and Techoiques

'R ol iraws wnon danmping measurement technigues and research

expoevion e oo lorad over the last ten vears at Hockwell Sclence
T nora ot erine the dynamic mechbanical properties of

Gz o cooopheooital materials. Figure 1 oshows a schematic




of a vibrating bar apparatus and measurement system we currently
use for making damping and modulus measurements on composite
materials. A Hewlett-Packard computer is used to control the
experiment and is programmed to allow the selection of inpuat
voltage and frequency range parameters and for measurements at
high temperatures and controlled environment. The system tracks
and digitizes the resonance peaks, and calculates the loss factor
1/Q from the width of the resonance curve measured at 1/ 2 of the
maximum amplitude and is given by

1/Q = m-w)/ w0,

1
where Q is the quality factor, ®, is the resonant frequency in
forced vibration, and W], ®2 are the frequencies at which the
amplitude of the vibration has fallen to 1/2 of the maximum value.

In these experiments the forced vibrating bar apparatus was used
to measure the damping factor Q"L of a three-layer rectangular bar
geometry. The composite bar consists of two identical constraining
copper bars rigidly mounted on the vibrating bar device and
separated by a space in which the test damping material is placed.
The metal bars are 10 cm long, 2.5 c¢m wide and 0.06 cm thick and
are separated by a spacing of 0.6 cm. The geometry is that of a
damping layer sandwiched between two constraining metal layers
Figure 2. The damping test material is contained in a tailored bag
of thin mylar film placed between the two metal bars. The mylar
bag hau a small effect on damping of the composite bar and this
was taken into consideration when making comparisons between
measurements made with and without the damping layer.

The theoretical basis of damping in multi-layer beams was
discussed by Ross, Ungar, and Kerwin (5). A method for
determining the damping properties in various multi-layer
geometries 1is described by Nashif et al (6), and in ASTM Standard
Method E756-83 (7).

Figures 3-7 illustrate the effects of some microstructural
parameters on damping (1/Q) of the composite bar system using a
variety of damping materials. The measurements were made on the
fundamental mode in a free-free end-loaded geometry in flexure. A
rotor with calibrated weights rigidly clamped to the ends of ihe
specimen provided a means for varying the rescnance frequency. A
full description of this technique was given by Papadakis (8).

Figure 3 is a plot of 1/Q four damping materials representing a
range of packing densities. Diatomaceous earth (DE) with the
lowest density shows suvperior damping compared to the high density

nickel particles (Ni). The 1 micron zirconia (ZR) also shows
excellent damping. The four points, collectively labeled GL,
represent crushed glass beads with different packing densities. In

this case, however, the observed differences in damping may not be




totally attributable to packing density alone since we are dealing
with ditferent materials of different intrinsic and

il properties. The elfect of packing dernsity on

damping is more uniquely illustrated ir Figure 4 in which damping

was measured as & function of resonant trequen 'y using the sa.e
(1 = on zirccaia) at two different packing densitics

fhe lower pacring density (D= 0.68 g/cc) curve shows nigher values
of 1/Q znd a stronger frequency dependence than the curve of =l
higher packing density (D=1.27 g/cc).

in the family of curves shown in Figure 5 the rescnance [regquency
is plotted aguinst grain size fractions of crushed glass at 7ive
differert input voltages (vibration amplitude). The shift of
resonance wer frequencies observed with the decrease in grain
size sed input voltage indictes reduced stiffness. The
rapid chanae in siope of the 40 Volt curve suggests that the
maceriar ooy showling thixotropic behavior at high strain rates
Flgure oo straln amplitude dependence of 100 fur the l-micror

ircon: Fioure 7 shows the same grain size and input voltage
Laramane I Filaure b plotted vearsus 1/9

Criergs “ivrn mechanisms in granular materials are complex
ard inwve cornoinrrinsic material properties (elasticiny and
frictio Lefficient) as well as the microscopic mechanical
Lroper inve na fricticnal sliding und collisicn of
pcartin Mic wstructural properties lergely determine whether
ene SR PR ; or collision is the damirant mechanism.
The Tl cnergy 1in systems damg... Dy noncchesive
CAr 9% intial, 3nd the effects of wvarious
var e cfren work 1o oprosite directions.
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little or no energy. Adjarent tn these are areas of relarnl
high damping caused by particle rotation and fricticnal sl
(12,13) .

Energy dissipation caused by friction is a complex function of
many variables including a) the number of contacts per unit volune
which is dependent on grain size and and coordination number
(packing density), b) normal stresses at points of contacts,
which is alsc a function of packing density, <) the shear stres
at the sliding interface, and d) the effective friction
coefficient which is a functicon of the intrinsic friction
coefficient of the material (usually measured on two smooth
surfaces) modified by the presence of asperities (grain shape).

In more loosely compacted material the grains lose energy both by
friction and collision. The latter mechanism becomes more dominant
at low packing densities. In the collision dominant regime
viscous-like damping results from losses during momentum tr
{14) . In this case particle inertia and frequency of collis
are major ccntributors to energy loss. At high packing densit
particle velocity, inertia and number of collisions are redu
due to the increased stiffness and resistance to deformation.

fer

Figure ¢ illustrates a rheological model of particle interactions
in a system where both elastic and viscous normal forces and
tangential frictional forces simultaneously take place (15). The
model (16) for granular flow which is based in part on the early
work of Bagﬂ old (14) on shearing of solid spheres dispersed in a
Newtonian fluid. The model considers the total stress as the sum
of two parts,

Gtoral = G(C)Coulomb + A(C)pD2(du/dy)?2

rate-independent rate-dependent
dry friction part viscous part
where Cis the =ollds fraction,
disdy 1o -he rate of shear strail
Ais the linear grain concenbrati n coefriclent, defined az
the ratio grain diameter/mean free dispersicon distarnce,
ko= L/(Cf/C)l/é ~l where C. 15 t}e maximum rossible svar L
VO LU > ’ A
P 1z mazs denzity of particle material,
0 i mean particle diameter,
frélvi.ar materials are Lo Newnoornlars 10 an ¢
DIt guantitative oy desor thee tre oorrg T
int particles. However, Shee relar ooty e Yot
oo nome Inmlallts bt mennar " ood




The term A(C) relates to the packing density; the strain shear rate
(dU/dy) 1is equivalent to frequency. The role of grain diameter D
is more complex because it enters into the viscous part and also
in the friction part of the total energy dissipated. Fine grained
particles have higher surface area per unit mass and therefore
produce higher levels of grain to grain friction cian the coarse
grained particles. The role of the intrinsic grain density p in
relation to vibration modes is also unclear and must be
investigated by further studies.

With these gualifications in mind, the granular flow mcdel is
gqualitatively synergistic with energy dissipation in oscillating
particles. In both processes the rate-independent, strain
dependent part of damping can be ascribed to dry Coulomb friction
and the 'viscous' contribution results from momentum transfer
during collisions between particles. At hign values of solids
fraction {(high compaction) and low shear rates the
rate-independent term is dominant, whereas at low packing

densities and high she~r rates the collisional transfer term
prevaills.

This is gualitatively consistent with our data whereby high levels
of damping are associated with low packing densities. The obse.ved
behavior »f strain amplitude dependence together with frequency
dependence of damping (1/Q) indicates that both frictional and
viscous-like processes axe involved. Diatomaceous earth, the most
effective damping material found so far in this study, possesses
several of the favorable microstructural properties discussed
above. It concists of siliceous skeletal remains of marine

i : {diatoms) .In addition to fine grain size with high
e area, diatomaceous earth has high resistance to

Summary and Conclusions
Laborator, srudles on a variety of nonconhesive granular materials
show that darpina 1s both freguency and amplitude aerendent which
indicates vie comniined effects of frictional and visccus-like
damping recnarniors, Considerable mechanical energy 10Ss resulits
from frict Lo by varticle gliding, rolling and by t.ancfer of
it ia it oo llicions between the grains. Relatively Low packing
HEI SRR A ir. i ot srain size seem to be favorable properties for
tzins wrtration energy losses, at least for the materials

Lroothe frequency range, straln ampiitudes and
e e loyed. Microstructures which enhance internal

v sreen ool sl Do tance Lo compaction are favorablie propertiec
for ry oo ior onooan nenhanical erergy loss. The effioces of other
TAI AT e o ctrinsic arain density, grain shape, and the




presence of very small amounts of adsorbed fluids need to be
further investigated. Quantitative modeling of the complex
mechanisms involved is a challenging task necessary for optimizing
design of damping materials tailored for specific vibration
problems. Full understanding of these mechanisms will also be

useful in developing internally damped alloys and composite
materials,
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VEM DATABASE PROGRAM

Bryce L. Fowler!
CSA Engineering, Inc.
Palo Alto, CA

ABSTRACT

A three-tiered implementation of a viscoelastic material (VEM) database under
development is described. Using low-level calls, searches for characterized VEM’s
may be conducted based on property constraints (e.g., modulus and loss factor at

certain temperature and frequency) and, or other criteria (e.g., available thicknesses,
type, etc.).

1. A graphical front end program that runs on a Macintosh personal computer
is being written. It will be dynamically linked to VEM characterization and
testing programs for data sharing.

2. A stand-alone program for UNIX machines using X windows is being written.
Reports will be in the form of tables and X-Y plots. A similar program to
run under MS-DOS is also being developed concurrently.

W

A VEM database engine which may be compiled and run on any computer
that supports ANSI FORTRAN 77 is described. The engine consists of FOR-
TRAN callable subroutines that search a VEM database created by a librariai
program using VEM characterization data files.

LCSA Engineering, Inc., 560 San Antonio Road, Suite 111, Palo Alto, CA 94306, (415) 494-7351
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MEASUREMENT OF THE MECHANICAL
PROPERTIES OF VISCOELASTIC> BY THE
DIRECT COMPLEX STIFFNESS METHOD

Bradley R. Allen’
CSA Engineering, Inc.
Palo Alto, CA

David A. Kienholz
CSA Engineering, Inc.
Palo Alto, CA

ABSTRACT

Accurate material properties are essential for the design of viscoelastic damping
treatments and material properties are often the predominant error source process
when modal strain energy tcchniques are implemented.

The trade-offs between various test techniques are discussed with primary em-
phasis on a system developed at CSA Engineering for direct complex stiffness mea-
surements on viscoelastic materials. Issues such as analog front-end design, tem-
perature control, and system software are discussed.

1CSA Engineering, Inc., 560 San Antonio Road, Suite 101, Palo Alto, CA 94306, (415) 494-7351
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Measurement of the Mechanical Properties of Viscoelastics
‘ by the Direct Complex Stitiness Method

j

1

Bradley R. Allen

David A. Kienholz
CSA Engineering, Inc.

Presented February 15, 1991
Damping ‘91, San Diego, CA

Neasurement of the Mechanical
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Damping Designe: Needs Accurate
Material Properties

« Moduli and loss factor
- Typically want shear properties

- Need properties across broad ranges of temperature and
frequency

- Material property accuracy is often the limiting factor in
current damping design

- Wide scatter common in viscoelastic test data

Damping Designer Needs
Accurate Material Properties
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Methods for Dynamic Mechanical
Testing of Viscoelastics

+ Resonant methods
- materlal propertles extracted from resonant system
~ cantilever beam tests
+ Nonresorniant methods
- material properties calculated from specimen stiffness

- measurements performed below resonant frequencies
O’ test specimen

- Direct Complex Stiffness test method

Methods for Dynamic Mechanical
Testing of Viscoelastics

* Resonant tests imply stiffness from the natural
frequency of a resonant system; the loss factor is
extracted from the modal damping.

» With direct stiffness method (DCS), stiffness of
specimen is the real part of the complex stiffness
and loss factor is calculated from the phase angle
between force and displacement.

GDD-4




CSA Prefers DCS for Most
Aerospace Applications

« No modeling assumptions
- often introduce random and/or bias errors
» Excellent accuracy and repeatability
- accuracy limited by
- instrumentation
- fixture design

- Resonant tests least accurate at highest damping levels

CSA Prefers DCS for Most
Aerospace Applications

- Damping measurements become difficult as modal
damping becomes large; however, modeling errors
increase as strain energy in the viscoelastic is
reduced. The combination of these effects make it
difficult to obtain accurate measurements at the
center of transition on many materials.

GDD-5




Current Prototype Employed by CSA Engineering

Current Prototype Employed
by CSA Engineering

* Viscoelastic specimen is in dual shear.

- Cooling and heating are provided by liquid
convection.

» Exte:ior box dimensions are 15“ x 11” x 6

(GDD-6




Schematic of Prototype Test System

Schematic of Prototype
Test System

« Macintosh computer controls entire data
acquisition process.
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Capabilities of New System

* 150 Ibf

+ 0.1 to 100C Hertz bandwidth

« -85 to 500 F temperature control

- Wider dynamic range of stiffness

- Fast-Fourier transform analyzer

- Computer controlled data acquisition

- Characterization and data acquisition software run
concurrently

Capabilities of New System

 Peak capacity of driver is 150 Ibf with a 0.1 to 500
Hz broad band excitation.

- Temperature accuracy is plus or minus one degree
Fahrenheit.

- Fast-Fourier Transform used to process data. Both
random and sine excitation are available.

» Macintosh windowing environment allows data
acquisition program to run concurrently with
characterization software, and its tasks such as
wicket plot display can be performed during data
acquisition.
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Computer Controlled Data Acquisition

+ Automated test capability
- Sophisticated pcst-processing capabilities

« Error tracking routines in data acquisition and
post-processing

- inertia contaminated data
- machine compliance
~ impure shear

« Exporting to characterization and database software

Computer Controlled Data Acquisition

 Data acquisition, temperature control, and
post-processing are performed through a single
Macintosh computer interface.
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Primary Design Objectives are
Material Characterization

» Extended dynamic range of specimen stiffness to
accommodate many materials and strain levels

» Wide temperature band
« Error tracking
« Computer controlled data acquisition

- Short data acquisition time

Primary Design Objectives are
Material Characterization

- Moduli of viscoelastic materials often change by
yreater than 1000:1 through transition. Therefore,
the dynamic range of stiffness for the test
rmachine is extremely important for broad band
characterization.
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Example Data
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Example Data

« Data shown was collected at only 8 isotherms and
was thinned to display approximately one in four
data points.
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THE EFFECT OF POROSITY ON THE MICROSTRUCTURAL
DAMPING RESPONSE OF A 6061 ALUMINUM ALLOY

J. Zhang!, M. N. Gungor? and E. J. Lavernia!

1 Department of Mechanical and Aerospace engineering
University of California at Irvine
Irvine, CA 92717

2 Westinghouse Science and Technology Center
1310 Beulah Road, Pittsburgh, PA 15235

ABSTRACT

There is a strong experimental evidence suggesting that the presence of pores or cavities in
a microstructure may play an important role in the damping response of a material. The present
paper reports on the results of a systematic study of the effects of micrometer-sized pores on the
damping response of 6061 aluminum alloy. Spray atomization and deposition processing was
selected for the present study as a result of its ability to produce a material with a pre-determined
amount of non-interconnected, micrometer-sized pores or cavities. Furthermore, by using this
synthesis approach, the amount and distribution of pores present in the material may be
systematically altered through variations in the processing parameters. 6061 Al alloy was selected
for the present study because it has been widely used in structural applications, and because its
damping behavior has been studied previously. The damping measurements were accomplished
on cantilever beam specimens by using the free vibration decay logarithmic decrement and the
resonant vibration half band width techniques. The present results suggest that there is a
correlation between the damping response of the material and the amount of porosity present in the
microstructure. The damping capacity, logarithmic decrement 8, of the as-spray deposited material
increased from 1.8 to 2.9% as the amount of porosity increased from 4 to 10%. A correlation
between the magnitude of the damping capacity and the average pore diameter was also noted.

Overall, the damping response of the spray deposited materials is higher than that reported by other
investigators using the same alloy.

15. Zhang

Materials Section

Department of Mechanical and Aerospace Engineering
University of California, Irvine, CA 92717

(714) 856-8583
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1. INTRODUCTION

che elfective utilization of advanced metals and alloys in structural applications that require
mintns! sound and vibration transmission is often limited by our current understanding of the
ieotors iat govern their microstructural damping response. The microstructural damping capacity
ot a mare io! - referred to hereafter simply as damping capacity - may be defined as its ability to
Jissipa. s eiastic strain energy, although plasticity may be involved at large strain amplitudes. The
¢i.31peii. 1 i elastic strain energy in the microstructure typically occurs through a combination of
severai mwechanisms, which include: 1) relaxation of point defects, 2) macro-thermoelasticity, 3)
micro-thermoelasticity, 4) Eddy-current effects, 5) Snoek effect, 6) stress-induced ordering
reactions, and 7) electronic effects!!- 21, In addition, the dissipation of elastic strain energy may be
affected by discontinuities that may be present in the microstructure, such as grain boundaries and
pores or cavities.[3-5]

‘There is a strong experimental evidence suggesting that the presencc of pores or cavities in
the micr<.structure may play an important role iz the damping response of a material. Shimizul3},
for exa:ple, showed thai the damping behavior of a carbon/epoxy composite could be modified
cither v aiding a certain amount of flexibilizer or by foaming the epoxy matrix. His results
demonstrated that the damping behavior of the carbon/epoxy composite samples was strongly
influenced by the resulting porous microstructure that was induced during the foaming of the
matrix. In related studies, Klimentos and McCann(4! investigated the relationship among
compressional wave attenuation, porosity, clay content, and permeability in sandstones. In their
study, they measured the attenuation coefficients of compressional waves of sandstone samples
containing pores filled with clay and saturated with fluid. Their results showed that the logarithmic
decrement (d) of the samples at 1000 kHz and 40 MPa was related to porosity (P, in %) and clay

content inside pore (C, in %) by & = aP + bC - ¢, where a, b and c are positive constants. They
also no«ed that there was no apparent correlation between attenuation and mean grain size for their
samples Nielsenl3! developed a theoretical model to estimate the complex modulus of porous and
impregnated materials (e.g. cement) and viscoelastic porous materials. Ricel®] also proposed a

theoretical model to predict the effects of porosity and grain size on the tensile modulus, strength
and fraciure energy of ceramics.

Despite the aforementioned results which suggest that the presence of pores and cavities in
the microstructure may have a strong influence on the overall damping response of a matenal, the
aiaces. i ig of the precise role played by pores and cavities in damping behavior is not clearly
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understood. This lack of knowledge may limit efficient applications of certain advanced materials
in damping-critical structures, since these materials often exhibit some amount of porosity. One of
such class of materials includes, for example, that produced by powder metallurgical means (e.g.,
consolidating fine powders into bulk preforms).[’-8] Therefore, the objective of the present work
is to provide insight into the effects of porosity on the damping behavior of structural aluminium
alloys. Spray atomization and deposition process.ng was selected for the present study as a result
of its ability to produce a material with a pre-determined amount of non-interconnected,
micrometer-sized pores or cavities.[9-15] Furthermore, by using this synthesis approach, the
amount and distribution of porosity present in the material may be systematically altered through
variations in the processing parameters. Aluminum alloy 6061 was selected for the present study
because it has been widely used in structural applications, and because its damping behavior has
been studied previously.[2.16.17]

2. EXPERIMENTAL

2.1 MATERIAL SYNTHESIS

The aluminum alloy used in the present study was a commercial quality 6061 aluminum
alloy, with the sollowing nominal compositions: 0.6% Si, 0.28% Cu, 1.0% Mg, 0.2% Cr, and
balance Al (in wt. %). Spray atomization and deposition processing involves the energetic
disintegration of the molten 6061 alloy into micrometer-sized droplets by high velocity inert gas
jets (N2 was used in the present study), followed by deposition on a water cooled Cu substrate.
The rapidly quenched, partially solidified droplets impact, first on the deposition surface, and
subsequently on each other, and collect into a preform whose microstructure is largely dictated by
the solidification conditions during impact. A diagram of the experimental apparatus used in the
present study is shown in Figure 1. The geometry of the spray deposited material, which normally
exhibits a contour akin to the Gaussian distribution of droplets impacting on the substrate,[9-13]
was readily modified in the present study by displacing the substrate during deposition. In order to
avoid extensive oxidation of the 6061 Al matrix during processing, the environmental chamber was
evacuated to a pressure of 0.2 kPa, and backfilled with inert gas to pressure of 0.1 MPa prior to
melting and atomizing the material. A more detailed discussion of the spray atomization and
deposition experiments can be found elsewhere(9-151,

Two spray atomization and deposition experiments using 6061 Al were conducted for the
present study. The primary experimental variables used during each experiment are shown in
Table 1. The parameters in this tablc show that the metal to gas mass flow ratio, J,,a/Jg.. was the
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only variable altered during the experiments. The effects of the melt to gas mass flow ratio used in
Experiment 132, relative to that used in Experiment 134, on the resulting microstructure will be
discussed in a subsequent section.

Table 1| Experimental Variables Used in the Study

Experiment number 132 134
Alloy 6061 Al 6061 Al
Atomization pressure 1.21 MPa 1.21 MPa
Atomization gas nitrogen nitrogen
Flight distance 40.64 cm 40.64 cm
Pouring temperature 750 °C 750 °C
Ratio of melt to gas

mass flow rates 2.29 1.97

Thermocouple
Stopper Rod
Crucible

— Alloy Melt
Induction Cotil
Nozzle

Atomizer

Atomized Droplets

LSS Y

v

egse [x-a] gese
J.[:]QT

Spray Deposited
Material

Movable Substrate

Vel is ///b/// PSS SIS ///f

<

!
[

L
/7

Environmental
Chamber

Induction Unit

\

Figure 1. Schematic diagram showing spray atomization and deposition processing.

2.2 STRUCTURAL CHARACTERIZATION

The geometry of the spray atomized and deposited material is shown schematically in
Figure 2. In this figure, the orientation of the Z axis was selected to lie in the height direction,

whereas the orientation of the X and Y axes were chosen to lie in the short transverse and long
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transverse directions, respectively. Cantilever beam specimens for damping charactenization
studies and samples for porosity analyses were simultancously removed by sectioning the as-spray
deposited material into rectangular bars. The following procedure was adopted in order to keep
track of the precise location of each sample within the spray deposited material. The central core of
the deposit was first sectioned into a block with the following approximate dimensions: 15 ¢m long
X 7 cm wide X 6 to 8 cm high. This block was sut sequently sectioned into several layers (usually
5 to 7 layers numbered with 1, 2, 3...7 from the bottom to the top) along the height direction, and

Z

Figure 2. Schematic diagram showing the geometry of the as-spray deposited 6061 aluminum alloy.

A z (W4
Run #132: un #134:
6061 AJ 6061 Al
17 speci 13 specim
2621 263
2511252 ] 253 45 321 46
241242124312 441 443 44
23112321233 234 431 43243
2211222 12231 224 X 421 422 42 X

Figure 3. Schematic diagram showing position of samples within the as-spray deposited material.

each layer was then divided into rectangular samples (3 to 4 samples numbered 1, 2, 3 and 4).
This procedure is shown schematically in Figure 3, for Experiments 132 and 134. In this figure,
the relative location of each rectangular specimen inside the spray deposited block is designated by
a number. Every rectangular sample was subsequently divided into two pieces; one was used for
the damping measurements, and the other for porosity analyses (see Figure 4). This procedure
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allowd careful analysis of the microstructure present in the damping specimens, since the
microstructure of snrav atomized and deposited materials has been reported to change with spray
depnsition thicknsss (Z axis), but remain relatively constant along the longitudinal dimension (Y

job N ']% :,)

[*9.5

FOv D0rosity
micrcanalysis 4

N

(a) (b)
Figure 4. Jchematic diagram showing specimen configuration and geometries.
: POROSITY CHARACTERIZATION

O et ve Shracterization of tne porosity present in the spray deposited materials was
Le ot parhed by merns of density measurements and computerized analysis of metallographic
a oples using an Imageset image analyzer. The density measurements were conducted in
rdaner with ASTM B311-83 Standard, based on Archimedes' principle. In this procedure the
v.=.7ht of each specimen in the air and in liquid was obtained by using a Fisher Scientific A-250
vercrmome balance. The liquid used in the present study was ethylene glycol with a density of
e gt roem temperature (25 ©C). Accordingly, the density of specimen is calculated from
b ohosing equation
Po= Mg P/ (Mg - Mg ) (H
where o and 00 Jene o the depsity of the specimen and the liquid, respectively, and Mg, and My
der . e o Coom o amard Inoosna, iespectively. T then tollows that the amount of
pors sty erecertoe epch spray depostted sample can be determined by
P Pai— P Par- Pyad) (2)
where 1 130 v ume fraction ot porosity present in sample material. P4, represents the
thoter cal density of 60" Al and P,,, represents the density of any inert gas present inside the
pores. In the present study. the density of extruded 6061 Al was used as the theoretical density,

P . and deteriaired according 1o the following procedure. A 2.54 diameter cylinder was removed
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from the as spray deposited 6061 Al, and extruded at 400 °C into a rod with a diameter of 1.27 ~m;
the extrusion pressure used was 27.58 MPa. The density of the extruded matenial was then
determined according to Eq. (1) as P, = 2.73 g/cm3. This value compares favorably with the
measured density of 2.72 g/cm?3 for as-received 6061 Al. In view ¢ ¢ the fact that the megutude of
Dgs 1 substantially smaller than that corresponding to Py, Eq. (2) Is simphtied, und Pas cale slated
from the following equation

P=( Pai— Cs )/PA; 3)

While the total amount of porosity present in the spray deposited materials was detenmined
using the above described nrocedure, the distribution of pore sizes was quantitatively charactenzed
for each specimen by using image analysis in combination with a Nikon Epiphou optical
microscope and a Macintosh Ilci computer. An adaptor was utilized in the present work to ransmit
images from the optical microscope directly to the computer, where the size distribution of pores
was readi!; established. This procedure allowed the characterization of a large number of
metallographic samples, accurately and efficiently.

2.4 DAMPING MEASUREMENTS

The cantilever beam technique was used in the present study to characterize the
microstructural damping response of the spray deposited materials. In this tecnanique, one end of a
rectangular specimen was fixed in place while the opposite end was allowed move freely to
respond to a mechanically induced displacement or vibration. The damping capacity of the material
was then determined from the resulting displacement spectrum, by utilizing the .ogarithmic
decrement and the half power band width analysis methodologies. In the logarithinic decrement
method, a history of amplitude versus time during a free vibration of the cantilever beam specimen

was recorded by an oscilloscope through an optical displacement transducer. By measuring the
amplitude decay (Figure 5), the logarithmic decrement 8 can be evaluated by

6:(1/n)ln(A;/Aim) 4)
where A, and A, are the amplitudes of the ith cycle and the (i+m)™ cycle at times 1, and t,,

respective.y, separated by n periods of oscillation.

rhe half power band width methodology is based on a forced vibration test m which the
specimen was vibrated by a shaker which was driven by an amphitied signal from a white noise
generator. In this technique the resonant frequency peak 1s distinguished by recording the
vibration amplitude as a function of frequency. The damping loss factor, 1, may rthen be
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calculated from the vibration spectrum, recorded by an FFT signal analyzer through an optical
transducer using the following equation

n=(f -f,)/f, (5)
where f, f, and f, are shown in Figure 6. Finally, the logarithmic decrement, 3, and the loss
factor, 1, can be checked by the following relationshipl2]

n=0%/n (6)

All of the damping data used in the present study was derived from experiments performed
at t"e Westinghouse Science and Technology Cer.ter (Pittsburgh, PA).

Amplitude A(t)

n cycles

Figure 5. Schematic diagram of free vibration decay!?]

Square Amplitude

1

f, Frequency

Figure 6. Schematic diagram showing Lorentzian Peak(?!
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3. RESULTS
3.1 POROSITY AND MICROSTRUCTURE

Table 2 shows the density, P, and the amounti of porosity, P, of the as-deposited 6061 Al
specimens, calculated from Equations (1) and (3), respectively. The results shown in Table 2

correspond to the various locations within the spray deposited materials, as designated in Figure 3.

Table 2. Density and Porosity of As-Spray Deposited 6061 Al

Deposit 1Sample My, (g) my(g) ps(g/em3) P (%)
132 222 8.5844 4.8565 2.5606 6.20
132 242 8.5541 4.8380 2.5597 6.23
132 252 8.6848 4.9720 2.6011 472
132 234 8.3702 4.7875 2.5980 4.83
134 422 8.0587 4.4268 2.4674 9.61
134 442 7.5877 4.2314 2.5139 791
134 452 8.3760 4.6700 2.5132 7.94
134 433 8.3339 4.6130 2.4906 8.77

ISample location is shown in Figure 3.

Optical microscopy was conducted on Keller’s etched coupons of the as-spray deposited
materials and two examples, corresponding to Experiments 132 and 134, are shown in Figures 7
and 8 respectively. The presence of numerous pre-solidified droplets in the microstructure
precluded a precise quantitative assessment of the grain size. However, a large number of
observations revealed that the as-spray deposited grain size ranges from 15 to 49 pm with a
average of 32 um for Deposit 132 and from 10 to 35 um with a average of 22 um for Deposit 134.
In addition, it is worth noting that the microstructure remained relatively constant throughout the
entire specimen length of the as-spray deposited materials. The evolution of microstructure during
spray atomization and deposition has been addressed by numerous investigators, and the

interested reader is encouraged to consult the available scientific literature.[10-15. 18]

The size distribution of the pores present in the samples from Deposits 132 and 134 are
shown in Figures 9 and 10), respectively. In order to quantify the size distribution and morphology
of the pores, optical metallography samples were studied using image analysis, in combination
with a Nikon Epiphot optical microscope and a Macintosh lici computer. The results are shown in
Table 3, where the total amount of porosity present in the samples, as inferred fron image
analysis, is compared to that cbtained using Archimedes' principle. Also shown in Table 3 is the

average diameter of the pores present in the as-spray deposited microstructure, as determined from
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image analysis. It is worth noting that each data point shown in Table 3 was determined by
examining 2-3 viewing areas. This procedure increased the accuracy of the measured values. In
general, comparison of the amount of porosity present in the spray deposited materials determined

using image analysis and Archimede's principle revealed a relatively good agreement between both
techniques.

Table 3 Porosity of As-Deposited 6061 Al by Image Analysis

Run 1Sample P (%) P (%) 2d (um)
by Image by Archimede’s
132 222 6.45 6.20 5.38
132 242 6.90 6.23 3.96
132 252 4.80 4.72 2.36
132 234 378 4.83 1.91
134 422 10.12 9.61 9.30
134 442 8.99 7.91 7.32
134 452 7.42 7.94 5.51
134 433 9.48 8.77 5.50

1Samplc location is shown in Figure 3.
2Avcmgc pore diameter as determined from image analysis.

Figure 7. Optical micrograph showing the typical grain and pore morphology present in Deposit 132.
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Figure 10. Distribution of pore sizes pr2sent in sample 422 (see Figure 3) from Deposit 134.

A2 DAMPING CAPACITY

The aamping response of the spray deposited materials, as determined from the
experimental data in combination with Equations (4) and (5), are summarized in Table 4. Also
shown in this table is the Lorentzian peak frequencies for each of the samples tested. It is worth
noting that the free decay vibration tests were performed at a frequency of 220 Hz in order to allow
comparison of the present data to that obtained by other investigators. Comparison of the values of
the logarithmic decrement, 8, to those of the loss factor, 1, using Eq. (6) suggests good agreement
between the logarithmic decrement and the half power band width analysis methodologies. One
notable exception to this observation is the result obtained for sample 442, which show that the

loss factor for this sample was abnormally high (1.7). This was attributed to difficulties with the
experimental measurements.

Table 4. Damping Capacity of As-Spray Deposited 6061 Al.

Deposit Sample 0 (%) fr (Hz) N (%)
132 222 2.0 294.50 0.7
132 242 1.9 292.00 0.6
132 252 1.9 300.25 0.6
132 234 2.0 287.50 0.7
134 422 2.9 280.75 0.8
134 442 2.6 261.25 1.7
134 452 1.8 281.25 0.8
134 433 2.3 280.50 0.8
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Figure 8. Optical micrograph showing the typical grain and pore morphology present in Deposit 134.

Full Scale =76.0000 Total =424.0000
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Figure 9. Distribution of pore sizes present in sample 222 (se¢ Figure 3) from Deposit 132,
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4. ANALYSIS AND DISCUSSION

In order to discuss the effects of porosity on damping behavior it is first necessary to
provide some background information on the factors that govern the formation of pores during
spray atomization and deposition. This background information will also provide a basis for the
discussion on the differences in the size and distribution of pores present in the materials obtained
from Experiments 132 and 134. It is worth noting that since the present results showed that there
was'a relatively close correlation between the amount of porosity present and the average pore size
(see Table 3), in the discussion that follows average pore size and amount of porosity may be
thought of as interchangeable terms.

An important microstructural characteristic frequently associated with the microstructure of
the as-spray atomized and deposited materials is the presence of a finite amount of non-
interconnected pores.[9-15. 18.221 The overall amount of porosity present in spray atomized and
deposited materials depends on: (a) the thermodynamic properties of the material, (b) the
thermodynamic properties of the gas, and (c) the processing parameters. Under conditions typical
for aluminum alloys, for example, the amount of porosity present in spray atomized and deposited
mgterials has been reported to be in the 1 to 10% range.(13, 14, 18] This is consistent with the
results of the present study which showed the porosity levels in the 4 to 10% range. Furthermore,
the present results also revealed that the size distribution of pores was skewed (see Figures 11 and
12), with an average pore diameter in the 6 to 10 um range. It has been suggested that the origin
of porosity in spray atomized and deposited materials may be attributed to onc or a combination of
the following mechanisms: (a) gas rejection, (b) solidification shrinkage, (<) interparticle porosity.
The first mechanism, gas rejection, is anticipated as a result of the limited solid solubility of inert
gases in most structural materials. As the temperature of the material decreases during
solidification, any amount of gas that might have dissolved during the melting and superheating
stage will be rejected into the matrix, leading to the formation of gas pores. However, results
obtained using fast neutron activation analyses show that spray atomized and deposited materials
exhibit extremely low levels of dissolved gases, suggesting that this mechanism is not as important
as originally suggested.[?3] In addition, in view of the irregular morphology of the pores, it is
highly improbable that a large proportion of the porosity originates from the rejection of entrapped
gases, since gas porosity generally exhibits a spheroidal morphology (see Figures 7 and 8).

The formation of shrinkage porosity is generally associated with sluggish solidification
kinetics, such as those present during ingot casting. In view of the limited amount of liquid phase

present under normal spray atomization and deposition conditions, it is unlikely that solidification
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shrinkage plays an important role in the formation of the observed pore distribution.[13. 14,21 It is
worth noting, however, that if the spray atomization and deposition conditions are such that there
is an excessive amount of liquid phase present at the deposition surface, this mechanism may play
a significant role in the formation of porosity. The presence of excess amount of liquid phase
during impact may develop as a result of (a) coarse droplet sizes, (b) high deposition temperatures,
and (c) remelting of solid phases caused by high spray enthalpies.[13. 141 Under these conditions,

the atomization gas may interact with the molten metal, leading to the formation of large amounts of
porosity.

The available experimental evidence suggests that a large proportion of the porosity that is
generally observed in spray atomized and deposited materials may be attributed to he third
mechanism, interparticle porosity. As the droplets descend, first on the deposition sv. “ace, and
eventually on each other, they overlap leaving micrometer-sized cavities in between. In spite of the
large amount of turbulence present, the relatively rapid drop in temperature during deposition
prevents any liquid phase present from filling all of the cavities, leading to the formation of
irregular pores. This mechanism is consistent with the observed correlation between deposition
conditions such as spray density, powder size, and the amount of porosity present throughout the
deposit. For example, the higher density associated with the central region of the deposit may be
attributed to the elevated mass flux of droplets in this region of the spray, relative to the
periphery.[19] These droplets contain elevated fractions of liquid phase, effectively filling the
interstices between droplets. Regarding the variations in density as a function of thickness, the
present results show that the highest amount of porosity present in the spray deposited materials
was present in the samples closest to the water cooled substrate (samples 222 and 422 in Table 3).
This is consistent with the initially high rates of heat extraction experienced by the region of the
deposit in close proximity to the substrate. In contrast, the high amount of porosity generally
observed in the periphery of the samples (samples 234 and 433) results from a large proportion of
small, presolidified droplets that tend to segregate to this region. It is noticed that under the
processing conditions where deposited droplets are allowed to solidify completely before the
arrival of more droplets, interlayer porosity will also develop at the original droplet boundaries.

In order to establish a relationship between the amount of porosity present and the
processing parameters, it is useful to consider the factors governing the atomization stage of the
process. The disintegration of a molten metal by high energy gas jets (atomization) is complex and
only portions of it have been addressed from a theoretical viewpoint.[24] The work of
Lubanskal23} has shown that the disintegration of liquids by high velocity jets obeys a simple
correlation. A slightly modified form of the original correlation has been shown to represent the
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results of molten metal atomization experiments reasonably well.[12, 20, 211 According to the
modified Lubanska's correlation, the mass mean droplet diameter (i.e., the opening of a screening
mesh which lets through S0 percent of the mass of the powder resulting from an atomization
experiment), dsg is given by:

dso = K4 [(km do Om / Hg Vge2 Pm) (1 + Jmelt/ Jgas)]lf2 (7
where K4 is an empirically determined constant with a value between 40 and 400 (a value of 51.7
was selected for the conditions used in the present study, since this has been shown to yield a good
correlation between theory and experiment(26]); L. G, Pm, and Jmey are the viscosity, surface
tension, density and mass flow rate of the melt, respectively; lg, Vge, and Jgas are the viscosity,
velocity and mass flow rate of the atomizing gas, respectively; and d, is the diameter of the metal
delivery nozzle. Expressions for the flow rates can be obtained as functions of the process
parameters from Bernoulli's equation in the case of the metal(27] and from theory of compressible
flow[28] in the case of the gas. The mass mean droplet diameter of the powder size distribution
(dso) for both experiments was computed from Eq. (7), using the processing parameters and
physical constants corresponding to each experiment (see Tables 1 and 5). Eq. 7 predicts dsg
values of 108 um and 98 um for Experiments 132 and 134, respectively. These results are
consistent with the higher densities that were noted for Experiment 132, relative to those of
Experiment 134, since a smaller droplet diameter will dissipate thermal energy more effectively,
thereby leading to a greater extent of pre-solidification prior to impact.

Table S Computational Results of ds, for Two Deposits of 6061 Al

Gas:  Nitrogen Melt: 6061 Al

Mg = 1.54x10% g/cm's
Pess = 3.375 x 103 g/em?

Un =1.3 x 102 g/cm-s
Pm = 2.385 g/cm?

Vge=3.232 x 10*cm/s On =914 g/s?
Kg =517
DepOSIt do Jgu Jmell d50
132 0.3048cm  9.87 g/s 22.58 g/s 108 um
134 02794 cm  9.87 g/s 19.46 g/s 98 um

The damping capacity of the as-spray atomized and deposited 6061 Al obtained in the
present study is summarized in Table 6, where the values of the logarithmic decrement, J, are

compared to the results obtained by other investigators using the same alloy. The values of the
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logarithmic decrement, 3, shown in Table 6 were the average of the four samples investigated for
each deposit (see Table 4). The results show that the value of 8 of the spray atomized and
deposited 6061 Al is higher than those reported by other investigators. The damping response of
the spray atomized and deposited 6061 Al is thought to be derived from two factors: a) the
presence of a finite amount of inicremeter-sized pores, and b) a fine grained microstructure. In the

discussion that follows, this suggestion is discussed in refsrence to results reported by other
investigators.

Table 6. Comparison of Damping Behavior of 6061 to Results of other Studies.

Processing Ref. Experiment Frequency Amplitude S(%)
As-Deposited This Cantilever 220 Hz --- 1.95%.05
Run 132 work beam

As-Deposited This Cantilever 220 Hz 2.40%.47
Run 134 work

6061-T6 [16] Cantilever 500 Hz --- 0.62
6061-T6 [17] Cantilever 15 Hz --- 1.82
6061-T651 2] Cantilever 19.8 Hz 6-20x106¢ 0.65

Previous studies?®s! have demonstrated that the damping capacity of an impregnated porous
material increases with the amount of porosity, concomitant with a drop in elastic modulus and
strength. This observation is substantiated by the results obtained in the present study, as shown
in Figure 11. The results shown in this figure suggest that the value of the logarithmic decrement,
8, increases with the percent of porosity present in the microstructure. The dissipation of elastic
energy in porous materials has been rationalized in terms of a mechanism known as mode
conversion.129-311 From a macroscopic viewpoint, every point inside a cantilever beam specimen
under lateral vibration will move in a transverse direction. Hence, every crystal or grain deforms
in tension due to the transverse motion of the specimen and in shear due to the non-uniform
deformation along longitudinal direction of the cantilever beam. In a porous metal, the tensile
deformation may be converted into shear deformation at the boundaries of pores. The shear
deformation may furthermore produce viscoelastic flow that is most readily achieved at the pore
boundaries. The viscous flow is then convertea to heat by molecular collisions or dislocations.
The production of either thermal energy or dislocations are both beneficial to internal friction or
material damping according to thermodynamics{32] and Granato-Lucke dislocation theory(33.34],
respeciively. The eventual result of these serial conversions is the decay of vibration inside the
porous material.
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Figure 11. Relationship between damping capacity and porosity for as-deposited 6061 Al alloy.

Substantial mode conversion may be also reached when there is a certain medium inside the
pores.[29] In the spray atomized and deposited 6061 material, and as discussed in a previous
section, the low solutibity of the atomizing gas may lead to the formation of pores containing a
partial pressure of inert gas. In this case, the motion of the inert gas relative to the porous
framework material will be high, since the porous material is rigid in comparison with the inert
gas. As a consequence, there will be an impedance mismatch to vibration movement between the
inert gas and the as-spray deposited metal. This mismatch may change the deformation field in the
neighboring metal region and therefore lead to secondary shear deformation in the neighboring
metal, increasing the density of dislocations, and thereby the damping due to internal friction.

Damping associated with grain boundary relaxation, anelasticity or viscosity in the
polycrystalline metals has been described by Zener,[35] Lazan[!] and Nowick(36], respectively. In
polycrystalline metals there exist amorphous grain boundaries that display viscous-like properties.
The viscous flow at grain boundaries will convert mechanical energy produced under cyclic shear
stress into thermal energy, as a result of internal friction. The thermal energy will then be
dissipated by the conductivity of metal and the heat exchange with the surroundings. The energy
absorbed in grain boundaries not only depends on the magnitude of the shear stress and the
anelastic shear strain, but also is proportional to the grain boundary area per unit volume, i.e.,
inersely proportional to grain size. In view of these results, the fine grained microstructure of the
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spray atomized and deposited material may also play an important role in the dissipation of elastic
strain energy. More detailed microstructural characterizations are currently under way in order to
provide experimental basis for these suggestions.

S. CONCLUSIONS

In summary, the results of the present work show that the presence of micrometer-sized
pores increases the damping capacity of the as-spray atomized and deposited 6061 Al alloy.
Furthermore, the results of damping characterization studies show that the value of  of the spray
deposited 6061 Al is higher than the results reported by other investigators using the same alloy.
The damping characteristics of the spray deposited material obtained in the present work is thought
to be derived from two factors: a) the presence of a finite amount of micrometer-sized pores, and b)
a fine grained microstructure. This suggestion was discussed in light of the relevant damping
mechanisms. Further work is continuing in this area in order to ascertain the mechanisms that are
responsible for the observed damping behavior.
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DAMPING PROPERTIES OF ALIPHATIC POLYURETHANES FROM
4,4'-DICYCLOHEXYIMETHANE DITSOCYANATE

John D. Lee, Gilb~»rt F. Lee, and Bruce Hartmann

Nonmetallic Materials Branch, Code R21
Naval Surface Warfare Center, White Oak
Silver Spring, MD 20903-5000

Abstract

Polyurethanes cover a wide range of camping properties
depending in large part on their two-phase morphology. Hard
segment crystallinity was proposed to be the dominant factor in
determining these properties. The evidence for this conjecture
came from a comparison of a system in which hard segment
crystallinity was present with a system where crystallinity was
inhibited by using a different chain extender. To verify our
assumption, in this work crystallinity was inhibited not by
changing the chain extender but by changing the diisocyanate from
the aromatic 4,4'-diphenylmethane diisocyanate or MDI to the
cy<ioaliphatic 4,4'-dicyclohexylmethane iiisocyanate or H,,MDI.
Trepolymers of poly(tetramethylene ether glycol) (PTMG) of four
different molecular weights (650, 100¢, 2000, 2900) with H,,MDI
were synthesized and chain extended with 1,4 butanediol.
Measurements of the dynamic mechanical properties of these
materials verified the assumption that hard segment crystallinity
is the dominant factor in determining the damping characteristics
of polyurethanes. All non-crystalline hard segment systems have
very similar properties regardless of the diisocyanate type or
the chain extender type.

10901 New Hampshire Ave., Silver Spring, MD 20903 301-394~1199




INTRODUCTION

Folyulelhanes are w.iely used in many damping applications,
but the large nurber of possible chemical compositions makes it
difficult to know which one to choose for a particular
appiication withcut a tedious trial and error evaluation program.
For this rcason, it 1= desirable to be able to determine general
rules governing the behavior of these materials, which allows one
to predici wiach materiais will be useful for a given
application. For some applications, a high, narrow loss factor
is required while for others a low, broad loss factor is needed.

It was suggested in our earlier work' that the presence of
hard segment crystallinity has a dominant effect in determining
damping properties. It was found that polyurethanes with hard
segment crystallinity have higher rubbery modulus and lower,
broader loss factors than those lacking crystallinity. In that
worx, crystaliinity occurred when a chain extender without
pendant groups was used while the substitution of a chain
extender with pendant groups inhibited crystallinity. It was
proposed that the difference between the two cases was a result
of the presence or absence of hard segment crystallinity and
should be independent of the chain extender if some other way
could ke found to control crystallinity.

The chain extender without pendant groups used previously
wae 1,1 butanediol or BDO. Due to the simple, regular structure
of this material, all the polymers made using it were found to
develop hard segment crystallinity. By contrast, a chain
extender with pendant methyl groups, 2,2-dimethyl-1,3-propanediol
or ¢ “PD, hinders hard segment orientation and inhibits
crystallinity'.

The present work was undertaken in an attempt to verify the
importance of crystallinity by examining a system similar to the
previous one but one in which crystallinity is controlled not by
the chain extender but by the diisocyanate. If our assumption is
correct, the same chain extender that gave rise to high rubbery
modulus and low, broad loss factor will have low modulus and
high, narrow loss factor if crystallinity can be inhibited.

The diisocyanate used earlier with both of ths above chain
extenders was 4,4'-diphenylmethane diisocyanate (MDI). 1In the
present work, a «y.loaliphatic diisocyanate, H,;;MDI, will be
substituted. 1,.MDI i35 a cycloaliphatic diisocyanate composed of
a mixture of the three geometric isomers: trans-trans, trans-cis,

cis-cis. While the MCI based polyurethanes can form a well
defined crystalline hard segment as we have previously seen, hard
segment crystallirity i= irhibited in H,,MDI based polymers due

to the presence of these three isomers. Our supposition is that
the same qualitative properties will be obtained by varying the
diisocyanate portion rather than the chain extender portion
provided that hard segment crystalliration can be inhibited (i.e.
morphcloay s mwole impeortant than chemistry).




The remainder of this paper will discuss the synthesis of
the polyurethanes, the thermal analysis to determine transition
temperatures, the dynamic mechanical analysis to determine
damping characteristics, and the conclusions reached. It will be
verified that the presence or absence of hard segment
crystallinity is the dominant factor in determining the
qualitative form of the dynamic mechanical properties,
independent of the specific diisocyanate or chain extender.

SYNTHESIS

All the polymers synthesized were based on the same
polyglycol used previously, poly(tetramethylene ether) glycol or
PTMG (DuPont Terathane). Nominal molecular weights of PTMG were
650, 1000, 2000, and 2900. In the earlier study, an aromatic
diisocyanate was used, 4,4'-diphenylmethane diisocyanate or MDI
(Dow Isonate 2125M). 1In the present work a cycloaliphatic
diisocyanate, 4,4'-dicyclohexylmethane diisocyanate or H;,MDI
(Mobay Desmodur W), was used. This material is about 65 percent

cis-trans, 30 percent trans-trans, and 5 percent cis-cis isomer.
The three isomers are illustrated in Figure 1.

H H
OCN"%', CHZN NCO TRANS,TRANS
H H

o

H NC
ocu’m CH, ‘N\H CIS.TRANS
H H
NCO

OCN
H)m/ CH, NH Cis,CIS
H H

Figure 1. Isomers of H,,MDI
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All of thec above polygiycouls were reacted with H,MDI under
nitrogen using 1 mole of PTMG and 3 moles of H,,MDI to form
prepolymers. The reaction teapersture was kept between 75 and
80°C for at least two hours after the addition of polyglycol was
complete. A small amount of dibutyl tin dilaurate (Air Products
DABCO T-12) catalv=t was used to spreed up the rzaction between
the polyglycol and the diisocyanate. This mixture was then
degassed and stored under nitrogen until further use.

The PTMG/H,;,MDI prepolymer was chain extended with BDO.
Figure 2 shows the structures of PTMG, MDI, H,,MDI, BDO, and
DMPD. The prezpolymer was heated 1o 8G°C and degassed thern chain
extended with BDO. The BDO was added and mixed under vacuum at
high speed using a laboratory mechanical mixer for abnut three
minutes. The polymer was poured into a pre-~-heated Teflon coated
mold at 100°C. The isocyanate index was 1.05, which ensures that
there is 5 percent excess diisocyanate for crosslinking during
the cure. All of the samples were cured at 100°C for 16 hours.
Then the samples were equilibrated at room temperature and 50
percent RH for a minimum of two weeks before dynamic mechanical
analysis.

PTMG poly (tetramethylene ether) glycol
HQ FCH,CH,CH,CH2 04 H

sDT 4,4'-diphenylmethane diisocyanate

OCN @ CH, @ NCO

H12MDI  4.4'-dicyclohexylmethane diisocyanate

OCN -{:} CH, O e

BDO 1,4-butane diol
HO-CH,CH7CH,yCH,-OH

Figure ». Chemical sStructures of Tomponents




EXPERIMENTAL
THERMAL ANALYSIS

A DuPont 9900 Thermal Analyzer was used in conjunction with
a 910 DSC (differential scanning calorimeter) module to obtain
thermograms. Samples (15-20 mg) were cut from the test Lars used
for the dynamic mechanical measurements and placed in aluminum
test pans for analysis. Measurem2nts were carried out in a argon
atmosphere at a scanning rate of 10°C/min. Two runs were made on
each sample, each from -170 to 250°C.

Thermograms were analyzed to determine the glass transition
temperature in the soft segment, T,(ss), the melting temperature
in the hard segment, T, (hs), and the melting temperature in the
soft segment, T,(ss), if any. In addition, the heat of fusion
was determined whenever crystallinity was present.

DYNAMIC MECHANICAL ANALYSIS

Dynamic mechanical properties were obtained using the
resonance apparatus previously described!. In this apparatus,
Figure 3, modulus and loss factor were obtained over a frequency
range of about two decades for temperatures from -60 to 70°C.
All data will be presented at a reference temperature of 25°C.

CONTROLLED
TEMPERATURE CHAMBER
ISTORAGE DISC  SUPPORT
NOISE SOURCE SHAKER
» |
FAST
|_| FOURIER #AMPUHERS
COMPUTER SPECTRUM - g q
ANALYZER \ ACCELER-
%/ |+~ OMETERS
PRINTER [‘:.\_J
TEST
SPECIMEN

Figure 3. Resonance Apparatus

Measurements were made at 5 degree temperature intervals and the
sample was equilibrated for twenty minutes at each interval
before measurement. This data was shifted, using the time-
temperature superposition principle to form master curves of

GDF-5




modulus and loss factor as a function of frequency over a very
wide frequency range at a reference temperature of 25°C.
Measurements and data analysis were carried out in the same
fashion as the earlier work'.

RESULTS AND DISCUSSION

Transition temperatures were determined from DSC
thermograms. A typical example of the results obtained is shown
in Figure 4, where we have compared the data for PTMG
1000/H,,MDI/BDO with that PTMG 1000/MDI/BDO. As can be seen,
there is a well developed melting peak for the MDI based polymer,
indicating that hard segment crystallinity was present, but no
crystallinity is seen in the H;,MDI based polymer.

MDI/BDO
.Tg =:'4u;°(;.rn1:=‘157'0c:

HEAT FLOW

Hq, MDI/BDO Tg=-10°C, Ty = -

1 ]

l
-150 -50 50 150 250
TEMPERATURE (°C)

Figure 4. DSC Thermograms of PTMG 1000 Pclymers

Thermograms for the other molecular weights were analyzed in a
similar manner, and the transition temperatures obtained are
listed in Table 1. Densities of the H,,MDI polymers and the
analogous MDI based polymers are also listed in Table 1.
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Table 1. Transition Temperatures and Densities for
PTMG 650-2900/H,,MDI/BDO and PTMG 650-2900/MDI/BDO

T, (ss) T, (hs) T,(ss) Den51t¥
°C °C °C g/~m
PTMG 650/H,,MDI/BDO 13 152 -- 1.096
PTMG 1000/H,,MDI/BDO -10 - - 1.075
PTMG 2000/H,,MDI/BDO ~68 - - 1.040
PTMG 2900/H,,MDI/BDO -71 - 18 1.027
PTMG 650/MDI/BDO -24 160 - 1.174
PTMG 1000/MDI/BDO =48 157 - 1.139
PTMG 2000/MDI/BDO -66 184,197 2 1.080 °
PTMG 2900/MDI/BDO -71 191,198 10 1.056
ss - soft segment hs - hard segment

In comparing the results for the two systems, the glass
transition temperature for the PTMG 2900/H;,MDI/BDO polymer is
identical to that for the analogous MDI based polymer and the
value for PTMG 2000/H;,MDI/BDO polymer is nearly the same

as the analogous MDI based polymer. For the lower molecular
weight PTMG, however, the H,;;MDI based polymers have
significantly higher glass transition temperatures than the
analogous MDI based polymers. For PTMG molecular weight of 1000,
the T, for H,;;MDI based polymer is 38 degrees higher than the MDI
based polymer. while T, for PTMG 650/H,,MDI/BDO polymer is 37
degrees higher than the analogous MDI based polymer. Since, for
these systems, the lower the PTMG molecular weight the higher the
hard segment concentration, it follows that the cycloaliphatic
diisocyanate has the most effect in those polymers with the
higher hard segment concentration. This increase in T, is
presumably a result of phase mixing of the hard segment into the
soft segment.

We notice that hard segment crystallinity has been inhibited
in the H;;MDI polymers with the exception of the lowest molecular
weight, where there is a small amount of hard segment
crystallinity. The heat of fusion for the 650 MW polymer is 7
J/g compared with 20 J/g for the analogous value for an MDI
system’. Thus we expect the slightly crystalline PTMG
650/H,,MDI/BDC polymer to behave similar to the non-crystalline
PTMG 650/MDI/DMPD polymer, though with a slightly higher rubbery
modulus and lower, broader loss factor. This behavior is, in
fact observed'. The non-crystalline PTMG 1000/H,,MDI/BDO polymer
should be very close in behavior to the non-crystalline PTMG
1000/MDI/DMPD polymer, and this is also found experimentally’.

Finally, we observe that soft segment crystallinity occurs
for the PTMG 2900 polymers which we have seen before. When the
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soft segment gets long enough, soft segment crystallinity occurs
regardless of the hard segment. Based on our previous
experience, there is likely some soft segment crystallinity in
the PTMG 2000 polymers that does not appear in the DSC at a
scanning rate of 10°C/min but which does appear when sufficient
time for annealing is allowed, as in the dynamic mechanical
measurements where the sample is equilibrated at each temperature
interval. The step-wise isothermal dynamic mechanical
measurements are made in steps of five degrees with an
equilibration time of 20 min after each step. The equivalent
heating rate is then 0.25°C/min.

Density values determined by water displacement (ASTM Method
D 792) are also listed in Table 1. It can be seen that, for both
systems, the polymer density decreases as the molecular weight of
the PTMG increases. Since the higher the PTMG molecular weight,
the higher the soft segment concentration, the decrease in
density is a soft segment concentration effect. For any given
PTMG molecular weight, the density of the MDI polymer is about 5
percent higher than the analogous H;;MDI polymer, due to the hard
segment crystallinity in the MDI based polymers.

Dynamic mechanical modulus results for PTMG 650/H,,MDI/BDO
and PTMG 1000/H,,MDI/BDO are shown in Figure 5.

9 T T T T T
o
8

T Y
i A A A AoA d

650

1000

TTTTrTYTTY

A a2 2 a2l

T v rTrrery

Aot 2 s 22t

Ll
A

LOG SHEAR MODULUS (Pa)

6 1 I I
-5 0 5 10 15

LOG FREQUENCY (Hz)

Figure 5. Shear Modulus for PTMG 650 and 1000/H,,MDI/BDO
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The PTMG 2000 polymer was not thermorheologically simple so that
master curves could not be generated. This behavior is probably
due to a small amount of soft segment crystallinity which occurs
during the slow heating cycle of the dynamic mechanical testing
but which is not seen in the more rapid scanning used in the DSC.
For the PTMG 2900 polymer, definite soft segment crystallinity
was present even in the DSC thermogram and again the data could
not be shifted.

Looking more closely at the modulus results (Figure 5), the
glassy modulus of both polymers is about 1 GPa, typical for
polyurethanes regardless of chemical composition. The rubbery
modulus, however, shows much more variation with the chemistry
and morphology of the particular system. Both molecular weights
tend asymptotically to a rubbery modulus of about 2 MPa, the same
as the PTMG/MDI/DMPD systems. In fact, the PTMG/H,,MDI/BDO data
is very close to the PTMG/MDI/DMPD system. In contrast, both
these polymers are qualitatively different than the PTMG/MDI/BDO
system where the rubbery modulus tended to about 20 MPa, as can
be seen in Figure 6, where a comparison is made for the three
PTMG 1000 polymers.

¢ r

LJN S I Sn AR B 2 §

Ao a s aal

Hq2 MDI/BDO

Ll LR AR ALL

a2 1 aasl

MDI/DMPD

6 1 i 1 ]
0 5 10 15

T

LOG SHEAR MODULUS (Pa)

LOG FREQUENCY (Hz)

Figure 6. Shear Modulus for PTMG 1000/MDI/BDO,
PTMG 1000/MDI/DMPD, and PTMG 1000/H,,MDI/BDO
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Note that the two polymers with very similar modulus values
(MDI/DMPD and H;,MDI) have rather different chemistry. what they
have in common is that they have no hard segment crystallinity.
The polymer without hard segment crystallinity (MDI/BDO) has very
different modulus values. These observations are in agreement
with our supposition that hard segment crystallinity dominates
the dynamic mechanical properties not chain extender or
diisocyanate type.

The loss factor data for the two H,MDI polymers is shown in
Figure 7.

1 I 1 L T I

T LA

1000 1

LOSS FACTOR

0.1 ¢

650 .

0.01 ‘ : ‘
-5 0 5 10 15

LOG FREQUENCY (Hz2)

Figure 7. Loss Factor for PTMG 650 and 1000/ii,,MDI/BDO

Both polymers have a relatively high loss factor, about 0.8, and
the maximum values occur about three decades of frequency apart.
The T, values for these polymers differ by 23°C, and a difference
of 7°C/decade is typical for polymers in general.

Further confirmation of the effect of hard segment
crystallinity is observed in the loss factor data, Figure 8,
where a comparison is made for the three PTMG 1000 polymers. The
PTMG/H;,MDI/BDO data is very close to the PTMG/MD1/DMPD, both
having a peak loss factor of about 0.8, but these polymers are
qualitatively different than the PTMG/MDI/BDO, with a peak loss
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factor of about 0.3. Once again, morphology is more important
than chain extender or diisocyanate type.

LN i 1

MDI/DMPD
Hi2 MDI/BDO

r™Tr=vT rr

0.1

LOSS FACTOR

0.01

-

0 5 10 15

LOG FREQUENCY (Hz)

Figure 8. Loss Factor for PTMG 1000/MDI/BDO,
PTMG 1000/MDI/DMPD, PTMG 1000/H,,MDI/BDO

CONCLUSIONS

Thermal and dynamic mechanical measurements were made on a
series of polyurethanes based on cycloaliphatic diisocyanate and
the results obtained compared to similar data on the aromatic
analog. The results confirm our hypothesis that the presence or
absence of hard segment crystallinity is the dominant factor in
determining the qualitative form of the dynamic mechanical
properties, independent of the specific diisocyanate or chain
extender. The following specific conclusions were reached:

¢ Hard segment crystallinity is the dominant factor in
determining the dynamic mechanical properties of
polyurethanes

¢ Regardless of the chain extender or diisocyanate, high
loss is obtained if crystallinity is avoided

¢ Regardless of the chain extender or diisocyanate, low
rubbery modulus is obtained if crystallinity is avoided
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AN APPARATUS FOR MEASURING
THE LOW FREQUENCY DYNAMIC CHARACTERISTICS OF MATERIALS.

Francis OLIVIER* and Mona KHOURY

Centre d'Etudes et de Recherches pour la Discrétion Acoustique des Navires (CERDAN)
DCN Toulon, 83800 Toulon Naval, FRANCE

INTRODUCTION

The TNO Institute of Applied Physics at Delft (TPD Netherland) has developed an appara-
tus for the evaluation of dynamic stiffnesses of resilient mounts and flexible hosepipes (see refe-
rence) used in automotive or shipboard machinery. It exploits accelerometric transfer measure-
ments and, as main advantages, allows to work under static preload with a hydraulic jack, and
over six possible degrees of freedom. We have adapted it to the characterization of the intrinsic
properties of materials in alow frequency range (from 100 Hz up to about 2 kHz) through the lon-
gitudinal bulk M = A+2J and the shear G = |1 complex moduli.

In that paper we describe this apparatus, its main characteristics and performances. We also
present some results and explain its limitations in order to propose some improvements. They
show how the TPD bench may be considered as an interesting and complementary device for the
knowledge of foam and composite rubbery materials, at low frequencies, under varying condi-
tions of static pressure.

* E. :ernal consulting engineer from STERIA for CERDAN; telephone : (33) 94-02-50-53
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I - GENERAL WOKRKING PRINCIPLES

I - 1 Gemnral doscrprion

The TPD - Jpariivsis a teel mads heovy sramewi rk composed of a lower tenc:s
supporting an arch which comies a hydrauli~ isek (fqure 1-2). T+ has sufficiently large
dimensions 1o recerve el areves o T enal avodneds Y 1lozems, that one can isolate
from the structure by nanging them on resuient mounts. Usual work needs to superpose
to massas related tooether by the elemaent 1n be tacied fik 2 a resitient moun. or a flexihle
hose. Generally these masses have a cicular shape; they are chosen within a set of several
steel or aluminium masses whici inertial characicrisiics and iiternal eigenfrequencies are
pertectly known. So one can build @ discrere mass-stftness-niass system (figure 1-b),
isolated by suspensions judiciously chosen between a set of known mounts, and
obvicusly moch 1oas suff than tic clemont to el By changing masses and isolators
stiffnesses, v o are 2912 10 Control b woking irenciacy bicacband while sausfying the
"isolated discrete system assurupuion. in special cases, this broadband may go from a
few tenc of heaz o to aboue 2 kM

For vihrawory © vin, Sl Gl 0 unL, of DeXiie n0sepIpe., it ts often interesting
to put taear in read working sitiance. Uhis s e o why the TPD bench includes a
jack and a o fradic cvende b B U epaied 0o et owr g, WILL Gl iy, one
can appiyv a waric toading that <imulaics ¢ real siructure or a machine which muy weigh up
to e hundred tone. The sccond allews filling o flexible pipe with a liquid pressure.

The mass-stiffness-mass system is aligned along the vertical z-axis. The
horizontal plane will be notad xy. The excitations are applied with two electrodynamic
shakers, symmetrically mcunted on @ transversal bar (y) which is perpendicular to the
main frontbeam (x). They attack the upper mass, named input mass and pointed out by
index 1. The vibrution goes through the element 1o test, down to the lower output mass
pointed out by the index 2.

I - 1 Vibratory equations for the 5 deg-ees of freedom system

One can consicer that the mnount 10 Laf Wetaes Like a pa.e sidffaess if one adirits
the followirg realistic assumptions :
- its mass is negligible compared totl - m --sas 1 and 2
-its dimensinng are much smaller than the wavelength (especially for low frequencies),
- 1t presents 3 'incar behavior for vibraiions having litue displacements.
Writing HCoke s 1nw between ane tw be s of the < secnen ond generaliarg it o e
six possible degrze., of freedora cae can ~>line e wtiffress 17x12 matrix (K} as

. RN GRS CUT DD SR
(Fi=[K] {Xi o D00 000 s
1 i { SO i L :‘.‘1




- {F;) force vector on .iode i, with 6 components : 3 forces Fy, Fy, F,, and 3 torques
M, My, M,

- {X;) displacement vector on node i, with 6 components : 3 translations x, y, z, and 3
rotations Oy, 6y, 6,;

- [K11] et [K2;] input (respectively output) stiffness matrix for blocked output
(respectively blocked input);

- [Ky2] et [K2;] input (respectively output) transfer matrix for blocked output
(respectively blocked input).

This matrix contains all the mount characteristic stiffnesses. From now on it will be the
unknown of our general problem. We will consider all of its elements as complex vilues
which imaginary parts reveal the eventual presence of damping.

Using that formulation, one can write the dynamic equation of the two-nodes
discrete system :

[M]{X) +[K]{X} = {F) (2)

where {F,} is the six components external force vector applied to the input mass with the
two shakers, and [M] is the inertial tensor on both nodes. If we consider the two masses
as punctual, that 1s if the two junction nodes merge into the centers of gravity of the
masses, then [M] is a diagonal matrix which twelve diagonal elements may be written as :
my, my, my, Jxq, Jy1, Jz1, Mg, my, my, Jx2, Jy2, J,2. For example, Jy; is the moment of
inertia of node i (i =1 or 2) around the y rotation axis.

In practice, we do not use the whole formulation in every cases. Except for
inertias, all the involved variables may depend on frequency so that it would be too long
to process them all systematically. To lighten the problem formulation, one can take
advantage of the symmetry properties of matrix {K] due to the reciprocity theorem.
Therefore we are allowed to concentrate only on the output mass movements and to
consider that [K3;] and [K3;] contain the whole characteristic stiffness informations
about the specimen. Moreover, since we apply excitations to the input node (mass n°1),
the equation of the output node becomes simpler setting its second member to zero :

[Ma] {X2) + [Ka1] (X1} +[Kn2) {X2) = {0) 3)

To go on into simplifications, another working fundamental assumption is to
suppose the output blocked. In practice, we realize that condition by using an output
mass much heavier that the input one (for example m; = 50 kg and m; = 450 kg). In the
following paragraph, we will verify the validity of such an approximation which intends
to eliminate a third term in equation (3) and reduce it to:

[Ma] {X2} + (K21} {X1) = {0} (4
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From this equation we can notice that the unknown is restricted to [K,;] and deduce two
important remarks that will affect the experimental aspect of our method. First, since
external forces have disappeared we will not have to measure them. The measurements
will be reduced to displacements or accelerations, and this leads to the second remark.
The "blocked output” hypothesis may seem quite paradoxal because, strictly, we should
measure zero output accelerations! In fact the assumption remains true if one satisfies the
following compromise : output accelerations must be measurable, that means stronger
than the background noise. but much weaker than the input ones (about 20 dB).

The wransfer matrix [K2] is generally not fullfilled. It may present many zero
elements, depending on the specimen shape. This represents a considerable advantage for
our method, because we may reduce the number of unknowns from it. In other words,
symmetriss may occur in the mount shape, which tend to separate coupled degrees «f
freedom. Therefore the formulation becomes simpler and, for example, in case of a
specimen having three planes of symmetry xy, xz and yz, equation (4) becomes :

m2X2 \ X1

. TR D 0 0 Ka,5 0

2 Y : N ’ ‘ Y,
Mt 0 K2 0 K24 0 0
mZ \_| 0o 0 ka» o o o | |Z

" 0 K24 0 K@4 0 0 | g
GAL 1 KISy 0 0 0 K& o | | M
1,82 | L0 0 0 0 0 K6,6) | | By
J/ZBIZ ! \ ezl (3)

I - 3 Tension-compression equations along z axis.

By construction, the experimantal mounting privileges vertical (z) tension-
compression vibrations within all other degrees of freedom. Equation (5) shows that this
"dof™ 1s not coupled with any other one, so that it becomes very casy to write this two-
nodes reduced system cquations for harmonic vibrations :

my Z, + K(Z, - 7») = F_ explioy
-K(Zy-2Z7) + nnZy = 0O (6)

where K = K{3,3). The two angular eigen frequencies are given by

2 _ o 2 .l Lo, 1
W =0 et o= K{d 4 j

) m; ()
and since Z = -oy Z, both displacements are written as ¢
: K mw - . ‘
21 = }'c T e e s o ;-—- it et /q h r‘k —— - ~L—~——~~— ——— =
b 3 - K “~ ] Y -
@ (mymam - Kimi+mo) ) o (nemHms - K amyp+4ma) )

The output/input ratic leads to GDG =




1 /43
1-%(’)2 21

Zl = K =
Z, x- my?
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From transfer function (9) we can observe that, for a given specimen stiffness, the
heavier the output mass the weaker its acceleration is, compared to the input mass one.
This contrast increases with frequency and for small stiffnesses. This illustrates the
previous paragraph purpose and shows how the question of signal to noise ratio may
appear. For that reason, we will probably have to deal with high frequency limitations.
Moreover we can notice that the stiffness K may be approximated by :

K = - mp »? —Zl
Z (10)

with a negligible error when myw?/K >>1. Therefore, simply multiplying the
accelerometric transfer function by -myw?, provides directly a good estimation of the

stiffness. To evaluate the specimen damping, we just have to take the complex K phase
information into account.

We just saw that signal to noise ratio problem could cause the high frequency
limits of our approach. Other reasons may be -
- unsatisfaction of the "discrete system" assumption at the eigenfrequencies
neighbourhood;
- bad isolation of the tension-compression degree of freedom which may get coupled with
other ones like rotation, in case of small defects or weak dissymmetries in the mounting.
According to (9), the low frequency limit will be given by :

These considerations we just made about tension-compression may be applied to
the other degrees of freedom in the same way. But neither the involved stiffnesses and
inertial terms, nor the frequency limitations therefore, would be the same.

(1D

I - 4 Experimental processing.

Measuring the accelerometric transfer function between the two masses in the
conditions described above, needs a good experimental care.

To guarantee that the degrees of freedom are sufficiently urcoupled from each
other, all the transducers, shakers as well as sensors, are used by pairs, geometrically
symmetric or antisymmetric mounted depending on the dof (figure 1-b). That kind of rig
allows spurious movement cancellation and desired movement extraction. Each pair
needs twin transducers, very well calibrated in modulus and phase, so that their signal
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may be added or substacted without distorsion. These operations are made by two analog
electronic devices (see the right part of figure 1-b) :

- the VCCD (Vibration Component Cancellation Device) splits the input amplificated
signal into two in-phase or phase opposit components which feed the two electrodynamic
shakers (Denitron);

- the ASD (Additive Substractive Device) gives on output the half-sum or half-difference
(following the operator choice) of both input signals coming from a pair of sensors.

For vertical tension-compression (z axis), both vibrators are fed by the same signal, and
the ASD compute the half-sum of the amplified signa) outcoming from the pair; of
accelerometers.

About signal processing, we usually estimate transfer function (9) with a HP
6532 numeric analyser, which can also provide the excitation signal. To optimize the
Fourier analysis in the point of view of signal to noise ratio, we use a slowly swept sine
which may require about seven minutes acquisition time when working from 0 to 2 kHz
with a 2.5 Hz resolution. This quite long analysis allows the output signal to come into
view from the background noise level, while avoiding at the same time, the injection of a
too powerful excitation which could introduce undesirable non linear behaviour. Then we
satisfy the following compromise : noise level < Zp << Z; .

The digitalized transfer function migrates out from the analyzer into the memory
of a HP 9000 computer which makes post-processings like. for example, the
multiplication by -m;? and the graphics too. A complete software prog-am manages the
whole tests over many kinds of specimen like mounts, hoses and pipes. It can also
process a matrix treatment to separate coupled degrees of freedom.

To insure that the experimental conditions fullfill the working assumptions
described in the paragraph above, we generally add complementary measurements to the
main transfer function. They are (figure 2) :

- the measurement of both input and output masses acceleration spectra, to verify that the
level of the second is effectively about 20 dB lower than the level of the first; we can aiso
see if they are eventually polluated by a spurious movement.

- the measurement of this spurious degree of freedom to diagnostic and c~rrect it;

- the measurement of the bench acceleration spectrum, below the output mass; it must he
at least 10 dB lower than the output mass level for the discrete systetn to be well isolated.
Because of a bad resilient suspension, it could happen that the outpe: mass mizht be
excitated not only by the specimen but through the isolation mount t00. Indeed an
acoustical channel links 1t to the input mass : it goes up through the upper mount to the
jack, then from the juck dowr to the lower part of the bench and up aguin threugh the
lower mounts to the inass. This case may occur if, for example under very heavy static
loadings, the resilient mounts lose their efficiency because of smashing or their oun
degradation.

Moreover, we can use many different amplification gains on the excitation signal,
to verify that the specimen has effectively a tnear vibraters behaior in Hooke's law.
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II - USING TPD BENCH AS A VISCOANALYZER

II - 1 Measurement of longitudinal and transverse moduli

We have explained how to measure the dynamic stiffnesses of a resilient
specimen. Now we are going to decribe a derivated usage of TPD bench, specifically
destinated to the evaluation of the M longitudinal bulk (plane wave) and G transverse
(shear) moduli which are characteristic of the material the specimen is made of. Elasticity
theory says that those two parameters are sufficient to completely define an isotropic
material. This may be extended to viscoelastic materials by considering their moduli as
complex values. From now on, we will not speak of a mount to test anymore, but of a
material specimen, and our objectives will not be anymore to evaluate only global
parameters like stiffnesses, but to obtain a material intrinsic information, which does not
depend on the mount shape.

This special utilization of the apparatus is particularly well adapted to the
characterization of materials like natural or synthetic rubbers, foams and many of their
derivated composites which may contain inclusions or internal structures. As main
advantage it provides directly the viscoelastic moduli we use to deal with in acoustical
modeling, either with Lamé coefficients in tridimensional elasticity equations, or through
the sound celerities of longitudinal and transversal waves :

M=A+24; G=u = c[,=/\/7t+2"L e,tor:f\/E
P Y (12)

In that point of view, the direct method we recommend here is much more
appropriate than the usual viscoelastic measurement devices like rheovibrons or
viscoanalysers, which generally try to estimate Young's and shear moduli, E and G,
through the observation of beams working in tension-compression, torsion or flexion. In
using the equations linking the elastic moduli to each other, a simple analytical calculation
of the relative error is sufficient to convince oneself about it . If we deduce M from
experimental values of E and G, we obtain :

- g[4G-E dM _ dG . EG dG . dE
M G(3G-E) = M~ G (3G-E)(4G-E)[G EJ =
AM=(1+ EG | 4G . EG AE
M (3G-E)(4G-E)] G " (3G-E)(4G-E) E 13)

By another way using Young's modulus and Poisson ratio v we have :

_ (1-v) AM _ AE 2v2(2-v) Ay
M=E AM _ AE Av
(T+v)(1-2v) — M ~E " (1v)(1-2v) V 04
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The materials we are used to study, generally have quite strong Poisson coefficients
between 0.4 and 0.5. A well-known consequence of that fact is the following inequality :

G=—E o 28G<EZ<3G
2(1+v) (15)

In expressions (13) and (14) of AM/M, the presence of (1-2v) or (3G-E) in the
denominators shows how a small error in evaluating E and/or v may be amplified on M :

AM AG AE AE Av

'v=0'4=>—M=5—G~A$4f=—E_+3—v_A
AE AE \"
v =04 AM 104G |, gAE _AE g4V
V=045 = M ]OG+9E E+8V (16)

Figure 3 illustrates the consequence of that fact on the longitudinal wave celerity. An
error of 1% in the measurement of E or G may produce an error of 10% or 20 % on M.
1% is a quite optimistic error because many viscoelastic devices have very poor accuracy
which sometimes lead to aberrations like E > 3 G!

IT - 2 Specific tool for measuring M = A+2).

For measuring a material longitudinal bulk modulus, we most ofien use squurc
panel shaped samples, from 30 to 50 mm thick, with 100 mm, 200 mm or 300 mm sides.
Other tests also work with cylinders of same thickness and nominal diameters of 80 mm
or 140 mm. These dimensions are needed with an accuracy of * 3 mm, so that the
specimen can fit a metal box which encloses it and blocks -~ lateral displacements. By
pressing weakly on its sides and lubricating the lateral conte. « face« with a silicon oil, we
are sure to block both static and dynamic displacements along x and y axis; this also
allows free tangential sliding parallel to z axis. The blocking box is made of a steel
circular plate which supports a square framework with two fixed faces and two moving
ones which may be actionned with a screw. This tool weight is about 50 kg and is nnt
negligible so that it must be added to the output mass. To apply the excitation correctly, a
metal piston of lightly smaller section compared to the specimen, is put between its upper
face and the input mass (figurc 4).

This care we take in the mounting, insures the dynamic condition which is said of
"plane deformation”. Along the vertical z axis, the stress-strain relation for the specimen
considered as an c¢lement of voiume, may be written as :

O = H(Exx +Eyy) + (A+2U)E, 7

Since the tool cancels the lateral displacements one can merge
- the z stress into the output inertial force divided by the sample section §;
- the z strain into the gradient of z displacements divided by the samplz thickness h.
Then, using (10) and (17) onc can write :
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=0z _ _mZy/S _ h
A+20 e =(Z,-2)/h K(3,3)S

(18)
Therefore we can see that the measurement of the longitudinal bulk modulus only
requires to correct the stiffness K(3,3) with the shape factor h/S which is very easy to
evaluate because the specimen shape cannot change. In addition to the good control of
boundary conditions, this is a second advantage of the method. For data processing the
estimation of M requires to apply this second coefficient to the accelerometric transfer
function besides the factor -m,m? already used for the estimation of the stiffness. The
obtained value (figure 5) may be complex in case of damping, and may depend on
frequency if the material exhibits a dispersive behavior.

II - 3 Static preloading configuration.

The TPD bench allows the testing of materials under static preloading which may
be useful for certain applications. Under pressure the materials behave differently : their
internal static stress state makes them look like other materials with a weakly higher
density (a few percent) but much stronger elastic moduli. The relationship between
pressure and those moduli is generally not linear and depends a lot on the kind of
considered material. For homogeneous materials the molecular interactions are changed.
For composites or foams the internal structures are affected.

To simulate the working under static pressure we use the hydraulic jack. A force
ring gives the vain= of the injected force up to 100 tons, and therefore, dividing it by
section S, the value of the static pressure. Because of the blocking framework, S does
not change. The thickness h may eventually diminish under the effect of smashing :
anyway its new value can be easily measured by comparison with its initial state. As it
was said before, the specimen shape remains the same and the shape factor is calculated
as before.

Some aspects may change on the experimental point of view. Since the specimen
stiffness increases (figure 1-b), so does the low frequency limit and the accelerometric
contrast fades between input and output masses on one hand, and between the output
mass and the lower part of the bench on the other hand. So the isolation mounts are
generally removed into more resisting ones which support heavy preloading and are
consequently less efficient. Coupling with other dof may also become more embarrassing
and polluate the measurements. Only the signal to noise ratio takes advantage of that
configuration. Nevertheless one can observe that the experimental conditions get globally
worse (figures 2-c and 2-d) but the measurement remains always possible for static
pressures less than 20 bars.

About static preloading configuration, an important remark must be done. The
static stress we apply is not isotropic but axial. Therefore, the stress state inside the

GDG-9




specimen is not isotropic either. Indeed, for a material with a static Poisson ratio v, its
components are :

O = O = Ty (19;

For instance the blocking frame reaction is 66% of preloading if v =0.4 and 82% if v =

0.45. So there is some ambiguity in interpreting the resultc obtained in such a
configuration, mixing static and dynamic considerations.

If the dynamic modulus variation is due to the isostatic stress state, we probably
underestimate the real value of M that the material would present under isotropic
preloading (in a fluid for instance). Nevertheless equation (19) shows that the materials
with a strong Poisson ratio like rubbers, are not very affected. About materials with weak
Poisson ratio like rubbery foams, one can imagine that their compressibility makes the
Poisson ratio increase under the effect of heavy preloading. The Poisson ratio of a foam
is rather low at atmospheric pressure because of the bubbles it contains. A static
smashing may fill those cavities where the material will not expand anymore : s9 it
becomes less compressible. To conclude, we can say that the error must probabiy
decrease as the static pressure increases, and be more sensitive for the lighter loadings
which unfortunately, are the conditions we are most often used to deal with.

IT - 4 Shear measurement

Measuring the shear modulus G can be done in a way similar to that used for the
longitudinal bulk modulus. It only needs to work along the horizontal x axis instead of
the vertical z axis (figure 6-a). We then look after evaluating K(1,1) which may be
obtained by transposing the relations concerning K(3,3) (cf. §1-3). The application of the
shape factor remains the same because the equation linking the dynamic stiffness to the
characteristic modulus is of the same kind as (18) :

G = =9a=_m32_/_5_=;<1,111
b= T X, X y/m - KhDg

(20)
If the measurement principle does not make any difficulty, ca the other hand the
experimental conditions are much less easy. The shear mounting presents some

specificities very different from those of vertical tension-compression, which involve
difficulties on several aspects.

First, the pairs of transducers must be horizontally positioned, diametrally anu
phase opposite. Since the shear modulus of a material is always much weaker than the
longitudinal one, the global shear stiffness of a specimen is much lower too. Therefore
the acceleration transmitted through the specimen to the output mass has a lower level,
and the signal risks to be drowned very soon at a few hundred Hz, into the background
noise. In such a case we will have to use a lighter output mass (figure 6-b).
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Another problem is that the panel cannot be held in the blocking frame because the
definition of shear requires to keep its edges free. As a consequence we lose some control
on the boundary conditions and the shape factor when we want to work under heavy
static preloading. If not enclosed in a box, the sample can expand on its sides : then its
thickness strongly decreases, its section increases and its lateral faces round off, so that
the shape factor becomes uneasy to evaluate. A second consequence is the difficulty to
well isolate the shear degree of freedom, even without static preload. Indeed, the lack of
signal mentioned above may lead to amplify the excitation signal. Then the x
displacements tend unfortunately to get coupled with the rotation around y axis,
especially for the highest frequencies (figure 6-b). To improve this particuliar point two
solutions are possible.

The first one is to mount a special rig that would be mechanically and
geometrically symmetric toward the medium plane which horizontally cuts the input
upper mass through the middle (figure 6-a). But we then need a second twin specimen
and a second mass identical to the lower one which movements would balance and cancel
the rotation degree of freedom. But for practical reasons of heaviness and overcrowding
this solution cannot be applied.

The second one keeps the original rig and concerns the measurement post-
processing. Since a spurious rotation may occur we can take it into account by excitating
it deliberately and measuring it. Then a matrix treatment may allow the separation of the
different stiffness terms involved in the problem. Let us consider the output mass
movements with both coupled degrees of freedom ; if m is its mass and J its moment of
inertia around the y axis shifted to the junction point with the sample, then following (5)
one can write :

]

\/ vrre EN N
mXs = KO, 1) X, 0 L0 0

J8y2 = K(5,1) X; + K(5.5) 61 1)

We do not have to measure an accelerometric transfer function anymore, but directly all
the accelerations involved in (21), using for instance an electrical reference. These
measurements must be done a first time by excitating the shear translation of the input
mass (figure 6-a), and a second time by excitating its rotation applying a torque around y
axis (figure 7-b). To do this we just have to put both electrodynamic shakers in the same
vertical position used for tension-compression, but in that case they are fed with two
phase-opposite signals (antisymmetric mounting). Then we are able to build a linear
system of 4 equations and 4 unknowns which are the stiffness terms. A software
program makes the matrix processing which has to provide theses complex values versus
frequency. It often happens that the sample has a horizontal (xy) plane of symmetry : in
such cases the calculation should yield this property of the stiffness matrix with K(1,5) =
K(35,1). For practical reasons this method has not been tested yet for the shear modulus

evaluation, but we know from elsewhere that it already works for resilient mounts testing

at low frequencies.
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We have described in that naper a derivated utilization of TPD bench in order to
“harscterize the alac _eperres of materinis hike robbers ard foamg of Inw frooumeiee
This apparatis gives reliable reculrs especially on the longitudinal bulk modulus nunder
{iffarent conditione f ctatic nressure. The chear measurements are not comnletely
satisfving yet but there are c<ame solutiors to improve thern

Another interesting direction of investigation is to test the behavior of the
measurements for varions materials especizlly viseoelastic nnec which may exhitir
stropg damping /phase sensibility) and frequency dispersion (magnitude sensibility) in
their tranciting recion Naturally the hig dimensions of the TPD bench prohibit testings
versus termperaturs like many visceanalysers focused on the temperature-‘requency
equivalence law. But, even at room temperature, the possibility of working under
Jiffere t static pressurss, with mary kind of rubbers and composites, make, this special
Lpparatus en efcieat way of knoysing those materials, corpnlemeniary of nther devices

e vicpnspel rrese and covreng e dapee tubes,

Reforipen

“Fardhock an r= measurem2nt of sound transfer functions of flexible".

I

i 7+ 11 Bekel, Departmend of Ship Acoustics, TNO Institute of Applied Physics, Delft,

Markodands, .




Figure i-t+ measurementrig with diametrally opposite transducers (see lower mass; coiinected
to analog additives and substractive devices (ASD and VCCD on the right part of the picture).
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Figure 2@ control measurements for vertical tension-compression.

(1) 1nput mass acceleration and spurious rotation; (b) output mass and Jower part of the bench ac-
celeranions (the contrast checks the good isolation of the mounting).

tarand (b) curves come from a testing under a static preloading of 1 bar; (¢) and (d) are obtained
for a preloading of 11 bars @ one can notice the degradation on the experimental conditions.
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Figure 3 : visco-analyser results for 4 cases of temperature and pressure. The specimen is a small
beam in tension-compression for Young's modulus measurement (a), in torsion for the shear mo-
dulus (b). Using relations between elastic constants one deduce the Jongitudinal wave celerity (¢).
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Frewre b oinstallation of the square pancel specimen. The square blocking framework (a) encloses
the specimen (h). Then we superpose the plane excitation piston (¢)and the input upper mass (d).
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Figure 5 : measurement of the longitudinal bulk modulus A+2L (N/m?). (a) : experimental moun-
ting. (b) : resulting curves for amaterial under 1 bar and 8 bars static pressures. One can notice the
significant flat part of the curves, the limi:ating low frequency resonance peak, and the 180°con-
stant phase due 1o a sign error (true value 0°). Presence of damping would smooth the peak and
snift the phase.
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CONTROLLING THE DAMPING BEHAVIOR OF PITCH-BASED
CARBON FIBERS

Andrew J. Eckel*
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, OH 44135

and

Steven P. Jones
Clemson University
Clemson, SC 29632

The damping capacity of intercalated graphite fibers has been
found to be significantly greater than that of pristine fibers. An effort
is discussed to control and optimize the damping behavior via
intercalation. A resonant flexural free decay test method was used to
measure the damping of single pristine and intercalated pitch-based
carbon fibers (Thornel P100). The fibers were tested in high vacuum,
at temperatures from 77 K to 675 K, and at frequencies from 50 to
2000 hz. The fibers were intercalated by two methods. The resulting
damping capacities are compared and contrasted. The effects of
changes in the intercalation processes are discussed as a means of
controlling the fiber damping capacity. In addition, the retention of

increased damping capacity following thermal cycling was measured and
is discussed.

* NASA Lewis Research Center, MS 106-1, 21000 Brookpark Rd., Cleveland,
OH 44135, ph. (216) 433-8185

HAA-1




BACKGROUND
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» UNIQUE FACILITY FOR MEASUREMENT OF
DAMPING CHARACTERISTICS OF SINGLE FILAMENT
FIBERS.

» COOPERATIVE RESEARCH WITH SPARTA, INC.
SHOWED DAMPING CAN BE INCREASED
SIGNIFICANTLY USING INTERCALATED FIBERS.

» TECHNOLOGICALLY SIGNIFICANT DAMPING PEAK
OBSERVED IN TEMPERATURE RANGE OF INTEREST
FOR VAPOR BROMINATED P1060 FIBERS.

The majority of intrinsic material damping in polymer and metal
matrix composites is contributed by the fibers rather than thc matrix
damping properties. Increased damping can reduce or eliminate
vibration loads and reduce acoustic noise. Additionally, passive damping,
via fibers in composites, is an important attribute for many space
structures and could alleviate the need for more complex active
damping mechanisms. A flexural free decay fiber test facility enables the
measurement of the damping characteristics of single filament fibers [1].
This is beneficial for both providing constituent data for modelling composite
behavior and allowing direct and simple measurement of changes in fiber
damping behavior resulting from chemical or physical treatments.

Using the facility, Lesieutre et al [2-4] measured the damping
characteristics of various graphite fibers and demonstrated that the damping
capacity of pitch-based graphite fibers can be significantly increased by
intercalation treatments. The authors reported a damping capacity peak on
the order of 3 percent, in a narrow temperature range, for P100 fibers
intercalated via a bromine vapor treatment.
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CURRENT WORK

* TO EVALUATE THE DAMPING BEHAVIOR OF P100
FIBERS INTERCALATED ELECTROCHEMICALLY.

* TO ASSESS AND DEMONSTRATE THE
FEASIBILITY OF TAILORING FIBER DAMPING
PROPERTIES VIA ELECTROCHEMICAL
INTERCALATION.

Ho and Chung [5] demonstrated that P100 fibers can be intercalated
by both vapor and electrochemical methods. Since electrochemical methods
allow greater control of intercalation parameters, this study is being
undertaken to evaluate the damping differences between vapor brominated
and electrochemically brominated P100 fibers. Comparison of damping from
the two methods ~nd the greater control of the electrochemical technique
may allow determination of the mechanisms at work that result in various
damping behavior. This work-in-progress paper summarizes the research to

date and demonstrates the feasibility of tailoring fiber damping properties via
electrochemical intercalation.
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SCHEMATIC DIAGRAM OF INTERCALATION PROCESS

The intercalation process used was similar to the one used by Ho
and Chung [5], with some minor modifications. Pristine P100 graphite
fibers, unsized and continuous filaments, were used in this study. Fiber
tows of approximately 2000, 10 um diameter filaments were suspended in a
saturated aqueous potassium bromide solution. A constant current was
then passed through the tow and platinum fixture. The fixture, with tow,
was removed from the solution at specific time increments (25, 49, 80,
and 100 h.) After each removal, the tow was thoroughly rinsed with

deionized water, and allowed to dry overnight in air at room
temperature.
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SCHEMATIC DIAGRAM OF THE TESTING APPARATUS

Individual fibers were removed from fiber tows and mounted in
tantalum tabs following the procedure described by Lesicutre et al {2,4]. The
mounted fiber specimen was clamped to a copper block which served as
both a seismic and a thermal mass. The temperature of the block was
controlled by pouring liquid nitrogen into a reservoir on the top, initially
cooling to 77 K (-196 C) and then slowly heating to 673 K (400 C) by
adjusting the current through an embedded resistive heater. A
thermocouple attached to the block near the fiber root measured the
temperature. The combination of high fiber longitudinal thermal
conductivity and slow heating rates (2 K/min) ensured that the fiber
temperature was effectively that measured by the thermocouple. Data
points were taken usually every 15-20 K, depending on the situation.
The drive/pickup plate was mechanically attached to the specimen
mounting block, but was electrically insulated from it. The entire block
was placed inside a vacuum chamber (1074 to 1076 torr) to eliminate the
effects of air damping, which was significant on these fibers.
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ELECTRONICS SCHEMATIC
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The fiber was driven electrostatically at one of its resonant
flexural frequencies, f,, by applying an alternating voltage at f /2
between the fiber and an adjacent drive plate [1]. The fiber-plate
separation was adjusted by a screw type manipulator attached to the
drive plate. Specimen vibration amplitude was controlled by the output
voltage from the drive amplifier. Strain amplitudes at the fiber root
surface were on the order of 106, and no significant amplitude-
dependence of damping was observed for amplitudes near this level

Specimen motion was detected by placing the fiber-plate
capacitor into the tank circuit of a 100 MHz RF oscillator. Fiber
vibrations produced an oscillating capacitance which directly modulated
the RF oscillator via a half-wavelength coaxial cable. A commercial FM
tuner detected these modulations and converted them back to an audio
signal with frequency f, and amplitude directly proportional to that of
specimen vibration. Damping was determined by disconnecting the drive
signal (triggering the signal) and allowing the fiber resonant vibrations
to decay freely. The decaying signal was displayed on an oscilloscope
and recorded photographically. Damping values are calculated from free
decay data and are reported as damping capacity (¥ = Aw/w = reiative
vibration energy lost per cycle).
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DAMPING BEHAVIOR OF PRISTINE P100 GRAPHITE FIBERS
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Various treatments were performed on pristine P100 graphite fibers to
determine their effects on damping behavior. These included vacuum cycling,
thermal cycling, and exposure to air and mutrogen gas. These were performed
since they are typical of treatments the fibers may see during composite
processing.

Upon heating from liquid nitrogen to room temperature (cold run 1) the
pristine P100 fiber exhibited a damping peak at 213 K (-60 C) which is small in
magnitude, with ¢ about 0.5%. The thermal cycling included runs to elevated
temperatures (673 K [400 C], hot run 1) and back to cold temperatures (77 K [-
196 C], cold run 2). During this thermal cycling, the damping peak location
remained the same at 213 K (-60 C), and the peak height remained virtually
unchanged at 0.5%. Also, the third cold temperature run (cold run 3) was
conducted after the test chamber was brought up to atmospheric pressure in air
for 24 h and then re-evacuated. There was no change with any of these
treatments to the damping of the pristine fibers. The next treatment was
exposure to gaseous nitrogen (not shown).  After evacuation, the vacuum
chamber was back filled with gaseous nitrogen for 18 hours. Damping data was
then taken on the fiber. The damping peak again occurred at a temperature in
the vicinity of 213 K (-60 C) and had a peak height of 0.45%. This value is almost
identical to the pristine fibers.  Also, the baseline remained around 0.18%,
similar to the pristine fiber. It can then be concluded that these basic treatments
to the pristine fibers do not introduce significant changes in damping behavior.
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COMPARISON OF P100 GRAPHITE FIBERS
BROMINATED AT 50 uA
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To determine the effects of electrochemical bromination parameters,
a current of 50 microamperes (uA) was selected and the fibers were
brominated for 25, 49, 80, and 100 h. The damping peaks increased in
magnitude, as well as shifting to higher temperatures, as bromination
times increased. The 100 hour test showed the highest peak magnitude,
Ymax = 3:6%, at 253 K (-20 C). The peaks shift to higher temperatures
as a result of increased concentrations of bromine added to the fiber.
In addition, all of the 50 uA samples showed a second, smaller peak
between 133 and 183K (-140 C and -90 C.) This peak is quite small in
magnitude, except for the 100 hour test, in which the peak has a
magnitude of approximately 1.4% and occurs at 183 K (-90 C))
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COMPARISON OF P100 GRAPHITE FIBERS
BROMINATED AT 190 uA

>
(3]

— PRISTINE

~

gc\ 8 25 HR

(
o
tn

S | * 49 HR

+ 100 HR

DAMPING CAP

0 . % * o > ' 4
0 100 200 300 400 500 600 700
TEMPERATURE (K)

The next step was to determine if increased currents and
corresponding increases in bromine concentration would further improve
the damping behavior of the fibers (actual determination of bromine
mass and mass distribution in single fibers is difficult and has not yet
been done.) The current was increased to 190 uA and tibers were
brominated through a similar cycle as the 50 uA samples. The damping
continually increased until the 49 h point where it had a peak of 2.5%.
Temperatures at which damping peaks occurred increased as the
bromination time increased. At 100 h, the peak magnitude decreased to
1.7% and the temperature of the peak was 60 C. No explanation for
this behavior is provided, although work is still proceeding. The
baseline itself also had a value 5 times that exhibited by pristine
graphite fibers, measuring approximately 1.0%.
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PEAK MAGNITUDES OF BROMINATED P10C GRAPHITE FIBERS
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intercalated fibers generally increased with time of bromination.

The peak magnitudes of damping for the electrochemically
Work is

continuing to evaluate a broader range of currents and investigate the
decrease in damping for the 100 hour bromination treatment at 190 uA.
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' CONCLUSIONS

e P100 GRAPHITE FIBERS INTERCALATED ELECTRO-
CHEMICALLY DEMONSTRATE SIGNIFICANT INCREASES IN
DAMPING VALUES OVER PRISTINE FIBERS.

e THE DAMPING CHARACTERISTICS OF P100 GRAPHITE
FIBER CAN BE TAILORED BY ELECTROCHEMICAL
INTERCALATION.

e THE HIGHEST DAMPING OBSERVED TO DATE (-- 3.5%) IS
OBTAINED AT LOWER INTERCALATION CURRENTS AND
LONGER TIMES.

o ADDITIONAL STUDY IS NEEDED TO RESOLVE
MECHANISMS FOR DAMPING BY BROMINE
INTERCALATION.
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INTERNAL DAMPING OF METAL MATRIX COMPOSITES:
A TECHNICAL ASSESSMENT

Jacques E. Schoutens
MMCIAC
Kaman Sciences Corporation

ABSTRACT

Internal damping in metal matrix composites (MMC) is of interest to engineers and
designers of large space structures, i applications where dynamic dimensional stability is
important, and in the control and damping of vibrations in space structures. Theories of current
interest used to understand and explain internal dampi. ‘n MMCs are discussed brietly, and
experimental data for some fibers and MMC systems arc  esented. Some general conclusions
close this paper.

INTRODUCTION

Damping of structures has two sources: external and internal. External sources of
damping include the effects of fluids such as drag in a liquid or in a gas, loss of energy at
supports or joints due to friction or transmission into supporting structures, and active and
passive damping control syste.ns. Internal sources of damping include a number of effects. At
low levels of stress, the damping behavior of metals and meial matrix composites is governed
by micromechanisms causing anelastic behavior. At high levels of stress [1,2] internal damping
occurs by mechanisms leading to hysteretic response. Internal damping in metals has been used
as a method of studying atomic motion at low stress levels. This has provided insight into
fundamental mechanisms in diffusion, ordering, interstitial and substitutional sc.:d solu.dons, and
estimates of dislocation densities. For engineering applications, damping data have been
obtained at intermediate and high strain levels (> 50 microstrain) to develop insight into energy
dissipation mechanisms and fatigue life of metal components. As is well-known, the interface
between a fiber and the matrix is a unique site of reaction layers, residual stresses, microvoids,
dislocation structures, impurities, disbonds, and other defects. It has been postulated, and to
some extent verified, that the interface is also a source of energy dissipation, and considerab'e
efforts have been expended in attempting to identify and model these sources [3]. It should be
borne in mind that selecting materials for effective damping must take account of the space
environment (zero gravity, high vacuum, and thermal fluctuations between -160 to + 160°C), and
candidate materials must exhibit high damping at low frequencies (0.1 to 10 Hz) [2] and at strain
levels on the order of 50 microstrain.

This paper presents a brief discussion of currently used theories of internal damping in
MMCs, and presents some of the available data on internal damping of these advanced materials.
For more details, the reader is referred to reference 4 or 5.

816 State Street, P.O. Box 1479, Santa Barbara, CA 93102-1479, (805)963-6426.

HAR-1




THEORY

T etheds for neasuring uamping 1n metuis and metal matrix composiies span some
seventea:; orders of magpitudes in frequency, from about 10¢ Hz to 100 GHz. There are four
majcr mzmvomc ~nvering this range: anasi-statir methods, subrasorance metheds, reson nee
methods, an ' [yl ¢ ammenncy wavs prescation 1o tlols (8], Tue quasi-static merioa 1o o 1
intere 'h s oo ond e eshe ‘Lequem,y ~.5> will not be discussed bscsuse i 1s usir
main’'y W Mmeds v Jynamic modulx and other phennmena [8].

The a7 properties of a mater:al ace variously referred (o as specific damping
capsouy, 1oss facter, loss angle, quality factor, and log decrement. These quantities are all
related as follows [4,37

¥ =4n% 2aQ ¢ s2mn =2ntand =2( 1,

where v s the vpeific damping capacity (SDC), £ is the damping ratio, Q is the quality factcr,
n1s s ’?""" 4 is the loss angle and { is the loganthmlc decrement. Most of the data
proszait in wns gaper will be inwrms of the specific damping capacity.

T: 2 methrda nsed to measure damping properties are discussed in detail (n reference -
Suffi: '+ “ere ‘¢ mention that they include the caatilever beam method. free-free flavi:r
method oi ton- ason netiiod, free fad mewiod, piezosectTic d.Tasonic colpusite ¢sril
techr'que :TUCOY) {S], and the method of wave propagaaon. These methods give slighily
d;‘*f'“ B stantes Gon sequently, data must be corrected accordingly (4, 5]. Damping factors arc

The following summarizes the various damping mechanisms and the theories used to
expion these mechanisms. Note that some theories predict certain behavior fairly well in a
pari.cular range of interest, but by and large, theoretical models used to predict damping
bens'or are rather nrimitive, particularly for MMCs. Little or no theoretical work has h=en
dore for the fiber/matrix interface.

Matrix_Metal. Damping in the matnx metal can occur from any one or all of the
foliv ing mechanis.us: point Cetect damping, dislocation damoing, grain boundary damuoine -~
thermoelastic Co.m iy,

- ol lvicad 100 @ CTySial Can DE a vacancy ul €ana atom either in the caystal lalice .
as an unpurity atom. This alters the crystal, thereby lowering the crystal symmetry, termed .
defect symmeiy Tl cotecion o the is@nce w pount defect damping is that there =1+ o
MOT? than ©..2 Jisaiiguishabie orientadon of e detect. The elastic distortion surrounding the
de’'=.i causes the point defect to interact with the crystal lattice, behaving as an elastic cipole,
Difrarens w0+ 5 wiilinteract differentty ca ne some -edistnbution of the ¢~ yatiyi of ¢
point d27cer AT : S ey FGl i e

ciystal lattic - voieaong Gy ges oF eled!s naving nor-symmetncal strain ticles give nse w




damping [5]): interstitial impurities, vacancy-impurity pairs, and divacancies. Spherically
symmetric strain fields do not cause damping. The first of these defects give rise to Snoek
relaxation, and the second to Zener relaxation. Snoek relaxation is expected to contribute to
damping in MMCs with bcc crystal lattices, and Zener relaxation contributes to internal friction
in alloys [4,5] of fcc, bce, and hep structure.

Dislocation damping plays an important role in crystalline MMCs. This damping
mechanism involves the motion of dislocations which lag behind the applied stress. In some
metals (Cu for example) the application of stress will also cause the generation or multiplication
of dislocations. Damping occurs when dislocations are hindered in their motion by obstacles
such as point defects. There are two relevant mechanisms in MMCs; relaxation or resonance
absorption (Zener), and hysteresis losses. Granato and Lucke [4,5,7] developed a model for
dislocation damping that is based on the vibrating string model, where the string is the
dislocation motion while pinned at both ends by defects. This is an important model because
it has been used to calculate mobile dislocation densities and the spacing between impurity atoms
on dislocation lines from measurements of strain amplitude dependent damping [5].

Zener [6] predicted that grain-boundary relaxation occurs by viscous sliding between
adjacent grains. Nowick and Berry [7] show that the viscous slip model predicts a relaxation
that is essentially independent of grain size, as long as the grain size is less than the specimen
diameter. A satisfactory quantitative theory of grain-boundary relaxation is not yet available [5].

Thermoelastic damping is the result of coupling between the conjugate pair stress and
strain, and the conjugate pair temperature and entropy, as for example during expansion where
the specimen length can be changed by stretching or by heating. This means that a change in
entropy with respect to stress (T=const.) is equal to the change in strain with respect to
temperature (constant stress), and is identical to the coefficient of thermal expansion [S]. When
a beam, plate, or rod vibrates, relaxation takes place under inhomogeneous stress. Bending of
isotropic materials induces uniaxial strain which varies linearly with distance from the neutral
axis. As the beam vibrates, an alternating temperature gradient is set up across the beam, and
relaxation occurs by heating and heat transfer across the specimen. In the case of longitudinal
thermal currents induced by vibrations, Nowick and Berry {7] showed that this kind of damping
is negligibly small at frequencies below 100 MHz.

Fiber. Only limited experimental results and theoretical modeling have been reported.
The fiber is usually assumed to be a perfectly elastic material contributing little or no damping
to MMCs [9]. Internal damping in boron fibers and whiskers was studied experimentally and
theoretically using torsional oscillations [10-12]; Postnikov et al [13] using bending oscillations
in the kHz range studied the internal friction in boron fibers. These researchers obtained
dynamic modulus data as a function of temperaturz. Internal friction in boron fibers is
characterized by a peak between 530 and 630°C. Models published so far treat continuous fibers
as a single material, which clearly is not correct. Continuous fiber ' are built up on a substrate
of either tungsten or carbon; the outer surface of the fiber is cuated, sometimes with an
elastically compliant coating and/or a reaction barrier.




Fiher/Matrix Interface Damping. The presence of an interface and/or a reaction layer
between fiber and matrix raises the possibility of introducing a controlled suir~e of darping in
metal matrix composites. Modeling of the effects of damping on MMCs by Nelson arnd Hancock
{15] predicted the interface friction slip. Their model consisted of a frictional encrgy loss at the
interface and viscoelastic 2nergy dissipation in the matrix when the composite is subjected to
cyciic tensile loading. Good agreement with experiment was noted for a model consisting of
discontinuous, aligned fibers, loaded along the fiber direction. Transverse Ioadirg of a iinearly
elastic material with rigid cylindrical reinforcement was modeled by Kishore ei al. [16,17), in
wrich no slip, slip, and iaterface separation could be introduced; only fricticnal losses were
considered. The loss factor, not surprisingly, was found to depend on fiber volumie fraction,
coeffizient of friction at the interface, load amplitude and constraint stresses at the interface.
Whisker or particulate reinforced mat-ix may exhibit increased specific damping capasity aee
to stress concentrations near the ends of the reinforcement; stress concentration results in
increased dislocation density. Ledbetter and Datta [18] modeled the internal friction for
scattering of stress waves by elastic particles dispersed in the matrix, and predicted an increase
in friction with increasing particle concentration, increase in particle characteristic length,
reduction in aspect ratio, and increases in the difference between particle and clastic stiffness.
A more recent model proposed by Ledbetter et al [8] suggested an approach followed up by
Schoutens [14] with a simple model based on the thickness of the reaction layer. No resul's
were obtained because of the difficulty in assigning some damping properties and friction
coefficients for the reaction layer. Modeling of damping caused by the presence of
discontinuous fiber reinforcement in a metal matrix indicates that damping is increased bv 2n
increase in the fiber-end gap dimension. for a given fiber volume fraction. and a decreasing fiber
aspect ratio {19]. Differences in the coefficient of thermal expansion between reinforcement and
matrix produces residual stresses which produce dislocation substructure. Damping increases
with increasing dislocation density. The amount of damping produced by these dislocations can
be calculated with the Granato-Lucke theory [4]. The role of residual stresses at the interface
has been venfied by experiments [2]. These test results show that stress-relieved and T6 stress-
relieved P55/6061 Al specimens exhibit lower specific damping capacity than the as-fabricated
specimens.  However. heat treatment is in the primary recrystallization range, and
recrystallization is known to reduce damping by decreasing the dislocation density in the matrix,
and by increasing the size of grains. Stress-relieved specimens showed nearly strain-amplitude-
inpendent damping response even at intermediate strain amplitudes, while as-fabnicated
specimens showed strain-amplitude-dependent behavior. When stress-relieved specimens were
reheated to 540°C (close to the consolidation temperature) and slowly cooled to room
temperature, measurements showed damping values consistent with as-fabricated specimens.

Combined Mechanisms. In the absence of detailed theorizs to predict the specific
damping capacity of MMCs, 1t is tempting to use the rule of mixtures to predict prope:ties fron
those of the constituents. In this way. the specific damping capacity is predicted from the sun
of specific damping capa.itv of constituents weighed by their fracticn in the composite. Tte
fraction of damping due to the interface reaction layer is also included in this sum. The matrix
damping, 1s the sum of contributions from dislocations, point defects, grain boundaries and other
relevant effects This apnroach generailv over simplifies the problam considembiv and in
consequence cannot be considered as reliable. Hashin [Z0] showed bow the carresonrdence
principle may be used to relate the effective viscoelastic functions for composites to the effective




moduli. This method has resulted in reasonably good predictions of specific damping of MMCs
[51.

For many MMCs, one or two damping mechanisms usually dominate for a given
combination of strain amplitude, temperature and frequency. Predictions from dislocation
damping (Granato-Lucke model) and thermoelastic damping (Zener relaxation) have turned out
to be useful. For predicting damping from constituent properties, Hashin's correspondence
principle has been useful [5].

INTERNAL DAMPING DATA

Internal damping data has been reported most often as specific damping capacity ¥
(SDC) in percent, and less often as the loss or quality factor. Damping is generally shown as
a function of strain amplitude, frequency, or temperature. For example in pure aluminum, the
damping capacity shows very little dependence on strain amplitude until the strain amplitude
reaches approximately 10, and beyond this point the damping capacity rises fairly steeply.
Damping capacity, as we will show, varies also as function of frequency. The damping capacity
also rises with increasing temperature, sometimes exhibiting a maximum. Table 1 presents the
damping capacity of unreinforced structural materials. MMCs have a damping capacity in the
0.1% to 30% range at frequencies ranging from approximately | Hz to a few kHz.

Table 1 - Specific Damping Capacity (¥) for Some Unreinforced Structural Materials

Material ¥(%) Frequency Range
403 SS

Nivco

NiTi 6-40 kHz

Cast iron

Cast Pure Mg

2024 T3

6061 Té6 0.4-3 Hz-kHz
1020 Steel

310 SS

Ti-6Al-4V 0.1-0.2 40 kHz
Brass ~1.06 kHz

MMCs
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Figure 1 Damping Capacity of boron fiber and silicon carbide coated

voron fibers [9]

Figure 1 shows the damping capacity of boron fiber and of silicon-carbide-coated boron
fibers, as a function of temper-ture. Both filaments were produced on a tungsten core. The
data were obtained at 300 and 1:J0 Hz for the boron fiber and at 1000 Hz for the SiC-coated
boron fiber (Borsic). DiCarlo and Williams [9] noted that the damping capacity decreased with
azui reatment cycles. The damping agrees with measurements on boron fibers made in the
Soviet Union [10-13]. Borsic exhibits a consistently lower damping capacity over most of the
temperature range of interest, compared to uncoated boron fibers. At 600°C, the damiping of
both fibers is approximately a factor of 20-23 higher than at room temperature. The prediction
of the maximum damping capacity made by Postnikov et al. [13] is approximately a factor oi
10 below measured values.

Figure 2 shows the damping capacity of silicon carbide fiber as a function of frequency
and Figure 3 shows ti~ J~mning cgnatity of Ue soine Sbes on function «F wanpera.wre
Figure 3 we see & s0arp use in the dampiag capaciiy vitn a rise in temperature. Figure 2 snovss
that therc is a significant effect on the damping capacity of the fiber due to thermoelastic effects.
This effect rises above the damping capacity due to the microstructure. The peak dampiig
capacity is at about 2500 Hz, where it has increased by a factor of about four abcve that of due
to the miciostructure. The curve seems to be fairly broad, ranging from approximately 200 Hz
to 50 kHz. A similar but broader peak as a function of temperature has been reported for
bromide treated pitch-base carbon fibers [21]. SiC fiber damping capacity is considerably lower
than for poron fiber, by a factor of 19-12.
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Damping capacity of SiC fiber at 26°C for the first nine
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Damping capacity of SiC fiber at three flexural tones.
Fiber diameter is 103 um. Core: tungsten {9].
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Damping capacity of PS5Gr/6061 Al composites for [0°] and
{90°] fiber orientation [2]. (Tension-Tension Fatigue Test)
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Damping capacity of PS5Gr/6061 Al as a function frequency
for [0°] and [90°] fiber orientation. (Tension-Tension Fatigue
Test) [2].
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Figure 4 shows the damping capacity of P55/6061 aluminum composite as a function of
strain amplitude and for two ply orientations. Measurements were performed in a tension-
tension fatigue test. These data were obtained at frequencies of 1 Hz and 0.4 Hz. This
frequency range also corresponds to a frequency range where the damping capacity is a
minimum. Note that the [0°] orientation gives a fairly fast rising damping capacity with only
modest increases in strain amplitude. Conversely, the {90°] orientation remains fairly constant
with strain amplitude.

Figure 5 shows the damping capacity of P55Gr/6061 aluminum as a function of frequency
for two ply orientations, [0°] and {90°]; the data were obtained from tension-tension fatigue tests
at approximately 190 microstrain. Note the minima in these curves at approximately 1 Hz, and
the fact that the longitudinal data ([0°]) exhibits a higher damping capacity than the transverse
data ([90°]) by about a factor of two.

Figure 6 shows the damping capacity of P55Gr/Mg - 0.6 at. % Zr as a function of
temperature. The material was tested in the as-cast condition, and the result of several indicated
heat treatments are shown. The measurements were made at 0.1 microstrain. The damping
capacity exhibits a peak at approximately 200°K, and a minimum at about 300-400°K. As
indicated, this peak has been attributed by Misra and co-workers [22] to a phase transition in
the graphite fibers from a rhombohedral phase to a hexagonal close-packed phase. The
difference in the damping capacity between the maximum and minimum values is approximately
36%. Overall the damping capacity of this kind of graphite/magnesium composite is not very
high, only 0.8-0.9%.

0.9' ' t T Y T v | S T ML I
® g} P55GIMg-0.6%2r (as cast) ]
£ o7t -
@ i 1
g 06 .
O p -
o 05 7
S [ dral ]

= hombohedra -

E oef prmm '
ansiiion in Gr

8 03fF -

L oo A o CooltomRTLTIK | ]

T e Hestlrom 73K 673K | |

3:;. 0.1F a Coolimm673KwRT |

0.0
C 100 200 300 400 500 600 700
Ternperature (K)

Figure 6 Damping capacity of as-cast Gr/Mg-0.6 at. % Zr as a
function of temperature [22].
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Figure 7 Damping capacity of P55Gr/Mg-1 at.% Mn as a function
of strain amplitude [22].

Figure 7 shows the damping capacity of PS5Gr/Mg - 1 at.% Mn as a function of strain
amplitude. The data are for the as-fabricated condition, and for two types of heat treatment.
Unlike the aluminum matrix, heat treatment causes a modest rise in damping capacity. For all
three conditions the damping capacity increases from about one percent to about five percent at
strain amplitudes greater than 2 x 10, and decreases again following the peaks at about 5 x 10°,
The Granato-Lucke theory was used to predict the strain amplitude at which the damping capacities
are a maximum: at 80 microstrain.

The axial damping capacity of silicon-carbide-fiber-reinforced titanium for the indicated
values of the fiber volume fraction is shown in Figure 8. The vertical scale was expanded relative
to the horizontal scale, creating the impression that the damping capacity undergoes large variations
with small temperature changes. Predicted values based on a model by DiCarlo et al. [23] are
plotted on the bottom graph for frequency values of 1200 and 2000 Hz. These predictions are
quite low, increasing only marginally with increasing frequency and temperature.

These computed curves testify not only to the inadequacies of current models, but also
to our lack of fundamental understanding of the damping mechanisms in metal matrix composites.

The damping properties of SiC particulate- and whisker-reinforced aluminum material
are shown in Tables 2 and 3. The damping capacity and the frequency at which these data were
obtained are shown at the extreme right in these tables. For constant fiber volume concentration,
both SiC particulate- and whisker-reinforced aluminum exhibit damping capacity
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Table 2 Specific damping capacity of SiC /Al and SiC Al [24].

— L
Fiber Matrix Fiber Elastic Mod. Deasity Freq. ¥
Vol. (mst) (g/cm?®) (Hz) (%)
(%)
Trans. Long.
SiCp CT90 Al 20 17.1 17.1 2.962 62.25 3.98
SiC, CT90 Al 20 17.8 17.8 2.962 111.00 3.20
SiC,, 2024 Al 20 15.4 15.4 2.962 53.25 4.72
Sic,, 2024 Al 20 16.3 16.3 2.962 110.00 3.05

Table 3 Specific damping capisity for SiC,/6061 and SiC,/6061 composites [25].

E

L L]

IR -

Material Fiber Elastic Ultimate | Elonga- Freq. ) 4

Vol. Mod. Strength tion to (Hz) (%)

(%) (msi) (ks1) Failure

(%)
5iC,/6061-T6(L)" 17 14.7 73 2.1 32.1 1.571
SiC,/6061-T6(L)" 20 15.2 70 4.5 120.0 2.890
SiC,/6061-T6(L)" 30 17.5 77 3.0 20.1 2.325
104.7 0.817
SiC,/6061-T6(T)™ 30 17.5 77 3.0 105.4 0.942
L ====-—===£==== __ﬂr

Extended and cross-rolled sheet, L =longitudinal to the extension direction. The
mechanical properties for the 20 v/o SiC,/6061 composites are those for the T6
condition. However, the damping measurements are given for the composites
in the F condition.

Rolied sheet.
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of about 3 to 5 percent which does not appear to depend on matrix type. Table 3 shows a
significant reduction in damping capacity due to a change in the orientation of the specimens.
These variations taken collectively may be due to process variations, reinforcement

concentration, and testing frequency.

Figure 9 presents axial damping capacity of B/1100 Al and B/6061 Al. Two scales are
used to show the large change in ¥ with temperature. These measurements were made at less
than one microstrain and at 2000 Hz. The B/6061 Al material was fabricated by TRW, Inc.
The solid curve represents the same material after subjecting it to a heat treatment at 460°C.
The heat treatment is in the primary recrystallization range of aluminum. Recrystallization is
known to reduce damping (by decreasing the dislocation density in the matrix), and to increase
the matrix grain size. No systematic studies of the effects of heat treatment on boron/aluminum

materials seem to have been carned out.

14

1.4

BIAI 160611 a - as fabricated //
BISICIAL (6061}
- /
L {AVCO) b ';;;: geatod ) yi
* € < 10°¢ / /
. 2000 H2z y /
E i.o— / / —I0
/
> / /
S b,/
2 .8 /g
S 7
(4]
/
é 6— /// s
< b )
5 4 PEAK a AND b
heat treated
2 550°C 1,
-
l | ] | 0
0 100 200 300 400 500
TEMPERATURE, °C

Figure 10 Axial Damping Capacity of B/6061 Al and Borsic/6061 Al [23].

The effects of a SiC coating on boron fiber (Borsic) used in reinforcing 6061 Al is shown
in Figure 10. This material was fabricated by Avco, now H.R. Textron. Note that the heat
treatments reduce the damping capacity of the composite: this is caused by a reduction in
dislocations in the matrix near each fiber by grain growth due to recrystallization. The dashed
curves labeled c are the curves labeled a in Figure 9. The other dashed curve on the left and
curve ¢ are for damping of Borsic/6061 Al specimens after heat treatment to 550 °C. These data
were obtained at 2000 Hz and 1 microstrain [4,23]. The duration and cooling mode of these
specimens were not reported {5].
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Figure 11 Transverse Damping of B/1100 Al and B/6061 Al. Curves
a to c are for B/6061 Al and curve d is for B/1100 Al [23].

The transverse damping capacity of B/1100 Al and B/6061 Al are shown in Figure 11.
The figure shows the results of various heat treatments, which do not appear to affect the
damping capacity. The calculated transverse damping capacity of B/6061 Al with a fiber volume
fraction of 0.5 is shown as a dashed line. The difference in the maximum and the minimum of
the damping capacity exhibited by curve ¢ amounts to only 15 percent.

Figure 12 summarizes the specific damping capacity of MMCs discussed above, as a
function of temperature. The dark heavy line is the damping capacity of pure aluminum shown
for reference. The dashes represent the damping capacity of fibers alone. This shows the strong
anelastic effect on the damping capacity of boron and Borsic fibers compared to SiC fibers
shown near the bottom of the graph. The difference in the damping capacity between these two
types of fibers is approximately a factor of 20-30 at about 600°C. Enhancement in damping
capacity of pitch-base carbon fiber has been reported elsewhere [21], and has not been added
to Figure 12. The relatively large damping capacity of boron fiber is responsible for the
observed large damping capacity of boron-aluminum composites. Note the low damping
capacity, less than 1 percent, of Gr/Mg and SiC/Ti composites, while that of B/6061 Al is
almost as high as the boron fiber itself.
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Figure 13 pictents a summary or specific damwing capacity as a lunction <! stran
amplitude of the MMCs previously diccussed.  The damping capacity of pure aluminuin 1s showA
for reference. The short dashed lines represent computational predictions made with various
models [S] for Gr/»g anu Gr/Al. Some of these computations included the effects of residuil
stresses resuiting both from the J.fierence 1a the coeifrcient of thermal expansion between fiber
and matrix, and from the fibzr amisotropy.  Althongh some of these prediciions agree wail with
measurements, that of the Gr/Mg composite does not. All tae data presented i Figures 1
through 11 are represented as cross-hatched arcas. Note the behavior of PS5Gr/Ng - 1 at. %
Mn. The damping :apacity exhitits the kind of nse with incieasing sirain amplitude exhibited
by pure aluminum, but at approximatelv 1.5 orders of magnitude lower strain amplitude.

A comparison of the loss factors of various materials and metal matrix composites is
shown in Figure 14. Two conclusions are obvious from this figure: the damping capacity cf
MMC s is not better than conventional unreinforced metals, and viscoelastic materials exhibit the
greatest damping. This suggests that for a material to simultaneously achieve high stiffness, hign
strength, and high damp:ng capacitv. the matial skouid combine MMCs wwith viscoelastic
materials. This is nothing new!

GENERAL CONCLUSIONS

As already mentioned, the most striking observation is that the damping capacity of metz!
matrix composites 1s not very good. certainly no better than urreinforced metals. except perhaps
at elevated temperatures and high strain amplitades. Diislocation substruciuies surrcunding
reinforcements tend to impart strain independent behavior to reinforced aluminum. From
preliminary work reported elsewhere {21], it appears that the damping capacity of carbon-fiber-
reinforced metals may be improved, but at present it remains in doubt that such improvements
would raise the composite damping capacity much beyond unreinforced metals. MMCs do
exhibit a somewhat equal or better damping capacity than low atomic number alloys, such as
aluminum or titanium, making MMCs attractive for space structures. Nonetheless, significar.t
increases in the damping capacity of dimensionally critical space structures must be obtained by
other methods as is discussed by some other papers in these proceedings.

An important problem in assessing the state of art is the database; at present it is small
and this author is unaware of any systematic efforts to compile these data. Thus, one finds ones
self in the ironic situation of needing a larger database to understand the potential of these
materials with regards to damping capacity. At the same *ime the g-eat expectation that MMCs
would exhibit high damping capacity having failed to materialize resulted in funding rcduction
to study these material properties. 'f any recommendation is to be made it is that fundament::!
work in understanding the physics of MMCs subjected to time-varying loads should continue
with carefully planned experiments.

The theoretical analysis and model development for describing and predicting the intrinsic
(or internal) dampirg behavior of MMCs is at present rether primitive. There are a number of
microscopic modeis (3] used to plain and ever picdict performance. but they exhibit poor
reliability when fiber and matrix material properties are changed. Model calculations in B/AJ,
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tor example, have predicted damping capacity values much lower than observed, implying a lack
of fundamental understanding of the damping mechanisms of these complex advanced matenals.
Modeling of fiber damping has been fairly well developed in the Soviet Union relative to the
US, but even this modeling 1s not enough. Theoretical analysis must consider the fiber as a
composite consisting of a core (tungsten or carbon or something else) surrounded by the fiber
material with an outer surface of a reaction barrier coating and/or a compliant coating. The
analytical machinery is well developed and there are numerous papers available describing the
application of linear elastic theory to cylindrical problems of this type. To set the stage for
systematic theoretical analysis and model development, a review of theoretical work in this arca
should be carried out so others, including newcomers, would have a sensible place to start for
developing new ideas and approaches. Any new developments in the theoretical analysis of the
damping capacity of MMCs must include the phenomenology or the interface.

It is obvious from the small amount of data presented in this paper that horon fibers
exnibit nigh damping capacity and appear to dominate the damping capacity in aluminum
reinforced with boron. The SiC coating on these fibers appears to decrease the damping
capacity slightly. Damping capacity of boron fibers is distinctly superior to that of SiC fibers.
Damping capacity of other fibers of interest {Al,Os, TiB,, B,C coated boron), with the possible
exception of carbon fibers [21], seems not to have received attention. Silicon carbide fiber on

a tungsten core has a damping capacity well below boron fibers, by as much as a factor of 20-
30.

Observations of the small database available indicates that the damping capacity of MMCs
appears to be dependent on process method, fiber content, frequency, temperature, heat
treatment, and strain amplitude. Strain amplitude in a certain range of values (10 - 10%) has
a strong effect on damping capacity. This is generally believed to be due to the Zener relaxation
effect, and dislocation structures can be explained to some extent by means of the Granato-Lucke
theory.

H}aat treatment has an effect on damping capacity in a way that is not understood.
Theoretical understanding in this case appears difficult and testing various hypotheses could
prove very expensive as large numbers of specimens would need to be tested and
microscopically examined. Nevertheless, present observations of the effects of heat treatment
on damping indicate that heat treatment decreases damping in fibers and aluminum, but increases
it in carbon-fiber-reinforced magnesium.

"Someday all will be well" is our hope

"All is well today"” is illusion

Voltaire, 1722.
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Vibration Suppression of Thin-Walled Composite Tubes Using
Embedded Viscoeiastic Layers
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and
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Department of Applied Mechanics and Engineering Science
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San Diego, California 92093

Abstract

This paper documents the design and fabrication of a thin-walled composite
tube consisting of inner and outer graphite shells with a viscoelastic layer
between the shells to provide damping. The graphite shells are fabricated
from fabric and unidirectional tape with ply orientations that cause the
shells to counter-rotate in opposite directions when subjected to bending or
extension. Tiie counter-rotation of inner and outer shells provides a large
shear area at the viscoelastic layer, therefore optimizing the damping.
Stiffness characteristics of a laminated tube are used to determine ply
orientations to maximize damping and structural stiffness. Details of the
tube construction are described along with design issues of incorporating
viscoelastic layers in a composite laminate. Tests results of the tube with an
embedded viscoelastic layer are compared to those of a tube constructed
from the same laminate without the damping layer.

Introduction

The need for lightweight, high-strength structures often leads to various
vibration problems. Advanced composites offer high stiffness-to-weight
ratios, but the levels of structural damping remain relatively low.
Viscoelastic materials. which are also lightweight, offer vibration
attenuation, but cannot be used as structural elements because of their low
stiffness properties. Hybrid composite structures are being designed with
layers of viscoelastic materials strategicallv embedded in composite
laminates to control motion due to the vibration.

One example of a hybrid composite structure. that can provide high
damping levels. is a thin-walled composite tube consisting of a viscoelastic
layer embedded between inner and outer graphite/epoxy shells. The
graphite/epoxy shells are fabricated from woven cloth and unidirectional
tape. The plies of the unidirectional tape are oriented so the fibers wrap
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spirally around the inner shell. and wrap in an opposite (or opposing) spiral
in tne outer shell. The application of either an extensional. bending. or
chea load to the tube ends will produce relative twisting between the inner
and outer shells since the shells are rotating in opposite directions. This
relative twisting will induce significant shear strain levels in the viscoelastic
meterial, thus producing a large amount of useful structural damping.

if the inner and outer shells of the tube were made cf an isotropic material.
then the application of either an axial or flexure load would produce tube
extension or bending, respectively. but with no relative twisting. This
ber:Zing-action will produce very low shear levels within the viscoelastic
core away from the neutral axis. Studies have shown (1.2]1 that the
eifectiveness of this type damping treatment is extremely limited due to the
5. ... shear-stiain areas. Because the two shells of the current composite
Zesign are rotating in opposite directions. shear strain is produced in the
ent're viscoelastic layer. This large shear area is due to the mechanical
advantage of the relative rotational of the two shells acting independently.

The application of an axial load on a tube with isotropic sheils would
produce shear in the viscoelastic layer if the two shells are only coupled in
the axial direction by the viscoelastic layer. This load path will result in
high damping but the tube will have low structural stiffness in the axial
direction due to the soft viscoelastic layer. The soft core material will react
‘n sories with the two stiffer shells resulting in a low system stiffness. Other
desigiis have incorporated the use of viscoelastic lavers with composite
sk'7: but stil! requiring one shell to be the primary structural member 131,
With the current composite design developed in the present paper. the two
shells ‘wist oppositely when subjected to loading which causes both shells to
experience the same length change. Thus. the ends of both shells are
coupled in the axi.! direction and they support the entire axial load without
the soft viscoelastic core reducing the system stiffness. Only the rotational
degree-of-freedcm at both ends of the tube needs to remain unconstrained
leaving the axial stiffness unaffected.

The application of damping to spacecraft structures has significant impacits
on increased reliability and reduced costs associated with launch and
extended operation 4/, The material selection for the current composite
design is based upon possible applications for satellite systems. The matrix
system used in the graphite/epoxy material must be capable of withstanding
the temperature extremes associated with space environments. The
viscoelastic material must also be compatible with this resin system.

Another area of concern is the possibility of centamination by these types cf
materials in a space environment.

The graphite materiai is a iiber type T-300 pre-impregnated with a Hysel
#934 rosin system that cures at 350 degrees Fahrenheit. The viscoelastic
damping material is 3M Scotchdamp SJ-2015X Viscoelastic Polymer Type
1210. This material is provided by 3M Corporation in a standard thickness
~f 10 mils (010 inches). The stiffness properties for the viscoelastic
material are provided bv 3M product information ' Outgassing tests were




conducted by the Boeing Aerospace Company ¢ on this material and proved
it to be acceptable for space applications. A series of structural tests were
conducted to verify that the chemical composition of the viscoelastic

material did not reduce the mechanical properties of the graphite/epoxy
material (71,

Theoretical Development

The stiffness properties of a laminated composite tube are studied so that
the ply orientations which maximize the extension-torsion coupling and
shear strain in the viscoelastic layer can be determined. Consider a long
slender beam of length L acted upon by end forces and moments. A
Cartesian coordinate system (x,y.2) and corresponding displacements (u.v.w)
are defined where x and y define the cross-section plane and z defines the
axial direction. See Fig.1 for further details. The displacement field of a
point on the deformed beam can be written in its most general form by
assuming that it is a linear combination of global functions that represent
extension, bending, and twisting of the tube and local functions that
represent generalized warping of the cross-section;

u(x,y,2) = Uo(2) - ¥8o(2) + wdx.y),
(X.y.2) = vol2) + x0p(2) + yi{xy), (1.a-9

wixy.z) = Wo(2) - X0{2) + y0:(2) + wAxy).

where ug. vg. and wg represent z-dependent displacements in the x. y. and
z directions, respectively. ¢x. ¢y. and 6p represent rotations about the x. y.
and z axes respectively, and yx. and yy represent warping within the cross-
section plaune dna yz 15 the warping oui of tie cross-sectionn plane.

Assuming a twc-dimensional strain state, one can derive ine final forin of the
z-dependent functions as;

uo(2) = -’;122, 0x(2) = Ky Z.
VG(Z) = --’SZZ‘?, Hy(Z) = KxZ, (2.8‘0
2
wo(2) = ez, 6o(2) = 02,

where e. xx, ky. and 6 represent the extension strain. the bending
curvatures of the beam in the x-z and y-z planes. and the elastic twist per
unit length, respectively. The six strain components of the beam. which
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fully account for warping (deformation) within the cross-section. are
calculated using Egns. (1) and (2)

Exx = Wx, . Yyz = X0+ .z,

tyy = Yyy Yxz =yO0+wz,. (3.5-f
Ezz = €- XKy + yKy, YXy = WX.y + U”}’x

Thie determinaticn of local cross-section deformation functions (yf,. Wy, Yz
is based upon using a separation of variables solution technique combined
with the Ritz method assuming that the warping functions can be expressed
as a linear combination of unknown functions that are proportionai to the
axial strain, bending curvatures. and twist rate. i.c.

[

Wy = eyt + k2l + ’\’y\l/x(3 + 0yt

vy = ey + o) 4 kB4 6y ) (4 &-0
vz = ey + Ky y 2+ Ky Wz3) + 6yt

Since the geometry and material properties of the tube are constant wiik
respect to the z-axis, the current problem reduces to a two-dimensiona’
elasticity problem. where the onlv unknowns are the warping functions
Since these functions are only dependent upon the cross-section
coordii At~ {x.y), this elasticity prohlem can be solved by developing special
two- dlrrv.:::lonal finite elements for studying the cross-section warpirng!
behavior. Each 1anuua (including the viscoelastic layer} is discretized into a

series of subresio s (finite elements) where the warping within each
subregion is ¢3¢ ¢, u<ing a bi-quadratic isoparametric interpolation
frinction;

wx = [N

vy = INDCAL Y, (5.2

vz = [Ny
The strains are written in matrix form in terms of the unknown

displacement functions and the axial strain. bending curvatures. and twist
rate;

el — "TBUysi Y (5.4}
€ = B“lﬁfb'b, (6.a)




where

N(x.y) x 0 0
0 N(x.y).y 0
B - 0 0 0
. 0 0 N(x.y).y
0 0 N(x.y) x
Nixy)y Nxylx O

0000 !
0000
1 -xy 0
iy = ‘
BT 900 x
000 -y
0000

and
'b‘T—'e K= K 6‘
I A ~

The principle of minimum potential energy is given as

(6.€)

(7)

where n is the number of subregions, dU{ is the variation of the strain
energy with respect to the unknown local deformations of the ith subregion

given by

L r
TAL ’O‘f“ﬂ c\ ‘f‘(’)‘ dAY gz .
A f L

0 { l

(8.a)

and dWelV is the variation of the work of external forces of the ith subregion
that results from the applied tractions on the beam ends. This virtual work
expression will reduce to zero since both the stresses and the local cross
section deformations are assumed to be independent of the axial coordinate
{z). A set of linear algebraic equations for determining the local cross
section deformations in terms of {bi is obtained bv substituting Eqns. (6)
and (8.a) into Eq. (7) and carrving out the integration over the beam volume.

Writing this set of equations for the itlt subregion:




gl gl

o
S M L L )
where the stiffness matrix is defined as
- T :
KO =L} BY cligt ga® 110 4
. i Am? L L .
and the force matrix is presented as
oy ST
F(b’) - L BMT ¢, aa? (10 by
- H A(/) . i -

Since both the stiffness matrix { [K@W ) and the force matrix ( [Fp/"} ) are
linearly dependent upon the beam length (L). then the calculated local
deformations functions are length independent and (L) can be dropped from
the above equations. Unit solutions for the local deformations (¥x.Vy. ;]
can be calculated for each of the tour cases of {b| by setting the appropriate
value in the array (b} equal to unitv and the remaining three to zero. Thus,
the calculated deformation functions can bhe written in matrix form as

J M ' g/ .y
{]/ b?. ("1
A , ’

where each of the four columns of [V(U] are the unit local deformations
associated with the four cases of {bl. Thus. the calculated functions for the
first case represent the local deformations as a result of applied unit axial
strain (e¢) with dimensional units of length per unic axial strain. Similarly.
the second and third cases define the local deformation associated with
applied bending curvatures (xyx. k) with dimensional units of length per unit
bending curvature. Finally the fourth case describes the local deformation
from applied twist rate (6) with dimensional units of length per unit twist
rate. Similarly. the stress components of the i{th subregion can be

expressed in terms of a set of unit stresses and b} by substituting Eqns.
(15) and (9) into (2.a)

2

Q!
,_—6_

A

where

O'(" - C(Iu B(H. xp\}) +fy (13!
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Finally, the calculated stress components are substituted into the four cross-
section equilibrium equations in order to express (e, 6, Kx. Ky) in terms of
the applied axial force, twist moment, and bending moments;

J Oz7 dA
A

I}’Uzsz-‘— M, I(yrxz-xryz)dA= M,
A A

P, Ixo'zsz='A/’y,
A

Numerically integrating the stress over each subregion that comprises the
cross-section allows one to study the extension-bend-twist coupling behavior
of the constrained tube;

K11 K12 Ki3 Kig ’e‘ ’ P l

K12 K2z Koz Kaq [[xxl _ | My (15)
K13 Koz K3z Kag “"y‘ ‘ My ’

| Kyg Ko Kag Kas || 8 M

Inverting the above relationship, one can study the coupling behavior of an
unconstrained bar;

{311 ajz a3 314“ P l ’e‘
, 812 a22 323 azq My - Kx (16)
| ay3 ap3 agz azy ll My ‘ - 'Ky‘
A14 84 34 Aag || M; 9,

Applying an axial force (P) produces extension as a well as bending and twist
that satisfy:

Kx _ 212 Ky _aiz 8—8—”—4- (17)

e a’ e agr’ T agy

Formulation of Plv Orientation

The cross-section stiffness properties for the tube are examined as a
function of the unidirectional tape ply angles ¢. The ply angle ¢ is defined
as zero when the fibers in the ply align with the axial direction (z) of the
tube. For stability purposes with this design. the fabric plies are maintained
with the fibers oriented at both G and 90 degrees. The stiffness properties
of the composite tube are sensitive to the orientation of the unidirectional
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tape ply angles ¢. As expected. the torsional stiffness (GJ) of the tube is
maximized with ply angles of +45 degrees and minimized at 0 and 90
degrees. Both the axial stiffness (£A) and bending stiffness (EI) are
maximized with ply angles at O degrees and minimized at 90 degrees. A
graphical depiction of this ply angle sensitivity is illustrated in Figure 2.
Torsional, axial, and bending stiffness are plotted as a function of the
uaiuitectional ply angles ¢

Tiic coupling of twist to applied extension is evident by the a;4 term within
[a]. The coupling of twist to extension is maximized when the unidirectional
wape plies are oriented at an angle of 30 degrees. At this ply angle. the tube
undergoes a large amount relative twist displacement. but the tube also
su.ters a significant reduction in both axial and bending stiffness. Since the
tube is designed to have a primary load path in the axial direction, the axial
stiffness needs to be monitored as well as the extension-twist coupling.
Optimizing the shear between the two shells while maintaining structural
stiffness is accomplished by comparing the extension-twist/extension ratio
ot tne composite tube for varying ply angles ¢. The value of a14/a1; is the
ratio of extension-twist coupling to extensional stiffness. The extension-
twist/extension ratio versus ply orientation is plotted in Figure 3. This ratio

is extremely sensitive to ply orientation and is maximized at an angle of 15
degrees.

To evaluate the effect the ply angle has on the damping of the tube, the
shear stress within the viscoelastic must be examined. The maximum shea:
stress shown in Figure 4 as a function of ¢ is at a maximum for a 25 degree
ply angle. But once again, optimizing the damping using this method would
result in a penalty in structural stiffness. The amount of damping provided
through matrix shear deformation of just the graphite/epoxy plies was not
considered within this study. The orientation of the plies without a
viscoelastic layer provides a supplemental damping mechanism to the
laminate (8], This effect is not accounted for in this analysis since its
contribution will be small for a fiber-dominated design such as this one.

Tube Construction

The number of plies in the laminate were determined before the the cross-
section properties was analyzed for various plv angles. The types of
materials and placement within the laminate were chosen for their desired
characteristic behavior. Figure 5 depicts the order of ply sequencing within
the entire laminate. The fabric material is placed in the inner and outer
most plies of the laminate to provide hoop stiffness to the structure. The
hoop stiffness is required because of the low transverse tension capabilities
of the viscoelastic layer in the center of the laminate. Large relative
displacements between the inner and outer shells in the radial direction
wi'l reenlt in a delamination at the graphite-to-viscoelastic interface.
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Two plies of the unidirectional tape are used in each of the shells next to
the viscoelastic layer. The use of unidirectional graphite material ensures
the properly designed extension-bend-twist coupling behavior necessary to
maximize damping and yet maintain structural stiffness. For this particular

phase of the study, no other combinations of ply distribution or materials
were examined.

The mandrel for the lay-up is a 60 inch long by 2.5 inch outer diameter
solid aluminum round bar. The mandrel is hand polished to remove any
surface imperfections then a releasing agent applied. The first ply is the
fabric pre-cut to the required size. The next two plies are the
unidirectional tape cut in a manner that maintains continuous fibers the
length of the tube. The width of the unidirectional tape is the
circumference of the mandrel including preceding plies times an angle of
15 dcgrees. When these fibers are then placed at 15 degrees to the tube's

longitudinal axis and spirally wrapped, the edges of the ply come into
contact with one another.

The fabric and two plies of tape create the inner shell of the tube. The
unbalanced laminate of this shell will result in the extension-bend-twist
coupling that is desired for this design. For this particular application, the
viscoelastic damping layer is applied directly to the graphite/epoxy material
before it is cured. The damping material selected acts as though it is a
pressure-sensitive adhesive and requires only nominal pressure at room
temperature to effect a good bond. Special care is required when handling
the damping layer to avoid creating a void between this material and the
graphite/epoxy layers. To reduce the tackiness of the viscoelastic layer. the

damping material should be cooled to 30 degrees Fahrenheit before
handling it.

The construction of the outer shell is accomplished the same way as the
inner shell. The width of the unidirectional tape and fabric takes into
account the increase in the circumference due to the additional preceding
plies. The angle of orientation for the unidirectional fibers is in the
opposite direction of those for the inner shell. This ensures that the outer

shell extension-bend-twist coupling is in the opposite direction from the
inner shell.

Once the final ply of the laminate is applied. the tube is wrapped with a
teflon film. A layer of shrink wrap tape is applied in a spiral manner to
provide uniform pressure during the cure cycle. The shrink wrap and teflon
film are perforated to allow excess resin to bleed out of the laminate. A

bleeder cloth is wrapped around the tube to absorb any excess resin during
the cure cycle.

The cure cycle consists of an increase in temperature from room
temperature to 350 degrees Fahrenheit in one hour. The cure temperature
of 350 degrees is then held for an additional two hours. The reduction in
temperature back to room ambient requires one more hour. The part is
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removed from the oven then cooled in a freezer to contract the size of the

aluminum mandrel. The composite tube then easily slides off the cold
mandrel.

Test Results

A design studv was conducted to compare a baseline design without
viscoelastic material to the composite construction with the damping layer.
The plies of graphite/epoxy fabric and tape are identical for the two
laminates. The only difference between the two designs is the absence of
the damping layer in the baseline configuration. Other studies [°) have been
conducted to analyze the effects of embedded damping layers but they
examined the effects of replacing stiffness material with damping material.
By maintaining the same number and orientation of plies within the
laminates of both tube designs. the direct effect of embedding a damping
layer can be quantified.

Measurements were made by the impact-hammer modal-test method with
the specimen suspended in the near free-free boundary condition. To
simulate the free-free boundary condition. the tubes are suspended in the
vertical position by a string. Damping is measured using the half-power
band-width method.

The first natural frequencies are similar for the tubes with or without the
viscoelastic core. The first mode for the tube without the viscoelastic core
is 455 Hertz, while the tube with the viscoelastic core is 400 Hertz.
Damping in the first mode for the tube without the viscoelastic core is 0.6
percent. A damping value of 4.3 percent is present in the first mode of the
tube with the embedded viscoelastic layer. Frequencies and damping
measurements for the axial modes will not be made until end fittings are
fabricated to couple the stiffness of the two shells with the viscoelastic core.
It is important to note that the tube is designed in a state of axi-symmetric
extension, but tested in a state of bending. Comparable results are expected
for the load case of extension as obtained from the bending test.

Conclusions

The analytical tcchniques described in this paper enabled the placement of
a visceelastic core and ply orientations of two shells. optimizing the
damping in combination with overall structural stiffness. The test results
show a reduction of frequency from 455 to 400 Hertz with the addition of
the viscoelastic laver. A majority of the reduction can be attributed to the
increase in the mass of the tube from the additional material. The
evaluation of the ply orientations within the composite design allows
effective use of the damping material with the smallest penalty in stiffness.
For a small reduction in stiffness. the damping in the first mode is increased
over 7 timer by optimizing ply angles and cmbedding a viscoelastic layer.
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Figure 1. Coordinate System
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Figure 2. Torsional, Axial. and Bending Stiffness versus
Unidirectional Ply Angle

10
60
-8
&
c =
2 \ 5 =
~ mO
w A
= ] <+—— E| -
B 4 O
(42
()
< 20- EA
Ly
A -2
0 T T ™ T 1 0
-90 -60 -30 0 30 60 90

Ply Angle o (degree)

HAC-13




dygq

Figure 3. Extension-Twist/Extension Ratio versus
Unidirectional Ply Angle
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Figure 4. Maximum Shear Stress in Core versus
Unidirectional Ply Angle
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Figure 5. Ply Sequencing of Laminate
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DIRECTIONAL DAMPING OF THE GLOBAL VIBRATION MODES
OF TUBULAR STRUCTURES BY CONSTRAINED-LAYER TREATMENTS

S. S. Sattinger

Mechanics & Tribology Department
Westinghouse Science & Technology Centers

ABSTRACT

Among the types of vibration modes that may need to be damped in thin-
walled structures are those involving low-order, long-wavelength bending,
torsion, or extension. These modes are characterized by vibratory stresses
that are uniform or nearly uniform through the thickness of the wall.

Although more commonly used for the control of panel bending, shell bending,
and other local modes, segmented constrained-layer damping treatments can also
provide effective damping for the control of such global vibrations. Methods
described for the prediction of global-mode damping include new
interpretations of closed-form solutions generated previously by Torvik. A
finite-element implementation of the strain-energy principle of Ungar and
Kerwin is also described. The axial length of the structure spanned by a
single segment of damping treatment has been assumed much smaller than a
vibration wavelength at the frequencies of interest, making static or quasi-
static analyses useable. Damping loss factors calculated by each of these
methods compare well with measurements on an assembly of damped, hollow,
rectangular-cross-section beams.

INTRODUCTION

A need often arises to design passive vibration-damping treatments
that can reduce responses of several classes of vibration modes of a given
structure. Specifically, the low-frequency, long-wavelength, global bending
modes, the torsional modes, and possibly even the axial modes of a thin-walled
tube may all need to be damped. All of these global modes can play major
roles in the transmission of low-frequency noise and vibration, and their
responses are often difficult to control.

Effective applications of constrained-laysr treatments to damp local
plate-bending and shell-bending modes, Figure 1b), are common. However, the
use of these treatments to damp the global beam-bending modes of tubular
structures, Figure 1a), and their torsional and axial modes, is not frequently
reported. A previous paper [1] showed that a given constrained-layer
treatment, properly designed, can provide effective damping of the global
bending modes, concurrent with high damping of the local plate- or shell-
bending modes, of open- or closed-section, thin-walled beams. Segmentation of
the constraining layers was shown to be vital in obtaining such combinations
of global- and local-mode damping performance.

*Pittsburgh, PA 15235, (412) 256-1327

HBA-1




Dwg. ¥16AS7

Tube Walls
_}\ Ribs or Bulkheads

b} Locat Plate - or Shell-Banding Modes

Figure 1 - Global vs. local bending modes of vibration in a thin-walled
tubular structure

Constrained-layer treatments may also be required to damp the global
modes of more complex structures in which each component simultaneously
undergoes several different directions of vibration. One example would be the
combined bending and torsion in members of a machinery support structure
vibrating as illustrated in Figure 2. If the damping performance can be
separately predicted for each direction of vibration in each component, the

overall system damping values for combined modes of the entire structure can
then be determined.

Dwg. 9414A01

\

Figure 2 - Displacement shape for a combined torsional and bending vibration
mode of a machinery support structure comprised of tubular members

This paper demonstrates that a given constrained-layer treatment can
be effective in simultaneousiy damping the global bending, torsion, and axial
vibrations of a tubular structural component. Methods are described for
predicting or estimating the damping values for the individual directions of
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vibration, including new interpretations of closed-form analyses performed
previously by Torvik [2] and finite-element implementations of the strain
energy principle of Ungar and Kerwin [3]. Experimental results on a damped
box-beam test assembly, confirming the validity of these methods, are also
given. Applications are primarily to closed tubular cross-sections, although
the cross-section may be of aimost any shape.

PREVIOUS ANALYSES OF DAMPING TREATMENT SEGMENTATION

The Ross-Ungar-Kerwin theory [4] is the basis of a method that is
widely used for the design of constrained-layer treatments to damp flexural
vibration waves in plates and beams. However, its application is valid only
in cases where both the damping treatment and damped member are continuous or
where any cuts between adjacent damping treatment segments happen to coincide
with nodal points in a standing wave.

Parfitt [5] extended the Ross-Ungar-Kerwin theory to cases where the
damping treatment is cut at uniform intervals along the length of a vibrating
becm. Parfict found that the low-frequency (long-wavelength) damping
performance was dramatically improved by such axial segmentation, and he
derived an expression for the optimum spacing of cuts in terms of the
thicknesses and moduli of the constraining layer and the constrained VEM
layer. Assuming constant VEM properties, the optimum segmentation would
provide, at very low frequencies, damping performance almost as high as the
peak damping of the continuous treatment. In this derivation the damping
treatment was assumed sufficiently compliant to have no influence on the
strain distribution in the base structure and to acquire negligibly small
amounts of stored strain energy.

In a similar derivation of damping performance and optimum segment
length by Plunkett and Lee [6], the same assumption of damping treatment
compliance was made. Kress [7] derived an expression for optimum segment
length which is sensitive to the propertias of the base structure in addition
to thcse of the damping layers.

Torvik [2] analyzed two different cases of quasi-static vibratory
loading of constrained-layer-damped structural members, both of which can be
applied to the global-mode damping of tubular structures having segmented
damping treatments. Both of these analyses account for strain energy stored
in all components of the system and are therefore applicable to stiff damping
treatments such as are used in the experiments described later. These
analyses are described and interpreted for use in globali-mode damping
applications in the next section.

DAMPING PERFORMANCE PREDICTION METHODS FOR GLOBAL MODES

Three alternate approaches for predicting or estimating the global-
mode damping performance of segmented constrained-layer treatments on tubular
structures are described below.

Closed-Form, Quasi-Static Solution for Vibratory Flexure

Torvik [2] analyzed the case of quasi-static moment loading of a
finite-length cantilever beam covered by a single segment of constrained-layer
treatment which is built-in at the root end and free at the opposite end as
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shown in the uppermost view in Figure 3. Flexure in both the base member and
the constraining layer is modeled using Bernoulii-Euler beam theory. The

solution is also directly applicable to a free-free, moment-loaded beam of
twice the length of the cantilever beam.
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Figure 3 - One-side-damped cases represented by Torvik’s closed-form, quasi-
static solution tor vibratory flexure

For sufficiently long wavelengths, the beam analyzed can also be
viewed as a building block of a long, continuous vibrating beam of the same
cross-section, damped by a segmented treatment as shown in a lower view in
Figure 3. This analysis apr'ies only to the installation of damping treatment
on a planar surface that i< oriented parallel to the neutral surface of the
base member, but, as indicited by Figure 4, it can also be interpreted as
applicable to structures that have symmetric cross-sections and are damped on
two sides.® Torvik’s analysis applies to the dynamic vibratory case, i.e., to
the case in which there are transverse vibratory inertia forces, provided that
the instantaneous standing-wave bending-moment distribution is nearly constant
over the length of beam covered by each segment. That is, the bending
wavelength must be long in comparison with the segment lengths.

«Setting area Al equal to inflnlity models the aondition of sero extension at
the bs»» member centroid, brought sbout by eymmetry.
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Figure 4 - Two-sides-damped cases represented by the closed-form, quasi-static
solution for vibratory flexure

Torvik developed expressions for stored and dissipated energy leading
to the following closed-form expression for system damping in flexure:

2
" = — A . F(6) Q)
= 3 3
ler L 523 | Re [L"'—;"—hﬁ - & (tanho-6)
2{-1*1 * 2 6
12[1-u3]

where ns = flexural damping loss factor = 2 x percent critical damping
/100, and

. G'b[l .1 }
by [E,A,* Egbhy

i

F(6)

_1 Im [tan(i6)/(i6)]
2 Re [6] Im [6]

X
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where G'= G,(1 + jn,) = complex shear modulus of the VEM

j=41

E = Elastic tensile modulus

Subscript 1 denotes the damped member

Subscript 2 denotes the VEM layer

Subscript 3 denotes the constraining layer

Re (2z) denotes the real component of the complex quantity z

Im (z) denotes the imaginary component of the complex quantity z

and all other symbols are defined in Figures 3 and 4. In contrast with
Torvik’s original development for a solid rectangular cross-section, these
results are expressed here in terms of the properties of arbitrarily-shaped
base member cross-sections for greater generality.

Closed-Form Quasi-Static Solution for Vibratory Extension

For thin-walled tubular structure cross-sections, the distribution of
global-mode vibratory bending stresses is nearly uniform through the thickness
of the wall. Under these conditions, which are illustrated in Figure §, the
bending-mode damping can be estimated by applying a solution of quasi-static
extensional loading of a constrained-layer-damped structural member, derived
by Torvik as an adaptation of an earlier analysis of lap joints by Avery [8].
This solution is also directly useable for predicting the damping of axial
modes, and, as shown later, the torsional-mode damping values can also be
reasonably close to the extensional damping value in some instances.

= !

AN N "7 A B =
R ~ -

| l \
, | : |

5 T - R
. ! ‘ i
IR § |
TN it
P R

Lo Longitudinal Axis

Figure 5 - Instantaneous stress distribution in 8 region of a damped tubular
component undergoing global bending vibration, showing that the
walls are in a state of extensional stress that is nearly uniform
through the thickness

Torvik addressed the case of a member built-in at one end and covered
by a single segment of damping treatment which is built-in at the root end and
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free at the loaded end. This case is shown in the uppermost view of Figure 6.
The solution also applies directly to a free-free, extensionally loaded bar of
twice the length of the built-in bar, which is the case pictured in the middle
view of Figure 6. Good agreement between calculated and measured extensional
damping performance in constrained-layer-damped bars was obtained in an
earl|ier study by the author [9].

Key assumptions in Torvik’s derivation are that plane cross-sections
in the damped member and in the constraining (ayer remain plane and translate
without rotating. While this pure-translational deformation assumption does
not apply in a strict sense, it is a good approximation to the actual
conditions in a tubular structure in bending. Torvik derived the following
formula for damping under vibratory extension:

2
L sl F(5)
o Bhhy abL (1+jr;2)tan(jp)] (2)
= +* =5 Re
E3h3 o1 E1A1h2 jp3
ElAl

where 5, = extensional damping loss factor

F() = - % Im{tan(if)/(if)]

Re[f]Im[p]
1/2
h2 ElAl Esbh3
, ——————— L —_—
; €+
| ﬁ o eim
T c '
E;;ﬂr?i e
i . ] )
uLeJ ! g'( . J’g oLe“'
Cort
"3 p—— b i . Constraining Layer

. - -Viscoelastic Material Layer

L -
Area Al 'AFlanqe

View C-C

Figure 6 - The case of quasi-static, vibratory extension, analyzed eariier by
Torvik, as applied to the portion of a structure wall beneath one
segment of damping treatment
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and all other quantities are defined in conjunction with Equation 1 above, or
in Figure 6. Whereas Torvik assumed all three layers to be of equal width,
which vanished in the formula he derived, his formula has been re-expressed
here in terms cf damping treatment width, b, and damped member area, Aj, to

apply to situations where the surface area is partially covered by the damping
treatment.

In a separate treatment of the subject of segmentation, Kerwin and
Smith [10] stated that achievable loss factors in extension are lower than
those in flexure for a given system cross-section. This rule decidedly holds
true for solid damped-member cross-sections.® However, as demonstrated in a
later section, the difference diminishes for hollow cross-sections, and in the
limit of beams whose section properties are dominated by flat, widely spaced

parallel flanges, the optimum global bending loss factor tends toward equality
with the optimum extensional loss factor.

To the extent that strain energy is stored in other regions of the
tubular structure that are untreated, the extensional damping calculated in
this manner will overestimate the true overal! global-bending-mode loss
factor. The experimental results in a later section demonstrate, however,
that the extensional damping estimate can be reasonably close to the true
bending-mode damping value for rectilinear-cross-section, thin-walled tubular
beams having segmented damping treatment on all panels.

Finite-Element Modeling

In recent years there have been many applications of the finite-
element method to predictions of constrained-layer damping performance. In
many cases these predictions have made direct use of the strain-energy
principle of Ungar and Kerwin [3], which is expressed symbolically as

Loy
J 1
= 3
" TU (3)
J J

where 5 = system damping loss factor

Uj = strain energy in the jth region or component of the system in a
given mode of vibration

n = the damping loss factor of the jth region or component.

The modeling to be described here is one such application.

The prediction of global-mode damping performance of segmented
treatments intrcduces no new kinds of finite-element modeling requirements but
may, if wavelengths are sufficiently long, offer the analyst the option to
perform a static analysis in lieu of a dynamic one. Major incentives for
choosing the finite-element approach for bending-mode damping predictions in
prefereance to the previously-described closed-form methods might be curvature,
slope, or irregularities such as cut-outs in the structure walls, which could

*A rule of thumb 1e that optimum flexural lose factors are roughly a feator of

three times larger than the corresponding optimum extensional loes factors
fer 20)1d orose-sections.
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invalidate the use of the latter methods. In the case of torsional modes, no
closed-form solutions appear to be available as alternates to finite-element
model ing.

The finite-element modeling described here is an adaptation of an
earlier approach of Killian and Lu [11] in which short, offset beam elements
are used in lieu of brick elements to represent the VEM layer. Although
originally used in conjunction with the direct frequency-response method using
a complex-modulus representation for the VEM, this approach also lends itself
to elastic modeling of the VEM layer using the modal strain energy principle.
As in all other elastic-modeling implementations, which are quite common in
finite-element predictions of constrained-layer damping, the results are
approximations in that real-valued deformation shapes are generated in lieu of
complex shapes. All modeling described here has been performed using the
WECAN finite-element model ing program [12].

GLOBAL-MODE DAMPING EXPERIMENTS ON A TUBULAR STRUCTURE

Figure 7 is a photograph of an all-steel box-beam test assembly
specially designed and constructed to verify global-mode damping

Figure 7 - Mass-loaded box-beam test assembly, with segmented damping
treatment in place, undergoing torsional damping measurements

performance predictions, generated by each of the methods described above, for
individual directions of vibration. The tubular portions represent the
construction of the larger machinery support structure pictured in Figure 2,
but with a one-dimensional configuration, it would be possible to measure the
individual damping values without coupling among the various directions of
vibration. The three solid circular discs made it possible to use a compact
test configuration by providing mass and inertia loadings simulating reactions
that would be present in a continuous beam of much greater length. Figure 8
shows the design details and iflustrates that, in general, the cuts between
damping treatment segments need not coincide with the placement of ribs or
stiffeners. The next section addresses the fact that damping treatment was
applied on all four sides of the rectangular-cross-section beams, whereas the

closed-form solution for flexure applies to cases where only one or two sides
are damped.
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Figure 8 - Design details of the box-beam test assembly

The beams were fabricated by bevel-welding ribs of cold-rolled steel
between short sections cut from 152 mm x 102 mm x 4.8-mm wall (6 in x 4 in x
3/16-in wall) structural-steel rectangular tubing. Flat surfaces were
machined on the beam-wall| exteriors before the weld-attachment of the discs
and the installation of the damping treatment. Because of weld distortion
there were sizeable variations in wall thickness, and the thickness values
shown represent averages after machining. The total mass of the damped
assembly was 91.6 kg (2021b), of which the undamped beams comprised 15.3 kg
(33.7 1b) and the damping treatment comprised 3.6 kg(8.0 Ib).

The damping treatment was installed in segments of 1.44 mm (0.0565
in)~thick constraining layer over 0.051mm (0.002 in)-thick 3M ISD 112
viscoelastic damping polymer, giving a fairly large stiffness ratio
(Ezhz/Ejhy= 0.43). Both sides of the damping polymer layers were bonded to
the adjacent steel surfaces using 3M 1838 epoxy structural adhesive. Care was
taken to avoid adhesive bridging between the constraining fayer segments and
the base structure. All damping performance calculations were performed using
the frequency-dependent VEM property values plotted in Figure 9§ These
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Figure 9 - Properties used in modeling the 3M ISD 112 constrained damping
layers at the 22°C (72°F) test conditions

properties were measured on a different lot of the same damping polymer using
a previously described measurement technique [13]. The extent of lot-to-lot
variation in properties is not known.

The various bending and torsional modes of the assembly before and
after installation of the damping treatment were individually excited in
sinusoidal dwells using an eccentrically positioned shaker. Measurements of
the higher-frequency axial modes were also performed by driving on the center
axis. The damping values were measured by means of rates of decay from these
dwells at shaker cutoff. All tests were performed at approximately 22°C
(72°F) room temperature.

COMPARISON OF CALCULATIONS AND MEASUREMENTS

Table 1 |ists measured natural frequency and damping values for the
global modes of the test assembly before and after the installation of damping
treatment. The results show that the damping due to the add-on treatment far
exceeded the inherent damping of the base structure. The increases in natural
frequencies show that the net effect of the damping treatment installation was
to increase the dynamic stiffnesses in greater proportion than the increase in
mass.

Although damping treatment was installed on all four sides of the beam
portions, calculations using the closed-form solution for flexure with damping
treatment on only two sides are nontheless useful. Table 2 compares
calculations for two different choices of area moment of inertia, one choice
being half that of the full base-member cross-section as per Figure 4, and the
other being that of only one of the two "flanges" (sides oriented parallel to
the neutral axis). The former choice produces a lower bound to the true
damping, because the damping contribution of the treatment on the sides
perpendicular to the neutral axis is not taken into account. By the strain-
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Table 1

Measured Natural Frequencies and Damping Values for Global Vibration
Modes of the Mass-Loaded Box-Beam Test Assembly

Undamped Configuration Damped Configuration

Natural Damping Natural Damping
¥ode Type Node Identity and Shape Frequency, Hz Loss Factor Frequency, Bz Loss Factc:-
Tlexible-  1st Mode m 218 0.00088 230 0.043

saiection

Bean 2nd Mode B——B___B 869 0.00085 712 0.041
Bending
3rd Mode B—.H 845 0.00088 896 0.036

4th Mode U_/—H 987 0.00070 1052 0.043
Stiff- 1st Mode H_.,ﬂ 305 0.00086 324 0.029

virection

Bean 3rd Modes [}”"H 1145 P 1229 P
Bending
4th Mode [}_,,_{:P_,._{] 1360 P - -

Tersional  1st Mode [K;___{:}____ﬂ] 357 0.0010 383 0.052
2nd Mode W 511 0.0010 558 0.049

Axial 1st Mode  [}—]}—] 942 0.0031 1005 0.035
20d Node  }——f }——} 1323 0.0030 1387 0.028

¢ Indicates point of minimum motion amplitude.

P Indicates measurement rejected as invalid due to coupling with local bending modes of beam wall panels.

* A stiff-direction bending mode analogous i. Lhw second fiexible-direction mode could not be idzntified
but is believed to have existed at a frequency coincident with the first extensional mode.

energy principle, the latter choice should predict the true damping if the
ratio of VEM strain energy to total strain energy in the sides perpendicular
to the neutral axis were equal to the corresponding ratio in the flanges.
However, the results of finite-element modeling, discussed below, indicate
that in both the flexible and stiff bending directions, the fraction of VEM to
total strain energy in the perpendicular sides is somewhat less than that in
the flanges. Therefore the use of only the flange moment of inertia produces
an upper bound tc ths Lius damping iw instances where the thicknesses are
nearly constant throughout the beam cross-section.

Figure 10 plots the calculated closed-form flexural damping vaiues
from Table 2 together with a curve of calculated extensional damping.
Frequency affects all of these calculations only to the extent that it governs
the VEM properties. The extensional damping curve has been generated using,
for a base member, a flange having 3.35 mm (0.132 in) thickness, which
represents a weighted average of the thicknesses of the four sides. This
simplified approach can be taken because the stiffness ratio, Egh3/Eqhy, is
ne. -1y constant around the periphery. The base member width has been regarded
2s 'qual to that of the damping treatment, but to account for the incomplete
coveiage, an area ratio of 0.875 has been used to pro-rate the resultant loss
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Table 2

Damping Values Calculated for Mass-Loaded Box-Beam Test Assembly
Using Closed-Form Solution for Vibratory Flexure

Damping Loss Factor'

Natural Using Moment of Inertia Using Moment of Inertia

Mode Type Mode Identity Frequency, Hz of Full Cross-Section of Flanges Only
Flexible- 1st Mode 230 0.0530 0.0639
Direction 2nd Mode 712 0.0411 0.0491
Bending 3rd Mode 896 0.0381 0.0454

4th Mode 1052 0.0359 0.0428
Stiff- 1st Mcde 324 0.0417 0.0564
Direction
Bending

* Calculated in accordance with Equation (1) and Figure 4 using VEM properties at damped natural
frequency for each mode. Resultant loss factors have been pro-rated by a 0.949 length ratio to
account for incoiplete coverage by the treatment.

factors. The fact that the extensional loss factor curve is bounded from
above and below by the calculated flexural damping values illustrates its
usefulness as an estimator of global bending-mode damping. The peak in the
extensional damping curve is due to the occurrence of an optimum combination
of Gy, hy, and | for the specific E;,hy,E3, and h3 values used.

Also included in Figure 10 are the results of quasi-static finite-
element modeling of damping under both directions of pure bending-moment
loading and under torsional and axial loading. Figure 11 depicts the
1/8-region finite-element mesh that modeled one of the tubular portions of the
assembly (see also Figure 8) and shows how these loading conditions were
simulated by imposing constant or linearly-varying displacement distributions
on one of the ends while the opposite end was restrained. The VEM layer was
modeled elastically. The storage modulus and loss factor values used were
based on an arbitrarily-chosen frequency of 340 Hz for all loadings. The
computed damping loss factors have been reduced by an empirically derived
factor of 1/1.2. This factor corrects for the use of elastically calculated
deflection shapes to compute the strain energies in a viscoelastically damped
structure having a VEM loss factor of about 1.0.

The closeness among the finite-element results for the various
directions of vibration adds further validity to the notion of using an
extensional damping calculation to estimate the global bending-mode damping.
Furthermore, these finite-element results are in very close proximity to the
closed-form solution results. It seems at first surprising that the torsional
damping is in such close proximity to that of the other directions. However,
Figure 12 illustrates that the pure-shear deformation of the individual panels
under torsion produces an extensional deformation of damped panel slices
oriented at 45° to the tube axis, and that the effective lengths of these
slices are comparable to the axial lengths of the segments.
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Figure 10 - Calculated damping performance for the box-beam test assembly

Finally, Figure 13 compares the ciosed-form extensional dampiug
calculation with measured damping values for the global bending and
extensional modes. There is considerable scatter in the measurements, but
their trends appear reasonably well predicted by the extensional damping
curve. The scatter may be partly attributed to the earlier-mentioned
irregularities in wall thicknesses of the beam portions. In addition,
transverse shear forces were undoubtediy present in some of the global bending
modes, and these may have influenced the overall damping values differently
for each of the modes.

DISCUSSION

The fact that the damping performance values plotted in Figures 10 and
13 are in the proximity of a peak is the result of the combination of damping
treatment design parameters having been nearly optimized. This combination is
particularly sensitive to the segment length parameter, |. The optimum
global-mode loss factors are considerably smaller than the optimum loss
factors for local-mode plate bending with this treatment (which would be in

the vicinity of 0.15), but they do, nonetheless, represent useful and
effective damping.

Circumferential segmentation of the damping treatment can play an
important role in achieving good global-mode damping performance. Without
segmentation circumferentially, the damping treatment would be forced to
conform to the bending curvature of the base structure (compatible
deformations) by way of transverse normal forces, and the VEM layer would
sustain very little shear deformation as a result. This situation may be
visualized by imagining the four circumferential damping treatment segments of
the test assembly to be connected together rigidly at the corners as the beam
sections undergo bending. This circumferential segmentation was the subject
of an earlier analysis of damped, circular-cross-section tubes by the Russian
authors Vinogradov and Chernoberevskii [14]. The conclusion of their study
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was that the bending loss factors of tubes having axially continuous
constrained-layer treatments can be substantially increased by slitting the
constraining layer lengthwise into a number of arc-shaped segments.
Especially for long axial segment lengths, the same result should apply to

axially sesmented treatments.
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Figure 13 - Measured vs. calculated damping performance for the box-beam test
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If distinctly different values of damping are predicted for each
direction of vibration in each component, the overall system damping value for
each mode of a complex structural assembly can be predicted by using impedance
or energy methods. Finite-element structural analysis codes such as MICA [15]
enable the user to specify individual damping values corresponding to each
degree of freedom of the beam elements used to model the components of a given
structure, and a system damping loss factor is predicted by the code for each
mode of the assembly.

CONCLUSIONS

A given constrained-layer treztment rar ha cimiltanaously effective in
damping the global bending, torsion, and axial vibrations of a tubular
structura! component. The effective damping of the global modes requires the
use of relatively stiff treatments, and axial subdivision of the treatment
into segments of optimum length is vitally important. However,
circumferential subdivision can also play an important role, especially for
long axial segment lengths.

Torvik’s closed-form, quasi-static solutions for the flexural and
extensional vibrations of damped members are well-suited for performance
estimates on these configurations. The use of finite-element modeling for
this purpose may be warranted in cases where curvature, slope, or
irregularities in the beam walls would invalidate the closed-form solutions.

The experiments on the damped, hollow, rectangular-cross-section beam
assembly demonstrate the usefulness of each of these methods for calculating
global-mode damping performance. Although derived for members damped on sides
that are paraiiel to the neutral axis, the quasi-static flexural damping
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prediction method is useable for performance estimates on rectangular-cross-
section, tubular components having damping treatment on all sides. Measured
and finite-element-calculated damping values for all global modes of the
assembly agreed closely with the quasi-static extensional damping
calculations, underscoring the usefulness of the latter method as a simple,
but reasonably accurate, performance estimator.

ACKNOWLEDGEMENTS

The support of Dr. L. K. H. Lu of the Westinghouse Marine Division,

sponsor of this work, is appreciated. J. P. Condle, K. B. Wilner, D. V.
Wright, and J. A. Zaldonis of the Westinghouse Science & Technology Center are
thanked for their contributions.

REFERENCES

1.

Sattinger, S. S., "Constrained-Layer Damping of Global Bending Vibration
Modes of Thin-Walled Beams," Vibration Control of Mechanical, Structural,
and Fluid-Structural! Systems, PVP-Vol. 202, ASME, 1990, pp. 45-53.

Torvik, P. J., "The Analysis and Design of Constrained Layer Damping

Treatments,® Damping Applications for Vibration Control, AMD-Vol. 38,
ASME, 1980, pp.85-112.

Ungar, E. E. and Kerwin, E. M., Jr., "Loss Factors of Viscoelastic
Systems in Terms of Energy Concepts," Journal of the Acoustical Society
of America, Vol. 34, 1962, pp. 954-957.

Ross, D., Ungar, E. E., and Kerwin, E. M., Jr., "Damping of Plate
Flexural Vibrations by Means of Viscoelastic Laminae," Structural
Damping, Section III, J. E. Ruzicka, ed., ASME, 1959, pp. 49-87.

Parfitt, G. C., "The Effect of Cuts in Damping Tapes," Fourth
International Congress on Acoustics, Copenhagen, August 1962, pp. 21-28.

Plunkett, R. and Lee, C. T., "Length Optimization for Constrained Layer
Damping,® Journal of the Acoustical Society of America, Vol. 48, No.1l
(Part 2), July 1970, pp. 150-161.

Kress, G., "Improving Single-Constrained-Layer Damping Treatment by
Sectioning the Constraining Layer,® The Role of Damping in Vibration and
Noise Control, DE-Vol.5, ASME, 1987, pp. 41-48.

Avery, C. P., "An Investigation of Longitudinal Shear Distribution and
Damping in a Viscoelastic Adhesive Lap Joint," U. S. Air Force Wricht Air
Development Division Technical Report No. WADD TR 60-687, November 1960.

Sattinger, S. S., "A Study of Extensional Damping Performance

Discrepancies in Certain Constrained-Layer Treatments,” The Role of
Damping in Vibration and Noise Control, DE-Vo!.5, ASME, 1987, pp. 33-40.

HBA-17




10.

11.

12.

13.

14.

15.

Kerwin, E. M., Jr., and Smith, P. W., Jr., "Segmenting and Mechanical
Attachment of Constrained Viscoelastic Layer Damping Treatments for
Flexural and Extensional Waves," U. S. Air Force Flight Dynamics
Laboratory Vibration Damping Workshop, Long Beach, CA, February 1984,
pp.KK-1 - KK-24.

Killian, J. W. and Lu, Y. P., "A Finite Element Modeling Approximation
for Damping Material Used in Constrained Damped Structures," Journai of
Sound and Vibration, Vol. 97, No. 2, 1984, pp. 352-354.

"WECAN- Westinghouse Electric Computer Analysis, User’s Manual ™ W. E.
Stiliman, Editor, Revision X, June 1, 1988, Vols. 1-4.

Sattinger, S. S., "Direct Method for Measuring the Dynamic Shear
Properties of Damping Polymers," Chapter 5 of Sound and Vibration Damping
with Polymers, R. D. Corsaro and L. H. Sperling, eds., American Chemica’
Society Symposium Series, No. 424, pp. 79-91, 1990.

Vinogradov, B. D. and Chernoberevskii, V. V., "Damping of Tubes by a

Constrained Coating,® Soviet Physics Acoustics, Yol. 26, No. 4, 1980,
pp328-330.

Yu, I. W., Bartolomeo, D. R., and Akey, J. G., "MICA- Mechanical

Impedance Computer Program,® Westinghouse R&D Report No. 85-1J7-IMPED-R:,
January 1986.

HBA-18




Damped Response of Visco-Elastic Thick
Cylinders of Infinite Extent

H.R. Hamidzadeh, D.J. Nunez and D.E. Chandler

Department of Mechanical Engineering
South Dakota State University

ABSTRACT

Harmonic responses of viscoelastic thick circular cylinders of infinite
extent, subjected to harmonic radial and tangential boundary stresses are
considered. In development of an analytical solution two dimensional elasto-
dynamic theory is employed and the viscoelastic material for the medium is
allowed by assuming complex elastic moduli. The solution provides stresses and
displacements at any point in the medium in terms of boundary stresses. The
resonant frequencies for different circumferential flexural (lobar) modes and
their corresponding thickness modes are computed and satisfactorily compared with
an available solution. The present solution is not limited to thin shells, and
it equally treats thick cylinders with any values of hysteretic damping. Also,
several design charts for estimation of resonant frequencies for a wide range of
thickness ratio are developed.

1crothers Engineering Hall SDSU, Brookings, SD 57C07:
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INTRODUCTION

The trend towards dissipating vibratory energy in cylindrical structures
when subjected to circumferential flexural vibrations requires application of
viscoelastic materials with high strength. Although many cylindrical structures
can be analyzed using the theory of thin shells, thicker cylinders with
nysteretic damping have to be studied using the general theory of elasticity with
complex moduli. The first investigators to study the vibrations of an infinitely
long traction-free hollow cylinder were Greenspon (1957), and Gazis (1958).
Armenakas et all (1969), in particular, considered the transmission of elastic
energy by means of elastic waves, and formulated the eigenvalue problem for
stress free cylindrical surfaces. He presented tables of natural frequencies for
different ratios of mean radius/thickness and for different numbers of
circumferential wave numbers. McNiven, Shah and Sackman (1966) considered the

Xisymetric vibrations of hollow cylinder utilizing "Three Modes Theory".
Gladwell and Vijay (1975) studied the three dimensional vibrations of a finite
length circular cylinder with traction free boundaries, using a finite element
approach. Svardh (1984) investigated wave propagation in a semi-infinite,
hollow, elastic circular cylinder with traztion-free lateral surface initially
at rest and subjected to transient end loadings. Hutchinson (1980) developed a
series solution of the general three dimensional equation of linear elasto -
dynamic problem. Hutchinson and El-Azhari (1986) extended Hutchinson’s work in
solid cylinders to include free hollow cylinders with finite length. Singal and
Williams (1988) studied free vibrations of thick circular cylindrical shells and
rings using the energy method and obtained a frequency equation to provide
resonant frequencies for breathing and beam type modes. They also conducted
experimental investigations to assess the validity of their analysis.

The present study involve the development of an analytical solution to the
harmonic response of infinitely long cylindrical structure with internal damping
subjected to flexural vibrations around the circumference.

GOVERNING ELASTO-DYNAMIC EQUATIONS

For the isotropic homogeneous elastic medium shown in Figure 1,

Figure 1. Reference coordinates and dimensions
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the governing equation of motion in terms of harmonic radial and tangential
displacements amplitudes u and v are:

-pplur- 9 e-25-2 l-a
ppiur (A«»ZG)rare 2659, (1-a)
and
1 3 -
-pp’v-().*zc;)-;%(MZGTIJ‘)z (1-b)
where:
.%u,1dv 2-2a
©“x'T® (2-2)
and
-18v,v_10u 2-b
°r3lxr T ™! (2-b)
€ and w, are the volumetric strain and elastic rotation about z axis.
u and v are radial and tangential displacement amplitudes.
P is the frequency of the harmonic excitation.
G and A are shear modulus and Lame's elastic constant.
P is the density of the medium.

Differentiating equations (l-a) and (1-b) with respect to r and 4 and
adding them together yields:

-ppire-(A+26) [r & e+ie+-}-—ale] (3-a)
r

3r? or r 98?2

Differentiating equations (1-a) and (l-b) with respect to § and r, after
arranging the results, yields:

—pp*rw, = G %%w, v Lo, r—éa;?u‘ (3-b)

Introducing two parameters B and u such that

2

2, PP 4-a
b A+2G ¢ )
p2- PR (4-b)
G
Substituting 82 and p? in equation (3-a) and (3-b) they become:
2 > a 2R2 ___i_ 5
Pl Rer e B3e T (5-a)
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32
r‘%o,+r%m‘+r‘pzw,--3.§m, (5-b)

Considering the boundary conditions, the solution to these equations are:

e(r,8) - Y e,(r,0) (6-a)
n=0
© (r,0)=Y w,(r8) (6-b)
n=-0
where:
€,(r,08)=-p?[Aa,J,(Bzr)+B,Y,(Br)]cos (nb) (7-a)
© ,,(r,0)=p? (CoJ,(pr) +D, Y, (kr) 18in (nb) (7-b)

Jn and Y, are first and second kinds of Bessel functions of n'" order.

MODAL DISPLACEMENT AND STRESS COMPONENTS

Substituting equations (7) into equations (1), modal displacement
components will become:

u,(r,8)~-p (A7, (Br)+B,Y,(Br)]cos (nd)

88—
+(2n/1) (C I, (BI) +D Y, (Br) ] cos (nB) (6-a)

v, (r,0)-n/r(A,J,(Br)+B,Y,(Br)]1sin(nd) +

-b
-2p [CJ, (pr) +D, Y, (pr) ] sin(nb) (8-b)

Amplitude of stresses on the plane normal to the radial axis in the elastic
medium, in terms of volumetric strain ¢ and elastic rotation w, are:

a"-le+26~a—ar-u (9-a)

¢ 26l v-6 ] (9-b)

substituting from equations (8) and (7) into (9), component of stresses will be
presented as:

0,0 (L,0)={AE, (L) +B,F (1) +C,G, (L) +D H, (1) ] cos (nb) (10-a)
T,0n(Z,8) = [A,E * (1) +B Fps () +C,Gp* (L) +D Hp* (1) 18in (n6) (10-b)
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In the above equations, E,, F,, G,, Hy, Ey*, Fo*, Go*, and H.* are functions
of Bessel functions, where:

E,(r) =p3AJ,(rP)-2G6B2J" (1B)

Fo(r) =P2AY, (zB) -26B2YY (zB)

G,(r)=4Gnp/rJh(rp) -4Gn/z3J,(rp)

H,(r)=4Gnu/rY,(rp) -4Gn/z%Y,(rp)

Ea(r)=2GBn/rJ,(zB)-26Gn/=2J,(rB)

Fa(r)=2GBn/rY,(zB)-2Gn/z2Y,(rB)

Gp (r) =-4Gp2J"(rp) -2Gu3J,(rp)

Ha(r) =-4Gp2Y" (rp) -2Gp?Y, (rp)

(11-a)

(11-b)

(1l-c)

(11-d)

(ll-e)

(11-f)

(11-g)

(11-h)

Functions J,'(x), J"(x), Yo' (x) and Y,"(x) are first and secord derivative of

Ja(x) and Y,(x) with respect to x.

MODAL HARMONIC RESPONSE

Considering the boundary stresses in inner and outer surfaces these

stresses can be presented as:

E,(a) F,(a) G,(a) H,(a) 0,,.,(a)
Eg(a) F,(a) G,(a) Hy(a)} B, T,00(a)
E.(b) F,(b) G,(b) H,(b)|]|C, O 20 (D)
Eg(b) F,(b) G,(b) Hg(b)| |Dn Tr00 (D)

or

Ta,-o0,
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where .

On is a vector containing radial and shear stresses on the inner and outer
surface of the medium.

an is a vector containing arbitrary constants.

Ty is a square matrix containing the coefficients in tzrms of Bessel
functions.

To provide displacement and strecs components at any point “n the cylinder,
equations (8) and (10) can be arranged in the following matrix 2quation.

U, (r.8)/cos(n8) 67,85 -BY, (p2) w0 By wnl
v, (r,8)/sin(n@) . .§J;(Bz) %%Yh(ﬁr) -2pJ,(pr) -2pY,(pr) z (13-a)
Ocen (2,0)/cos{nd) Er)  Fn)  G,(D) Hn |
r
T,en (£.8)/3in(nb) N i " i -
Es(r) Fo(r) Go{r) Ho(I) '

The above matrix equation can be abbreviated as:

R,(r) - S,(r)a, (13-b)

where:

Rp(r) is a vector containing components of radial and tangent:iil displacement
and stress.
Snp(r) is a coefficient square matrix.

Arranging equation (12-b) and (13-b) they result in

D, (r)R,(r) - o, (14)
where:
D,(r) - T, 8;* (1) (15)

For given lobar boundary stress components, Equation (14) can provide the
displacement and stress components at any point in the medium.

RESULTS AND DISCUSSION

The frequency response for different lobar modes of vibrations can be
computed for any cross sectional geometry of the elastic or viscoelastic
cylinders. Figure 2 illustrates the lobar vibration forms for the first three
modes. Computations were conducted to determine the resonant responses of the
first three lobar modes (n = 2 to 4) and five of their correspending thickness
modes (m = 1 to 5). Results presented in Figure 3 provide the non-
dimensionalized resonant frequency (frequency factor) versus thickness ratio for
the lobar modes (n = 2,3 and 4) of elastic cylinder. Figure 3 demonstrate
coupling between the different thick. 2ss modes, at particular thickness ratios.
These results are computed for Poisson’s ratio = 0.33.
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n=2 n=3

Figure 2. Lobar Vibration Forms

To verify the validity of the present results, computzd resonant frequency
were compared with Armenakas et al (1969) results. The comparison of the
results for different thickness ratios indicates satisfact: ry agreement between
them. It is believed that the present results are more acczrate than Armenakas’
results. This is due to the fact that in his computation, only a few terms in
expansion of the Bessel functions are assumed, however, the present results are
obtained by utilizing higher accuracy for the Bessel Zunctions of complex
arguments.

Table 1. Comparison of present resonant frequency factors with Armenakas
(1968) natural frequency factors for different thickness ratios

n.m h/a = 0.1276 h/a = 0.1739 h/a = 0.1978
Present  Armenakas | Present Armenakas | Przsent Armenakas
22 | 99408 | 03219 | 59800 | 69763 | 03600 | 63604
NIRRT
a2 | 92330 | 0%a33 | 05880 | 0:8895 | 03600 | 06611

Frequency responses of maximum radial displacment for a cylinder having
thickness ratio of 0.5 and poisson’s ratio of 0.25, subjectad to harmonic radial
stress from inside, for three damping factors of n = 0.3, 0.05 and 0.1 are
presented in Figure 4.
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First lobar mode (n=2)
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Figure 3. First five resonant frequency
factors for different thickness ratio
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FREQUENCY FACTOR

Figure 4. Frequency response of a point with maximum radial displacement
on a cylinder having thickness ratio of h/a = 0.5 and Poisson’s
ratio of 0.25. Excited by a harmonic internal radial stress with an
amplitude of 104 psi for three different damping factors.

CONCLUSIONS

Harmonic lobar vibrations of thick viscoelastic cylinders were considered
and a general solution based on two dimensional wave propagation was developed.
Design charts for estimation of the Non-dimensional resonant frequencies were
provided and results were compared with available data and satisfactory agreement
was established.
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Dynamic Analysis of Finite, Three Dimensional, Linear,
Elastic Solids With Kelvin Viscoelastic Inclusions:
Theory with Applications to
Asymmetrically Damped Circular Plates
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ABSTRACT

Eigensolutions and Green’s functions of finite, three dimensional, linear, elastic solids
with Kelvin viscoelastic inclusions are analyzed. The eigensolutions satisfy a set of integral
equations expressing the reciprocal theorem of viscoelasticity. Successive approximations to
these integral equations lead to asymptotic solutions and an iteration scheme for the eigensolu-
uons. The Green’s function is also determined through the integral equation approach.
Finally, the vibraton of Kirchhoff circular plates with evenly spaced, radial, viscoelastic
inclusions, which cause some of the repeated vibration modes to split into distinct ones, is
analyzed both analytically and numerically for the eigensolutions and the Green’s function.
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1, Introduction

Tuned dampers and surface damping treatments are commonly used damping designs
T1-3]. The tuned damper can be a one degree of freedom system consisting of a mass and a
viscoelastic element attached to the structures to be dampzad (4,5]. They can also be viscoe-
lastic links connecting complex structures. When the structures vibrate, the tuned dampers
lissipate energy. The surface damping treatments include thin layers of viscoelastic materials
honded onto surfaces of the structures [6,7]. The vibration energy is dissipated via cyclic
oending or shearing of the viscoelastic layers. A review of surface damping treaument is
given hy Tarviy 7]

An alternative damping design is to replace part of an elastic structure by a viscoelastic
component. For instance, slots and holes filled with viscoelastic material can reduce vibration
of circular saws. The holes and slots can be arranged so that the viscoelastic material is
significantly strained when the structure vibrates in particular modes. The damping design
procedure, bowever, is one of trial and error; dynamic analysis of such designs has not been
vresented.

The purpose of this paper is to provide a dynamic analysis of damping designs through
riscoelastic inclusions. The damped structure is modeled as a finite, three dimensional, linear,
clastic solid containing Xelvin viscoelastic inclusions. Eigensolutions and Green’s funciions
of the damped structure are determined analytically and numerically. Special attention is
given to degenerate systems, like axisymmetric circular plates, that occur when the
rorresponding, homogeneous, linear, elastic solid (without inclusions) possesses repeated
igenvalues.

According to the reciprocal theorem of viscoelasticity (Section 7.3 of [8]), the eigensolu-
dons satisfy a set of regular, homogeneous, Fredholm integral equations of the second kind.
Successive approximations to the integral equations yield perturbation formulas and a numeri-
cal iteration scheme for the eigensolutions. The real and imaginary parts of each eigenvalue
represents the wodal damping coefficient and the damped natural frequency, respectively. The
eigenfunctions may or may not be complex depending on the geometry and the viscosity of
.e inclusions. The Green’s function is also determined through the integral equation
ipproach.

The analysis is illustrated on the transverse vibration of a classical circular plate with
~venly spaced, radial, viscoelastic inclusions. The perfect plate is axisymmetric and spectrally
degenerate. The perturbation theory for degenerate systems predicts that some of the repeated
r.bration modes split into two distinct ones when the inclusions are introduced. Perturbed
‘igensolutions are also derived explicitly. In addition, eigensolutions and Green’s functions at
wo different excitation frequencies are predicted numerically. The numerical resuits show
-hat vibration modes with higher natural trequencies possess greater damping and the nodal
curves may be time dependent.

.. Formulation

Consider a homogencous, isotropic, linear, elastic solid containing Kelvin viscoelastic
aclusions showa as System 1 in Fig. 1(a). The elasuc solid occupies a finite, three
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dimensional region 1 with Lamé constants Ay, Wo and density po. The perfectly bonaed
viscoelastic inclusions occupy a not necessarily small region T, with Lamé constants Ao, 1o,
density p’p, and Kelvin damping coefficients Aq, Hg.

The response of System 1 is equivalent to that of System 2 in Fig. 1(b) which consists of
an inhomogeneous Kelvin viscoelastic solid occupying a region 1 (= ™M (1,.) with stiffness
A(F), W(r), density p(r), and damping A" (r) and " (r) [9]

M) = A= AJ (@), W) =g - wJ (1), pr) =po—pyJ(r) (1a)
AR =g () . 1 (1) = gt (D) (1b)
where
{1 re 1,
=10 re® (1)
and
Ay =Xo~Ng, K1 =Ho=Ho. Py1=Po=P0 (1d)

The constitutive equation of System 2 is then
T (W;X.u.l. .u‘ )= XS,-je,,* (w)+ 2],18,1 (w) + 7\.‘ 8‘-}' ékk (w)+ 2’1. 8‘] (w) (23)

where the infinitesimal strain ¢;;(w) and the infinitesimal strain rate €;(w) associated with the
displacement field w(r,t) are

1 . 1. .
E,-j(W)=E(W,'J' +Wj"‘) , C,‘j(W)=5(W"J' +Wj',').

When the displacement and stress fields are both harmonic, ie., w(rr)=u(re™ and
T (wApA' 1) = o VA A" 1 )e", (2a) implies

OU (u.v;l.u,}». .}l.‘I )= )\.8” € (u+ 2“2‘1 (u)+v [)\.‘ 8” € (u)+ 2}1. E,‘j ()] (2b)
In addition, the reciprocal theorem is (Section 7.3 of [8])

. s ® ’ d . LI ’ 3

Io, o, uVAA" 1 nu’; dr ~ L—dg[o,-,(u,v,x,u,x W’ d
’ o, . L] d ’y,. . *
= joﬁ O (W VA WA 1 Ny dxr - L -&;[o,j(u Vi u )l dr
= [ oy VA RAT 1 e (W) dr = [ oy vpd’ whewd’r
T
= j Iuu’ A dr + vj Iu;A" p*)dr 3)
T T
with
Tuu;hp) = L [AE e (Wee (W)H2pe;; (WE; (u)) dr

where u(r)e*' and u’(r)e"* are two harmonic displacement fields satisfying zero displacements
on o,.




3. Eigensolutions

Exact Solutions. Th= complex-valued eigenfunction wir) = y''r), w' iry, w (m) and
the corresponding complex ecigenvalue v of system 2 under zero body force and vamshing sur-
face tractions satisfy

SR {ol,{w,v;}a,u,k' 2l = \'Ep(r)w‘/“’(r;. 1=1,21 “h
de, 7
with boundary conditicns

y(r) =0, on g, (5a)

o, (WVAWLA wn =0, ong,y, i=1,2,3 (5b)

n the unprimed svstem. The complex-valued Grees's function G*(riry of System 3%, shown
in Fig. 1(c) under an interior concentrated force &(r-rp)e¥ acting in direction x, (k=1.2,3). is

represented in the primed system. Therefore, GE(rirg=l Gh(riry, Girirg, Ghiriryl’
satisfies

7é—[cu(c*(r 17) ViAo tl,0,0)] — poV3GA(rITg) = =8, 8(r—ry), i.k=1,2.3 (6)
7

with boundary conditions
G*(rirg) =0, onoy, k=1,2,3 (7a)
01!((;*(? i Fo),V;;\,\-).],L(),0.0)nj‘ = 0, on 02, i, k=1 , 2, 3 (7b)

With the unprimed soiution specified bv (4), (5a,b), and the primed by (6), and (7a,b), the

-qualities in {3) give the following integral equations governing the free vibration of System 2
9}

vy

Il

H [G‘(r trp,w(r))

Vo () GHr iy d'r - v | 1(GH(rirg) pmided (Dag) (D3 dr
T 1

#

+ [ HGH e e Wty () () dr, k=1.2.3 (8)
T

GXiriry is seidom known for numerical or perturbation evaluztion oi (8). An orthonor-
rral eigenfunction 2xpansion of G*(riry) is
ko
> 0,(ry)
Ghirlrg = 5 ——=0,(r), k=123 9)
’l?‘] ~+Con
“here ®, and ¢,(r=] ¢.(r), 0(r), 6)r)|" are the n-th eigensolutient of System 3 with ortho-
~ormality

| 0ba (O d’r = 8, (10a)

i System 3 15 defined by a perfect, homogeneous, linear, ciastic solid without viscoelastic in-
lustons occupying the same domain t and satisfying boundary conditions (Sa,h).

T w, and ¢, are real, tecause the elgenvalne problem associated with System bisoself ad-
it

He A~ 4




[ 1@ 0.0n 010 d°r = 05, (10b)

Substitution of (9) into (8), recalling the definition of J(r) in (Ic), and discarding index & give
o ¢..( 0)

W(rp) = ): o —S—=5 U W), (V) (11a)
where
U (W) 8, (V) = V<Y 1@y >p, = VW 14> + <@l > (11b)
with
<wi,>, =] pwOe,md’r (12a)
<Yl@,>- = L 1Y), (ViAo 1g) d°r (12b)
<¥i0,> = [ 10O EOhp) dr (12¢)
In additon, (11a) is homogeneous allowing normalization of y(r) such that
y(r) =T [yV] = O,.(r)+2‘, M%() Y=Y (13a)
V +(0 m m=1
m#n
when
V2= Tolyv] = -0f + U(¥.4,:V) (13b)

The w(r) and v of (13a,b) are the eigensolutions of System 2 (and hence System 1). In
Appendix A, T, and T, in (13a,b) are shown to be contraction mappings for sufficiently small
7, and their contraction constants a, and o, are also estimated. The convergence of the
infinite series in (13a) is also shown in the Appendix A.

As 1. 50, U(y.$,,;v) vanishes if the solution is regular. Otherwise, it is singular.
Singular solutions are not discussed here.

Perturbation Solutions. For regular and nondegenerate solutions, first order perturba-
tion is obtained by replacing y(r) and v on the right hand side of (13a,b) by ¢,(r) and i w,.
The n-th eigenfunction w, (r) is

Ld

Ao \
V(1) = 6,(0) + ¥ —5"0,(1) + 0 (1)) (14a)
m 05—,

m

where
Qum = U (9 @m3i 0,) = ~07<, (9> ~ 10y <y (9,50 + <b, 19,

The n-th eigenvalue v, is

v, =V-wl+d,, +0 (1)

1 : 1
=—-2—<¢,, 19,> +1 {co,, + o

[0)42<¢n|¢n>pl_<¢nl¢n>l}}+0(.rc2) (14b)

n
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where the branch selected for the square root satisfies lim v, = iw, for a regular solution. 1|

1. -0

the inclusion is dissipative <¢, 1¢,>,- >0, and if it is elastic <9, (¢, > =0.

Degeneracy occurs when any w, is repeated. The contraction mappings in (13a,b) are
valid if the initial trials [vI¥ and [y(r)]? for the iteration of v, and w, (r) satisfy [v?]Q=- 2.
Jtherwise, the denominators of the terms containing the repeated eigenvalues in (13a) vanish
ind the iteration fails. A perturbation theory for degenerate systems is presented in Appendix
3.

{. Green’s Functions

Exact Solutions. The Gr.en’s function of System 1, excited by a concentrated force
Sr-r))e" acting in the direction x, (! =1,2.3), is R'(rir,) in the unprimed system. R'(rir))
and v satisfy

—d%_[cu(R’(rlrl),v:l,u,k* ) = vpMRIrir) ==8,8t~ry, i.1=1,2,3 (15)
J
#nd boundary conditions
R'(rir)=0, ono,, 1 =123 (16a)
o, (RI(rirpv;iAlpd  w'in; =0, onoy /=123 (16b)

The Green’s function G*(rirpe” of System 3 is in the primed system. Then R/(rir,) satisfies
ihe integral equation

Rirglr) = GHryirg + HIGH(r It R (rir)], k.0 =1,2,3 a7n
vhere Ri(ryir)) is the k-th element of the Green’s function R'(rir) (k=1,2,3), and H[,] is
wie integral operator defined in (8).

The eigenfunction expansion in (9) converts (17) into
Rk (ryir) = GHrylr)) + T5[R*(rir),v]

U R (rir),om,r)iv)
vi+o?

= GHrplr) + Y ¢m(ro) (18)
m=]

.0 which the symmetry G/(r;irp) = Gy(roir,) has been used. T, is a contraction mapping for

cufficiently small 1, (sce Appendix A); therefore, iteration of (18) cenverges to Ri(rir)).

Perturbation Solution. Use of G*(rir,) for R*(riry) in 73 .v} yieids a first order pertur-
raton
> U, 4mV)

Rirgir) = Grplep + Y ——220 0 gt l(r) + 0 (1)) (19)
mon=l AV HO NVTHD,)

vhere R=IR".R* R’} and G=/6:"47.G7] are Green’s matrices and the superscript T denotes the
'ranspose. The perturbation solution (19) is valid only when v is far from i @, (and theretore
vy ) avoiding the small divisors in (19) and resonance. The perturbation formulas at resonance
an be obtained through an approach simifar to that shown in Apnaendix B, they are not dis-
'ussed here.




5. Circular Plates with Evenly Spaced, Radial, Viscoelastic Inclusions

Consider the transverse vibration of a Kirchhoff circular plate of uniform thickness h
with k evenly spaced, radial, Kelvin viscoelastic inclusions each spanning a small angle € and

located at 5,-=-2f-i, i=1,2, -,k from r=ry to 7=b. The inner and outer rim at r =g and

r=b are free, clamped, or simply supported. The eigensolutions and the Green’s function of
the asymmetrically damped circular plate are evaluated by the methods derived previously.

Axisymmetric Circular Plates. Let w,,, and @, .,(r) be the eigensolutions of an
axisymmetric circular plate with » nodal diameters and m nodal circles. When n =0, the
eigenfunctions are axisymmetric; i.e.,

D, o(r) = Rppo(7) (20a)

When n >0, the eigenfunctions
D, (r) = R, (r)cos(n6+a,,,, ) (20b)
D, —n () = R, (r)sin(n 6+, ) (20c)

correspond to repeated eigenvalues @, = ®, _,. In (20a,b,c), a,,, is an arbitrary constant and
R,,(r) is a linear combination of Bessel’s functions satisfying boundary conditions at both
rims and the orthonormality conditions

L (D (1)@ (1):D ,00) dA = 02,8585, m,p=0,1,2, ..., 0,1, =0,11,£2, . . ., oo

with the bilinear operator

I(u,viDywog) =Dy

2
V2 Vo +2(1 1 Pu _13uy1 3 13
WA '°°){rarae ;796" 7 3ra0 77 08

_1_[(_1_33_ 1 %u. v 1 dv _1_3% o%u H

)

2 o T e T T e 5!

h, Do, po, and o, are the thickness, flexural rigidity, density, and Poisson ratio of the axisym-
metric plate.

Perturbation Solutions. According to the perturbation theory for degenerate problems
in Appendix B, the k viscoelastic inclusions affect the plate eigenfunctions ®,, (1)
corresponding to eigenvalue ®,, =0, ., through

[

0+
k 72 b
W 1Dpg>p, = 3 | ] j P1h Y (1D, (F) rdrd ©
j=1 gL 7o
2

€
772 b

k
W (D> = 3 [ | [(¥n ®,:D0.05) rdrd®
"o

and
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Q.+

AN I

Wn (D> = X [ [ 1(¥ s BpgiD 1,01)] rdrd®
j=1 g2 70

with Dg, o, derived from Aqg, yg in (1b) and D,, o, derived from A, i, in (1d), respectively.

For example, to transform <¥,,, |®,,>, above to the asymptotic form (B-1a), define

b
T1(0) = | p1h ¥y (D, (r) rdr (21a)
and

9
re) = | M@)o (21b)

Therefore,

k
W 1By, = T [r'(ej+§)— r(e,--%n
Jj=1
Use of the Taylor expansion around 8=8; gives

k 2 4M1(8;)
¥, |® = [n WP -Sihadioin 1 SANPRIN 22
<Emn | Ppg>p, E,E ] @)+ 24 482 + (22)
Compare (22) with (B-1a) to obtain
k b
Fn 10,,>0 =T | [ps1h Fon (g (O] _rdr . <Y, 10,,>MN=0,---  (23a)
Jj=1"To J
Similarly,
k b . .
Fon 19> 0 = T [ U (¥ @pgiD5.00)) _ rtr , ¥y 1®,,>P =0, -+ (23b)
j=17"0 8=8;
and
k b
W 10, >0 = T [ U (¥ BpgiD 10D rdr, ¥, 10,,>V =0, - (23¢c)
j=1""0 8=8;

With <¥,, 1®,,>%, <¥,, 1®,>%, and <¥,, 1@, >0 (i=0,1,---) in {23a,bc), the results

derived in Appendix B can be applied directly. From (B-5) in Appendix B the following
coefficients are needed for the explicit expression of ¥, (r).

k b
4P = Zl [ 1=p1h 02,0, (N, (D =i, 1B, B, :D5.60)+/ (D, Dpg:Drop]  rdr
j= 0

J

k b
V=Y [ 120t 18D, (1D, (1) =, [ (D, B, D0 O] rdr
j=1 "To 8=9

]

dr = epW =0, .

For each pair of repeated eigensolutions (m,n) and (m.~n), the unperturbed eigenfunc-
tons are specified via diagonalization of the matrix
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dm@ g Apn011—Bn0y; (A +Ba0)8y

D(o) = =
dm,© dnoa0 (Apa +Bp)812  Agn0y— B0y,

where A2Z and B%! are complex coefficients given by

b
ABL = =p1h 0% | Ron(r)Rpq (r)rdr
7o

b 2 2 2 2
, . dc 1d n da- . 1.d_
+(Dl-uomoo)jro< Tt e D Rm L Roq (r) rdr
e e et | PR () 1 d
= (D1(1-0) - iOm D5 (1-09)] | [ o R ()

dR,y(r) 1 d n?
+—';r—2—'(-r-7r-—-r—2)Rm(r) rdr

. . L d d
BPY = — 2(D(1-61) — i @y D 5 (1-0g)] jro [(—'rl; —-r%)R,,,,, "] [(-‘j--;; - —%)qu (r)] rdr

and

N

k % 2n #M(k)
=X cos’n@+am) =1 4
j= L 3(1+c052a,,,,,), 2n =M(k)
) _’2‘. 2n #M(k)
en= E Sinzn(e-j"'am): J k
j=t E(I—COSZQ-M,,), 2n =M(k)
- 0. 2n M)
012 = ¥, sinn(®; + o, Joosn (@ +ap,) = |
j=1 EstOL,,,,, » 2n=M(k)

in which 2n =M(k) means 2n is an integer multiple of k. Following Appendix B, the unper-
turbed eigenfunctions ®,,(r) and ®, ,(r) require D@ to be diagonal; ie., 8,,=0, or
equivalently,

n In o
0.2 m =%, ..., if 20=M(k)
®mn =1 arbitrary, if 2n#M(k)

In the sequel, a,,, =0 when 2n =M(k). If 2n £M(k), ,,, can be shown to be arbitrary at least
up to the second order. Therefcre
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£ am-8m) 0
‘ . 2n #M(k)
0 SAm-B)
p®=] ¢
kA™ 0
[ 0 —wm™ | 2n=M(k)
L

For the o,, classified above, the repeated @, 4,(r) evolve into two distinct groups
uepending on the number of nodal lines n and the number of inclusions k that are spaced
equally on the circular plate. Application of the perturbation formulas in Appendix B gives
the following results,

The eigenfunctions ¥, ,,(r) of the asymmetric plate remain arbitrarily positioned and the
eigenvalues remain repeated (to the first order) if 2n#M(k), n=0:

Vo =V = [ Oy — i ;o-ﬁ)&-ugz-m) +0() (24)

Note that v,, ,, are not imaginary because A,y and B are complex. The complex eigenfunc-
tions, perturbed to first order, are

¥ () = R,,,, (r)cOS(n B+01,,,,, )

_ APiI4+BP _ API_BPY
- & [ 5P+ T S0, (r) } +0(eH (252)
2 [g=Mtrn Opa—0) e=Mkyn 02,-02,

¥ -n (¥) = R, (r)sin(n 6+, )

ek _ ARl+BPd — APi_BPa
Y7 [ T3 %0 T S50, (0| +0E) (25b)
q=M(k)}-n WOpmy—Wy5, q=M(kyn Opp—Wp,

with o, arbitrary up to the first order perturbation, and ¥ denotes double summation on
q=M(k)n
utegers p 20 and ¢ >0 with g =M(k)-n and (p.g) # (m,n).

The eigenfunctions ¥, 1, (r) are termed split modes if 2n =M(k), n #0, because the com-
nlex eigenvalues are distinct:

€k

Voun = iWpy — i ml‘,’: + 0(82) (26a)
. . ek mn oy
Voon = i@, + i —— BX + 0 (g%) (26b)
’ 20,

The corresponding complex eigenfunctions, perturbed to the first order, are
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Y () = R,,,, (r )OSR O

)
_ Ja
ek 3 M : n #M(k)
q=M(k)+-;- O)M—(qu r
- +0(e) (27a)
= ARO®D (r _ AP, (T
ek z m; p0(2) + > —pq(z) . n=Mk)
p=0 Omn =050  g=M®) Wpm, —Wp,
P
— B @, _ (r
W () =R, (r)sinn@ + ek ¥ —Z“TL‘%(—)- + 0 () (27b)

q=M(kHn Wy — (qu

The eigenfunctions ¥, ((r) are not axisymmetric to first order perturbation:

= APD @ r » = AR O, (r
Wnolr) = Rpolr) — €k | X _fo_Logz'l + Z )y '—p‘;_—EL(z_) + 0(82) (28)
p=0 Wmo—Wpo p=0 ¢=l c’-’»:0"'“);:«1
2m q=M(k)

with eigenvalue
ek

mn

Vim0 = {@po — i ARY +0(@) 29)

where Y, denotes the summation on the positive integer q with ¢ =M(k).
q=1
q=M(k)

Numerical Solutions. The eigensolutions and Green'’s functions of a circular plate with
three equally spaced, radial, Kelvin viscoelastic inclusions are computed numerically by the
perturbation iteration method (13a,b) and (18). The inclusions are thin sector bars extending
from r/b=0.75 to r/b=1. The angle € spanned by each inclusion is 0.035 rad (=2.0°). The
material properties satisfy

’ Eq Eg Eoh? .
Do _29 o5 oy=03; E==2 —i"’—;=o.os; 6g=0.3
Po Eo Eo 4pob

Eigenfunctions with 0 to 20 nodal diameters and 0 and 1 nodal circles are used in the

series in (13a) and (18). In calculating the eigensolutions of the asymmetrically damped plate,
{ !

N . . : ! 4pgb* :
the iteration converges if the differences in 1v,, | = | Vi -l—%bz- : and in 1%, ()12
I I

= | 1\pghb? ¥, (r)1 12 between successive iterations are less than 107 and 10719, respectively.

The upper bounded estimates of the contraction constants «; and o, in Appendix A are
calculated in advance to guarantee convergence. For a 3-inclusion plate, calculation shows
that a;, 0, <1 for modes up to 7 nodal diameters and zero nodal circles. For these modes, the
perturbation iteration is guaranteed contractive and convergent. For modes (0, 11), (0, 12)
and (0,13) a,= 24.3, 14.5, and 17.7, but the iteration converges; the results are shown in
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Table 1.

The normalized complex eigenvalues v,,, of the 3-inclusion plate are listed in Table 1.
The exact eigenvalues of the axisymmetric plates are also listed for reference. The resultc in
Table 1 show the split in @, (r) when 2n=M(k). In addition, Table 1 shows that damping

: . . Re[V , :
cocfficient —Re(V,,,] and damping ratio {,, =--hn—[§'-”—"4 both increase as Im(v,,] increases.
1
mn

For example, {o;3=4.54% while {; =0.05%. This suggests that the damped circular plate
possesses large stability margins for high frequency modes.

The eigenfunctions of the damped circular plate are characterized by nodal lii.es that
periodically shift their positions at twice the characteristic frequency. The evolution of the
nodal lines of (0, 12) cosine mode is shown in Fig. 2 for one-half of a period.

The loci of eigenvalues v,,, with respect to £ on the complex v plane from three to six
nodal diameter modes are shown in Fig. 3. Bifurcations occur for split modes 3¢, 3*, 6°, and
6' as predicted by (26a,b).

Green’s Functions. The Green’s function R(rirg of the asymmetrically damped circu-
lar plate under harmonic excitation is also found by the perturbation iteration method. Two
Green’s function displacement contours are shown in Fig. 4 and 5. In Fig. 4 the load is
applied on an antinodal line of the unperturbed modes with circumferential distribution sin36,

§in99, . . ., and cos50, cos120,... The perwrvadon iteration terminates when difference in

3
I I%R(rlro)l 12 between consecutive iterations is less than 107, In Fig. § the excitation fre-

quency is near the 3 nodal diameter cosine mode resonance (cf. Table 1).
6. Conclusions

1. Explicit perturbation formulas and a numerical iteration scheme are developed to
determine eigensolutions and Green’s functions for finite, three dimensional, linear, elastic
solids containing Kelvin viscoelastic inclusions under the condition that the solutions are regu-
lar at the inclusions. The perturbed eigensolutions are represented in a convergent series of
orthonormal eigenfunctions of the perfcct elastic solid. The perturbation iteration generates
results to the precision required provided the perfect solid solutions are known.

2. Perturbation analyses show that all vibration modes are damped by a viscoelastic
inclusion. The damping of the n-th vibration mode is determined by <¢, 19, >,- which cannot

vanish. The viscosity of the inclusions affects natural frequencies through second order per-
turbation.

3. Circular plates with ¢ evenly spaced, sector, Kelvin viscoelastic inclasions are studied
by this technique for cigensoluuons and Green’s functions. The repeated eigensolutions
@, (r) with m nodal circics and n nodal diameters of the corresponding, axisymmetric, circu-
lar plate split into two distinct eigensolutions when 2n is an integer multiple of k. Otherwise,
®..,(r) remain repeated. Nurne-i~~! ~sults show that vibration modes with higher natural fre-

_wicies possess relatively . “imping ratios. The location of the nodal curves of the
perturbed eigenfunctions on ¢ changes periodically at twice the eigenfrequency.
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Appendix A

This appendix shows that T, and T, in (13a,b) and T, in (18) are contraction mappings
for sufficiently small 7., and determines an upper bound to the contraction constant of each
mapping. The convergence of the series in T and T, is also discussed.

Mapping T,. Substitute (13b) into (13a) and recall U(y.9,;v)=0(1,) to give

_ , U(wn:v)
v(r)—¢.(r)+§ OE— a2+ U )

U (V’.m i (Dn

M )l

¢m (l") (A- 1 a)

-¢.<r>+z () + 0 (1) (A-1b)

Equation (A-1b) is shown to be a contraction mapping up to O(z.) under the strain energy
norm

= 3 -
Hixifgg -\Htl(xleo,u.o)d r (A-2)
where X is the complex conjugate of x. Consider the first order mapping T; defined by

. (03<V|’,,.> ,+imn<vl¢m> ‘_<V|’m>
Tiy=60+Y e - (@) (A-3)

then
HT 1w -Tiwl 1 =

2
Z :mnq'l Vz|¢m>p,+i°)n<\2h“'¥22|¢m>,- ~<V¥1~¥219,> : o2 (Ad)
W=
”n m I
Because every v is normalized according 1o (13a), the eigenfunction representation

Vi- ¥ = ;’ a9, (r) (A-5)

implies that | ly,-w,1 1% = ¥’ w?la, 1? and
k

|2

Z 0 (02 + 1 Oy fim — €4m) | (A-6)
|

where din =<@y [@m>ps fimn =<y |9p>, and ey, =< 19,,>,. With the Schwartz inequality

. . ! @,
NTiw -Tiv =Y | ——
m | 0F—

12 | w2d,,, +io, 12
IZ (O3 +i O f i — € ) | <Z ' = p LI : Hy —w,l 1 (A-7)
| * I k
(A-6) is reduced to
T w =TIl i Sa iy -wlik (A-8a)

with
dbn +l(0,|fb,. —Clom '2

’ Il i A'8
zk:l (1= (@, /@ )]0, @p | (A-8b)
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ﬂ

o, <1 is a sufficient condition for the contraction mapping (A-1b) to first order of t,.

Mapping T,. Substitute (13a) into (13b) and retain terms up to O(%,)
=~ + U@, (D), 9, (V) + 0 (1))

Then
2 _ 2 2_2 1
Vi — vi = (vi-v{) {<¢,, 1§n>p, — oy <@ 14> | +FO(T, )
. fan
= (vi-vd) [d,,, + 20, } +0(1)

where v,,v,=io, +0(1,) has been used. Therefore, T, is a contraction mapping up to O(1,.)

if
| |
a,z=ldu+i7f-"-'-'—l<l
|

1 a

Mapping T,. The proof that T, is contractive follows that given for T; because T, is

the same form as T} with Z and i, replaced by Z and v.
m=1

w oo | - [2

e 3 > V2 =V im + Cim !

mat kel | [1+ (V@) 10, @, |

o3 <1 is a sufficiency condition that T is contractive.

Convergence. The convergence of the orthonormal eigenfunction series in (13a) and

(18), according to the Riesz-Fisher theorem, is determined by the series

{ 2

‘e L VIRY O >, VW B>y + <Y >y |

4 : v+ ol :

Apply the parallelogram law twice to (A-11}
|2

v <\yl¢,,, o1 L vew i@y > PR byl p>) 2
S22y |\———F— | H4Y | —5—=— | +4 Y | ——— |
z ' V4ol { 2 Vel | 2 | VoL |

Furthermore, the Schwartz inequalities associated with the inner products <1>,, <1>e, and

< 1> give
2
2
Vile,tt,
§<2Y | ———— | liyll}?
‘:‘ view? ¥iio
Vi@, it 12 e, 11, 12
+4z' —-——"‘—— Hyilk+4Y --23'-"--2L iyl ?
vi+m? m | V'+Oi
where 11-11,, 11-11,., and 11-11, are the natural norms
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'pl'
Po

1p;l
oI5, < —:,’-;—Itpmm. d’r =

Hom 1A S ¢y [ 1(@m @midobo) dr = ¢y 0
and
N 1P S €2 1 dmidobo)dr = 0202
T

Aol Ipgl Al Iyl
where ¢, =Max |——,~—— |, and ¢,=Max |——,—— |. Therefore,
' [% Ho ] 2 [7\0 Ho

ipy! v T 2
S €2 ’ WRTAN
Po § [v2+m}, viie

2 2
+4c1’}n:' [?%Z] | 1y) 1,2.+4c2§ [Vz?_”;)% } Iyl If (A-14)
The three infinite series in (A-14) converge if the Green’s function representation (9) exists.
If y is regular, then Iiyll,, 11yli,., and 1iyll; are finite. Therefore, the series in (A-11)
converges for it is monotonically increasing and bounded above by the RHS of (A-14). The
convergence of the orthonormal eigenfunction series in (13a) and (18) is guaranteed by the
Riesz-Fisher theorem.
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Appendix B

Assume that the first B eigenvalues of a finite, elastic solid without inclusions (System 3
in Fig. 1(c)) are repeated and the remainder are distinct. The perturbaticn formulas (14e,b)
are not valid for the eigenfunctions w,(r) (n<P) because small divisors appear for the
repeated eigensolutions in (14a).

Let € be a dimensionless, small parameter measure of the inclusions (e.g., volume ratio
of the inclusions to the solid). Being defined on the small inclusion domain 1., <¥, (¢, >,

<y, 1¢,,>,-, and <y, 1¢,,>, can be expanded in asymptotic series of ¢; i.e.,

W 18n7p, = [ PWROOOEr e T € <, 10,50 (B-12)
W10 = [ T i) dr =€ T € <y 10,5 (B-1b)
¢ i=0
and
V9> = [ 1 Anh) & = € 3 €' <y 10,27 (B-10)

where <y, 19,,>), <y,14,>%, and <y, 1,>f" are coefficients of the asymptotic series.
These coefficients can be determined explicitly by expanding the integrals j (- )d’r into
tt

series of € and comparing these series with those in (B-1a,b,c). This process is illustrated in
Section 5 when obtaining (23a). Therefore,

UWa@miVa) =€ T € Vi<W, 19> =V, <, 10,50 + <y, 16,5
i=0

Assume also that the eigenfunction w,(r) and the eigenvalue v, take the asymptotic series
representations

Va0 =9, + e a,8,()+ 3 b6, + - (B-2a)
J J
Vo =i, +EW, + €A, + - (B-2b)
or
vi=-oX+e(imyu, )+ 2k, +u)+ (B-2¢)

Equation (13a) for the exact mode shape y, (r) (n <f) is then rearranged .
Y € VAW >0 =V, <, 1>+ <y, 16,51 ]

=0
W (1) = 0, (r) + - m (1)
v ».Z=1 zimnpn+e(2iw,/t,,+u3)+ ¢
mAn

= Uy, @miv,)
T ——=—5= 4,1, n<P (B-3)

m=B+1 vV +©,,
where the troublesome small divisors in (13a) are addressed by the second term on the right
of (B-3), which contains an order £” term 4,0 = ~ <4, 16,0 (0, <@, 16,>+ <, 1¢,>

i1
iy

(n,m <PB). In order that the perturbed mode shape y,(r) remains nearby the unperturbed c
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¢,(r),n=12,...,p must be specified such that D@=(d 9] (n,m <P) is a diagonal matrix.
The specification of ¢,(r), n=1,2,...,B is unique only when all the diagonal elements of
D© are distinct. Otherwise, those ¢,(r) corresponding to the repeated diagonal d,) can be
arbitrarily chosen within any orthogonal transformation.

With diagonal D@, (B-1), and (B-2a,b), equations (13a,b) for the exact wy,(r) and v,
(n <£B) become

y,,(r)=¢,(r)+é 2?;")(2 {e[ 3 an,d<o>+amd,$9,2+engg>+dn<,p]+
mn
& {Zf R
7 n
[bm—(—ﬁ—:"-+-2%1;':)am]d,,(f,’,2+j§+1[b,,j—(—:zi-+21 )a,j]d(O)]+0(53)}
20 L e B aaraes g- 2ot 9 o) B0
and
=—0}+edO+ & 2 a; dO+dM+e0 + 0 () (B-4b)
=B+
where
4 = -0k, |¢,,><")—im,<¢,, 14>+ <4, 19,5
nsP.i=0,1,2,3, ..., (B-5)

e,,?,) = 2 Wy oy <@, |¢q u,.<¢,, |¢q>, )

First Order Perturbation. Comparison of (B-4a,b) with (B-2a,c) to the first order of €
implies

4o .
By = -51—(0— = —_<’n l¢n>@) + — 2(0 [(03<’,, |¢n>$§?)—<¢n |¢n>l(0)] (B'6a)
and
4O
2""‘ > for n SP,m>p
W, — 0,
A = | - (B-6b)
Z a,.jdjf,?)+e,£2)+d,,(,,’|)
Vi iadl PTONI , forn,m<p
{ nn

If u, #u,, the perturbation a,, (n,m <B) is well defined by (B-6b). If p, =p,, awm. ¢.(r),
and ¢,,(r), n,m S P, must be determined by higher crder perturbations,
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Second Order Perturbation. Assume that p, are repeated for all n=1,2, . . , B. The
procedure shown below can also be applied to the case when some of the pt,, n=1,2, | B,
are repeated. Select the unperturbed orthogonal eigenfunctions ¢, (r), n=1,2, . . ., B, such that
the matrix PM=[p, | (r,s SB) with

Pe= L =5 +ed+d{l (nsp) (B-7)
=B+l O~ @,
is diagonal. Comparison of (B-4a,b) with (B-2a,c) to the second order perturbation e? gives
P=ba _ 1 | & 0,0, 0, | &)
= —_ = A0+ e +d) + | —— B-8
An i, 2o, j=§+1 8njQjn" Tt €pp n 20, (B-8a)
as well as the following relations between a,, and b,,
p
bam = = | 2808+ Pam — 4V (B-8b)
Wy ~ O | j=1
J*n
forn<B,m >B, and
T a(e+dph + T byd[D ~ pantum + fam + ) + 33 =0 (B-8¢)
J =B+l

for n,m <B, where £,%) = Qiw, A, +pH)<#, 19,5 -1, <d, 14,>%. Notice that a,, for n,m <p
is unknown in both (B-8b,c). Substitute (B-8b) into (B-8¢) to eliminate b,; and recall that
[Pnm] 1s diagonal for n,m <B. These reduce (B-8b,c) to

oo ©) (1) 0) © -
1 (e +dyi’—dya,)d,
pp = = | ¥ T T BTN S i + LD+ e + 4D (B-9)
Pan ~Pmm | j=p+1 w;" —-w, j=B+1

for n,m<B. If p,, =pmm (€. A, =A,), then q,, is not specified uniquely. Higher order per-
turbations similar to the one described above can be developed.
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Table 1 - Splitting of Eigenvalues in a Circular Plate
by Three Viscoelastic Inclusions
4 4
Complex eigenvalue V,,, =V, “\ ’ —Piz
Eoh

Plate: clamping ratio 0.5; 6=0.3; fixed at inner rim, free at outer rim.
Inclusions extend from r =0.75b to r =b; £=0.035.

’ E ’ E‘ E 2 .
Po 20 _05; 6=03; =20 o - =0.05; 65=023.
Po Eo E, 4pgb

Eigenvalues With Three Inclusions¥
(m,n) Mode Without
Inclusionsi Re(V,n, ] v, ]

0,0) axisym. 0, 7.88264) | -3.5974x1073 7.90959
1) cos (0, 8.04334) | -4.0253x107? 8.06966

’ sin (0, £.04334) | -4.0253x1073 8.06966
02) cos (0, £.89915) | -7.2558x1073 8.92844

’ sin (0, 8.89915) | -7.2558x107 8.92844
©0.3) cos (0, 11.23423) | -1.4344x1072 11.31474

’ sin (0, 11.23423) | -3.1725x1072 11.20828
0.4) cos 0, 15.49129) | -6.4819x1072 15.51938

’ sin (0, 15.49129) | -6.4819x107? 15.51938
©.5) cos (0, 21.62483) - 0.15262 21.66391

’ sin (0, 21.62483) - 0.15262 21.66391
©0.6) cos (0, 29.45800) - 0.43977 29.63642

’ sin (0, 29.45800) - 0.18127 29.41778
©.11) cos (0, 90.41296) - 3.2630 91.58853

’ sin {0, 90.41296) - 3.2630 91.58853
0,12) cos (0, 106.61302) -7.1748 109.84900

’ sin (0, 106.61302) - 1.8536 106.82114
©0.13) cos (0, 124.10038) - 5.6289 126.72937

’ sin (0, 124.10038) - 5.6289 126.7293L

i Perturbation iteration with error of 1y, 1 <10, and error of norm square < 10 1,

i The eigenvalues are represented by complex numbers (a,b), where ¢ and b are real and ima-

ginary parts of the eigenvalues.
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Fig. 1 (a) An Elastic Solid Containing Viscoelastic Inclusions
(b) The Equivalent Inhomogeneous Viscoelastic Solid
(c) The Homogeneous Elastic Solid without Inclusions
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(a) t=0.0 (b) t=0.18
¢) t=0.22 (d) t=0.25

Fig. 2 Evolution of Nodal Curves of (0, 120)
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(e) t=0.30 (f) t=q.50

Fig. 2 (Continued)
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Fig. 3 Loci of Eigenvalues v mn
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Fig. 4 Displacement Contours of
Green’s Function with

t=0, ry=(b,30°), V=6.00, AW=0.05

w=0.05

w=0.25
Load

w=0.2

=0.1
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Fig. 5 Displacement Contours of
Green’s Function with
t=0, ry=(0,60°), v=11.40, Aw=0.4
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Modal Analysis of Kelvin Viscoelastic Solids Under Arbitrary Excitation:
Circular Plates under Moving Loads

L. Y. Shen T
and
C. D. Mote, Jr.

Department of Mechanical Engineering
University of California, Berkeley
Berkeley, CA 94720
U. S. A

ABSTRACT

The response of a finite, inhomogeneous, Kelvin viscoelastic solid under arbitrary excita-
tion is determined by modal analysis. Through the reciprocal theorem of viscoelasticity,
vibration modes of the Kelvin viscoelastic solid satisfy orthogonality conditions and the sys-
tem response under any excitation is represented in a modal series. This formulation tech-
nique is illustrated on an asymmetric, classical, circular plate containing Kelvin inclusions
excited by a constant transverse force rotating at constant speed. The viscosity of the inclu-
sions suppresses the instability excited at supercritical speed in the elastic plate, but it may or

may not suppress instability excited at subcritical speed depending on the geometry and loca-
tion of the Kelvin inclusions.

t (415) 642-6371
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1. Introduction

Viscoelastic ¢c nponents are often introduced to elastic structures to suppress excessive
vibration and to reduce noise level produced by the structures {1-3]. Instead of adding addi-
tional damping material to elastic structures, which is common in damping design such as
tuned dampers [4,5] and surface treatments [6,7], viscoelastic components can be introduced
as inclusions in the structure [8]. In addition, the location and geometry of the viscoelastic
inclusions can be specified to significantly strain the inclusions during particular vibration
modes.

In an earlier study [8] eigenfunctions and Green’s function have been determined for a
three dimensional, finite, elastic solid with Kelvin viscoelastic inclusions through an integral
equation and a perturbation iteration method. The purposes of this paper are to develop the
orthogonality of the eigenfunctions of the viscoelastic solid and to present the response of the
solid to arbitrary excitation.

Following the viscoelastic reciprocal theorem [9], eigenfunctions of the Kelvin viscoelas-
tic solid satisfy crthcgonality conditions in a state space representation. Eigenfunction expan-
sion of the response in a modal series then discretizes an action integral whose stationarity
governs the response of the viscoelastic solid under arbitrary excitation. Stationarity of the
action integral and the state space orthogonality conditions give a set of decoupled equations
governing the generalized coordinates of the modal series.

This technique is illustrated on an asymmetric, classical, circular plate containing viscoe-
lastic inclusions excited by a constant transverse force rotating at constant speed. The steady
state response of the plate is obtained through the modal analysis.

2. Orthogonality

Consider an inhomogeneous, isotropic, Kelvin viscoelastic solid with Lamé distributions
A(r), u(r), density distribution p(r), and damping distributions A" (@), p*(r). The solid occupies
a three dimensional domain t with zero displacements on the boundary o, and vanishing trac-
tion on boundary o, The complex-valued eigenfunction w(r) = [y(r), y@(r), ¢y and
eigenvalue v satisfy

ﬁ,‘ [0, (WA A" 00 = V), i=1,2,3 (1)
with boundary conditions
y(r) =0, on o, (2a)
o, (WrVALA un, =0, ong,, i=1,23 (2b)
where
Oy VIALAT 1) = A8, € (1) +2ug,, (1) + VIL' S, ey (u)+ 21, ()] (3)

In addition, the divergence theorem |9] gives

J o, (uvh A" wun u’, dir —j
G2

-
T

d - L d ’ el
) Ifc,_,(u.v;k,g.k M)u', dr
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= [ 1@ d’r + v | 1w w)dr 4)
h 4 T
with
JuwAp) = L [Aew (e, (W'H2pe, (We; 1)) d°r (5)

where u(r)e” and u'(r)e¥ are harmonic displacement fields vanishing on o, and €;() is
infinitesimal strain.

Replace the unprimed and primed u in (4) by wy,(r) and y,(r). Since eigenfunctions
satisfy (1) and (2a,b), (4) implies

~V3| It p(r)vm ¥a d3r = LI (W Wa ;Ml’),},l.(l")) dsr +Vpy Ll (W \Wha ;x. (l'):ll‘ (r) d’r (6a)
and
=V [ PO W 8 = [ T W AOREN EF 4V, [ 100 ik O17 ) (6b)

Subtract (6a) from (6b), apply the symmetry of 7, and normalize
Vi +Va) [ POV W & + [ 1 W aik” OO0 @) dr = 3,0, (72)
Multiply (7a) by v, and add to (6b)

~VpVa j PO Wa A8 + 1 (W W s M) dOr = =V, 5., (n DO sum) (7b)
b 4
Orthonormality (7a,b) can also be written in a compact form
<®,.0,>, = [ OTAD,dr =35, (8a)
h 4
<0, ®,> = [ O BO,d’r =-v, 5, (8b)
where @, , A, and B are
{vm ¥im ]
D= . (9a)
0 p(r)
A= [p(r) 1A R ) ] ©b)
- 0
B= [ 0 IC M) } )

The first and second entries of / in (9b,c) operate on the premultiplied and postmultiplied
functions, respectively.

3. Response Under Arbitrary Excitations

The response w(r,r) of the solid under arbitrary excitation f(rs) satisfies stationarity of
the following action

2

& = f [ar-av +SWp + W, ] dt (10)
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where
8T = j'1 p(r)W(r, 1 )OW(r.t)d>r (11a)
& = [ 1wdwkr).u() d’r (11b)
Wp == [ 1(wwA' (" () d’r (11¢)
Wy = [ fr.0)8wr.e)d’r (11d)

are the variations in the kinetic and strain energies plus the virtual work done in the viscoelas-
tic material and by the external load. By (11a-d), (10) can be rewritten as

t _ .
o= { [ oL [v'vSw ] dt - [<‘P.8‘P>A +<E3¥>p |+ | F¥dr }d: (12)
1 T dt X

where

w(r,t) 0
Yoo =l geny ' = l1en (13)

If the eigenfunctions @, (r) in (9a) are complete, then ¥(r,) allows a representation as an
eigenfunction expansion

I = T o) (F) (14)

m=]

Substitute (14) into (12) and recall the orthogonality (8a,b) to obtain

Ia o0 [P
_ 1 . _ . _
=[] 0 [ | at a ZJ, (G ~v2a,~ 0283, | (15)
where
0.1) = [ @](tyFd’r = [ w1 d’r (16)
T T
The stationarity of J, &/ =0, and 8q,(t)) =8q,(t)) =0, n=1,2, .. , imply that
Gn(t) = Vaqa(®) = 0, (1), n=1,2,3, - - (17a)

with the initial condition
3,0 =<®,(D¥r0>,, n=1,2,3,--- (17b)
The complete response is then

W= T 0%, 0 = T [<O,@OXE0>e™ + [ " Pg,mdtiv,m  (18)
n=1

n=}

4. Applications to Asymmetric Circular Plates

The steady state response of a stationary, classical, asymmetric, viscoelastic circular plate
under a rotating force is determined by modal analysis. Classical plate theory requires

wre)=w(re)k , frg)=far)k
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where £ is the unit vector normal to the middle surface of the plate. The eigenfunctions are

Ypa Mk and Y, (n)k, m=01, .., n=0,41, -

where ., (r) and vy, _,(r) and their complex conjugates (denoted by the overbar) are four
orthonormal complex eigenfunctions of the plate with m nodal circles and n nodal diameters.

Therefore, the plate response is

w(rt) = 2 Z Z wO(r) ¢, D)

a=1 m=0 no—oo

where yi(r)=y,,, (r) and y2(r) =Y., (r).

For a unit concentrated force rotating along a circle r =7, at constant speed Q;

Frt) = rloéxr—ro)&e—m)

the modal response is
Gna @) = VIR 4 () = yiRr o, Q1)
Because v %(,0) is periodic in 8

(a)(, 9) = Z a(“)(r p)e‘pe

pH

and the steady state ¢, (z) is

a@n =Y Sm\oP) i

Resonance occurs when v,,, =ipQ and a,%(r,; p) is nonzero.
The average strain energy of vibration is
1 fT . _2n
<EJ>—7 OIAI(W,W.Lu)dAdt, —3

Substitute (19) and (23) into (24) to obtain

= aOrep)aPrep)
<E,>=- Ty @ g8, 1) dA o &
aaé.uj vad WA ,,E,, (ip Q-v®) ip Q+vP)

o oo 2 o oo
> ¥ X X ¥ . Similarly, total dissipation per cycle is
=1 m=0 n=—co p=1 k=0 [0

where Y =
afmakd

it

<Ed>=j:LI(w,W;l U ) dA dt

Substitute (19) and (22) into (26) to obtain

- = 2mQp2aryip) G Nrep)
<E;>=- 1w, yPir" 1" )da m 2
¢ Z J v ¥ ,,,2_., (ip Q-v®) (ipQ+vP)

An averaged loss factor <n> is (7]
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(22)

(23)

(24)

(25)

(26)
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<E;>

<n>= (28)

<E; >

As a numerical illustration of the moving load instability, consider an uniform, elastic,
circular plate with three evenly spaced radial inclusions. Each inclusion spans an angle 0.035
rad (=2°) and extends from r =0.75b and r =b, where b is the outer radius of the plate. The
inclusions considered are elastic or viscoelastic. Material properties of the plate and the inclu-
sions, and plate eigenvalues are described in Table 1. Eigenfunctions v, (r) of the plate are
calculated by the method of perturbation iteration [8, 10].

Figure 1 shows the average strain energy of the asymmetric plate. The thin lines are for
elastic, and the thick lines are for viscoelastic inclusions. When the inclusions are elastic,

resonances occur at -B—=Eﬂ, where o, is the critical speed of the axisymmetric plate
n

W
without the inclusions and B,, is a natural frequency of the asymmetric plate in Table 1.
Increasing modal damping (Table 1) results in greater amplitude reduction in Fig. 1. Figure 2
shows the strain energy of the plate at subcritical speed. Subcritical speed resonances, which
do not exist in axisymmetric plates [11], do occur here at rotation speeds

Q __ Bm
W, {3jtn |

, J=11,42, - (29)

because [10]

(30)

@ 20, p=3jtn, j=11,£2, -
Gmn ("0:P) | = 0, Otherwise

The resonance around Q=0.704m,, is caused by yo(r), and the ones near 2=0.992®w, and
1=0.829 @, are caused by the repeated modes you(r) and yp_4(r). The subcritical speed ins-
tability may or may not be suppresced by damping in the inclusions depending on the modal
damping {,,. The resonance by yy(r) is slightly suppressed because of the minimal modal
damping in ygo(r) (cf. Table 1).

5. Conclusions

1. For an inhomogeneous, isotropic, Kelvin viscoelastic solid, eigenfunctions w,,(r) and
y, (r) satisfy orthonormality conditions (8a,b).

2. A lateral force rotating at constant speed will excite asymmetric plates containing
elastic or viscoelastic inciusions 1o subcritical speed rcsonalices that do not exist in axisym-
metric plates. The occurrence of the subcritical resonances depends on the plate asymmetry
and can be predicted analytically.

3. The viscosity of the inclusions may or may not suppress the subcritical resonances

depending on the geometry and location of the inclusions. The suppression of resonances can
he predicted by the modal damping of each vibration mode.
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Table 1 - Normalized Eigenvalues of a Circular Plate with Three Inclusions

Normalized natural frequencies:

Wy , . mn .
Oy = - (axisymmetric plates), B,., = —Ii—— (asymmetric plates)

cr cr

Modal damping ratio: (.,

w
Plate: fixed at inner rim at 0.5, free at outer rim ai b; D—O =0.7.%
0

Inclusions extend from r =0.75b to r =b:; €=0.035.

’ D ’ WI
For elastic inclusions: Do =20 =0.5.F
Ppo Do Wy
: - L Wo . Po Dy WY
For viscoelastic inclusions: D, =0.00489, — =0.7, — =——=——=0.5.}
Dy Po Do Wy
No Inclusions With Three Inclusions
(m,n) Mode ; Elastic 1 Viscoelastic
Opn
Ba Cmn B
0,0) axisym. 2.1050 2.1121 4.5481x107* 21122
o cos 2.1479 2.1549 4.9882x107* 1 2.1549
’ sin 2.1479 2.1549 4.9882x107* ! 2.1549
©2) cos 2.3764 2.3842 8.1266x107% | 2.3843
” sin 23764 23842 | 8.1266x107* | 2.3843
03) cos 3.0000 3.0212 1.2677x1073 | 3.0215
’ sin 3.0000 2.9927 2.8305x107° 2.9931
©0.4) cos 4.1368 4.1429 4.1766x107 | 4.1443
’ sin 41368 4.1429 4.1766x107> | 4.1443

* Converted from Tawle 1 of 110]
1 Converted from Tacle 1 of [K)
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Strain Energy of Asymmetric Plates

Viscoelastic Inclusions
Elastic Inclusions
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Fig. 1 Average strain energy of asymmetric plates with three elastic or viscoelastic incly-

sions excited by a rotating force at supercritical speed
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Fig. 2 Average strain energy of asymmetric plates excited by a rotating force at subcritical

Strain Energy of Asymmetric Plates
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Abstract

Originally, we were interested in minimizing, by a damping treatment, the vibration and
acoustical response of a plate-like structure (such as a railroad bridge) to a dynamic force
applied at a single point. Often, in practice, a damping treatment is applied to the entire
surface of such a structure. We were interested in evaluating the effect of providing
selected damping treatments on selected surface areas of the plate-like portions of the
structure in order to maximize reducing the responses with minimal amounts of selectively
located damping treatment. If information of this kind was available, the cost of applying a
damping treatment to a large structure could be reduced. Before we proceeded to the
practical problem of treating an actual structure, we sought first to obtain information on the
responses of a simple structure, such as a circular thin plate, to damping treatments applied
selectively to its surface area. We studied the first three axisymmetric modes of vibration
of a thin circular plate by a finite-element approach. The elements of the plate were
modeled in terms of their mass, loss factor and flexural rigidity. The measured Q factor for
an untreated plate vibrating in its third mode was 425. When 15 percent of the surface area
of the plate was covered with a damping treatment, the measured Q factor of the treated
plate in the same mode was 40. In general, there is good agreement between the computed
and experimental frequencies, mode shapes and motion amplitudes of the untreated plate.
As the treated area of the plate was increased, the agreement between compuied and
experimental results deteriorated, particularly with respect to the motion amplitudes of the
higher modes at and near the antinodes. Based on the results obtained from these tests, we
have concluded that it should be possible to optimize the amount and location of a surface
damping treatment on a large plate-like structure in order to obtain reductions in the acoustic
and vibration responses that approach those which can be obtained by applying a damping
treatment to the entire structure.

Introduction
Structural vibrations cause noise radiation which can be excessive and objectional under

certain circumstances. This occurs particularly when a structure goes into resonance. At
this condition, the amplitudes of vibration are large, and must be reduced to a safe level.
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The most common means of controlling structural vibrations is by applying damping. If a
damping treatment is properly applied, it can prevent the structure from failing, perhaps,
catastrophically.

Usually, the form of application of the damping treatment depends on the type of the
structural system. It is well known that the response of a coupled lumped-mass system at
resonance can be reduced significantly, using viscous dampers in the form of dashpots;
while a plate vibrating at resonance in more than one mode should be treated with a
continuous damping layer.

The analysis of damped structures is relatively simple if the application of damping is
proportional, that is, if the damping matrix is a linear combination of the mass and stiffness
matrices. This formulation assumes that the structure is fully coated and the coating is
uniform. In this study, a viscoelastic material which provides only damping is used, in
which case the term characterizing dry friction damping in the inertial matrix, will not
appear. The damping matrix is still a linear function of the stiffness matrix, and the
undamped modal matrix may be used to uncouple the equations of motion. The damping
parameter is introduced only to calculate the response of the structure.

However, the search for light-weight, rigid structures requires that the external damping
treatment be minimized. Then, only selected areas must be treated and, since the damping
layer is of the free type, it must be applied to regions of large vibration amplitudes where
tensile stresses are highest. This will result in a case of nonproportional damping, because
the stiffness matrix will contain real and complex elements pertaining to untreated and
treated structural elements, respectively. This type of problem is complex and the response
of the corresponding system can not be found from the eigensolution containing no
damping.

A numerical model of a circular plate clamped at its center is considered. The plastic is
partitioned into annular elements, and only axisymmetric modes are allowed.

Formuiation of the Problem

Elastic structures can be analyzed by classical mode superposition methods after evaluating
their mass, stiffness and damping matrices. The equation of motion of an n-degree of
freedom system with hysteretic damping is

(M1 {a} +[[K] +f [H]] {q} = {Q}. (1)

The damping matrix [H] can be linearly related to [K], depending on the configuration of
the coating. If the entire structure is treated, then

(Hl =/ n [K], (2)

where m is a proportionality constant, referred to as the loss factor of that structure.
Introducing Eq. (2), Eq. (1) becomes

Mllg] + (1 +f %) [K] {q} = {Q}. (3)

Assuming a solution in the form {q(t)} = {go) sinwt, the classical eigenvalue problem is

obtained. The response in the case of a nonproportionally damped system, as expressed by
Eq. (1), is [1]

vy o
| ANPLE




n T
(Qo) = Z Q}{ -} Q @

where the squarc of ®r is the rth eigenvalue in the soiution of the eigenproblem
corresponding to Eq. (1). Both the eigenvalue and the associated eigenvector are complex.
In the case of proportional damping, Eq. (4) takes the form

_% _ {q)ldiMQ)
(e E'l @ (1+1 n)- o? (5)

where, now, the eigenvalues and eigenvector are real.

In the above, the stiffness matric is a function of the equivalent complex modulus of

clasticity of the structure, E* = (1 + f m) E. In turn, the latter is determined
experimentally at given frequencies and temperatures. Therefore, the introduction of
hysteretic damping in the equations of motion does not necessarily imply that the damping
material used has hysteretic properties. Thus, in general, these equations are only valid at
the conditions under which the measured quantities are obtained. In this respect, the
complexity of frequency dependence of the treatment material is irrelevant, as long as a
different eigenvalue problem would have to be solved at each frequency of interest.

The Damping Model

Among the energy-dissipating mechanisms which have been considered for the design of
damped structures, hysteretic damping has been the most widely exploited; particularly in
structural configurations incorporating viscoelastic materials, capable of dissipating
relatively large amounts of energy. The dissipating capacity of a given material is
characterized by the loss factor, defined as the ratio of energy dissipated during one cycle to
the total energy stored in the system for the duration of that cycle.

Some viscoelastic materials and most metals possess stress-strain characteristics which
deviate from the elliptic shape, exhibiting a nonlinear property. In these cases, compromise
is necessary and a linear approximation is used, unless the deviation is unacceptably
excessive. The best compromise appears to maintain the loop areas and the amplitudes of
the stress and strain [2].

Mathematical models developed to evaluate parameters of linear damping have been
reviewed by Bert [3]. Because of their complexity, some of these have no immediate
implementation in the general sense. Others are limited in their range of applicadon. A
comparison of the various models shows that the difference between them lies only in the
way the respective loss factor is expressed in terms of the input variables, such as
frequency and temnperatuie.

The work done on the dynamics of beams and plates incorporating continuous damping
treatments is well documented [1]. In these models, attempts are made to duplicate the
dyr-mic characteristic of the treated plate using an equivalent angle plate, with the loss
factor, the mass and the flexural ngidity remaining constant. These conditions may be
expressed as follows, see Fig. 1.
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N ="MNo, (6)

pt=pit] +p2t2 | (7
El=E1l1 + E2lp. (8)
EG
PiE‘ n, P2 pE1/ N pE

Fig. 1 Transformation of (a) the plate into
(b) a singular equivalent plate.

In Eq. (6) it is assumed that the damping of the base plate is negligible. The unknown

quantities here being p, t, | and E, a fourth equation is required. Since the mass moment

of inertia is a function of the material density and the geometry of the composite, it can be
used here.

J=h+Jy

Three of the four unknowns may be calculated using the geometry of the coated plate as
shown in Fig. 2, using Egs. (7) through (9).

----------------------------

ty

Fig. 2 Cross section of a coated element.
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The equivalent loss factor may be determined using different approaches [4,5]. The model
due to Cremer et al . [4] is used, yielding the following expression for 7.

12112 E212 A";
n=—-— 5 (10)
El 1+ IZFQLZ A2

Now the four unknowns which define the model of the treated plate completely can be
calculated for given a material ard thickness of the base piate and the coating. The values

of E2 and 12 in Eq. (10) are determined experimentally, using the resonant beam method
[6). The inertial and complex matrices of Eqs. (1) and (2) are evaluated from the equivalent
parameters obtained for a circular plate clamped at its center. The plate is partitioned into
ten annular elements and allowed to vibrate only in its axisymmetric modes.

Experimental "work

The experiments performed in this work may be grouped into two parts. The first part is
concerned with the measurement of the loss factor and the storage modulus of the damping
material. The resonant-beam technique was uszd, whersby 2 carefully machined cantilever
beam was coated with a commercial damping material, Type GP-2 supplied by SoundCoat,
Inc., New York. The test beam, made of aluminum 66-60, was machined with its root in
block to observe the clamped condition.

The coated-beam experiments yielded loss factor values of 0.259 at 76.0 Hz, 0.420 at
136.0 Hz and 0.418 at 758.0 Hz. The two latter frequencies correspond to the second and
fourth modes of the composite beam, respectively. According to the recommendations put
forth in the measurement method based on its acceptance as ASTM E 756/83, reliable
measurements were obtained only if the beam was vibrated at higher modes whose shapes
exhibit half wavelengths. The first value of the Joss factor was obtained accordingly at the
second mode, with a concentrated mass attached to the free end of the beam to lower its
resonance frequency to 76.0 Hz, 0.420 at 136.0 Hz and 0.418 at 758.0 Hz. The two
latter frequencies correspond to the second and fourth modes of the composite beam,
respectively. According to the recommendations put forth in the measurement method
baszd on its acceptance as ASTM E756/83, reliable measurements are obtained only if the
beam is vibrated at higher modes whose shapes exhibit half wavelengths. The first value
of the loss factor was obtained accordingly at the second mode, with a cenentrated mass
attached to the free end of the beam to lower its resonance frequency to 76.0 Hz, The

respective values of the storage modulus were found to be 2.50, 2.74 and 2.82 GNm'2.

Damping due to air resistance was verified by driving the untreated beam into resonance in
vacuo. The pressure in the vacuum chamber was gradually increased from 18.0umHg to
ambient pressure. At 30.0Hz, the loss factor was found to be 0.0050 at ambient pressure,

and 0.0048 at 18 umHg. At 216.0 Hz these values were 0.00095 and 0.00086,
respectively.

The second part of the experiments consisted in measuring the plate response with different
damping treatments. The experimental set-up is shown in Fig. 3, showing a plate, 1.2 mm
thick and 286.0 mm in diameter, excited by seven electromagnets placed equidistantly
around the circumference. The exciting force was kept constant by fixing the value of the
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current in the coils to 200.0 Ma. This value was chosen to avoid saturation of the circuit
cores, and to obtain a response large enough to be measured in the cases of heavy
damping. The various positions of the damping patches and their areas as a fraction of the
total plate area are shown in Figs. 4 and S for the second and third mode, respectively.

The plate was first fully coated, then it was gradually uncovered according to Figs. 3 and
4. In the case of the first mode, the damping material was removed from two elements at a
time, starting from the circumfererce.

Since the damping layer is of the free type, the areas to be treated are those in the
neighborhood of a displacement antinode, where strain energy is maximal. If the wave
neighborhood of a displacement antinode represents also the point with the smallest radius
of curvature, where stress and strain are both high. However, in situations where the
deformed shape is not symmetric, the treatment is applied in the area with small radii of

curvature.
‘ gaf:nnce
robe
;}%lge w Ferrite cors ﬂﬂ-\

Y PR

Fig. 3 Experimental set-up for the plate model.

Results and Discussion

The resonance frequencies of the untreated and fully coated plates are given in Table 1.

Untreated Fully treated
Mode 1 Calculated 56.3 55.8
Measured 55.0 545
Moaode 2 Calculated 329.7 330.7
Measured 3336.5 3332.0
Mode 3 Calculated 955.9 959.3
Measured 1016.8 997.7

Table 1 Natural frequencies of the circular plate (Hz).

The measured resonance frequency of the first mode is lower than the calculated value for
both the treated and the untreated case. This is consistent with the principle by which the
Rayleigh quotient ovesestimates the natural frequency of a system. In the second and third
mode, the measured vaiues are higher. Since the Rayleigh quotient is applicable only to the
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fundamental mode, it can not be used to justify this result. However, we believe that the
numerical model did not predict the proper ratio of the added mass and stiffness. Also, the
damping layer in the experimental model is not constrained at the boundaries. The
assumption that the coating does not undergo shear deformation, and the invariance of
Poisson's ratio in the calculation of the flexural rigidity of the composite plate have
contributed to these discrepancies. These will also affect on the amplitudes and mode
shapes.

The Q factor of the plate evaluated at elemen' node 4 is shown in Figs. 6 and 7. The
measured and the predicted curves are in good agreement. However. this comparison can
not be made for the outer region of the plate described above as it will be seen later in the
discussion.

The displacement response for the first three modes is shown in Fig. 8 through 13. A
curve fit was performed on each set of data for presentation clarity. A detailed comparison
was made between the calculated and experimental results for each damping case. The
response of the undamped plate was predicted with an error of less than 1%, evaluated at
the free edge. A close agreement is also obtained with coverages up to 36% of the plate
surface area. The error at 36% coverage is 8%, while that for a full coating is 6%. This
discrepancy, which increases as the treated area is reduced, can be attributed to the
unconstrained boundary elements. These, being at the edge of the treated area, are not
subject to tensile forces, as is assumed in the numerical model. As the treated area is
reduced, the surface area of the boundary element becomes relatively high, and its
contribution to the damping of the plate appears to be less significant. An error of 32%
was recorded in the 4% and 16% coverage cases.

The results for the second mode are presented in Figs. 10 and 11. The damped waveform
exhibits two regions of interest. The first is the region within the nodal circle where the
measured values are greate than the predictions. This is consistent with the argument on
the boundary element as explained above. The error varies from 28% at 27% ccverage to
3% for full coating. The second region of concern is that between the nodal circle and the
edge, which behaves simply as an annular plate, simply supported at the inner dianxter and
free at the outer edge, oscillating without undergoing flexural deformation. The induced
tensile stresses in this region are small and, as a consequence, the damping treatment has
little effect. The vibration amplitudes are controlied by the inertia of the annular region
which may have contributed to an observed progressive shift of the nodal circle in the
coating cases above 40% coverage of the plate area.

This behavior is more promounced in the third mode, shown in Figs. 12 and 13. The
results agree in the area within the first nodal circle, where an error of 22% was recorded
for a 15% coverge. This error drops to 8% for the fully coated plate. Although the flexing
motion of the region located outside the first nodal circle is pronounced, the local antinode

is heavily damped.

Conclusion

The dynamic response of a circular plate incorporating patch damping is investigated using
a finite-element approach, with only axisymmetric modes being allowed. The predicted
response was in reasonable agreement with our experiments at low frequencies, or in the
regions where half wavelengths are described. A flexing motion of the outer part of the
plate is observed which the numerical model failed to predict.
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Fig. 4 Different damping treatments in mode 2.
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Fig. 5 Different damping treatments in mode 3.
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DEVELOPMENT OF THE PACOSS D-STRUT™

David C. Cunningham!
Honeywell Inc., Satellite Systems Operation

ABSTRACT

This paper presents the design optimization procedure that was used to size the
D-Struts™ used on the Passive/ Active Control of Space Structures (PACOSS) program.
While this design uses a diaphragm for the pumping member of the damper, the
method can be adapted for other approaches. Fourteen D-Struts are fabricated and
extensively characterized using the method of complex mechanical impedance.
Performance agrees well with predictions, except that the peak phase lead is low.
Additional compliance, which is responsibile for this loss in performance, is primarily
due to the diaphragm flexing at its inner and outer edges. This paper suggests solutions
to improve the diaphragm clamping as well as alternatives to using 2 diaphragm.

ISenior Staff Engineer, Honeywell Inc., Satellite Systems Operation,
P.O. Box 52199, Phoenix, AZ 85072, (602) 561-3211
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INTRODUCTION

The viscously damped strut, or D-Strut™, was invented by L. Porter Davis and Dr.
James F. Wilson to provide damping augmentation in a truss-type structure. The D-
Strut cousistc of two concentric tubes, rigidly fastened together at one end, and
connected through a viscous damper at the other. D-Struts can be used selectively in a
truss-type structure to provide high damping of specific modes by placing them at
locations of high modal strain energy. See the paper "Design, Analysis, and Testing of
the PACOSS D-Strut Truss" by D. Morgenthaler in these proceedings for a discussion of
this methodology.

THREE PARAMETER MODEL

The simplest dynamic model of the element is shown in Figure 1 and consists of three
parameters: a stiffness representing the outer tube, a second stiffness representing the
inner tube, and a viscous damper in series with the inner tube stiffness.

Ka
A'['lvlv 7
F—& 1AM
w1
Ca Kg
L X
5691-2-14¢

Figure 1. D-Strut Simplified Model

The ratio of force to deflection at cne end, with the opposite end fixed, is the mechanical
impedance, and it is given by:

Z3(s) = KA(1+s/w1))(1+s/w2) (1)

where,
w; = KaKg/(Ka+Kp)Cy (2)
a, = Kg/Ca (3)

The magnitude of Z3 is plotted against radian frequency in Figure 2. At frequencies
below @y, the D-Strut acts like a "soft"” spring, while at frequencies above w,, the D-Strut

acts like a "stiff” spring. The phase shift follows a bell-shaped curve between w; and ;.
The m-*mum phase icad occurs at the geometric mean frequency:

wy = (myan) V< (4)
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Figure 2. Mechanical Impedance

Letting a2 denote the lead/lag separation ratio,

a = (apfan)l? (5)
the complex impedance at ay is:
Z3(jax) = Kal2+j(a-oc V)]/(1+ar2) (6)
The maximum phase lead is:
¢ (ap) = tan(a-a))[2] (7)

When the D-Strut is used in a structure, damping will be proportional to the phase lead
at any frequency. Maximum damping then occurs when the frequency of maximum
phase lead is made to coincide with the resonant frequency to be damped. For example,
if the D-Strut supports a simple mass, M, the damping ratio will be equal to:

{=(a-1)2 (8)

provided that the D-Strut is optimally tuned to the resonant frequency. This is
accomplished by selecting the damping constant, C4, such that:

ay = (0K 4/M)112 (9)
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PACOSS REQUIREMENTS

For the PACOSS program, D-Strut requirements were defined by the contractor, Martin
Marietta, to provide damping of the first two structural frequencies when D-Struts were
used as the longerons in the lower 3 bays of an 8-bay truss structure. Figure 3
summarizes these requirements. The static stiffness is 78,000 1b/in., and the dynamic
stiffmess (K4 + Kp) is 179,000 Ib/in. Maximum phase lead is 22.6 degrees and occurs at a

frequency of 5.6 Hz; this corresponds to a 1.5 separation ratio, o.

The structural design of the D-Strut is based on accommodating a step function of force

equal to 566 1b. (This corresponds to the longeron force developed by a 100-Ib lateral
load at the tip of the truss.)

Finally, the D-Strut is to meet the interface and outline dimensions shown in Figure 3.
The maximum diameter indicated is to be minimized.

179,000
2| t
(Ibfin.)
78,000
3.7 8.5 f (Hz)
a=15 9, = 226° fo=56Hz
FIO 566

(Ib)

t(s)

); 30° max | /'/ T~

2.6 max 7'%.750 +0.002
e A
I min 7
7
32.416 + 0.010 —

5691-2-2¢

Figure 3. PACOSS D-Strut Design Requirements
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DESIGN CONFIGURATION

Figure 4 is a conceptual view of the D-Strut showing the selected dimensions that
provide the required performance. In this implementation, the viscous damper consists
of a circular diaphragm connecting the inner and outer tubes. Viscous fluid is sheared
in the orifice of length, L, and diameter, d, when the fluid is pumped by relative motion
of the inner and outer tubes. The spring shown on the left provides a preload in the
fluid contained by the bellows such that damping will occur in both forward and
reverse directions.

L P
Y] }
1
! T1
) T2 D2
) '
N N N N N N N N \
/ — 2 J D1
h N N N N N N \‘\ <
! L2
U

_ S691-2-38
Figure 4. Conceptual D-Strut Design Dimensions

FIVE-PARAMETER MODEL

Analytical models were developed for the stiffness, damping, and stress of each of the
components shown in Figure 4. In the case of the tubes, the stiffnesses K1 and K, are
simply A;Es/Ljand A;E,/L;for the respective members. For the diaphragm, however,
the static stiffness (K3) is a complicated function of the dimensions a, b, and h and the
diaphragm modulus of elasticity, Eg. Damping (C) is calculated from the fluid viscosity,
4, and orifice dimensions, d and L. An additional stiffness (K4) is calculated for the
diaphragm/fluid cavity to account for the compressability of the fluid and the finite
volumetric stiffness of the diaphragm. This stiffness involves parameters a, b, h, g, the
diaphragm modulus of elasticity, E4, and the fluid bulk modulus, Kj.

A complete dynamic model of this system is indicated in Figure 5. In this model, there
are now five parameters: Kj through K4 and C. The mechanical impedance of the
complete five-parameter inodel is:

z5 _ L _ (K1K2+K1K3+K2K3)&+(K2K4+K1K2+K1K3+K1K4+K2K3)CS
(s) = X1~ (K2+K3)Kq + (K2+K3+K¢)Cs (10)

IAA-5




K2

X\ - X2

5691-248
Figure 5. D-Strut Detailed Model

This transfer function is of the form:

Z5(s) = Kgf1+s/p)/(1+s/p) (11)

where, wz = (K1K2+K1K3+KoK3) KJ( Ko K4+ K1 K2 +K1K3+K1 Kg+K2K3)C (12)
&, = (Ka+K3) KJ(K3+K3+K9C (13)

Kgg = (K1K3+K1K3+K2K3)(K+K3) (14)

EQUIVALENCE OF THREE- AND FIVE-PARAMETER MODELS
Typically, the stiffness due to fluid compressibility and damping chamber expansion,
Ky, is large, and the stiffness due to diaphragm flexure, K3, is small compared to K; and
Kz. U K4 = ecand K3 = 0 are substituted into (10) through (14), these equations reduce to
(1) through (3), with K4 = K3, Kp = K; and C = C4. However, it is also possible to
establish an equivalence between the three-parameter and five-parameter mechanical
impedance models with finite, non-zero values for K3 and K.
Equating the static stiffnesses:
K4 = (K1Kp+K1K3+K7K3)/(K+K3) (15)

Equating the zero and pole frequencies:

KaKp/(Ka+Kp)Ca = (K1K2+K1K3+K;K3)K/(KKg+K1 K2+ K1K3+K1 Kg+K2K3)C (16)

Kg/Ca = (K3+K3)Kg/(K2+K3+K)C (17)
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Equations (16) and (17) can be solved simultaneously for the two unknowns Kg and Cy:

Kp = KZKg/[(K2+K3+KJ(Ky+K3)] (18)
Ca =[K2/(K3+K3)j2C (19)

This equivalence is significant because it allows the three-parameter model to describe
the D-Strut dynamics just as accurately as the five-parameter model.

D-STRUT PARAMETER SYNTHESIS

In the above section, it was shown that an equivalent three-parameter model could be
used to represent the dynamics of a five-parameter D-Strut. In the detailed design of a
D-Strut, however, it is necessary to utilize the five-parameter model, because it is these
parameters that can be related to specific physical quantities (tube stiffnesses,
diaphragm stiffnesses, etc). The relationship between the three-parameter and five-
parameter models is not unique, and this fact may be used to develop a D-Strut
optimized for minimum stress or weight without affecting its performance (i.e., its
mechanical impedance).

To determine allowable values of the five-parameter D-Strut from the three-parameter
description of the mechanical impedance, equations (15), (16), and (17) are solved with
two additional constraint equations:

N = K4/K3 (20)
M = Ky/K; (21)

In addition to providing a closed solution, these two constraints make intuitive sense.
M is the ratio if inner-to-outer-tube axial stiffness, and should generally be in the range
1<M<100. N is the ratio of series-to-shunt stiffness of the diaphragm/fluid damper.
Typically, one would expect N to also lie in the range 1<N<100. As will be evident, the
actual range of M and N to meet a specific mechanical i.npedance will be less.

The solution of the five equations noted above for the five unknowns is tedious, but
there is a closed-form solution. In fact, there are two solutions, both of which are valid:

Letting a = N(1+M) (22)
b = Kala2(M-N)-(N+M+NM)] (23)

¢ = a@Kq2N (24)

K1 =[-b £ (b2 - 4ac)'2])2a (25)

K; = MK; (26)
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K3 = [KA Ka-KD)J/[ K2 Ka-K7)] (27)
K4 = NK3 (28)
C = NK3(Ky+K3)/{an[ Ko+ K3(Z+N)]) (29)

For specific values of K4, K, C4, N, and M the above equations may produce complox
or negative values for K;, K3, etc; bowever, where a positive real solution exists, two
positive real solutions exist.

In order to minimize the D-Strut weight, M should be made as small as possible. There
is, however, a minimum vaiue of M once N is selected. Figure 6 illustrates this
relationship for the PACOSS D-Strut case. Clearly, N should be made as high as
possible, consistent with practical design and stress consiuerations. The point circled in
Figure 6 shows the value for M and N ultiinat.ly selected for the PACOSS design.

o —\
5 \

‘é.
©

) 5 10 15 20

N = K4/K3
5691-2-5¢
Figure 6. Minimum K2/K1 Versus K4/K3

D-STRUT FORCES

When sizing the D-Strut mechanical components, the applied forces are required in
order to calculate static and dynamic loads, fluid pressures, stresses, etc. Let Fr denote
the externally applied axial force. This force divides (dynamically) between the inner
and outer tubes. Let F; denote the force in the inner tuoe. Referring to Figure 5, F; =
K;Xj; this leads to the following transfer function:
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Fi/F{(s) = K;K3(1+s/@3)/[(K+K3)K 4(1+s[wy)] (30)

where, a3 = K3K¢/[(K3+K)C] (31)

The force in the inner tube depends not only on the ratio of stiffnesses, but on the
frequency content of the appli~d furce. Two cases are of interest:

(1) Fris a sinusoid of magnitude Fr and frequency wy. In this case the magnitude of
Fis obtained by substituting jwy for s in equation (30).

(2) Fr is a step function of magnitude F7. The force in the inner tube is then an
exponentially decayed step, which has an initial value Fp and < final valu Fg
(referred to as the dynamic a:id static forces, respectively). Fg is obtained by
setting s to zero in (30), while F) is obtained by letting s approach infinity.

Fs = FrK;K3/[K A(K2+K3)] (32)

Fp = FrKyK3 0 /[K A(K3 +K3) s3] (33)
DESIGN OPTIMIZATION PROCEDURE

The flow chart shown in Figure 7 summarizes the design procedure.

Steps 1 through 3 determine a set of the five parameter model] values meeting the
specified requirements. The selection of M and N is arbitrary, but if the limitation
shown in Figure 6 is violated, the computed stiffnesses will be imaginary.

Steps 4 through 13 are used to size a diaphragm and damper meeting the required K3,
K4, and C. This is done iteratively for various diaphragm aspect ratios (the ratio of
diaphragm outside diameter to inside diameter, 1), and the peak stresses and
deflections are calculated under the two conditions of peak static and dynamic loads.
An optimum design is then selected to provide the minimum peak stress and a peak
diaphragm deflection less than the (1uid gap.

fo complete the design, Steps 15 through 17 are used to size the tubing thickness to
provide the required K; and K;. Each design corresponds to one row in Table 1. Steps 4
through 17 must be performed twice for each set of five parameter requirements
determined in Steps 1 through 3 because there are two valid solutions for ezch assumed

M and N. In Table 1, the two so.utions are distinguished by the notation ' or — under the
column "SIn.”

In Step 18, the entire process (Steps 1 through 17) is repeated iteratively for alternative
values of M and N. In Table 1, the best case (H) is underlined. Most of the cases run
assumed the use of titanium for the diaphragm material. Beryllium ~opper was also
evaluated, but found to produce a lower fatigue stress margin of safety.
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f Given System Parameters:

KA = Static Stiffness

o 1 = Lead Frequency

o 2 = Lag Frequency

FT = Applied Force Step
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K

y Select Diaphragm Parameters:
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E = Young's Modulus

+
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R

y Select Fluid Parameters:
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K = Bulk Modulus
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Y
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4 L = Orifice Length
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Figure 7. Design Optimization Procedure (Sheet 1)
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Figure 7. Design Optimization Procedure (Sheet 2)
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The stresses shown in Table 1 do not include the effect of fluid preload. To prevent
cavitation when the D-Strut is used in tension rather than compression, the preload is
typically selected to equal the peak pressure in the fluid. This has the effect of doubling
the stresses in the diaphragm. Therefore, the minimum stress design will be 2 x 77,000
= 154,000 psi, which exceeds the 120,000-psi limit for titanium.

Table 1. Optimum Diaphragms for 0.75-inch Outside Radius

N M Sin mtl Case | OD/ID | Stress h g wa
297 1.543 - Ti G 1.2 117 0.005 | 0.043 0.007
40 8 - Ti X 1.4 136 0.007 { 0.607 0.007
40 8 ' Ti Y 1.6 116 G.030 | G.G10 | 0.005
40 4 - Ti \ 1.4 116 0.008 | 0.471 0.007
40 4 ' Ti w 1.6 112 0.026 | 0.016 | 0.005
20 32 - | Ti R 14 112 0.009 | 0.851 | 0.007
20 |32 ‘ Ti S 20 100 0.046 | 0.010 | 0.004
20 8 - | Ti T 14 101 0009 | 0.720 | G.007
20 8 ‘ Ti U 2.0 99 0.041 | 0.014 | 0.005
20 4 - | T P 1.6 86 0.014 | 0.357 | 0.007
20 4 ' Ti Q 2.2 91 0.038 | 0.012 | 0.006
Q0 | 3 = | I H 20 ZZ | 0.021 | 0.008 | 0Q.007
10 8 - I T ] 1.8 83 0.019 | 0.420 | 0.007
10 8 ' Ti D 3.2 93 0.056 | 0.010 | 0.005
10 4 - | T A 3.0 81 0.038 | 0.042 | 0.006
10 4 ' Ti B 3.0 85 0.041 | 0.033 | 0.006
20 4 — | BeCu P1 14 94 0.010 | 0.530 { 0.007
20 3 - | BeCu F1 2.0 86 0.020 | 0.098 | 0.007
10 8 - | BeCu C1 1.8 91 0.018 | 0.420 | 0.007
10 4 — | BeCu A1 3.0 91 0.036 | 0.042 | 0.006
7 6 ~ | BeCu E1 3.0 93 0.035 | 0.109 | 0.007

S691-2-7¢

All the cases shiowi i Table 1 assuine a diaphragm outside diameter (OD) of 1.5 inches
(because our initial goal was to design a D-Strut having approximately the same OD as
the undamped PACOSS struts.) In Table 2, the results of increasing the diaphragm OD
are shown. These cases all assume the same optimum ratios for M, M, and n. The final
entry shown (Case H4) provides an adequate fatigue stress margin and has a
diaphragm OD of 2.0 inches.
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Figure 8 is a cross section of the final design, and Figure 9 is a photograph of the
prototype.

Table 2. Optimum Diaphragms for N=20, M=3, Sln=-

b Mt Case | OD/ID | Stress h g wa p

0.625 | BeCu F2 2 110 0.018 0.068 | 0.007 | 493
0.750 | BeCu F1 2 86 0.020 0.098 | 0.007 | 343
0.875 | BeCu F3 2 70 ¢.022 0.134 | 0.007 } 252
1.000 | BeCu F4 2 59 0.025 0.174 | 0.007 | 193
1250 | BeCu FS 2 44 0.028 0.273 | 0.007 | 123
1500 | SeCu Fé 2 34 0.032 | 0.392 | 0.007 86
0625 | Ti H2 2 98 0.019 0.068 | 0.007 | 493
0.750 | Ti H1 2 77 0.021 0.098 0.007 | 343
0.875 | Ti H3 2 63 0.024 0.134 | 0.007 | 252
1.000 | Ti H4 2 50 0.026 0.174 } 0.007 | 193
5691-2-8¢
Uraaassass

$691-2-9¢

Figure 8. Final Layout of PACOSS D-Strut

. PACOSS D-Strut
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D-STRUT CHARACTERIZATION

Testing of the D-Struts was conducted at CSA Engineering in Palo Alto, California,
between January and April 1990. The mechanical impedance was measured using a
shaker driving the D-Strut under test through a load cell with the other end of the
D-Strut rigidly grounded. The differential displacement across the D-Strut was
measured using a pair of Kaman eddy current proximeters. Calibration was verified
with a "dummy” tube consisting of an outer tube (1.5-in. C™ «.035-in. aluminum wall)
mounted between two end fittings, which provided the same overall length and
mechanical interface as the deliverable units. Both static and dynamic tests verified that
the stiffness was equal to that calculated for the tube alone, and that the phase angle
was only a few tenths of a degree.

In the succeeding tests, two basic procedures evolved. Static measurements were made
by commanding the shaker with a 20-second period triangle waveform corresponding
to £500 1b force peak amplitude. The displacement was plotted by the Zonic analyzer
against force so that the stiffness (slope), linearity, and hysteresis were readily apparent.
Dynamic impedance was measured by applying a random noise having a flat Power
Spectral Density (PSD) over a selected bandwidth. The input was controlled by a
GenRad Servo Controller that monitored the force transducer output. Peak force and
bandwidth can be independently controlled and a constant compressive or tensile force
can be superimposed by the shaker amplifier electronics. A crest factor (peak-to-rms
ratio) of 3.6 was assumed for adjusting the output of the controller. For dynamic
impedance measurement, the Zonic analyzer computes the complex Fast Fourier
Transfer (FFT) of the force and differential displacement, then displays the amplitude
and phase angle of their ratio. Further details of the testing procedure are given in the
paper, "Testing of a Viscous Damped Isolator.” by B. Allen, also in these proceedings.

Figures 10 and 11 are plots of the magnitude and phase of the complex mechanical
impedance of a typical D-Strut. Analysis of the test data indicates that the peak phase
lead is about 16.5 degrees, which is less than the 22.6 degrees desired. Considerable
effort was spent in an attempt to identify the source of the added compliance that
caused this loss. The results of the development testing program showed that the
added compliance was distributed between:

Diaphragm edge clamping (both inner and outer edges)
Low modulus in the inner tube aluminum

Series compliance in the spring housing and end fittings
Low shear modulus in the epoxy originally used

Alternative designs were also hypothesized, which would replace the diaphragm with
(1) a piston, (2) an aninular flexure, or (3) a bellows, which might provide a higher phase
lead. Unfortunately, the schedule or funding did not permit our pursuing these ap-
proaches. These alternatives are discussed further in the paper "Design Trade Data on
the Arch-Flexure D-Strut,” by L. Porter Davis and Dr. Steve Ginter, also in these
proceedings.
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A total of 14 D-Struts were built, which incorporated improvements to the diaphragm

edge clamping and tube bonding. Results of the characterization testing are listed in
Table 3.

Table 3. Test Results

Serial No. | KSTATIC | Hysteresis (%) $PK f0
1 75k i 165 | 6.5
2 71k 1 135 | 5.0
3 76k negligible 145 | 5.0
4 74k 1 145 | 45
5 74k 1 155 | 6.0
6 69k 1 120 | 65
7 74k 1 13.0 | 65
8 71k 1 16.0 | 5.1
9 77k negligible 16.7 | 6.5

10 73k 1 157 | 5.8

11 73k negligible 16.0 | 6.2

12 72k 1 165 | 6.5

13 70k 1 150 | 6.0

14 72k 1 155 | 65
5691-2-13¢

CONCLUSIONS

Analytical techniques were developed to optimize the design of a D-Strut that utilized a
diaphragm to pump the damping fluid. The optimization minimized the outside
diameter of the diaphragm (which determines the OD of the D-Strut). A prototype unit
was built and tested, and 14 additional units were fabricateu and characterized.

The results were qualitatively very close to those predicted, showing that the dynamic
models used to analyze and design the D-Strut were functionally correct. However, the

peak phase lead was less than that desired (16 to 18 degrees versus 22.6 degrees
desired).

The most significant factor limiting the peak phase lead achievable is the difficulty of
obtaining bending rigidity of the diaphragm edges. Some radial compliance must be
accommodated to permit Jdifferential thermal expansion between the titantium
diaphragm and the aluminum housing. An all-titanium machining might provide a
better soluion for the diaphragm design, but would be expensive to fabricate.

An alternative would be to replace the diapragm with either a piston, an annular
flexure, or a bellows.

Truss testing at Martin has now been completed, and the results indicate that the D-
Struts, as delivered, demonstrate a very high damping of the lower frequency truss
modes. The design optimizations and testing methodology presented in this paper
should be of help in future D-Strut development.
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DESIGN, ANALYSIS, AND TESTING OF THE PACOSS D-STRUT TRUSS

Daniel R. Morgenthaler *
Martin Marietta Astronautics Group
Denver, CO

ABSTRACT

Future space systems may be large, lightweight, and flexible. Such systems will
often include trusswork due to the high specific strength and stiffness typical of trusses.
Damping of these structures will minimize detrimental vibration, which otherwise may
reduce system performance to unacceptable levels.

A damping device suitable for application to trusses, which is designated the
D-Strut™,.has been developed by Honeywell. This paper discusses the further
development of the damping member, the derivation of analytic procedures required
for efficient integration of these members into truss structures, and the results of testing
of a structure which incorporates these damping members.

Following design, prototyping, fabrication, and impedance testing of D-Strut
members, a truss structure which includes these members was assembled and
subjected to modal testing. Comparisons of the finite element modei of the truss with
the experimental modal test data show excellent agreement for the first seven modes,
and verity damping levels in the fundamental modes of nearly 10% critical.

The D-Struts were compared with viscoelastic extensional damping members
designed to produce similar damping levels. These comparisons included weight,
temperature stability, strength, etc. Results of the comparisons currently favor the
viscoelastic membears; however, advances in the design of the viscous device will
allow the D-Strut to provide an efficient damping treatment for truss structures of the
future.

* Mail Stop H4330
P.O.Box 179
Denver, CO 80201
(303)-971-9387
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1.0 Introducticn

A goal of the Paussive and Active Control ot Space Structures (PACOSS;)
Program is the deveiopiiznt and verification of passive daraping treatments for
application to flexible space structres. An examination ¢f *he performance of the
Honeywell viscous fluid damping struts (D-Struts) for use i truss siruciures was
compieted during the secend phase of the PACOSS Program.

At the onset of the investigation, there were considsered o Lo “Lur potential
advantages of the D-5Strut over other types of damping treatments for truss circtures,
such as viscoeiastic damping members. These potential bensfiis were reduced
temperature dependency, decreased susceptibility to cutgassirig, higher static loading
capability, and tne potential for decreased weight as compared ‘o visccelastic
dampers. The obiectives 5f the raesearch were to develon ths anaiylic 100is necessary
to efficiently design anc anaiyze truss structures inclucing U 5iruts, 10 design and
build a structure consistent with goals for the test truss, and tc confirm the performance
of the members through unit testing and a modal test on the structure witn the damping
members installed.

To meet thess objsciives, a truss structure which contains the D-Strut members
was designed, fabncaied, and tasted (Fig. 1). The truss structure was designed ang
fabricated by Martin Marietia, while the D-Strut members themselyss were built by
Honeywsll. The structure consists of eight bavs whicii are each 34-in. square, with
damping members as the lonuarens for the lower three bays. During the design
process, design techinuues which allow for the efficiert application ¢f D-Strut damping
trsairments to structures was dsveloped.

Following fabrication of the D-Struts, unit testing of the members, and their
integration into the structure, a modal test was performed. Thea resulting modal
parameters were comparad with analytic predictions to determine model accuracy and
D-Strut performance. Finally, the D-Strut damping members were compared with their
viscoelastic counterparts for important properties. This paper discusses the design
methodology and analysis techniques which were deveioped, the resulte of the
D-Strut member design and fabrication, the structure modal test results, and the rasults
of the damping miembar comparison.

2.0 The D-Strut Member and Viscous Fluid Dampiny Device

The D-Strut is comprised of a viscous fluid damping device, structural tubing,
and end fittings. The tubing atiaches to the joints of the siructure and supplies the
static stiffness of the eigment, while the damping element is usad t¢ attenuate vibration
of the structure. A schematic of the damping device as used in the PACOSS D-Struts
is provided as Figure 2

The working eiemants of tha damping device consist of a titanium diaphragm, a
small orifice, and a hahows which contains a visczus silicons fluic When a dynamic
load i1s applied to the menibar, a portion ¢t the i2ac s ranaatiad through the inner
tube, and a portion is tranamitted through the outer tube  Tihe force applied by the
inner tube to the dampirg device bends the circuiar diaph -~y which (s connected to




Vi oo Pt e 3 i b, 3D .. X7«
PR A

Figure 1 - The D-Strut Test Truss In the Modal Test Configuration
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Figure 2 - Schematic of the Honeywell Viscous Fluld Damping Device

a fitting on the inner diameter, and is constrained to move with the damper housing on
the outer diameter. The deformation of the diaphragm pressurizes the fluid behind it
and forces the fiuid through the orifice. The resistance of the fluid flow due to its
viscosity creates a damping force which is applied to the structure at the joints. A
spring is used to apply static pressure to the fluid to eliminate cavitation of the fluid for
dynamic tension loads applied to the damping device. The spring and bellows also
allow for expansion and contraction of the fluid with temperature.

Two D-Strut concepts were developed by Honeywell which have been
designated the SD and the D1 strut. The SD strut incorporates two tubing members:
an outer tube member which connects directly across the span element, and an inner
tube which connects to the damping device. The D1 strut is similar. However, a single
tube which connects to the end fitting on one side and to the damping device on the
other is used. The potential application of both designs was examined during the
PACOSS effort.

3.0 D-Strut Modeling Using the Spring / Dashpot Model and
Impedance Methods

Design and analysis of truss structures which incorporate D-Struts necessitates
models of the damping members. Two methods of modeling the D-Strut were
investigated. These methods include modsling of the strut using a spring / dashpot
network and modeling using impedance methods.

The D-Strut can be modeled using a series of springs and a dashpot [1], using a

network which was previously formulated by Honeywell. The network model of the SD
strut is included as Figure 3.

[AP-
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Filgure 3 - Spring / Dashpot Rodel of the SD Strut
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The correlation between hardware effects and network parameters is given in
Table 1. The S5-parameter spring / dashpot model effectively simulates the dynamic
response of the D-Strut, when appropriate values of the model elements are chosen.
This analytic model can be directly incorporated into truss models and the matrix
equations solved to provide the complex eigenvalues and sigenvectors of the damped
structure. However, this method does not provide insight into the best selection of
locations for the dampers or effective design of the damping members. Alternative
modeling methods can be used to determine the effect of the strut on the dynamics of a
structure, and to provide insight into the proper selection of the various strut
parameters.

To efficiently model the D-Strut behavior, the impedance of the strut was
developed. The impedance of the strut is a frequency-dependent complex number
which provides the ratio of the applied force to the resulting displacement across the
strut, as well as the phase relationship between them. The strut impedance can be
determined by transforming a dynamic load and the resulting dynamic displacement
across the member to the frequency domain using the Laplace transform:

X(s) = L (x(t) F(s) = L (f(v) (1)

where:
x(t) = the dynamic displacement across the damper
f(t) = the dynamic force applied

The strut impedance then relates the frequency-dependent force and
displacement. However, it is a function of the Laplace variable:

F(s) = Z(s) X(s) (2)

where:
Z2(8) = member impedance function

The impedance can be written in many alternative forms which have utility in
different applications. A representation of the impedance which is useful for the
analysis of dynamic systems and for optimization of the D-Strut is the complex stiffness
representation. The complex stiffness representation can be determined by evaluating
the real part of the impedance, and defining the loss factor as the ratio of the imaginary
part of the impedance to the real part of the impedance:
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Table 1 - Hardware Eftfects Modeled by Various Springs

Model Hardware Effect
Parameter
K1 Outer Tube Axial Stiffness
K2 Inner Tube Axial Stiffness
K3 Diaphragm Bending Stiffness
K4 FiLid Compressibility and Chamber Compliance
C Orifice Fluid Fiow Restriction

Keq (8) = Real (%(s)) n(s) = Imag (Z(s)) / Real (Z(s)) (3)

When represented in this manner, the frequency-dependent impedance is
identical to the "complex stiffness” which is typically used to model viscoelastic
damping treatments. Impedance (complex stiffness) models of viscoelastic damping
struts were previously used for the design and analysis of the PACOSS Dynamic Test
Article (DTA) and were shown to provide a useful representation of the damping

elements which allcwed the determination of the uynamic properties of the damped
structure [2].

To show how the impedance is determined for a simple spring / dashpot
network, consid3r the network in Figure 4. The network consists of a spring which is in
parallel with a spring and dashpot in series.

& \

i Ka CA

X

Figure 4 - Simpile Spring / Dashpot Network

The impedance of any network can easily be deterinined using network
simplification. The impedance of {1is network is:

CASKB

z‘s)=KA+6;s +Kg

(4)

The strut imnedance for sinusoidal inputs as a function of frequency is
determined by evaluating along the imaginary axis in the Laplace domain (at 8 = lw):
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3
Koqllo) = Real (Z(io)) = -—-'K?_" +Ka+Kg
CAz(!.) +K§

_ Imag(z(iw)) _ C.Kio

n(lw)

RealZ(io) ¢ ,2.%Kk, + Kg+ KoK2 (5)

The complex stiffness representation can be plotted versus frequency to show
the shape of the impedance function. Figures 5 and 6 provide representative
impedance plots for tha simple network. The values used to generate the impedance
plots were 50,000 Ib/in., 100,000 Ib/in., and 2,000 Ib-s/in. for Ka, Kg, and Ca,
respectively. The equivalent stiffness asymptotically approaches the sum of Ka and
Kg, while the loss factor displays 2 distinct peak. The low-frequency stiffness of the
network is the stiffness of the shunt spring Ka.

A high loss factor is desirable to provide high damping ratios to the modes of
flexible structures [3]. To determine the maximum loss factor of the spring / dashpot
network and the trequency of the peak as a function of the network parameters, the

derivative of the loss factor equation with respect to frequency is taken, and the
frequency wmayx is determined:

K
Wpay = =

"™ /K
A KA
Substituting this frequency into the loss factor equation, the peak loss factor is

determined to be:
KA+KB
KB/\/ K, —

Nmax= 31K, + Ky

(6)

(7)

Notice that the value of the paak loss factor is inaependent of the dashpot value
Ca. The peak loss factor is determined by the stiffness ratios in the network, and the
value of the dashpot coefficient sets the frequency of the peak. This is counterintuitive
to most structural dynamicists, as in most simple dynamic systems it is the stiffnesses
which set the frequency and the dashpot value which sets the damping ratio.

Impedance analysis of the D-Strut network model is similar to the simple
network. In fact, the S5-parameter network can be converted to an equivalent
3-paramater network which has an identical impedance. The conversion of the
5-parameter model to the 3-parameter model is useful to provide insight into the
proper selection of the spring stiftnesses and dashpot values for the more complex
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Figures 5 and 6 - Impedance Characteristics of the 3-Parameter Network
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network. Solving for the values of Ka, Kg, and Cp of the 3-parameter model in terms
of the parameters K1, K2, K3, K4, and C of the 5-parameter model yields:

K1 K2+ K1 K3+ K2K3

KA K2+K3

KoK,
Ko+ 2K,Kg+ Ko+ KyKy+ KoKs

Kg=

(8)

The 3-parameter network is entirely equivalent to the S-parameter network with
this selection of the parameters, with any internal effects of inertias neglected.

The behavior of the spring / dashpot impedance as a function of frequency is
very similar to the impedance characteristics of viscoelastic materials (VEMs). The
network stiffness increases monotonically, while the loss factor shows a distinct
maximum value. The maximum loss factor occurs in the transition region between soft
and stiff behavior. The strut properties, as the viscous dashpot coefficient is altered,
can be written in terms of a reduced frequency, which depends on both the forcing
frequency and the dashpot coefficient. The similar characteristics of the spring /
dashpot network and viscoelastics has previously been used to model viscoelastics
materials as networks, as in Maxwell's and other models of damping material
behavior.

The impedance representation of the strut properties provides insight into the
design and efficient use of D-Strut members. The incorporation of these models into
truss structures and evaluation of alternative structural modeling techniques was
evaluated for use in the design and analysis of the PACOSS truss.

4.0 Modeling Techniques and Design Methodology for Structures
Incorporating D-Struts

For D-Strut members to be used efficiently to provide damping to flexible truss
structures, a coherent design methodology is required to provide structural designs
which meet requirements with minimal additional weight and system impact. Modeling
methods were developed which allow simple caliculations to estimate the effects of
incorporating D-Struts on system natural frequencies, damping ratios, and mode
shapes. These methods were shown to be accurate and allowed the development of
a simple design methodology. When applied to a structure, the methodology will
provide efficient damping designs without the high cost associated with the solution of
large complex eigenproblems.
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A preliminary concept which must be developed is the conversion of a viscous
system to one with complex stiffnesses (impedances). The concept can be extended
to arbitrary systems with many networks and many degrees of freedom. In general, the
Laplace transform of the free vibration equations of motion of an arbitrary system with
viscous damping are:

[Ms2+Cs+K]X=0 (9)

where: M = system mass matrix
C = system viscous c'amping matrix
K = system stiffness matrix
X = vector of transformed global displacements

By choosing an initial estimate to the eigenvalue, the transformation from a
system with viscous damping to a system with a complex impedance can be obtained:

IMs?+co+K|x =0 (10)
define: Co+K =2ZRr +1+21
where: o is an initial eigenvalue estimate

The impedance matrix can be obtained as shown above, or by the assembly of
elemental impedances:

NE
Z(s) = X, Zp(s) +1°Zyfs)
o (11)

This conversion will typically be performed on an element level prior to
assembly of the impedance matrix. The utility of the method ie in noting that the
impedance matrix has the form of a complex stiffness matrix. |If iterations are
performed to calculate an eigenvalue and eigenvector from the initial estimate, and the
impedance is updated using the result as a new initial eigenvalue guess, the
procedure will converge to an exact sigenvalue and eigenvector of the viscously
damped system.

The transformation transfers the 2 N-size complex eigenproblem (solution of the
2 N real matrix eigenproblem in state form) to a 1 N-size eigenproblem with a complex
matrix which must be solved iteratively. The iteration method can be used efficiently in
conjunction with matrix iteration methods such as the inverse power method, since this
method converges to a single eigenvalue and eigenvector at a time. In fact, the
inverse power iterations performed in MSC/NASTRAN to calculate the complex modes
of a viscously damped system are performed essentially by making this substitution
and iterating with a shifted dynamical matrix. The real value of the transformation of
the eigenproblem, however, is that approximate methods can be used to obtain
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modes, natural frequencies, and damping ratios without the solution of a complex
eigenproblem.

The modal strain energy (MSE) method is a well known method for
approximating the solution of a system with complex stiffness using only real
eigenproblems. The MSE method is typically used to approximate the behavior of
systems with viscoelastic damping treatments, and was used in previous PACOSS
efforts in the design and analysis of the PACOSS DTA [4]. Similar to the D-Strut
network, VEMs exhibit frequency-dependent complex stiffness behavior (frequency-
dependent shear modulus and loss factor). Therefore, visco-elastic damping
problems must also be solved iteratively by supplying an initial estimate to the natural
frequency, substituting this value to determine the material complex m3dulus, and then
solving a real eigenproblem to provide approximate mode shapes, frequencies, and
damping ratios for modes "nearby" the initial frequencv sstimate.

Note that the member impedances should be calculated at the system pole
(eigenvalue) for the analysis to provide the best approximation. For D-Struts, the
impedance can readily be calcuiated at the system poles using the spring / dashpot
network. Computation of the impedance at the system eigenvalue provides a more
accurate approximation to the system behavior when used with the MSE method.

Due to the similarity of the D-Strut behavior and the behavior of viscoelastic
damping struts, the methods previously developed for viscoelastic damping struts to
select damping member locations and provide approximate system behavior can be
directly used for the design of D-Strut damping treatments [4]). A simple methodology
to be used when designing a truss structure with D-Strut members as a damping
treatment is provided in Table 2.

This method allows the designer to achieve a satisfactory design for strength,
natural frequencies, and damping ratios using only real eigenproblems, except for
complex analyses at the end of the design cycle. It is apparent, when using this
method, that the optimum locations for the dampers are areas of high strain energy,
and that the sizing of the selected members for damping should be such that the
maximum possible strain energy is contained in thhese members within the constraints
of the problem. It is also evident that the damping members should have high loss
factors at frequencies of the modes in which they have high strain energy to provide
the highest system damping ratios.

A final benefit of the design method is that it allows the number or locations of
dampers to be readily changed in the finite element model, since the only difference
between the damper modeling and undamped member modeling is the member axial
stiffness and member weight. Using this method, the only input data alteration
required to change an undamped member to a damping strut is a property
designation. With network modeling, a significant effort is required to add and/or
remove additional nodes and element connectivities, when a damping element
location is changed.

The D-Strut design procedure was exercised on several sample problems
using the MSE method, in order to determine its accuracy and applicability for
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Table 2 - Design Methodologyv foi Incorporating D-Struts

5)

6)
7)

8)
9)
10)

11)

12)

13)

Create a finite slement model of the undamped structure.

Daliinne system natural requencies ana e require imodai damping lsvels threnigh
simulation.

Select favorable damping locations for struts from MSE and loading consgideraticins.

Size members such that high percentage of MSE is obtained in damping locations
without causing an excessive shift in frequencies. Revise damping requirements
based on altered mode shapes obtained in this step, ¥ changes in the mode shapes
significantly alter the performance.

Specify maximum additional weight over undamped members for the D-Strut members.
Or, alternatively, specify the required D-Strut loss factors, since there is a direct
relationship between strut weight and maximum achievable loss factor.

Specify the minimum static stiffness and strength for the damping struts.

Design a D-Strut such that the maximum weight is not violatad, the designed stiffness
and maximum loss factor are achieved at the frequency of highest D-Strut participation,
and strength requirements are met. I is possible that all the constraints cannot be met,
while simuitaneously achieving the desired loss tactor. The maximum weight constraint
will then have to be relaxed, lower damping levels may be required, or additional
damping locations must be seiected.

Estimate the damped eigenvalues using the MSE method.
Calculate the strut properties at the damped elgenvalues.

Insert the damper properties into the model as an equivalent bar element; and
recalculate system modes, natural frequencies, MSE. (Several runs may be
necessary for several frequency and/or damping ratio values.)

Check the frequency and damping values to be sure that the eigenvalues have not
changed significantly and, therefora, damper properties are accurate. lteration may be
required on the strut loss factors and system damping.

Determine if performance requirements have been met. If not, retum to step 3 and selec:
additional damping strut locations or alter D-Strut designs for higher loss factors.

When the design requirermnents have been met for all modes, mode! the dampers as
spring / dashpot networks with Ky and Kz implemented as bar elements, and solve the
complex eigenproblem. This will check the results and allow final complex modes to be
used in simulations. Alternatively, use accelerated complex subspace iteration with the
dampers modeled as frequency-dependent complex stiffness elements [5].

TAB-12




problems of this type. From these sample problems, several conclusions were drawn.
Most importantly, it was shown that for light damping levels the procedure is accurate
and effective. For modest damping levels, however, the MSE method often produces
approximations which have relatively high error. Therefore, an alternative method of
determining the properties of damped structures using real eigenproblems, termed the
absolute value modal strain energy method [6], was developed which improves the
accuracy of the solution for higher damping levels .

5.0 Prellnunary Desigin oi e J-Stiul Truss

To ensure the success of the PACOSS D-Strut truss as a verification testbed
while providing an economic validation tool, several goals for the structural design
were established. The basic configuration selected for the truss consisted of eight
bays with a 34-in. bay size.

The fundamental goal was to achieve high modal damping of major structural
modes in the frequency range characteristic of future Large Space Structures (LSS).
Modal damping levels of 10% critical viscous damping in the fundamental truss modes
were selected as a goal for the truss design. This level of damping was to be achieved
using 12 D-Strut members in locations selected to achieve the highest damping
possible in the fundamental modes.

To provide data in the frequency range characteristic of future LSS, a
fundamental frequency of 5.0 Hz was selected for the truss. in addition, a frequency
separation of 0.5 Hz for the two fundamental bending modes (bending in two
orthogonal planes) was desired, to allow the separation of the modes during the
modal iest and simplify the modal test data reduction problem.

Hardware design issues, such as joint design and member integritv, were
addressed during the preliminary design process. Bonded joints s:milar to those used
on other PACOSS structures were selected [4], primarily since they have been shown
to provide strong corinections with negligible inherent damping. Aluminum members
were selected for the basic truss to provide the greatest economy.

A finite element model of the truss was created to allow for member sizing and
preliminary design. A back-to-back K-diagonal pattern was selected to provide a
structure with two planes of symmetry. This diagonal pattern results in two separated
modes which have their primary motion along 45° axes with respect to the sides of the
truss bays. The members were sized so that the major strain energy portions were in
the longerons of the structure, as the damper locations were selected to be the lower
longeron members due to the high modal strain energy content.

A plate located at the top «¢ the truss was adjusted to achieve the desired
5.0-Hz frequencies; and the desired frequency separation between the fundamental
modes of the truss were obtained by replacing the aluminum longerons in two of the
vertical sides of the truss with steel members. This nearly achieved the desired 0.5-Hz
frequency separation. Member offsets at the joints were included in the model to
model the effective free length of the tubes when bonded in piace.
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An investigation of the affect ¢f various iip weights was also undertaken for the
truss. Various tip weights were incorporated into the truss mode: xznd analyzed tc
determine the natural frequencies and damping ratios. With tip waights which were
twice the nominal, one-fourth, and without a tip ¢.eight, the fundamental modss of the
truss could be aitsred within a range of 3.5 to 11.0 Hz. These values of the tip weigh:
were selected {cr use cn the truss so that the D-Strut members could be validated ove-
a greater frequency range.

A summary of the truss properties following the preliminary desic: is included ir
Table 3. Notice that the 5.0-Hz frequencies with 0.5-Hz separation ar«i hich strain
energy in the dampers were achieved with stock aluminum and steei sectionc for the
members. This design provided an economically-manufactured structure which allows:
extraction of the twc major modes due to the frequency sseparation and inheren:
structural symmetry.

Preliminary design for the damping members were generated based on the
impedance equations ior the strut network. The parameters of the network were
selected to provide high damping levels with minimum strut weight. The hydrauiic
stiftness in the damping device was selected to be as high as was thought to be
achievable, and the sizes of the tubing members were selected to provide the requiredi
loss factor with minimum weight. The dashpot coefficient was selectsd to place the
peak loss factor at the frequency of the fundamental frequency cf 5.0 Hz and,
therefore, to supply the peak possible damping. Using the parameters of the
preliminary D-Strut desigi,, the damping in the truss was calculatsc using the MSE:
method for both the SO and 1 sirut types. The damping ratios using these members
are giver in Table 4.

6.0 Detall Design, Fabrication, and Impedance Testing of the D-Struts

The preiiminary D-Strut parameter selection information was provided to
Honeywell to aliow them to perform the detail design and fabrication of a prototype D-
Strut member [7]. The detail design of the strut members was performed using tha
member design equaticns developed by Honeywell in prior internai research sfforts.

Table 3 - Summary of D-Strut Truss Natural Frequenciss g&nd Strain
Energy Distribution Following Preliminary Desig:

Mode Descriptior Frequency (Hz) i% S .: Dampers
1st Bending Mode (Plane 1) 498 61.7
1s! Bending Mode {Plane 2) 5.44 66.0
18! Torsion Mode 14.26 40
2d Bending Mode (Fiang 1) 28.97 26
2nd Bending Mode (Piane 2) 30.84 1.7
Toa!l Weight including Joints and Tip Weighi 287
Tip Plate Weight i3

~4
1
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Table 4 - Modal Damping Levels Using SD and D1 Strut Preliminary Designs
'MODE DESCRIPTION  [SD STRUT DAMPING  [D1 STRUT DAMPING |

Plane 1 18t Bending 13.1 16.1
Plane 2 18t Bending 14.0 20.4

From the detail design effort, it was apparent that the stresses within the viscous
damping device and the achievable values for the device hydraulic stiffness were the
major considerations in the design of the damping members. These constraints on the
design eliminated the D1 strut from consideration, due to the very high damping
element stresses for this configuration.

Due to these design constraints, the prototype design philosophy followed by
Honeywell was to match the impedance characteristics of the preliminary design,
while minimizing the stresses in the damping device diaphragm under constraints on
the overall diameter of the damping device. This allowed the design of the strut to
achieve the desired impedance characteristics, however, a significant weight increase
over the preliminary design was required to obtain the required loss factor. A
prototype of this design was then constructed for evaluation.

impedance testing of the strut prototype was performed to verify the design of
the member and to provide data which would allow improvement of the design. Tests
of the prototype D-Strut showed that the strut possessed good linearity and provided a
peak loss factor at the desired frequency. The peak loss factor, however, was lower
than expected. The clamping of the diaphragm was suspected as the most probable
reason for the degraded performance, although the effects of bonds and low modulus
of the aluminum of the inner tubing also contributed to the low performance. Several
design/test/build iterations were undertaken, however, the desired performance
specifications of the preliminary design were not obtained.

The fabrication of the delivery D-Struts was undertaken using the prototype
design with the modified clamping arrangement for the diaphragm which provided the
best performance. Fourteen D-Struts were fabricated by Honeywell, and following
completion of the member fabrication, each individual strut was tested to verify its
strength and impedance characteristics. A typical impedance measurement is
provided as Figures 7 and 8. The individual members showed some unit-to-unit
variation, however, "average” strut parameters were synthesized for use in the model
of the D-Strut truss pretest analysis. The static stiffness, peak loss factor, and peak
loss factor frequency of the 14 D-Strut members are given in Table 5. The individual
strut impedance data were also fit to determine the parameters which could be used to
represent the individual strut members in a refined model for analysis following testing
of the actual truss structure.

7.0 Modal Testing of the D-Strut Truss
The objectives of the D-Strut truss test were to identify the natural frequencies,

mode shapes, and damping ratios of the test truss, and to allow for correlation with the
truss modal analysis. The undamped truss assembly was first tested to validate the
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Figures 7 and 8 - Measured D-Strut Impedance Function
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Table 5 - Static Stifiness, Peak Loss Factor, and Peak Loss
Frequency as Read from Impedance Plots

Strut No. Static Stiffness | Peak Loss Factor Frequency of
Peak Loss
1 78,000 0.29 6.2
2 80,000 0.23 45
3 83,000 0.26 4.0
4 80,000 0.26 45
5 78,000 0.28 6.2
6 80,000 0.20 6.4
7 80,000 0.23 5.2
8 78,000 0.28 48
9 80,000 0.30 6.2
10 82,000 0.28 5.2
1 80,000 0.29 6.0
12 77,000 0.28 6.3
13 78,000 0.27 5.8
14 77,000 0.28 6.0

test fixturing and setup and allow the verification of the structural modeling without
additional damping treatments. The nominal tip weight was used in the undamped
truss test, which caused the fundamental frequencies of the truss to be close to the
damped truss fundamental frequency of 5.0 Hz. A full modal survey of the undamped
structure was performed to determine the structure natural frequencies, damping
ratios, and mode shapes below 45 Hz.

The damped truss assembly was then tested with the nominal tip weight to
determine the properties of the damped assembly with the D-Struts as the longerons
in the lower three bays. Again, a full modal survey was performed on the truss to
determine the modal properties of the damped assembly.

Finally, various tip weights were added to the truss to determine the truss
properties over a significant frequency range. Sufficient data were acquired in each
configuration to permit the identification of the natural frequencies, damping ratios, and
mode shapes of the two lowest frequency structural modes, which are most greatly
affected by the D-Strut members.

8.0 Analytic / Test Correlation of the Truss Modal Data

Following completion of the D-Strut truss modal test, correlation with the
analytic model was evaluated. The undamped truss test results were initially
compared with the analysis, and minor revisions to the model were made to improve
the correlation. The model was compared with the test results in terms of the natural
frequencies and mode shapes, with excellent agreement found for the modes below
45 Hz. Table 6 provides the analytic / test comparison for the modes of the undamped
structure. Note the light damping ratios which were determined by parameter
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Table 6 - Undamped Truss Tuned Analysis/Test Comparigson

Analytic Measured Measured
Measured Frequency Frequency Damping
Mode No. (Hz) (Hz) Ratio (%)
1 462 4.61 0.07
2 478 4.79 0.08
3 13.64 13.72 0.08
4 26.46 27.10 0.08
5 29.32 28.84 0.08
6 31.86 31.55 0.08
7 43.24 43.74 0.11

estimation. Decay measurements of the structure without cabling show damping of
0.01% critical in the fundamental mode.

Following correlation of the undamped structure, the model of the damped
assembly was modified to reflect the changes in the undamped portion of the model.
The truss properties with the nominal tip weight and each strut modeied as the
"average" strut were then computed and compared with the test data. Excellent
correlation was found for natural frequencies and mode shapes, and good agreement
was found for the damping ratios. One final model modification was made which
involved the incorporation of the properties of each individual strut in the proper strut
locations, with the individual strut parameters determined from member impedance
data. Table 7 provides the comparison of the damped structure modal analytic and
test results. With the individual members incorporated, the agreement with the test
data showed some improvement over the "average" strut model, although the previous
model showed good agreement. Modal orthogonality checks were performed
between the analytic and test modes using the analytic mass matrix. Table 8 provides
the orthogonality results, which show outstanding agreement between the experi-
mental and analytic mode shapes.

Finally, the refined model of the damped assembly was altered to refiect the
various tip weights and reanalyzed to determine the truss properties. Again, these
results agreed well with the measured data and verified the performance of the
damping members at frequencies other than the peak loss factor location. Table 9
provides the frequency and damping correlation for the various tip weights.

The model correlation showed that accurate modeling of truss structures
incorporating D-Struts was achieved using the 5-parameter D-Strut model. Howeve-,
determination of the modei parameters from impedance measurements on the
individual struts was required. The test/model correlation of both the damped and
undamped structures are excellent, particularly if the highly damped nature of the
structure with the D-Strut incorporated is considered, and the difficulty in parameter
estimation associated with these high damping ratios is recognized.
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Table 7 - Nominal Tip Mass Tuned Analytic/Test Comparison
with the D-Struts Modeled Using Parameter Fits

Analytic Measured
Frequency Damping Frequency Damping
Mode No. (Hz) Ratlo (%) (Hz2) Ratlo (%)
1 4.98 7.23 5.00 6.59
2 5.10 9.62 5.25 9.43
3 13.61 <0.1 13.68 0.11
4 26.20 0.72 26.79 0.79
5 28.42 0.28 28.16 0.39
6 30.77 0.49 30.67 0.52
7 40.70 0.22 40.99 0.26

Table § - Cross-Orthogoneiity Matrix for Tuned Analysis of Damped Truss

Anatytic
I-_—-Frequoncy
498 5.10

5.00 [ 1.00
5.25 | 0.00
13.68 | 0.00
26.79 | 0.00
28.61 | 0.00
30.67 | 0.00
[40-99 0.0
Experimental
Frequency

0.00
0.99
0.00
0.00
0.00
-0.01
0.00

13.61
0.00
0.00
1.00
0.00
0.00
0.00

-0.01
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0.00

28.42 30.77 40.70

-0.01
0.01
0.00

-0.03
1.00

-0.02
0.02

0.03
0.00
0.00
0.00
0.02
1.00
0.00

0.01]
0.00
0.00
0.00
0.00
-0.01
1.00 |




Table 9 - Tuned Analysis/Test Comparison with Varlous Tip Welghts

Analytic Measured
Measured | Frequency | Damping | Frequency | Damping
Mode No. (H2) Ratlio (%) (Hz) Ratio (%)
Twi
N w |°°| 1 3.62 7.17 3.68 6.59
omina 2 3.70 8.83 3.87 9.39
Welght
One-
Fourth 1 7.85 6.17 7.84 6.70
ourt 2 7.98 8.82 8.18 8.67
Nominal
:" 1 10.46 7.40 10.27 7.23
P 2 10.45 5.08 10.87 5.91
Weight 3 10.68 427 10.97 5.52

9.0 Compearison of Viscoelastic Extensional Shear Dampers
and D-Struts for Truss Damping Applications

The PACOSS DTA [2,4] includes damping strut members which were designed
and fabricated using VEMs. For treatment of the box truss and equ.pment platform,
viscoelastic extensional shear dampers (VESDs) were designed and incorporated intd
these truss structures. As the D-Strut is also designed to be used as a damping
element for truss structures, a comparison of the state-of-the-art hardware for the two
methods of dar.iping treatment is beneficial.

To allow a direct comparison of the properties of thess damping members, a
viscoelastic damper was designed, which had an identical sti{ffness and loss factor at
the 5.0-Hz frequency of the fundamental modes. Similar elements were designed,
built, and tested under the PACOSS Program, and the analytic A<sign equations fer
these members have been adequately verified. The pertinent properties of the VESD
were then compared to those of the D-Strut.

The results of the comparison show that the D-Strut hardware which was
developed for the PACOSS truss structure has one advantage over viscoelasti:
members, and several disadvantages. A comparison of the imnortant characteristics
of these two damping members is provided in Table 7. The primaiy advantage of tha
D-Strut is its reduced temperature dependency. The D-Strut hss a $40°F temperature
range for a 10% variation in the impedance, while a similar viscoelastic member has
only a +5°F range.
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Table 8 - Comparison of important VESD and D-Strut Properties

D-Strut VESD
Peak Loss Factor/Frequency 0.275/6.0 Hz 0.285/4.0 Hz
Loss Factor at 5.0 Hz 0.270 0.280
Equivalent Stiifness at 5.0 Hz 96,000 Ib/in. 94,000 ib/in.
Static Stiffness 78,000 Ib/in. 54,000 Ib/in.
Static Strength €00 Ib 5,700 Ib
Damped Element Weight 2711b 1.741b
Added Weight / Undamped Waeight 2.31 1.13
Required Temperature Control 1 40°F 1 5°F

The viscoelastic member, however, has a much higher load carrying capacity
and adds less weight to produce a similar damping ratio. The added weight of the
D-Strut member was roughly twice the added weight cf a viscoelastic member. This
added weight is primarily due to the low hydraulic stiffness (K4) of the current damping
device. The load carrying capacity of the D-Strut is currently very low, due to stress
constraints within the damping device. These stresses cause the maximum load
capacity of the D-Strut to be approximately a factor of 10 lower than its viscoelastic
counterpart.

Whilg, at this time, the comparison favors the viscoelastic member, fuwre
advances in the design of viscous damping membets should exceed the capabilities
ot viscoelastic struts. The success of an alternative damping device which can sustain
high deflections and has a much larger hydraulic stiffness can cause this comparison
to favor the D-Strut. Damping devices which show almost no temperature
dependence may be developed, which will eliminate the need for temperature control
of the strut members.

10.0 Conclusions

From the PACOSS investigation of the D-Strut, it was determined that efficient
MSE techniques in conjunction with member impedances can be used to design both
the damped structure and to optimize the characteristics of the damping members.
Final analysis of a damped structure can then be performed by incorporating a spring /
dashpot model of the damping struts diiactiy into the finite element model.

The D-Strut members which were fabricated and tested qualitatively agreed
with the 5-parameter spring / dashpot model developed by Honeywsell. Quantitatively,
however, the parameters of the model derived from the design equations for the
member did not accurately predict the performance of the viscous fluid damping
device. In particular, the predicted hydraulic stiffress and the diaphragm stitfness
were significantly different from the values predicted by the model. The lcwer
hydraulic stiffness caused the damping of the truss test structure to be approximately
35% lower than anticipated during preliminary design.
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Following fabrication and testing of a strut prototype, each .rddvidual D-Strit
member was dynamically tested to determine its impedance characieristics. Tasiing of
the individual strut membars nrovided data for the determination of tie parameters ¢ f
the strut mode! which waouid provide an impedance consistant with the measuied data
for each unit. The modei of the truss was modified to refiect these data.

An undamped lower section of the structure was also {abricaiad to determin:
the accuracy of the mode! of the undamped section and veaii’, izt very light
inadvertent damping was present. Decay testing of the undamped truse v=rified an
extremely low damping ratio of 0.01% critical, which demonstrates the light “ampinj
ratios expected for precision truss structures without damping augmentetion. With th2
D-Strut members incorporated into the truss, the damping ratics of the dampe
structure were approximately 7.5% and 10.0% critical for the first two structural modes.
This represents a 4-ordar-of-magnitude increase in damping over the undamped
structure. Four tip weights were used on the truss, which aliowsad a significart
variation in the fundamental fraquencies and verified the performance of the dampin;
members over a significant frequency range.

When the modal data as synthesized from measurements are compared wit)
the analytic data, the ccrraiation in excellent. The first ssver natural irenuencies of th2
tuned model ¢! the undamped structure agree with the test data :o within 2%, an3i
other measures of mode! accuracy show good agreement. The mcdel of the dampel
structure aiso has similar accuracy in terms of natural frequencies, and ali dampinj
ratic predicticns agree to within 9% relative error. This agreememnt verifies that tha
modal properties of damped structures which incorporate D-Strut membars can be
accurately predicted with tinite element models and the Hcneywe!l 5-parameter
model, if the appropriate parameters of the model are detarmined from member
impedance test data.

Finally, a comparison of the D-Strut to the PACCSS VESD was made t)
determine whether tha potential advantages of the D-Strut were achisved. From tha
comparison, it was concluded that the only current advantage of the D-Tirt is its
larger temperature range. The current D-Strut design was shown 10 ba haavier than a
VESD which was designed to produce identical frequencies and darnping ratins when
incorporated into the truss. The D-Strut was shown to hava oniy a 6(0C-ib sirengt
(due to the stress limitations of the damping element), while e VESLY gesign nad a
strangth of 5,70C ib. This lower strength of the current D-Stut s nmay preciuds its
use in situations where high loads are present.

While the current design of the D-Strut has scme dehciencies, aiternauva
designs of the viscous fluid damping device may reducs or ehiminate thes3s
shortcomings. In narticular, if the viscous damping element can be dasignad to have 1
much higher hydraulic stiffness than the current device, the weight of the Jdanper for 3
given performance wii e sigmificantly decreased such that & will be hiyhte:r than its
viscoelastic counterpart. Similarly, if the damping element can e designed to sustain
high deflections, the strength of the element will be ccmparable to tha VFSD. Futurs
work should be underiaken to investigate alternat'-e design~ of the dampmng element.




The PACOSS investigation has shown that the viscous fluid damping strut can

be successful in producing high damping ratios for truss structures. The device can be
modeled accurately from impedance test data, and properties of structures which
incorporate these devices are predictable. Refinement of the design of the damping
element will make the D-Strut concept extremely successful and attractive for
incorporation into damped trusses for space applications.
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AN ADVANCED D-STRUT™

L. Porter Davis!
Steven D. Ginter, Ph.D.2
Honeywall Inc,, Satelliic Systems Operation

ABSTRACT

A viscous-damping technique offering high damping for spacecraft truss structures has
been under development since 1986. The technique, known as the D-Strut™, uses a
small mechanical viscous damper configured in an inner-outer tube-strut configuration,
and replaces the nominal-type strut. The viscous-damped D-Strut has been employed
in more compliant isolation systems for space applications, including the Hubble Space
Telescope.

The United States Air Force and Jet Propulsion Laboratory have investigated D-Struts
for use in high specific-stiffness truss structures. This technique is an attractive means
of attaining significant damping levels in space structures.

1Senior Staff Engineer, (602) 561-3211
2Gtaff Engineer, (602) 561-3244
Honeywell Inc., Satellite Systems Operation, P.O. Box 52199, Phoenix, AZ 85022
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INTRODUCTION

A viscous-damping technique that offers high damping for spacecraft truss structures
has been under development now for several years (References [1-31). The technique,
known as the D-5trui™, employs a small, mechanical viscous damper configured in an
inner-outer tube-strut configuration. The D-Strut serves as a basic element in a truss
structure, replacing the nominal-type strut. The viscous-damping concept, employed in
more compliant isolation systems, has been qualified for at least three space
applications and is currently flying in the Hubble Space Telescope, where the function is
to isolate disturbances emanating from the attitude control reaction wheel assembly
(References [4-5]).

The United States Air Force and the Jet Propulsion Laboratory (JPL) have investigated
the use of D-Struts in high specific-stiffness truss structures. With considerable
development heritage, the viscous D-Strut now provides an attractive means for
attaining significant damping levels in space structures. The D-Strut is simple in design
and construction, is easy to model, and is readily incorporated into the overall structure
design and analysis process.

The advantages of the D-Strut are:
¢ Very large dynamic range (no rubbing friction or hysteresis)
Damping independent of stiffness
High damping
Low temperature sensitivity compared to viscoelastic materials
Adjustable performance
Linear and predictable performance
Qualified for space application
Hermetically sealed fluid (fluid exposed satisfies outgassing and mass transfer
requirement of NASA)

Design alternatives within the basic concept provide a variety of performance options.
Design improvements continue to provide better performance, nearing that of an ideal
damper. The reference to ideal refers to a damper which can be modeled simply as a
spring and dashpot in parallel. The following several paragraphs expand on this
consideration and develop the necessary mathematics for a more complete
understanding. Following that, an improved arched flexure design with test results is
presented. Finally, a glimpse of future plans is provided.

D-STRUT CONFIGURATION

The first D-Struts built, shown in Figure 1(a), employ three basic elements: 2 small
viscous damper, an inner tube, and an outer tube.

The damper is placed in series with the inner tube and the damper/inner tube is placed
in parz2llel with the outer tube. An axial displacement across the strut produces a
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Figure 1. Diaphragm Flexure D-Struts for JPL and PACOSS

displacement across the damper. Under an axial displacement, the damper forces fluid
through a small-diameter orifice, thereby causing a shear in the fluid. The fluid shear is

proportional to the displacement rate across the damper; thus, a true viscous-damping
force is obtained (i.e., a force proportional to velocity).

The compliances of the damper, the inner tube, and the outer tube are key to the
damping performance of the D-Strut. The damper is the most-compliant element and
the inner tube is the least-compliant element. The outer tube provides the basic static
stiffness of the strut and is pertinent to applications where the strut is a critical load-
bearing element in the structure. Otherwise, the outer tube is not necessary and can be
eliminated with a resulting improvement in damping performance.

The damper element consists of two compliant metal cavities connected by a small-
diameter orifice of a certain length. The damper cavities are hermetically sealed to
avoid outgassing and fluid loss. The damper is mechanically simple, has no moving
parts or wear mechanisms, and is completely tolerant of space vacuum and radiation.

A diaphragm flexure D-Strut tested by JPL is shown in Figure 1(a). A second
diaphragm flexure D-Strut was developed for PACOSS program (Reference [3]) and is
illustrated in Figure 1(b). Both systems were tested as single elements and as an integral
part of a truss structure. Twelve D-Struts were used in the PACOSS structure.
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The flexing of a metal diaphragm is the mechanism that forces fluid through the small

orifice. The advanced designs replace the diaphragm with a convoluted cylinder or
arched flexure.

D-STRUT MODEL

A D-Strut is readily modeled by five physically lumped parameters, as indicated by
Figure 2. Considerable insight to the damping performance is gained by regarding the
D-Strut as a mechanical impedance. Mechanical impedance is somewhat analogous to

electrical impedance and related, in the frequency domain, the axial force f to the axial
displacement x across the strut:

z(s) 5% (1)

with s denoting the Laplace transform variable. For no damping, the impedance reduces
to a standard stiffness. The mechanical impedance is a good characterization of the D-
Strut behavior as long as the mass lumped at the internal nodes, labeled N3 and N4 in
Figure 2, is negligible. This is typically a very good approximation over the frequency
range of interest.

w k1 - Outer Tube Stiffness
N k2 - Inner Tube Stiffness
[ k4
Damper Element:
k3 kg - Damper Static Stiffness

oL 5N; >0 k4 - Damper Volumetric Stiffness

¢ - Viscous Damping Coefficient

Figure 2. Inner-Outer Tube D-Strut Equivalent Mu-iel

The impedance of a D-Strut is a function of three parameters and has a classic lead-lag
network characteristic:

Wy 5+ 0
Wz S+ ay

z(s) = ks (2)
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with:

kikz + kik3 + kaks
ks = k2 + k3 (3)
_ g_ kika + kik3 + kok3 @)
@Dz ="¢" Tgkz + kk3 + kikg + kok3 + kokg
k¢ ka+ks
Do="C ky+k3 + kg (5)

Because the impedance depends only on three parameters, an equivalent three-
parameter physical model of the D-Strut can be obtained, as indicated in Figure 3.

Figure 3. Equivalent D-Strut Model

The equivalent model impedance is:

2(s) = kg —2 21 2A (6)
WA S+ OB
with:
1 kaks
@A = CA kg +kp )
k
wp = Eﬁ' (8)
The relation between the parameters {kA, kB, cA}and {ki, . . ., k4,c} is given by:
k3
k
ka=ki| 1+ 1k3 (9)
1+ k_z
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1 1
k3=kz[1+%[1+g+%3:| (10)
k kg

1 12 1)
cA=¢C

The equivalent model indicates that only three parameters — two equivalent stiffness
values and an equivalent dashpot coefficient — are needed to model the D-Strut in

overall structure design and analysis. D-Strut testing verifies that this is indeed the
case.

The expressions above for {kA, kB, cA} show that kA ~ k1, kB ~ k2, and c4 ~ c¢. Actually,
kA is larger than k1, since its multiplying factor in brackets is larger than 1 and both kp
and cA are smaller than k2, and c, respectively, since their multiplying factors in
brackets are smaller than 1. It will be shown momentarily that the maximum damping
performance of the D-Strut is established by the ratio kB/kA. This ratio depends only on
the stiffness elements in the damper and the stiffness of the inner and outer tubes. To
maximize the D-Strut damping performance, the damper element should be made to
approach the characteristic of an ideal dashpot. This is accomplished by driving k3 -0
and kq4—» co. In this situation kA — k1, kB — k2, and the maximum damping performance
are established by the ratio of the inner-to-outer tube stiffness k2/k;. A damper with
nonzero stiffness for k3 and a finite stiffness for k4 reduces the D-Strut maximum
damping performance from the theoretical limit. '

D-STRUT PERFORMANCE

The D-Strut damping performance is easily understood under the condition of
sinusoidal displacement and forces. If a sinusoidal displacement:

x(t) = X sin o (12)

is prescribed across the D-Strut, then the resulting force developed in the strut is also
sinusoidal:

fit) = XA(a) sin (ot + ¢ ) (13)

where A(w) and ¢(w) are the amplitude and phase angle of the impedance at the
frequency w:

z2(jo) = zg(®) + jzi(@) = A(w)e¥ @ (14)
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Defining the parameters a as:

B kg
'\/—-—='\/1 = 1

the amplitude and phase of the impedance are given by:

Ala) = kg o2 YL (@0s?

(16)
Vot + (afwp)
_(a2-1) (aYop)
tan (@) = @ + (0 wp) (17)
A typical impedance characteristic is illustrated in Figure 4.
log A (w)
a2kA 5
ka ¢ __/_
+ * -
o @ log ®
o (w)
x [
2

N a0 log

Figure 4. D-Strut Impedance Characteristic
The energy dissipated per cycle due to the damping is determined by ¢(w). In fact,
using the classical definition of damping loss factor:

1 energy dissipated | cycle
2x max energy stored [ cycle (18)

Nw) =
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then:

w) = tan ¢w) (19)
and the impedance can be expressed as:

z(jw) = zR(@) (1 + jn(w)) (20)

It is easy to demonstrate that the maximum loss factor is given by:

n’sm;xrxw)%az::%% (21)
and that n* occurs at:
o= waA=awA=25_::'n* (22)
The value of zR(w) at w* is:
zR(w*) = 2kp ;—L’:—gllk—kﬁ' (23)

Thus, the maximum loss factor is determined only by the stiffness characteristics of the
damper and tubes, not by the damping coefficient c. Since kA is the strut static stiffness,

which is determined by the load capability needed, the damping coefficient ¢ is used to
set the frequency at which the maximum loss factor occurs.

The above equations indicate an equivalence between the physical parameters {kA, kB,
cA) and the performance parameters {n*, o*, zR(w*)}. When designing damping
performance into a structure, the structure engineer often prefers to work in terms of

the performance parameters {n*, &*, zR(@*)}. In analyzing the damping performance of
the structure, the physical parameters {kA, kB, cA} are more appropriate.

From the above equations it is clear that n* is maximized by maximizing kB/kA. This
ratio is related to the four stiffness parameters {k1, . . ., k4} by:

ks k1 1
kA=k11 Q _kél _k_z+£§ (24)
TheTh T TR TRy
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It appears from this equation that, to maximize the damping performance, the stiffness
ratios k2/k1 and k4/k3 should be maximized. The first ratio is that of the inner-to-outer
tube stiffness and the second ratio is the damper's static-to-volumetric stiffness. The
damper volumetric stiffness is due to the fluid bulk modulus and the change in cavity
volume due to stretching of the metal under fluid pressure.

Thus, from the performance viewpoint, the damper element of a D-Strut should be
designed to have as large a ratio of k¢/k3 as possible. An achievable stiffness ratio for a
typical diaphragm flexure, as designed for the PACOSS program, is k4/k3 = 20. A
significant factor preventing a larger ratio for the diaphragm flexure is the difficulty
increasing the volumetric stiffness k¢ while not compromising the strut's static
deflection capability, which is determined by k3. This limiting factor of the diaphragm
flexure has lead to the development of an improved damper employing an arched
flexure with the capability of achieving considerably greater ratios of k4/k3. As
discussed in a latter section, preliminary testing of several prototype designs has
indicated attainable ratios of 50, more than double that for the diaphragm flexure.

D-STRUT DESIGN

Performance is not the only consideration in D-Strut design. Strut weight and load
capability are two more important considerations. There are four basic elements
contributing to strut weight: the inner tube, outer tube, damper elements, and strut end
fittings that interface the strut to the structure. A typical damper element employing an
arched flexure weighs approximately 0.1 1b. The end fittings also tend to have a rather
small, fixed weight. Thus, the inner and outer tubes are the major weight contributors
that vary in the design process.

The tube stiffness is AE/L and the tube weight is ALp, where A, L, E, and p are the tube
cross sectional area, length, material elastic modules, and material density, respectively.
Thus, for a given tube length and a selected material, the tube weight varies in

proportion to its stiffness. Therefore, the sum of the inner and outer tube weights, and
thus the strut weight varies as:

k2
Wi+ W, ~ ki (a+;5b) (25)

where a and b are constants. The outer tube stiffness k7 is now the major factor
determining the strut's static stiffness (recall that the strut's static stiffness is k4, which
is proportional to k7). The strut-load requirement essentially establishes k1 and the strut
weight then varies as the stiffness ratio k2/k1.

The strut load requirement leads to consideration of allowable stresses and strains in the
strut elements. The two most important elements in terms of stresses are the outer tube
and the damper. Consider a static-load condition. If x denotes the resulting static
displacement across the strut (outer tube), y denotes the static displacement across the
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inner ::-De, and B denotes the ratio of the displacement across the damper to the
displacement across the strut:

pa"—;i (26)

then the ratio of the axial stress in the damper to the axial stress in the outer tube is

proportional to 8. An optimal D-Strut design should tend to have the stresses in the
damper and outer tube approximately equal.

Therefore, three important considerations in D-Strut design are performance, weight,
and allowable stress in the outer tube and damper. At the first level, D-Strut design
involves determining values for the five parameters {k1, . . ., k4, ¢} to address
performance, weight, and allowable stress. Specification of performance in terms of the
three parameters {n*, ®*, zR(w*)} leads to conditions for determining three of the five
parameters {k1, .. ., k4, ¢J. Conditions for determining the remaining two parameters
are derived from weight and stress considerations.

To be specific, let the two parameters M and N be defined by:

_k Kk

M is indicative of D-Strut weight and N is the ratio of the damper's volumetric stiffness
to the static stiffness. D-Strut design addressing performance, weight, and stress can be
accomplished via the equation:

kg M Né
kA " 1+(1+M)51+(1+N)6 (28)
1-B
d=—" (29)
i

and the previous equation relating n* to kB/k4. As an example, Figure 5 shows M as a
function of N for various values of n* and a value of 8 = 0.95. This figure clearly
illustrates the benefit of maximizing the damper's stiffness ratio N. For a fixed level of
performance (77*), maximizing N tends to minimize the D-Strut weight (M). Conversely,

for a fixed weight (M), maximizing N leads to improved damping performance (n*).
The arched flexure damper, described next, is able to attain values of N greater than 50,
which provides a significant improvement over the diaphragm flexure N = 20).
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Figure 5. D-Strut Design Curves

ARCHED FLEXURE D-STRUT

The name arched flexure was chosen because of the similarity with a two-dimensional
semicircular arch. The design is more accurately a convoluted or corrugated cylinder.
Figure 6 shows a single-convoluted design and Figure 7 shows a multiconvoluted

design.

AN ARAN A VAN AL AR ANAARANAF AT JOOL TR AN

AR

Figure 6. Arched Flexure D-Strut
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Figure 7. Arched Flexure D-Strut (Multiple Convolutions)

The arched flexure configuration was selected because its shape will provide the highest
possible ratio of k4/k3, which in turn will minimize the needed ratio of k2/k1. This is
equivalent to minimizing k2,which will also minimize the weight of the system for a
given performance.

The volumetric stiffness, k¢, can be characterized as a vallooning effect. It specifically is
the axial stiffness of the system that would result if the shear annulus were plugged.
Both the flexure and the fluid contribute to k4. The fluid stiffness is generally not a
problem if the depth of the fluid is minimrized. The fluid stiffness will range from 1 to
15 million pounds per inch. The D-Strut configuration used in the PACOSS testing,
using a diaphragm flexure, typically exhibited a k3 in the range of 5,000 to 10,000 1b/in.

and a k4 in the range of 100,000 to 250,000 Ib/in. The ratio of k¢/k3 ranged from 20:1 to
25:1.

The arched flexure has the potential for much higher values. Several single convoluted
systems have been fabricated and tested. The result of the first prototypes was a k4/k3

ratio of 52 to 1, or a 2-to-1 improvement over the diaphragm designs. Much higher
values are expected with a second-generation design.

The k4/k3 ratio of 52 to 1 was obtained by dynamic test methods as opposed to direct
static-load testing. In the test setup shown in Figure 8, k3 was measured by removing

the fluid, adapting a known mass, and vibrating the system to determine its resonance.
One result of such a test is shown in Figure 9. The resonance was 64.2 Hz. The
suspended mass was 22 Ib. Thus:

w (2rx642Hz)2231b __
ri 386 radjs = 9686 Ib/in. (30)

k3 =(2 nf)?

To determine k4, the ‘luid cavity was refilled and the annulus pilugged. The resulting
resonance, shown in Figure 10, is 463 Hz. Thus k¢ is approximated:

2 mx 463 Hz)2 23 Ib
ke=(2 nyﬂg—:( ﬂfas?mji 2 = 503,776 lbfin. (31)
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For a ratio:
ks 503776
k3= 9686 =92 (32)

Calculations show that the fluid stiffness is 15,000,000 Ib/in. Using this value, the metal
volumetric stiffness is calculated to be 521,100 Ib/in.

Parametric optimization using closed form stiffness equations lead to the conclusion
that k4/k3 ratios much higher than 52 to 1 can be achieved through parametric
optimization. Further, axial strokes can be achieved greater than the deflection capacity
of the tubular part of any strut. This means that the addition of a D-Strut element will
not reduce the static load capacity of the system. Figure 11 shows a table of arched
flexure designs that point to these conclusions. Note that design No. 4 approximates
the results of the single convoluted design just discussed. This design has one
convolution, N = 1; the radiu . of the arch is b = 0.125 in., the radius of the tube forming
the convolute is a = 0.445 in.; the OD (outside diameter) of the element is 1.34 in.; the
modulus e = 16 million 1b/in., which corresponds to titanium; the stroke of s = 0.006 in.
results in a stress of 55,418 psi; k3 = 9.68 klb/in.; k4 = 503 klb/in.; k4/k3 = 52; the outer
tube stiffness k1 = 67 klb/in.; the 3-model equivalent paralleled spring stiffness kA =
76 klb/in.; the inner tube stiffness k2 = 165 klb/in.; and the 3-model equivalent series
spring stiffness kB = 156 klb/in. In this case, k1 and k2 were somewhat arbitrarily
selected to represent the character of the PACOSS structure. K7 and k2 were not part of
the testing: only the basic D-Strut element was tested. However, previous correlation
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between D-Strut element tests and D-Strut tests is evidence that this process is accurate.
Notice that the damping loss factor ETA = 0.586 or 58% (in the text ETA is N). Had
k4/k3 been larger than 52, ETA would have been larger. Also the effective damping
constant (CA) = 1784.5 Ib-s/in. would have been closer to the actual damping constant
(c1) = 2000 1b-s/in. Notice further that the range of frequencies where the damping is
effective from OMEGA A = 4.56 Hz (minimum) to OMEGA A* = 7.97 Hz (maximum).

DSGN (n) (b) (a) (OD)
1 1 0.15 0445 139
2 1 0125 0445 134
3 1 0125 0445 134
4 1 0125 0445 13
5 1 0.125 0.6 1.65
6 2 0125 06 1.65
7 2 0125 08 205
8 4 0125 08 205
9 6 0.1 0.8 2
10 10 0.1 0.8 2

k) (k) (k) (k)

1 67 75 165 157
2 67 98 165 134
3 67 111 165 121
4 67 76 165 156
5 67 90 1685 142
6 67 72 165 160
7 67 70 165 162
8 67 69 165 163
9 67 68 165 164
10 67 87 165 165

Poisson's Ration (v)

Number of Convolutions (n)

Stroke (s)

Validation Factor 4 <u < 40

Load to Produce Deflection (p)

SIGMA 1 - Stress

SIGMA 2 - Stress

® (o)
0.006 16.00
0.012 16.00
0.015 16.00
0.01 16.00
0.01 16.00
0.006 16.00
0.005 16.00
0.006 16.00
0.003 16.00
0.003 16.00

ALPHA (ETA)

1.76 0.598
1.54 0.442
144 0376
1.75 0.586
1.60 0.491
1.80 0.621
82 0633
83 0.641
85 0.857
86 0.659

(b) Arch Radius
(t) Thickness
(a) Tube Radius

(@) Modulus of Elasticity

(s)
0.006
0.007
0.006
0.006
0.006
0.014
0.018
0.036

0.06

0.1

(©)
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

sigma1 (k) k) (k)
49,073 8.06 255 32
81,497 3871 1,006 26

75260 6049 1,258 21
55418 9.68 503 52
53849 2688 2,425 90
52970 4.84 727 150
52,882 3.36 1,611 480
56,213 2.42 967 400
57,503 0.50 673 1,336
57,503 0.30 404 1,336
(c) OMEGA A OMEGA B OMEGA {
18179 444 13.78 782

13121 6.88 16.22 10.56
10709 8.61 17.95 12.43
1785 4.56 13.91 7.97
14789 593 15.28 9.52
1887.7 418 13.52 7.52
1921 4.06 13.40 7.38
19426 3.99 13.33 7.29
19878 3.83 13.18 7.1
1992.7 3.82 13.16 7.09

{n) Number of Convolutions
(OD) Outside Diameter
(k,) Outer Tube Stiffness

(k,) Inner Tube Stifness

(ky Axial Stiffness of Arch (c) Two Spring Damping Coef

(k,) Volumetric Stiffness

(cA) Four Spring Damping Coef

Figure 11. Damping Spring Design Alternatives (D-Strut)

Two questions arise, as follows:

* How high must the ratio of k4/k3 be to obtain practically ideal performance?
* Once this ratio is known, can the D-Strut be optimized to provide that capability?

To answer these questions, compare the sample designs shown (designs 1 through 10 in
Figure 11), and consider the values of k4/k3. Notice that, as the design parameters of the
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arched flexure change, substantial improvement in k4/k3 is realized, particularly for
designs 9 and 10 (kg/k3 = 1,336). Also notice that, for these designs, c1 =c4, k1 =ka, k2 =
kB. Therefore, it is clear that this value of k4/k3 results in essentially ideal performance
and further increase will not produce additional value. Further analyses of the 10
designs suggest that values of k4/k3 above 100 are of little additional benefit. It should
also be clear from this data that a second-generation arched flexure D-Strut, with better
parametric optimization, could easily reach the k4/k3 > 100 level. The more optimum
design would appear to be a multiconvoluted design not only because of the better
k4/k3 ratio, but also because of the large stroke capacity.

The data presented here suggest near-perfect correlation between empirical data and
analytical calculations for stiffness. Actually this was not the case; some substantial
differences existed. Specifically, the coefficient of the equation for k3 was factored by
1.156 and for k4 by 2.35. Therefore, only limited value can be placed on the specific

numerical results. The factors were applied to facilitate limited design trades and trend
considerations.

The reason for these discrepancies is believed to be primarily the differences between
the actual thickness of the flexures manufactured and the intended design thickness.
Improved controls are planned for future parts. Some error has likely been contributed
due to the limitations of the equations used. We are currently conducting fundamental
work to improve these.

FUTURE PLANS

Future plans for the D-Strut involve further improvements in the damper element of the
strut, based substantially on the factors and optimization trends discussed in the
preceding paragraphs. A multiconvoluted design will be a first priority.

Another factor significantly influencing D-Strut performance is the ratio of inner-to-
outer tube stiffness. D-Struts fabricated to date have used the same material for inner
and outer tubes. The lengths of the two tubes are also approximately equal. Thus,
using the same material for both tubes, the only way to increase the stiffness ratio k2/k1
is to either decrease the outer tube cross sectional area or increase the inner tube cross
sectional area. Decreasing the outer tube area will affect static stifiiiess requirements,
while increasing the inner tube area leads to a considerable weight penalty.

An obvious alternative is to use different materials for the inner and outer tubes. For
example, an aluminum outer tube with a metal matrix composite inner tube would give
a factor of 2 improvement in the ratio k2/k1, due solely to the difference in the modulus
of elasticity. The use of different materials for the inner and outer tubes is an important
aspect under investigation.




Of course, for a nonload-bearing strut, the outer tube may be eliminated, providing a
significant improvement in damping. Other factors then become important. To date,
no D-Struts have been fabricated without an outer tube. There are applications where
this will be an important consideration.
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TESTING OF A VISCOUS-DAMPED
ISOLATOR

Bradley Allen*
CSA Engineering, Inc.
Palo Alto, CA

David Cunningham
Honeywell Satellite Systems
Glendale, AZ

ABSTRACT

It is essential that accurate methods for testing mechanical properties be employed
during the development of precision spacecraft isolation systems. Mechanical proper-
ties of the isolator will determine force transmission to the spacecraft; thus they are
critical to its performance. This paper documents component-level tests performed on
viscous-damped isolators developed by Honeywell Satellite Systems for a spacecraft
reaction wheel isolator system.

Two types of component-level tests were performed on the elements: direct stiff-
ness measurements (often called mechanical impedance) and transmissibility tests.
Direct stiffness measurements indicated linearity, linear stiffness, damping, and hys-
teresis. A custom test apparatus was designed for accuracy and repeatability. Stiffness
deviations as small as 5 percent could be detected, and loss factors as low as 0.01
could be resclved with the direct stiffness measurements.

Motion transmissibility measurements determined high-frequency isolation and
verified stiffrecs zrnd damping near the predicted resonance of the sprung payload.
Although the suspension system consisted of eight isolators, tests were performed on
a single unit. Motion was constrained to a single degree of freedom using a system
of air bearings sliding on rails. The air bearing design possessed less than 0.4 grams
of friction allowing verification of isolation properties to above 300 Hz and enabled

transmissibility to be accurately measured over 4 orders-of-magnitude of input exci-
tation.

*CSA Engineering, Inc., 560 San Antonio Road, Suite 101, Palo Alto, CA, (415) 494-7351

IAD~1




B0 FS)
nwry
]

yax

vy
VOLY o8¢

—
[

oo'ers

omm 03 -

AN

&8
LAITERR Woravron

Figure 1. Reaction wheel isolation system
1. Introduction

Viscous damper designs are finding wider applications in spacecraft; demands for
lower ambient vibration levels coupled with the predictability and simplicity of viscous
dampers make them a good choice for many damping applications in space. This
paper addresses test techniques used to characterize the mechanical properties of an
isolation system by testing its components: viscous-damped isolators.

The isolators are used to suspend the momentum wheel on a spacecraft. The
suspension consists of eight isolators placed symmetrically around the frame of the
momentum wheel, as shown in Figure 1. Machined metal springs provide elastic
forces with nearly isotropic stiffness, but the damping mechanism applies dissipative
forces primarily along the element’s axis. These isolators are designed to behave
with a linear force-deflection relationship and an axial stiffness of approximately 950

Ibf/in up to a stroke limit of 0.044 inches. Mechanical stops dramatically increase the
stiffness outside this operational region.

Isolation performance was specified for the system to tolerances that required re-
peatable and predictable mechanical performance. Transmissibility was specified to

300 Hz, such that modes introduced by the isolators could not obstruct the transmis-
sibility below 300 Hz.
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2. Test Method

Tests documented in this paper were performed at the component level. Compo-
nent or element level testing provides detailed characterization data such as linearity,
hysteresis, damping variation with excitation levels and temperature, and other vari-
ations in mechanical performance between isolators. Measurements of both axial and
radial properties were made. Component-level tests were performed to acquire data
necessary for the design of the isolators, and system-level tests subsequently verified
that component-level test results could be extrapolated to system level performance.

‘Two approaches were implemented at the component level: direct complex stiff-
ness (DCS) methods and resonant tests. DCS methods use the force through and
displacement across a specimen to calculate the complex stiffness of a specimen di-
rectly at frequencies well below the resonances of the test assembly. Under this
condition, the elastic stiffness is the real part of the ratio between force and displace-
ment, and damping is calculated from their phase difference. Resonant tests infer the
mechanical properties of a resonant system through an analytical model where modal
frequencies and damping ratios are inputs, and specimen stiffness and damping are
outputs. A single-degree of freedom system was constructed for these tests with a
one-eighth-scale mass sprung on one of the eight isolators. The ratio of acceleration
across the masses was measured to construct a dimensionless function of frequency
known as transmissibility.

DCS tests yielded the majority of the mechanical property data on the isolators. A
DCS test assembly was designed which could measure the unidirectional mechanical
properties in both the axial and radial directions of the isolator. Figure 2 shows the
test assembly for the axial configuration. Motion was constrained to one degree-of-
freedom by the pushrod and linear bearings. Measurement bandwidth of the assembly
was from DC to 96 Hz, limited on the high end by the resonant frequency of the
isolator and sprung fixture.

Transmissibility tests verified high frequency isolation, enabled testing over a
wide dynamic range, woo pecvded verifcation of suilTness and damping at a sin-
gle frequency for verification of the DCS test results. Isolation performance at high

frequency was verified by continuation of transmissibility roll off with increasing fre-
quency.

Transmissibility measurements utilized a test assembly that simulated a single-
degree of freedom system. It restricted motion across the isolator to one direction
without exerting forces in the unconstrained direction. Figure 3 shows the apparatus
while outfitted for axial measurements. The center mass floats on the rails through air
bearings. Two center masses were designed for the radial and axial test configurations.
The rails and external mass simulate a rigid massive mounting base which translates
to provide unidirectional excitation. Transmissibility is measured along the axes of
the rails, and is calculated as the ratio of the acceleration seen at the floating mass
to that at the base. The center mass was sized to one-eighth that of the system level,

since only one of eight isolators was under test at any instant in the component-level
tests.
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Figure 2. DCS test asscmbly in the axial configuration

2

Fieure 3. Tronsmissibility 1est assctmbly in the axial confipuration
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Figure 5. Dynamic DCS test data.
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3. Results

DCS tests proved particularly useful for development testing because of the availabil-
ity of force and deflection as functions of time under various forms of excitation. A
sawtooth wave with a period of 20 scconds was applied to obtain the data shown in
Figure 4. The plot force versus deflection clearly exhibits & linear relationship up
to the stop locations at either end of its stroke. Stop stiffness can also be measured
from the graph. One measurement identifies hysteresis, linearity between force and
deflection, stiffness, and location of travel restricting stops. Broadband dynamic tests
indicated stiffness and damping of isolators. Band-limited white noise excitation and
Fast-Fourier Transform methods enabled the instantaneous acquisition of data across
an entire measurement bandwidth. Figure 5 shows the resulting curve of complex
stiffness. Magnitude and phase are shown, although the elastic stiffness is actually
the real part of the magnitude, and the loss factor is the tangent of the phase an-
gle between force and displacement. Deviations from constancy of these parameters
above 30 Hz is caused by the mass of the load cell and adapter plate and is not
indicative of the isolator stiffness.

Transmissibility data demonstrated the repeatability and precise performance of
the viscous damped isolators; however, the rigidity of the test fixture fell short of the
specifications requiring a bandwidth of 300 Hz. A sizeable mode appeared to obstruct
isolation of the system near 300 Hz. Figure 6 shows a typical transmissibility plot as
measured. The base mass was supported on flexures to permit unidirectional motion,
and tests mentioned below indicated that an extensional mode of the flexures was
partially responsible for the obstruction.

Modal tests were performed on the transmissibility test apparatus to identify the
harmful mode and exonerate the isolator. It was removed and small compression
springs were installed in the tester to provide a centering stiffness with negligible
added mass to the tester frame. Mode shapes for both axial and radial tester con-
figurations are shown in Figure 7. The external box frame represents the outline of
the base mass, and the smaller frame outlines the center mass. Shapes from axial
and radial tests are nearly identical. Strain energy is concentrated in the flexures
that support the base, as evident by the tilting base mass, and somewhat in the flex-
ible mounts of the air bearings as indicated by the relative motion between the two
apparently rigid bodies.

The detrimental mode was identified as a property of the test apparatus and sub-
tracted from subsequent transmissibility measurements. It was modeled as a second-
order system as is comuonly done in test-acquired modal data, and its transmissibility
was subtracted from the measured transmissibility. Figures 8 and 9 contain plots of
the pre- and post-processed data. The first is an overlay of the raw transmissibility
curve and the generated response for the detrimental mode at 280 Hz. Figure 9 is
tneir difference, the post-processed data.

The viscous damped isolators operate in a low-level vibration environment, and
tests were performed to verify linearity across a range of excitation levels. Limitations
in the test apparatus and instrumentation limited measurements of dynamic range to
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Radial Configuration

Axial Configuration

Figure 7. Mode shapes of detrimental resonance for axial and radial test configura-
tions.
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Excitation

90 dB, from 25 micro-Gs to 1.5 Gs rms. Figure 10 is a plot of the output acceleration
PSD for a white noise input from 1 to 375 Hz. Because white noise is a constant level,
the character of the curve is identical to the corresponding transmissibility function
at each level. At base acceleration levels of 50 micro-Gs rms and below (lowest level
curve), a subtle changes in the shape of the transmissibility function became apparent,
and a limited amount of troubleshooting tests we . .~-formed. They indicated that

restoration force well below 0.04 lbs was beir.; . :~.'v <1 by the tester assembly
and is related to the air pressure in the air beari- . - «.+ this level was below the
required specifications for the isolator, it was not ; »<. .. cher.

4. Summary and Conclusions

Component level tests provide. accurate characterization of the mechanical properties
of the viscous damped isolators. DCS tests were most effective for verification of
linearity, static force-deflection information, and stiffness and damping properties at
frequencies well below that of the DCS test assembly. Resonant methods proved more
effective for examination of the roll off in transmissibility at high frequency and for
acquiring data across a wide dynamic range of input excitation levels.

Tests indicated that the viscous damped isolators performed as predicted, with
repeatable and precise r:echanical properties. They behaved linearly from 25 micro-
Gs to 1.5 Gs, with precise stiffness and damping properties.
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THE EFFECT OF SOURCE IMPEDANCE
ON
DAMPING MEASUREMENTS
USING
RESONANCE DWELL TESTING

by
Ralph E. Tate
LTV Aircraft Products Group
Dallas, Texas

ABSTRACT

J.C. Heine developed a test methodology for evaluating the
damping in various materials, particularly metals. LTV
employs a resonance dwell technique adapted from that of
J.C. Heine, which facilitates the use of a smaller shaker
from that normally required. This test apparatus permits
the rapid characterization of viscoelastic laminates not
only for damping, but also for vibroacoustical fatigue re-
sistence.

During check-out of the modified apparatus, it was found
that the behavior of damped specimens differed markedly
from prior results. That is, significantly higher values
of damping were observed regardless of measurement techni-
que. The author demonstrates, through the use of imped-
ance modeling techniques, that the differences arise from
the coupling the specimen to the electrodynamics of the
excitation source. A refinement of the test procedure is
outlined to remedy the data anomaly and a discussion of
the impact on the interpretation of damping data naturally
follows.
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1.0 INTRODUCTION

Various techniques are employed throughout industry to evaluate the
complex modulus of viscoelastic materials. Perhaps, the most common
techniques are the "Oberst"™ beam-type tests that are prescribed in the ASTM
standards [1]. The simplicity of the test method affords rapid evaluation of
a candidate viscoelastic with a minimal investment in material and equipment.

The cited standard, ASTM E756-83 (1], provides three alternative canti-
lever beam test specimen configurations, depending on whether shear or
tensile modulus is to be measured. The standard presumes base motion
acceleration excitation. The standard also provides a set of equations to
compute the viscoelastic’s material loss factor from the specimen’s sample
loss factor, based on the Ross~Kerwin-Ungar (RKU) equations for damped
laminates.

LTV employs a resonance dwell methodology adapted from that of JC Heine
[2], which facilitates the use of a smaller shaker. The test apparatus is
depicted in Figure 1. This particular testing apparatus permits evaluation
of viscoelastic laminates not only for damping properties, but for vibro-
acoustical fatique resistance, as well. This paper describes the analytical
mechanics of this method of resonance dwell testing of constrained layer
laminates, based on a motivating example arising from adaption of the test
apparatus to perform fatigue testing. Further, comparisons of test results
from resonance dwell testing to published nomogram data for viscoelastic
materials are discussed .

2.0 "HEINE’S" METHOD

JC Heine developed a test methodology for evaluating the damping in
various materials, particularly metals (cf. Figure 1){2]. A test beam is
clamped into the root lever arm. Then, a constant shaker force is applied to
the lever near the root of the beam. The shaker force is varied until the
tip deflection peaks and the root acceleration simultaneously minimizes. At
that frequency, the test beam is said to be at resonance.

The prescription works due to the high stiffness of the lever relative to
that of the test specimen. Effectively, the system is rendered mechanically
uncoupled; that is, the test beam resonance is identical with that obtained
from a cantilever beam under base motion excitation. Given the resonance
frequency and tip deflection, the modulus and 1loss factor for a given
material are easily estimated. For a damped constrained layer laminate, the
sample loss factor is given by

n, o= { ¢naa ] (cn/xn) [ 1+ LB ],
2 2
n thd [1-fo/fd] onknLR

and the dynamical shear modulus is given by,

2, 2

- _ 2
Go=anf® (1 - (£ /f,)°]
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(variables defined at end of paper)
3.0 TEST RESULTS

Although Heine developed his apparatus to study lightly damped materials
such as metals, it is just as applicable to the testing of highly damped
laminates. Further, after reduction of the lever arm stiffness, the
apparatus can be effectively used to evaluate the vibroacoustical fatigue
resistance of damped laminates. It then differs from many similar devices in
that it provides levels of stress that are experienced by aircraft struc-
tures, while using a smaller and less expensive shaker. It was found that
the behavior of the modified apparatus during tests of highly damped
specimens differs markedly from its behavior during tests of lightly damped
test specimens.

Some typical results of a damped constrained layer test specimen in the
adapted Heine test apparatus are depicted in Figure 2. The tip deflection
curve in Figure 2 was generated using the procedure developed by Heine. The
transfer function shown in that figure was computed between the root
acceleration and the tip deflection, as a check on the procedure. The tip
deflection indicates a broader damping than the transfer function, based on
standard half-power estimates [3]. Further, the tip deflection shows a lower
peak frequency, and the acceleration minimized with the transfer function.
Since these peculiarities of the transfer function and the base acceleration
had not been observed curing previous testing of lightly damped specimens,
interpretation of t.e data became ambiguous.

A strain gage was affixed to the root of the test beam, and the test
repeated. Figure 3 shows that the tip deflection and the root strain track
together. Then a controller was added to maintain a constant root
acceleration. Figure 4 shows that the tip deflection (as well as the root
strain, not depicted) and the transfer function agree in damping and
frequency, when the base acceleration is controlled. This behavior conflicts
with the procedure defined by Heine.

Several indications of maximum response for damped test specimens are
displayed in Figure 2 through 4. How, then, should the resonant frequency be
identified, and how should the damping of the specimen be determined, once
the resonant frequency is identified? The mathematical analyses described
below were undertaken to answer those questions.

4.0 BQUATIONS OF MOTION

The equations of motion for the resonance dwell apparatus were devel-
oped using a standard energy method approach (4,5,6]. The analytical model
used the geometry described in Figure 5. That test specimen is a laminate
encompassing a constrained layer of viscoelastic damping material, as shown
in Figure 6. The assumed deflection of the system is (tensor summation ass-
umed over free subscript indices, 1 to N):
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vix,t) = x a(t) H(x)
+ 6, (x-L) v (t) B(x-L).

The virtual work due to bending of the face sheets, as shown in Figure 6,
can be computed as:

L

(LR+LB)
BWB = J.[(EI)1+(EI)2] v *sv® dx,
R

v1 Sv

- [(ED) +(ED),] X, |

where

4 -
. S (Bi) Lys (1=3)
! 0, (i#j, orthogonality).

j'

Analogously, the virtual work from lever flexure is:

SWR = KR o(t) Sa(t).

Assuming plane sections of the laminated test specimen remain plane, and
given that G* is the complex shear modulus of the constrained damping
material shown in Figure 6, the virtual work due to shearing is (4,7]:

(LR+LB)
5W.= J‘t3G* Y (X,t) 87 (x,t) dxr

LR
a2 6"/t 3 h
( 3) 51,j v, 8v,, where
X is defined as,

—i'j
oiﬂi (2+oib1 LB) (i=3)
Lwiui ][(-1)1+j (0,8,°-0,8,°)
,-8,") -8B, (0B 0B, (imd).

The virtual work performed by the inertial forces can be similarly ob-
tained. The virtual work due to acceleration of the lever arm is:

2. ..
GWL = [JR+MR(LR/2) ] a(t)8a(t)
= -1 a(t) dalt).
The virtual work due to beam acceleration is (p-[p1t1+p2t2+p3t3]):

(LR+LB)
bwnz- -p J. V(x,t) dvix,t) dx

L
R
= ~u [!1 a da + a 52'1 5v1
toaulX, V) YRV v
where
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(L +L )3 - 1]
R B
,
5 - ZLRGi + 2
=2,1 — ’
| B, B ]
and 53'1= Ly

Employing the identical prescription, the virtual work performed by the
applied forces becomes, including base motion:

SWw = F LR da,

ncl
6Wn°2= -Mn aB LR 8a, and
4
W ,=hay [F, 3« + F, , 3v ].
The integrals ¥ and F, are defined as follows:
! 2 2 3 3
F = [(Ln+Ln) LR ] - [(LR+LB) LR ],
-1 2 L
R
and
20 - 1 2L o 2
pi Ln Bi Bi

The equations of motion then can be written as:
SW_ + BW_ +BW, -(8WL +8W,)

- (awncl + swnc:2 + 6wnca) = 0.

The assembled matrix form of the equations of motion is:
M] X + [K] x = F.
The explicit form of the matrices are given in the Appendix.

The topological features are more readily observed in matrix form. The
coupling between the beam generalized coordinates is the interesting fea-
ture to be observed. The mass matrix is only coupled between each degree of
freedom and the lever rotation coordinate. No inertial coupling exists
between the generalized coordinates themselves.

The opposite situation is true of the stiffness matrix. The beam gen-

eralized coordinates are completely coupled through the shear compliance.
Thus, for a highly damped core material, no simple closed form solution can
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be obtained [8]. No stiffness coupling exists between the beam coordinates
and the lever rotation,

5.0 COUPLED MODE SOLUTION

Figure 7 shows the result of a digital simulation performed incorporat-
ing the first two beam generalized coordinates and the lever rotation
coordinate. The difference between the peak frequencies of the transfer
function and that of the tip deflection in Figure 7 is attributable to
inertial coupling of the beam with the lever arm. The coupling of both
inertial and elastic structural subcomponents is a well documented phenomenon
in structural mechanics [6,9,10].

The rotational stiffness of the lever was lowered to permit testing at
higher strain levels approximating service fatigue environments. However,
that modification lowered the lever arm resonance to near 100 Hz; that is, in
the middle of the desired frequency range for testing (20 Hz to 300 Hz).
Thus, the maximum tip deflection occurs at the coupled system resonance, not
at the uncoupled specimen resonance. For that reason, the root strain maxi-
mizes at the coupled mode resonarnce, since it is there that the system is at
resonance (cf. Figure 3).

The transfer function peaks at the specimen resonant frequency, since
that is the relationship from root-to-tip; that is, it reflects the beam
properties, per se (Figure 2). The root acceleration minimizes at the
uncoupled beam frequency, since at that frequency the system observes the
beam as a damper. When the root acceleration is controlled as a constant,
the tip deflection and the transfer function indicate the same resonant
frequency. That control enforces a base motion excitation, that effectively
isolates the beam from the fixture (cf. Figure 4).

The mechanical coupling of the test specimen with the test fixture will
cause an error in damping estimates, if Heine’s procedure is strictly
followed. First, if the frequency of maximum tip deflection is used, the
damping estimate will be high, since the estimate is inversely proportional
to the frequency squared [2]). Secondly, if the frequency of the minimum of
the root acceleration is used, the damping estimate will again be high, since
that estimate is inversely proportional to the displacement [2]. Depending
on the proximity of the lever resonance to that of the test beam, a con~
siderable error can be realized. The essential point to be considered here
is: the test beam must be isolated from the fixture dynamics to obtain
reliable damping estimates.

6.0 IMPEDANCE MODEL

Whereas the coupled mode solution partially described the measured fre-
quency behavior data, the simulation did not reflect the measured damping
behavior. After repeated attempts to match the difference in damping
behavior between the transfer function and the tip deflection, an equivalent
circuit impedance model was constructed, using a force-voltage technique
(Figure 8) [11,12). The model retained two degrees of freedom: the first
beam generalized coordinate, and the lever =otation cocrdinate. That model
maintained the important relationships between the fixture and the test beam.
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The motivation for using an impedance model was the observed influence of
source impedance on the electrical duals of mechancal circuits [13,14].

Summing the impedances about each loop (cf. Figure 8) and solving for the
transfer impedances:

I2 - 1 , and
v A+B+3C
I, - “JM , , where
I, R, + X,
A= (5. + Sz)r
= M, B
2 2
R1 + xl

2 . 2
C= jrz © M, x1],
2 2
R?+ X

with reactances defined as,

X =ab -~ 1 andX =aL - 1.

o, :
Here, the dependence of the root-to-tip transfer impedance solely on the
specimen properties is readily observed. Thus, the system is at resonance
when the tip deflection is maximized, but the transfer impedance (or
function) possesses the specimen damping property information (cf. Figure 2)
(13).

Since the load should appear as a large resistance relative to the fix-
ture, the Thevenin resistance (R ) was tuned to nearly 50% percent of the
lever arm stiffness. At that lev&l, the analytical simulation converged to
that of experiment (Figure 9). The loss factor computed from the transfer
function is 0.02 and 0.045 from the tip deflection. Thus, the principal
difference between the damping estimates arises from the shaker source
impedance inertially coupled to the specimen through the lsver arm, that is
the back-EMF induces damping [19]!!

6.0 VARIANCES WITH RKU DAMPING ESTIMATES

The Ross-Kerwin-Ungar equations (RKU) were developed to evaluate the
response of damped and sandwich beams [15,16] to acoustical excitation. The
loss factors measured in the above analytical and measured data are somewhat
lower than that expected from RKU estimates and published nomograms for
viscoelastic materials. Much of the available nomogram data was developed
using the RKU formulations, since those nomograms are for materials that were
developed for noise and vibration control, not for sonic fatigue suppression.
Based on those nomograms, loss factors at or above 0.1 should be anticipated.
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The principal source of disagreement arises from the mode in which the
specimen is tested.

The RKU equations assume simply supported boundary conditions[15,16].
Figure 10 shows that the eigenvalues for cantilevered beams converge tc
within 80% of those of simply supported beams after the third mode. (For
instance, Anatrol formulates their nomograms based on the average loss factor
measured from the third through sixth modes [17].) Therefore, the loss
factors measured from the first or second mode will be as much as one order
of magnitude lower than those found in the nomograms, since the shearing
strain 1is concentrated at the root of the beam in those modes. That is, for
the higher modes of vibration, the material is being more uniformly worked
along the beam length; whereas, the lower modes of vibration only work the
material near the root of the beam. This fact illustrates why constrained
layer systems are effective on the higher modes, since more wavelengths are
shearing the core material.

7.0 SUMMARY/CONCLUSIONS

The mechanics of a widely used resonance dwell test apparatus were
developed through an energy method application, with respect to the testing
methodology established by Heine using ASTM "Oberst" specimens {1,2]. Test
considerations for fixturing and comparison with published data were
highlighted through analysis of a practical example. The essential points tc
be considered are several-fold.

Firstly, the mechanics of an apparently simple apparatus can be quite

complex. Failure to comprehend those subtleties can result in the
acquisition of irrelevant data, especially when the test apparatus is
modified from its original intent. The test procedure and ultimate

application of the test data must be wholly consistent with the physical
parameters of the test apparatus.

Secondly, the test specimen must be either mechanically or artifically
isolated from the fixture dynamics to obtain reliable damping estimates.
That is, the fixture must not possess resonances that may couple to the test
specimen, or the use of a controller may be required to isolate the specimen
artificially. Otherwise, the coupling must be indirectly eliminated in the
data reduction, which may be unsatisfying.

Thirdly, the source and test methodology employed to develop any
published nomogram data must be consistent with the particular test
objectives when comparing measured test data. Lastly, although not a
consideration in the above application, the effect of the root restraint

should be examined, since the damped boundary condition is very difficult tc
effect.

Resonance dwell testing is a cost effective method ot screening candidate
damping materials for noise and vibration control, and scnic fatigue
resistance. However, a particular methodology or apparatus cannot -° wused
adhoc. A short reflection on the desired results and test objectives reaps a
great reward in acquiring good, relevant, and inexpensive test data.
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NCOMENCLATURE

LR = lever length
L_ = beam specimen length
M', = lever inertias
WR= pecimen width
t_,t_ = facesheet thicknesses
t. ="viscoelastic thickness
V' = specimen tip deflection
a = root acceleration
= base acceleration
= bare spe01men frequency
f = damped specimen frequency
d'=t, + (t +t )/2

= lineal'mads density
G = storage modulus
n, = loss factor
G =G (1+jn )
E = facesheel elastic modulus
v(x,t)= beam displacement
a(t) = lever rotation

v, (t) = generalized beam deflection
¢ﬁx—L ) = mode shape
B(.) 2 step function
¢ = mode shape parameter
l" = eigenvalue
B =) /L
p"= ar8a Rass density
F = applied shaker force
® = angular frequency

N(ﬂ’

n.ouxrfub-
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APPENDIX

The inertia matrix, stiffness matrix, and force vector were developed by
application of energy methods above. The coupled inertia matrix is:

X 0 0 0 0 px
0 0 = 0 0 =2,3
-2,1 =2,2 p!E,s te “52,u pg1 * Ia
L J7
Analogously, the coupled stiffness matrix is:
(E1)§,* + 6*x ¢ X G.X 0 ~
1,1 1 e *_1,N
G il,z (ED)B," + c‘lez €X, , ...6 x;’N 0
6'x ¢'x. ' (EL)p. 4 + G'xg 0
L 0 1,N 0 2,N N 0 + N KR
J7

Finally, the force vector is:

p
L.
—'2
~2,3
¥, v
pas£1-Mnaa R+PLIl
L 4 )
here 6 =G" [t. + (t. + t.\]?
t, 2
and EI  =[(ED), + (E1),].

IBA-11




VOLT ELECTRICAL
METER FILTER

AMPLIFIER

AMPLIFIER !
J

ROOT
ACCELEROMETER

SPECIMEN

ELECTRICAL
FRTER

ACCELEROMETERS

ELECTRO-OPTIC
DISPLACEMENT
r MONITOR
L BASE (OPTRON)
‘[ CONNECTING -~ =
! ROO
OSCILLATOR AMPLIFIER ELECTRO
, MAGNETIC
| | SHAKER
FREQUENCY
COUNTER
P 1 |

MECHANICAL  GROUND
339-1111-1A {LARGE RIGID MASS,

Figure 1 LTV's Resonance Dwell Apparatus

/

\ /
sn\a AIN OPTRON
GAGE
| )
40 a5 50
339-1244-4 FREQUENCY (Hz)

Figure 3 Tip Deflection and Root Strain -
Shaker Force Constant

1BA-12

TRANSFER
FUNCTION
TP
DEFLECTION

BASE
ACCELERATION
s !

40 45 50
FREQUENCY (Hz)

339-1111-2A

Figure 2 Response of Beam Specimen
Depicting Discrepancies Versus
Heine Method

TiP
DEFLECTION
TRANSFER
FUNCTION

e
BASE ACCFLERATION

40 45 50
FREQUENCY (Hz)

0

339-1111-4A

Figure 4 Tip Deflection Versus Transfer
Function - Base Acceleration
Constant




——x v(x,t)

ROOT ACCELEROMETER, ag

l—LR \—4- Lg

MR, JR) | _pASE ACCELEROMETER, ag

n/ ,

Ay

F = INPUT FORCE

RTITHIRR

339-1111.5A

Figure 5 Analytical Geometry of the
Resonance Dwell Apparatus;

After Heine
1.0
TIP DEFLECTION TRANSFER
\ )’NCT ION
40 45 50
333-1111-7A FREQUENCY (Hz)

Figure 7 Coupled Response of Beam Test
Specimen; Tip Deflection and
Transfer Function

|
Qj\j j
—
t \ ALUMINUM
KR e SPECIMEN —————] ! >

VISCOELASTIC

CORE /

ALUMINUM /

o+ 1y W 6 = v(x,1)
—{{ty + 0 [ i
-l[a ( 2 ) t3

339-1244-2

f— 5° —*

r\,,\
~

~

Figure 8 Geometry of Constrained Shear
Layer

339-1111-8A

Figure 8 Equivalent Circuit for Lever
Rotation (I,) and Beam-First Mode
Deflection (1))

IBA-13




ACCELERATION [
TiP y
DEFLECTION |
1™
TRANSFER IMPEDANCE
40 a5 2
339-1111-9A FREQUENCY (42)

Figure 9 Normalized Acceleration ard
Transfer Function Depicting
Convergence with Test Results

2 32883

o
T

‘c-cl's-s
(PERCENT)

o

o

8

201
10

gl_llLJlglllllng_lllLl]

2 4 6 8 10 12 14 16 18 20
339-1244-3 MODE NUMBER

Figure 10 Convergence of Clamped-Free
Eigenvalues to Simply-Supported
Eigenvalues Versus Mode
Number

IBA-14




THE DEPENDENCY OF VIBRATION
ENERGY DISSIPATION ON THE
AMPLITUDE OF STRUCTURAL MOTION

Dale L. Jensen!
Lawndale, CA

ABSTRACT

Quantitative values of structural damping factors for ground launched aerospace ve-
hicles are seldom precisely determinable. This paper presents measured data from
a large vibration test program and shows correlation of these data with the ampli-
tude of motion. Experimental structural damping factor values and amplitude of
vibratory motion from a vibration test are combined to show the amplitude depen-
dency of structural damping factors. The experimental data show good correlation
of structural mode damping factor with the amplitude of vibratory motion. The
data were obtained from flight control frequency response testing of shuttle orbiter
and ascent vehicles and structural mode damping factors obtained from Ground
Vibration Tests, MSFC, Huntsville, Alabama, June 1978 through February 1279.
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ABSTRACT

Passive damping has been demonstrated tc be an effective and efficient means
for limiting the effects of on-board excitations on the dynamics of space vehicles.
High-precision applications require these treatments to both be effective at very low
excitation levels and not affect the dimensional stability of the structure under quasi-
static and thermal-mechanical loads. This work documents a study of two important
issues facing structures damped with viscoelastic materials: hysteresis and loss at low
deflection levels.

The test article is an I-beam-like structure designed to simulate an experimen-
tal method of fabricating graphite-epoxy/honeycomb structures without using any
mechanical fasteners. After identifying the most critical vibrational modes from a
separate system-level analysis, a damping treatment was designed for the test joint
using standard finite element techniques. A modal test using very low random exci-
tation levels was performed on the resulting damped structure. Statistical methods
were used to determine that the maximum displacement level of the free-free structure
was of the order of nano-meters. Subsequently, hysteresis tests were performed on the
same damped beam. Laser interferometry was used to measure displacements of the
joint after undergoing cyclic static loads of varying magnitudes. Percent hysteresis
was measured while the joint was loaded in three-point bending. Hysteresis behavior
during displacements as small as 150 nano-meters was recorded

*Senior Engineer, 560 San Antonio Road, Suite 101, Palo Alto, CA 94306 (415) 494-7351
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1. Introduction and Objectives

Passive damping has been demonstrated to be a vital technology for limiting the
effects of on-board excitations on the dynamics of space vehicles. High-precision
applications require these treatments to both be effective at very low excitation lev-
els and not affect the dimensional stability of the structure under quasi-static and
thermal-mechanical loads. Of equal concern are the damping characteristics of the
structure when undergoing very low strain levels. This information is particularly
important when performing analysis of the structure to predict response to launch
and in-service loads. Since this fabrication technique is new, typical levels of inherent
damping are not known. It is also anticipated that passive damping will be incorpo-
rated into any design using this construction technique, so it is necessary to test for
damping performance at very low levels of response.

For many spacecraft designs it is desirable to predict the magnitude the structure
may deform or shift after being launched and placed in service. This deformation can
be caused by gravity release or changes to the thermal and moisture environment.
However, one of the largest and least understood contributors is hysteresis. Structural
hysteresis is the failure of the structure to return to its original position after an
external load has been applied and removed. This effect is typically caused by friction
effects, slippage of fasteners within their holes, and small viscoelastic properties of
most materials. Hysteresis is not to be confused with inelastic behavior of a structure
resulting from loads exceeding the yield strength or proportional limit. It is also
separated from the predictable effects of both long-term creep, where materials deform
slowly due to sustained stresses, and microcreep, which occurs when repeated short-
term loading exceeds the material’s microyield strength.[1] In essence, hysteresis is
treated herein as an accumulation of distortion sources that cannot be accounted for
by classical analysis techniques.

Of particular concern is the behavior of dimensionally critical spacecraft struc-
tures. Hysteresis predictions of precision composite structures after being launched
or after small on-orbit maneuvering loads are applied must be based on limited and
mostly irrelevant static test data. The hysteresis of structures constructed using
graphite/epoxy parts bonded together with honeycomb core is not well understood.
When viscoelastic passive damping materials are applied, the hysteresis of the struc-
ture may increase, especially during low-amplitude vibration. The hysteresis test is
designed to give insight into these problems and ald in analysis efforts to bound or
quantify structural hysteresis behavior. In summary, the objectives of the hysteresis
tests are as follows.

1. Measure the amount of hysteresis present in a generic spacecraft joint with a
constrained layer passive damping treatment applied.

2. Determine the linearity of hysteresis at low displacement levels
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Figure 1. Sketch of the test article

The test article, shown in Figure 1, is designed to simulate an experimental method
of fabricating graphite-epoxy/honeycomb structures without the use of any mechani-
cal fasteners. The article is essentially the intersection, a joint, between two compos-
ite [-beams at an angle of 60°. The attachments are strengthened with overlapping
graphite-epoxy (GR/EP) plates attached solely with high-strength epoxies. The pri-
mary mode of interest is the first bending mode of the “I-beam” in its strong direction,
since that deflection best simulates operational deflections using this construction.

A secondary objective of this effort was to design and apply an add-on damping
treatmen. that would increase the damping of the test article significantly in the mode
of interest. A finite element model was developed to aid in this design. The finite
element model was constructed with enough details that it could be used later for

failure analysis of some of the internal parts. This configuration was also tested at
very low levels of excitation.
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Figure 2. Finite element model of the test joint

2. Analysis and Design of the Damping Treatment

2.1 Finite Element Model

The primary reason for creating the finite element model was to evaluate candidate
damping treatments for the test joint. The model was based on drawings supplied by
LMSC and was created using I-DEAS pre-processing software. The finished model
was translated from I-DEAS to MSC/NASTRAN format for the actual analyses.

Figure 2 shows the resulting finite element model. Due to symmetry, only half of the
structure was modeled.

2.2 Predicted Baseline Modes

The modes of interest arc .he first overall mode of the Test Joint and the first bending
about its strong axis, shown in Figure 3. The “banana” mode is most representative
of a typical troublesome mode in similar structures. Since only half of the test joint
was modeled, two runs, one with symmetric and one with asymmetric boundary
conditions, are needed to predict all of the structure’s modes. Both of the modes of
interest are asymmetric with respect to the symmetry plane, so most of the runs were
done using only these boundary conditions. Since no other boundary conditions were
applied, this predicted free-free modes of the test joint.

The initial run of the test joint model predicted the “banana mode to be the
eleventh elastic mode, at a frequency of slightly more than 1,200 Hz. The high
frequency itself is not a problem for testing; however, the bending mode was coupled
with local modes of nearly every panel section in the structure. This would have
complicated the test greatly, requiring many measurement points in order to identify
the proper mode with confidence. Another concern was that the high level of local
parel participation might distort the inherent level of damping sought for the pure
“banana”’ mode.

The solution agreed upon by LMSC and CsA engineers was to add some dead
weight to the ends and center of the test joint. It was felt that this would bring the
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Figure 3. Primary vibration modes of interest

first bending mode down in frequency while not affecting the local panel modes. The
finite element model bore this hypothesis out. The solution was to add 10 pounds to
each of the ends and the center, a total of 30 pounds of added weight for the half
model. The added weight brought the mode of interest down to about 585 Hz, and
there was no local panel participation at all.

The frequencies predicted for the baseline undamped structure including the dead
weight are given in Table 1.

2.3 Analysis of Damping Treatments

An ideal outcome of the this analysis would be a damping treatment that added signif-
icant damping without any additional weight. A more realistic goal is to maximize the
damping added to the mode of interest while minimizing the added weight. Though
there are many possible weight-efficient damping strategics, most requiring that the
VEM be en integral part of the structure. A simple constrained-layer approach was
chosen for tiis work because of hysteresis and creep concerns.

The baseline finite element model including the added weights was altered to add
the effects of constrained-layer damping treatments on both the top of the flange and
the sides of the webs. The damping was predicted using the Modal Strain Energy
Met.iod. Initial runs showed that the modal strain energy (MSE) in the VEM on
the sides (web) was much higler that that in the VEM on the top (flange). Thus,
the treatment on the flange was removed in order to save weight, and all subsequent
iterations were on the web treatment only.
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Mode | BC | frequency
1 asym | 169 Hzx
2 sym | 204 Hz
3 sym | 360 Hz
4 sym | 423 Hz
5 asym | 514 Hz
6 asym | 585 Hzt
7 sym | 640 Hz
8 asym | 675 Hz

= first twisting mode
1 first bending, strong direction

Table 1. Predicted elastic modes of the baseline test joint

It is often logical to make the constraining layer from the same material as the base
structure, especially when considering thermal expansion. LMSC had sowe surplus
48-mil-thick GR/EP from the same batch used on the test joint, so this was chosen
for the constraining-layer material. It was shown through analysis that increasing the
thickness from 48 to 96 mils (milli-inches) did not increase the damping enough to
justify the increase in weight. Thus, the final constraining layer was a 18.5-inch-long
by 9.5-inch-wide, 0.048-inch-thick sheet of graphite/epoxy, supplied by LMSC.

The next step was to determine the best combination of VEM shear modulus and
thickness. The properties (shear modulus and loss factor) of viscoelastic materials
vary with both temperature and frequency, and both are important in choosing a
good design. The loss factor is essentially the efficiency with which strain energy in
the VEM is dissipated, i.e., a low loss factor will result in low damping.

The initial candidate VEM’s were chosen for their availability The properties
of these candidate were then evaluated at 585 Hz and 70°T, the approximate tem-
perature of CSA’s laboratory. Shear moduli of the VEM’s having good loss factors
(=>0.7) were simulated on the model, and damping was predicted following the MSE
method. The viscoelastic material chosen for this application was 3M’s Y-9473, a 10-
mil-thick double-back adhesive transfer tape. This choice resulted in vhe most modal
strain energy in the VEM given the other factors that were held constant.

The surface area of coverage of the treatment was approximately 700 in? (four
sheets at 9.5 x 18.5 inches each), and the VEM has a density of about 0.035 ﬁ’g
Together with the constraining layer, the added weight is about 2.5 lbs.
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2.4 Predicted Levels of Damping

Once the final configuration of the damping treatment was chosen, predictions of
damping were made. These damping levels, presented here in terms of viscous damp-
ing (513), were calculated using the modal strain energy in the VEM as predicted by
the finite element model. The only modes of interest were the first mode overall of
the system and the first bending mode in the strong direction (“banana”). From Ta-
ble 1, the frequencies of these modes were predicted to be 169 and 585 Hz. Since the
properties of viscoelastic materials (VEM’s) are sensitive to changes in temperature
and frequency, two runs had to be made for each set of symmetry conditions: one
each with the VEM properties evaluated at 169 and 585 Hz. The shear modulus of
the chosen VEM is nearly twice as stiff at 585 Hz as it is at 169 Hz.

The damping predicted for these two modes was 2.3% and 2.4%, respectively. A
full summary of the frequencies and damping values will be included in a later section.
Note that these predictions are for added damping, and they neglect any damping
inherently in the structure.

3. Modal Testing of the Test Joint

3.1 Test Setup

The Test Joint was suspended with steel cables and extension springs to simulate
free-free boundary conditions. In order for these boundary conditions to be effective,
the rigid-body modes of the structure need to be about ten times lower in frequency
that the first elastic mode. Free-free boundary conditions were chosen to reduce the
possible effects of fixturing dynamics on the damping measurements. Often times with
simply supported or fixed-end boundary conditions, it is difficult, if not impossible, to
distinguish between loss from the structure and loss from connections at the boundary
conditions. This is particularly important in a precision structure such as this where
few mechanical fasteners are used. An additioral benefit is that comparisons with
finite element models are easier since the dynamics of the supports do not have to be
modeled.

The 60 pounds of lead were added by affixing lead blocks to the ends and center
of the beain. The cenier blocks were attached with epoxy, and the end blocks were
bolted to an aluminum bar with two 3/8-inch-diameter bolts. The added weights

were placed as close as possible to the center line of the Test Joint to avoid affecting
twisting modes.

IBC-7




Charge Amplifiers
e

~J
)
o~
)
o~
!
[ ~
] Load Cell
Zomc 6080 Signal Conditioner
A/D Converters
and FFT Analyzer

ArA Reat

Tine
AN~ Dsplay

Zonc 6081

Accelerometers

B

5 Impact Hommer

l

1
pd /7
—

Figure 4. Schematic of test instrumentation

3.2 Instrumentation

The instrumentation for the test consisted of an impact hammer, a signal conditioner
for the load cell, three piezoelectric accelerometers, accelerometer charge amplifiers,
and a four-channel modal analysis system. An impact hammer was used to excite the
Test Joint, since it was adequate for the measurements sought, and it doesn’t require
any additional fixturing or rigging.

Coupled with the charge amplifiers, the sensitivity of the accelerometers was more
than adequate to ensure a good signal-to-noise ratio, even for the low-amplitude
measurements. The tip on the impact hammer was chosen to input the most energy
over the frequency band of interest. A schematic of the instrumentation is shown in
Figure 4.

3.3 Measurements

Two points were used for most of the testing: one on the top of the Test Joint near
the center line and one on the vertical web near its intersection with the flange. Two
points were used since it was difficult to excit. both the lowest mode (a twisting
mode) of the structure and the first strong-direction bending with the same excita-
tion, especially when impacting normal to the surfaces of the test joint. Using two
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excitation points also simplified the task of data reduction, since few if any of the
symmetric modes were excited by the excitation directly on top of the test joint.
Recall from Table 1 that both the modes of interest are asymmetric modes.

Impact force and acceleration time records were captured and averaged with a
Fast-Fourier-Transform analyzer within the test system. From these, frequency re-
sponse functions (FRF’s) were computed by dividing the accelerations by the exci-
tation force. These FRF’s yield insight into the test joint’s structural dynamics by
depicting the magnitude and phase relationships of the two signals versus frequency.
Modal surveys were conducted using two impact points. Each impact point was
chosen to excite one of the two modes of interest.

A standard modal analysis curve-fitting technique was used to determine the struc-
ture’s resonant frequencies, the corresponding mode shapes, and the modal damping
from the impact test measurements. This circle-fitting technique estimates the mode
shapes by minimizing the least-square error to the FRF displayed in the complex
plane. Fast-Fourier-transform zoom techniques were used to provide the very high
spectral resolution required for accurate damping measurements from the data.

4. Damping at Low Displacement Amplitudes

After the modal tests had been completed, both the baseline and treated configu-
rations were tested at low excitation levels to determine how damping was effected.
The goal was to measure the damping at displacement levels of about 10 nano-meters
peak-to-peak. The primary mode of interest for low-amplitude damping was the
strong-direction bending (“banana”) mode. It was necessary to make certain ap-
proximations and assumptions in order to determine the amplitude of the response
contributed by this mode.

The test of the baseline undamped structure was done using the same impact-
hammer technique used for the modal iest, only with much lower impact levels and a
higher sensitivity hammer tip. The response measured at the geometric center of the
joint on the top surface was used as the maximum displacement. If the structure is
excited on the top surface directly over the web, the desired bending mode dominates
the response. Thus, it is assumed that the acceleration time history is due solely to
the response of the bending mode. This allows the peak-to-peak displacement to be
defined as the peak-to-peak acceleration integrated twice, i.e., divided by the square
of the frequency of the mode. In order to get the low response levels, the structure was
excited near the a node of the bending mode. Even if other modes were excited by the
impact, the they would only add to the measured response. Thus, these displacement
levels are conservative in the worst case.

After the damping treatment was applied, the excitation for the low-amplitude
measurements was changed from an impact hammer to a burst-random signal applied
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Lowest Mode Bending Mode
Freq (Hz) ¢ Freq (Hz) ¢
predicted 169 n/a 585 n/a
measured 160 0.26% 508 0.28%

Table 2. Comparison of predicted and measured frequencies and damping for the
untreated baseline Test Joint

through a small shaker. The change resulted in much better quality data.

A burst-random signal was used to excite the structure with random levels of
energy at all of the frequencies with a specified range. For these tests, the range was
set to 160 to 640 Hz. For accuracy, several bursts are averaged to arrive at the final
frequency response functions. The major drawback to this method for this application
is that there no way to get an exact deterministic output from a random input. There
is, however, a method for handling problems such as this. It is based on a statistical
relationship between the RMS (root mean square) of a function and its peak value.
This factor, sometimes called the crest factor, usually has a value between 3.0 and
4.0.[2,3] Additional details about the application of the crest factor for this test will
be presented along with the results in the following section.

5. Test Results

After testing with various bolt configurations (different torques, different washers,
grease, etc.), the original configuration was maintained for all of the testing.

5.1 Damping Measured in the Baseline Test Joint

A frequency of 160 Hz was measured for the lowest mode. This compares well with
the predicted value of 169. For the “banana” mode, the measurcd frequency was
508 Hz, compared to 585 Hz predicted. This 15% discrepancy is of some concern,
but not much since there is high confidence in the actual mode shape. Damping
predictions via the modal strain energy method are dependent solely on the system
eigenvectors and the structure’s stiffness matrix. Of the two, the mode shape is the
more important in getting accurate predictions of damping. For this reason, only
minimal time was spent trying to match the frequencies of the finite element model
to those measured. (A subsequent finite clement model built by LMSC was tuned to
match both of these modes very well.)
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Figure 5. Frequency-response function showing strength of mode at 500 Hz

5.2 Damping Measured in the Treated Test Joint

After the damping treatment was applied, the measurements were repeated, only this
time at a smaller subset of the original 32 points. The 500-Hz bending mode is very
dominant when impacting the joint in the vertical direction from the top side, so it
was not necessary to re-find the mode. This dominance is seen by the relative isolation
(as in distance from other modes) of the mode, as shown in Figure 5. A comparison of
the measured and predicted frequencies and damping values is given in Table 3. This
close agreement between test and analysis damping levels is good considering that
the viscoelastic material properties were not verified by test. The model correlates
better with the lowest modes than with the target bending mode. Therefore, it is
reasonable to expect the damping prediction for this mode to be better.

5.3 Damping Measured at Low Amplitude Levels

5.3.1 Untreated Baseline Structure

In order to produce the low-level responses desired, the Test Joint had to be excited
with a light impact hammer to produce very low forces. The untreated Test Joint
was excited with two low-level excitations: one producing about 25 nm zero-to-peak
displacement and the other about 5 nm. The acceleration time history produced by
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Lowest Mode Bending Mode
Freq (Hz) | ¢ | Freq (Hz) | ¢
predicted 170 2.3% 612 2.4%
measured 169 2.5% 530 1.95%

Table 3. Comparison of predicted and measured frequencies and damping for the
treated Test Joint

one of the impact forces is shown in Figure 6. The displacement was calculated as
follows: The figure shows the zero-to-peak acceleration to be about 2 ;2%. Consider-
ing the FRF in Figure 5, it can reasonably be asserted that this signal is dominated
by the 530-Hz mode, so the zero-to-peak displacement can be calculated to be

disolacement acceleration 2.020,
isplac = = =
P (27 f)? (27530)2 L,

sec

0.0254 x 10° nano-meters
1 inch

= 1.804 x 10”7 inches x

= 4.59 nano-meters

The damping measured for the 5-nm and 25-nm displacements was 0.28% and 0.33%,
respectively. These compare very well with the 0.28% from Table 2.

5.3.2 Structure With Damping Treatment

This test used a shaker producing a burst-random signal. The quality and repeata-
bility of the results far exceeded that of the impact hammer. As discussed briefly in
a earlier section, a statistical relationship had to be employed in order to infer dis-
placements from the random loading used on the treated structure. Two quantities
are needed to determine this crest factor: the ratio of the RMS of a power spectral
density function (PSD) at a point and the maximum response at that point. For this
purpose, the acceleration at the geometric center of the top surface was used. As with
the displacements, deterministic accelerations cannot be determined from a random
loading. In place of finding the maximum acceleration during the random burst, a
limiting value was determined. This was done by placed a limit on the voltage signal
output by the accelerometer at the response point. If this linit voltage was exceeded,
the ensemble was rejected. Knowing the accelerometer’s relationship between accel-
eration and voltage output, this provides a good, if slightly conservative, measure of
the maximum acceleration.

The crest factor was calculated for each excitation level by dividing the upper-
limit acceleration by the RMS of the acceleration PSD between 160 and 640 Hz. This
ratio was then multiplied by the RMS of the displacement PSD to obtain a statistical
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Figure 6. Acceleration time trace of low-level impact in the untreated baseline Test
Joint: first strong-direction bending mode

estimate of the maximum displacement. In order to better estimate the maximum
displacement of bending mode alone, the displacement RMS was computed between
the half-power (3-db down) points. The results are summarized in Table 4.

In two of the measurements (marked by * in Table 4), the random signal was
limited to a narrow band around the desired mode. This further ensured that only
the bending mode was excited. This is noted because the crest factors for these two
cases are lower than the others. In the limit, as the frequency band collapses down
to a single frequency, the crest factor approaches the one over the RMS of a simple

sinusoid, or v/2.

acceleration Crest, displacement | djimit
Aymit RMS factor RMS 0-pk ¢
{in/s?) (in/s?) (unitless) | (nano-meters) | (nm) | (%)
0.259 0.06317 4.100 0.1042 0.427 | 1.77
0.386 0.1001 3.856 0.1623 0.626 | 2.04
0.66 0.1751 3.769 0.2937 1.11 1.95
1.93 0.7039 2.742 1.1784 3.23 [ 195
5.8 2.821 2.056+ 4.9863 10.25 | 2.04
9.65 2.538 3.802 4.148 16.8 | 1.95
19.3 5.043 4.808 9.270 44.57 | 1.95
38.6 10.99 3.51 20.163 70.82 | 1.95
58.0 27.75 2.090« | 47.90 100.11 | 1.96

* band-limited signal used

Table 4. Results of test of treated joint at low excitation levels
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6. Hysteresis Testing

Historically on LMSC structures, hysteresis observed in static test programs typi-
cally exceeds 10% of their maximum displacements. On structures such as this where
dimensional stability is of concern, hysteresis must be reduced by eliminating me-
chanical fastei.ecrs where possible and bonding or welding critical interfaces. Past
experience with alignment platforms and other precision structures has shown hys-
teresis effects reduced to approximately 1% when a large static load is applied.

Quantifying hysteresis as a percent of displacement is the best method of describ-
ing the effect. It is not to suggest that hysteresis can be predicted accurately in this
manner, rather the effect can be bounded by some + percent range. This allows the
effect to be accounted for within structural stability budgets.

Duration of the applied loading should not be of importance since creep effects
generally take a comparatively large amount of time to accumulate and are treated
separately from hysteresis. Figure 7 shows that hysteresis is independent of time.
However, because graphite/epoxies respond with small viscous effects, a finite amount
of time to settle and take readings was given to allow full recove.y. lecause o1
the dynamic and cyclic nature of load conditions of primary interest to spacecraft
structures, the viscous behavior is not as critical as it first may seem. At any rate,
because of the sensitive nature of the test equipment in use, time dependant effects
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Figi.re 8. Hysteresis test setup

from suddenly applied and removed loadings are left for future studies.

6.1 Description of Hysteresis Test

The test was conducted at the Laser Interferometer Micro Measurement System
(LIMMS) Lab. This lab is capable of measuring small displacements with a reso-
iution of + 0.6 micro-inches. This is achieved by using a series of Hewlett-Packard
laser interferometers mounted on a seismic pad. The lasers were sampled 100 times
a second and averaged over one-second intervals to eliminate high-frequency jitter
influences. To help minimize temperature effects, the lab uses its own air-conditioner
system, steady to £1°F over 24 hours, and critical fixturing is made from Invar.

The test joint was supported on two blade flexures to siulate a simple support.
The load was applied at the mid-span to put the joint into three-point bending. Seven
lasers were used to measure displacements at varying locations &'ong the bottom of
the joint. Figure 8 is a schematic of the test setup.

Two redundant 10-pound (£0.01 Ib) load cells were used; one calibrated for tension
and the other for compression. Both cells were located as close to the joint interface
as possible to minimize error caused by fixturing or motor drive slop or relaxation.

The load was applied with a 60000-to-1 gear-reduced motor to apply a very smooth
and accurate load to the joint.
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The test sequencc used was to zero the load fixture and take displacerent readings.
As load was applied laser readings were monitored contincously. When the target
load was achieved in the positive direction, the motor drive paused for 10 seconds
and unloaded to zero. Another 10-second pause was maintained at zero immediately
followed by a negative load application to reverse the target load. The sequence would
then pause at this negative load and again at zero. By cycling the load between a
positive and negative load, a more realistic load environment where the structure
was not allowed to settle in any one direction, was simulated.

6.2 Pesults of Hysteresis Testing

The test sequence was applied at medium-to-small load levels to determine the beams
response at as low of displacement levels as possible. Tests were run at = 1,5,10,25,50,
and 100 pounds. Stresses at these I d levels never exceed 50 psi, which is two or-
ders of magnitude less than the microyield strength.[4] Deflections used for hysteresis
measuremen:s were taken at the mid-span of the joint atter subtraction of the end
measuremen s, in effect zeroing any contribution of the test fixturing to deflections
or hysteresis. The stiffness of the joint was measured as 142,300 lb/in, so deflections
during all test 1uns were very small.

The data suggests that hysteresis shifts the structure in the direction of the last
applied load. This observation is relatively insignificant considering the dynamic
disturbance and cyclically decaying response typical of spacecraft structures.

Test runs were repeated up to 50 times each to increase confidence in the re-
sults. While every attempt has been made to minimize outside disturbances from
influencing test measurements, the scatter of data levels is much greater than the
laser resolution would suggest. Data scatter during higher load levels are probably
caused by large disturbances such as trucks passing by the building, foot trafic down
adjacent hallways, or the air conditioner switching on at an inopportune moment.
Scatter in the data during the +1-pound test is much smaller and can be caused by
more sources such as load cell resolution, humiditv changes and motor vibrations. To
minimize the influences from all these error sources, culy the date that fits within a
one sigma (.68p) distribution is kept for analysis, essentially throw'ng out the worst
one third of the data at cach load level.

The remaining data is then averaged and plotted for of the six each load levels.
The curve plotted for Figure 9 shows that hysteresis in the joint s typical of precision
structures. The composite construction and applied dampiug treatment have not
appreciably increased hysteresis above one percent for large disturbances. However
when disturbances are less than about 0.001 inches the test data would suggest that
Strucvatail hvsteresis 1s noulinear. The 1 sigma error band s included to show
test repeatabilityv. Admittedly since the number of pertorboting error sources and
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significance of test inaccuracies increases at low disturbance levels, one would expect
to see a curve shape similar to Figure 9 even if percent hysteresis is linear and constant.
However the amount of nonlinearity measured is more than expected by attempting
to quantify the test error sources alone.

7. Summary and Conclusions

The viscous damping in the untreated Test Joint was measured to be 0.28% for the
strong-direction bending mode and 0.26% in the first twisting mode. The damping
oi the beading mode was shown to e constant down to a displacement level of about
5 nm zero-to-peak.

A finite element model of the Test Joint was constructed for the purpose of evalu-
ating damping concepts for the Test Joint. Though few attempts were made to tune
the model to the test results, the model predicted with good accuracy the damping in
the treated Test Joint. The roughly 3-pound damping treatment resulted in about 2%
viscous damping in the bending mode and about 2.5% in the lowest twisting mode.

The best quality signals for the low-level damping came from the test of the treated
structure. Figure 10 shows the damping measured versus maximum zero-to-peak
displacement. It is important to understand that the damping values of 1.95 and 2.04
are virtually the same within the accuracy of the test. With 1024 measurements over
the frequency range of 160 to 640 Hz, the modal and half-power frequencies can only
be determined to an accuracy of Q%{@l = 0.47 Hz. The damping is determined by
4v "where Aw spans the half-power points and w, is the center (natural) frequency.
Thus the measurement of damping for the 530-Hz mode can only be resolved to
within 247 = 847 ~ 0.09% viscous damping. The only deviation comes at the very
lowest level, where the load levels were so small that the signal-to-noise ratio was

poor; most of the response was attributed to the drive gear in the shaker.

This work demonstrates structural damping using a viscoelastic material (VEM)
to be constant with respect to amplitude down to nano-meter levels. It shows that
passive damping is a viable means for reducing the response of structures using this
construction to external excitations. Finally, the correlation between the analysis
and test shows that levels of damping can be predicted with reasonable accuracy.
The collimation of the above factors gives engineers a valuable and powerful tool for
analysis and design of precision structures.

Structural hysteresis of the test joint is shown in Figure 9. Plus or minus 1%
hysteresis can be used as a conservative estimate to bound large-deflection hysteresis
of structures using the passively damped composite construction techniques. The
hysteresis behavior of these structures appears to be nonlinear at very small displace-
ment levels. For analysis of events which produce disturbance< less than one mil,
Figure 9 along with an appropriate ur certainty factor can be used as a design guide.
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DAMPING RATIO MEASUREMENTS IN
KEVLAR SANDWICH SAMPLES

.. Balis-Crema!l
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ABSTRACT

Unlike some structural aerospace materials, as for instance carbon fibers, Kevlar
composites present high damping ratios. This characteristic seems important in
the structural design of satellites and large spacecrafi. Besides the use of Kevlar
sandwich structures is particularly interesting because of their high specific stiffness.

This paper presents the experimental results of damping ratio measurements
derived from several sandwich samples, characterized by different skins, fabric and
laminate with different lay-up.

Damping ratios are evaluated hy using different techniques and a comparison is
discussed. The effects of frequency and temperature - in the range from the room
value up to 100 Centigrade - on the damping ratio values are also considered.

A model (based on an energetic approach), that permits a theoretical estimate of
the damping ratio in sandwich samples is presented. Finally a comparison between
the xperimental and the predicted values is carried out.

FULL PAPER NOT AVAILABLE FOR
" PUBLICATION

'University of Rome, Aerospace Department, Vin Fudessiana, 15, 00184 Roma, Italy, (06) 463211
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CHARACTERIZATION COF THID DAMPING PRCIRRTIES OF HIGH-DAMPING ALLOYS

I.6. Riv hie  ang 7 -L. Pan

ABSTRACT

Many problems of noise and vibration redustion cannot be sclved by
traditional methods using mechanical dampers or high-damping viscoelastic
materials (e.g., rubbers, polymers and plascics). Often constrainis imposed
by the service envircnment, particulariv those of stress., temperature and
ccrrosive atmospheres, will force the design engineer t» consider high-
damping metals, alloys and composite materials. Unfortunately,
characterization of the damping and ctiffness properties of promising high
damping metals and alloys has hardly ever been carried out in a systematic
manner. Consequently, damping data are rarely accessible to the design
engineer in a readily vwaable form. This lack of standard data has resulted
in relatively few cases where metals and alloys have been chosen
specifically fer rheir high damping properties.

This papes outline: technigues and stiategies o characterize the damping
properties of high-damping metals and alloys rhat owe their damping
behaviour to the major classes of high-damping mechanisms. The main goal of
the characterization is tc present the damping data in a form that can be
readily used by the design engineer ¢ predict the vibration response of a
component fabricated from the high-dsamping metal or alloy in question.
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the bl-+ after casting. The composition of the samples resred is al«o
shown in Table 1.

TABLE 1--Composition ranges ot rhe allovs investigated.

ffomposition

(wt%)

."";II;;WH___ L
Designarion Zn al Cu Mg S1 Fe
A380 (SCB4Aa) 3.0 temainder ;f;rl.0~r-ﬂ.1 o _w;i;j;:;“«}.ﬁ‘w
43 (AGA4DA) remainder 3.59-4.3 .25 0.02-0,08 S
248 remainder 8.0-8.8 0,8-1.12 fH.015-0.030 - L
ZA1Z remainder 10.5-11.5 0.5-1.25 0.015-0.G30 - Hoors
SPZ (ZAZ2) 78 22
ZAZ7 remainder 25-28 2.0-2.5 0.010-0.020 - th. Gl
Grey Cast Iron - - - - 6
SONNSTON Mn Cu Al Fe Ni C

55.2 3.1 4. 16 3.16 1.42 0,095
TECHNIQUES

LOW FREQUENCIES (1-10 Hz)

Samples weve machined from the as-received, as-cast materials into small
rectangular prisms, typically S mm x 2.5 mm % 1.0 mm, for testing in a lou-
frequency, flexure pendulum. The pendulum used in this study as well as its
electronic instrumentation is described in detail elsewhere [2].

INTERMEDIATE FREQUENCIES (10 5000 Hz)

Samples in the form of rectangular section bars of various lengths and
thicknesses were machined from the as-i1eceived materials for testing 1n both
fixed-free (cantilever) and free-free resonant bar equipment {3]. A
detailed desur:ption ot some of these techniques adapted to the narrower
gnal of the ‘nvestigation of elastic moduli is given in reference 4.

ULTRASONIC FREQUENCIES (40 kHz and 120 kHz)
Semples in the form of square-section (§ mm x 3 mm) prisms, 60 mm in

length, were machined from the as-received materials for testing by the
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(a) AMPLITUDE INDEPENDENT AND FREQUENCY DEPENDENT

IF 4 IFﬁi

-

Amplliude Frequency
or Temperature

(b) AMPLITUDE DEPENDENT AND FREQUENCY INDEPENDENT

IF IF &

= P
L ot -

Ampliltude Frequency

or Temperature

FIGURE 1: Schematic diagrams of internal friction as a function of strain
amplitude for (a) amplitude-independent (dynamic hysteresis) and
(b) amplitude-dependent (static hysteresis) damping.

RESULTS
ZA ALLOYS

The first flexure pendulum experiments (~4 Hz), on any one of the
materials, using samples of two different thicknesses immediately revealed a
strong dependence of the damping on the thickness in bending. This in turn
suggested the existence of a large thermoelastic component, subsequently
corfirmed by the frequency dependence of the damping of samples of the same
thickness and different lengths, and calculations of the thermoelastic
damping using Zener’s theory [6] and the known thermophysical properties of
the materials (Fig.2). Other flexure pendulum measurements established the
presence of a large peak as a function of T, culminating in a phase change
at about 290°C, as shown in Fig. 3 for SPZ and ZA27. Low-frequency and
high-frequency measurements of the low-temperature tail of this peak, as
well as the strain amplitude dependence of the IF at ambient temperature
(~20°C), are shown in Fig. 4 for ZA27.
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FIGURE 2: Thermoelastic damping peaks plotted as a function of log(ft?),
wvhere f is the frequency in hertz and t is the specimen thickness
in centimetres, for the ZA alloys, A380 and grey cast iron.
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FIGURE 3: Damping, Q°!, and resonant {requency (Hz) as a functicn of
temperature for ZA27 and SPZ. The vivtical dotted lines indicate
the temperature range nf practical inierest.
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FIGURE 4: Damping, Q !, as a function of temperature and strain amplitude
(at 20°C) for ZA27.

Combining the results of the flexure pendulum and the APUCOT measurements
revealed the following important conclusions:

1. The IF and E are amplitude-independent at both high frequencies and low
frequencies over the useful temperature range from 20 to 150°C. Such purely
linear behaviour of IF and E in a series of alloys is quite unusual and
indicates that all of the major components of the IF come from linear,
dynamic relaxation mechanisms.

2. One of the mechanisms is thermoelastic damping.

3. The IF increases rapidly with temperature at both low and high
frequencies.

4. The IF curves as function of T shift to higher temperatures (without
noticeable change in shape) with higher frequencies. This strongly suggests
that the major component of the IF comes from a thermally activated
relaxation.

5. These results agree with the findings of previous investigations into
the SPZ alloy [7-9].

If the IF at both low frequencies and high frequencies can be accurately
described by the sum of the rwo thermally activated processes mentioned
above (thermoelastic re=laxation and the low temperature tail of a boundary
relaxation), then this suggests that no other mechanisms become active at
intermediate frequencies. However, to be sure that this is indeed the case,
data at the intermediate frequencies must be collected and they too should
be described by the sum of the two components.
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SEMI-EMPIRICAL DESCRIPTION OF THE IF

The main results of the IF study of the ZA alloys are most easily
displaved in a log Q! vs. log F plor, as shown in Fig. 5 for ZA27. 1he
scatter is somewhat large, but not unduly so considering thar (he sampl
wvere cut from commercial die castings with variations in pcrosity,
composition and other microstructural characteristics. Also, it should be
noted that each datum is the avrrage of at least three reneat measurements
on a scparate sample of the same thickness. The IF is highly reproducible
for repeat measurements on the same sample, but variablc from sample to
sample cut from the sazme die casting.

2T

-4 | | i |
0 i 2 3 4 5
Log (F )

FIGURE 5: Log-log plot of damping Q >, as a funcrtion of frequency, {. for
ZA27 at 20°C and 120°C. The full curves were calculated using
equation (2) and the data in Table 2.

We expect to he able to describe the data of Fig.5 by an expression of the

form

O ! : . . f I ! T , )

D (e, LT Background « w5 exp | —x | - 4wt 1+ (01)?] (1)

f kT Te

vhere Q@ '(t,f,T) is the IF for a sampie o rhickness t, at frequency f and
temperature T. In eqn. (1) the [F is given in terms of three components:
(1) a temperature-independent background: (2) the tail of a broadened high-
temperature peak characterized by tro evponent n, the activation enthalpy
H, and the constant, A; and (3) the  aermoelastic relaxation of strength,
8, and relaxation time 7. w = 2nf i: the radian frequency of the
osci.lations. Determination of n and H fvorn rhe experimental resuits and
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A, and 1 from a combination of the thermophysical data on the alloys and
the experimental results is described in detail in reference 10.

The experimental data obtained for all of the ZA series of alloys obtained
over the temperature range from 20 to 150°C and the frequency range from
1 Hz to 120 kHz is well described by the semi-ewpirical formula derived from
eqn. (1):

QN (t, £,T) = o F™ 5 o, Fhexp(-B/T) + o, T(Ft2)/[1 » (8, fr2)?] (2)

where the first term represents the f-dependent but T-independent
background, the second term is the tail of a broadened high-temperature
relaxation and the third term is the thermoelastic component. The constants
for the various alloys are tabulated in Table 2. In Fig. 5 it is important
to note that the calculated curve at 120°C is in good agreement with the
limited IF data obtained at that temperature.

TABLE 2--Data used to describe the thickness, frequency and temperature
dependence of the damping in the ZA alloys.

Frequency-Dependent Temperature Thermoelastic
Background Dependence Damping
Material m o o, n 8 a, 8
#3 0.26 2.90, x 1073 5530  0.16 5222 3.963 x 10°° 1.556
ZA8 0.28 3.54, x 1073 4566  0.16 5106 2.758 x 107 0.911
ZA12 0.29 4.07, x 107 2937 0.18 4758 2.863 x 10°° 0.977
SPZ 0.22 1.17, x 1072 16987 0.13 4875 2.335 x 10773 0.918
2A27 0.29 5.01, x 1073 6910 0.16 4990 5.016 x 103 1.495

Young’s modulus measured at ambient tempervature for the ZA alloys is given
in Table 3.

TABLE 3--Young'’s modulus of the ZA alloys measured at 20°C and 40 kHz.

Material Young'’s Modulus
(GPa)
#3 93.8
ZA8 91.4
ZA12 89.5
SPZ 91.6
ZA27 78.0
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The IF of a sample of DR-1 as a function of £ a1 ambiont ter_ianare is
shown in Fig. 6. Also. shown in Fig. 5 is i nrLinslo ”

calculated from the specimen dam:zng BEBINT A Lo Tyt o
the flexure pendulum sample. Details o ol o rep
elsevhere [11]. Similar experiments _arri<! 0 tou DR-1 and

DR-4 using the APUCOT ave shown 'n Fig.

rece:ved SONOSTON 1s s-dependen. ar vigh o
at 40 kHz are very different comparsd w1th

T o
I¥ of the as5-

form of curves

carencies

The IF and E as a function of npE ez cooa oaamn o of BROD measured at
about 4 Hz in the flexure pendul-n and at ot i b APUCOT are
compared in Fig. 8. The rinima in f< (-4 v and kH4z} mark the el
temperature for the alloy. At tenperatures helowv ibe ‘rumoin B othe
material is antiferromagretic and the dasping ¢ ciaias (o couponziis, an £-
dependent component and an r-indeondent oor prent. MU vioaperatures
than that of the minimum in E, the wateriai o3 amagnetic and the IF is -
independent. This is borne out by “he s20x of 478 an’ £ e, T curves for
different constant £ values shown in {flg=s. % ana 10 for samples of DR-1 and
DR-4 respectively. Fig 8 also shows a ravher complicated peak structure at
low frequencies that chifte to higher temperatrure and increases in height at
higher frequencies. & few tests at intermediate fremquencies confirmed this
observation. The sharp side c¢r tvuncation ¢f the bigh-fraciansy peak in
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Fig. 8 is evidence of the fact that the thermally activated processes in the
lower-temperature antiferromagnetic phase are shifted to the region of the
phase change, but are inoperative in the higher-temperature paramagnetic
phase. An important point to note in these results is the substantial
differences in the Néel points and the forms of the Q"' vs. T curves for
samples of DR-1 and DR-4. These differences come entirely from
microstructural differences between parts of the same casting that cooled at
different rates. As shown in Figs. 7 and 8 respectively, the highest levels
of damping achievable in the SONOSTON were not present in the as-received
samples of either DR-4 or DR-1. Even higher damping levels were found at
both low and highi fiequencies iun samples ncat-treated tor 2 h at 425°C and
furnace-cooled.

Couabining the results of the flexure pendulum and APUCOT measurements
revealed the following important conclusions:

1. The IF and E 1ie strongly z-dependent at both low and high frequencies
at temperatures helew the Neéee]l remperature. At higher temperatures the IF
is e-independe. *.

2. At least nna of ‘he mechanisms is thermally activated, since the peak of
Q! vs. T shitts '~ o:gher temperatures with higher frequencies. An
unexpected featars L ‘hece presnits is that the overall peak height also
increases with freguon v (see Fig. 8).
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The difficulties of characterizing the intrinsic ¢ dependence for each of
the vibration modes used in our experiments, together with unknown mechanism
that causes the increase in Q7! with frequency for the thermally activated
mechanism, make a semi-empirical description of the IF, similar to the
description given above for the ZA-alloys, almost impossible for SONOSTON.
Indeed, at present it is not clear if the same mechanisms are operative at
both low and high frequencies in the antiferromagnetic phase. In addition,
the variation from place to place in the casting is much too large to ignore
in a semi-empirical description of the damping of the whole casting.

DISCUSSION

The characterization of the damping and stiffness properties of commercial
HIDAMETS is a difficult and in scme cases tedious procedure. We have
outlined a method that works reasonably well for e-dependent mechanisms and
is not very different {vom the methods used to characterize viscoelastic
materials. However, the majority of commercial HIDAMETS obtain their high-
damping properties from e¢-dependent mechanisms or mechanisms involving
aspects of both dynamic and staotic hysteresis mechanisms that ave highly
sensitive to small microstructural changes. For such materials, it is a
challenge to extract evon the intrinsic damping for a given mode of
vibration. This doe:s not mean that such materials are not useful in
practice, but it does wean thart some other method of assessing the
usefulness of the damping preperties must be employed. A method that ve
have employed with some sucress involves the simple substitution of
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materials for the compenent or strucrture invelved, as mentioned 1n the
introduction

The 24 alloys are already used In bhundvens o1 dif e

y srent o anplloations ood
among these are several vher=z the elevntad Porhe all KR
has proven to be of great bhenetit. VYor crampie, viro obhile zigine anonte
have bheen die-casi from Za27 [12) SOMOSTN nas beea used r.oconit guier
submarine propellers.

CONCLUSIONS
The ZA alloys have elevarad Ao sing

compared with moszt of thei. competito;
alwavs a ponus in practi.al aoplications sl

80°C, all of the ZA alloys bhecome HIDAMETS iy i ' 3 A
characterization of this damnping benzviour is yivep rhet :ole s th- decign
engineer to estimate the damping o~ "heso «ilors in flewurs a2t uzafal valiies
ot thickness. temnevaruve and fregueras,

Properly heat-rreated S0NOSTOMY 1: alzo o HIDAMET oo temperatures from

r

in er311fhdes (g > 10’“). But,
m3 invelved, it 12 not ponsible to

manner (using a semi-empirical

of temperatires, freouency or

about N°C to the Néel point and high si:a
because of the complexitv of the mect
present the damping behaviour in a =1
descriprion) that will cover wide :ange
vibration strain amnliruds
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VISCOELASTIC AND STRUCTURAL
DAMPING ANALYSIS

Harry H. Hition®
University of Illinois at Urbana-Champaign

ABSTRACT

The interrelationships betweern viscoelastic, Newtonian viscous and
structural damping are analyzed in terms of Fousier transforms  and
complex moduli in the frequency domain and urs wso interpreted in terms
of behavioral responses associaicd with real rwmaterial compliances or
moduli in the real time plane. It is showa that the corrzspondence
between viscous and elastic structurai ¢amping is spurious, severeiy
limited to only harmonic mouon and that it does not extend to more
complicated viscoelastic materials beyond Newtonian viscous fiow
dissipation. The dissipation eneigy generated by viscoelastic and
structural damping is also examined. The effects of structural damping on
elastic and viscoelastic bending-torsion flutter are evaluated with the help
of numerical examples. The material considered is aluminum, but the
analysis is general and can be applied to any viscoelastic material. It is
shown that the presence of increased structural damping does not
necessarily have a stabilizing effect by decreasing the viscoelastic or elastic
flutter speed nor are the viscoelastic flutter speeds necessarilyv lower than
the corresponding elastic ones.

INTRODUCTION

In ftlutter and vibration analysis, it i1s standard practice to augment
elastic eifects by the introduction of structural damping coefficients g |[1-
4], where the latter are essentially measures of losses due to material
hysteres: and/or friction in structural joints. In boeth instances, the
fundamcntal dissipation phenomenon is “dry” solid friction and as such.
the associated force and displacement constitutive relations are explicitly
independent of frequency and of displacement velocitics, acceleration: or
their higher ume derivatives.  Analytically, the algebraic Hooke's law i
maintatued, but the actual. real elastic moduii are replaced by complex
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values, te.. B = Fy (1 +igy). where Eg is Young’s modulus in the absence ot
structural damping. A similar expression is used ftor the elastc ~heur
modulus, G = G, (U + 1220 and for the elastic bulk modulus, K = Ky(1 + i1g;).
The three g's displaved here may or may not be equal depending upon the
parnicular Jdumping cncountered 1na given structure.

Yoscoelasts mu;mi\g or the other hand, obey ditferential und/or
Bilepoor ~stroseoa-stnn daw which relate stresses, strarns and thar tme
derivatives ol various orders 5] The viscoelastic dissipation process i
provanly an wavelved, hichiy frequency  sensitive, material  dependent
viscous phenomoncr with one or more coefficients of viscosity {51 and, as
wiil bo shown, geiaity unredated to o the structural damping mechaniom
bis paper oas oweld, the term viscous damping reiers o
Neatontan fiov, whnere the wfresses are proportional to the strain velociu
throuph ot foeso anly one covtiicient of viscosity for shape changes and no
more thon one oirer tor velume changes. While the structural damiping
sinagsrstood  and  experimentai values  for the.o
dariping coctiicierts are readily avatlable [1-4]0 its interpretation vis u vis
ciscots chumeping appeers confused 16, 7)1 Fung {3], on the other hand. has
correcils based Bis ocorrespondence between  viscous  and  structural
Jamping on harmoenic meten. but o has restricted  his oanalysis te only
mLotton gt the o sssrem s nodural freguency. Under  these conditions be
showoinat the strucuaradl demping coefficient is frequency independent.
More recentis. Dahl 18] hasy modeicd solid friction damping in mechanical
asctiators byeoasang hoth Baenr oand nonhinear formulations.  His models wre
ofcorest, osince they stmulate decay  behavioral  patterns which
approvbnate Loy Couiomb fricaen at high amphitudes and low  frequencies,
by ovoous daiaping at neid wninhiudes and nid  frequencies and, finally,
ics structeral darapmy wo siaadb amphiudes and high frequencies. However,
these  wppronorave soctarnnes o not rmply any  relations betweer
fundinental behaviors! reaponses ot solid  and  viscous  damping
prenomcns Saravanos  and  Chamis 9] present a hystenie  damping
analvsis Yoo conpostie fominses and anclude an extensive bibliograpny on
damypore

BRI e i
Thstoricaiiyv, wndl in
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stnce aesiastces echudes among other mechanisms both elasticin
pad v g e velocity dependent  Newtonian  viscous
dw;zp;arma‘n v reaiy oo s e vehicke for the comparison of viscous
ahd U orurns o In ths paper, general linear viscoelastic stress
straine aelation o0 Doy cuctural oand viscous damping) oare used  to
inteipret the svare oo Swmpeng poocdsies by g critical examination  of

coripiex modul n the frequeney domaim and  of compliances i the real




time plane. Such an approach makes it possible 10 treat generatized many
degree of freedom systems and is not limidted to the single mass, spring
and dzmper combinations of References [0] una [71

Flutter and Complex Moduii

The governing elastic eqguiiibvium  eguations Jor  fiexible 'tting
curfaces, fuselages, etc. subjecic.d to aerodyaaaic and inertiai forces with
generalized  displacements (x5, m=i. Z.- 270 oo oo expressed in the
generalized form

A S

3 o R B Y (N . s e
X |2 Dmnk J Qg (X tifdx = L Lopi v, Qoo ons Qi b = g (l)
n=0  6=0 e

k=12..M: x = {x1, X2, ®3}

where Ljynk are differential operators describing inertia and unsteadv
aerodynamic contributions, V is the flight speed, Fx are generalized forces

and the Dimk are elastic stiffness terms depending primarily on  materiad
properties  (i.e., Young's and shear moduli E, and Gg), on structural
geometry and on mass distributions.  The elastic-viscoelastic analogy |[5,
10, 1] consists of the application of Fournier transforms (F.T.) to Egs. (I
and  of the subsegquent substitution of complex viscoelastic moduli

I and G for the elastic moduli E, and G, or esscntialiy replacing the real
Q Q J <

. . . . e . ) .
and frequency independent elastic snffnesses O by complex viscoelastic

unctions D

Stitfness (w5, This. then leads (o scoverniny  visooelastic
mnna o &

relations 1o the F.oT. plane

NN N ~
- A n PR = = .
[2 D pdx, o0 q, (G w)axs = 20 Loaad Vi @} = F(xi o) (2
m=0 n=! n=

Il car be roadily shown (5] that for <buple harmonic motion the b1,
vartabic o iv the oscillatory treauency aad that in tne case of flutter it
11} it becomes the flutter frequency. while Voplays the role of the fluties
speed The datter two are. of course, nairs of eigenvalues at which a given
flight dructare can experence harmonis mosoen The wvelocity Voocan

k,
v

readily beoreplaced pyothe tinteer Rach aumbos M




Viscoelastic responses may also be characterized on an energy axis
involving all potential energy at one end and all dissipation at the other
which is shown schematically in Fig. 1. Elasticity and viscous damping
represent the two degenerate viscoelastic extremes at opposite ends of the
energy scale, i.e., elasticity is 100% potential energy and zero damping,
while Newtonian viscous flow is a.l dissipation and no potential energy
storage.

¢ = 100% ¢ = 0%
DE = 0% DE = 100%
-« VYiscoelastic g

[ |
! i

Elastic Newtonian
Viscous Flow

& = potential energy
E

p
DE = dissipation energy

Fig. 1. Energy Representation of Material Properties

In general, linear viscoelasidc material behavior (including elasticity
and viscous damping), i.e. the stress-strain relations, can also be expressed
by relations between generalized displacements qm and forces Fp. For
isotropic materials they are given by [5]

Pm {Fm} = Qm {qm)} (3)

and where P, and Qn are either dilferential or integral time operators. In
particular, for each m these reduce to

Fm = Eino(l + 1gm)qm (4)
for elastic structural damping and to
Foo = Epo (I 1204, + ¢4y, (5)

for combined viscous and elastic structural damping. (When g = 0 in Egq.
(5). then only viscous damping takes place coupled with an elastc
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response.) Similar, but more involved, expressions may also be written for
anisotropic materials [13], but will not be introduced here for the sake of
simplicity.  They are, however, treated briefly at the end of the next
sectton.

The application of Fourier transforms to Eqgs. (3), leads to [5, 10, 11]

=i
a1l

Frn=Enqn (6)

where the Em are frequency dependent viscoclassic complex moduli.  Note
that Egs. (6) are symbolically equivalent to the F.T. of Eas. (4) and that the
F.T. of the elastic Eqs. (4) gives a complex modulus i’i,n—_-Emo(1+igm)for
structural damping, which is frequency insensitive. Since these complex
moduli are expressible as E =E_ «(x, o) +iE (x, 0), it follows that the

viscoelastic stiffnesses are also complex, i.e., D . (x, ®) = Dypkr(x, ®) +
iDmnki(x, ), where the Emr, Eml. DmnkR. and Dgypk1 are all distinct real
frequency functions. Such an omega dependence is due to the intrinsic
nature of the time differential or integral viscoelastic stress-strain laws of
Egs. (3). It can be readily seen from Eqs. (5), that in the general
viscoelastic case, the complex moduli with structural damping are

E._(x, )= (1 +ig)Enr(x, ©) + iEp(x, ) = Egg(x, ©) + iEq(x, 0) (7)

where Em[ = 8m F‘mR + Eml'

Furthermore, elastic structural damping is also included in Egs. (2),
by virtue of the complex moduli defined by Eqs. (4). except that then the
Dmnkk tnd Dpnkr are frequency independeni. In any event, the
expressions on the right hand sides of Egs. (2) {i.e., the gencralized forces)
are unaffected by the nature of the elastic or viscoelastic materials.
Therefore, the fundamental difference i1s that in the elastic case with ¢
without structural damping, Dink are frequency independent, while for

viscoctasuc materials the stiffness parameters D, are always frequency
functions. For nonhomogeneous viscoelastic materials  with  structural
damping, one needs only to replace the clastic stiffnesses in Egs. (2) - th
DonkXe ) =D mnkr(x, w) + 1Dy x1(x, o) in the F. T. planc- where

Dkt - Pk + Dokt Again note, that for elastic structural damping, the




stiffness parameters in Eqs. (2) have a form identical to frequency
independent viscoelastic ones. Table [ illustrates the complex moduli
representations in the four combinatorial cases considered.

TABLE 1.
Complex Moduli E = ER + iE; and Compliances Jg (t)

Material Real Part Imaginary Part  Compliance Jg (t)
Elastic Eo 0
Elastic with

structural damping Eo gEo S(OIEL/(1 + ig)
Viscous damping

with structural damping E, gEo + cw exp(-(1 + git/tl/c
Viscoelastic with

structural damping Er(w) gERr(w) + Ef(w) Eq.(14)

The structural damping terms igq may be thought of as out of phase
components of the displacements q, and, as such, bear some resemblance
to velocity effects, i.e., viscous damping. However, examination of the F. T.

of the viscous damping term cq, in Eqgs. (5), clearly shows that it is equal to

imeq for a time independent viscosity coefficient ¢c. Consequently, as long
as structural damping coefficients g are frequency independent, they
cannot phenomenologically relate to viscous damping, unless one
postulates a c¢ inversely proportional to ® - not the ordinary coefficient of

viscosity, to be sure. Also note that the F. T. of Eq. (5) for g = 0 is E =

Eo(1+ico* WM*E), where o* = w/wy and the natural frequency wy%;:EO/M*.
with M* the system mass. Therefore, the complex modulus for viscous
damping 1s frequency dependent, and only at the natural frequency can a
frequency independent correspondence be established between structural

and viscous damping when g = ¢cvM*E;. This relation between the complex
moduli applics to any motion, and such a correspondence between g and ¢
is not timited to harmonic motion as has been discussed earlier by Fung [3].
At all other frequencies, of course, the frequency dependent relationship g

= Ccw* /«/K/l*E‘, 1s valid for any elastic structural or viscous damping complex
modulus, but is not physically realistic.

However, while such a proposition satisfies the consistency of
expressions in the o F. T. plane, Egs. (4) and (5) demonstrate that even an
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inversely frequency dependent viscosity coefficient ¢ or a constant cne at
the natural frequencies cannot restore correspondence in the time plane
between the elastic and viscous damping cases for general displacement
functions q(x.t) encountered in creep, relaxation and other non-oscillatory
motions. As a matter of fact, even in relatively simple motion where g is
proportional to a single exponential function exp(iot), the correspondence
between viscous and structural damping is lost in those non mechanical
vibration problems, such as for instance flutter, which have highly
nonlinear sensitivities to frequency eigenvalues. For convenience and
completeness, one usually represents visco=lastic stress and strain
behavior in terms of mechanical models, such as, for instance, the
generalized Kelvin model (GKM) [5] shown in Fig. 2. Consequently, it
follows from Eq. (5) and from an examinaticr of the GKM that viscoelastic
damping represents a much more complicated phenomenon than either
elastic or viscous structural damping, since the complex compiiances

c=VUE.J =1/G.J, = 1/K, etc. with E =3G /(1 + G /K ) are of the form

(]

_ N
J =1 /1 +ig) + liong,, + Y, I/{G,[1 +i(wr, +g)l} (8)

n=1

with similar relations for the other J's and where the relaxation times

1, =1,/G,.n, and G are all material property, temperature sensitive
parameters [5] (Fig. 2), Viscoelastic compliances in the absence of
structural damping are given by Eq. (8) with g = 0. Similarly, the
expressions (8) also include viscous damping as a degenerate case of the
form N = 0, Jo, = 0 and with all G, = ». The elastic case can be obtained
from Ny = Gn = e

These two distinct phenomena, i.e., structural and viscoelastic
(including viscous) damping, may be interpreted in yet another fashion by
examining their complex representations. For each generalized
displacement qm, the corresponding elastic modulus with  structural
damping can be represented by Eo(l + ig) = Reexp(iAe) and the expressions

Re = I;},N/l + g2 and A¢ = tan'! (g) are both frequency independent. (For the
sake of simplicity of representation, tic subscripts m are not incluusd
here.) Complex viscoelastic moduli :nay be written in a similar fashion as
seen 1in Eq. (7) with




E (o) = R,, exp(id,,) (9)
where

R, (@) = Eg(w) {1 +g* +2g E"(0) + E' ()" 0y

and
A, (@) = tan” [g+ E"(0)] (11)

are both frequency dependent with E*(w)= E(0)/Eg(w). These values are
shown in Table II for 2024 aluminum ([10, 11]. The Ryemin and Ryemax

values correspond to ® = 0 and « (i.e. t = and 0) respectively and the E;/Er
peak in the neighborhood of 15 Hz, which is of the order of magnitude of
the flutter frequencies for the examples considered in Reference [11]. The
Re vectors for the elastic structural damping at the temperatures of Table

II are equal to Ryemax and the angles A, are equal to Ayemin at all
temperatures.

TABLE 1L

Viscoelastic Damping Properties of
2024 Aluminum [11]

Tempe-  Strucutral (EyER) R, Ryein Aven,  Bve,,
rature Damping psi x 10-7 psi x 10-7 degrees degrees
°F Coefficient

80 0 .00283 1.070 1.060 162 0
80 .05 .0528 1.071 1.061 3.02 2.86
200 0 .00585 1.038 1.020 .335 0
200 .05 .0559 1.039 1.021 3.20 2.86
340 0 0144 .990 .966 .826 0
340 .05 .0644 991 967 3.69 2.86
450 0 .0258 954 .900 1.48 0
450 .05 .0758 955 901 4.33 2.86

Since the flutter Eqs. (2) are highly nonlinear functions of w, an
analytical comparison of viscoelastic and structural damping is not feasible.
However, a reexamination of the bending-torsion supersonic flutter
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problem for a Timoshenko beam previously analyzed in Reference [11]
based on the addition of structural damping effects as exemplified by Egs.
(7), leads to the results displayed in Table IIIL

TABLE IIIL.

Some Flutter Results for
a 2024 AL Wing

Elastic Viscoelastic
g of Mg of Mg
0 20.0001 1.3037 26.8586 1.5167
.005 19.9737 1.3056 26.8070 1.5081
.01 19.9465 1.3074 26.7550 1.4994
.05 '9.7150 1.3239 29.0102 1.9887

These results are typical for metal wings in supersonic flow and fully
account for the material property dependence on temperature as the
flutter Mach number changes. It is to be noted that as the structural
damping g increases the viscoelastic flutter Mach number Mfmay increase
(destabilizing) or decrease (stabilizing). For an elastic aluminum wing with
the same mass distribution, geometry and aerodynamics, the
corresponding flutter Mach numbers are smaller than the viscoelastic ones
and an increase in structural damping for the elastic wing is destabilizing.
Even though the viscoelastic action for 2024 aluminum at elevated
temperatures is far from being as pronounced as it is in high polymers and
composites, the viscoelastic flutter Mach numbers are significantly
different from the corresponding elastic ones. (Table III) This is due to the
highly nonlinear dependence on the flutter frequency «; and the attendant
phase relations which shift in a complicated fashion. In References 10 and
11 it has been previously noted that viscoelastic flutter Mach numbers
may be higher or lower than corresponding elastic ones for wings of
identical geometry, mass distributions and aerodynamic properties.
Dugunji [12] has noied similar behavior due to structural damping in
elastic nanel flutter.

Dissipation Energy
A comparison of the dissipation energies generated by viscoelastic,

viscous and structural damping processes is next in order. They can be
consid.red together by referring to the mechamcal models of Fig. 2. For an
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Fig. 2. The Generalized Kelvin Model
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isotropic, linear viscoelastic material the stress-strain relations for change
in shape and in volume are, respectively [5]

t
2 Ep(x, t) = f J(x, t - t') Sy (x, t) dt (12)
(o]
t
e(x, t) = f J, (x, t - t)o(x, t') dt (13)
(o]

where Sk; and Eg; are the stress and strain deviators, € and o the mean
strains and stresses and where the compliances are

N+1 N
Jy = Y 30 =8(t) J /(1 +ig) + Imne + 2, expl-(1 + g/t dm, (14)

n=1 n=1

and with a similar expression for the volumetric compliance Jy, both of
which are obtained by the F.T. inversion of Eq. (8). Note that Eq. (14)
defines the general viscoelastic compliances in the presence of structural
damping. These compliances may also be written in the manner of Eq. (7),
1.e.

_ - ' , 2
J (@) = 1/G (0) = Jx(®) - iJ{o) = [Gg (@) - iG{a)/[Gg (@) + Gy (@)] (15)

As can be seen from Eqs. (5) and (8), the introduction of structural

damping effects into viscoelasticity results in changes of G_[l +i(wt, +g)] in
the denominators of the sums of Eq. (5) and in first term multiplication by
1/(1+ig). Effectively, upon F.T. inversion, this serves to shift the time to
t+gt in the exponential terms of Eq. (14).

The dissipation energy per unit volume at any point x = (X1, X2, X3)
and at any time t > O is

U N+l () () 't M+ ()
DE(x. t} = Y S (0 EY (k0 de +J Y o™, 1) e (x, t) dt
0  n=1 0 m=l1

(16)
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where superscripts (n) and (m) denote quantities associated with each
dashpot n or m in the Fig. 2 model. The stress-strain relations for each
dashpot are given by [5]

(n) -
and
t
2 E(kl (x, t) =f Jo (x, t-t') Sy (x, t') dt’ (18)
0

whnere Sk is the total stress deviator in the GKM model and is the sum of

SS) of any dashpot and the stress deviator of its corresponding elastic
paired spring. Equations similar to (17) and (18) can also be written for
volumetric changes.

Differentiation of Eqs. (18) and substitution into (17) gives
(n) '
Sy (x, t) =N, [f al, (x, t - )/dt' Sy (x, t) dt' + Ji(x, 0) Sy (x, )} (19)
(o]

with a similar expression for o(m), Finally, the introduction of Egs. (17),
(18) and (19) into (16) results in

t N+ t
DE(x,t)=f (3 L M t-8) g (x5 d
o n=1 (o] ot'
t' \
+d, (% 0) Sy x, ] [f "’—""—‘%’tf;Qsmu