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FOREWORD

This publication includes individual papers of Dampini '91 held February 13-1 ,, 199 1, San
Diego, California. The Conference was sponsored by the Wright Laboratory, Flight
Dynamics Directorate, Wright-Patterson Air Force Base, Ohio.

It is desired to transfer vibration damping technology in a timely manner within the aerospace
community, thereby, stimulating research, development and applications.
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ABSTRACT

An identification scheme in the frequency domain, suitable
for one-dimensional distributed structural dynamic systems with
damping is considered. For this purpose, the form of a model
representing the behavior of an Euler-Bernoulli beam is assumed
to be known in the frequency domain. Also, the response of the
system is assumed to be given at discrete locations along the
beam. Quintic B-splines are then used to obtain a continuous
representation of the response and its derivatives. The system
parameters appearing in the governing differential equation are
considered to be spatially varying functions. Cubic B-splines are
used to approximate the parameter space, and their derivatives
are obtained from such approximations. The method of collocation
in conjunction with the equation error approach is then used to
estimate the unknown parameters, which are the unknown
coefficients of the parameter splines. A numerically simulated
response of an Euler-Bernoulli beam in the presence of viscous
damping is considered to validate the identification scheme. The
estimated values of mass, stiffness and damping are discussed.

Aerostructures, Inc.

1725 Jeff Davis Hwy. Suite 704
Arlington, VA 22202.
(703) 979-1600
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INTRODUCTION

Damping is inherently present in virtually all types of
structures encountered in practice. Hence, an adequate
representation of damping and suitable methods to accurately
quantify it are essential. In the recent past, there has been an
increased interest in the study of distributed damping. For
structures that can be modeled as continuous systems,
discretization reduces modeling accuracy. In such cases, if the
form of a model representing the physical system is known along
with the initial and boundary conditions, the "ctual diztributed
system itself can be considered without resorting to
approximations. A distributed representation is likely to yield
more accurate predictions of the system behavior. Identification
techniques suitable for distributed structural dynamic systems
have been reported in the last decade [References 1-8].

At nresent. there are only very few techniques available to
identify the unknown parameters of distributed structural
dynamic systems in the presence of damping. Among these, the
finite element and spline-based techniques have received
considerable attention. The finite element techniques are
primarily concerned with systems that include proportional or
general viscous damping. A detailed discussion of such methods is
presented in Reference 9. In the spline-based technique, time-
domain data of the systems are used. The parameters are
considered to be either constant or spatially varying functions,
and also include different damping mechanisms [Reference. 5].
Also, in most of the available techniques some of the parameters
are assumed to be known a priori.

In this vein, an identification technique that employs
frequency domain data is discussed in this paper. For this
purpose, the form of a model representing a distributed dynamic
system within the framework of the Euler-Bernoulli beam theory
was assumed to be known. The damping of the system was included
using the linear viscous damping model. Also, the acceleration
response was assumed to be given at discrete locations along the
beam. The parameters appearing in thp model were taken to be
spatially varying functions. Quintic and cubic B-splines were
then used to obtain approximate representations of the response
and parameters, respectively. Their higher order derivatives were
then obtained from such representations. These approximate
functions were then substituted in the original distributed
model, and using the collocation method a set of algebraic
equations was obtained. The equation error approach was then used
to estimate the unknown parameters, which are the coefficients of
the parameter splines. The validity of the identification scheme
was demonstrated using numerically simulated data, and the
estimated values of mass, stiffness and damping are discussed.

GCA- 2



For this purpose, none of the parameters v s ed to be known

a priori.

PHYSICAL SYSTEM MODEL

The primary objective of the work pircscti:ob cihis paper
was to develop an identification schece -uc1 7± for a one-
dimensional dynamic system ii tl e------------ .-.amping, The
dynamic system was assumed to be modeled tl-rhin tne framework of
the Euler-Bernoulli beam theory. The external damping to the
system was included using the linear viscous damping model. A
form of the equation governing the behavior oi such s.zzems was
assumed to be known a priori in the frequencl doain and can be
written as follows:

d 2/dx 2  [El(x)d2a*(xw)/dx2j +

[ W2qA(x)]a*(x,w) - -w 2 F(xw) (1)

where a (x,w) is the acceleration response due to the applied
forcing function F(x,w), x is the axial distance?, and w is the
frequency in radians/second. The beam was assumed to be
cantilevered at x=O and free at x=L, where L is the length of the
beam. EI, Cv  and pA are the stiffness, damping and mass
distributions, respectively, and were assumed to be continuous
functions in x. These are the unknown parameters to be estimated.
Also, in equation (1), the initial conditions .ece taken to be
equal to zero.

Due to the popularity of acceleration as the most often
measured quantity, it was chosen as the response variable in the
model. For identification purposes, it was a.sumed to be known at
as many frequencies as required. In general, it is not possible
to have a continuous measurement of the response, hence it was
assumed to be known at only a discrete number of locations. From
this information, an approximate cortinuous representation was
obtained and used in the identification scheme. To this effect,
quintic B-splines were used to obtain a continuous response from
the discrete data at each frequency.

Also, each of the parameters appearing in equation (1) was
approximated using cubic B-splines due to their continuous
nature. The task of parameter identification then reduces to
merely estimating the unknown coefficients of the cubic spline
functions. The method of collocation in conjunction with an
equation error approach was used for this purpose. Frequency
response functions at discrete locations along the length of the
beam for an impulse load applied at a known locaticn were used az
the data in the identification scheme.
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expressions satisfying the cantilevered boundary conditions were

used in this paper.

01(x) - B1
5 (x) - (9/4)B-1 5 (x) + (65/2)B.5x)

02W - B2
5(x) - (I/8)()(x' t ('3'15_ ,- x)

4ON(x) - BN5~(X) -+ i,3/2)?st,.1 -j

4N-l(X) - BN4i5(x) 2BN+2 (x)

ON_2(x) BN.25(x) (1/? .

Oi(x) - BiS(x), 1 - 3,i (5)

Substituting the expressions for i (x) nrom equation i5) in
equation (2), for a given set of measured responses at the knot
locations i=O,l,2,...,N at a given frequency, the coefficients
ai(w) in equation (2) can be uniquely obtained. The higher order
derivatives of the response involved in equation (1) could then
be simply obtained by differentiating equation (2) as many times
as required.

PARAMETER SPLINES

The unknown structural parameters present in equation (I)
were represented as follows.

M
8(P)(x) - I bi(P) Ci(x), p - 1,2 and 3.

i-0 (6)

where (1), 0(2) and 0(3) represent El, Cv and 6iA, and Oi1), 0i (2 )

and i3) are their corresponding coefficients. The value of M in
equation (6) depends on the number of knot locations at which the
parameters were identified. For a -apidly varying cross-sectional
beam, a large value of M is required for an accurate
identification. In the present case, the number of locations at
which the parameters were to be identified was taken to be equal
to the number of locations at which the response wds known. The
approximating basis functions Ci(x) were taken to be cubic
B-splines and are defined as follows [Reference 10].

G 3(x) - 1/h3  [(x-xi 2)+3 - 4(x-x i -i )+
3  + 6(x-x1)4. -

4 (x-xi~l)+
3 (x-x i 2) 

I



where

(x-x ) if. x x;
o, otherwis

Since the parameter knots were assumed to coincide. with that
of the response knots, equation (6) could be rewritten as

N+I
(P) (P) C i(x) (8)

To obtain a unique solution for the di's in equation (8), the
followinq intetpo ')t),rv conditions were to he sati.fed.

N+1N *
,,, ,,- -V, .' ,; -i ' : + d (i 41 . 1

'(p) p p '(p (p)

(I N) +] x :1 X

(9)

where a d e. " ,- dute s th-e firest derivativ e with respect to t'he
axil coordinate. Ncow, define a vector as(P

.1' . ..c (. -X X

it J'

t h e p a r a m e t e r .': t x' ) -: .. -., is t lh o n n r q u.a n t it y t o h'e
I dent i: f_ " .

).(9)

IDENTIFICATION SCHEME

Equation a) can be writt e in the mati orm as

)I '

th-- parmnor • nmm nmlHN N >' snn~ thuunc~ unit oh



(d ( P) r [ 1 p)) (Li

Substituting from equation (li) iC'" ( eOJ' K' I at.
derivatives were written in the matrix form a

)(xT- C(x).Tc* -

O'(P)(x) - {<' x) T.i [C

6 ' (P) (x) - C,, (x) T c"] -  P,

Equation (12) was evaluated at the knot locations:

the following equations were obtained.

9 (P) T,-

' (P)T at

(P (x) :(13)

where

(Pk)T - {C(x)fT[c*]-1 at X-x k

{Qk)T - (C'(x)VT[c*]-1 at x-xk

{Rk)T - (C''(x)T[c* *]-  at x-xk 14)

The dimensions of each of the above vectors is 1 × (N+3).

A term a*ki was defined as the quantity a*(x,.,,) in equation
(3) evaluated at a given location xk and frequency I. Equation
(13) was combined with this definition, and equation (1) was
rewritten as follows.

T~~~ *()T*1
(Pk) T(0 )(a kl) + 2(Qk T{ ) *k) '(9 ;K !" ( +T 2* (1 )  + 2Q) ( * 1 I { k T " ' i

(Pk)T[-W I2 ( 3 )) + J-I"(2 a k (15)

where Fkl is the force applied at. location x aho at. t cqu uncy
wl. In equation (15) both a*kl and 1"k are complex quantities.
Hence, they cculd be separated into real and imaginary parts as

• R .1
a kl - a ki + ja ki

and
FkI - FRkl 4 .iFk1

Using the above definition, equation (15) cOi( t) e t in l1y
written as



(Ri)kl -w j{R4 ) Tkl -w12(R3) kl (1) 1 kl

(R2 )Tkl w (R3) Tkl 2wl2 (R4)Tkl 
(3 )  (7

where

(Rl)Tkl - (Pk)(aRkl)... + 2{Qk) T(aRkl)' "

(Rk)T(aRkl)''

(R2) k1 - (Pk) (a ki) + 2(Qk) (a ki) +

(Rk)T(aikl)''

(R3)Tkl - (Pk) T(aRkl)

{R4)Tkl = (Pk)T(alkl) (18)

Equation (17) was obtained for a single frequency. Similar sets
of equations could be written at other frequencies. Combining the
different sets at various frequencies, the resulting equations
could be written as follows.

[Cs](O) - tF9 ) (19)

[C9 ] is the coefficient matrix of dimension 2(N+3)n x 3(N+3),
where n is the number of frequencies used in the estimation. (a)
and {F6 } are respectively the parameter and force vector of order
3(N+3). A least-square solution (9") for equation (19) could be
written as follows.

(0*) - COT CO-1 C6T F6  (20)

NUMERICAL RESULTS

The identification scheme discussed in the previous section
was demonstrated using simulated data for a cantilever beam with
the following properties.

L = 0.61m

EI(x) = 18.01*102 L]-(x/2L)]4 v-m2

pA(x) = 4.22 [l-(x/2L) ]2 N/m

Cv(X) = 17.3 [1-(x/2L)]2 N-sec/m
2

The above parameter distributions corres'pord to a beam of
linearly varying cross section from tip to root, with the
dimensions at the tip being half of those at the root. The beam

• --........................... |



was subdivided into 12 regions (N=12), and an independent finite
element program was used to calculate the response at the
resulting 13 knots. The assumed impulse was applied at the eighth
interior knot x8 (Figure 1). The first three natural frequencies
of the beam determined from the finite element program were found
to be 36.9Hz, 155.9Hz and 387.4Hz, respectively. In the
identification, the frequency response data in the following
frequency bandwidths at 1Hz interials were usea:

25-34Hz and 39-48Hz (regions surrounding the first mode)
144-153Hz and 158-167Hz (regions surrounding the second

mode)
376-385Hz and 390-399Hz (regions surrounding the third mode)

Including the data in the immediate vicinity of the modal peaks
resulted in less accurate estimates of damping, hence they were
oritted. The probable cause for this phenomenon is the fact that
the frequency response function tends to vary rapidly around the
modal peaks for lightly damped structures, increasing the error
in the response close to the peak regions. This in turn could
significantly reduce the parameter estimates.

It can be seen from Figures 2-4, that the estimated values
are in excellent agreement with the actual values used in
generating the frequency response functions at the interior
knots. Unacceptable mass and damping estimates at the root
location were obtained and are not shown in the figures. This
phenomenon may be due to the little or no contribution of these
parameter values at the root to the error in satisfying the beam
differential equation. Since the parameters are calculated by the
subsequent minimization of this error, the procedure yields
highly inaccurate estimates at these locations.

SUMMARY AND CONCLUSIONS

A spline based identification technique in the frequency
domain that is suitable for damped distributed structural dynamic
systems was developed. A beam whose behavior can be modeled
within the framework of the Euler-Bernoulli beam theory was
considered for the identification scheme. The parameters were
allowed to vary linearly along the length of the beam. The
infinite-dimensional response and parameter spaces were
approximated by quintic and cubic B-splines, respectively. A
Galerkin type weighted residual procedure was used to estimate
the unknown parameters. Simulated frequency response data for an
impulse applied at a known location were used to validate the
technique. Acceleration response data around the first three
modes of the beam were employed to estimate the mass, stiffness
and damping properties. None of the parameters was assumed to be
known a priori. The estimated results showed excellent agreement
with the actual values at all the interior locations of the beam.

(CIEA- 9
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ABSTRACT

The fundamental challenge in identification of nonlinear dynamic systems is determining the
appropriate form of the model. A robust technique is presented in this paper which essentially
eliminates this problem for many applications.

The technique is based on the Minimum Model Error (MME) optimal estimation approach.
A detailed literature review is included in which fundamental differences between the current
approach and previous work is described. The most significant feature of the current work is the
ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the
nonlinearities, in contrast to existing nonlinear identification approaches which usually require
detailed assumptions of the nonlinearities. Model form is determined via statistical correlation
of the MME optimal state estimates with the MME optimal model error estimates. The example
illustrations indicate that the method is robust with respect to prior ignorance of the model, and
with respect to measurement noise, measurement frequency, and measurement record length.

I Graduate Resarch Assistant; NASA Graduate Researcher
2 Assistant Professor
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INTRODUCTION

The widespread existence of nonlinear behavior in many dynamic systems is well-
documented, e.g, Thompson and Stewart [1]; Nayfeh and Mook (2]. In particular, virtually
every problem associated with orbit estimation, flight trajectory estimation, spacecraft dynamics,
etc., is known to exhibit nonlinear behavior. Many excellent methods for analyzing nonlin-
ear system models have been developed. However, a key practical link is often overlooked,
namely: How does one obtain an accurate mathematical model for the dynamic of a particular
complicated nonlinear system? General methods for actually obtaining accurate models for real
physical systems are not nearly as widespread or well developed as are the techniques available
for analyzing models.

Accurate dynamic models are necessary for many tasks, including basic physical understand-
ing, analysis, performance prediction, evaluation, life cycle estimation, control system design,
etc. For example, most filter design assumes white process noise, yet many nonlinear effects are
inherently non-zero mean; e.g., quadratic nonlinearities are always positive. In order to obtain
a model with truly zero mean process noise for filter design purposes, all of the quadratic terms
(and many other nonlinearities) must be well modeled. However, the complexity of many real
systems greatly diminishes the possibility of accurately constructing a dynamic model purely
from analysis using the laws of physics.

Identification is the process of developing an accurate mathematical model for a system,
given a set of output measurements and knowledge of the input. Many well developed and
efficient identification algorithms already exist for linear systems (e.g., [3]-[71). These often
may be employed to model nonlinear systems when the system nonlinearities are small, and/or
the system operates in a small linear regime. However, linearization does not work well (if
at all) in every application, and even when it does provide a reasonable approximation, the
approximation is normally limited to a small region about the operating point of linearization.
Consequently, there is a real need for nonlinear identification algorithms. If nonlinearities are a
predominant part of a system's behavior, using a linear model to describe such a system leads
to inconsistencies ranging from inaccurate numerical results to misrepresenttion of the system's
qualitative behavior. Many important characteristics of nonlincar bchavior, such as multipzz
steady-states, limit cycles, hysteresis, softening or hardening systems, chain, ,tc., have no linear
equivalent. Since nonlinearities are seldomly easily characterized, identification techniques may
prove beneficial in developing accurate mathematical representations of nonlinear systems.

Numerous methods for the identification of nonlinear systems have been developed in the
past two decades. Many of these techniques are reviewed in Natke, Juang and Gawronski [8],
Billings [9], and Bekey [10]. Most methods fall into one of the following categories:

£1 describing the nonlinear system using a linear model
"] the direct equation approach
"] representing the nonlinear system in a series expansion, an~d Abtaining the respective coef-

ficients either by using a re;ression estimation technil. i,,n' niy rtmiiing a cost functional,



by using correlation techniques, or by some other approach
El obtaining a graphical representation of the nonlinear term(s), then finding an analytical

model for the nonlinearity

With such diversity of nonlinear identification techniques, the choice of a particular algorithm
may be based on criteria such as: the degree to which prior assumptions of the model form
affect the user's effort in applying the algori.hms; the number of iterations required; the
sensitivity to the presence of measurement noise in the data; the number of state measurements
needed; whether or not knowledge of the initial conditions is required; the kind of forcing
input(s) required or permitted (step, white gaussian noise, sinusoidal, etc.); the ability to handle
hys:-ritic or discontinuous nonlilkearities; the degree of a priori knowledge of system properties
required; and the computational requirements. Most algorithms differ widely in at least some of
these comparisons; the choice of a particular technique depends on the needs of the particular
application.

Among the methods which linearize the nonlinear system are those presented by Jedner and
Unbehauen [11] and Ibanez [12]. Jedner and Unbehauen represent a nonlinear system, which
may often operate in small regions around a number of operating points, by an equivalent number
of linear submodels. It is assumed that the system operates at only a few points. Although the
model may work well for controller design, the points at which the system is operating must be
known and the linear models apply only within the operating regions. Ibanez takes a slightly
different approach by assuming the system response to be periodic at the forcing frequency. An
approximate transfer function is constructeo. l he transfer function is dependent on the amplitude
as well as on the exciting frequency and is valid only within the region of exciting frequencies.

The direct equation approach is used by Yasuda, Kawamura and Watanabe [13], [141. The
input and output measurements of a dynamic process are expressed in a Fourier Series using, for
example, an FFT algorithm. The system nonlinearity is represented as a sum of polynomials with
unknown coefficients. Applying the principle of harmonic balance, the polynomial coefficients
as well as the other system parameters are obtained accurately. Knowledge of the nonlinearity
is needed to construct the polynomial. Truncation in the Fourier Series expansion of the input
or output mty lead to error.

The regression estimation approach is used by Billings and Voon [151 and Greblick and
Pawlak [16]. Billings and Voon use the NARMAX model (Nonlinear Auto Regressive Moving
Average model with eXogenous inputs) to represent the nonlinear system. A stepwise regression
method determines the significant terms in the NARMAX model. Then a prediction-error
algorithm provides optimal estimates of the final model parameters. Greblick and Pawlak
represent the linear dynamic submodel by an ARMA model and the nonlinearities by a Borel
function. A non-parametric kernel regression estimation is employed to obtain the final analytical
model.

Kortman and Unbehauen [17] and Distefano and Rath [18] use the minimization of an error
, furztion z a means of obtaining the coefficients of the functions used to represent the
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system are then estimated using least squares. Even though the algorithm woiks w, viln the
presence of noise, the nonlinear form must be known a priori.

Methods for the identification of nonlinear systems have also ben ':! ,cA based on
the extended Kalman filter. The extended Kalman filter is thc hn-ar ,aiman filter applied
to nonlinear systems by linearizing the nonlinear model iaro a iaylor ,eies expansion about
the estimated state vector. Yun and Shinozaka t25) apply the , xten d Kalmarn filter f,- the
parameter estimation of a quadratic term. The. state vector is augmented by including the
unknown parameters in addition to the state variables. Through a series of iterations. the response,
as well as the unknown parameters, are estimated by the Kalnan filter. Among it , dl:avantages
are high sensitivity to initial conditions, in particular if the inital conditions are barely known.
The nonlinear form must be chosen a priori i, order to estimate the corresponding parameter(s).

Hammond, Lo and Seager-Smith [26] use an optimal control technique based on optimal
control methods employed for linear system deconvolution. The form of the linear model is
assumed to be known as well as the input and the output. A cost functional consisting bf
the weighted sum of the square ef the error (between the actual and estimated output) yields
an optimal estimated inpuL The estimated i.put and the actual input are used to ,'tain the
nonlinearity as a function of the state variables. Although no previous assumption is made of
the nonlinearities, there is no provision to deal with noise.

All of the techniques outlined above have proven useful in certain applications. However,
all of them are subject to one or more of the following shortcomings:

1. The form of the nonlinearity (quadratic, cubic, exponential, etc.) must be assumed a priori.
This is a very serious drawback, because the identification algorithm can only attempt to
find the best model in the assumed form. If the form is assumed incorrectly, the resulting
model may be so poor as to be useless, or it may appear to fit the data well enough that
the user erroneously concludes that the correct model has been obtained. Also, for many
techniques of this type, the effort required to test a given form is considerable, which greatly
diminishes the effectiveness since multiple form tests are less likeiy to be conducted.

2. Techniques which attempt to avoid the problem of a priori model form assurmption through
the use of series expansions generally eliminate any possibility of understanding the under-
lying physics. Thus, although a good fit of the data might be achieved using a sufficient
number of terms in the series, physical insight is lost. Moreover, large systems and/or par-
ticularly complicated behavior may require that a veiy large number (f terms be used to
obtain a given level of accuracy.

3. The presence of noise in the measurement d'Lata is not ,igotousiy treated, yet noise is generally
unavoidable.

4. Initial conditions must be known in order to iniplcnern the algorithm.
5. The algorithm can only be implemented if the data is ebz*aied using , ' , , "ti: ," s,.'stem

excitations.

The algorithm of the current paper conipares tavor;hi', Ofth c'.1siii. d+t r U : , of
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the categories listed above. It is ubus with reV,. "It ...... .'- require
knowledge ot the initial conditions; is indepen.!,enrt ,,f i.,c Y ,rv; .. .ssunieS
that it is known); is not comzpuationally prohibitive- and, iOtot J....' euires minimal
a priori assumptions regarding ihe form of the model or the sy- ,.'m trurt1;' In ft s'.inz the
correlation technique outlined in the next section, the algoritm .. ,te ,e need
to ever assume the nonlinear model form.

The identification algorithm is based on a combination of Miri t'iM 7Mc,. 1 (MME)
state estimation, correlation techniques, and least squares. MMF was 1'rst i, ss-rntdd *:., Mook
and Junkins [271. The MME combines the available measu-emc,,ts and an zsstmed model of
the system to produce optimal estimates of the states and the modci -,ror. iht, asumed model
represents an initial attempt to modei the system using direct ardys.i r m.iy be extremely
poor. Given the noisy output measurements of the system, MM"; e:L"a-c'e histories as
well as the error in the assumed model. in previous work, the corrc:cr form -ind corresponding

parameters of the nonlinear model were then estimated in a ial-a ,cir fason, by assuming
a nonlinear (in the states) form. of the error terms, aad then deteru.-riing tfh... t.:t least-squares
fit between the state estimates and the model error estimates. -1u " 6c IN4E portion
of the algorithm did not require the model form to be assumed. Ihe sIv uEt- squares fit
between the state estimates and the model error estimates did. In M-,'fk ,I?" it was shown that
this approach could accurately identify terms in a Duffing oscillatr;-. 1 : , c of noise and
sparse measurements. The method worked well even when only a rudu" , ei of the dynamic
system was assumed, and the error model used for the least-squares fit centaric.' numerous terms
in addition to the correct one(s). Later, in Mook and Stry [291. a siv,-pie iar,,onic oscillator
with quadratic feedback was siulated on an analog compaer. T1-, , vr was shown to

accurately identify the nonlinear model from analog measurer:: .ts.

In this paper, the identification of the !n o;el fronl the MN'-,: c aiO model elror

estimates is improved by" usinrg corrcl.tion tech.i..ue ... ''.- .... "It " ,. ?'Ir .
The correction terms, when auded to the initially assu:nedi ,{ yr _ tr.' of the
system. The correction term:s may consist of a colrbinatiol o !t ," . I ......f'

An extensive library of linear and nonlinear functions has heei a d. ore -,r- nin
technique is used to select the true forms from the library . t fenn of the
nonlinearity was not present in the library, the corr 'la;ion tCc.n:, z. . cR lest forrnks),
typically, the first term(s) in the Ta'or Series expansicn O', w ., en ,elected by,
the correlation algorith!m. c s, ,.:es is used t,.) ,c- i r,'

IDENTIFICATION ALGGiiTITM

In this section, the idenuhcation algorithm is explained. Lr:- A w ; awtique is briefly
reviewed, and then thc 'orrmion technique used to :uei;.: . ' ! , .: :crmiration is
explained in detail

The NiME may bc ';-.:2 ,s fil,' f s a " i a,' T,..rav he found



in Mook and Junkins [271). Suppose there is a nonlinear sy.,tem wiose cxii I,',al
representation is unknown, but for which output !I,. -11,cInts al,- avai cs,,;,.. U, .c

means are available (analysis, finite elements, etc.), a system model is constrLcd As shown
in [271-[29], the MME works well even if this system m,:odel i.. poor TFh- W101- cor,ines the

assumed model with the measurements to oroduce optimal estima,., t" ic' tr ajectories,
and (ii) the error in the model. In the present work, ill ,ta . o m ,, l t€, 'resf , :i s art:

used for system identification.

Consider a forced nonlinear dynamic system ohich may be modeled in state-s' .:c foim
by the equation

*(t)= Ax() + f'f (_.(t),t(t,,) (1)

where x(t) is the n x 1 state vector consistin , of the s'stuia 1 smwUcs, A is the v .< rldtc S iatliX,

F(t) is an n x 1 vector of known external excitation, a.o f( (i),_(t)) is an n 1 v:o) which
includes all of the system nonlinearities. State-observable discrete time domain measurements
are available for this system in the form

0k) :k((t, tk) *+*k, t 0  k _ S- t f (2)

where _(tk) is an m x 1 measurement vector at time tk, & is the a,arate mcdel of the
measurement process, and v represents measurement noise. _ is as-iined to be a zero-mean,
gaussian distributed process of kno'an covariance Rk The measurement vector k(tk) may
contain one or more of the system states. To implement MME, assume that a m(;del, which
is generally not the true system model because of the difficulties inherent in obtaining the true
system model, is constructed in state-vector form as

i(t) = Ax(t) F(t) (3)

Here, we show a linear model because in practice, lincaiization is the ,-iost common approach

to modeling nonlinear systems. MME uses the assumed linear model in Eq. (3) and the noisy
measurements in Eq. (2) to find optimal estimates of the states and of tre model error.

The model error, which includes the unknown nonlincar tern; of 1he system, is rvpresented
by the addition of a term to the assumed linear model as

.i(t) Ax!() -, -1 (0)

where d(t) is the n x 1 model error to he with....n heC.',It. L g .;{) ' j W i;,iar th C ! ,itiS.

A cost functional, J, that consists of the1 %c. d intc.r-, >wiarc of th. ... .... pIus
the weighted sum square of the measurement--inInus-e stiimted measurement residtea., is foi u ;:d:

2 > {(t )- tk),'kY y , ,.(t ,

&=I



where Al is the n U T1tx r At -CC 1 [11 t jIT t:S

weight matrix to bedery

J is niinimn1zedl witb -reSj)ec: to) mckic t'rj'. 1'o

minimization lead to the foilowing tWO p)oMit ho!jr.. ?ii v r It cr 1

A,' - At

2

where A( t) is a vector ofI coUt ' I- p"'C
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a change in the other variable. The cross-correlation coefticient between two discrete vaniabls
say z and y, is defined as (see Newland [321 or Wte I )-il

C(z, Y) (-,-( Y (71)
or a,

where n is the number of data points and the ) erba ,.'>. re, , th, .
is the standard deviation of the variq..able z and is defined as

O.z _ - n n

C(z,y) is a measure of the linear relationship between vxariable' .,ld y. 'Re vai ,c 1 .

lies in the range -1 < C(z,1y) < 1. If, for instance, changes in the value of X correCpond to
perfectly predictable (linearly) changes in the value of y, where the changes in both ,a:iThlcs
are of the same sign, then the value of C(x,y) is 1. If the changes are of opplositc . n hut
still perfectly predictable, then the value of C(z,y) is -1. If changes in Lhe values of r and y
tend to correspond in sign but are not perfectly predictable, then 0 < C(z,y) < 1. If changes
in the values of x and y tend to be of opposite sign but are not perfectly predictable, then
-1 < C(x,y) < 0. If there is no linear relationship between the values of x and y, then
C(x,y) = 0. For example, suppose z and y are multiples of each other, z -- K .y, v here K
is an arbitrary constant of proportionality. Then

C~z~y)- >.] K(x1  r1 S
Ej=1 K(x,

The true functional form of the model error can be found by calculating the correlak.nn ot the
MME model error estimates with functions of the NIME state estimates. If the functiona! forl of
the actual system is used, and if the estimates from MME are perfect, then C(x, y) :- 1 .. Thus,
an algorithm may be constructed which performs nonlinear system identification by tio utilizing
the MME to process the available measurements and the initial model in order to prxtuce( 'tate
estimates and model error estimates, and (ii) testing the correlation between the state cst!u:,tes
and the model error estimates using a "sufficient number" of functional forms so that the !Ctual
form is included among those tested. The MME does not require that the corct fo - ,f the
model be known a priori. The correlation tests may be perfonned using an existing lhr ir, of
nonlinear functional forms, without input from the user. Thus, if the library is coc,,iticte n
the sense that it contains the actual model form), the identification of the nonlincir Incxic 1s
accomplished, yet at no point in the algorithm is the user required to assume the co,rrc.- mondtl
form.

The success of the algorithm is dctermined by the ability of th M\[ to pr,-li;t .. C:-
state and model error estimates, and by the completeness of the library of nonrItnI !', :In,) ,
to be used in the correlation test. We now address these issues in order.

The MME has been shown to consistently produce state and model error etitc, ,4 hih
accuracy in the presence of high measurement noise, low measurement frcqkcr,-, .11i ['(A -



initial model [27-29]. Generally, however, some noise is still present in both the state estimate
and the model error term, although these noise levels are considerably less than the noise in the
original data. Let the model error term be given by Xco,.ectio, -= 2 + where is the noise.
The cross-correlation between the error term and the test function y becomes

C(z,y) >)(z +- - ) (Yj (9)C(,A= EiiX y =_ _ -1.0 (9)
na l,. + '- 1 n. (2 (x - )+ ~

As long as the noise is negligible all terms containing arc small and affect the resuit only
slightly. Thus, the correlation calculated for the actual function is close to, but not exactly equal
to, 1, while the correlation calculated for incorrect terms remains close to 0. If the level of noise
"s excessive, say, of comparable magnitude to one or more of the actual nonlinear model terms.
then the ability of the correlation test to distinguish this term from similar it.-rs may be greatly
reduced or eliminated. However, subsequent least-squares fit of the terms ha, in every case
tested, correctly selected the actual nonlinear function from among those whih the correlation
test could not distinguish. An example of this is shown in the next section

The issue of completeness of tme library is now addressed. The error term may be composed
of more than one function from the library, or the actual function may be missing from the
library. Consider first the case where the actual error is a combination of iibrary terms, say, two
terms. The error term may be written Zcorredion X I + x 2 and the cross-correlation has the form

n(1(,,i _ jI)(Yi - En) + ZF1( 2 i -" - (0
C( ,) = i =(~ - t)Y (10)

n (7, 2 + , 2 + n (l l(~ ;2

The cross-correlation is highest for the term which constitutes the iargest part of the error. Thus,
it is desirable to execute the algorithm iteratively. The library term which constitutes the largest
portion of the actual model error is identified first and then added to the MME model. The
entire process (including MME) is then repeated, so that new state and model error estimates are
obtained (note that the change in state estimates should be minimal, while t'ie change in model
error estimates should be a large reduction in magnitude). The largest term remaining in the
model error is identified in each pass, then added to the initil MME tndi.

An alternative to iterative application of the algorithm is to test thr correlation of combi-
nations of the library functions. An algorithm can be constrtcted which tests every possible
combination of the functions explicitly containtd in the librar.y T'is approach has not been
attempted in the examples which follow.

If the actual model error is not present in the library, then test cases show that the highest
correlation values are calculated for the terms in the sctie, expansin of the actual function.
Thus, for example, if t,_ actual flodel error was of the !'rm i. ( ). 'Nt qiv(.r was not present
in the library, the correlation cctiicictits arc highe.,t tor t< term- -. x "x, X , etc. However, the
test described by Eq. 7 is very Fast, so the librarx miay k,(tan .. i:lrtee rimher of terms.



The final step in the identification procedure is to use a least-squares algorithm to fit the
model error to the functional forms (i.e., perform parameter identification once the true nonlinear
form has been determined). The error term is expanded into a combination of the functional
forms such as

d(t) = afl(_(t)) + I3f2(_(t)) + Yf3 (X(t)) -+ ... (11)

where a, Pi, -y, ... are unknown coefficients to be determined by least squares, and fi, f2,

f, .... are functions which are selected as a result of the correlation test (often, however, only
one function is used at a time). Other parameters may be present inside the functions (such
as, for example, coefficients of exponents). Eq. (11) may be sampled repeatedly (using the
MME estimates) to obtain

d(tl) = af 1(!(t 1 )) ±-3f2(!(t1)) + -Yf3(_(t 1 )) +

d(t2) = afl(.K(t 2)) ± -3f2((12)) + Yf3(_(t2)) + ...

d(ti) af l (_(ti)) + 3f 2(j(t1)) + yf 3(x(t1)) + ...

or, in matrix form,

D4,1 = Mlxppxa (12)

where P ]T[a 3 " .. is the vector of coefficients for the terms in d(t). Since estimates of
d(t) are available continuously throughout the time domain, the parameter I may be chosen quite
large to improve the least squares fit. Generally, because of the potential jump discontinuities
in the model error estimates at the measurement times, it is desirable to pick the least squares
sampling times in Eq. (12) at points other than the measurement tim-. The least squares
estimate is found by minimizing the following cost functional with respect to P:

4' = [D- M_p]T[D- M__P (13)

The solution is given by

p = (MTM)-IMTD (14)

If the functions include parameters to be estimated, the equivalent nonlinear least-squares problem
is constructed.

The multiple shooting algorithm presented by Mook and Lew 1311 was used to obtain the
MME solutions used in the tests presented in this paper. It was assumed in the examples that
MME obtained the dynamic error term without knowledge of the boundary conditions on Z,
so some distortion of the correction term at the initial and final times was expected due to the
constraints of Eqs. (5e-5f), i.e., by assuming no state knowledge is available at to or ti , we
constrain A(to) = 0 and A(tf) = 0. Therefore, in all test cases, the initial and tinal ten percent
of the correction term data was ignored in the least squares fit.
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EXAMPLES

For illustrative purposes, the aae system was chosen as ,i; ph tireirmnnic oqwillator with
various forms of nonlinear f, , - rre sv tern ;:'n , n' Jr' p1

/ \ If (j) / . ,( )

where z is position, v is veloxity and the dot indicates differentiation witb re.:pect t 'me. For
simplicity, the system was unforced. The term f(x,v) represents the noninear terms to be
identified by the MME-bastd iaentificatio" algori:hni. Moesni.m--'r *,, ur .rated from the

true system, Eq. (15), with different kinds of nioninear tunctumn f v. 1 ho ability of the
identification algorithm to identify the rmode! with ro prior krnowlcdge of f!' 'v ) is tested. Table
I shows the functions used in each sirnu!;.Jon. Nte that The unkkuw'w Cor term may be a
combination of linear and nonlinear functions. Tabie I also shows the ntal conditions and the
amount of noise used to generate measurements for each test. Thc inse icv1l. represent the
percentage of the peak system response (a tual percentages are higher !Ct rnajority of the' .' .ic '-t 11 d'C
measurements since the response is onil',, m peak ampiitndc for r" .t- ....

TrIable I
SUMMARY OF TEST CASES

TEST # TRUE ERROR: f(x,v) x(0) v(0) NOISE

1 3.0*x*x 0.175 0 0

2 -0.1*x*x v 0.15 0

3 -0.5*cos(x)*cos(v) 0.115 0 0

4 1.0*v*sin(x) 0.175 0 0

5 -!.0*x*x -0.25 V ... 3 5 1

6 -1.O*xx*x -Ol*tan(v) I 0.873 J ( 0

7 - .Ok/oN(x)- I 0*sin(v) I 1.750

8 3iY.':x i0.175

l.0*x*x -0.25*v 0350....................... .............. ) I.1(1%

10 1 .0*x~x'> 0 ,v (x. ,'

The assumed Modecl used t' r til iN, v ., . , , - c J ilinear oscillator

part of the system,

) (" 0(6



For each test, 200 measurements of position were obtained from the digital simulation of Eq. (15)
at a sampling rate of 10 Hz. The functional form of the dynamic error, f(z, v), was determined
solely from the least-squares fit of the functions identified during the correlation tests on the
MME state and model error estimates obtained using only the model in Eq. (16).

A library of functions was built consisting of approximately 300 of the most commonly
found nonlinear and linear forms. For a partictiar test, after the model error term was found
from MME, it was correlated with each one of the functions in the library. The correlation test
of the entire library of functions did not take more than a few seconds to execute, since the
calculations are simple. The functional form of the unknown nonlinear term was chosen as the
one for which the absolute value of the cross-correlation coefficient was closest to 1. Table 2
shows the results for all 10 tests, including the true dynamic error, the highest cross-correlation
coefficient obtained, the corresponding functional form, and the respective coefficient computed
from the least squares fit. The star (*) indicates tests performed from noisy measurements.

Table 2.
IDENTIFICATION RESULTS FOR EACH TEST CASE

TEST# TRUE ERROR(S) C(d(t),f) SELECTED L.S.
1 3.0*x*x 0.999 x*x 2.99
2-0. l*x*x*v 0.999 x*x*v -0.10
3 -0.5*cos x)*cos(v) 0.999 cos(x)*cos(v) -0.49
4 -1.0*v*sin(x) 0.999 v*sin(x) -1.00
5 -1.0*x*x 0.999 x*x -0.99

-0.25*v 0.746 v -0.24
6 -1.0*x*x*x 0.936 x*x*x -1.00

-0.1*tan(v) 0.999 tan(v) -0.10
7 -1.0/cos(x) 0.927 l/cos(x) -0.99

-l.0*sin(v) 0.999 sin(v) -1.00

8* 3.0*x*x 0.797 x*x 3.12
9* -1.0*x*x 0.937 x*x -0.90

-0.25"v 0.772 v -0.22
10* -1.0*x*x*x 0.838 x*x*x -0.98

-0. 1'tan(v) .0.583 tan(v) -0.10

For tests 1, 2, 3, and 4, the exact form of the nonlinearity was contained in the library and
the measurements did not contain noise. The calculated value of C(d(t), f) was 1 for the true
forms. In test 8, the library contained the exact form of the nonlinearity but the measurements
contained significant noise. The correlation for the correct term was much higher than for any
other term, but was approximately 0.8 instead of I due to the noise. In the cases where the
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error term consisted of two functions but the measurements were noise-frrp (tests 5, 6 and
7), C(d(t), f) was close to one for both funcLions after aptplying the algrhn iteratively as
described in the previous section.

When noise and more than one function was present in the dynamw error term (tests 9 and
10), the maximum value of the cross-correlation coefficients dropped Pignificantly and in some
cases did not immediately identify the actual form over other similar forn,. As an example,
Table 3 shows the top five cross-correlation values for the identificatio,, of the Lt.n(v) term in
test case 10. Note that the functions with the highest cross-correlation values are all similar in
form to tan(v), and the corresponding correlation coefficients are of similar magnitude. Since
C(d(t), f) did not clearly identify tan(v) as the missing term, the five functions yielding the
highest C(d(t), f) values were individually least-squares fit to the model error term. In all cases
(i.e., repeating this test for a number of different random noise samples), the function with the
smallest least squares error cost was the correct function (tan(v)). Thus, the least-squares fit
of the parameters to the functional forms also serves as a second test if the correlation test is
inconclusive due to high noise levels.

Table 3.
HIGHEST CROSS-CORRELATION COEFFICIENTS

OBTAINED FOR THE TA:I(V) TERM OF TEST CASE 10

FUNCTION C(d(t),f) L.S. L.S. cost

tan(v) 0.583 -0.104 0.588
v 0.584 -0.1!9 0.623

v*cos(x)*cos(v) 0.584 -0.150 0.659
v*cos(x) 0.586 -0.126 0.607

sin(v)*cos(x) j 0.586 -0.133 0.621

The number of data points used in the MME algorithm was irelei w, - long as there were
enough points to reasonably span the qualitative aspects of the ';vst ,m (, sinusoidal terms
cannot be identified if the data only spans a small fraction of the pox.)

If the exact functional form of the dynamic error tc-- wjs not in function library, the
correlation procedure would pi,-k the first term in the Taylor " '.. c n of the exact form.
For example in a test case where the dynamiz e-TO lemi c&rrcspe .vl" , z,) , x .(v) and x*in(v)
was deleted from the library, the function with the largest Cd't, was x v. Similarly, in
several examples which are not shown the magnitude of the tates, arid v, were small. Thus,
the trigonometric functions of position and velocity were i, " ,' .,- the first term in
their Taylor Series expansions, i.e., cos(x) 1.0, stn'x/) . , and ain(v) " v. In
these cases, assumptions of linearity are clearly valid, arid are riw tJ rrst in the present work.



SUMMARY AND CONCLUSIONS

In this paper, an algorithm based on the MME estimation technique, coupled with correlation
tests and least squares, has been developed for identification of nonlinear systems. The results
of the examples indicate that the correlation technique applied to the MME-produced state and
model error estimates enables the form of the modet zo be accurately determined, thus eliminating
the requirement that the form be assumed a priori. Once the form is determined, the least-squares
fit provides excellent parameter identification. In cases of high noise, where the correlation test
may not be able to distinguish the actual form from similar forms, the least-squares fit also
proved to be a reliable second test for determining the actual form.

At no point in the algorithm is the user required to assume the form of the model, representing
a tremendous advantage over existing techniques, including the previous MME-based work. The
MME does not require an accurate model in order to produce accurate state and model error
estimates, and the correlation tests are automatically performed on a large existing library of
functions. Additional functions and more sophisticated methods of combining existing functions
can be added to the correlation testing portion of the algorithm (the authors are currently pursuing
this), virtually eliminating the likelihood that the actual model error terms are not tested.
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ABSTRACT

A procedure is presented to design passive damping into large truss structures

using viscously damped struts to enhance vibration attenuation or stability of

controls system. A method is derived from the equations of motion using

Rayleigh-Ritz method to relate the approximate contributions of a viscously damped

strut to the system level modal damping ratios and frequencies. Strut placement

locations, the total number of struts required and the damping characteristics of

struts can be easily identified and calculated. The procedure consists of three steps:

1) extract structural characteristics from the undamped baseline finite element

model, 2) on a mode by mode basis, perform damping design using the derived

equations to meet system level requirements and 3) update finite element model to

include damping mechanism and perform verification analysis using complex

eigensolution.
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INTRODUCTION

Truss systems are often used for large space structures because of weight efficiency. These
structures often have many flexible modes within the disturbance and control bandwidth. For
stringent performance requirements, tight joints are required for precision truss structures. The
intrinsic structural damping associated with this type of structure may be very low (less than 0.1%
equivalent viscous damping') and the dynamic responses under operational forces can be
significantly amplified. Passive vibration control is a cost effective and reliable way to suppress
dynamic responses and also provide additional stability margin to the controls system. Struts with
good stiffness and damping characteristics can significantly enhance the performance of this class
of structure.

Struts with imbedded viscoelastic materials have been successfully designed, tested, and
integrated into truss structures 2,3. Viscoelastic materials are often frequency and temperature
dependent4 . However, design procedure and approximate anamticai methods 5 for this type of
structure have been quite well established. Test results from demonstration structural articles
compared favorably with analytical prediction3.

Precision struts with build-in fluid viscous damping chamber have been built and tested. They
were demonbtrated to be. quite effective in provided stiffness and damping 6. This class of struts
can be characterized by a small , of frequency independent physical parameters. 'I ie
dynamics of this class of struts is well understood 7. The analytickul ine'Uhs for structures with
viscous damping, though more complicated and not commonly used, has a solid mathematical
foundation. This paper presents a simple three-step procedure to design viscously damped struts
into a large truss structure. Based on the baseline undamped structural model, the most effective
strut placement locations, the key stiffness and damping strut parameters and the number of struts
required are determined. Only simple design iterations are required to optimize the design. The
engineering design is then verified by the rigorous analytical method.

ANALYSIS OF DAMPED STRUCTURES

It is essential to understand the analysis of a damped structure before designing such a structure
to meet the design objectives. A complex structure is modeled by a finite element model with nxn
matrices. The governing differential equations of a structure with viscous damping are given by:

MU+C u+Ku = pg(t) (1)

The damping matrix is due to viscous dashpots in the structure. The intrinsic damping is assumed
to be negligible or added at the modal level. It is unlikely that the dashpot locations and
characteristics result in a damping matrix which is mass or stiffness proportional, or satisfies
Caughey's orthogonality condition8. Classical normal modes do not provide uncoupled scalar
equations to Equation (1). The solution to Equation (1) is often obtained in the first order form by
rewriting the equation as:

C M] []+ [ K _ 0 u] C 2
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In order to uncouple the matrix equation, a complex eigenvaluc problem for the large 2nx2n
matrices9 must be solved.

Both the eigenvalues and eigenvectors are complex. The corresponding undamped natural
frequencies and modal damping can be computed from the complex eigenvalues:

i R 2 = X 'Ii2 (4a)

4i - (4b)

The modal damping is embedded in the real part of the eigenvalue. For a passive stable system,
the real parts of the eigenvalues are always non-positive. The introduction of viscous dampers in
the finite element model also results in the presence of overdamped modes with zero vibratory
frequencies and large damping coefficients. The techniques in selecting an accurate and efficient
algorithm for complex eigensolution computation is quite important but not elaborated upon here.

This prcedure is mathematically rigorous and gives the correct solution to Equation (1).
However, it is quite wcmpitationally intensive for large structures. Also, from the design point of
view, it does not offer much insight into the behavior of the structures, and does not help
synthesizing and optimizing passive damping design for structure. However, once the damping
design is complete, the complex eigensolution should be performed to verify the. passive damping
design.

TRUSS STRUCTURES

If a undamped truss structure has n degrees of freedom, the equations of motion are given by:

M11 Ul + K11 ul = pg(t) (5)

The small amount of intrinsic damping in the structure is inserted at the modal level. A few elastic
struts are replaced by viscously damped struts to enhance the damping in the structure. For design
purposes, it is assumed that the truss behavior is governed by the axial properties of the struts.
Then, a typical viscous strut can be characterized by a three-node model with an internal dashpot7.
The modified structure requires additional degrees of freedom to model the dashpots in the finite
element model. Let the additional nv degrees of freedom be represented by u2. The governing
differential equations are now given by:

LMll M'1i]j. [C'11 C'2 [1] , [K'11 K'12] [Ul] P] ]g(t) (6)
021 C K22 + '21 K 22 =

Equation (6) describes the behavior of a structure yet to be designed. The damping design will
entail the locations, number, mass, damping and stiffness properties of the viscous struts. Unlike
the viscoelastic struts, all the structural properties specified in Equation (6) are frequency
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independent. Using engineering assumptions, a design procedure can be derived to approximate
the solution to these governing equations.

In order to utilize the information of the baseline structure to help the dimping design, it is
important to recast Equation (6) into the same number of degrees-of-freedom as the baseline
structure. Assuming the mass at the internal degrees of freedom of the struts is small and the
internal dynamics of the struts is not important to the solution, then for a harmonic force input this
conliivuii iS outiiiodrzed d.

[M 11  0 1 ] +i C' 11 I C 1 21 [ FK]+  K '121 [U ] P] (7a)
L M 2 2 L + LC'21 C 22] 6 2  K 2 1 K 22] U2

M'22 = 0 (7b)

The u2 degrees of freedom can be condensed out by using the second niatnx equation of Equation
(7a):

u2 = (iOC'22 + K'22 ) 1 (icoC'21 + K'21) ul (8)

Backsubstitute u2 into the first matrix equation of Equation (7a) and collecting :cmsn, Equation
(7a) can now be represented by:

Mu 1 + Kul = peil1wt (9a)

In this form, the stiffness matrix is complex:

K = KR+i-I (9b)

i is als, a furcmiun of y,th the stiffness and damping characteristics of the struts (u2 degrees of
freedom). Despite the dissimilarity in appearance, Equations (7) and (9) are identical descriptions
of the same system. Equation (7) is the preferred form for analytical computation while Equation
(9) is very useful to guide the damping design. For damping design, there is no need to form K
explicitly. Instead, the contribution of each strut element to k is evaluated individually. The
contribution of each strut to system level damping can be assessed through its contribution to KI.

iTRUT CHARACTERISTICS

In order to design damping at the system level, the damping and stiffness characteristics of the
damped struts must be totally understood. A ciass of viscously damped stnts can be represented
by three frequency independent parameters7 as shown in Figure 1.

c k-i

Figure I. 3-Parameter 2 DOFs Viscous Strut Mdcl
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The dynamic characteristics of this class of strut were derived based on a similar method such
that the results can be used for system level damping design. The stiffness and damping
characteristics of the struts are summarized here. The smntt is represented by a complex stiffness:

k = kR (1 + i T) (0Oa)

where,

kR = k, "2k12 + (I+K)(cC0)2" (10b)1(c(0) 2 + lc2k2

cL2(cm)k l
T1 = a(wkI(10c)

K2k12 + (l+K)(co) 2

= k Od)k I

Normalized design curves, optimum strut damping and damping bandwidth can be found in

Reference 7. The maximum loss factor, flop,, is governed by ic only:

K
Sop = 1 (11 a)

and the frequency at which this maximum loss occurs, Wo,, is governed by the damping
coefficient:

K C (I Ib)

A simple 3-parameter viscous strut model allows a simple strut representation for system level
design and a simple strut performance specification for component level design.

APPROXIMATE ANALYSIS OF DAMPED STRUCTURES

From a practical standpoint, if a few struts are replaced by damped struts to increase system
damping, say to around 10%, the basic undamped structural characteristics should not be changed
significantly. Based on this assumption, the Rayleigh-Ritz method can be used to compute the
approximate solution to Equation (1)10. This not only expedites the computation significantly but
it also provides a direct physical insight into the "modal" damping synthesis of the structure. The
undamped normal modes are used as the basis vectors (generalized coordinates):

m

u 0 1 qi = D q (12)
i=lI
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where the eigenvalue problem is performed at a selected frequency of interest:

K 01= C-j M0 (13)

In practice, the mode shapes of the baseline structure are used to stan the design prcxess. I hen
Equation (9) is approxinated by:

T M 1 q + k ( q = DT p g(t) (14)

For design purposes, assume the coupling between generalized coordinate does not significantly
affect the dynamic response. The approximate uncoupled equations of motion are therefore-

• iT M- 0, qi + 0,T K 0i qi = 0, T p g(t) (I15a)

[ 2*iTM i  i + + i (OiT KI Oi)] qieilt = 0,1T p e iwt (15b)

The equivalent "modal",,,cnsiz of the generalized coordinate can be found by equating the
complex stiffness to a single degree of freedom system at resonance frequency:

[(-c)2 + coo2 ) + i (2 0coi)] qoei" t : P-eic t (16)m

The "modal" frequency of the modified structure can therefore be approximated by:

S= iT ,, (17)

but the change in structural weight of the struts with respect to the overall structural and non-
structural weight is often very small such that ,iTM 1 i 1. The equivalent damping near
resonance can therefore be approximated by:

0, 1 4 0,I 1 ,i+(1 i

ELEMENT MODAL CONTRIBUTION

Based on this approximate analysis method, it is possible to assess the contribution of a
viscous strut at a given location to the system level damping and stiffness change. Decompose tlhi
global stiffness into element stiffness contributions (ne = number of elastic elements and nv-
number of damped struts):

K - kj - k Rj(o)) k+iX,()kRj) (19)
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The "modal" stiffness is given by:

&h2 = i kj + k Rj( (0 )  (20)

The normalized "modal" stiffness contribution of the j-th viscous strut to the system is given by:

=ika i(21a)
Eij = (2 a

The normalized "modal" stiffness contribution is also identical to the "modal" staiii energy (MSE)
ratio:

I o iTRj i

-- - 1 (21b)
xWij 2 aji

The "modal" damping ratio contribution of the j-th viscous strut to the system is given by:

=I i TkRl10 i  j (22 = 2 (22)

The system level damping from all the viscous struts is therefore simply given by:

I nv
i = Y Eij Tj (23)

j=1

The assumptions used in deriving these approximations provides a very simple concept for
damping design. It is clear from Equation (23) that there are three key parameters in system level
modal darrping design: the strut locations, Fi, the strut loss factors, r., and the total number of
viscous struts, nv. For a given mode, the strut location with the highest strain energy ratio is the
most effective location in providing damping. This location has the maximum relative
displacement, hence relative velocity, to activate the viscous damper. The strut with higher loss
factor also provides higher system level damping. The contribution of each damped strut to the
system level damping is proportional to the strut loss factor and the modal strain energy ratio.
System level damping can also be increased by incorporating more struts. Of course, as the most
effective locations are occupied, the effectiveness of an additional strut is diminishing as the modal
strain energy ratio is declining.

SYSTEM LEVEL DAMPING DESIGN PROCEDURE

In the beginning of a design cycle, the baseline structure is modeled and analyzed. The
performance of the structure is not satisfactory and higher damping is reauired in a few modes to
reduce the dynamic responses or stabilize the control system. Consequently modal damping ratios
are specified as design requirements. The modal properties of the baseline structural model can be
used to start the design process. The modal strain energy ratio of each strut member is computed:
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i kj i " 42(24)

A typical modal strain errgy distribution is shown in Figure 2. For the mode of interest, rank
strut members in descending order of modal strain energy ratios as shown in Figure 3. The order
of the struts should be noted as shown in Table 1.

Table I Strut Modal Strain Energy Data

Strut Order 1 2 3 4 5 6 7 8 9 10 11 12
Strut No. 17 15 18 9 12 8 13 16 11 14 7 10

MSE 0.170 0.143 0.105 0.098 0.077 0.073 0.073 0.061 0.052 0.034 0.027 0.0271
Cum MSE 0.170 0.314 0.418 0.516 0.593 0.666 0.739 0.800 0.852 0.886 0.914 0.941

If only one type of strut, with component loss factor T1, is used, compute the cumulative sum
of the the ranked modal strain energy ratios:

1

Ei= 1 1 ij (25)
j=1

A typical plot of the cumulative strain energy of the ranked struts is shown in Figure 4.

Assuming a realistic strut loss factor, and working with realistic static and dynamic strut
stiffnesses, find the suitable k, and k2 by using Equations (10) and (11). Determine the frequency
characteristics of the strut by defining the c parameter in Equation (I lb). Iterate if necessary to
optimize the strut design. Compute the dynamic stiffness and loss factor at the frequencies of
interest. A typical strut loss factor curve is shown in Figure 5.
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The system level modal damping for 1 number of struts is given by:

= ej 1  (26)

The system level damping is a product of strut loss factor and contributions from participating
struts, i.e. higher strut damping requires less members and vise versa. Iterate to determine the
necessary component loss factor and number of struts to meet the design requirement on a mode by
mode basis. Candidate struts for each modes are identified.

Candidate struts from all the modes are included in the final design to meet the design
requirements. The modal strain energy ratios, el, of these struts are computed as shown in Figure
6. The approximate system level damping is given by:

= 1T1Ej (27)
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The system level damping is a product of the strut loss factor at the modal frequency and the
participation of the selected struts at the system level. The modal strain energy ratios with respect
to frequency are shown in Figure 7. The system level damping curve, Figure 8, is simply the
product of Figures 6 and 7.
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The approximate system frequencies can be predicted by considering the "modal" stiffness
contribution of the viscous struts and the relative change in dynamic axial stiffness:

= + -1(i Oi (28)

As can be seen from the derivation of this procedure, quite a few assumptions were used in
order to establish this simple procedure. As in any design process, iterations are required to refine
the initial design. The number of struts and the strut parameters may be optimized. Also, for
better damping prediction at different frequency ranges, the baseline finite element model can be
updated to reflect the dynamic strut stiffness in accordance with Equation (10b) so that the strain
energy distribution is better represented at the frequency ranges of interest. The effect of modal
damping coupling can also be evaluated if necessary. However, it may be more expedient to let the
verification analysis provide the final verdict. Generally speaking, if the damping is well
distributed, it is closer to a proportional damping case. However, if only a few dampers are used
to provide a substantial amount of damping to the system, the damping mauix can be quite non-
proportional. If the strut placement also changes the mode shapes of the structure substantially, the
original mode shapes are not a good approximation. An updated finite element model should be
used as the baseline model.

When a good, practical and balanced damping design is in hand, the finite element model is
updated to include all the viscous struts which are modeled by elastic and viscous elements as
shown in Equation (6). This model removes all the assumptions imposed during the design
process and provides the best engineering predictions of the behavior of the structure damped by
viscous struts. The system damping and frequencies of the passively damped structure can be
computed from the complex eigenvalues using Equations (4a) and (4b). The verification analysis
is an important step to the design process.

There can be many variations to the method presented. Different struts with different stiffness
and damping characteristics can be added to the structure due to the geometric difference of struts
to be replaced. If damping is to be optimized over a wide frequency range, struts with different
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frequency characteristics can be used. However, the basic principles are still the same. The
procedure can be modified to accommodate such special circumstances. A summary of the design
and analysis procedure is provided in Table 2.

Table 2. Summary of Design and Analysis Procedure

1. Understand damping design requiremer ts.
2. Perform eigenvalue analysis of baseline structural model to get wj and 0j.

Compute modal strain energy ratios of strut members, cij-
3. Rank strut members in descending order of modal strain energy ratios for modes

of interest.
4. Compute cumulative sum of the ranked modal strain energy ratios, ljl, for modes

of interest.
5. Assume a physically achievable strut loss factor, TIJ. Estimate required dynamic

stiffness. Iterate to find the kt , k2 and c parameters to obtain static stiffness,
maximum loss factor and frequency characteristics nf struts. Compute the loss
factors at the frequencies of interest, 71(%,).

6. Find the number of struts required to meet the damping requirements for the given
modes. For each mode, locate the struts. The set of viscous struts is all the
members ioquired for all the modes.

7. Compute the modal strain energy ratios of the set of viscous struts, Ei.

8. Compute the predicted system level damping, ij(ci~ i .
9. Iterate upon the number of struts, strut locations, and strut parameters as necessary.

10. Iterate upon the accuracy of mode shapes and modal strain energy distributions at
selected frequencies if necessary.

11. Update finite element model to include dashpots and perform complex eigenvalue
problem to verify damping design.

12. Iterate as necessary to correct for any deficiency from complex eigensolution.

TRUSS DESIGN EXAMPLE

A small example is included here to illustrate the method. A 3 bay truss with 13 nodes and 60
active degrees of freedom is used. The first two bending modes of the structure are 21.3 Hz. The
goal is to design 5% viscous damping into the system. For the mode of interest, a bottom
longeron member has significant amount of modal strain energy. One damped strut is used to
replace the original strut. The damped strut is designed to have k1 = 110,491 lb/in, k2 = 114,955
lb/in, c = 839.88 lb-sec/in. This corresponds to a loss factor of 0.36 in the member at the
frequency of interest. The updated finite element model now has 122 equations in the first order
form. The solution from the complex eigenvalue problem is summarized in the Table 3. The
results are very satisfactory considering that only very little amount of computation required to
arrive at this design.

Experience in working with large truss structures showed that the design procedure is quite
effective and the design prediction and analytical solution are often quite close.
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Table 3 Comparison of Design Prediction and Analytical Solution

Parameters Design Goal Eigensolution Error

Frequency 21.3 Hz 21.95 Hz 3%

Damping 5% 5.45% 9%

CONCLUSION

A comprehensive design and analysis method for integration of viscously damped struts into
large precision truss structure is presented. The method is based on an approximate solution to the
governing differential equations using the Rayleigh-Ritz method. Simplification to a practical
design procedure is facilitated by making relevant engineering assumptions for the struts and the
truss behavior. The method effectively uses the modal data from the baseline structural model. A
simple design procedure is use to determine the strut placement locations, the strut stiffness and
damping parameters, and number of struts required to meet the design objectives. Upon
completion of a damping design, a rigorous verification analysis is performed to check the passive
design. Therefore all the assumptions used in the design process will not affect the accuracy of the
analytical prediction. The method is simple, efficient and accurate, and has been used for large
structures with good success.
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NOMENCLATURE

Symbols

C,c = viscous damping matrix, coefficient
g = forcing function

i = imaginary unit, 4-
I = identity matrix
K, k = stiffness matrix, stiffness coefficient, strut axial stiffness
M, m = mass matrix, mass
p = spatial force vector
t = time, second
u = displacement vector
w = element strain energy
03 = non-dimensional frequency parameter for viscous strut

E = strain energy ratio
0, (D = eigenvectors, eigenvector matrix

'1 = loss factor
K = non-dimensional stiffness ratio viscous strut

= viscous damping ratio
X, A = eigenvalue, eigenvalue matrix

0) = forcing frequency or natural frequency when used with index, radian/second
- = denoting modified elements

Subscripts

i = for the i-th mode
j = the j-th strut element
1 = number of viscous struts in descending order of modal strain energy
m = number of modes in solution
o = single degree of freedom system, pertaining to original component
op = condition at maximum loss factor
v = viscoelastic
u = displacement
C, = velocity
t = damping ratio
1 = baseline degrees of freedom, or outer spring of viscous strut
2 = additional degrees of freedom for dashpots, or inner spring of viscous strut

Superscripts

I = Imaginary
R = Real
T = matrix transpose
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ABSTRACT

The paper deals with the possible overestimation of the damping ratio, when
evaluated from autocorrelation functions in the time domain, because of a bias caused
by a triangular window.

Some theoretical considerations permitted to evaluate a lower bound for the sampling
period over which it has been possible to estimate the damping ratio with acceptable
errors and therefore to limit the effects of the above said bias.

Several numerical examples singled out its possible effects on the modal parameter
estimations and gave quantitative evaluations of it. Firstly numerical data regarded
single degree of freedom systems in function of the sampling period, afterwards two
modes have been considered. This last example is also presented with a high random
noise added to the original impulse response, and that because the autocorrelation
permits to clean up the noisy signal. In addition when more modes are present in the
baseband the problem could become critical: in fact the mode with the highest time
constant and therefore, in general, the one with the lowest frequency, is exposed to bias
errors which, in case of a large oversampling, become completely unacceptable.
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Nomenclature

f. natural frequency (Hz)
h[n] sampled impulse response
m lag index
n index of samples
w[n] sampled triangular window
E expectation value
M maximum number of lag points
N number of points contained in the impulse response
R residue magnitude
T, sampling period (s)
(Tj~ ., limit sampling period (s)

ph[m] sampled autocorrelation function relative to h[n]
Ph[m] estimated autocorrelation sequence
Ef error in the natural frequency estimation
6 R error in the residue magnitude estimation

error in the damping ratio estimation
S" viscous damping ratio
a decay rate (rad/s)
-r' time constant (s)
rTi limit time (s)
cod damped angular frequency (rad/s)
W" natural angular frequency (rad/s)

1. Introduction

Correlation functions play an important role in diverse areas of science and
technology, in particular they are commonly utilized in Modal Analysis to obtain
Frequency Response Functions (FRFs) [1 to 4]. Besides, Autocorrelation Functions
(AFs), derived from Impulse Responses (IRs), could be used to get modal parameters,
i.e. natural frequencies and damping factors, directly in the time domain. This approach
can turn out to be useful when the impulse responses are corrupted by a very high
additive random noise [5], as it happens for data gathered from flight tests; in fact,
evaluating autocorrelation functions, it is possible to remove an uncorrelated noise
present in the original impulse response.

Autocorrelation functions are generally estimated by a relationship that introduces
a bias consisting in a triangular window around the origin of the time axis.

For a sampled signal, the maximum time lag - given by the sampling period times
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the number of points whereof the signal is shifted with respect to the origin - where the
autocorrelation is estimated from the available data, must satisfy some constraints. It
not only ought to be of the order of one tenth of the data block length in order to avoid
instability in Power Spectral Density estimates [6], but it must be also chosen in such
a way that the exponentially decaying envelope of the autocorrelation is smaller than
the contribution of the triangular window. So if the number of the lag points is
determined in function of the available number of the total points of the original IR, the
sampling period, in addition to the Shannon condition, that determines an upper limit,
must also satisfy a lower limit, which permits to estimate the damping ratio with
acceptable errors.

In this paper the evaluation of the above said parameter is derived, for each mode,
from the instantaneous envelope and phase of the autocorrelation function, which in turn
are obtained via the Hilbert transform [7,8].

2. Theoretical considerations

In order to discuss our subject, let us consider the impulse response - sampled over
N points - of a real mode derived from a single degree of freedom system:

h[n] = R e -° ' ' sin[w,(nT,)] 0 n < (N-i) (1)

where n is the sample index, T, is the sampling period, a is the decay rate and wd is the
damped angular frequency.

The autocorrelation sequence can be estimated by the following relationship:

=[m]= 1 , h[n] h[n+m]

n-O

valid for 0: m < (N-1), where m indicates the number of lag points of which one
sequence is shifted with respect to the other (the time lag is therefore given by rTJ.

Since the autocorrelation is an even function:

(3)
Ph[ -M] =Phtm]

and in addition we are only interested in the sequence relative to m >0, Eq. (2) is

completely sufficient for our purpose.
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Although the relationship above mentioned is frequently utilized, in fact it provides
a true autocorrelation sequence (the matiix formed with its elements results to be always
positive semidefinite), this estimate is biased by the triangular window:

Ulm] =I -W(4)

As for N-w the window is identically equal to the unit, the autocorrelation estimate
(2) results asymptotically unbiased [9,10]. Thus the expectation of the estimated
sequence is given by the product of the actual autocorrelation times the window:

E I jmI} = ph[m] - w[m] (5)

If the maximum lag index M is small enough in comparison with N, the estimate
given by Eq. (2) is an acceptable approximation of p[m] and, under proper conditions
[5], it can be written as follows:

4_'__-___ cos wd(mT,)-arctan (6)

When the viscous damping model is adopted, the decay rate and the damped angular
frequency can be written as follows:

S= (7)

and

=d (A 0'i7~ (8)

where " is the damping ratio, thus relation (6) reduces to:

[m =-o - - d(m1,) -arctan]

Besides, if the damping ratio is small such that its square value is negligible with
respect to the unit, relationship (9) is further simplified:



Ph[m] 4NT cos [ (10)

in fact, the damped and the natural frequencies are practically equal and for the above
said position:

arctan [ ] arctan 0 1)

Actually, owing to the presence of the ias mentioned above, the decaying of the
function results greater than the one due to the exponential term appearing in relations
(6), (9) and (10). Because our interest is devoted to estimate the decay rate, or better
the damping ratio, it is necessary that the contribution of the triangular window is
negligible with respect to the one of the exponential decay. A limit time (i- m) can be
derived from the following relationship (Fig. 1):

e 'h-(12)

triangular window
['ru)

exponentially decaying envelope

Limit time

Figure 1 - Limit time evaluated at the maximum time lag.
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that - in function of the sampling period, of the maximum number of lag points and of
the total number of samnles - becomes:

LI M] (13)
e I

Performing the natural logarithm, it is possible to derive a relation between the
system time constant (-c 1/= ) and r,, :

_ -In 1
-M] (14)

Therefore the limit time ought to be in the order of [0 /10)rj or less, supposing M
much lower than N, so that the contribution of the tiangular window is ,mall enough.
Thus the limit sampling period, evaluated for the maximum value of the lag points, is
giver, by:

(T )T - I In - --I (15 )

Since r, is unknown "a priori", it is necessary to have a rough knowledge at least
of its order of magnitude, anyway once the natural frequency and the damping ratio
have been estimated, it is possible to check the limit sampling, in fact if (Tj)Im,
evaluated introducing into relationship (15) the estimated time constant, is not
sufficiently less than the sampling period actually employed, a longer T, must be used.

When several modes are contained within the baseband, (Tj,) is constrained by the
highest time constant, that is - supposing the damping ratio almost equal for each mode
- by the node with the lowest natural frequency.

3. Numerical tests

Data sequences presented in the following numerical simulations are formed by 4096
points, whereas the number of lag points of the autocorrelation function has been
chosen equal to 512 in order to get the Hilbert transform by a standard FFT software.



All the impulse responses considered hereafter have the same amplitude: R= 10,
even when two modes are presented.

In Tab. 1 estimates from the autocorrelation of an impulse response representing a
real mode with a very low natural frequency and a light damping ratio ( the input modal
parameters are: f.=0.71 Hz and '=0.003) are shown:

Table 1 - Modal parameter estimates from a highly truncated impulse response
versus the sampling period.

T,() R (, M I ( % ______ ____

j 1
0.150 10.00047 0.47 102 0.71 0.46 10-1 0.30002 10- 0.59 102

0.100 10.00142 0.14 10"0 0.71 0.47 10-3  0.30007 10z2 0.23 10'

0.050 10.04965 0.50 0.71 0.62 103  0.30406 102 1.35

0.030 10.32771 3.28 0.71 0.17 10,3  0.33171 10-2 10.57

0.020 10.80397 8.04 0.71 0.34 1P 0.39330 102 31.10

0.015 11.25559 12.56 0.70996 0.51 102 0.47019 10z  56.73

0.010 11.95407 19.54 0.70973 0.39 10' 0.64287 102 114.29
= , ,,, - , I

Since the baseband is 2 (Hz), the sampling period must be less than 0. 195 (s),
because a sampling factor equal to 2.56 has been considered. On the other hand T.
should be greater than the limit time 0.0195 (s), derived from Eq.(15). Actually up to
T,=0.050 (s) errors on r'are negligible, on the contrary for decreasing sampling periods
higher and higher damping ratios have been obtained, owing to the presence of the
triangular window.

The amplitude R has been achieved through e.+ini3tes of the decay rate and of initial
values of the autocorrelation function, Eq.(10).

Natural frequencies have been instead evaluated with immaterial errors for all the
cases presented.

The truncation at the end of the maximum time lag does not affect the modal
parameter estimates, in fact they have been carried out in the time domain with the
Hilbert approach [7,8] (Appendix).

The same case is also shown in Tab.2, where estimates have been canied out in the
frequency domain, using 400 spectral lines, with the commcrcial software SMS Nodal
3.0 [11]:



Table 2 - Damping ratio estimations in the frequency domain.

T. (s) 0.150 0.100 0.050 0.030 0.020 0.015 0.010

0.00300 0.00300 0.00305 0.00337 0.00404 0.00490 0.00703

E~ (- - 1.67 12.33 34.67 63.33 134.33

Errors on the damping ratio are in agreement with the ones obtained by the time
approach: the FRF results to be biased, in fact the triangular window, due to the
uncertainty principle [12,13], broadens the peaks and therefore an overestimation of "
occurs. For the first two sampling periods no errors could be evaluated because of the
limited number of decimal digits provided by the software outputs.

Amplitudes have not been reconstructed because they are not only altered by the
errors on the decay ratio estimates, but they are also modified by the effects due to the
truncation of the autocorrelation function at the end of its observation time [14].

Another example, with a greater decay rate ( f,=8.25 Hz and =0.01 ), is presented
in Tab.3:

Tabie 3 - Estimates from a higher decay rate irmpulse response.

T, (s) R E, I.L )___ I (%)

0.020 10.00123 12.33 10' 8.24959 0.50 10.2 0.10001 10- 0. 14 10'

0.010 10.00031 0.31 102 8.24959 0.50 10-2  0.10001 10-1 0.90 10"

0.005 10.00083 0.83 102 8.24958 0.50 10-2 0.10002 10' i  0.17 10'

0.001 10.21345 2.13 8.25043 0.52 10-2 0.10544 10' 5.44

0.0008 10.28766 2.88 8.24636 0.44 10' 0. 10940 10' 9.40

0.0005 10.54330 5.43 8.28293 0.34 0.12641 10' 26.41

0.0003 12.76663 27.67 8.20648 0.53 0.21966 10" 119.66

In this case a baseband of 10 (Hz) has been considered, therefore the Shannon
sampling period is equal to F,=0.039 (s), on the contrary the limit sampling time
equals 0.(XX)5 (s). As in the first Table, errors on " increase as the sampling time
lowers and unacceptable values have been obtained for T, equal or less than the limit
value. The order of magnitude of e is similar to the one gained 'or the first example.

In the next Table two modes in the baseband of 10 (Hz) have been considered;
modal parameter estimates achieved from autocorrelation functions of impulse responses
with the same amplitudes and the same natural frequencies of the pre\ ious examples,



but with the damping ratio equal to 0.003 for both the modes, are shown (Tab.4):

Table 4 - Modal parameter evaluations for two modes present in the same baseband
(10 Hz) versus the sampling period.

T_ Imod R IE.I(%) I Tn
1st 10.19364 1.94 0.71 0.31820 10-2 6.07

0.035
2nd 10.00335 0.33 101 8.24995 6.06 10-4  0.30006 10-2 0.21 10.

1st 10.32731 3.27 0.71 - 0.33169 10.2 10.56
0.030

2nd 10.01256 0.13 8.24993 8.49 10° .r' 10P I.85 10

1st 10.52615 5.26 0.71 - 0.35444 10-2 18.15
0.025

2nd 10.00393 0.39 10' 8.24990 1.21 10-' 0.30009 10 1 0.30 10'

1st 10.80372 8.04 0.71 - 0.39328 10,2 31.10
0.020

2nd 10.00082 0.82 10-2 8.24989 1.33 103 0.30003 102 0.88 10-2

1st 11.26584 12.66 0.70996 5.63 10-' 0.47096 102 56.99
0.015

2nd 9.97821 0.22 8.24984 1.94 10-3  0.29935 10'  0.22

1st 11.97794 19.78 0.70973 3.80 to 2 0.64517 10.2 115.06
0.010

2nd 9.95462 0.45 8.25002 2.42 10"' 0.29848 102 0.51

For sampling period up to the limit value 0.0195 (s), due to the first mode (i.e. the
one with the lowest decay rate), errors on " increase to about 30% for the first mode,
whereas they remain negligible for the second mode. In any case errors on natural
frequencies are always irrelevant and therefore the ones on the amplitude are practically
related to the errors on the correspondent c's. Obviously for shorter T,'s, errors on the
damping ratios of the first mode result higher and higher, whereas for the second mode
they always remain small. Due to the presence of more modes in the baseband, and
since the Hilbert transform approach works on the single mode, a suitable filter must
be applied. In particular, an adaptable cosine tapered filter has been used: its width has
been chosen taking into account the shift of the peaks in the frequency domain, owing
to the different sampling periods. Estimates from the previous two modes, when they
are added to an uncorrelated random noise, with zero mean and standard deviation
equal to 50% of the common impulse response amplitude, are shown in Tab.5 (Fig.2
shows the time history relative to T,=0.()2, whereas its autocorrelation is presented in
Fig.3):
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Table 5 - Effect of a high random noise on parameter estimates of the modes
presented in Tab.4.

T, 1modeI R IIERI (%)I f I tI(%) I " I__ _ __ )

1st 9.97203 0.28 0.71019 2.63 10-2 0.32681 10-2 8.94
0.020

2nd 12.32280 23.22 8.25263 3.19 10.2 0.34667 10-2 15.96

1st 11.54107 15.41 0.71043 6.06 102 0.48112 10.2 60.37
0.015

2nd 9.32304 6.77 8.25823 9.98 102 0.24305 102 18.98

1st 11.68375 16.84 0.70958 5.92 102 0.60516 102 101.72
0.010

2nd 8.69748 13.03 8.24198 9.72 10" 0.24436 j02 18.55

In this case the effect of the added noise, on the damping ratio estimations, is
especially significant for the second mode because its impulse response is more rapidly
damped out. Besides, even if the residues of the two modes are equal, the initial
amplitudes of the autocorrelation functions - derived by filtering - result to be
completely different: in fact - for the sake of simplicity - considering each mode
independently and not taking account of the cross-correlation terms, autocorrelation
amplitudes are inverse functions, being all the other values common, of the relative
decay rates and so the second mode could have a much smaller amplitude than the first
one:see Figs.4 and 5 for the filtered autocorrelation functions and Figs.6 and 7 for the
relative envelopes.

4. Conclusions

In the use of an approach based on autocorrelation functions of impulse responses
in order to obtain - in the time domain - the modal parameters, a possible source of
error in the damping ratio estimation is connected with a bias due to a triangular
window positioned around the time axis origin. Owing to this bias, it is necessary to
evaluate - for example at the maximum time lag where the autocorrelation function is
calculated - a minimum sampling period (lower limit), suitable to analyze the signal and
in particular to estimate the decay rate and consequently the damping ratio. Although
the value of this sampling period is a function of the unknown signal time constant,
nevertheless it is possible, starting from an its first estimate, to update the value of the
sampling period and so to eliminate bias errors. In this way, the peculiar advantages
deriving from the use of aUtocorrelation functions - especially if evaluated from highly

GM-I0



noisy impulse responses - tn ettimate modal Varameters, and in particular damping
ratios, can be thoroughly exploited.
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Figure 2 - Impulse response of Tab.5, relative to T,=0.02 (s), contaminated by a
random noise.
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Appendix: Hilbert transform and modal parameter estimation

The time sequence (10) can be considered as an amplitude modulated signal with
the carrier equal to the damped angular frequency and the modulating signal equal to
the decaying exponential function: [R 2/(4NT,a)] exp(-omT,). Since the spectrum of this
last function is unbounded, relationship (10) and:

A [m] 4NTco e sin [W (MTj I

are not strictly a pair of Hilbert transforms. Nevertheless, under proper conditions [8],
the Bedrosian theorem [15,16] can be applied at least in the limit sense, thus the
complex signal:
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z[in] R_2_e )-(MT) {COS {Wd (mT, I +j sini nd(MTs)4 NTS o (A.2)

-- e -,,(mT,) ejw,(mT,)

4NTor

can be considered as analytic.
It is easy to recognize that the magnitude of z[m] represents the modulating function,

whose decay rate could be directly estimated from the straight line:

In zm Iin R o rn T3  (A.3)4 NT o

whereas its argument is the instantaneous phase, the slope of which gives the damped
angular frequency:

Arg{z[m]} d m TS (A.4)

Consequently, it is possible to achieve the natural angular frequency:

/ 2 2 (A.5)
n.,VOOr + 0Wd

and the damping ratio:

S_(A.6)
W~

n

The residue magnitude R can be evaluated introducing the known values and the
estimate of a, achieved from the envelope, into the initial amplitude of Eq.(10).

Good estimates of the parameters mentioned above can be gained performing least
squares regressions on the two straight lines represented by Fqs.(A.3) and (A.4).
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ABSTRACT

Viscoelastic polymers are frequently used to eliminate harmful or annoying noise
fields in an environment which contains solvents or gases at elevated temperatures.
The frequency range over which the particular polymer performs as a sound isolator,
an absorber, or a damper may vary by orders of magnitude. Hence, a polymer
family which is resistant to many common solvents and exhibits high loss factors
distributed over several frequency decades covering the audio band should find many
applications. Fluorocarbon elastomers such as copolymers of vinylidene flouride and
hexafluoropropylene are such a family. Presented in this paper will be the results
of an initial examination of the dynamic moduli, consisting of the elastic and loss
components, of six different commercially available family members. The magnitude
of the peak loss factor is found to vary between approximately 1.1 to 1.4, and its
location by more than two decades in the frequency domain.
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Passive Vibration Damping with Noncohesive Granular Materials

M. Abdel-Gawad
Rockwell International Science Center
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Abstra t

Dynamical systems comprised of noncohesive solid particles offer
a promising approach for passive vibration damping as an
alternative where viscous or viscoelastic materials become
ineffective at high or low temperatures or in a hostile
environment. We are employing a vibrating bar apparatus to
understand damping mechanisms in such systems and to identify
important parameters for use in the design of efficient methods
for controlling damaging vibrations in high speed aircraft and
Large Space Structures. In systems involving solid particles
rubbing and colliding with each other, loss of mechanical energy
can be substantial but the mechanisms are complex and not fully
understood. The material parameters we have been studying include
grain size and shape, intrinsic grain density, packing density,
and friction coefficient. Measurements on a variety of noncohesive
granular materials show that damping is both frequency and
amplitude dependent which indicates the combined effects of
frictional and viscous-like damping mechanisms. Considerable
mechanical energy loss results from friction by particle sliding,
rolling and by transfer of inertia at collisions between the
grains. Relatively low packing densities and fine grain size seem
to be favorable properties for maximizing vibration energy losses,
at least for the materials examined and in the frequency range,
strain amplitudes and vibration modes employed. Microstructures
which enhance internal surface area and resistance to compaction
are favorable properties for promoting high mechanical energy
loss. A full understanding of the mechanisms may provide the data
necessary for designing and manufacturing damping materials
tailored for use in applications where conventional viscoelastic
materials are ineffective.
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Introduction

Potentially destructive vibrations often take place in aerospace
structures and components. Vibration induced cracks occur in the
aircraft affecting structural elements, aircraft skin and
antennas. When aircraft operate at very low temperatures
conventional damping materials based on viscous or viscoelastic
mechanisms are transformed from their rubbery or transitional
state into their glassy state where they lose their effectiveness.
Serious cracks have been known to develop in aerospace components
operating at high temperatures and hostile environments. Vibration
problems are also anticipated in advanced launch systems and are
pervasive in many other industrial applications. The use of
noncohesive granular materials as a damping medium offers a
promising approach for damping vibrations in situations where
conventional materials cannot be used.

The objectives of this work are to a) understand damping
mechanisms in oscillating particles set in motion by a vibrating
structure, b) identify critical parameters needed for design of
effective damping systems, and c) acquire the knowledge necessary
tor recoqnizing potential applications and limitations of this
technique.

This work is based on two studies performed independently at the
Rockwell Science Center (1-3) and Rocketdyne divisions (4).
We learned from orevious studies on elastic wave attenuation in
rocks witrh a wide range of cohesiveness that damping increases
sunstantially with the increase in crack density and inversely
with the strength of bonding at grain interfaces. The presence of
even small amounts of water adsorbed on silicate grains causes
considerable w-eakening of the interface bond and dramatically
increases thA damping factor (1/Q). Damping mechanisms in
semi-cons!dated materials were found to be complex, involving
both irierial 'riction and viscoelastic-like effects. In

noncohesimv materials with solid particles rubbing on and
colliding et each other, loss of mechanical anergy can be

substantial; but the effects of various parameters on damping are
cer~oI . ¢,ni . work in opposite directions. This paper reports
progres: :;t' ,<d nderstanding the effects of some microstructural
parameters.,: n in relation to frequenc-y and strain
amp" i' u(" .

Measurements and Techniqcues

,ih 1 1 r h rmet tehn'.i ;es and researc.
r the lIst r . 'ear at -.)ckwell Science

-. t. : ' he dyramic rr- han ca properties of
. -t~ ' ia - F:gulre i shows a schematic



of a vibrating bar apparatus and measurement system we currently
use for making damping and modulus measurements on composite
materials. A Hewlett-Packard computer is used to control the
experiment and is programmed to allow the selection of inpat
voltage and frequency range parameters and for measurements at
high temperatures and controlled environment. The system tracks
and digitizes the resonance peaks, and calculates the loss factor
1/Q from the width of the resonance curve measured at 1/ 2 of the
maximum amplitude and is given by

1/Q = 0)2-(1/ r

where Q is the quality factor, CSr is the resonant frequency in
forced vibration, and (0, 02 are the frequencies at which the
amplitude of the vibration has fallen to 1/2 of the maximum value.

In these experiments the forced vibrating bar apparatus was used
to measure the damping factor Q-1 of a three-layer rectangular bar
geometry. The composite bar consists of two identical constraining
copper bars rigidly mounted on the vibrating bar device and
separated by a space in which the test damping material is placed.
The metal bars are 10 cm long, 2.5 cm wide and 0.06 cm thick and
are separated by a spacing of 0.6 cm. The geometry is that of a
damping layer sandwiched between two constraining metal layers
Figure 2. The damping test material is contained in a tailored bag
of thin mylar film placed between the two metal bars. The mylar
bag had a small effect on damping of the composite bar and this
was taken into consideration when making comparisons between
measurements made with and without the damping layer.

The theoretical basis of damping in multi-layer beams was
discussed by Ross, Ungar, and Kerwin (5). A method for
determining the damping properties in various multi-layer
geometries is described by Nashif et al (6), and in ASTM Standard
Method E756-83 (7).

Figures 3-7 illustrate the effects of some microstructural
parameters on damping (1/Q) of the composite bar system usina a
variety of damping materials. The measurements were made on the
fundamental mode in a free-free end-loaded geometry in flexure. A
rotor with calibrated weights rigidly clamppd to the ends of the
specimeni provided a means for varying the resonance frequency. A
full description of this technique was given by Papadakis (8).

Figure 3 is a plot of 1/Q four damping materials representino a
range of packing densities. Diatomaceous earth (DE) with the
lowest density shows superior damping compared to the high density
nickel part icles (Ni) . The I micron zirconia (ZR) also shows
excellent damping. The four points, collectively labeled GL,
represent cr'ashed b133s heads with different packinq densities. in
this case, h' we-:r, the observed differences Jn dampino macy not be
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totally a _btieto packing density alone <' we are deali--
with different, materials of different intrinsic- and
microstructural properties. The effect of packinci dens ity on
damping is moe niquel il4 lustrated in Figure 4 in which damping
was measured as a function of resonant rrequency using the sa..,e

mateial(1 i~cnzircoia) at two different pakngdn1i~

The lowef igj drrnsity (D= 0.68 g/cc) -curve s now- 'h~gher values
of I/Q a-no -. tr, nqer frequency dependence t!oan r.he curve of -he
nigher packing density (D=1.27 -,/cc)

in "he family of curves shown in Figure 5 the resonance frequency
is olott-ed &.ost.nst grain size -fractions of crushed glass at. .- ve
different moo voltagies (vibration amplitude) . The shifl- of

resoanc tolower frequencies observed with the decrease in grain
size and- ua d input voltage indictes reduced Stiffness. The
rapid cnn ir. sloue of the 40 Volt curve suoq ests that the
r" a e r.snw thr_,xotropic behavior at hiach- Qran rates.

_-2:'an amplitu.do, dependence of lQfxthe 1-mi4cron.
i s hows the same grain size ano c u voltaqe

5plotted v sus !PD

Darning Mechanisms in Granular Materials

Fr~ t>n echl-aniisms in cqranular marnai--i's are complex
7iro r '-: nrns ic mat_-eria± propertie _ (e asticicy ai.d4

arc -,foen)a we Ll a s t:he m_4c ro s cop ic me -ha n ica 1
nrc rcr:no -frictional sliding a.nd collision of

p ~ r as t ictLurali properties largely de~termine whether
en ,ro icoro or collision is the d etmechanism.

T ~ ~ h ee eegy in systems damp, y rn-cohesive
fl~ r~~~a , nd the effectq oif

-a (I ,d f e n wo rk in -,r ,, c, c ~t ion

:I: T r, te r'c or r 0 ,uw~ 1 z fn,
'-.4-~1 r n
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little or no energy. Adja-ent t- these are areas of relatively
high damping caused by particle rotation and frictional sliding
(12,13).

Energy dissipation caused by friction is a complex function of
many variables including a) the number of contacts per unit volume
which is dependent on grain size and and coordination number
(packing density), b) normal stresses at points of contacts,
which is also a function of packing density, c) the shear stress
at the sliding interface, and d) the effective friction
coefficient which is a function of the intrinsic friction
coefficient of the material (usually measured on two smooth
s-rfaces) modified by the presence of asperities (grain shape)

In more loosely compacted material the grains lose energy botn y
friction and collision. The latter mechanism becomes more dominant
at low packing densities. In the collision dominant regime
viscous-like damping results from losses during momentum transfer
(14). In this case particle inertia and frequency of collisions
are major contributors to energy loss. At high packing density *he
particle velocity, inertia and number of collisions are reduced
due to the increased stiffness and resistance to deformation.

Fiqure 9 illustrates a rheological model of particle interactions
in a system where both elastic and viscous normal forces and
tangential frictional forces simultaneously take place (15). The
model (16) for granular flow which is based in part on the uarly
work of Bagnold (14) on shearing of solid spheres dispersed in a
Newtonian fluid. The model considers the total stress as the sum
of two parts,

Gtotal = O(C)Coulomb + ?L(C)pD 2 (dU/dv )2

rate- independent rate-d-pendent
dry friction part viscous part

where Cis , solids fraction,
d',,dy *_-'he rate of shear strain,

is .he linear grain concentratiron co(-f)t c't, 'if i .,i
the ra-io grain diameter/mean free dispersi -:, c- ista:.:,

I i 1/2 - wher e C- is the maxir o i , 1 r"
ration,

ofn a - 'c'-- . -



The term X(C) relates to the packing density; the strain shear rate
(dU/dy) is equivalent to frequency. The role of grain diameter D
is more complex because it enters into the viscous part and also
in the friction part of the total energy dissipated. Fine grained
particles have higher surface area per unit mass and therefore
produce higher levcls of grain to giain friction UiL,, the coarse
grained particles. The role of the intrinsic grain density p in
relation to vibration modes is also unclear and must be
investiaated by further studies.

With these Qualifications in mind, the granular flow model is
qualitatively synergistic with energy dissipation in oscillating
particles. In both processes the rate-independent, strain
dependent part of damping can be ascribed to dry Coulomb friction
and the 'viscous' contribution results from momentum transfer
during collisions between particles. At high values of solids
fraction (high compaction) and low shear rates the
rate-independent term is dominant, whereas at low packing
densities and high shc. r rates the collisional transfer term
prevails.

This is qualitatively consistent with our data whereby high levels
of dampr.' are associated with low packing densities. The observed
behavior .<f strain amplitude dependence together with frequency
dependence of damping (1/Q) indicates that both frictional and
viscous-like processes are involved. Diatomaceous earth, the most
effective. damping material found so far in this study, possesses
several o4 the favorable microstructural properties discussed
above. It consists of siliceouis skeletal remains of marine
mioroorga nisms (diatoms) .In addition to fine grain size with high
internal i r:ace area, diatomaceous earth has high resistance to
compaction. These properties are favorable for high damping and
the excellent filtracion properties for which this material is
very well known

SuMmary and Conclusins

uat . --. (In a variety of noncohesive granular materials

i.: noth frequency and amplitude cIcenderit which
diat;: . .red effects of frictional and v-_sccus-like

i onsiderabie mechanical energv _os results
f r 7 fr < 1 .: r Lrti sliding, rolling and h tsfe - of

,.. weer -he grain-. Relatvelv ow olki
zt sie seem to e favora-l.e *V r erties fo.

mali I ,I : 1': i gy losses, at le .t for -he at Lals
,. o 2 :n ; ....... , .r . range, straii aimp' ot ,des and
vAr .. . .. l'; d. M st r 'es.... wh-ch o e intrerna'

A 17,, ., : rdenrisn densiy, oa in sap e, an ni the



presence of very small amounts of adsorbed fluids need to be
further investigated. Quantitative modeling of the complex
mechanisms involved is a challenging task necessary for optimizing
design of damping materials tailored for specific vibration
problems. Full understanding of these mechanisms will also be
useful in developing internally damped alloys and composite
materials.
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VEM DATABASE PROGRAM

Bryce L. Fowler'
CSA Engineering, Inc.

Palo Alto, CA

ABSTRACT

A three-tiered implementation of a viscoelastic material (VEM) database under
development is described. Using low-level calls, searches for characterized VEM's
may be conducted based on property constraints (e.g., modulus and loss factor at
certain temperature and frequency) and/or other criteria (e.g., available thicknesses,
type, etc.).

1. A graphical front end program that runs on a Macintosh personal computer
is being written. It will be dynamically linked to VEM characterization and
testing programs for data sharing.

2. A stand-alone program for UNIX machines using X windows is being written.
Reports will be in the form of tables and X-Y plots. A similar program to
run under MS-DOS is also being developed concurrently.

3. A VEM database engine which may be compiled and run on any computer
that supports ANSI FORTRAN 77 is described. The engine consists of FOR-
TRAN callable subroutines that search a VEM database created by a lbianaxi
program using VEM characterization data files.

ICSA Engineering, Inc., 560 San Antonio Road, Suite 1)1, Palo Alto, CA 94306, (415) 494-7351
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MEASUREMENT OF THE MECHANICAL
PROPERTIES OF VISCOELASTIC! BY THE
DIRECT COMPLEX STIFFNESS METHOD

Bradley R. Allen'
CSA Engineering, Inc.

Palo Alto, CA

David A. Kienholz
CSA Engineering, Inc.

Palo Alto, CA

ABSTRACT

Accurate material properties are essential for the design of viscoelastic damping
treatments and material properties are often the predominant error source process
when modal strain energy tcchmques are implemented.

The trade-offs between various test techniques are discussed with primary em-
phasis on a system developed at CSA Engineering for direct complex stiffness mea-
suremnents on viscoelastic materials. Issues such as analog front-end design, tem-
perature control, and system software are discussed.

'CSA Engineering, Inc., 560 San Antonio Road, Suite 101, Palo Alto, CA 94306, (415) 494-7351
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Measurement of the Mechanical Properties of Viscoelastics
by the Direct Complex Stiffness Method

Bradley R. Allen
David A. Klenholz
CSA Engineering, Inc.

Presented February 15, 1991

Damping '91, San Diego, CA

"Ileasurement of the Mechanical
Pri i.rtios of Viscoelastics by the Direct

Complex Stiffness Method
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Damping Deslgnt- Needs Accurate
Material Properties

" Moduli and loss factor

" Typically want shear properties

" Need properties across broad ranges of temperature and
frequency

" Material property accuracy is often the limiting factor in

current damping design

- Wide scatter common in viscoelastic test data

Damping Designer Needs
Accurate Material Properties
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Methods for Dynamic Mechinical
Testing of Viscoelastics

• Resonant methods

- material properties extracted from resonant system

- cantilever beam tests

" Nonresonant methods

- material properties calculated from specimen stiffness

- measurements performed below resonant frequencies
o test specimen

- Direct Complex Stiffness test method

Methods for Dynamic Mechanical
Testing of Viscoelastics

• Resonant tests imply stiffness from the natural
frequency of a resonant system; the loss factor is
extracted from the modal damping.

• With direct stiffness method (DCS), stiffness of
specimen is the real part of the complex stiffness
and loss factor is calculated from the phase angle
between force and displacement.

GDD-4



CSA Prefers DCS for Most
Aerospace Applications

" No modeling assumptions

- often introduce random and/or bias errors

" Excellent accuracy and repeatability

- accuracy limited by

" instrumentation

" fixture design

" Resonant tests least accurate at highest damping levels

CSA Prefers DCS for Most
Aerospace Applications

Damping measurements become difficult as modal
damping becomes large; however, modeling errors
increase as strain energy in the viscoelastic is
reduced. The combination of these effects make it
difficult to obtain accurate measurements at the
center of transition on many materials.

GDD- 5



Current Prototype Employed by CSA Engineering

Current Prototype Employed
by CSA Engineering

• Viscoelastic specimen is in dual shear.

e Cooling and heating are provided by liquid
convection.

° Exte, jor box dimensions are 15" x 11" x 6"

GD D-6



Schematic of Prototype Test System

I'E M Tcsimng

Schematic of Prototype
Test System

* Macintosh computer controls entire data
acquisition process.
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Capabilities of New System

* 150 lbf

* 0.1 to 100C Hertz bandwidth

* -85 to 500 F temperature control

* Wider dynamic range of stiffness

* Fast-Fourier transform analyzer

* Computer controlled data acquisition

* Characterization and data acquisition software run
concurrently

Capabilities of New System

• Peak capacity of driver is 150 lbf with a 0.1 to 500
Hz broad band excitation.

" Temperature accuracy is plus or minus one degree
Fahrenheit.

" Fast-Fourier Transform used to process data. Both
random and sine excitation are available.

• Macintosh windowing environment allows data
acquisition program to run concurrently with
characterization software, and its tasks such as
wicket plot display can be performed during data
acquisition.

GDD-8



Computer Controlled Data Acquislilon

• Automated test capability

" Sophisticated post-processing capabilities

" Error tracking routines in data acquisition and
post-processing

- inertia contaminated data

- machine compliance

- impure shear

" Exporting to characterization and database software

Computer Controlled Data Acquisition

° Data acquisition, temperature control, and
post-processing are performed through a single
Macintosh computer interface.

GDD-9



Primary Design Objectives are
Material Characterization

" Extended dynamic range of specimen stiffness to

accommodate many materials and strain levels

" Wide temperature band

" Error tracking

" Computer controlled data acquisition

" Short data acquisition time

Primary Design Objectives are
Material Characterization

Moduli of viscoelastic materials often change by
grjeater than 1000:1 through transition. Therefore,
t dynamic range of stiffness for the test
machine is extremely important for broad band
characterization.
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Example Data

(p, . vii' , 
S  

J . . .. . ..

Example Data

• Data shown was collected at only 8 isotherms and
was thinned to display approximately one in four
data points.
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THE EFFECT OF POROSITY ON THE MICROSTRUCTURAL
DAMPING RESPONSE OF A 6061 ALUMINUM ALLOY

J. Zhangl, M. N. Gungcr 2 and E. J. Lavernia1

lDepartment of Mechanical and Aerospace engineering

University of California at Irvine
Irvine, CA 92717

2 Westinghouse Science and Technology Center
1310 Beulah Road, Pittsburgh, PA 15235

ABSTRACT

There is a strong experimental evidence suggesting that the presence of pores or cavities in

a microstructure may play an important role in the damping response of a material. The present
paper reports on the results of a systematic study of the effects of micrometer-sized pores on the

damping response of 6061 aluminum alloy. Spray atomization and deposition processing was
selected for the present study as a result of its ability to produce a material with a pre-determined
amount of non-interconnected, micrometer-sized pores or cavities. Furthermore, by using this

synthesis approach, the amount and distribution of pores present in the material may be
systematically altered through variations in the processing parameters. 6061 Al alloy was selected

for the present study because it has been widely used in structural applications, and because its
damping behavior has been studied previously. The damping measurements were accomplished

on cantilever beam specimens by using the free vibration decay logarithmic decrement and the
resonant vibration half band width techniques. The present results suggest that there is a

correlation between the damping response of the material and the amount of porosity present in the
microstructure. The damping capacity, logarithmic decrement 5, of the as-spray deposited material

increased from 1.8 to 2.9% as the amount of porosity increased from 4 to 10%. A correlation

between the magnitude of the damping capacity ant the average pore diameter was also noted.
Overall, the damping response of the spray deposited materials is higher than that reported by other

investigators using the same alloy.

IJ. Zhang
Materials Section
Department of Mechanical and Aerospace Engineering
University of California, Irvine, CA 92717
(714) 856-8583
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1. INTRODUCTION

ihe efective utilization of advanced metals and alloys in structural applications that require

rn;Q1ut'r .,o,3_nd and vibration transmission is often limited by our current understanding of the

tors dia, govern their microstructural damping response. The microstructural damping capacity

ot ma r. i - referred to hereafter simply as damping capacity - may be defined as its ability to

UIssipa. eastic strain energy, although plasticity may be involved at large strain amplitudes. The

d1',,Sip,'.L elastic strain energy in the microstructure typically occurs through a combination of

severai vie,_hanisms, which include: 1) relaxation of point defects, 2) macro-thermoelasticity, 3)

micro-thermioelasticity, 4) Eddy-current effects, 5) Snoek effect, 6) stress-induced ordering

reactions, and 7) electronic effects[ 1.21 In addition, the dissipation of elastic strain energy may be

affected by discontinuities that may be present in the microstructure, such as grain boundaries and

pores or cavifies.13-51

There is a strong experimental evidence suggesting that the vreencc of pores or cavities in

the micr-.sructure may play an important role in the damping response of a material. Shimizu[ 31,

for exa! iptc, showed that the damping behavior of a carbon/epoxy composite could be modified

either ,- ?c:ding a certain amount of flexibilizer or by foaming the epoxy matrix. His results

demonstrated that the damping behavior of the carbon/epoxy composite samples was strongly

influenced by the resulting porous microstructure that was induced during the foaming of the

matrix. In related studies, Klimentos and McCann[4 ] investigated the relationship among

compressional .wave attenuation, porosity, clay content, and permeability in sandstones. In their

study, they measured the attenuation coefficients of compressional waves of sandstone samples

containing pores filled with clay and saturated with fluid. Their results showed that the logarithmic
decrement (6) of the samples at 1000 kHz and 40 MPa was related to porosity (P, in %) and clay

content inside pore (C, in %) by 8 = aP + bC - c, where a, b and c are positive constants. They

also noted that there was no apparent correlation between attenuation and mean grain size for their

samplcs N'elsen[5] developed a theoretical model to estimate the complex modulus of porous and
impregnated materials (e.g. cement) and viscoelastic porous materials. Rice[ 61 also proposed a

theoretical model to predict the effects of porosity and grain size on the tensile modulus, strength

and fracture energy of ceramics.

Despite the aforementioned results which suggest that the presence of pores and cavities in
the rnict-ostrcture may have a strong influence on the overall damping response of a material, the

;.. g of the precise role played by pores and cavities in damping behavior is not clearly

GDE-2



understood. This lack of knowledge may limit efficient applications of certain advanced materials

in damping-critical structures, since these materials often exhibit some amount of porosity. One of

such class of materials includes, for example, that produced by powder metallurgical means (e.g.,

consolidating fine powders into bulk preforms). [7-8s Therefore, the objective of the present work

is to provide insight into the effects of porosity on the damping behavior of structural aluminium

alloys. Spray atomization and deposition process.ng was selected for the present study as a result

of its ability to produce a material with a pre-determined amount of non-interconnected,

micrometer-sized pores or cavities.[9 -15] Furthermore, by using this synthesis approach, the

amount and distribution of porosity present in the material may be systematically altered through

variations in the processing parameters. Aluminum alloy 6061 was selected for the present study

because it has been widely used in structural applications, and because its damping behavior has

been studied previously. [2,16,171

2. EXPERIMENTAL

2.1 MATERIAL SYNTHESIS

The aluminum alloy used in the present study was a commercial quality 6061 aluminum

alloy, with the ;ollowing nominal compositions: 0.6% Si, 0.28% Cu, 1.0% Mg, 0.2% Cr, and

balance Al (in wt. %). Spray atomization and deposition processing involves the energetic

disintegration of the molten 6061 alloy into micrometer-sized droplets by high velocity inert gas

jets (N2 was used in the present study), followed by deposition on a water cooled Cu substrate.

The rapidly quenched, partially solidified droplets impact, first on the deposition surface, and

subsequently on each other, and collect into a preform whose microstructure is largely dictated by

the solidification conditions during impact. A diagram of the experimental apparatus used in the

present study is shown in Figure 1. The geometry of the spray deposited material, which normally

exhibits a contour akin to the Gaussian distribution of droplets impacting on the substrate,[9-131

was readily modified in the present study by displacing the substrate during deposition. In order to

avoid extensive oxidation of the 6061 Al matrix during processing, the environmental chamber was

evacuated to a pressure of 0.2 kPa, and backfilled with inert gas to pressure of 0.1 MPa prior to

melting and atomizing the material. A more detailed discussion of the spray atomization and

deposition experiments can be found elsewhere[9-15].

Two spray atomization and deposition experiments using 6061 Al were conducted for the

present study. The primary experimental variables used during each experiment are shown in

Table 1. The parameters in this tabl, show that the metal to gas mass flow ratio, JmrnJJg,,, was the

GDE-3



only variable altered during the experiments. The effects of the melt to gas mass flow ratio used in

Experiment 132, relative to that used in Experiment 134, on the resulting microstructure will be

discussed in a subsequent section.

Table 1 Experimental Variables Used in the Study

Experiment number 132 134

Alloy 6061 Al 6061 Al

Atomization pressure 1.21 MPa 1.21 MPa

Atomization gas nitrogen nitrogen

Flight distance 40.64 cm 40.64 cm

Pouring temperature 750 OC 750 0C

Ratio of melt to gas
mass flow rates 2.29 1.97

Monitor Panel - Thermocouple

T( Stopper Rod
Crucible

P( wi Alloy Melt

PowerP Induction Coil

Nozzle
Gas Atomizer

200 , 2 Atomized Droplets

gO[-"]O t' I Spray Deposited

Movable Substrate

Induction Unit Environmental

Figure 1. Schematic diagram showing spray atomization and deposition processing.

2.2 STRUCTURAL CHARACTERIZATION

The geometry of the spray atomized and deposited material is shown schematically in

Figure 2. In this figure, the orientation of the Z axis was selected to lie in the height direction,

whereas the orientation of the X and Y axes were chosen to lie in the short transverse and long
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transverse directions, respectively. Cantilever beam specimens for damping characterization

studies and samples for porosity analyses were simultaneously removed by sectioning the as-spray

deposited material into rectangular bars. The following procedure was adopted in order to keep

track of the precise location of each sample within the spray deposited material. The central core of

the deposit was first sectioned into a block with the following approximate dimensions: 15 cm long

X 7 cm wide x 6 to 8 cm high. This block was suLsequently sectioned into several layers (usually
5 to 7 layers numbered with 1, 2, 3...7 from the bottom to the top) along the height direction, and

1 Z
7-6

5-x

Figure 2. Schematic diagram showing the geometry of the as-spray deposited 6061 aluminum alloy.

Tso u s n # 132: in F e 3134: 1i/ 17 s~i . / 6061 Al

l specimen iray deit

251 52] 25, 1/4.66 _

2391 222 12233 24 431
24X ,4 A1142 X

Figure 3. Schematic diagram showing position of samples within the as-spray deposited material.

each layer was then divided into rectangular samples (3 to 4 samples numbered 1, 2, 3 and 4).
This procedure is shown schematically in Figure 3, for Experiments 132 and 134. In this figure,

the relative location of each rectangular specimen inside the spray deposited block is designated by

a number. Every rectangular sample was subsequently divided into two pieces; one was used for

the damping measurements, and the other for porosity analyses (see Figure 4). This procedure
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ilovv-, -,vreful analysis of the microstructure present in the damping specimens, since the

microstril,.ture of -,)rv atomized and deposited materials has been reported to change with spray

depi),6ti-n th~ckn, ss (Z axis), but remain relatively constant along the longitudinal dimension (Y

Damping

~ >'' ~ Specime /
0.254 c10. 16cm

a(b)

Hgurc 4.Chm~u diagram showing specimen configurfation and geometries.

VI -&SITY CHARACTERIZATION

C ':ia,'o- : racterlzazlori of tne porosity present in the spray deposited materials was

1), rre 'ns .)f density measurements and computerized analysis of metallographic

'.1~pie, u-;ing an Imageset image analyzer. The density measurements were conducted in

A -,-: .vith ASTM B31 1-83 Standard, based on Archimedes' pnnciple. In this procedure the

v -,,-ht )f e-ach specimeni in the air and in liquid was obtained by using a Fisher Scientific A-250
n lic balance. The liquid used in the present study was ethylene glycol with a density of

r(ucmr trnpcraturc (25 11C). Accordingly, the density of specimen is calculated from

[I-. n% n equati on

h, i i /s P1 in,, - m.,I

wh~~ i, ui u . -P 1-ot% )fib pthc l2cen and the liquid, respe ctive-ly, and M, and MS

der~ !c w '.! o v~r iI.;~cv~ It then t'ollows that the amount of

PC.~' 'r- , ~ ~u prayv deposited ,ample can he determined by

PAI - PI PA- Pp.) (2)

where P I -- i nc fraction ot porosity present in sample material, PA represents the

,h oic .'al cdensity ot 60f 1 Al, and p, represents the density of anly inert gas present inside the

poi-k:,. It- th,: oresent study, the density of extruded 6061 Al was used as the theoretical density,

P V. and dcer.ircuacordaig to the following procedure. A 2.54 diameter cylinder was removed
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from the as spray deposited 6061 Al, and extruded at 400 'C into a rod with a diameter cf 1.27 m;

the extrusion pressure used was 27.58 MPa. The density of the extruded material ,,as then

determined according to Eq. (1) as PAI = 2.73 g/cm 3. This value compares favorably with the

measured density of 2.72 g/cm 3 for as-received 606' Al. in view c " the fact tinat th,- :nmig ,Itid. of

pg., is substantially smaller than that corresponding to p.i, Eq. (2 ) i simplit"icd, and P i< cdicilatcd

from the following equation

P =(PAl - P)/ PA! (3)

While th e total amount of porosity present in the spray deposited materials was uctcrnined

using the above described procedure, the distribution of pore sizes was quantitatively characterized

for each specimen by using image analysis in combination with a Nikon Epiphot optical

microscope and a Macintosh Ilci computer. An adaptor was utilized in the present work to transmit

images from the optical microscope directly to the compt:ter, where the size distribution of pores

was readi', established. This procedure allowed the characterization of a large number of

metallographic samples, accurately and efficiently.

2.4 DAMPING MEASUREMENTS

The cantilever beam technique was used in the present study to characterize the

microstructural damping response of the spray deposited materials. In this tecrinique, one end of a
rectangular specimen was fixed in place while the opposite end was allowed move freely to

respond to a mechanically induced displacement or vibration. The damping capacity of the material
was then determined from the resulting displacement spectrum, by utilizing the logarithmic

decrement and the half power band width anaysis methodo!ogies. In the logarithinc decrement

method, a history of amplitude versus time during a free vibration of the cantilever beam specimen
was recorded by an oscilloscope through an optical displacement transducer. By measuring the
amplitude decay (Figure 5), the logarithmic decrement 6 can be evaluated by

6 = ( I / n ) In ( A '/ Aij ) (4)

where A, and Ai, are the amplitudes of the 11 cycle and the (i-,n)h cycle at times t- and t2,

respectively, separated by n peri(xds of oscillation.

i he half power band width methodology is based on a forced vibration test In which the

specimen was vibrated by a shaker which was driven by an amplified signal from a white noise

generator. In this technique the resonant frequency peak is distinguished by recoiding the
vibration amplitude as a function of frequency. The damping loss factor, 1I, may then be
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calculated from the vibration spectrum, recorded by an FFT signal analyzer through an optical

transducer using the following equation

T=(fI - f2 )/f, (5)
where fl, f2 and f, are shown in Figure 6. Finally, the logarithmic decrement, 8, and the loss

factor, T1, can be checked by the following relationship[2]

rj =8/t (6)

All of the damping data used in the present study was derived from experiments performed

at te Westinghouse Science and Technology Certer (Pittsburgh, PA).

E

Ai

<V

-n cycles

Figure 5. Schematic diagram of free vibration decay[2 1

(Amax ) 2

E

V(A max)2/2 T

I I

I I

0 fl r f 2  Frequency

Figure 6, Schematic diagram showing Lorentzian Peak(2 1
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3. RESULTS

3.1 POROSITY AND MICROSTRUCTURE

Table 2 shows the density, p.c, and the amount of porosity, P, of the as-deposited 6061 Al

specimens, calculated from Equations (1) and (3), respectively. The results shown in Table 2

correspond to the various locations within the spray deposited materials, as designated in Figure 3.

Table 2. Density and Porosity of As-Spray Deposited 6061 Al

Deposit I Sample ms,(g) ms1(g) ps (g/cm 3) P (%)

132 222 8.5844 4.8565 2.5606 6.20
132 242 8.5541 4.8380 2.5597 6.23
132 252 8.6848 4.9720 2.6011 4.72
132 234 8.3702 4.7875 2.5980 4.83
134 422 8.0587 4.4268 2.4674 9.61
134 442 7.5877 4.2314 2.5139 7.91
134 452 8.3760 4.6700 2.5132 7.94
134 433 8.3339 4.6130 2.4906 8.77

ISamplc location is shown in Figure 3.

Optical microscopy was conducted on Keller's etched coupons of the as-spray deposited

materials and two examples, corresponding to Experiments 132 and 134, are shown in Figures 7
and 8 respectively. The presence of numerous pre-solidified droplets in the microstructure

precluded a precise quantitative assessment of the grain size. However, a large number of
observations revealed that the as-spray deposited grain size ranges from 15 to 49 tm with a

average of 32 tm for Deposit 132 and from 10 to 35 im with a average of 22 .tm tor Deposit 134.

In addition, it is worth noting that the microstructure remained relatively constant throughout the
entire specimen length of the as-spray deposited materials. The evolution of microstructure during
spray atomization and deposition has been addressed by numerous investigators, and the
intercsted reader is encouraged to consult the available scientific literature., 10-15, 181

The size distribution of the pores present in the samples from Deposits 132 and 134 are

shown in Figures 9 and 10, respectively. In order to quantify the size distribution and morphology

of the pores, optical metallography samples were studied using image analysis, in combination
with a Nikon Epiphot optical microscope and a Macinto,,h Ilci computer. The results are shown in
Table 3, where the total amount of porosity present in the samples, as inferred from image

analysis, is compared :t- that obtained using Archimedes' principle. Also shown in Table 3 is the
average diameter of the pores present in the as-spray deposited microstructure, as determined from
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image analysis. It is worth noting that each data point shown in Table 3 was determined by

examining 2-3 viewing areas. This procedure increased the accuracy of the measured values. In

general, comparison of the amount of porosity present in the spray deposited materials determined

using image analysis and Archimede's principle revealed a relatively good agreement between both

techniques.

Table 3 Porosity of As-Deposited 6061 Al by Image Analysis

Run 1Sample P (%) P (%) 2d (Qim)
by Image by Archimede's

132 222 6.45 6.20 5.38
132 242 6.90 6.23 3.96
132 252 4.80 4.72 2.36
132 234 3.78 4.83 1.91

134 422 10.12 9.61 9.30
134 442 8.99 7.91 7.32
134 452 7.42 7.94 5.51
134 433 9.48 8.77 5.50

'Sample location is shown in Figure 3.
2 Average pore diameter as determined from image analysis.

1t

Figure 7. Optical micrograph showing the typical grain and pore morphology present in Deposit 132.
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Full Scale =47.0000 Total =288.0000
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Mean =9.3283 S.Dev. =8.2564
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Figure 10. Distribution of pore sizes p.-,ent in sample 422 (see Figure 3) from Deposit 134.

3.2 DAMPING CAPkCITY

The camping response of the spray deposited materials, as determined from the
experimental data in combination with Equations (4) and (5), are summarized in Table 4. Also
shown in this table is the Lorentzian peak frequencies for each of the samples tested. It is worth
noting that the free decay vibration tests were performed at a frequency of 220 Hz in order to allow

comparison of the present data to that obtained by other investigators. Comparison of the values of
the logarithmic decrement, 6, to those of the loss factor, T1, using Eq. (6) suggests good agreement

between the logarithmic decrement and the half power band width analysis methodologies. One
notable exception to this observation is the result obtained for sample 442, which show that the
loss factor for this sample was abnormally high (1.7). This was attributed to difficulties with the

experimental measurements.

Table 4. Damping Capacity of As-Spray Deposited 6061 Al.

Deposit Sample 8 ( %) fr (Hz) 11 (%)

132 222 2.0 294.50 0.7
132 242 1.9 292.00 0.6
132 252 1.9 300.25 0.6
132 234 2.0 287.50 0.7
134 422 2.9 280.75 0.8
134 442 2.6 261.25 1.7
134 452 1.8 281.25 0.8
134 433 2.3 280.50 0.8
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Figure 8. Optical micrograph showing the typical grain and pore morphology present in Deposit 134.

FLAU Scale =76.0000 Total =424.0000

C
0
U

<=2.6294 #Birs=40 29.280'1=>
Mean 6O0077 S.Dev. =3.3497

Equiv .Diam.(tm)

Figure 9. Distributinn ol pore sizes present in sample 22.2 (see Figure 3) from Deposit 132.
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4. ANALYSIS AND DISCUSSION

In order to discuss the effects of porosity on damping behavior it is first necessary to

provide some background information on the factors that govern the formation of pores during

spray atomization and deposition. This background information will also provide a basis for the

discussion on the differences in the size and distribution of pores present in the materials obtained

from Experiments 132 and 134. It is worth noting that since the present results showed that there

wasfa relatively close correlation between the amount of porosity present and the average pore size

(see Table 3), in the discussion that follows average pore size and amount of porosity may be

thought of as interchangeable terms.

An important microstructural characteristic frequently associated with the microstructure of

the as-spray atomized and deposited materials is the presence of a finite amount of non-

interconnected pores. 9-15. 18. 221 The overall amount of porosity present in spray atomized and

deposited materials depends on: (a) the thermodynamic properties of the material, (b) the

thermodynamic properties of the gas, and (c) the processing parameters. Under conditions typical

for aluminum alloys, for example, the amount of porosity present in spray atomized and deposited

mterials has been reported to be in the 1 to 10% range.[ 13, 14, 18] This is consistent with the

results of the present study which showed the porosity levels in the 4 to 10% range. Furthermore,

the present results also revealed that the size distribution of pores was skewed (see Figures 11 and
12), with an average pore diameter in the 6 to 10 .m range. It has been suggested that the origin

of porosity in spray atomized and deposited materials may be attributed to )n, or a combination of

the following mechanisms: (a) gas rejection, (b) solidification shrinkage, (c) interparticle porosity.

The first mechanism, gas rejection, is anticipated as a result of the limited solid solubility of inert

gases in most structural materials. As the temperature of the material decreases during

solidification, any amount of gas that might have dissolved during the melting and superheating

stage will be rejected into the matrix, leading to the formation of gas pores. However, results

obtained using fast neutron activation analyses show that spray atomized and deposited materials

exhibit extremely low levels of dissolved gases, suggesting that this mechanism is not as important

as originally suggested.i231 In addition, in view of the irregular morphology of the pores, it is

highly improbable that a large proportion of the porosity originates from the rejection of entrapped

gases, since gas porosity generally exhibits a spheroidal morphology (see Figures 7 and 8).

The formation of shrinkage porosity is generally associated with sluggish solidification

kinetics, such as those present during ingot casting. In view of the limited amount of liquid phase

present under normal spray atomization and deposition conditions, it is unlikely that solidification
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shrinkage plays an important role in the formation of the observed pore distribution. 13 , 14, 211 It is

worth noting, however, that if the spray atomization and deposition conditions are such that there

is an excessive amount of liquid phase present at the deposition surface, this mechanism may play

a significant role in the formation of porosity. The presence of excess amount of liquid phase

during impact may develop as a result of (a) coarse droplet sizes, (b) high deposition temperatures,

and (c) remelting of solid Dhases caused by high spray enthalpies.[13, 141 Under these conditions,

the atomization gas may interact with the molten metal, leading to the formation of large amounts of

porosity.

The available experimental evidence suggests that a large proportion of the porosity that is

generally observed in spray atomized and deposited materials may be attributed to '-he third

mechanism, interparticle porosity. As the droplets descend, first on the deposition su - face, and

eventually on each other, they overlap leaving micrometer-sized cavities in between. In spite of the

large amount of turbulence present, the relatively rapid drop in temperature during deposition

prevents any liquid phase present from filling all of the cavities, leading to the formation of

irregular pores. This mechanism is consistent with the observed correlation between deposition

conditions such as spray density, powder size, and the amount of porosity present throughout the

deposit. For example, the higher density associated with the central region of the deposit may be

attributed to the elevated mass flux of droplets in this region of the spray, relative to the

periphery.1 19] These droplets contain elevated fractions of liquid phase, effectively filling the

interstices between droplets. Regarding the variations in density as a function of thickness, the

present results show that the highest amount of porosity present in the spray deposited materials

was present in the samples closest to the water cooled substrate (samples 222 and 422 in Table 3).

This is consistent with the initially high rates of heat extraction experienced by the region of the

deposit in close proximity to the substrate. In contrast, the high amount of porosity generally

observed in the periphery of the samples (samples 234 and 433) results from a large proportion of

small, presolidified droplets that tend to segregate to this region. It is noticed that under the

processing conditions where deposited droplets are allowed to solidify completely bcfore the

arrival of more droplets, interlayer porosity will also develop at the original droplet boundaries.

In order to establish a relationship between the amount of porosity present and the

processing parameters, it is useful to consider the factors governing the atomization stage of the

process. The disintegration of a molten metal by high energy gas jets (atomization) is complex and

only portions of it have been addressed from a theoretical viewpoint.[ 24] The work of

Lubanska[ 251 has shown that the disintegration of liquids by high velocity jets obeys a simple

correlation. A slightly modified form of the original correlation has been shown to represent the
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results of molten metal atomization experiments reasonably well.[ 12, 20, 211 According to the

modified Lubanska's correlation, the mass mean droplet diameter (i.e., the opening of a screening

mesh which lets through 50 percent of the mass of the powder resulting from an atomization

experiment), d5o is given by:

d50 = Kd [(im do Om / .tg Vge2 Pm) (1 + Jmelt / Jgas)] 1/ 2  (7)

where Kd is an empirically determined constant with a value between 40 and 400 (a value of 51.7

was selected for the conditions used in the present study, since this has been shown to yield a good
correlation between theory and experiment[26]); gt, Orm, Pm, and Jmelt are the viscosity, surface

tension, density and mass flow rate of the melt, respectively; .g, Vge, and Jgas are the viscosity,

velocity and mass flow rate of the atomizing gas, respectively; and do is the diameter of the metal

delivery nozzle. Expressions for the flow rates can be obtained as functions of the process

parameters from Bernoulli's equation in the case of the metal[27] and from theory of compressible
flow[28 ] in the case of the gas. The mass mean droplet diameter of the powder size distribution

(d50 ) for both experiments was computed from Eq. (7), using the processing parameters and

physical constants corresponding to each experiment (see Tables 1 and 5). Eq. 7 predicts d5 0

values of 108 gtm and 98 gm for Experiments 132 and 134, respectively. These results are

consistent with the higher densities that were noted for Experiment 132, relative to those of

Experiment 134, since a smaller droplet diameter will dissipate thermal energy more effectively,

thereby leading to a greater extent of pre-solidification prior to impact.

Table 5 Computational Results of d50 for Two Deposits of 6061 Al

Gas: Nitrogen Melt: 6061 Al

g= 1.54x 10-4 g/cm.s p .. =1.3 x 10-2 g/cm.s

Ps = 3.375 x 10-3 g/cm 3  pm = 2.385 g/cm 3

Vge 3 .2 3 2 x 104cm/s ay = 914 g/s 2

Kd = 51.7

Deposit d. Jg. Jme.t d50

132 0.3048 cm 9.87 g/s 22.58 g/s 108 pgm

134 0.2794 cm 9 .87 g/s 19.46 g/s 98 gm

The damping capacity of the as-spray atomized and deposited 6061 Al obtained in the

present study is summarized in Table 6, where the values of the logarithmic decrement, 8, are

compared to the results obtained by other investigators using the same alloy. The values of the
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logarithmic decrement, 6, shown in Table 6 were the average of the four samples investigated for
each deposit (see Table 4). The results show that the value of 8 of the spray atomized and

deposited 6061 Al is higher than those reported by other investigators. The damping response of
the spray atomized and deposited 6061 Al is thought to be derived from two factors: a) the
presence of a finite amount of ilcrcrnmeter-sized pores, and b) a fine grained microstructure. In the
discussion that follows, this suggestion is discussed in reference to results reported by other
investigators.

Table 6. Comparison of Damping Behavior of 6061 to Results of other Studies.

Processing Ref. Experiment Frequency Amplitude 8 ( %)

As-Deposited This Cantilever 220 Hz --- 1.95±.05
Run 132 work beam
As-Deposited This Cantilever 220 Hz --- 2.40-.47
Run 134 work
6061-T6 [16] Cantilever 500 Hz --- 0.62
6061-T6 [171 Cantilever 15 Hz --- 1.82
6061-T651 [2] Cantilever 19.8 Hz 6-20x 106E 0.65

Previous studies[3-1 have demonstrated that the damping capacity of an impregnated porous
material increases with the amount of porosity, concomitant with a drop in elastic modulus and
strength. This observation is substantiated by the results obtained in the present study, as shown
in Figure 11. The results shown in this figure suggest that the value of the logarithmic decrement,
8, increases with the percent of porosity present in the microstructure. The dissipation of elastic

energy in porous materials has been rationalized in terms of a mechanism known as mode
conversion.[29 -3 11 From a macroscopic viewpoint, every point inside a cantilever beam specimen
under lateral vibration will move in a transverse direction. Hence, every crystal or grain deforms
in tension due to the transverse motion of the specimen and in shear due to the non-uniform
deformation along longitudinal direction of the cantilever beam. In a porous metal, the tensile
deformation may be converted into shear deformation at the boundaries of pores. The shear
deformation may furthermore produce viscoelastic flow that is most readily achieved at the pore
boundaries. The viscous flow is then converteo to heat by molecular collisions or dislocations.
The production of either thermal energy or dislocations are both beneficial to internal friction or
material damping according to thermodynamics1 32] and Granato-Luck, dislocation theory[33,34 1,
respectively. The eventual result of these serial conversions is the decay of vibration inside the

porous material.
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Figure 11. Relationship between damping capacity and porosity for as-deposited 6061 Al alloy.

Substantial mode conversion may be also reached when there is a certain medium inside the
pores.[ 29] In the spray atomized and deposited 6061 material, and as discussed in a previous
section, the low solutibity of the atomizing gas may lead to the formation of pores containing a
partial pressure of inert gas. In this case, the motion of the inert gas relative to the porous
framework material will be high, since the porous material is rigid in comparison with the inert
gas. As a consequence, there will be an impedance mismatch to vibration movement between the
inert gas and the as-spray deposited metal. This mismatch may change the deformation field in the
neighboring metal region and therefore lead to secondary shear deformation in the neighboring
metal, increasing the density of dislocations, and thereby the damping due to internal friction.

Damping associated with grain boundary relaxation, anelasticity or viscosity in the
polycrystalline metals has been described by Zener,[35 Lazan[1] and Nowick[36], respectively. In
polycrystalline metals there exist amorphous grain boundaries that display viscous-like properties.
The viscous flow at grain boundaries will convert mechanical energy produced under cyclic shear
stress into thermal energy, as a result of internal friction. The thermal energy will then be
dissipated by the conductivity of metal and the heat exchange with the surroundings. The energy
absorbed in grain boundaries not only depends on the magnitude of the shear stress and the
anelastic shear strain, but also is proportional to the grain boundary area per unit volume, i.e.,
inersely proportional to grain size. In view of these results, the fine grained microstructure of the
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spray atomized and deposited material may also play an important role in the dissipation of elastic

strain energy. More detailed microstructural characterizations are currently under way in order to

provide experimental basis for these suggestions.

5. CONCLUSIONS

In summary, the results of the present work show that the presence of micrometer-sized

pores increases the damping capacity of the as-spray atomized and deposited 6061 Al alloy.

Furthermore, the results of damping characterization studies show that the value of 8 of the spray

deposited 6061 Al is higher than the results reported by other investigators using the same alloy.

The damping characteristics of the spray deposited material obtained in the present work is thought

to be derived from two factors: a) the presence of a finite amount of micrometer-sized pores, and b)

a fine grained microstructure. This suggestion was discussed in light of the relevant damping

mechanisms. Further work is continuing in this area in order to ascertain the mechanisms that are

responsible for the observed damping behavior.
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DAMPING PROPERTIES OF ALIPHATIC POLYURETHANES FROM
4,4' -DICYCIWHEXYLMEThANE DIISOCYANATE

John D. Lee, Gilbirt I. Lee, and Bruce Hartmann

Nonmetallic Materials Branch, Code R31
Naval Surface Warfare Center, White Oak

Silver Spring, MD 20903-5000

Abstract

Polyurethanes cover a wide range of damping properties
depending in large part on their two-phase morphology. Hard
segment crystallinity was proposed to be the dominant factor in
determining these properties. The evidence for this conjecture
came from a comparison of a system in which hard segment
crystallinity was present with a system where crystallinity was
inhibited by using a different chain extender. To verify our
assumption, in this work crystallinity was inhibited not by
changing the chain extender but by changing the diisocyanate from
the aromdtic 4,4'-diphenylmethane diisocyanate or MDI to the
cy,±oaliphatic 4,4'-dicyclohexylmethane iisocyanate or H12MDI.
Trepolymers of poly(tetramethylene ether glycol) (PTMG) of four
different molecular weights (650, 100G, 2000, 2900) with H12MDI
were synthesized and chain extended with 1,4 butanediol.
Measurements of the dynamic rechanical properties of these
materials verified the assumption that hard segment crystallinity
is the dominant factor in determining the damping characteristics
of polyurethanes. All non-crystalline hard segment systems have
very similar properties regardless of the diisocyanate type or
the chain extender type.

10901 New Hampshire Ave., Silver Spring, MD 20903 301-394-1199
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INTRODUCTION

ko-yuetztunts are c'ely used in many damping applications,
but the large nu:ber of possible chemical compositions makes it
difficult to know which one to choose for a particular
appiication without a tedious trial and error evaluation program.
For this reason, it i desirable to be able to determine general
rules governing the behavior of these materials, which allows one
tW predit wi.e. icLLLe±is will be useful for a given
application. For some applications, a high, narrow loss factor
is required while for others a low, broad loss factor is needed.

It was suggested in our earlier work' that the presence of
hard segment crystallinity has a dominant effect in determining
damping properties. It was found that polyurethanes with hard
segment crystallinity have higher rubbery modulus and lower,
broader loss factors than those lacking crystallinity. In that
work, crystallinity occurred when a chain extender without
pendant groups was used while the substitution of a chain
extender with pendant groups inhibited crystallinity. It was
proposed that the difference between the two cases was a result
of the presence or absence of hard segment crystallinity and
should be independent of the chain extender if some other way
coai2 bo found to control crystallinity.

The chain extender without pendant groups used previously
wos j, -butarediol or BDO. Due to the simple, regular structure
of thin material, all the polymers made using it were found to
develop hard segment crystallinity. By contrast, a chain
extender with pendant methyl groups, 2,2-dimethyl-l,3-propanediol
0r L APD, hinders hard segment orientation and inhibits
crystallinity'.

The present work was undertaken in an attempt to verify the
importance of crystallinity by examining a system similar to the
previous one but one in which crystallinity is controlled not by
the chain extender but by the diisocyanate. If our assumption is
correct, the same chain extender that gave rise to high rubbery
modulus and low, broad loss factor will have low modulus and
high, narrow loss factor if crystallinity can be inhibited.

The diisocyanatCe used earlier with both of the above chain
extenders was I.A'-diphenylmethane diisocyanate (MDI). In the
present work, a c;-i-oaliphatic diisocyanate, H12MDI, will be
substituted. 11-MDI i5 a cycloaliphatic diisocyanate composed of
a mixture of the three geometric isomers: trans--trans, trans-cis,
cis-cis. While the MCI based polyurethanes can form a well
defined crystalline hard segment as we have previously seen, hard
segment crrys;t-3lirIfty !: 1hibited in H12MDI based polymers due
to the presence of these three isomers. Our supposition is that
the same qualitative properties will oe obtained by varying the
diisocyanate portion rather than the chain extender portion
provided that hard segment crystalli-ation can be inhibited (i.e.
morpholoy Is noC important than chemistry)



The remainder of this paper will discuss the synthesis of
the polyurethanes, the thermal analysis to determine transition
temperatures, the dynamic mechanical analysis to determine
damping characteristics, and the conclusions reached. It will be
verified that the presence or absence of hard segment
crystallinity is the dominant factor in determining the
qualitative form of the dynamic mechanical properties,
independent of the specific diisocyanate or chain extender.

SYNTHESIS

All the polymers synthesized were based on the same
polyglycol used previously, poly(tetramethylene ether) glycol or
PTMG (DuPont Terathane). Nominal molecular weights of PTMG were
650, 1000, 2000, and 2900. In the earlier study, an aromatic
diisocyanate was used, 4,4'-diphenylmethane diisocyanate or MDI
(Dow Isonate 2125M). In the present work a cycloaliphatic
diisocyanate, 4,4'-dicyclohexylmethane diisocyanate or H12MDI
(Mobay Desmodur W), was used. This material is about 65 percent
cis-trans, 30 percent trans-trans, and 5 percent cis-cis isomer.
The three isomers are illustrated in Figure 1.

H H

OCN-" CH2, NCO TRANSTRANS

H H

H NCO

OCN .0 CH2, z H CIS,TRANS

H H

OCN NCO

H CH2 H CISCIS

H H

Figure 1. Isomers of H12MDI
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All of the above polygiycols were reacted with H12MDI under
nitrogen using 1 mole of PTMG and 3 moles of H,2MDI to form
prepolymers. The reaction temperatare was kept between 75 and
80°C for at least two hours after the addition of polyglycol was
complete. A small amount of dibutyl tin dilaurate (Air Products
DABCO T-12) catalyst was used to sreed up thz rzaction between
the polyglycol and the diisocyanate. This mixture was then
degassed and stored under nitrogen until further use.

The PTMG/H 2MDI prepolymer was chain extended with BDO.
Figure 2 shows the structures of PTMG, MDI, H12MOI, BDO, and
DMPD. The prepoiyij:iey uas heatcd tD SO°C and degassed thern chain
extended with BDO. The BDO was added and mixed under vacuum at
high speed using a laboratory mechanical mixer for about three
minutes. The polymer was poured into a pre-heated Teflon coated
mold at 100°C. The isocyanate index was 1.05, which ensures that
there is 5 percent excess diisocyanate for crosslinking during
the cure. All of the samples were cured at 100°C for 16 hours.
Then the samples were equilibrated at room temperature and 50
percent RH for a minimum of two weeks before dynamic mechanical
analysis.

PTMG poly (tetramethylene ether) glycol
HO +fCH2CH 2CH 2CH 2 0"n H

'A D! 4,4'-diphenylmethane diisocyanate

OCN -Kj- CH2 -( > NCO

H12MDI 4;4'-dicyclohexylmethane diisocyanate

OCN -§ -CH2 K7J "ic0

BDO 1,4-butane diol
HO-CH 2CH2CH2CH2-OH

Fiqure 2, C(temicil 6tructures of C'omponents



EXPERIMENTAL

THERMAL ANALYSIS

A DuPont 9900 Thermal Analyzer was used in conjunction with
a 910 DSC (differential scanning calorimeter) module to obtain
thermograms. Samples (15-20 mg) were cut from the test ba:s used
for the dynamic mechanical measurements and placed in aluminum
test pans for analysis. Measurements were carried out in a argon
atmosphere at a scanning rate of 10°C/min. Two runs were made on
each sample, each from -170 to 250°C.

Thermograms were analyzed to determine the glass transition
temperature in the soft segment, T,(ss), the melting temperature
in the hard segment, Tm(hs), and the melting temperature in the
soft segment, T,(ss), if any. In addition, the heat of fusion
was determined whenever crystallinity was present.

DYNAMIC MECHANICAL ANALYSIS

Dynamic mechanical properties were obtained using the
resonance apparatus previously described'. In this apparatus,
Figure 3, modulus and loss factor were obtained over a frequency
range of about two decades for temperatures from -60 to 70°C.
All data will be presented at a reference temperature of 25°C.

CONTROLLED
TEMPERATURE CHAMBER

-SUPPORT

ISTORAGE DISC INOISE SOURCESHKR -UPT

FAST
COPTR FOURIER AMPLIFIERS ,

TCOMPUTERRUM

P E 

O M ET E R S

TEST
SPECIMEN

Figure 3. Resonance Apparatus

Measurements were made at 5 degree temperature intervals and the
sample was equilibrated for twenty minutes at each interval
before measurement. This data was shifted, using the time-
temperature superposition principle to form master curves of
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modulus and loss factor as a function of frequency over a very
wide frequency range at a reference temperature of 250c.
Measurements and data analysis were carried out in the same
fashion as the earlier work'.

RESULTS AND DISCUSSION

Transition temperatures were determined from DSC
thermograms. A typical example of the results obtained is shown
in Figure 4, where we have compared the data for PTMG
l000/H12MDI/BDO with that PTMG 1000/MDI/BDO. As can be seen,
there is a well developed melting peak for the MDI based polymer,
indicating that hard segment crystallinity was present, but no
crystallinity is seen in the H12MDI based polymer.

MDI/BDO

0
.j
U-

H12 MD1/BD0 Tg = -10 °C, Tm=-

I I

-150 -50 50 150 250
TEMPERATURE (0C)

Figure 4. DSC Thermograms of PTMG 1000 Polymers

Thermograms for the other molecular weights were analyzed in a
similar manner, and the transition temperatures obtained are
listed in Table 1. Densities of the H12MDI polymers and the
analogous MDI based polymers are also listed in Table 1.
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Table 1. Transition Temperatures and Densities for
PTMG 650-2900/H1 2MDI/BDO and PTMG 650-2900/MDI/BDO

T.(ss) T.(hs) T.(SS) Density"C "C 0C g/-m Y

PTMG 650/Hl 2MDI/BDO 13 152 -- 1.096
PTMG 1000/Hl 2MDI/BDO -10 .... 1.075
PTMG 2000/H2MDI/BDO -68 .... 1.040
PTMG 2900/Hj2MDI/BDO -71 -- 18 1.027

PTMG 650/MDI/BDO -24 160 -- 1.174
PTMG 1000/MDI/BDO -48 157 -- 1.139
PTMG 2000/MDI/BDO -66 184,197 2 1.080
PTMG 2900/MDI/BDO -71 191,198 10 1.056

ss - soft segment hs - hard segment

In comparing the results for the two systems, the glass
transition temperature for the PTMG 2900/Hl2MDI/BDO polymer is
identical to that for the analogous MDI based polymer and the
value for PTMG 2000/Hl2MDI/BDO polymer is nearly the same
as the analogous MDI based polymer. For the lower molecular
weight PTMG, however, the H,2MDI based polymers have
significantly higher glass transition temperatures than the
analogous MDI based polymers. For PTMG molecular weight of 1000,
the T. for H12MDI based polymer is 38 degrees higher than the MDI
based polymer. while T. for PTMG 650/HuMDI/BDO polymer is 37
degrees higher than the analogous MDI based polymer. Since, for
these systems, the lower the PTMG molecular weight the higher the
hard segment concentration, it follows that the cycloaliphatic
diisocyanate has the most effect in those polymers with the
higher hard segment concentration. This increase in T8 is
presumably a result of phase mixing of the hard segment into the
soft segment.

We notice that hard segment crystallinity has been inhibited
in the H12MDI polymers with the exception of the lowest molecular
weight, where there is a small amount of hard segrent
crystallinity. The heat of fusion for the 650 MW polymer is 7
J/g compared with 20 J/g for the analogous value for an MDI
system2. Thus we expect the slightly crystalline PTMG
650/H2MDI/BDO polymer to behave similar to the non-crystalline
PTMG 650/MDI/DMPD polymer, though with a slightly higher rubbery
modulus and lower, broader loss factor. This behavior is, in
fact observed'. The non-crystalline PTMG 1000/H12MDI/BDO polymer
should be very close in behavior to the non-crystalline PTMG
1000/MDI/DHPD polymer, and this is also found experimentally'.

Finally, we observe that soft segment crystallinity occurs
for the PTMG 2900 polymers which we have seen before. When the
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soft segment gets long enough, soft segment crystallinity occurs
regardless of the hard segment. Based on our previous
experience, there is likely some soft segment crystallinity in
the PTMG 2000 polymers that does not appear in the DSC at a
scanning rate of lO°C/min but which does appear when sufficient
time for annealing is allowed, as in the dynamic mechanical
measurements where the sample is equilibrated at each temperature
interval. The step-wise isothermal dynamic mechanical
measurements are made in steps of five degrees with an
equilibration time of 20 min after each step. The equivalent
heating rate is then 0.25°C/min.

Density values determined by water displacement (ASTM Method
D 792) are also listed in Table 1. It can be seen that, for both
systems, the polymer density decreases as the molecular weight of
the PTMG increases. Since the higher the PTMG molecular weight,
the higher the soft segment concentration, the decrease in
density is a soft segment concentration effect. For any given
PTMG molecular weight, the density of the MDI polymer is about 5
percent higher than the analogous H12MDI polymer, due to the hard
segment crystallinity in the MDI based polymers.

Dynamic mechanical modulus results for PTMG 650/H12MDI/BDO
and PTMG 1000/H 2MDI/BDO are shown in Figure 5.

0

6
-5 0 5 10 15

LOG FREQUENCY (Hz)
Figure 5. Shear Modulus for PTMG 650 and 1000/H 2MDI/BDO
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The PTMG 2000 polymer was not thermorheologically simple so that

master curves could not be generated. This behavior is probably

due to a small amount of soft segment crystallinity which occurs

during the slow heating cycle of the dynamic mechanical testing

but which is not seen in the more rapid scanning used in the DSC.

For the PTMG 2900 polymer, definite soft segment crystallinity

was present even in the DSC thermogram and again the data could
not be shifted.

Looking more closely at the modulus results (Figure 5), the

glassy modulus of both polymers is about 1 GPa, typical for

polyurethanes regardless of chemical composition. The rubbery

modulus, however, shows much more variation with the chemistry

and morphology of the particular system. Both molecular weights

tend asymptotically to a rubbery modulus of about 2 MPa, the same

as the PTMG/MDI/DMPD systems. In fact, the PTMG/Hl2MDI/BDO data

is very close to the PTMG/MDI/DMPD system. In contrast, both

these polymers are qualitatively different than the PTMG/MDI/BDO
system where the rubbery modulus tended to about 20 MPa, as can

be seen in Figure 6, where a comparison is made for the three

PTMG 1000 polymers.

9

D 8 ,7/ ," MDI/BDO

00

H12 MDI/BDO

0' -. -MDI/DMPD

61
0 5 10 15

LOG FREQUENCY (Hz)
Figure 6. Shear Modulus for PTMG 1000/MDI/BDO,

PTMG 1000/MDI/DMPD, and PTMG 1000/Hl2MDI/BDO
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Note that the two polymers with very similar modulus values
(MDI/DMPD and H12MDI) have rather different chemistry. What they
have in common is that they have no hard segment crystallinity.
The polymer without hard segment crystallinity (MDI/BDO) has very
different modulus values. These observations are in agreement
with our supposition that hard segment crystallinity dominates
the dynamic mechanical properties not chain extender or
diisocyanate type.

The loss factor data for the two H12MDI polymers is shown in
Figure 7.

01000

0.1

0 -, 650

0.01
-5 0 5 10 15

LOG FREQUENCY (Hz)
Figure 7. Loss Factor for PTMG 650 and l000/"12MDI/BDO

Both polymers have a relatively high loss factor, about 0.8, and
the maximum values occur about three decades of frequency apart.
The T. values for these polymers differ by 23°C, and a difference
of 7°C/decade is typical for polymers in general.

Further confirmation of the effect of hard segment
crystallinity is observed in the loss factor data, Figure 8,
where a comparison is made for the three PTMG 1000 polymers. The
PTMG/Hl 2MDI/BDO data is very close to the PTMG/MDI/DMPD, both
having a peak loss factor of about 0.8, but these polymers are
qualitatively different than the PTMG/MDI/BDO, with a peak loss
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factor of about 0.3. Once again, morphology is more important
than chain extender or diisocyanate type.

I I I

MDI/DMPD
H12 MDI/BDO

Cr..

0 - MDI/BDO

0.1.%A

0O,

0.01
0 5 10 15

LOG FREQUENCY (Hz)
Figure 8. Loss Factor for PTMG 1000/MDI/BDO,

PTMG 1000/MDI/DMPD, PTMG 1000/H12MDI/BDO

CONCLUSIONS

Thermal and dynamic mechanical measurements were made on a
series of polyurethanes based on cycloaliphatic diisocyanate and
the results obtained compared to similar data on the aromatic
analog. The results confirm our hypothesis that the presence or
absence of hard segment crystallinity is the dominant factor in
determining the qualitative form of the dynamic mechanical
properties, independent of the specific diisocyanate or chain
extender. The following specific conclusions were reached:

" Hard segment crystallinity is the dominant factor in
determining the dynamic mechanical properties of
polyurethanes

" Regardless of the chain extender or diisocyanate, high
loss is obtained if crystallinity is avoided

" Regardless of the chain extender or diisocyanate, low
rubbery modulus is obtained if crystallinity is avoided
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AN APPARATUS FOR MEASURING

THE LOW FREQUENCY DYNAMIC CHARACTERISTICS OF MATERIALS.

Francis OLIVIER* and Mona KHOURY

Centre d'Etudes et de Recherches pour la Discr6tion Acoustique des Navires (CERDAN)

DCN Toulon, 83800 Toulon Naval, FRANCE

INTRODUCTION

The TNO Institute of Applied Physics at Delft (TPD Netherland) has developed an appara-
tus for the evaluation of dynamic stiffnesses of resilient mounts and flexible hosepipes (see refe-
rence) used in automotive or shipboard machinery. It exploits accelerometric transfer measure-
ments and, as main advantages, allows to work under static preload with a hydraulic jack, and
over six possible degrees of freedom. We have adapted it to the characterization of the intrinsic
properties of materials in a low frequency range (from 100 Hz up to about 2 kHz) through the lon-
gitudinal bulk M = X+2.t and the shear G = . complex moduli.

In that paper we describe this apparatus, its main characteristics and performances. We also
present some results and explain its limitations in order to propose some improvements. They
show how the TPD bench may be considered as an interesting and complementary device for the
knowledge of foam and composite rubbery materials, at low frequencies, under varying condi-
tions of static pressure.

* E. ernal consulting engineer from STERIA for CERDAN; telephone: (33) 94-02-50-53
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I - G1ENERAL WORKING PRINCIPLES

I i '.ielt' Iai -i- stkcjlIdJh

The TP) -mar.,is is a teel mad&. Vi, avy iramew rk cornposcd of a lower teric:

~uporir.gar 2ch w~~ich- ra-ies a Iyru>ic fr -a). 1* has sufficiently large
dimesios ~ :~c~v NW :~& . ~ A :~ ior msthat oice can isolate

f.-r the structure by nianging them on resilient mounts. Usual work needs to superpose
t,,,-, maqsts related to-,'rber Iby thw -1r' ht-h t--14--k a -esilitnt moun rr a flexible
hosc. Generally these mnasse, have a ciculu shapt; icy ale chosen within a set of several
ste el or alumninium masses wliicii inertial charaCueristics arnd iiitcriia1 eigenfrequencies are
perfectly known. So one -an bUlld a discre-e inass-stAfnc-ss-niass sy!.tern, (figure 1-b),
isolated hv suspensio1-'_ns judiciously chosen between a set of known mounts, and

obvbv -.-n 0 'h i: r~f t~in ?WL Alc-nt to :eaBy changing masses; and isoators
Wk.,esc, a ~i ~lt~i~ Iu _ :r:., bioadba-id whilc sat'sfying the

"isolated discrete systea," assurniption, In~ special cases, this broadband may go from a

I--or vbiax'rx t' _I~as *,r ,v:* ooseppe:, iisoften interesting

to put IS:c Wrn T~ \Cr:i~s .t hsst~ oij '.'hv the TPD hefir-h incl+des a

ack and a fi-'i v,, ~ ero~~ip I 11,. tr~,o~

cars ,,pp~v a 'ar:vc 'edn ta nil -eal ruu or a macnine which may weigh uip
t 'hundnx'- Dc iA s Oiid allows filling 4. flcxible p~ipe with a liquid pressure.

The mass- stiffness- mass system is aligned along the vertical z-axis. The
horizontal plane will be not-ed xy. The excitations are applied with two electrodynamic
shakers, syrnetricafly mcuntc,_ k_- i, transversal bar (y) which is perpendicular to the
main fronwbeami (x). They attack the upper mass, named input mass and pointed out by
index~ 1. The vibratirn goes through the elemn-wa to tcst, down to the lower output mass
pointed out by the index 2.

1 - I Vibratory e.dior1s for the 6 deg-es of fre~edom systemn

One cani Lo.rsider Jl.a, the :noni 1 t ':o 1..~ :tcL~ a px.e silifiess if one .idiritts

thc followirg realistic as~urnptions '
-its mass is negligible comparrd to ti ni m, , I Inc: 2:
its ldrrrn'ir -s are -much smaller than the wavelength (especiifly for low frequencies),
it presents i 'inear behavior for vibzatiols 11,471il iitte displacements.

Writing Hc Ae s 1-,w be t%1-i ft!~ tvW t'(- n J"- et ).'nen "I'd gcnrnriizir~g it to UI''-

siX possihe eg e. of fre-di'rv,;ie %,,,;n -''Ilne 1-, .tiffrP,,, 1 'x 12 riintr IKI as

'F_ J, K
(F~ =[K1.
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- (Fi) force vector on iode i, with 6 components : 3 forces F,, Fy, F,, and 3 torques
Mx, My, 9
- (Xi} displacement vector on node i, with 6 components : 3 translations x, y, z, and 3
rotations 0 x, Oy, 0z;
- [K 1 I et [K22] input (respectively output) stiffness matrix for blocked output
(respectively blocked input);
- [K 12] et [K2 1] input (respectively output) transfer matrix for blocked output
(respectively blocked input).
This matrix contains all the mount characteristic stiffnesses. From now on it will be the
unknown of our general problem. We will consider all of its elements as complex v dlues
which imaginary parts reveal the eventual presence of damping.

Using that formulation, one can write the dynamic equation of the two-nodes
discrete system :

[M] () +[K] (X) = (Fe) (2)

where {Fe) is the six components external force vector applied to the input mass with the
two shakers, and [M] is the inertial tensor on both nodes. If we consider the two masses
as punctual, that is if the two junction nodes merge into the centers of gravity of the
masses, then [M] is a diagonal matrix which twelve diagonal elements may be written as:
mi, mI, mi, Jx1, Jyl, Jz1 , m 2, M 2, m2 , J 2 , Jy2 , Jz2 . For example, Jyi is the moment of
inertia of node i (i =1 or 2) around the y rotation axis.

In practice, we do not use the whole formulation in every cases. Except for
inertias, all the involved variables may depend on frequency so that it would be too long
to process them all systematically. To lighten the problem formulation, one can take
advantage of the symmetry properties of matrix [K] due to the reciprocity theorem.
Therefore we are allowed to concentrate only on the output mass movements and to
consider that [K21] and [K22] contain the whole characteristic stiffness informations
about the specimen. Moreover, since we apply excitations to the input node (mass n'l),
the equation of the output node becomes simpler setting its second member to zero:

[M2] (k2) + [K21] (XI I + [K'_l] {X2) = (0) (3)

To go on into simplifications, another working fundamental assumption is to
suppose the output blocked. In practice, we realize that condition by using an output
mass much heavier that the input one (for example m, = 50 kg and m2 = 450 kg). In the
following paragraph, we will verify the validity of such an approximation which intends
to eliminate a third term in equation (3) and reduce it to:

[M2] (X2) + [K2 1] (Xd = (0) (4)
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From this equation we can notice that the unknown is restricted to [K21] and deduce two
important remarks that will affect the experimental aspect of our method. First, since
external forces have disappeared we will not have to measure them. The measurements
will be reduced to displacements or accelerations, and this leads to the second remark.
The "blocked output" hypothesis may seem quite paradoxal because, strictly, we shu'L!d
measure zero output accelerations! In fact the assumption remains true if one satis4ies the
following compromise : output accelerations must be measurable, that means stronger
than the background noise, but much weaker than the input ones (about 20 dB).

The transfer matrix [K21] is generally not fullfilled. It may present many zero
elements, depending on the specimen shape. This represents a considerable advantage for
our method, because we may reduce the number of unknowns from it. In other words,
symmetries may occur in the mount shape, which tend to separate coupled degrees ctf
freedom. Therefore tne formulation becomes simpler and, for example, in case of a
specimen having three planes of symmetry xy, xz and yz, equation (4) becomes:f m2X2  (Xi

mK(,2 0 () 0 K(1,5) 0 y
9 K ',1 0 K(2,4) 0 0

2 0 0 K(3,3) 0 0 0 Z1

0 K(2,4) 0 K(4,4) 0 G)

J K(1,5) 0 0 0 K(5.5) 0
Jy2oy2 0 0 0 0 K(6,6) 0 yi

J,202 zl (5)

I - 3 Tension-compression equations along z axis.

By construction, the experime-ntal mounting privileges vertical (z) tension-
compression vibrations within all other degrees of freedom. Equation (5) shows that zhis
"dof' is not coupled with any other one, so that it becomes very easy to write this two-
nodes reduced syte m equations for harmonic vibrations

m1 Z1 + K ( Z t ) -, expi(it)

-K ( Z - Z2  + nZ- 0()

where K -K( 3,3). The two angular eigen frequencies are given by

- 0 et 0)2 K 1. 4-
Mn i (7)

and since Z -,,)-Z, [tV. d~spacercnt , ;re written a,,

M12 ( n2 - 1K 'nr+nm,) ] 0)2  mm - K (+m)) 8)

The output/input ratio Ic .I2" t,-



Z2_ 1 _ 2
Zt K - M20)2  I -I 02 m1K (9)

From transfer function (9) we can observe that, for a given specimen stiffness, the
heavier the output mass the weaker its acceleration is, compared to the input mass one.
This contrast increases with frequency and for small stiffnesses. This illustrates the
previous paragraph purpose and shows how the question of signal to noise ratio may
appear. For that reason, we will probably have to deal with high frequency limitations.
Moreover we can notice that the stiffness K may be approximated by:

K = - m2 2 22

Z1 (10)

with a negligible error when m2(o2/K >>1. Therefore, simply multiplying the
accelerometric transfer function by -m2(02 , provides directly a good estimation of the
stiffness. To evaluate the specimen damping, we just have to take the complex K phase
information into account.

We just saw that signal to noise ratio problem could cause the high frequency
limits of our approach. Other reasons may be •
- unsatisfaction of the "discrete system" assumption at the eigenfrequencies
neighbourhood;
- bad isolation of the tension-compression degree of freedom which may get coupled with
other ones like rotation, in case of small defects or weak dissymmetries in the mounting.
According to (9), the low frequency limit will be given by:

These considerations we just made about tension-compression may be applied to
the other degrees of freedom in the same way. But neither the involved stiffnesses and
inertial terms, nor the frequency limitations therefore, would be the same.

I - 4 Experimental processing.

Measuring the accelerometric transfer function between the two masses in the
conditions described above, needs a good experimental care.

To guarantee that the degrees of freedom are sufficiently urcoupled from each
other, all the transducers, shakers as well as sensors, are used by pairs, geometrically
symmetric or antisymmetric mounted depending on the dof (figure l-b). That kind of rig
allows spurious movement cancellation and desired movement extraction. Each pair
needs twin transducers, very well calibrated in modulus and phase, so that their signal
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may be added or substacted without distorsion. These operations are made by two analog
electronic devices (see the right part of figure I-b) :
- the VCCD (Vibration Component Cancellation Device) splits the input amplificated
signal into two in-phase or phase opposit components which feed the two electrodynamic
shakers (Denitron);
- the ASD (Additive Substractive Device) gives on output the half-sum or half-difference
(following the operator choice) of both input signals coming from a pair of sensors.
For vertical tension-compression (z axis), both vibrators are fed by the same signal, and
the ASD compute the half-sum of the amplified signal outcorning from the pairs of
accelerometers.

About signal processing, we usually estimate transfer function (9) with a HP
6532 numeric analyser, which can also provide the excitation signal. To optimize the
Fourier analysis in the point of view of signal to noise ratio, we use a slowly swept sine
which may require about seven minutes acquisition time when working from 0 to 2 kHz
with a 2.5 Hz resolution. This quite long analysis allows the output signal to come into
view from the background noise level, while avoiding at the same time, the injection of a
too powerful excitation which could introduce undesirable non linear behaviour. Then we
satisfy the following compromise : noise level < Z2 << ZI.

The digitalized transfer function migrates out from the analyzer into the memory
of a HP 9000 computer which makes post-processings like, for example, the
multiplication by -m2(o 2 and the graphics too. A complete software prog-am manages the
whole tests over many kinds of specimen like mounts, hoses and pipes. It can also
process a matrix treatment to separate coupled degrees of freedom.

To insure that the experimental conditions fullfill the working assumptions
described in the paragraph above, we generally add complementary measurements to the
main transfer function. They are (figure 2) :
- the measurement of both input and output masses acceleration spectra, to verify that the
level of the second is effectively about 20 dB lower than the level of the first; we can aLso
see if they are eventually polluated by a spurious movement.
- the measurement of this spurious degree of freedom to diagnostic and cc-rrect it;
- the measurement of the bench acceleration spectrum, below the outpuit mass; it must N-
at least 10 dB lower than the output mass level for the discrete syste'mn to be well isolated.
Because of a bad resilient suspension, it could happen that the ou --, 'ass vui-ht:
excitated not only by the specimen but through the isolation mount too. Indeed an
acoustical channel links it to the input mass : it goes up through the upper mount to the
jack, then from the jack dowr, to the lower part of the bench and .ip ag.ain thrc,.gh the
lower mounts to the mass. This case may occur if, for example under very heavy ,'atic
loadings, the resilient mounts lose their efficiency because of smashing or their ov' n
degradation.

Moreover, we can usc many different amplification gains on the excitation signal,
to verify that the sNpc c icn has Jfcctively a iinear vibrator,' i ,&', i I l ,oke's law.
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II - USING TPD BENCH AS A VISCOANALYZER

II - 1 Measurement of longitudinal and transverse moduli

We have explained how to measure the dynamic stiffnesses of a resilient
specimen. Now we are going to decribe a derivated usage of TPD bench, specifically
destinated to the evaluation of the M longitudinal bulk (plane wave) and G transverse
(shear) moduli which are characteristic of the material the specimen is made of. Elasticity
theory says that those two parameters are sufficient to completely define an isotropic
material. This may be extended to viscoelastic materials by considering their moduli as
complex values. From now on, we will not speak of a mount to test anymore, but of a
material specimen, and our objectives will not be anymore to evaluate only global
parameters like stiffnesses, but to obtain a material intrinsic information, which does not
depend on the mount shape.

This special utilization of the apparatus is particularly well adapted to the
characterization of materials like natural or synthetic rubbers, foams and many of their
derivated composites which may contain inclusions or internal structures. As main
advantage it provides directly the viscoelastic moduli we use to deal with in acoustical
modeling, either with Lame coefficients in tridimensional elasticity equations, or through
the sound celerities of longitudinal and transversal waves:

X;2 eM = X + 2g ; G3 = g => CL =- - et CT =(2

p po (12)

In that point of view, the direct method we recommend here is much more
appropriate than the usual viscoelastic measurement devices like rheovibrons or
viscoanalysers, which generally try to estimate Young's and shear moduli, E and G,
through the observation of beams working in tension-compression, torsion or flexion. In
using the equations linking the elastic moduli to each other, a simple analytical calculation
of the relative error is sufficient to convince oneself about it . If we deduce M from
experimental values of E and G, we obtain :

G ) - E M G (3G-E)(4G-E)[ G -El

AM = (1 + EG )AU + EG AE
M (3G-E)(46-E), G (3G-E)(4G-E) E (13)

By another way using Young's modulus and Poisson ratio v we have:

M=E (l-v) =. AM _ AE + 2v 2 ( 2- v ) Av
S l+v)(l-2v) M E (lv 2 )(l_2v)v (14)
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The materials we are used to study, generally have quite strong Poisson coefficients
between 0.4 and 0.5. A well-known consequence of that fact is the following inequality:

2 ( 1 + 2.8G < E < 3G2(1l±v) (15)

In expressions (13) and (14) of AM/M, the presence of (1-2v) or (3G-E) in the

denominators shows how a small error in evaluating E and/or v may be amplified on M:

AM AG AE AE AvAM0. = -=5-+4-=-+3-

M d E E v
- V = 0.45 =* AM 10AG 9AE = AE 8 Av

M G E E v (16)

Figure 3 illustrates the consequence of that fact on the longitudinal wave celerity. An
error of 1% in the measurement of E or G may produce an error of 10% or 20 % on M.
1% is a quite optimistic error because many viscoelastic devices have very poor accuracy
which sometimes lead to aberrations like E > 3 G!

II - 2 Specific tool for measuring M = X+2pt.

For measuring a material longitudinal bulk modulus, we most often use squar .-
panel shaped samples, from 30 to 50 mm thick, with 100 mm, 200 mm or 300 mm sides.
Other tests also work with cylinders of same thickness and nominal diameters of 80 mm
or 140 mm. These dimensions are needed with an accuracy of ± 3 mm, so that the
specimen can fit a metal box which encloses it and block, lateral displacements. By
pressing weakly on its sides and lubricating the lateral contL t face, with a silicon oil, we
are sure to block both static and dynamic displacements along x and y axis; this also
allows free tangential sliding parallel to z axis. The blocking box is made of a steel
circular plate which supports a square framework with two fixed faces and two moving
ones which may be actionned with a screw. This tool weight is about 50 kg and is not
negligible so that it must be added to the output mass. To apply the excitation correctly, a
metal piston of lightly smaller section compared to the specimen, is put between its upper
face and the input mass (figure 4).

This care we take in the mounting, insures the dynamic condition which is said of
'plane deformation". Along the vertical z axis, the stress-strain relation for the speJimen

considered as an clement of voiume, may be written as

Oz, = -l ( E., + Eyy ) + ( . + 2V ) e, (17)

Since the tool cancels the lateral displacements one can merge
- the z stress into the output inertial force divided by the sample section S;
- the z strain into the gradint of z displacement, divided by the sample thickness h.
Then, using (10) and (17) one can write
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X + 2g= -z m2 Z2 / S = K(3,3) h
E72 (Z 2 -Z 1 )/h S (18)

Therefore we can see that the measurement of the longitudinal bulk modulus only
requires to correct the stiffness K(3,3) with the shape factor h/S which is very easy to
evaluate because the specimen shape cannot change. In addition to the good control of
boundary conditions, this is a second advantage of the method. For data processing the
estimation of M requires to apply this second coefficient to the accelerometric transfer
function besides the factor -m2(0

2 already used for the estimation of the stiffness. The
obtained value (figure 5) may be complex in case of damping, and may depend on
frequency if the material exhibits a dispersive behavior.

II - 3 Static preloadling configuration.

The TPD bench allows the testing of materials under static preloading which may
be useful for certain applications. Under pressure the materials behave differently : their
internal static stress state makes them look like other materials with a weakly higher
density (a few percent) but much stronger elastic moduli. The relationship between
pressure and those moduli is generally not linear and depends a lot on the kind of
considered material. For homogeneous materials the molecular interactions are changed.
For composites or foams the internal structures are affected.

To simulate the working under static pressure we use the hydraulic jack. A force
ring gives the vlli- f the injected force up to 100 tons, and therefore, dividing it by
section S, the value of the static pressure. Because of the blocking framework, S does
not change. The thickness h may eventually diminish under the effect of smashing :
anyway its new value can be easily measured by comparison with its initial state. As it
was said before, the specimen shape remains the same and the shape factor is calculated
as before.

Some aspects may change on the experimental point of view. Since the specimen
stiffness increases (figure l-b), so does the low frequency limit and the accelerometric
contrast fades between input and output masses on one hand, and between the output
mass and the lower part of the bench on the other hand. So the isolation mounts are
generally removed into more resisting ones which support heavy preloading and are
consequently less efficient. Coupling with other dof may also become more embarrassing
and polluate the measurements. Only the signal to noise ratio takes advantage of that
configuration. Nevertheless one can observe that the experimental conditions get globally
worse (figures 2-c and 2-d) but the measurement remains always possible for static
pressures less than 20 bars.

About static preloading configuration, an important remark must be done. The
static stress we apply is not isotropic but axial. Therefore, the stress state inside the
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specimen is not isotropic either. Indeed, for a material with a static Poisson ratio v, its
components are :

OXX "Cryy = 

9zz 
V1 - V (19)

For instance the blocking frame reaction is 66% of preloading if v = 0.4 and 82% if v =
0.45. So there is some ambiguity in interpreting the result- obtained in guch a
configuration, mixing static and dynamic considerations.

If the dynamic modulus variation is due to the isostatic stress state, we probably
underestimate the real value of M that the material would present under isotropic
preloading (in a fluid for instance). Nevertheless equation (19) shows that the materials
with a strong Poisson ratio like rubbers, are not very affected. About materials with weak
Poisson ratio like rubbery foams, one can imagine that their compressibility makes the
Poisson ratio increase under the effect of heavy preloading. The Poisson ratio of a foam
is rather low at atmospheric pressure because of the bubbles it contains. A static
smashing may fill those cavities where the mateflal will not expand anymore : s, it
becomes less compressible. To conclude, we can say that the error must probably
decrease as the static pressure increases, and be more sensitive for the lighter loadings
which unfortunately, are the conditions we are most often used to deal with.

II - 4 Shear measurement

Measuring the shear modulus G can be done in a way similar to that used for the
longitudinal bulk modulus. It only needs to work along the horizontal x axis instead of
the vertical z axis (figure 6-a). We then look after evaluating K(1,l) which may be
obtained by transposing the relations concerning K(3,3) (cf. §1-3). The application of the
shape factor remains the same because the equation linking the dynamic stiffness to the
characteristic modulus is of the same kind as (18):

G = p. - x_ m 2 X 2 /S = K(, 1) h
EzX (X 2 - X 1 ) /h S (20)

If the measurement principle does not make any difficulty, oa zhe other hand the
experimental conditions are much less easy. The shear mounting presents some
specificities very different from those of vertical tension-compression, which involve
difficulties on several aspects.

First, the pairs of transducers must be horizontally positioned, diametrally anu
phase opposite. Since the shear modulus of a material is always much weaker than the
longitudinal one, the global shear stiffness of a specimen is much lower too. Therefore
the acceleration transmitted through the specimen to the output mass has a lower level,
and the signal risks to be drowned very soon at a few hundred I lz, into the background
noise. In such a case we will have to use a lighter output mass (figure 6-b).
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Another problem is that the panel cannot be held in the blocking frame because the
definition of shear requires to keep its edges free. As a consequence we lose some control
on the boundary conditions and the shape factor when we want to work under heavy
static preloading. If not enclosed in a box, the sample can expand on its sides : then its
thickness strongly decreases, its section increases and its lateral faces round off, so that
the shape factor becomes uneasy to evaluate. A second consequence is the difficulty to
well isolate the shear degree of freedom, even without static preload. Indeed, the lack of
signal mentioned above may lead to amplify the excitation signal. Then the x
displacements tend unfortunately to get coupled with the rotation around y axis,
especially for the highest frequencies (figure 6-b). To improve this particuliar point two
solutions are possible.

The first one is to mount a special rig that would be mechanically and
geometrically symmetric toward the medium plane which horizontally cuts the input
upper mass through the middle (figure 6-a). But we then need a second twin specimen
and a second mass identical to the lower one which movements would balance and cancel
the rotation degree of freedom. But for practical reasons of heaviness and overcrowding
this solution cannot be applied.

The second one keeps the original rig and concerns the measurement post-
processing. Since a spurious rotation may occur we can take it into account by excitating
it deliberately and measuring it. Then a matrix treatment may allow the separation of the
different stiffness terms involved in the problem. Let us consider the output mass
movements with both coupled degrees of freedom ; if m is its mass and J its moment of
inertia around the y axis shifted to the junction point with the sample, then following (5)
one can write :

rnm , = K(1,1) : : . .,v

J ey2 = K(5,1) X 1 + K(5,5) 0 yl (21)

We do not have to measure an accelerometric transfer function anymore, but directly all
the accelerations involved in (21), using for instance an electrical reference. These
measurements must be done a first time by excitating the shear translation of the input
mass (figure 6-a), and a second time by excitating its rotation applying a torque around y
axis (figure 7-b). To do this we just have to put both electrodynamic shakers in the same
vertical position rused for tension-compression, but in that case they are fed with two
phase-opposite signals (antisymmetric mounting). Then we are able to build a linear
system of 4 equations and 4 unknowns which are the stiffness terms. A software
program makes the matrix processing which has to provide theses complex values versus
frequency. It often happens that the sample has a horizontal (xy) plane of symmetry : in
such cases the calculation should yield this property of the stiffness matrix with K(1,5) =
K(5,1). For practical reasons this method has not been tested yft for the shear modulus
evaluation, but we know from elsewhere that it already works for resilient mounts testing
at low frequencies. GD,-11
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Figure I1-a: general view of I PD bench.

J

Figure 1 -1, :ieaSUrernent rig with diamnetralv opposite transducers (see lower mass) wiinected
to analog additives and suhstractive devices (ASD an d VCCD on the right part of the picture).
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ligure 2 control measurements for vertical tension-compression.
(,I) in)uL mass acceleration and spurious rotation; (b) ou Itput mass and lower part of the bench ac-
celerations (the contrast checks the good isolation of the mounting).

,) and (b) curves come from a testing undera staic preloadin g of I bar; (c) and (d) are obtaincd
for a preloading of 1 bars ' one can notice the degradation on the experimental conditions.
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(a) real part of Young's modulus (N/rn2)

Frequency (Hz)

(b) real part of nhe shear modulus (N/m2)

relp celerity (k+2p/p)1t2 (n/s)

f:igure 3 visco-analyser results for4 caises of temperat tre and pressure. The specimen is a small
beam in tension -compression for You.ng's nmodulus measurenment (a), in torsion for the shear nio-
dUlUS (b), Using relations between elasilc COlistailts 01WC dedUCe the longitudinal wave celerity (c).
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static preloading ______

(hydraulic jack)

resilient suspension

Tcr-sion-compression excitation
(2 in-phase shakers)

Input acceleration 1~f2S~j~ a
Z, 2i exciiaiion piston

Output acceleration 1bokn rmwr

=2 2 + 22b t
2

OR 4- resilient suspension

P -C IL 1

I. Do
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1P r

Figure 5: measurement of the longitudinal bulk modulus X +2 i (N/in 2). (a): experimental moun-
ting. (b): resulting curves for a material under I bar and 8 bars static preSSUres. One can notice the
significant flat part of the curves, the limi iating low frequency resonance peak, and the I 8 0 con-
stant phase due to a sign error (true value 0c'). Presence of damping would smooth the peak and
snift the phase.
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.. ~. s.,. ~Frecguernce enl Hz

i igure 6: measurement of the shear modulus (N/rn2). (a): experimental mounting. (b) :resulting
CIrvC a material at atmospheric pressure. One can notice the very low resonance peak due two
Ic ('e Civy output mass. Background noise and spurious rotation peaks polluate this measure-
-*fnt frcrn a hundred Hz.
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static preloadin~
(hydau~cjackresilient suspension

----- sym'rreic mrass arnd specimeni

(a)

Input acceleration ...... Sear excitation
= l-l Seie (2 phase opposit shakers)2

Output accelerationOuptms

X2 X2 =
2 4 - resilient suspension

static preloading ______

(hydraulic jack

resilient suspension

Tension-compression excitation

Inpu acelertios ~(2 phase opposit shakers)

mas1 I.

Output accelerations
62 ~Output mass

.- resilient suspension

Figure 7: (a) sym. 1tric mounting for the shear modulus measurement. (b) mounting for the rota-
tion stiffness measurement: it is the same as tension-compression but with phase opposite trans-
ducers.
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CONTROLLING THE DAMPING BEHAVIOR OF PITCH-BASED
CARBON FIBERS

Andrew J. Eckel*
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, OH 44135

and

Steven P. Jones
Clemson University
Clemson, SC 29632

The damping capacity of intercalated graphite fibers has been
found to be significantly greater than that of pristine fibers. An effort
is discussed to control and optimize the damping behavior via
intercalation. A resonant flexural free decay test method was used to
measure the damping of single pristine and intercalated pitch-based
carbon fibers (Thornel P100). The fibers were tested in high vacuum,
at temperatures from 77 K to 675 K, and at frequencies from 50 to
2000 hz. The fibers were intercalated by two methods. The resulting
damping capacities are compared and contrasted. The effects of
changes in the intercalation processes are discussed as a means of
controlling the fiber damping capacity. In addition, the retention of
increased damping capacity following thermal cycling was measured and
is discussed.

* NASA Lewis Research Center, MS 106-1, 21000 Brookpark Rd., Cleveland,
OH 44135, ph. (216) 433-8185
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BACKGROUND .
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Cormte fler+ anjmtxEc@ipo it Eomp le

• UNIQUE FACILITY FOR MEASUREMENT OF
DAMPING CHARACTERISTICS OF SINGLE FILAMENT
FIBERS.

o COOPERATIVE RESEARCH WITH SPARTA, INC.
SHOWED DAMPING CAN BE INCREASED
SIGNIFICANTLY USING INTERCALATED FIBERS.

lo- TECHNOLOGICALLY SIGNIFICANT DAMPING PEAK
OBSERVED IN TEMPERATURE RANGE OF INTEREST
FOR VAPOR BROMINATED P100 FIBERS.

The majority of intrinsic material damping in polymer and metal
matrix composites is contributed by the fibers rather than tht matrix
damping properties. Increased damping can reduce or eliminate
vibration loads and reduce acoustic noise. Additionally, passive damping,
via fibers in composites, is an important attribute for many space
structures and could alleviate the need for more complex active
damping mechanisms. A flexural free decay fiber test facility enables the
measurement of the damping characteristics of single filament fibers [1].
This is beneficial for both providing constituent data for modelling composite
behavior and allowing direct and simple measurement of changes in fiber
damping behavior resulting from chemical or physical treatments.

Using the facility, Lesieutre et al [2-4] measured the damping
characteristics of various graphite fibers and demonstrated that the damping
capacity of pitch-based graphite fibers can be significantly increased by
intercalation treatments. The author3 ieported a damping capacity peak on
the order of 3 percent, in a narrow temperature range, for P100 fibers
intercalated via a bromine vapor treatment.



CURRENT WORK

" TO EVALUATE THE DAMPING BEHAVIOR OF P100
FIBERS INTERCALATED ELECTROCHEMICALLY.

* TO ASSESS AND DEMONSTRATE THE
FEASIBILITY OF TAILORING FIBER DAMPING
PROPERTIES VIA ELECTROCHEMICAL
INTERCALATION.

Ho and Chung [5] demonstrated that P100 fibers can be intercalated
by both vapor and electrochemical methods. Since electrochemical methods
allow greater control of intercalation parameters, this study is being
undertaken to evaluate the damping differences between vapor brominated
and electrochemically brominated P100 fibers. Comparison of damping from
the two methods "nd the greater control of the electrochemical technique
may allow determination of the mechanisms at work that result in various
damping behavior. This work-in-progress paper summarizes the research to
date and demonstrates the feasibility of tailoring fiber damping properties via
electrochemical intercalation.
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SCHEMATIC DIAGRAM OF INTERCALATION PROCESS

The intercalation process used was similar to the one used by Ho
and Chung [5], with some minor modifications. Pristine P100 graphite
fibers, unsized and continuous filaments, were used in this study. Fiber
tows of approximately 2000, 10 /sm diameter filaments were suspended in a
saturated aqueous potassium bromide solution. A constant current was
then passed through the tow and platinum fixture. The fixture, with tow,
was removed from the solution at specific time increments (25, 49, 80,
and 100 h.) After each removal, the tow was thoroughly rinsed with
deionized water, and allowed to dry overnight in air at room
temperature.
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SCHEMATIC DIAGRAM OF THE TESTING APPARATUS

Individual fibers were removed from fiber tows and mounted in
tantalum tabs following the procedure described by Lesieutre et al [2,41. The
mounted fiber specimen was clamped to a copper block which served as
both a seismic and a thermal mass. The temperature of the block was
controlled by pouring liquid nitrogen into a reservoir on the top, initially
cooling to 77 K (-196 C) and then slowly heating to 673 K (400 C) by
adjusting the current through an embedded resistive heater. A
thermocouple attached to the block near the fiber root measured the
temperature. The combination of high fiber longitudinal thermal
conductivity and slow heating rates (2 K/min) ensurea that the fiber
temperature was effectively that measured by the thermocouple. Data
points were taken usually every 15-20 K, depending on the situation.
The drive/pickup plate was mechanically attached to the specimen
mounting block, but was electrically insulated from it. The entire block
was placed inside a vacuum chamber (10-4 to 10-6 torr) to eliminate the
effects of air damping, which was significant on these fibers.
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The fiber was driven electrostatically at one of its resonant
flexural frequencies, f,, by applying an alternating voltage at fn/2
between the fiber and an adjacent drive plate [1]. The fiber-plate
separation was adjusted by a screw type manipulator attached to the
drive plate. Specimen vibration amplitude was controlled by the output
voltage from the drive amplifier. Strain amplitudes at the fiber root
surface were on the order of 10-6, and no significant amplitude-
dependence of damping was observed for amplitudes near this level.

Specimen motion was detected by placing the fiber-plate
capacitor into the tank circuit of a 100 MHz RF oscillator. Fiber
vibrations produced an oscillating capacitance which directly modulated
the RF oscillator via a half-wavelength coaxial cable. A commercial FM
tuner detected these modulations and converted them back to an audio
signal with frequency f, and amplitude directly proportional to that of
specimen vibration. Damping was determined by disconnecting the drive
signal (triggering the signal) and allowing the fiber resonant vibrations
to decay freely. The decaying signal was displayed on an oscilloscope
and recorded photographically. Damping values are calculated from free
decay data and are reported as damping capacity ( --Aw/w = rela!ive
vibration energy lost per cycle).
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DAMPING BEHAVIOR OF PRISTINE P100 GRAPHITE FIBERS
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Various treatments were performed on pristine P100 graphite fibers to
determine their effects on damping behavior. These included vacuum cycling,
thermal cycling, and exposure to air and nitrogen gas. These were performed
since they are typical of treatments the fibers may see during composite
processing.

Upon heating from liquid nitrogen to room temperature (cold run 1) the
pristine P100 fiber exhibited a damping peak at 213 K (-60 C) which is small in
magnitude, with vp about 0.5%. The thermal cycling included runs to elevated
temperatures (673 K [400 C], hot run 1) and back to cold temperatures (77 K [-
196 C], cold run 2). During this thermal cycling, the damping peak location
remained the same at 213 K (-60 C), and the peak height remained virtually
unchanged at 0.5%. Also, the third cold temperature run (cold run 3) was
conducted after the test chamber was brought up to atmospheric pressure in air
for 24 h and then re-evacuated. There was no change with any of these
treatments to the damping of the pristine fibers. The next treatment was
exposure to gaseous nitrogen (not shown). After evacuation, the vacuum
chamber was back filled with gaseous nitrogen for 18 hours. Damping data was
then taken on the fiber. The damping peak again occurred at a temperature in
the vicinity of 213 K (-60 C) and had a peak height of 0.45%. This value is almost
identical to the pristine fibers. Also, the baseline remained around 0.18%,
similar to the pristine fiber. It can then be concluded that these basic treatments
to the pristine fibers do not introduce significant changes in damping behavior.
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COMPARISON OF P100 GRAPHITE FIBERS
BROMINATED AT 50 uA
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To determine the effects of electrochemical bromination parameters,
a current of 50 microamperes (/#A) was selected and the fibers were
brominated for 25, 49, 80, and 100 h. The damping peaks increased in
magnitude, as well as shifting to higher temperatures, as bromination
times increased. The 100 hour test showed the highest peak magnitude,
I/max = 3.6%, at 253 K (-20 C). The peaks shift to higher temperatures
as a result of increased concentrations of bromine added to the fiber.
In addition, all of the 50 4uA samples showed a second, smaller peak
between 133 and 183 K (-140 C and -90 C.) This peak is quite small in
magnitude, except for the 100 hour test, in which the peak has a
magnitude of approximately 1.4% and occurs at 183 K (-90 C.)
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COMPARISON OF P100 GRAPHITE FIBERS
BROMINATED AT 190 uA
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The next step was to determine if increased currents and
corresponding increases in bromine concentration would further improve
the damping behavior of the fibers (actual determination of bromine
mass and mass distribution in single fibers is difficult and has not yet
been done.) The current was increased to 190 uA and tibers were
brominated through a similar cycle as the 50 quA samples. The damping
continually increased until the 49 h point where it had a peak of 2.5%.
Temperatures at which damping peaks occurred increased as the
bromination time increased. At 100 h, the peak magnitude decreased to
1.7% and the temperature of the peak was 60 C. No explanation for
this behavior is provided, although work is still proceeding. The
baseline itself also had a value 5 times that exhibited by pristine
graphite fibers, measuring approximately 1.0%.

HAA-9



PEAK MAGNITUDES OF BROMINATED P100 GRAPHITE FIBERS
ELECTROCHEMICALLY INTERCALATED
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The peak magnitudes of damping for the electrochemically
intercalated fibers generally increased with time of bromination. Work is
continuing to evaluate a broader range of currents and investigate the
decrease in damping for the 100 hour bromination treatment at 190,uA.
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.CONCLUSIONS

* P100 GRAPHITE FIBERS INTERCALATED ELECTRO-
CHEMICALLY DEMONSTRATE SIGNIFICANT INCREASES IN
DAMPING VALUES OVER PRISTINE FIBERS.

" THE DAMPING CHARACTERISTICS OF P100 GRAPHITE
FIBER CAN BE TAILORED BY ELECTROCHEMICAL
INTERCALATION.

" THE HIGHEST DAMPING OBSERVED TO DATE (-- 3.5%) IS
OBTAINED AT LOWER INTERCALATION CURRENTS AND
LONGER TIMES.

" ADDITIONAL STUDY IS NEEDED TO RESOLVE
MECHANISMS FOR DAMPING BY BROMINE
INTERCALATION.
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INTERNAL DAMPING OF METAL MATRIX COMPOSITES-
A TECHNICAL ASSESSMENT

Jacques E. Schoutens
MMCIAC

Kaman Sciences Corporation

ABSTRACT

Internal damping in metal matrix composites (MMC) is of interest to engineers and
designers of large space structures, ii applications where dynamic dimensional stability is
important, and in the control and damping of vibrations in space structures. Theories of current
interest used to understand ana explain internal damp'. ri MMCs are discussed briefly, and
experimental data for some fibers and MMC systems art esented. Some general conclusions
close this paper.

INTRODUCTION

Damping of structures has two sources: external and internal. External sources of
damping include the effects of fluids such as drag in a liquid or in a gas, loss of energy at
supports or joints due to friction or transmission into supporting structures, and actIve and
passive damping control systc.ns. Internal sources of damping include a number of effects. At
low levels of stress, the damping behavior of metals and real matrix composites is governed
by micromechanisms causing anelastic behavior. At high levels of stress [1,2] internal damping
occurs by mechanisms leading to hysteretic response. Internal damping in metals has been used
as a method of studying atomic motion at low stress levels. This has provided insight into
fundamental mechanisms in diffusion, ordering, interstitial and substitutional so"'d soluions, and
estimates of dislocation densities. F.r engineering applications, damping data have been
obtained at intermediate and high strain levels (> 50 microstrain) to develop insight into energy
dissipation mechanisms and fatigue life of metal components. As is well-known, the interface
between a fiber and the matrix is a unique site of reaction layers, residual stresses, microvoids,
dislocation structures, impurities, disbords, aid dhcr defects. It has been postulated, and to
some extent verified, that the interfece is also a source of energy dissipation, and considerable
efforts have been expended in attempting to identify and model these sources [3]. It should be
borne in mind that selectin& materials for effective damping must take account of the space
environment (zero gravity, high vacuum, and thermal fluctuations between -160 to + 160°C), and
candidate materials must exhibit high damping at low frequencies (0.1 to 10 Hz) [2] and at strain
levels on the order of 50 microstrain.

This paper presents a brief discussion of currently used theories of internal damping in
MMCs, and presents some of the available data on internal damping of these advanced materials.
For more details, the reader is referred to reference 4 or 5.

816 State Street, P.O. Box 1479, Santa Barbara, CA 93102-1479, (805)963-6426.
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THEORY

, . for measurnag uarrping ,ri metals and metal matrix compomiteS "pan some
seventee, orders of magnitudes in frequency, from about 10' Hz to 100 GHz. There are four
maIor, c',' 'ering this ,inge: ql'isi-sttW mrethods, subre~sor:arce methods, rco-"-.n,:.
method,, .' " .... ;y.IuI i , j. T,,e quasi-static rehoo :: ',

inter. th:s .... : .c -h--Lequery :-. ' wi~l not be discussed bFcwuse it is Usi:
mljr,y ) Y to i ynamic moduli and other phenomena [8].

T. - plofwrties of a matenrai a-e variously referred to as specific damping
ca:, l hss factor, loss angle, quality factor, and log decrement. These quantities are all
related as follov, [4,51

T 14i: ,, Q 1- =2r =27ttz = 2C (1

whert. is th, -x i1ic damping capacity (SDC), is the damping ratio, Q is the quality factcr,
is . ' f 6",', , is the loss angle and " is the logarithmic decrement. Most of the data

p!- C, ajr will be in erras of the speci-c damping capacity.

- . -'isd to measure "lamping prop-rtes are discussed in detail In reference ;
Suff, '-ere "-, r:'entiorm that they include the caitilever bemn metkod. fr-e-free flexure
mnet~hot 'c: - io:- .i,,ti ,ietho. f'ec f Met iieo, i to.;:c~icc u..=soni.. ,:jrnLsite .
tec,'..qae i &COf) [5], and tie. method of wave propagacion. These rneJiods give lightly
d;,' A,0..' ,u-sequently, data must be corrected accordingly [4,5]. Damping factors ai.

. u a function of strain amplitude, temperature or frequency.

The following summarizes the various damping mechanisms and the theores used to
e:,c ,n these mechanisms. Note that some theories predict certain behavior fairly well in a
par,.cula range of interest, but by and large, theoretical models used to predict damping
benz.'or 'e r!ther nrimitive, particularly for MMCs. Little or no theoretical work has K-.n
dor'. 'or the fiber/matrix interface.

Matx Metal. Damping in the matrix metal can occur from any one or all of the
foilo,', "ng mechanis.:,s: point defect damping, dislocation damning, grain boindry damt,inc .
thermoe !as*.,. . .'.6.

.. , _t in a crys*ai car. be a ,a;nc. u exna atom eil,er in tne c,, ystal 1:i,-
as at, iimpurity atom. This alters the crystal, thereby lowering the crystal symmetry, termed .
defect svr t,..i ,. crit, :,r , '. - : tett c , polit defect damping is that t re '07
17o,- th,,c- ;..e aJ-i.gU;l:[abie orientation of the detect. The elastic distortion surroundinmg thc
de;-_.: (.ause, the point defect to interact with the crystal lattice, behaving as an elastic diple.

Dw., ' interact di¢fimenti-' cZJ ,,Vr so,1.e 1-distributioai of the , va t. oA O
point d fc., ' ",- ,.,.,
cystal latt:c . . ng (I Ct u rs na,,ng ,Wr-ymrnetnca! strain tvoles give 11s, (C



damping [5]: interstitial impurities, vacancy-impurity pairs, and divacancies. Spherically
symmetric strain fields do not cause damping. The first of these defects give rise to Snoek
relaxation, and the second to Zener relaxation. Snoek relaxation is expected to contribute to
damping in MMCs with bcc crystal lattices, and Zener relaxation contributes to internal friction
in alloys [4,5] of fcc, bcc, and hcp structure.

Dislocation damping plays an important role in crystalline MMCs. This damping
mechanism involves the motion of dislocations which lag behind the applied stress. In some
metals (Cu for example) the application of stress will also cause the generation or multiplication
of dislocations. Damping occurs when dislocations are hindered in their motion by obstacles
such as point defects. There are two relevant mechanisms in MMCs; relaxation or resonance
absorption (Zener), and hysteresis losses. Granato and Lucke [4,5,7] developed a model for
dislocation damping that is based on the vibrating string model, where the string is the
dislocation motion while pinned at both ends by defects. This is an important model because
it has been used to calculate mobile dislocation densities and the spacing between impurity atoms
on dislocation lines from measurements of strain amplitude dependent damping [5].

Zener [6] predicted that grain-boundary relaxation occurs by viscous sliding between
adjacent grains. Nowick and Berry [7] show that the viscous slip model predicts a relaxation
that is essentially independent of grain size, as long as the grain size is less than the specimen
diameter. A satisfactory quantitative theory of grain-boundary relaxation is not yet available [5].

Thermoelastic damping is the result of coupling between the conjugate pair stress and
strain, and the conjugate pair temperature and entropy, as for example during expansion where
the specimen length can be changed by stretching or by heating. This means that a change in
entropy with respect to stress (T=const.) is equal to the change in strain with respect to
temperature (constant stress), and is identical to the coefficient of thermal expansion [5]. When
a beam, plate, or rod vibrates, relaxation takes place under inhomogeneous stress. Bending of
isotropic materials induces uniaxial strain which varies linearly with distance from the neutral
axis. As the beam vibrates, an alternating temperature gradient is set up across the beam, and
relaxation occurs by heating and heat transfer across the specimen. In the case of longitudinal
thermal currents induced by vibrations, Nowick and Berry [7] showed that this kind of damping
is negligibly small at frequencies below 100 MHz.

Fiber. Only limited experimental results and theoretical modeling have been reported.
The fiber is usually assumed to be a perfectly elastic material contributing little or no damping
to MMCs [9]. Internal damping in boron fibers and whiskers was studied experimentally and
theoretically using torsional oscillations [10-121; Postnikov et al [131 using bending oscillations
in the kHz range studied the internal friction in boron fibers. These researchers obtained
dynamic modulus data as a function of temperature. Internal friction in boron fibers is
characterized by a peak between 530 and 630'C. Models published so far treat continuous fibers
as a single material, which clearly is not correct. Continuous fiber, are built up on a substrate
of either tungsten or carbon; the outer surface of the fiber is coated, sometimes with an
elastically compliant coating and/or a reaction barrier.



Fiber/Matrix Interface Damping. The presence of an interface and/or a reaction layer
between fiber and matix raises the possihility of introducing a controlled sc',:re ;&- larpiag in
metal matrix composites. Modeling of the effects of damping on MMCs by Nelson and Hancock
[15] predicted the interface friction slip. Their model consisted of a frictional energy loss at the
interface and viscoelastic energy dissipation in the matrix when the composite is subjected !o
cyciic tensile loading. Good agreement with experiment was tioted for a model consisting of
discontinuous, aligned fibers, loaded along the fiber direction. Transverse loadirg of a :ineariy
e!astic material with rigid cylindrical reinforcement was modeled by Kishore ez al. [16,17], in
wkich no slip, slip, and interface separation could be introduced; only fricticrna losses were
considered. The loss factor, not surprisingly, was found to depend on fiber volune fraction,
coeffia.ient of friction at the interface, load amplitude and constraint stresses at the interface.
WhiskLr or particulate reinforced matix may exhibit increased specif.c damping r'apasity d1,;e
to stress concentrations near the ends of the reinforcement; stress concentration results in
increased dislocation density. Ledbetter and Datta [18] modeled the internal friction for
scattering of stress waves by elastic particles dispersed in the matrix, and predicted an increase
in friction with increasing particle concentration, increase in particle chamcteristic length,
reduction in aspect ratio, and increases in the difference between particle and elastic stiffness.
A more recent model proposed by Ledbetter et al [8] suggfsted an approach followed up by
Schoutens [14] with a simple model based on the thickness of the reaction layer. No resuls
were obtained because of the difficulty in assigning some damping properties and friction
coefficients for the reaction layer. Modeling of damping caused by the presence of
discontinuous fiber reinforcement in a metal matrix indicates that damping is increased by 2n
increase in the fiber-end gap dimension, for a given fiber volume fraction, 9nd a decreasing fiber
aspect ratio [19]. Differences in the coefficient of thermal expansion between reinforcement and
matrix produces residual stresses which produce dislocation substructure. Damping increases
with increasing dislocation density. The amount of damping produced by these dislocations can
be calculated with the Granato-Lucke theory [4]. The role of residual stresses at the interface
has been verified by experiments [2]. These test results show that stress-relieved and T6 stress-
relieved P55/6061 Al specimens exhibit lower specific damping capacity than the as-fabricated
specimens. However. heat treatment is in the primary recrystallization range, and
recrystallization is known to reduce damping by decreasing the dislocation density in the matrix,
and by increasing the size of grains. Stress-relieved specimens showed nearly s'rain-ampitude-
inpendent damping response even at intermediate strain amplitudes, while as-fabricated
specimens showed strain-amplitude-dependent behavior. When stress-relieved specimens were
reheated to 540'C (close to the consolidation temperature) and shwly cooled to room
temperature, measurement, showed damping values consistent with as-fabricated specimens.

Combined Me li..jm. In the absence of detailek; theories to prdict tnc specific
damping capacity of MMCs, it is tempting to use the rule of mixtures to predict propeities from
those of the constituents. in this way, the specific damping capacity is predicted from the sum
of specific damping capa. 't, of constituents weighed by their fraction in the co-nposite. The
fraction of damping due to the interface reaction layer is also included in this sum. The matrix
damping, is the sum of contributions from dislocations, point defects, grain boundaries and other
relevant effects Thlis approach generally over simplifies the prc"'lem otwi'd.iv , in
consequence cannot be considered a; reliable. Hashin I[7O showed iP,-w t';e corrcs-iorlence
principle may be used to relate the effective viscoelastic functions for composites to the effectie



moduli. This method has resulted in reasonably good predictions of specific damping of MMCs
[5].

For many MMCs, one or two damping mechanisms usually dominate for a given
combination of strain amplitude, temperature and frequency. Predictions from dislocation
damping (Granato-Lucke model) and thermoelastic damping (Zener relaxation) have turned out
to be useful. For predicting damping from constituent properties, Hashin's correspondence
principle has been useful [5].

INTERNAL DAMPING DATA

Internal damping data has been reported most often as specific damping capacity 'I,
(SDC) in percent, and less often as the loss or quality factor. Damping is generally shown as
a function of strain amplitude, frequency, or temperature. For example in pure aluminum, the
damping capacity shows very little dependence on strain amplitude until the strain amplitude
reaches approximately 10', and beyond this point the damping capacity rises fairly steeply.
Damping capacity, as we will show, varies also as function of frequency. The damping capacity
also rises with increasing temperature, sometimes exhibiting a maximum. Table 1 presents the
damping capacity of unreinforced structural materials. MMCs have a damping capacity in the
0. 1% to 30% range at frequencies ranging from approximately 1 Hz to a few kHz.

Table 1 - Specific Damping Capacity (*) for Some Unreinforced Structural Materials

Material *(%) Frequency Range

403 SS
Nivco
NiTi 6-40 kHz
Cast iron
Cast Pure Mg

2024 T3
6061 T6 0.4-3 Hz-kHz
1020 Steel

310 SS
Ti-6A1-4V 0.1 - 0.2 40 kHz

Brass -9.06 kHz
MMCs -0.1 - 30 Hz-kHz
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Figure 1 Damping Capacity of boron fiber and silicon carbide coated
boron fibers [9]

Figure 1 shows the damping capacity of boron fiber and of silicon-carbide-coated boron
fibers, as a function of temper'ture. Both filaments were produced on a tungsten core. The
data were obtained at 300 and 1330 Hz for the boron fiber and at 1000 Hz for the SiC-coated
boron fiber (Borsic). DiCarlo and Williams [9] noted that the damping capacity decreased with
dAeL zreatment cycles. The damping agrees with measurements on boron fibers made in the
Soviet Union [10-13]. Borsic exhibits a consistently lower damping capacity over most of the
temperature range of interest, compared to uncoated boron fibers. At 600C, the damping of
both fibers is anproximately a factor of 20-23 higher than at room temperature. The prediction
ot the maximum damping capacity made by Postnikov et al. [13] is approximately a factor oi"
10 below measured values.

Figure 2 shows the damping capacity of silicon carbide fiber as a function of frequency
and F igure 3 show s t] : J -: ri ,, < a : , ,f ti ", . l: e be: :.v firnctlon to ,n era :
[Fgu..r 3 wt. se -.;iarp rise in th dampiig capac, y ireu a rise in temperature. Figure 2 snows
that there is a significant effect on the damping capacity of the fiber due to thermoelastic effects,
This effect rises above the damping capacity due to the microstructure. The peak dampiig
capacity is at about 2500 Hz, where it has increased by a factor of about four above that of due
to the microstruicture. The curve seems to be fairly broad, ranging from approximately 200 Hz
to 50 kHz. A similar but broader peak as a function of temperature has been reported for
bromide treated pitch-base carbon fibers [21]. SiC fiber damping capacity is considerably lower
than for boroen fiber, by a factor of 10- 12.

: i.FJ .
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Figure 2 Damping capacity of SiC fiber at 26*C for the first nine
flexural tones. Fiber diameter 103 Am. Core: tungsten [9].
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Figure 3 Damping capacity of SiC fiber at three flexural tones.
Fiber diameter is 103 Mm. Core: tungsten [9].
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Figure 4 Damping capacity of P55Gr/6061 Al composites for [00] and
[900] fiber orientation [2]. (Tension-Tension Fatigue Test)
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Figure 5 Damping capacity of P55GrI606 1 Al as a function frequency
for [0'] and [90"] fiber orientation. (Tension-Tension Fatigue
Test) [2].



Figure 4 shows the damping capacity of P55/6061 aluminum composite as a function of
strain amplitude and for two ply orientations. Measurements were performed in a tension-
tension fatigue test. These data were obtained at frequencies of 1 Hz and 0.4 Hz. This
frequency range also corresponds to a frequency range where the damping capacity is a
minimum. Note that the [00] orientation gives a fairly fast rising damping capacity with only
modest increases in strain amplitude. Conversely, the [90'1 orientation remains fairly constant
with strain amplitude.

Figure 5 shows the damping capacity of P55Gr/6061 aluminum as a function of frequency
for two ply orientations, [0] and [901]; the data were obtained from tension-tension fatigue tests
at approximately 190 microstrain. Note the minima in these curves at approximately 1 Hz, and
the fact that the longitudinal data ([0']) exhibits a higher damping capacity than the transverse
data ([90']) by about a factor of two.

Figure 6 shows the damping capacity of P55Gr/Mg - 0.6 at. % Zr as a function of
temperature. The material was tested in the as-cast condition, and the result of several indicated
heat treatments are shown. The measurements were made at 0.1 microstrain. The damping
capacity exhibits a peak at approximately 2000K, and a minimum at about 300-400°K. As
indicated, this peak has been attributed by Misra and co-workers [22] to a phase transition in
the graphite fibers from a rhombohedral phase to a hexagonal close-packed phase. The
difference in the damping capacity between the maximum and minimum values is approximately
36%. Overall the damping capacity of this kind of graphite/magnesium composite is not very
high, only 0.8-0.9%.

0.9. .

~ 0.8 P5SGrIMg-O.C%/Zr (as cast).•0.8 

- 0.7

tM 0.5
" 0.4 hombohedral

Eto hcp phase0.3 trans ion in Gr

.~0.23 ~fw~To3
aHoolmm J K o 673 Ka. 0.1 

L ol x 73Kt
0.0 . I , ,

C 100 200 300 400 500 600 700
Temperature (K)

Figure 6 Damping capacity of as-cast Gr/Mg-0.6 at. % Zr as a

function of temperature (22].
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Figure 7 Damping capacity of P55Gr/Mg-1 at. % Mn as a function
of strain amplitude [22].

Figure 7 shows the damping capacity of P55Gr/Mg - 1 at. % Mn as a function of strain
amplitude. The data are for the as-fabricated condition, and for two types of heat treatment.
Unlike the aluminum matrix, heat treatment causes a modest rise in damping capacity. For all
three conditions the damping capacity increases from about one percent to about five percent at
strain amplitudes greater than 2 x 1W, and decreases again following the peaks at about 5 x 10'.
The Granato-Lucke theory was used to predict the strain amplitude at which the damping capacities
are a maximum: at 80 microstrain.

The axial damping capacity of silicon-carbide-fiber-reinforced titanium for the indicated
values of the fiber volume fraction is shown in Figure 8. The vertical scale was expanded relative
to the horizontal scale, creating the impression that the damping capacity undergoes large variations
with small temperature changes. Predicted values based on a model by DiCarlo et al. [23] are
plotted on the bottom graph for frequency values of 1200 and 2000 Hz. These predictions are
quite low, increasing only marginally with increasing frequency and temperature.

These computed curves testify not only to the inadequacies of current models, but also
to our lack of fundamental understanding of the damping mechanisms in metal matrix composites.

The damping properties of SiC particulate- and whisker-reinforced aluminum material
are shown in Tables 2 and 3. The damping capacity and the frequency at which these data were
obtained are shown at the extreme right in these tables. For constant fiber volume concentration,
both SiC particulate- and whisker-reinforced aluminum exhibit damping capacity
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Table 2 Specific damping capacity of SiCp/AI and SiCrAl [24].

Fiber Matrix Fiber Elastic Mod. Density Freq.
Vol. (msi) (glcm) (Hz) (%)
(%) "

Trans. Long.

SiCP CT90 Al 20 17.1 17.1 2.962 62.25 3.98

SiCP CT90 Al 20 17.8 17.8 2.962 111.00 3.20

Sic, 2024 Al 20 15.4 15.4 2.962 53.25 4.72

Sic, 2024 Al 20 16.3 16.3 2.962 110.00 3.05

Table 3 Specific damping capisity for SiCP/6061 and SiC,16061 composites [251.

Material Fiber Elastic Ultimate Elonga- Freq. 1'
Vol. Mod. Strength tion to (Hz) (%)
(%) (msi) (ksi) Failure

SiC,/6061-T6(L)" 17 14.7 73 2.1 32.1 1.571

SiCp/6061-T6(L)" 20 15.2 70 4.5 120.0 2.890

SiC/6061-T6(L)" 30 17.5 77 3.0 20.1 2.325
104.7 0.817

SiC/6061-T6(T) 30 17.5 77 3.0 105.4 0.942

Extended and cross-rolled sheet, L = longitudinal to the extension direction. The
mechanical properties for the 20 v/o SiC,/6061 composites are those for the T6
condition. However, the damping measurements are given for the composites
in the F condition.

Rolled sheet.
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Figure 8 Axial damping capacity of SiC fiber reinforced Ti-6A1-4V [23].
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Figure 9 Axial Damping Capacity of B/l 100 Al and B/6061I Al (23].



of about 3 to 5 percent which does not appear to depend on matrix type. Table 3 shows a
significant reduction in damping capacity due to a change in the orientation of the specimens.
These variations taken collectively may be due to process variations, reinforcement
concentration, and testing frequency.

Figure 9 presents axial damping capacity of B/ 1100 Al and B/6061 Al. Two scales are
used to show the large change in %k with temperature. These measurements were made at less
than one microstrain and at 2000 Hz. The B/6061 Al material was fabricated by TRW, Inc.
The solid curve represents the same material after subjecting it to a heat treatment at 460C.
The heat treatment is in the primary recrystallization range of aluminum. Recrystallization is
known to reduce damping (by decreasing the dislocation density in the matrix), and to increase
the matrix grain size. No systematic studies of the effects of heat treatment on boron/aluminum
materials seem to have been carried out.

1.4 14

BIAI 160611 a - as fabricated /
BISICIAI (60611 1 b - heat treated

1.2- (AVCOl 400*C // 12
E 10 / //
2000 Hz / 

/

S/ /

a //
.6- 4/ 6-

//

-J b

PEAK ANDb
heat treated
550,C

2 
2 -

0 100 200 300 400 500
TEMPRATnE. OC

Figure 10 Axial Damping Capacity of B/6061 Al and Borsic/6061 Al [23].

The effects of a SiC coating on boron fiber (Borsic) used in reinforcing 6061 Al is shown
in Figure 10. This material was fabricated by Avco, now H.R. Textron. Note that the heat
treatments reduce the damping capacity of the composite: this is caused by a reduction in
dislocations in the matrix near each fiber by grain growth due to recrystallization. The dashed
curves labeled c are the curves labeled a in Figure 9. The other dashed curve on the left and
curve c are for damping of Borsic/6061 Al specimens after heat treatment to 550 °C. These data
were obtained at 2000 Hz and 1 microstrain [4,23]. The duration and cooling mode of these
specimens were not reported [5].
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Figure 11 Transverse Damping of B/ 1100 Al and B/6061 Al. Curves
a to c are for B/6061 Al and curve d is for B/i 100 Al [23].

The transverse damping capacity of B/ 1100 Al and B/6061 Al are shown in Figure 11.
The figure shows the results of various heat treatments, which do not appear to affect the
damping capacity. The calculated transverse damping capacity of B/6061 Al with a fiber volume
fraction of 0.5 is shown as a dashed line. The difference in the maximum and the minimum of
the damping capacity exhibited by curve c amounts to only 15 percent.

Figure 12 summarizes the specific damping capacity of MMCs discussed above, as a
function of temperature. The dark heavy line is the damping capacity of pure aluminum shown
for reference. The dashes represent the damping capacity of fibers alone. This shows the strong
anelastic effect on the damping capacity of boron and Borsic fibers compared to SiC fibers
shown near the bottom of the graph. The difference in the damping capacity between these two
types of fibers is approximately a factor of 20-30 at about 600*C. Enhancement in damping
capacity of pitch-base carbon fiber has been reported elsewhere [21], and has not been added
to Figure 12. The relatively large damping capacity of boron fiber is responsible for the
observed large damping capacity of boron-aluminum composites. Note the low damping
capacity, less than 1 percent, of Gr/Mg and SiC/Ti composites, while that of B/6061 Al is
almost as high as the boron fiber itself.
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Figure 13 prc-e27ts a summary of sPt.:ific damuing capacity as a funcion,
amplitude of the MMCs previously dcussed Fhe damping capacity of pure aluminum i-, show i
for reference. The short dashed lines represent computational predictions made with various
models [5] for Gr/Mfg ,nu 6rA 1. Some of these computations included, the efferts of :esiluzd
stresses resulting both from the ] .*fe:em.cv i t e coeif,'cient of thermal expansion netween f-ber
and matrix, and from the fb, r rs otropy. Alth,:gl some of these predictions agree w:l witi
measurements, that of the Gr/IMg composite does not. All tae data presented i. Figurcs I
through 11 are represented as cross-hatchzd areas. Note the behavior of P55Gr/'Mg - I z,!. %
Mn. The damping :apacity exhibits the kind of rise with ineieasing strain amplitude exhibiteJ
by pure aluminum, but at approximatelv 1.5 orders of magnitude lower strain amplitude.

A comparison of the loss factors of various materials and metal matrix composites is
shown in Figure 14. Two conclusions are obvious from this figure: the damping caoacitV cf
MMCs is not better than conventional unreinforced metals, and viscoelastic materials exhibit the
greatest damping. This suggests that for a material to simultaneously achieve high stiffness, hign
strength, and high damp.ng capac:t' the m.tial should combine MMCs with viscoelasti&
materials. This is nothing new!

GENERAL CONCLUSIONS

As already mentioned, the most striking observation is that the damping capacity of metJ
matrix composites is not very good. certainly no better than unreinforc.i metals, except perhaps
at elevated temperatures and high strain amplitudes. Dislocation substrucuzts surrounu'ing
reinforcements tend to imnart strain independent behavior to reinforced aluminum. From
preliminary work reported elsewhere (21], it appears that the damping capacity of carbon-fiber-
reinforced metals may be improved, but at present it remains in doubt that such improvements
would raise the composite damping capacity much beyond unreinforced metals. MMCs do
exhibit a somewhat equal or better damping capacity than low atomic number alloys, such as
aluminum or titanium, making MMCs attractive for space structures. Nonetheless, significar.t
increases in the damping capacity of dimensionally critical space structures must be obtained by
other methods as is discussed by some other papers in these proceedings.

An important problem in assessing the state of art is the database; at present it is small
and this author is unaware of any systematic efforts to compile these data. Thus, one finds ones
self in the ironic situation of needing a larger database to understand the potential of these
materials with regards to damping capacity At the ame time the g-eat expe.titinn that MMC s
would exhibit high damping capacity having failed to materialize resulted in funding reduction
to study these material properties. f any recommendation is to be made it is that fundament;]
work in understanding the physics of MMCs subjected to time-varying loads should continue
with carefully planned experiments.

The theoretical analysis and model deve!opment for describing and predicting the intrinsic
(or internal) dampirg behavior of MMCs is at present rather primitive. There ,Ue a number cf
microscopic modeis .51 .ise to -%Itun imd cver, t), i'ct performance, but they exhibit tnoor
reliability when fiber and matrix material properties are changed. Model calculations in B/A.l,
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tor example, have predicted damping capacity values much lower than observed, implying a lack
of fundamental understanding of the damping mechanisms of these complex advanced materials.
Modeling of fiber damping has been fairly well developed in the Soviet Union relative to the
US, but even this modeling is not enough. Theoretical analysis must consider the fiber as a
composite consisting of a core (tungsten or carbon or something else) surrounded by the fiber
material with an outer surface of a reaction barrier coating and/or a compliant coating. The
analytical machinery is well developed and there are numerc-s palers available describing the
application of linear elastic theory to cylindrical problems of this type. To set the stage for
systematic theoretical analysis and model development, a review of theoretical work in this area
should be carried out so others, including newcomers, would have a sensible place to start for
developing new ideas and approaches. Any new developments in the theoretical analysis of the
damping capacity of MMCs must include the phenomenology o" the interface.

It is obvious from the small amount of data presented in this paper th't horon fibers
exhibit high damping capacity and appear to dominate the damping capacity in aluminum
reinforced with boron. The SiC coating on these fibers appears to decrease the damping
capacity slightly. Damping capacity of boron fibers is distinctly superior to that of SiC fibers.
Damping capacity of other fibers of interest (A120 3, TiB2, B4C coated boron), with the possible
exception of carbon fibers [21], seems not to have received attention. Silicon carbide fiber on
a tungsten core has a damping capacity well below boron fibers, by as much as a factor of 20-
30.

Observations of the small database available indicates that the damping capacity of MMCs
appears to be dependent on process method, fiber content, frequency, temperature, heat
treatment, and strain amplitude. Strain amplitude in a certain range of values (10r' - 0P) has
a 3trong effect on damping capacity. This is generally believed to be due to the Zener relaxation
effect, and dislocation structures can be explained to some extent by means of the Granato-Lucke
theory.

1-I6at treatment has an effect on damping capacity in a way that is not understood.
Theoretical understanding in this case appears difficult and testing various hypotheses could
prove very expensive as large numbers of specimens would need to be tested and
microscopically examined. Nevertheless, present observations of the effects of heat treatment
on damping indicate that heat treatment decreases damping in fibers and aluminum, but increases
it in carbon-fiber-reinforced magnesium.

"Someday all will be well" is our hope

"All is well today" is illusion

Voltaire, 1722.
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Abstract

This paper documents the design and fabrication of a thin-walled composite
tube consisting of inner and outer graphite shells with a viscoelastic layer
between the shells to provide damping. The graphite shells are fabricated
from fabric and unidirectional tape with ply orientations that cause the
shells to counter-rotate in opposite directions when subjected to bending or
extension. Tu1e counter-rotation of inner and outer shells provides a large
shear area at the viscoelastic layer, therefore optimizing the damping.
Stiffness characteristics of a laminated tube are used to determine ply
orientations to maximize damping and structural stiffness. Details of the
tube construction are described along with design issues of incorporating
viscoelastic layers in a composite laminate. Tests results of the tube with an
embedded viscoelastic layer are compared to those of a tube constructed
from the same laminate without the damping layer.

Introduction

The need for lightweight, high-strength structures often leads to various
vibration problems. Advanced composites offer high stiffness-to -weight
ratios, but the levels of structural damping remain relatively low.
Viscoelastic materials, which are also lightweight, offer vibration
attenuation, but cannot be used as structural elements because of their low
stiffness properties. Hybrid composite structures are being designed with
layers of viscoelastic materials strategically embedded in composite
laminates to control motion due to the vibration.

One example of a hybrid composite structure. that can provide high
damping levels, is a thin-walled composite tube consisting of a viscoelastic
layer embedded between inner and outer jgraphite/epoxy shells. The
graphite/epoxy shells are fabricated from woven cloth and unidirectional
tape. The plies of the unidirectional tape are oriented so the fibers wrap
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spirally around the inner shell, and wrap in an opposite (or opposing) spiral
in t,,e outer shell. The application of either an extensional, bending. or
s Anae load to the tube ends will produce relative twisting between the inner
and c,..tei shells since the shells are rotating in opposite directions. This
relative twisting will induce significant shear strain levels in the viscoelastic
m-.tcrial. thus producing a large amount of useful structural damping.

If thp inner and outer shells of the tube were made of an isotropic material.
then the application of either an axial or flexure load would produce tube
extension or bending, respectively, but with no relative twisting. This
bernding-action will produce very low shear levels within the viscoelastic
core away from the neutral axis. Studies have shown 11.21 that the
eifeciiveness of this type damping treatment is extremely limited due to the
s, all shear-stiain areas. Because the two shells of the current composite
design are rotating in opposite directions. shear strain is produced in the

t:nr'ire viscoelastic layer. This large shear area is due to the mechanical
advantage of the relative rotational of the two shells acting independently.

The application of an axial load on a tube with isotropic shells would
produce shear in the viscoelastic layer if the two shells are only coupled in
the axial direction by the viscoelastic layer. This load path will result in
high damping but the tube will have low structural stiffness in the axial
direction due to the soft viscoelastic layer. The soft core material will react
*rn Q.- :ies with the two stiffer shells resulting in a low system stiffness. Other
dess s have incorporated the use of viscoelastic layers with composite
s~"~, ut still requiring one shell to be the primary structural member 131.
With the current composite design developed in the present paper, the two
shells twist oppositely when subjected to loading which causes both shells to
experience the same length change, Thus, the ends of both shells are
coupled in the axi,2 direction and they support the entire axial load without
the soft viscoelastic core reducing the system stiffness. Only the rotational
degree-of-freedcm at both ends of the tube needs to remain unconstrained
leaving the axial stiffness unaffected.

The application of damping to spacecraft structures has significant impacts
on increased reliability and reduced costs associated with launch and
extended operation [41. The material selection for the current composite
design is based upon possible applications for satellite systems. The matrix
system used in the graphite/epoxy material must be capabe of withstanding
the temperature extremes associated with space environments. The
viscoelastic material must also be compatible with this resin system.
Another area of concern is the possibility of contamination by these types cf
materials in a space environment.

The graphite material is a iiber type T-300 pre-inprefnated with a Hvscl
#934 r 'sin system that cures at 350 degrees Fahrenheit. The viscoelastic
damping material is 3M Scotchdamp SJ-2015X Viscoelastic Polymer Type
1210. This material is provided by 3M Corporation in a standard thickness
of 10 mils (.010 inches). The stiffness prop(,rlies for the viscoelastic
material are provided by 3M product information ), -it assing tests were
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conducted by the Boeing Aerospace Company i' on this material and proved
it to be acceptable for space applications. A series of structural tests were
conducted to verify that the chemical composition of the viscoelastic
material did not reduce the mechanical properties of the graphite/epoxy
material [71.

Theoretical Development

The stiffness properties of a laminated composite tube are studied so that
the ply orientations which maximize the extension-torsion coupling and
shear strain in the viscoelastic layer can be determined. Consider a long
slender beam of length L acted upon by end forces and moments. A
Cartesian coordinate system (x,yz) and corresponding displacements (u.v,w)
are defined where x and y define the cross-section plane and z defines the
axial direction. See Fig. 1 for further details. The displacement field of a
point on the deformed beam can be written in its most general form by
assuming that it is a linear combination of global functions that represent
extension, bending, and twisting of the tube and local functions that
represent generalized warping of the cross-section;

u(x,y,z) = Uo(Z) - yo(Z) + /,y),

v(x,y,z) = Vo(Z) + ,Xo0 (Z) + V1.(x'y), (1.a-c)

w(x.y,z) = Wo(Z) - xOy(z) + )'O'(z) + V-(xy).

where uo. vo, and wo represent z-dependent displacements in the x. y. and
z directions, respectively. Ox, Oy, and 00 represent rotations about the x. y,
and z axes respectively, and lpx, and Vy represent warping within the cross-
section piane and 1Pz Is me warping out of Lit cross-sectiorl plane.
Assuming a two-dimensional strain state, one can derive the final form of the
z-dependent functions as;

U°(Z) = z2 & x(Z) = Z,
2

v,(z) = - ? z2 (2a-f)k2 , y(Z) = KX z,(.a

wo(z) = e z, 0o(z) = 0 z,

where e. Kx. xy. and 0 represent the extension strain. the bending
curvatures of the beam in the x-z and y-z planes. and the elastic twist per
unit length. respectively. The six strain components of the beam. which
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fully account for warping (deformation) within the cross-section. are
calculated using Eqns. (1) and (2)

" XX = 1 X, '/yz = X 0 + Z Y.

y = 'Jy, y Az = -Ye +Z, (3.f
vzz -= e -x x+yky, x y + YKY = + Vy ,,

Thc determinaticn of local cross-section deformation functions (yx. W V, 4IJ
is based upon using a separation of variables solution technique cojmbined
with the Ritz method assuming that the warping functions can be expressed
a3 a linear combination of unknown functions that are proportionai to the
axial strain, bending curvatures, and twist rate, i.e.:

Vx = e V 1)+ jx tx2) + Ky t 3 ) + a V U 4 )

Vy = e Vy( + )Cx Ty (2 ) + Ky V( 3 ) + (9 V '(4 (4 .- 0

Vz = e 2zO ) + KX -,z 2 ) + Kyi z(3 ) + 0 z 4

Since the geometry and material properties of the tube are constant wid-.
respect to the z-axis, the current problem reduces to a two-dimensiona'
elasticity problem. where the only unknowns are the warping functions
Since these functions are only dependent upon the cross-section
coordil atjI {x,y), this elasticity problem can be solved by developing special
two-din,_: ional finit.e elements for studying the cross-section warping
behavior. Each lamnlia (including the viscoelastic layer) is discretized into a
series of subr'rio-. sfinite elements) where the warping within each
subregion is <e,- . ing a bi-quadratic isoparametric interpolation
f-rnction:

[# N(xy],~

,,,= [ex )(, ~ 5 .,

Vz [N(x. y)]P zj

The strains are written in matrix form in icrn.-, of the unknown
displacement functions and the axial strain. bendinit cutrvatures. and twist
rate:

le B P + fb'fb (63.a)
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where

N(x,y),x 0 0
0 N(x,y),y 0

B- 0 0 0
- 0 0 N(xy),y (6.b)

0 0 N(x,y) ,x

N(x,y),y N(x.y),x 0

I k,} T= I kp t-x pyI I' ' 6

0000'
0000 :

1 -x y 0 (6.d)

O 00-y

0 0 0 0y0000

and

e. ,w:. x-17. (6.e)

The principle of minimum potential energy is given as
n

61= - 6We): 0 (7)

where n is the number of subregions. dU (0 is the variation of the strain
energy with respect to the unknown local deformations of the ith subregion
given by

6UW =FJ 6 JT C dA"') dz (8. a)

and We(O is the variation of the work ot external torces of the illh subre'zion
that results from the applied tractions on the beam ends. This virtual work
expression will reduce to zero since both the stresses and the local cross
section deformations are assumed to he indepien(hnl of the axial coordinate
(z). A set of linear algebraic eqtations tor determining the local cross
section deformations in terms of hII is obtained bn, substituting Eqns. (6)
and (8.a) into Eq. (7) and carrying out the integration over the beam volume.
Writing this set of equations for the itll snrciion:
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[ .. il P (1) F )I ,., i (_ 9)

where the stiffness matrix is defined as

= 7 -, B * ; d (OI0 a
K(') L C 3dA0a

and the force matrix is presented as

L B(l ) f(jb dA )  (10 b)

Since- both the stiffness matrix { [KW1 ) and the force matrix ( [,b(.1 ) are
linearly dependent upon the beam length (L). then the calculated local
deformations functions are length independent and (L) can be dropped from
the above equations. Unit solutions for the local deformations (Vx.'v.qlz)
can be calculated for each of the tour cases of b' by setting the appropriate
value in the array bt equal to unity and the remaining three to zero. Thus.
the calculated deformation functions can be written in matrix form as

!C

where each of the four columns of IO(] are the unit local deformations
associated with the four cases of Ab. Thus. the calculated functions for the
first case represent the local deformations as a result of applied unit axia!
strain (e) with dimensional units of length per unii axial strain. Similarly.
the second and third cases define the local deformation associated with
applied bending curvatures (K,. Iy) with dimensional units of length per unit
bending curvature. Finally the fourth case describes the local deformation
from applied twist rate (9) with dimensional units of length per unit twist
rate. Similarly. the stress components of the ith subregion can l)c
expressed in terms of a set of unit stresses and b} by substituting Eqns.
(15) and (9) into (2.a)

j) b ('2

where
T- ) + fb (!31,

- ] C''B J
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Finally, the calculated stress components are substituted into the four cross-
section equilibrium equations in order to express (e. 6,. Ky) in terms of
the applied axial force, twist moment, and bending moments;

JA azz dA = P ,  fA x aZz dA = "MY,
A JA (14)

Ay azdA = M, IA(yrxz-xryz)dA = Mz,

Numerically integrating the stress over each subregion that comprises the
cross-section allows one to study the extension-bend-twist coupling behavior
of the constrained tube;

K11 K12 K1 3 K 1 4e - P
K1 2 K22 K23 K24 MY (15)
K13 K23 K33 K34 ic:yj K Mx(

LK14 K 2 4 K34 K44 j Mz

Inverting the above relationship, one can study the coupling behavior of an
unconstrained bar;

all a 1 2 a 1 3 a14 ]j P e
F a 1 2 a 2 2 a 2 3 a 2 4  MY 1 X (16)

a1 3 a 2 3 a 3 3 a 3 4  Mx K (16)

La1 4 a 2 4 a 3 4 a 4 4  M e1

Applying an axial force (P) produces extension as a well as bending and twist
that satisfy:

Kx _ a 1 2 Ky _ a 1 3  a 1 4  (17)
e ale al1l e a1 1l17

Formulation of Ply Orientation

The cross-section stiffness properties for the tube are examined as a
function of the unidirectional tape ply angles 0. The ply angle 0 is defined
as zero when the fibers in the ply align with the axial direction (z) of the
tube. For stability purposes with this design. the fabric plies are maintained
with the fibers oriented at both 0 and 90 degrees. The stiffness properties
of the composite tube are sensitive to the orientation of the unidirectional
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tape ply angles 0. As expected. the torsional stiffness (GJI of the tube is
maximized with ply angles of ±45 degrees and minimized at 0 and 90
degrees. Both the axial stiffness tEA) and bending stiffness (El) are
maximized with ply angles at 0 degrees and minimized at 90 degrees. A
graphical depiction of this ply angle sensitivity is illustrated in Figure 2.
Torsional, axial, and bending stiffness are plotted as a function of the
ui-ilizectional ply angles 0

TL,. coupling of twist to applied extension is evident by the a 14 term within
Ia). The coupling of twist to extension is maximized when the unidirectional
tape plies are oriented at an angle of 30 degrees. At this ply angle. the tube
undergoes a large amount relative twist displacement. but the tube also
suflers a significant reduction in both axial and bending stiffness. Since the
tube is designed to have a primary load path in the axial direction, the axial
stiffness needs to be monitored as well as the extension-twist coupling.
Optimizing the shear between the two shells while maintaining structural
stiffness is accomplished by comparing the extension-twist/extension ratio
of me composite tube for varying ply angles 0. The value of a 14 /a 1 is the
ratio of extension-twist coupling to extensional stiffness. The extension-
twist/extension ratio versus ply orientation is plotted in Figure 3. This ratio
is extremely sensitive to ply orientation and is maximized at an angle of 15
degrees.

To evaluate the effect the ply angle has on the damping of the tube, the,
shear stress within the viscoelastic must be examined. The maximum sheai
str..s shown in Figure 4 as a function of 0 is at a maximum for a 25 degree
ply angle. But once again, optimizing the damping using this method would
result in a penalty in structural stiffness. The amount of damping provided
through matrix shear deformation of just the graphite/epoxy plies was not
considered within this study. The orientation of the plies without a
viscoelastic layer provides a supplemental damping mechanism to the
laminate (81. This effect is not accounted for in this analysis since its
contribution will be small for a fiber-dominated design such as this one.

Tube Construction

The number of plies in the laminate were determined before the the cross-
section properties was analyzed for various ply angles. The types i,f
materials and placement within the laminate were chosen for their desired
characteristic behavior. Figure 5 depicts the order of ply sequencing within
the entire laminate. The fabric material is placed in the inner and outer
most plies of the laminate to provide hoop stiffness to the structure. The
hoop stiffness is required because of the low transverse tension capabilities
of the viscoelastic layer in the center of the laminate. Large relative
displacements between the inner and outer shells in the radial direction
W01 r-'siit in a delamination at the graphite-to-xiscoclastic interface.



Two plies of the unidirectional tape are used in each of the shells next to
the viscoelastic layer. The use of unidirectional graphite material ensures
the properly designed extension-bend-twist coupling behavior necessary to
maximize damping and yet maintain structural stiffness. For this particular
phase of the study, no other combinations of ply distribution or materials
were examined.

The mandrel for the lay-up is a 60 inch long by 2.5 inch outer diameter
solid aluminum round bar. The mandrel is hand polished to remove any
surface imperfections then a releasing agent applied. The first ply is the
fabric pre-cut to the required size. The next two plies are the
unidirectional tape cut in a manner that maintains continuous fibers the
length of the tube. The width of the unidirectional tape is the
circumference of the mandrel including preceding plies times an angle of
15 degrees. When these fibers are then placed at 15 degrees to the tube's
longitudinal axis and spirally wrapped, the edges of the ply come into
contact with one another.

The fabric and two plies of tape create the inner shell of the tube. The
unbalanced laminate of this shell will result in the extension-bend-twist
coupling that Is desired for this design. For this particular application, the
viscoelastic damping layer is applied directly to the graphite/epoxy material
before it is cured. The damping material selected acts as though it is a
pressure-sensitive adhesive and requires only nominal pressure at room
temperature to effect a good bond. Special care is required when handling
the damping layer to avoid creating a void between this material and the
graphite/epoxy layers. To reduce the tackiness of the viscoelastic layer. the
damping material should be cooled to 30 degrees Fahrenheit before
handling it.

The construction of the outer shell is accomplished the same way as the
inner shell. The width of the unidirectional tape and fabric takes into
account the increase in the circumference due to the additional preceding
plies. The angle of orientation for the unidirectional fibers is in the
opposite direction of those for the inner shell. This ensures that the outer
shell extension-bend-twist coupling is in the opposite direction from the
inner shell.

Once the final ply of the laminate is applied, the tube is wrapped with a
teflon film. A layer of shrink wrap tape is applied in a spiral manner to
provide uniform pressure during the cure cycle. The shrink wrap and teflon
film are perforated to allow excess resin to bleed out of the laminate. A
bleeder cloth is wrapped around the tube to absorb any excess resin during
the cure cycle.

The cure cycle consists of an increase in temperature from room
temperature to 350 degrees Fahrenheit in one hour. The cure temperature
of 350 degrees is then held for an additional two hours. The reduction in
temperature back to room ambient requires one more hour. The part is
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removed from the oven then cooled in a freezer to contract the size of the
aluminum mandrel. The composite tube then easily slide,; off the cold
mandiel.

Test Results

A design study was conducted to compare a baseline design without
viscoelastic material to the composite construction with the damping layer.
The plies of graphite/epoxy fabric and tape are identical for the two
laminates. The only difference between the two designs is the absence of
the damping layer in the baseline configuration. Other studies 191 have been
conducted to analyze the effects of embedded damping layers but they
examined the effects of replacing stiffness material with damping material.
By maintaining the same number and orientation of plies within the
laminates of both tube designs. the direct effect of embedding a damping
layer can be quantified.

Measurements were made by the impact-hammer modal-test method with
the specimen suspended in the near free-free boundary condition. To
simulate the free-free boundary condition, the tubes are suspended in the
vertical position by a string. Damping is measured using the half-power
band-width method.
The first natural frequencies are similar for the tubes with or without the
viscoelastic core. The first mode for the tube without the viscoelastic core
is 455 Hertz, while the tube with the viscoelastic core is 400 Hertz.
Damping in the first mode for the tube without the viscoelastic core is 0.6
percent. A damping value of 4.3 percent is present in the first mode of the
tube with the embedded viscoelastic layer. Frequencies and damping
measurements for the axial modes will not be made until end fittings are
fabricated to couple the stiffness of the two shells with the viscoelastic core.
It is important to note that the tube is designed in a state of axi-svmmetrie
extension, but tested in a state of bending. Comparable results are expected
for the load case of extension as obtained from the bending test.

Conclusions
The analytical tcchniques described in this paper enabled the placement o'-
a viscoelastic core and ply orientations of two shells, optimizing the
damping in combination with overall structural stiffness, The test results,
show a reduction of frequency from 455 to 400 Hiertz with the addition of
the viscoelastic laver. A majority of the reduction can be attributed to the
increase in the mass of the tube from the additional material. The
evaluation of the ply orientations within the composite design allows
effective use of the damping material with the smallest penalty in stiffness.
For a small reduction in stiffness, the damping in the first mode is increased
over 7 times by optimizing ply angles and tnibedding a viscoelastic layer.
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Figure 1. Coordinate System
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Figure 2. Torsional, Axial. and Bending Stiffness versus
Unidirectional Ply Angle

10

60-
-8

C

GJ 6 0_ G

0

n 4 - El
_ 4 0~

0

S20- EA

t--2

0- 0
-90 -60 -30 0 30 60 90

Ply Angle o (degree)

HAC-13



Figure 3. Extension-Twist/Extension Ratio versus
Unidirectional Ply Angle
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Figure 4. Maximum Shear Stress in Core versus
Unidirectional Ply Angle
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Figure 5. Ply Sequencing of Laminate
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DIRECTIONAL DAMPING OF THE GLOBAL VIBRATION MODES
OF TUBULAR STRUCTURES BY CONSTRAINED-LAYER TREATMENTS

S. S. Sattinger

Mechanics A Tribology Department
Westinghouse Science & Technology Center*

ABSTRACT

Among the types of vibration modes that may need to be damped in thin-
walled structures are those involving low-order, long-wavelength bending,
torsion, or extension. These modes are characterized by vibratory stresses
that are uniform or nearly uniform through the thickness of the wall.
Although more commonly used for the control of panel bending, shell bending,
and other local modes, segmented constrained-layer damping treatments can also
provide effective damping for the control of such global vibrations. Methods
described for the prediction of global-mode damping include new
interpretations of closed-form solutions generated previously by Torvik. A
finite-element implementation of the strain-energy principle of Ungar and
Kerwin is also described. The axial length of the structure spanned by a
single segment of damping treatment has been assumed much smaller than a
vibration wavelength at the frequencies of interest, making static or quasi-
static analyses useable. Damping loss factors calculated by each of these
methods compare well with measurements on an assembly of damped, hollow,
rectangular-cross-section beams.

INTRODUCTION

A need often arises to design passive vibration-damping treatments
that can reduce responses of several classes of vibration modes of a given
structure. Specifically, the low-frequency, long-wavelength, global bending
modes, the torsional modes, and possibly even the axial modes of a thin-walled
tube may all need to be damped. All of these global modes can play major
roles in the transmission of low-frequency noise and vibration, and their
responses are often difficult to control.

Effective applications of constrained-layer treatments to damp local
plate-bending and shell-bending modes, Figure ib), are common. However, the
use of these treatments to damp the global beam-bending modes of tubular
structures, Figure 1a), and their torsional and axial modes, is not frequently
reported. A previous paper [1] showed that a given constrained-layer
treatment, properly designed, can provide effective damping of the global
bending modes, concurrent with high damping of the local plate- or shell-
bending modes, of open- or closed-section, thin-walled beams. Segmentation of
the constraining layers was shown to be vital in obtaining such combinations
of global- and local-mode damping performance.

*Pittsburgh, PA 15235, (412) 256-1327
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Tube Walls -
Tube allsRibs or Bulkheads

a) Gloal Beam-Bending Modes

b) i.nMPlate - or Shell-Bmndnq mss

Figure 1 - Global vs. local bending modes of vibration in a thin-walled
tubular structure

Constrained-layer treatments may also be required to damp the global
modes of more complex structures in which each component simultaneously
undergoes several different directions of vibration. One example would be the
combined bending and torsion in members of a machinery support structure
vibrating as illustrated in Figure 2. If the damping performance can be
separately predicted for each direction of vibration in each component, the
overall system damping values for combined modes of the entire structure can
then be determined.

Dwg. 94 14A01

Figure 2 - Displacement shape for a combined torsional and bending vibration
mode of a machinery support structure comprised of tubular members

This paper demonstrates that a given constrained-layer treatment can
be effective in simultaneously damping the global bending, torsion, and axial
vibrations of a tubular structural component. Methods are described for
predicting or estimating the damping values for the individual directions of
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vibration, including new interpretations of closed-form analyses performed
previously by Torvik (2] and finite-element implementations of the strain
energy principle of Ungar and Kerwin (3]. Experimental results on a damped
box-beam test assembly, confirming the validity of these methods, are also
given. Applications are primarily to closed tubular cross-sections, although
the cross-section may be of almost any shape.

PREVIOUS ANALYSES OF DAMPING TREATMENT SEGMENTATION

The Ross-Ungar-Kerwin theory (4] is the basis of a method that is
widely used for the design of constrained-layer treatments to damp flexural
vibration waves in plates and beams. However, its application is valid only
in cases where both the damping treatment and damped member are continuous or
where any cuts between adjacent damping treatment segments happen to coincide
with nodal points in a standing wave.

Parfitt [5] extended the Ross-Ungar-Kerwin theory to cases where the
damping treatment is cut at uniform intervals along the length of a vibrating
beam. Parfibt found that the low-frequency (long-wavelength) damping
performance was dramatically improved by such axial segmentation, and he
derived an expression for the optimum spacing of cuts in terms of the
thicknesses and moduli of the constraining layer and the constrained VEM
layer. Assuming constant VEM properties, the optimum segmentation would
provide, at very low frequencies, damping performance almost as high as the
peak damping of the continuous treatment. In this derivation the damping
treatment was assumed sufficiently compliant to have no influence on the
strain distribution in the base structure and to acquire negligibly small
amounts of stored strain energy.

In a similar derivation of damping performance and optimum segment
length by Plunkett and Lee [61, the same assumption of damping treatment
compliance was made. Kress (7) derived an expression for optimum segment
length which is sensitive to the properties of the base structure in addition
to thcse of the damping layers.

Torvik (2] analyzed two different cases of quasi-static vibratory
loading of constrained-layer-damped structural members, both of which can be
applied to the global-mode damping of tubular structures having segmented
damping treatments. Both of these analyses account for strain energy stored
in all components of the system and are therefore applicable to stiff damping
treatments such as are used in the experiments described later. These
analyses are described and interpreted for use in global-mode damping
applications in the next section.

DAMPING PERFORMANCE PREDICTION METHODS FOR GLOBAL MODES

Three alternate approaches for predicting or estimating the global-
mode damping performance of segmented constrained-layer treatments on tubular
structures are described below.

Closed-Form, Quasi-Static Solution for Vibratory Flexure

Torvik [2] analyzed the case of quasi-static moment loading of a
finite-length cantilever beam covered by a single segment of constrained-layer
treatment which is built-in at the root end and free at the opposite end as
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shown in the uppermost view in Figure 3. Flexure in both the base member and
the constraining layer is modeled using Bernoulli-Euler beam theory. The
solution is also directly applicable to a free-free, moment-loaded beam of
twice the length of the cantilever beam.

- ---....

Me

A"

A'

Me )Me'

-J

i , A. -

Constraining Layer ; - ' 3 C + h3

Viscoelastic Material Layer -.

Base member Beam) C---5y-

Neutral Axis, NABase -

Area A Base

Moment of Inertia I INABase

View A-A

Figure 3 - One-side-damped case represented by Torvik's closed-form, quasi-
static solution tor vibratory flexure

For sufficiently long wavelengths, the beam analyzed can also be
viewed as a building block of a long, continuous vibrating beam of the same
cross-section, damped by a segmented treatment as shown in a lower view in
Figure 3. This analysis apr'ies only to the installation of damping treatment
on a planar surface that is. oriented parallel to the neutral surface of the
base member, but, as indic.ited by Figure 4. it can also be interpreted as
applicable to structures that have symwretric cross-sections and are damped on
two sides.* Torvik's analysis applies to the dynamic vibratory case, i.e., to
the case in which there are transverse vibratory inertia forces, provided that
the instantaneous standing-wave bending-moment distribution is nearly constant
over the length of beam covered by each segment. That is, the bending
wavelength must be long in comparison with the segment lengths.

aetting area Al equal to infinity modelm the mondition of zero extension at

the bg>, member mentrold, brought about by symmetry.
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Figure 4 - Two-sides-damped cases represented by the closed-form, quasi-static
solution for vibratory flexure

Torvik developed expressions for stored and dissipated energy leading
to the following closed-form expression for system damping in flexure:

I12G2d
2  F(O)

hE 311 . h 3__ Re LtanhO - 2L (tanhO-6)} 1

where 7)f = flexural damping loss factor = 2 x percent critical damping

/100, and

G*b [1 1 1
g = I="2 EA 1 E3bh3

F( - Im [tan(!e)/(iO)l
F(G) =-2 Re [0] Im []

HMIB- 5



G * bL2  1 1 d2

h E 3bh 3 1

where G*= G2(1 + j12 ) = complex shear modulus of the VEM

E = Elastic tensile modulus
Subscript 1 denotes the damped member
Subscript 2 denotes the VEM layer
Subscript 3 denotes the constraining layer
Re (z) denotes the real component of the complex quantity z
Im (z) denotes the imaginary component of the complex quantity z

and all other symbols are defined in Figures 3 and 4. In contrast with
Torvik's original development for a solid rectangular cross-section, these
results are expressed here in terms of the properties of arbitrarily-shaped
base member cross-sections for greater generality.

Closed-Form Quasi-Static Solution for Vibratory Extension

For thin-walled tubular structure cross-sections, the distribution of
global-mode vibratory bending stresses is nearly uniform through the thickness
of the wall. Under these conditions, which are illustrated in Figure 5, the
bending-mode damping can be estimated by applying a solution of quasi-static
extensional loading of a constrained-layer-damped structural member, derived
by Torvik as an adaptation of an earlier analysis of lap joints by Avery (8].
This solution is also directly useable for predicting the damping of axial
modes, and, as shown later, the torsional-mode damping values can also be
reasonably close to the extensional damping value in some instances.

Longitudinal Axis

Figure 5 - Instantaneous stress distribution in a region of a damped tubular
component undergoing global bending vibration, showing that the
walls are in a state of extensional stress that is nearly uniform
through the thickness

Torvik addressed the case of a member built-in at one end and covered
by a single segment of damping treatment which is built-in at the root end and
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free at the loaded end. This case is shown in the uppermost view of Figure 6.
The solution also applies directly to a free-free, extensionally loaded bar of
twice the length of the built-in bar, which is the case pictured in the middle
view of Figure 6. Good agreement between calculated and measured extensional
damping performance in constrained-layer-damped bars was obtained in an
earlier study by the author [9].

Key assumptions in Torvik's derivation are that plane cross-sections
in the damped member and in the constraining layer remain plane and translate
without rotating. While this pure-translational deformation assumption does
not apply in a strict sense, it is a good approximation to the actual
conditions in a tubular structure in bending. Torvik derived the following
formula for damping under vibratory extension:

e 2 G 2  
F 

2 
_ _)

1 2 jRe I(7+j2)tan(jp) (2)

[E3h3 b 1+ EAh 2 Re j

where ne = extensional damping loss factor

= - 1 Imrtan(i,)/(ig)1
F 2 Re[P]Im[p]

G*b
2  11 

1

P h2  [E 1A1  E 3bh 3 .

C.-,

.. . .- 2 L --( ,- C

C.-j

3 - b Constraining Layer

- " " " - / - Viscoelastic Materlial Layer

h2

IArea A l =AFlang
e

VIo C -C

Figure 6 - The case of quasi-static, vibratory extension, analyzed earlier by
Torvik, as applied to the portion of a structure wall beneath one
segment of damping treatment
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and all other quantities are defined in conjunction with Equation 1 above, or
in Figure 6. Whereas Torvik assumed all three layers to be of equal width,
which vanished in the formula he derived, his formula has been re-expressed
here in terms of damping treatment width, b, and damped member area, A1 , to
apply to situations where the surface area is partially covered by the damping
treatment.

In a separate treatment of the subject of segmentation, Kerwin and
Smith [10) stated that achievable loss factors in extension are lower than
those in flexure for a given system cross-section. This rule decidedly holds
true for solid damped-member cross-sections.* However, as demonstrated in a
later section, the difference diminishes for hollow cross-sections, and in the
limit of beams whose section properties are dominated by flat, widely spaced
parallel flanges, the optimum global bending loss factor tends toward equality
with the optimum extensional loss factor.

To the extent that strain energy is stored in other regions of the
tubular structure that are untreated, the extensional damping calculated in
this manner will overestimate the true overall global-bending-mode loss
factor. The experimental results in a later section demonstrate, however,
that the extensional damping estimate can be reasonably close to the true
bending-mode damping value for rectilinear-cross-section, thin-walled tubular
beams having segmented damping treatment on all panels.

Finite-Element Modeling

In recent years there have been many applications of the finite-
element method to predictions of constrained-layer damping performance. In
many cases these predictions have made direct use of the strain-energy
principle of Ungar and Kerwin [3], which is expressed symbolically as

I J JJ (3)s E U

J J

where ns = system damping loss factor

Uj = strain energy in the jth region or component of the system in a
given mode of vibration

nj = the damping loss factor of the jth region or component.

The modeling to be described here is one such application.

The prediction of global-mode damping performance of segmented
treatments introduces no new kinds of finite-element modeling requirements but
may, if wavelengths are sufficiently long, offer the analyst the option to
perform a static ana!ysis in lieu of a dynamic one. Major incentives for
choosing the finite-element approach for bending-mode damping predictions in
preference to the previously-described closed-form methods might be curvature,
slope, or irregularities such as cut-outs in the structure walls, which could

*A rule of thumb Is that optimum flexural lose factors are roughly a I ator of
three times larger than the corresponding optimum extensional loss factors
fcr s' d crose-sections.
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invalidate the use of the latter methods. In the case of torsional modes, no
closed-form solutions appear to be available as alternates to finite-element
modeling.

The finite-element modeling described here is an adaptation of an
earlier approach of Killian and Lu [11] in which short, offset beam elements
are used in lieu of brick elements to represent the VEM layer. Although
originally used in conjunction with the direct frequency-response method using
a complex-modulus representation for the VEM, this approach also lends itself
to elastic modeling of the VEM layer using the modal strain energy principle.
As in all other elastic-modeling implementations, which are quite common in
finite-element predictions of constrained-layer damping, the results are
approximations in that real-valued deformation shapes are generated in lieu of
complex shapes. All modeling described here has been performed using the
WECAN finite-element modeling program [12].

GLOBAL-MODE DAMPING EXPERIMENTS ON A TUBULAR STRUCTURE

Figure 7 is a photograph of an all-steel box-beam test assembly
specially designed and constructed to verify global-mode damping

I/ I

Figure 7 - Mass-loaded box-beam test assembly, with segmented damping
treatment in place, undergoing torsional damping measurements

performance predictions, generated by each of the methods described above, for
individual directions of vibration. The tubular portions represent the
construction of the larger machinery support structure pictured in Figure 2,
but with a one-dimensional configuration, it would be possible to measure the
individual damping values without coupling among the various directions of
vibration. The three solid circular discs made it possible to use a compact
test configuration by providing mass and inertia loadings simulating reactions
that would be present in a continuous beam of much greater length. Figure 8
shows the design details and illustrates that, in general, the cuts between
damping treatment segments need not coincide with the placement of ribs or
stiffeners. The next section addresses the fact that damping treatment was
applied on all four sides of the rectangular-cross-section beams, whereas the
closed-form solution for flexure applies to cases where only one or two sides
are damped.
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Figure 8 - Design details of the box-beam test assembly

The beams were fabricated by bevel-welding ribs of cold-rolled steel
between short sections cut from 152 mm x 102 mm x 4.8-m wall (6 in x 4 in x
3/16-in wall) structural-steel rectangular tubing. Flat surfaces were
machined on the beam-wall exteriors before the weld-attachment of the discs
and the installation of the damping treatment. Because of weld distortion
there were sizeable variations in wall thickness, and the thickness values
shown represent averages after machining. The total mass of the damped
assembly was 91.6 kg (2021b), of which the undamped beams comprised 15.3 kg
(33.7 Ib) and the damping treatment comprised 3.6 kg(8.0 Ib).

The damping treatment was installed in segments of 1.44 mm (0.0565
in)-thick constraining layer over 0.051mm (0.002 in)-thick 3M ISD 112
viscoelastic damping polymer, giving a fairly large stiffness ratio
(E3h3/Elhl= 0.43). Both sides of the damping polymer layers were bonded to
the adjacent steel surfaces using 3M 1838 epoxy structural adhesive. Care was
taken to avoid adhesive bridging between the constraining layer segments and
the base structure. All damping performance calculations were performed using
the frequency-dependent VEM property values plotted in Figure 9 These
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Figure g Properties used in modeling the 3M ISD 112 constrained damping
layers at the 22% (72"F) test conditions

properties were measured on a different lot of the same damping polymer using
a previously described measurement technique [13]. The extent of lot-to-lot
variation in properties is not known.

The various bending and torsional modes of the assembly before and
after installation of the damping treatment were individually excited in
sinusoidal dwells using an eccentrically positioned shaker. Measurements of
the higher-frequency axial modes were also performed by driving on the center
axis. The damping values were measured by means of rates of decay from these
dwells at shaker cutoff. All tests were performed at approximately 22
(72*F) room tkaperature.

COMPARISON OF CALCULATIONS AND MEASUREMENTS

Table 1 lists measured natural frequency and damping values for the
global modes of the test assembly before and after the installation of damping
treatlent. The results show that the damping due to the add-on treatent far
exceeded the inherent damping of the base structure. The increases in natural
frequencies show that the net effect of the damping treatment installation was
to increase the dynamic stiffnesses in greater proportion than the increase in

Although damping treatment was installed on all four sides of the beam
portions, calculations using the closed-form solution for flexure with damping

treatmnent on only two sides are nontheless useful. Table 2 compares
calculations for two different choices of area moment of inertia, one choice

being half that of the full base-member cross-section as per Figure 4, and the
other being that of only one of the two "flanges" (sides oriented parallel to
the neutral axis). The former choice produces a lower bound to the true
damping, because the damping contribution of the treatment on the sides
perpendicular to the neutral axis is not taken into account. By the strain-
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Table 1

Measured Natural Frequencies and Damping Values for Global Vibration
Modes of the Mass-Loaded Box-Beam Test Assembly

Undamped Configuration Damped Configuration
Natural Damping Natural Damping

'ode Type Mode Identity and Shape Frequency, Hz Loss Factor Frequency, Hz Loss Facto;.

7lexible- 1st Mode j 218 0.00088 230 0.043

qeam 2nd Mode - 669 0.00085 712 0.041
Bending

3rd Mode [ 845 0.00088 896 0.036

4th Mode i 987 0.00070 1052 0.043

itiff- 1st Mode - 305 0.00086 324 0.039
Direction

Beam 3rd Mode* U 1145 P 1229 P
Bending

4th Mode E 1360 P ....

Tcrsional ist Mode 357 0.0010 383 0.052

2nd Mode 511 0.0010 558 0.049

Axial Ist Mode 9 842 0.0031 1005 0.035

2nd Mode l 1323 0.0030 1387 0.028

Indicates point of minimum motion amplitude.
P Indicates measurement rejected as invalid due to coupling with local bending modes of beam wall panels.
A stij-direction bending mode analogous "., se(.ond flexible-direction mode could not be idcntified
but is believed to have existed at a frequency coincident with the first extensional mode.

energy principle, the latter choice should predict the true damping if the
ratio of VEM strain energy to total strain energy in the sides perpendicular
to the neutral axis were equal to the corresponding ratio in the flanges.
However, the results of finite-element modeling, discussed below, indicate
that in both the flexible and stiff bending directions, the fraction of VEM to
total strain energy in the perpendicular sides is somewhat less than that in
the flanges. Therefore the use of only the flange moment of inertia produces
an upper bound to the trTm damping i. instances where the thicknesses are
nearly constant throughout the beam cross-section.

Figure 10 plots the calculated closed-form flexural damping values
from Table 2 together with a curve of calculated extensional damping.
Frequency affects all of these calculations only to the extent that it governs
the VEM properties. The extensional damp-ing curve has been generated using,
for a base member, a flange having 3.35 mi (0.132 in) thickness, which
represents a weighted average of the thicknesses of the four sides. This
simplified approach can be taken because the stiffness ratio, E3h3/Elhl, is
ne.-ly constant around the periphery. The base member width has been regarded
as qual to that of the damping treatment, but to account for the incomplete
covek-age, an area ratio of 0.875 has been used to pro-rate the resultant loss
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Table 2

Damping Values Calculated for Mass-Loaded Box-Beam Test Assembly
Using Closed-Form Solution for Vibratory Flexure

Damping Loss Factor
Natural Using Moment of Inertia Using Moment of Inertia

Mode Type Mode Identity Frequency, Hz of Full Cross-Section of Flanges Only

Flexible- 1st Mode 230 0.0530 0.0639
Direction 2nd Mode 712 0.0411 0.0491
Bending 3rd Mode 896 0.0381 0.0454

4th Mode 1052 0.0359 0.0428

Stiff- 1st Mode 324 0.0417 0.0564
Direction
Bending

* Calculated in accordance with Equation (1) and Figure 4 using VEM properties at damped natural

frequency for each mode. Resultant loss factors have been pro-rated by a 0.949 length ratio to
account for incomplete coverage by the treatment.

factors. The fact that the extensional loss factor curve is bounded from
above and below by the calculated flexural damping values illustrates its
usefulness as an estimator of global bending-mode damping. The peak in the
extensional damping curve is due to the occurrence of an optimum combination
of G2, h2 , and I for the specific Ej,hlE 3 , and h3 values used.

Also included in Figure 10 are the results of quasi-static finite-
element modeling of damping under both directions of pure bending-moment
loading and under torsional and axial loading. Figure 11 depicts the
1/8-region finite-element mesh that modeled one of the tubular portions of the
assembly (see also Figure 8) and shows how these loading conditions were
simulated by imposing constant or linearly-varying displacement distributions
on one of the ends while the opposite end was restrained. The VEM layer was
modeled elastically. The storage modulus and loss factor values used were
based on an arbitrarily-chosen frequency of 340 Hz for all loadings. The
computed damping loss factors have been reduced by an empirically derived
factor of 1/1.2. This factor corrects for the use of elastically calculated
deflection shapes to compute the strain energies in a viscoelastically damped
structure having a VEM loss factor of about 1.0.

The closeness among the finite-element results for the various
directions of vibration adds further validity to the notion of using an
extensional damping calculation to estimate the global bending-mode damping.
Furthermore, these finite-element results are in very close proximity to the
closed-form solution results. It seems at first surprising that the torsional
damping is in such close proximity to that of the other directions. However,
Figure 12 illustrates that the pure-shear deformation of the individual panels
under torsion produces an extensional deformation of damped panel slices
oriented at 45" to the tube axis, and that the effective lengths of these
slices are comparable to the axial lengths of the segments.
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Frequency, Hz

Figure 10 - Calculated damping performance for the box-beam test assembly

Finally, Figure 13 compares the closed-form extensional daip;.,g
calculation with measured damping values for the global bending and
extensional modes. There is considerable scatter in the measurements, but
their trends appear reasonably well predicted by the extensional damping
curve. The scatter may be partly attributed to the earlier-mentioned
irregularities in wall thicknesses of the beam portions. In addition,
transverse shear forces were undoubtedly present in some of the global bending
modes, and these may have influenced the overall damping values differently
for each of the modes.

DISCUSSION

The fact that the damping performance values plotted in Figures 10 and
13 are in the proximity of a peak is the result of the combination of damping
treatment design parameters having been nearly optimized. This combination is
particularly sensitive to the segment length parameter, I. The optimum
global-mode loss factors are considerably smaller than the optimum loss
factors for local-mode plate bending with this treatment (which would be in
the vicinity of 0.15), but they do, nonetheless, represent useful and
effective damping.

Circumferential segmentation of the damping treatment can play an
important role in achieving good global-mode damping performance. Without
segmentation circumferentially, the damping treatment would be forced to
conform to the bending curvature of the base structure (compatible
deformations) by way of transverse normal forces, and the VEM layer would
sustain very little shear deformation as a result. This situation may be
visualized by imagining the four circumferential damping treatment segments of
the test assembly to be connected together rigidly at the corners as the beam
sections undergo bending. This circumferential segmentation was the subject
of an earlier analysis of damped, circular-cross-section tubes by the Russian
authors Vinogradov and Chernoberevskii (14]. The conclusion of their study
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was that the bending loss factors of tubes having axially continuous
constrained-layer treatments can be substantially increased by slitting the
constraining layer lengthwise into a number of arc-shaped segments.
Especially for long axial segment lengths, the same result should apply to
axially seiilmented treatmnents.

Imposed Displacements
Simulating Global Vibrations

Quasi- Stltically A

StIff-Direct ion
Bending-,,

Flexible- Direction
Bending .- ~

11 175 mm

Torsion-//",- 68 i

KY-'Note Major Portions of Base-Beam Mesh Not Shown
I--A-for Reasons of Clarity

Figure 11 -Finite-element model of a one-eighth portion of one of the damped
tubular portions of the box-beam test assembly

0-9. %4.6192

at Sheared Pmnul with Dumping TrgegttntA
b) Deformaton of Diagonally Oriented Strips

View A-A IRotated)

View B-B IRoted)
C) Edge Views of St rip Deformation Depicting

Shear in the VEM Layer

Figure 12 - Deformation of a damped box-beam panel under torsion-induced shear
stress
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.01
- Closed-Form Solution for Vibratory Extension

F u Measur Damping. Torsional Mcd es

a Measured Dmpng. Flexible-Dircion Bending Modes

I Measured cmping. Stiff-Dirfecn Bending Mode p

d Measured D omping, Axial Modes

.01 , I
100 1000

Frequency. Hz

Figure 13 - Measured vs. calculated damping performance for the box-beam test
assembly

If distinctly different values of damping are predicted for each
direction of vibration in each component, the overall system damping value for

each mode of a complex structural assembly can be predicted by using impedance
or energy methods. Finite-element structural analysis codes such as MICA [15]
enable the user to specify individual damping values corresponding to each
degree of freedom of the beam elements used to model the components of a given
structure, and a system damping loss factor is predicted by the code for each
mode of the assembly.

CONCLUSIONS

A given constrained-layer tre:;t4- "- . "'4 neously effective in
damping the global bending, torsion, and axial vibrations of a tubular
structural component. The effective damping of the global modes requires the
use of relatively stiff treatments, and axial subdivision of the treatment
into segments of optimum length is vitally important. However,
circumferential subdivision can also play an important role, especially for
long axial segment lengths.

Torvik's closed-form, quasi-static solutions for the flexural and
extensional vibrations of damped members are well-suited for performance
estimates on these configurations. The use of finite-element modeling for
this purpose may be warranted in cases where curvature, slope, or
irregularities in the beam walls would invalidate the closed-form solutions.

The experiments on the damped, hollow, rectangular-cross-section beam
assembly demonstrate the usefulness of each of these methods for calculating
global-mode damping performance. Although derived for members damped on sides
that are parallel to the neutral axis, the quasi-static flexural damping
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prediction method is useable for performance estimates on rectangular-cross-
section, tubular components having damping treatment on all sides. Measured
and finite-element-calculated damping values for all global modes of the
assembly agreed closely with the quasi-static extensional damping
calculations, underscoring the usefulness of the latter method as a simple,
but reasonably accurate, performance estimator.
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Damped Response of Visco-Elastic Thick
Cylinders of Infinite Extent
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ABSTRACT

Harmonic responses of viscoelastic thick circular cylinders of infinite

extent, subjected to harmonic radial and tangential boundary stresses are
considered. In development of an analytical solution two dimensional elasto-
dynamic theory is employed and the viscoelastic material for the medium is

allowed by assuming complex elastic moduli. The solution provides stresses and
displacements at any point in the medium in terms of boundary stresses. The

resonant frequencies for different circumferential flexural (lobar) modes and
their corresponding thickness modes are computed and satisfactorily compared with
an available solution. The present solution is not limited to thin shells, and

it equally treats thick cylinders with any values of hysteretic damping. Also,
several design charts for estimation of resonant frequencies for a wide range of

thickness ratio are developed.

1Crothers Engineering Hall SDSU, Brookings, SD 57007:
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INTRODUCTION

The trend towards dissipating vibratory energy in cylindrical structures
when subjected to circumferential flexural vibrations requires application of
viscoelastic materials with high strength. Although many cylindrical structures
can be analyzed using the theory of thin shells, thicker cylinders with
hysteretic damping have to be studied using the general theory of elasticity with
complex moduli. The first investigators to study the vibrations of an infinitely
long traction-free hollow cylinder were Greenspon (1957), and Gazis (1958).
Armenakas et all (1969), in particular, considered the transmission of elastic
energy by means of elastic waves, and formulated the eigenvalue problem for
stress free cylindrical surfaces. He presented tables of natural frequencies for
different ratios of mean radius/thickness and for different numbers of
circumferential wave numbers. McNiven, Shah and Sackman (1966) considered the
axisymetric vibrations of hollow cylinder utilizing "Three Modes Theory".
Gladwell and Vijay (1975) studied the three dimensional vibrations of a finite
length circular cylinder with traction free boundaries, using a finite element
approach. Svardh (1984) investigated wave propagation in a semi-infinite,
hollow, elastic circular cylinder with traction-free lateral surface initially
at rest and subjected to transient end loadings. Hutchinson (1980) developed a
series solution of the general three dimensional equation of linear elasto-
dynamic problem. Hutchinson and El-Azhari (1986) extended Hutchinson's work in
solid cylinders to include free hollow cylinders with finite length. Singal and
Williams (1988) studied free vibrations of thick circular cylindrical shells and

rings using the energy method and obtained a frequency equation to provide
resonant frequencies for breathing and beam type modes. They also conducted
experimental investigations to assess the validity of their analysis.

The present study involve the development of an analytical solution to the
harmonic response of infinitely long cylindrical structure with internal damping
subjected to flexural vibrations around the circumference.

GOVERNING ELASTO-DYNAMIC EQUATIONS

For the isotropic homogeneous elastic medium shown in Figure 1,

Figure 1. Reference coordinates and dimensions
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the governing equation of motion in terms of harmonic radial and tangential
displacements amplitudes u and v are:

-pp 2 ur- (1+2G) ra a-24 w (1-a)

and

-pp 2v- (1+2G) -- 2e+2G (1-b)

where:

-au + i CV (2-a)

and

2,.la+_vr r r @u] (-

e and wz  are the volumetric strain and elastic rotation about z axis.
u and v are radial and tangential displacement amplitudes.
p is the frequency of the harmonic excitation.
G and A are shear modulus and Lame's elastic constant.
p is the density of the medium.

Differentiating equations (1-a) and (1-b) with respect to r and 8 and
adding them together yields:

a2a a (3-a)-pp 2xe-(k+2G) [-e+-e--e-
aC ax r - 2

Differentiating equations (1-a) and (1-b) with respect to 6 and r, after
arranging the results, yields:

pp rz,- G [4L, + a ( + X a (3-b)

Introducing two parameters I and p such that

2_._p_ (4-a)
1+2G

2 (4-b)

Substituting g2 and p2 in equation (3-a) and (3-b) they become:

-,..i C+ C e+r 2P e- c12 (5-a)
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r (A) +r a()+Z2 P2 W - 2()(5-b)

Considering the boundary conditions, the solution to these equations are:

e(r,8) - 6ea(r,))
n-Q

W (r,e) f c r,) (6-b)

n-0

where:

e' (r. 0) .32 [Aj, (Ar) +BY, (Pr) I cos (nO) (7-a)

(a , (r., .2 (C.n (pr) D.Y,(pr) I sin (n6) (7-b)

J, and Y, are first and second kinds of Bessel functions of nth order.

MODAL DISPLACEMENT AND STRESS COMPONENTS

Substituting equations (7) into equations (I), modal displacement
components will become:

U. (r10) -- P (A=J.(or) +BnY. (Pr) I cos (ne) (8-a)
+ (2n/r) (CJ,(jAr) .DY,(1ir) ] cos (n6)

v.(rO) -n/r(AnJ.(Dr) +B.Yf(Pr) ] sin (nO) + (8-b)
-2A [C.J, (pr) +D.Y, (ur) I sin (nO)

Amplitude of stresses on the plane normal to the radial axis in the elastic
medium, in terms of volumetric strain c and elastic rotation wz are:

ae (9-a)

0 ro-2G[aV- 0(]
(9-b)

substituting from equations (8) and (7) into (9), component of stresses will be
presented as:

a rr (r . 8) - A .E (r ) B F ( ) C G ( ) D H (r ) ]cos ( rn ) (10- a )

rern(r,O) - [AEn* (r) BnF* (r) CGn,* (r) +D.Hn* (r)] sin (nO) (10-b)
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In the above equations, En, Fn, Gn, Hn, En*, Fn*, Cn*, and It* are functions
of Bessel functions, where:

E (r) -01,T2 (1) -2GP2J4(r) (11-a)

FH (r) -4 1,2 (rP) -2GP2 Y, (rP) (11-b)

GF(r)-4Gn/rJ.x (rJ)-4Gn/2J, Y(r) (ni -c )

H (r) -4Gnp/rY (rp) -4Gn/z2Y, (rp) (ild

E; (r) -2G~n/rJ, (rp ) -2Gn/2JT. (.rp) (il

F. (r) -2G~n/r .(ro) -2Gn/r2Y. (r) (lf

G, (z) --4 Gp2j/ (T ) -2G Jj .(rp ) (l

H,* (r) -- 4G IL2Yll (rL) -2 Gp 2 y(rA) (11-h)

Functions Jn' (x), Jn"(x), Yn' (x) and Yn"(x) are first and secon~d derivative of

Jn(x) and Yn(x) with respect to x.

MODAL HARMONIC RESPONSE

Considering the boundary stresses in inner and outer surfaces these
stresses can be presented as:

R. (b) F. (b) Gn (b) H, (b) C, ao ,,, (b)

RE (b) F; (b) G; (b) H,,-(b) D. 'Cron(b)

or

T~aa -q o.(12-b)
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a, is a vector containing radial and shear stresses on the inner and outer
surface of the medium.

a, is a vector containing arbitrary constants.
T, is a square matrix containing the coefficients in terms of Bessel

functions.

To provide displacement and stre-s components at any point in the cylinder,
equations (8) and (10) can be arranged in the following matrix equation.

2n 2n
oU,, (r, e) /cos (A@l[=O) -Y{ r 2j( r " 2-ny(Pr fian.(r

(r,6)/sin(n) -EiJ(or) -.EYn(r) -2p.J,(pr) -2pY,(pr) (13-a)I:: (r,O)/s E(r) F(r) G.(r) H(r)
(r,)/sin(n)() (r) (r) H(r)

The above matrix equation can be abbreviated as:

A,(r) - S,(r)a (13-b)

where:
Rn(r) is a vector containing components of radial and tangentisl displacement

and stress.
S,(r) is a coefficient square matrix.

Arranging equation (12-b) and (13-b) they result in

D.(r)R.(r) - . (14)

where:

D. (r) - T.s' (r) (15)

For given lobar boundary stress components, Equation (14) can provide the
displacement and stress components at any point in the medium.

RESULTS AND DISCUSSION

The frequency response for different lobar modes of vibrations can be
computed for any cross sectional geometry of the elastic or viscoelastic
cylinders. Figure 2 illustrates the lobar vibration forms for :he first three
modes. Computations were conducted to determine the resonant responses of the
first three lobar modes (n - 2 to 4) and five of their corresponding thickness
modes (m - 1 to 5). Results presented in Figure 3 provide the non-
dimensionalized resonant frequency (frequency factor) versus thickness ratio for
the lobar modes (n - 2,3 and 4) of elastic cylinder. Figure 3 demonstrate
coupling between the different thick. -2ss modes, at particular thickness ratios.
These results are computed for Poisson's ratio - 0,33.
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n=2 n=3 n=4

Figure 2. Lobar Vibration Forms

To verify the validity of the present results, computad resonant frequency

were compared with Armenakas et al (1969) results. The comparison of the

results for different thickness ratios indicates satisfactr--y 
agreement between

them. It is believed that the present results are more acc-zrate 
than Armenakas'

results. This is due to the fact that in his computation, only a few terms in

expansion of the Bessel functions are assumed, however, the 
present results are

obtained by utilizing higher accuracy for the Bessel -unctions of complex

arguments.

Table 1. Comparison of present resonant frequency factors with Armenakas
(1969) natural frequency factors for different thickness ratios

n.m h/a = 0.1276 h/a = 0.1739 h/a = 0.1978

Present Armenakas Present Armenakas Present Armenakas

2,1 0.0101 0.010 0.0175 0.0176 0.D230 0.0223
2,2 0.2408 0.2414 0.1800 0.1763 0.3600 0.3604

3,1 0.0240 0.0270 0.0480 0.0490 0.6078 0.6152
3.2 0.3360 0.3411 0.4440 0.4530 0.5040 0.5084

4.1 0.0530 0.523 0.0910 0.0914 0.1140 0.1145
4,2 0.4440 0.4442 0.5880 0.5895 0.6600 0.6611

Frequency responses of maximum radial displacment fcrr a cylinder having

thickness ratio of 0.5 and poisson's ratio of 0.25, subjected to harmonic radial

stress from inside, for three damping factors of q - 0.D, 0.05 and 0.1 are

presented in Figure 4.
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Figure 3. First five resonant f requency
factors for different thickness ratio
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Figure 4. Frequency response of a point with maximum radial displacement
on a cylinder having thickness ratio of h/a = 0.5 and Poisson's
ratio of 0.25. Excited by a harmonic Internal radial stress with an
amplitude of 104 psi for three different damping factors.

CONCLUSIONS

Harmonic lobar vibrations of thick viscoelastic cylinders were considered
and a general solution based on two dimensional wave propagation was developed.
Design charts for estimation of the Non-dimensional resonant frequencies were
provided and results were compared with available data and satisfactory agreement
was established.
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Dynamic Analysis of Finite, Three Dimensional, Linear,
Elastic Solids With Kelvin Viscoelastic Inclusions:

Theory with Applications to
Asymmetrically Damped Circular Plates
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ABSTRACT

Eigensolutions and Green's functions of finite, three dimensional, linear, elastic solids
with Kelvin viscoelastic inclusions are analyzed. The eigensolutions satisfy a set of integral
equations expressing the reciprocal theorem of viscoelasticity. Successive approximations to
these integral equations lead to asymptotic solutions and an iteration scheme for the eigensolu-
tions. The Green's function is also determined through the integral equation approach.
Finally, the vibradrin of Kirchhoff circular plates with evenly spaced, radial, viscoelastic
inclusions, which cause some of the repeated vibration modes to split into distinct ones, is
analyzed both analytically and numerically for the eigensolutions and the Green's function.
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1. Introduction

Tuned dampers and surface damping treatments are commonly used damping designs
f.1-3]. The tuned damper can be a one degree of freedom system consisting of a mass and a
viscoelastic element attached to the structures to be damped [4, 51. They can also be viscoe-
lastic links connecting complex structures. When the structures vibrate, the tuned dampers
lissipate energy. The surface damping treatments include thin layers of viscoelastic materials
honded onto surfaces of the structures [6,7]. The vibration energy is dissipated via cyclic
bending or shearing of the viscoelastic layers. A review of surface damping treatment is
given hv T"wvik [7].

An alternative damping design is to replace part of an elastic structure by a viscoelastic
:omponent. For instance, slots and holes filled with viscoelastic material can reduce vibration
3f circular saws. The holes and slots can be arranged so that the viscoelastic material is
significantly strained when the structure vibrates in particular modes. The damping design
procedure, however, is one of trial and error, dynamic analysis of such designs has not been
presented.

The purpose of this paper is to provide a dynamic analysis of damping designs through
,iscoelastic inclusions. The damped structure is modeled as a finite, three dimensional, linear,

elastic solid containing Kelvin viscoelastic inclusions. Eigensolutions and Green's functions
of the damped structure are determined analytically and numerically. Special attention is
given to degenerate systems, like axisymmetric circular plates, that occur when the
-orresponding, homogeneous, linear, elastic solid (without inclusions) possesses repeated
'igenvalues.

According to the reciprocal theorem of viscoelasticity (Section 7.3 of [81), the eigensolu-
dons satisfy a set of regular, homogeneous, Fredholm integral equations of the second kind.
Successive approximations to the integral equations yield perturbation formulas and a numeri-
cal iteration scheme for the eigensolutions. The real and imaginary parts of each eigenvalue
cpre_,cVts te k-odal Hamping coefficient and the damped natural frequency, respectively. The

eigenfunctions may or may not be complex depending on the geometry and the viscosity of
,he inclusions. The Green's function is also determined through the integral equation
tpproach.

The analysis is illustrated on the transverse vibration of a classical circular plate with
:.venly spaced, radial, viscoelastic inclusions. The perfect plate is axisymmetric and spectrally
degenerate. fle perturbation theory for degenerate systems predicts that some of the repeated
,ibration modes split into two distinct ones when the inclusions are introduced. Perturbed
,igensolutions are also derived explicitly. In addition, eigensolutions and Green's functions at
-o different excitation frequencies are predicted numerically. The numerical results show

.hat vibration modes with higher natural trequencies possess greater damping and the nodal
urves may be time dependent.

Farmulation

Consider a homogeneous, isotropic, linear, elastic solid containing Kelvin viscoelastic
a clusioi'- ThoAwi as System 1 in Fig. l(a). The elatic solid occupies a finite, three
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dimensional region t l with Larn constants X0, k and density p0. The perfectly bonoeo

viscoelastic inclusions occupy a not necessarily small region t with Lam6 constants 'o, g' o,

density P'o, and Kelvin damping coefficients 4, I-4.

The response of System 1 is equivalent to that of System 2 in Fig. l(b) which consists of

an inhomogeneous Kelvin viscoelastic solid occupying a region c ( i.j'ta) with stiffness

X(r), p(r), density p(r), and damping X (r) and * (r) [9]
X(r) = Xo- X.lJ(r) , ji(r) = go0 - psJ(r) , p(r) = P0 - PlJ(r) (a)

X, (r) = AZJ (r), gt (r) = pZJ (r) (Ilb)

where

r E TC
J(r)= 0r E TM (lc)

and

)-1 = XO-VO, II = Ixo P1 = Po-P'o (1d)

The constitutive equation of System 2 is then

't (w;x'.g'x ,x*) = X 1j EA (w)+2gEj(w) + X" 81,c (w)+2it" e1 (w) (2a)

where the infinitesimal strain eij(w) and the infinitesimal strain rate jj(w) associated with the

displacement field w(r,t) are
1 .1 . •

2 2

When the displacement and stress fields are both harmonic, i.e., w(r,t)=u(r)eI and

't, (w;X, ipx) = oj, (u,v;,Ix ,j± )ev', (2a) implies

o, (u,v;,,iX" ,i* ) = 8j ekk (u) + 2. (u) + v [X 5j jc (u) + 2j." ej (u)] (2b)

In addition, the reciprocal theorem is (Section 7.3 of [8])

aj (uv;XXg*)nju 'j d2r - f d [q% (uv;X4LX*,g*)ju ' d3 r

= f cr(u,v;L,,44,,)njui d 2r - f - [o.(u,v;X,,,,L* )jui d3r
02 x

=J 01,(uv;X," ,.lx )ejj(u')d 3 r = fj aj(u',v;Xg,X" ,I")g (u)d 3r

= J I(u,u'.X.L) d'r + v i (u,u';X,,R") d'r (3)

with

u )= J [ (u)ek (u')+2geFj (u)-1 (u')] d3r

where u(r)evt and u'(r)evl are two harmonic displacement fields satisfying zero displacements
on o1.
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3. Eigensolutions

Exact Solutions. The complex-valued eigenfunction W(r) s [WL1 (r), ', (rI' and
the corresponding complex egenvalhe v of system 2 under zero body force and vanishing sur-
face tractions satisfy

- - %, v;A ,,A. ,L ) = vp(r) '{r,. '= 1,2.IX j

with boundary conditions
W4,(r) 0, on ol (5a)

7,j( ,v;Xt t )fl -0, on GY, i =1,2,3 (5b)

rt the unprimed system. The complex-valued Green's function Gk.rlr of System 3t1 shown
in Fig. 1(c) under an interior concentrated force 8(r-ro)ev" acting in direction xk (k=1.2, 3). is
represented in the primed system. Therefore, Gk(rre)- ( (rlr,, G'rrr)), G{(rlr.) r
satisfies

[(,1 (Gk (r I r0),v; ,,.t 0,0,0) ] - pOV 2Gik(r I ro) = - , 8(r-r 0 ), i , k = 1, 2. 3 (6)

with boundary conditions
ck(rIro)=0, onc l , k=1,2,3 (7a)

Y,,(G (rro),V;k)4,O,O)nj = 0, on 02, i,k = 1,2,3 (7b)

With the unprimed soiution specified by (4), (5a,b), and the primed by (6), and (7a,b), the
-qualities in (3) give the folio--Onz integral equations governing the free vibration of System 2
'9]:
4k(ro) = H [Gk (r I ro),y(r)

-= v2jf p IJ (r)V(r)-G4 (r I o) d r -- v JI (Gk(r I ro),V(r);XJ (r),toJ (r)) d3 r

+ 1 (Gt (r I ro),V(r);X 1 J (r),1 1J(r)) d, k = 1,2, 3 (8)

Gk(r I r0) is seldom known for numerical or perturbation evaluation oi (8). An orthonor-
,ral eigenfunction expansion of (Gk(r r0) is

¢k(r0)
G k r Irn) = j .2. .2 ,, (r), k = 1., 3 (9)

n~l V-+(On

-'here j), and O ,ri (r), OM(r), 0,(r) I are the n-th eigensolution,: of System 3 with ortho-
2ormality

3 o ,4r)40(r)d r = 8, l Oa)

System 3 is defined by a perfect, homogeneous, linear, elastic solid without viscoelastic in-

hisions occupying the same domain T and satisfying boundary conditions (5a,h).
(I), an(I tr , arc reO, .. cC:)te Qe c ?enValuc problem assoxiated wth ystcm I, ik s,,- al-

,mit



J, I (#. (r),$,. (r);X0, k) d'r = o.28. (IlOb)

Substitution of (9) into (8), recalling the definition of J(r) in (1c), and discarding index k give
. (ro)

Wt(ro) 2 + 0v2-- o- U (V(r),#. (r); v) (la)

where

U(y(r),*.(r);v) = v2<W n>p1 - + <WI*.>1 (I Ib)

with

<-#,>PJ =  p PV(r)'#.(r)d 3 r (12a)

<W I C>r I (W(r), . (r);4,g *) d 3r (I12b)

<W@,t f" 1(V(r),#,(r);X,gj)d 3r (I12c)

In addition, (1 la) is homogeneous allowing normalization of (r) such that

4(r) = TI[¥,v] = #.(r) + r 2(,2 . (r), r ! 103a)
m m M =1

m *n

when

V2 = T 2[p,V] 0 -,2 + U(Y,#n;v) (13b)

The y(r) and v of (13ab) are the eigensolutions of System 2 (and hence System 1). In
Appendix A, T, and T2 in (13a,b) are shown to be contraction mappings for sufficiently small
T. and their contraction constants a, and %2 are also estimated. The convergence of the
infinite series in (13a) is also shown in the Appendix A.

As r, -*0, U(W,#,,;v) vanishes if the solution is regular. Otherwise, it is singular.
Singular solutions are not discussed here.

Perturbation Solutions. For regular and nondegenerate solutions, first order perturba-
tion is obtained by replacing q(r) and v on the right hand side of (1 3a,b) by 0. (r) and i o.,
The n -th eigenfunction W,, (r) is

V. (r) = #.(r) + E' 2 2 m(r) + 0 r ) (14a)

where
S= U(O.,m;io2) = o<. > - io),,<, I*m> + <. 4.>

The n-th eigenvalue vn is
v=

I -- < A > + " + --- - } 2 (14b)
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where the branch selected for the square root satisfies lim v, = iwo, for a regular solution. I
't, -)40

the inclusion is dissipative <,, I,,>," > 0, and if it is elastic <*, I , >I. = 0.

Degeneracy occurs when any c., is repeated. The contraction mappings in (13a,b) are
valid if the initial trials [v] 0(° and [(r)](°) for the iteration of v, and W,,(r) satisfy [v21(0) 0-2.

,)therwise, the denominators of the terms containing the repeated eigenvalues in (13a) vanish
md the iteration fails. A perturbation theory for degenerate systems is presented in Appendix
3.

1. Green's Functions

Exact Solutions. The Gr..en's function of System 1, excited by a concentrated force
,j(r-rj)eVt acting in the direction x, (1=1,2,3), is R1(rIrj) in the unprimed system. R'(rIrj)
and v satisfy

d [oij(R(rIrI),v;X,1,X*,4m)] - v2p(r)RI(r r) = -8, (r-r), i, I = 1,2,3 (15)
dXj

a-nd boundary conditions

R'(rIrj)=0, on Y, l = 1,2.3 (16a)

oij(R"(rIr),v;AX,g,X,4*)n = 0, on 02, i,I = 1,2,3 (16b)

"he Green's function GA(rIr)ev of System 3 is in the primed system. Then R/(rIrj) satisfies
,he integral equation

Rl(rolr t) = G (r l r 0) + H [G k ( r lr 0) ,R1(r~r j) ] , k,l = 1,2,3 (17)

.vhere Rt(r 0 Ir,) is the k-th element of the Green's function Rt(rIrj) (k =1,2,3). and H[.,] is
Jhe integral operator defined in (8).

The eigenfunction expansion in (9) converts (17) into
tk (ro I ri) = (roI r,) + T3[IRA (r I r),v]

=Gk(ro!ri)+ 1 U. ,,(ro) (18)M =1 V2 + (OM

.n which the symmetry G,(r, Ir0) = G,(r0 I rj) has been used. T 3 is a contraction mapping for
,ufficiently small 't, (see Appendix A); therefore, iteration of (18) ccnvergtQ to Rl(rlr).

Perturbation Solution. Use of GI (r i rj) for Rk(rI ri) in T3[ ,v yields a first order pertur-
,ation

U (* .. v)
(rr I r) = (Wrf I r) + V I I , -,(r 1)+(r + O(,) (19)

vhere R=IRI,R,R' 1 and ('-.I'(;Aj are Green's matrices and the superscript T deaotes the
'ranspose. The perturbation solution (19) is valid only when v is far from ±iok (and therefore
,,) avoiding the small divisor in (19) and resonance The periurbation fonmilas at resonance
an be obtained ih rmigh an mipproakch simi!ar to that shown in Ap-cnix R, tlhev are not dis-
'ussed here.



5. Circular Plates with Evenly Spaced, Radial, Viscoelastic Inclusions

Consider the transverse vibration of a Kirchhoff circular plate of uniform thickness h
with k evenly spaced, radial, Kelvin viscoelastic inclusions each spanning a small angle e and

located at i i, i=1,2,. ,k from r=r 0 to r=b. The inner and outer rim at r=a and
k

r =b are free, clamped, or simply supported. The eigensolutions and the Green's function of
the asymmetrically damped circular plate are evaluated by the methods derived previously.

Axisymmetric Circular Plates. Let O,,, and c (r) be the eigensolutions of an
axisymmetric circular plate with n nodal diameters and m nodal circles. When n =0, the
eigenfunctions are axisymmetric; i.e.,

(,.0(r) = R.O(r) (20a)

When n > 0, the eigenfunctions

D,,. (r) = R,. (r)cos(n O+a,,.) (20b)

• ,...(r) = R,, (r)sin(n O+o..) (20c)

correspond to repeated eigenvalues o,., = o,,,,. In (20abc), a,,. is an arbitrary constant and
R,,. (r) is a linear combination of Bessel's functions satisfying boundary conditions at both
rims and the orthonormality conditions

f" poh 0. (r)O, (r) dA = 8, 8,, m~p = 0,1, 2... * n, q = 0,:t~.f .... ±2,

fA I ((D. (r),-Op (r);D o,(70) dA = oT 6nw, .,,m ,p  = 0, 1,2. . . * n, .q =0, 1, ±2,. . :.

with the bilinear operator

I(u'V"Do0a°) = Do[ V2u V2v+ 2(1"--c°) (r 2r)o r)
rd 2 TO r arAe r2 a

_1la L a2U ) 21_ l+ IL _ a2V) i)2U
2 r r 2 A 2 ar2  r arr 2 a2 ar 2

h, Do, po, and a0 are the thickness, flexural rigidity, density, and Poisson ratio of the axisym-
metric plate.

Perturbation Solutions. According to the perturbation theory for degenerate problems
in Appendix B, the k viscoelastic inclusions af'_,ct the plate eigenfunctions ,,(r)
corresponding to eigenvalue o,,, = o, _,, through

- +

k 2  b<T,,. I Opq>p f I h PTh,. (r)4)pq (r) rdrdO0

- £

k 2 b<,'m., I /x/>/" = Z I f E ]1(T,,,'(Dpq ;D YO *) rd rd O0

and
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k 2 b
=T"" I Opq , f I (',r ,pq;D 1,o1)rdrdO

j-1 -6 j " O
J 2

with DO, aoo derived from Xj, 4j in (lb) and DI, a, derived from X1, g, in (ld), respectively.
For example, to transform <T, I Opq >p, above to the asymptotic form (B-la), define

11(0) = J p Ih T,, (r)pq (r) rdr (21 a)

and

r(o) - f Il(O)dO (21 b)

Therefore,
k (<'T'. I(m >p, I [ [r'(O+ -- O -7)

j= 2

Use of the Taylor expansion around 0=-6 gives

k [TTj) + I i + 122
<d,,,, 'pq >p1  = >P II(j)+ 24 dO, (22)

Compare (22) with (B-la) to obtain
k b

<T' ID1_pq >(O)p = f [ p jh T,,(r)p(r)] rdr , <IF pq>() = 0 ,••- (23a)

Similarly,
kb

<TM 'pq>t()= rJ[eP,--'N;Do)1 -,rdr , <,,,.m iPq>Q)=O,. ..0 (23b)j=l =9j

and
k b

<*T, tlDq m>t(°) =  I, f[/1 ('a'*D ;D ,' Yl ) l rdr , <T,, I tn~q >Jl)=o, 0 , (23c)

With <TM,,. I(Pq >('), <Tm I4)pq >,Q), and <T,,m I DPq >1i ) (i=0, 1,.) ir (23a,b,c), the results

derived in Appendix B can be applied directly. From (B-5) in Appendix B the following
coefficients are needed for the explicit expression of ',,. (r).

k b

dr0
sI Sr r( D D  rdr

j=- 

e'sm(°)= f S 2i (." ..p" Ih (r, (r)(Dpq(r)- "lm,1((D, (')p4 D '*ord
=I ro Od

d,,( ' ) = eq(') = 0 .

For each pair of repeated eigensolutions (m ,n) and (m ,-n), the unperturbed eigenfunc-
tions are specified via diagonralizaion of the matrix

H CAr-



d, ( )  d;.-R(O) A4011- 8022 (A' + B) 12 1
D(0) n dZ._(o) do, m-n

( 0 )  
(A+'n + BZ)O Amn0 2 2 -Bm" 1 1

where AP% and BZ are complex coefficients given by

AP% =pIhCoo2 R.(r)Rp.(r)rdr
ro

d2Id 22

(D i o,, ,D~) (-+ ----% )R.() , +- - )Rr~
'o dr r dr r dr r dr .2

_ [l(1. liom D(l_ ) ri d2R,,.(r) 1 doq2

dr2  (rr2)Rpq (r )

d 2 R(r)1L d n2 1
+ dr2  r dr r2 )RnI(r) rdr

*b

Bq -- 2 2Di(I- i)-io,,..D(1-O)]J I d -)R. (r)][(. r -A)Rpq(r) ] rdr
fr r dr r rd

and

01k 2n M(k)

01, = cos 2n( s +a,.) =
j-1 -(I + cos2,,,), 2n M(k)

k 2n M(k)k 2'
022 = Y sin2n () + a,,)= k= 2(1- cos2a0 ), 2n =M(k)

k 0, 2n M(k)012 =, Sinn +t~ +a,)cosn (6, +a(,,,,) = k
jf1 - sin2a,,,,, 2n=M(k)

in which 2n =M(k) means 2n is an integer multiple of k. Following Appendix B, the unper-
turbed eigenfunctions (D,.(r) and Ob,_,(r) require D(°) to be diagonal; i.e., 012=0, Or
equivalently,

0, -, i . .. ,if 2n=M(k)

arbitrary, if 2n*M(k)

In the sequel, a,, =0 when 2n =M(k). If 2n *M(k), a, can be shown to be arbitrary at least
up to the second order. Therefore
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k (A,,-aB) 022
2n M(k)0 (Amn -BR)

D( ) =
kAm 0

2n =M(k)0 B

For the 6, classified above, the repeated 4%,,, (r) evolve into two distinct groups
diepending on the number of nodal lines n and the number of inclusions k that are spaced
equally on the circular plate. Application of the perturbation formulas in Appendix B gives
the following results.

The eigenfunctions "'m,,. (r) of the asymmetric plate remain arbitrarily positioned and the
eigenvalues remain repeated (to the first order) if 2n eM(k), n*0:

ek mB + am 2

v,,, = v,,,._ , = iM - i o (AM, M)+O(e2) (24)

Note that v,,,,, are not imaginary because A,, and B' are complex. The complex eigenfunc-

tions, perturbed to first order, are

F .(r) = R,. (r)cos(n 0+a, )

2n MR _ - q (r) + 2 2 -(D (r) + 0(e2 ) (25a)
2 2 O2 x 2p

~q M(k >-t -(JDpq q =Mk)+ mA-pq

,, (r) = R, (r)sin(n +a,,, )

+ M q ., A 2B ,--(r) - O A 2B P-q (r) + 0 (e2) (25b)
q=M(k---m q=M(k)+#, ML q-

with a,,,,, arbitrary up to the first order perturbation, and denotes double summation on
q =M(k )-n

integers p > 0 and q > 0 with q = M(k) - n and (pq) * (m,n).

The eigenfunctions 'Pmt,(r) are termed split modes if 2n =M(k), n *0. because the com-
olex eigenvalues are distinct:

v,, io),,-i Ek A" + 0(e 2 ) (26a)

v,,-n =i (o, + i - B- + (E2) (26b)

The corresponding complex eigenfunctions, perturbed to the first order, are
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,= (r) = R, ,(r)cosn 0

m, A O(r)
A 1PO~r AZ , (1pq (r)

°O0, ) + =MknnMknn q

- F AP 0 E 0  ( -q (r) 2Dq()] ( (27b)
,._, (r) =R,, (r)sinn 0 + Eq() + O )

q=M(k >-n+mn ~q

The eigenfunctions T',o(r) are not axisymmetric to first order perturbation:
+ A/,% $pg (r) + 0 (F2) (28)

'i'm(r)= RmO(r) - ek (0. 0 2 (2 )2 _ ])p
I P 0  -O/O 0 p=O q=1 0 q

VZp q=M(k)

with eigenvalue

v.0=i0 m0-i - Am O + 0(e2) (29)

where , denotes the summation on the positive integer q with q = M(k).
q-1

q-M(k)

Numerical Solutions. The eigensolutions and Green's functions of a circular plate with
three equally spaced, radial, Kelvin viscoelastic inclusions are computed numerically by the
perturbation iteration method (13a,b) and (18). The inclusions are thin sector bars extending
from rib = 0.75 to rib = 1. The angle e spanned by each inclusion is 0.035 rad (=2.0o). The
material properties satisfy

po' E E Jo 2
- =0.5; co'= 0 .3; F-== 0.05; o=0.3

Po E0  E0 q 4p b

Eigenfunctions with 0 to 20 nodal diameters and 0 and 1 nodal circles are used in the
series in (13a) and (18). In calculating the eigensolutions of the asymmetrically damped plate,

the iteration converges if the differences in I " I iv', and in I In ,, (r) 12

* I I FpP .(r)l 112 between successive iterations are less than 10-6 and 10 - 1, respectively.

The upper bounded estimates of the contraction constants a, and %2 in Appendix A are
calculated in advance to guarantee convergence. For a 3-inclusion plate, calculation shows
that a,a 2 < I for modes up to 7 nodal diameters and zero nodal circles. For these modes, the
perturbation iteration is guaranteed contractive and convergent. For modes (0, 11), (0, 12)
and (0,13) a,= 24.3, 14.5, and 17.7, but the iteration converges; the results are shown in

HCA- 11



Table 1.

The normalized complex eigenvalues V,,,, of the 3-inclusion plate are listed in Table 1.
The exact eigenvalues of the axisymmetric plates are also listed for reference. The resultc in
Table 1 show the split in (D,,,(r) when 2n =M(k). In addition, Table I shows that damping

coefficient - Re[V,, I and damping ratio Re V both increase as Tm[v, ] increases.

For example, 0,13=4.54% while 1=0.05%. This suggests that the damped circular plate
possesses large stability margins for high frequency modes.

The eigenfunctions of the damped circular plate are characterized by nodal li..es that
periodically shift their positions at twice the characteristic frequency. The evolution of the
nodal lines of (0, 12) cosine mode is shown in Fig. 2 for one-half of a period.

The loci of eigenvalues V,, with respect to on the complex V plane from three to six
nodal diameter modes are shown in Fig. 3. Bifurcations occur for split modes 3C, 3, 6', and
6s as predicted by (26a,b).

Green's Functions. The Green's function R (rlr0) of the asymmetrically damped circu-
lar plate under harmonic excitation is also found by the perturbation iteration method. Two
Green's function displacement contours are shown in Fig. 4 and 5. In Fig. 4 the load is
applied on an antinodal line of the unperturbed modes with circumferential distribution sin30,
sin90 ..... and cosk0, cos120,.... The perturbation iteration terminates when difference in

I I -nhR (r I ro) 12 between consecutive iterations is less than 10-7. In Fig. 5 the excitation fre-
4b'

quency is near the 3 nodal diameter cosine mode resonance (cf. Table 1).

6. Conclusions

1. Explicit perturbation fonnulas and a numerical iteration scheme are developed to
determine eigensolutions and Green's functions for finite, three dimensional, linear, elastic
solids containing Kelvin viscoelastic inclusions under the condition that the solutions are regu-
lar at the inclusions. The perturbed eigensolutions are represented in a convergent series of
orthonormal eigenfunctions of the perfect elastic solid. The perturbation iteration generates
results to the precision required provided the perfect solid solutions are known.

2. Perturbation analyses show that all vibration modes are damperl by a viscoelastic
inclusion. The damping of the n-th vibration mode is determined by <Q, 1 ,,>,. which cannot
Vanish. The viscosity of tc inclusions affects natural frequencies through second order per-
turbation.

3. Circular plates w:th I' evenly s;paced, sector, Kelvin viscoclastic ircl:isions are studied
by this technique for eigensolutions and Green's functions. The repeated eigensolutions
@,,,(r) with m nodal circies and n nodal diameters of the corresponding, axisymmetric, circu-
lar plate split into two distinct eigensolutions when 2n is an integer multiple of k. Otherwise,
4,,,,(r) remain repeated. Nurn'- ' 1' 'suits show that vibration modes with higher natural fre-

,,'cies possess relatively L mping ratios. The location of the nodal curves of the
1,rturbed eigenfuncions on changes periodically at twice the eigenfrequency.
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Appendix A

This appendix shows that T, and T 2 in (13a,b) and T 3 in (18) are contraction mappings
for sufficiently small T, and determines an upper bound to the contraction constant of each
mapping. The convergence of the series in T, and T3 is also discussed.

Mapping T 1. Substitute (13b) into (13a) and recall U(¥#,#,,;v)=O(ta) to give

V(r) (r) + U(V ;V) ,,,(r) (A-la)
m O2_)m.2+UQ4F#n;V)

U (v,,,; i &oCt()+ 0)2 (02-2 tr)+O2)(A-I1b)
mU m

Equation (A-lb) is shown to be a contraction mapping up to 0 (,r) under the strain energy
norm

I lxI ISE = I (x,OIO) d~r (A-2)

where Y is the complex conjugate of x. Consider the first order mapping T1 defined by

* r 02< I >P + i 0). <V I#M >r _ <V I # >1 (
T M,,(r) +' 2 2 T,(r) (A3)

then

I IT*V 1 -TIV 21 1 2E=

1 2 12
I D; <V-2I #m >p1 +i (% <V1-V21 *m >I' -<V-V2 *m >I 1 2
1 22 COmT (A-4)

Because every y is normalized according to (13a), the eigenfunction representation

V, - 2= ' at (r) (A-5)

implies that S ¥112E = a'na 2 ad
k

IIT* V, - * 211 )n k(red n+i(0 k 12
I ~S ITV-~21 = ' 'b(od+no e,) I (A-6)

where db <#k I+,, >p1, fk =<#t I,,>r, and eb, = <#k I m>1. With the Schwartz inequality
I _. 2 12 1i 0)2 d + ~ e , 12

aA((Od,,+iWf ,-e ,) I -< I a i1 1 1 Wf V21 SE (A-7)
k k I a I

(A-6) is reduced to

T lTy 1 -T*, 2I 1 2E w- a I IV,-V2 112 (A-8a)

with
I CO 2d + i o.f A,. - ekn 12

a, = k'd' f 1 (A-8b)
m k I - (WM!W,) 2 ])O m
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a, < I is a sufficient condition for the contraction mapping (A-l b) to first order of t,.

Mapping T2. Substitute (13a) into (13b) and retain terms up to 0 ('c)

V2 =0). + U (+. (r), . (r); v) + 0 ( 2)

Then v2  2 v2) <.1 <.,.>]+ (2)
-- v = MV -V 14 It. >PI VI+V 2 4.1C>-I+Oc

2....2 + + QC2)

2 1 -v) dnn + + L-

where v1 v2 = i O), + 0 (Tc) has been used. Therefore, T2 is a contraction mapping up to 0 (tc)
if

f%= I d. + i I < I (A-9)
I 2(o, I

Mapping T3. The proof that T3 is contractive follows that given for T1 because T3 is

the same form as T* with ' and io),, replaced by and v.

Ivdk-vf* + ek 12
a 3 21~ 1' W.-JI

,1k,- I [+(/(,m)2 ])ko, I (

a 3 < I is a sufficiency condition that T3 is contractive.

Convergence. The convergence of the orthonormal eigenfunction series in (13a) and
(18), according to the Riesz-Fisher theorem, is determined by the series

V S ~ mpV P I mi+')I*,i (A-li1)2 2
I v2v~~:V<ll>° +<!~~> CO

Apply the parallelogram law twice to (A- 11)
1 212 12

I V2<__M>p_ I V<V I>. <V 14. >i 12
S <2" 1+4' I +4'1 2 2 I (A-12)

I I I +

Furthermore, the Schwartz inequalities associated with the inner products <- 1>p: <.I->,., and
<- I>1 give

12
2'[P' Ip I 2IIS !5 2Y, v 2 O) 1f PI

L 12 r 2
M I v2 + o)2 I1M, v2 + K) !l A 3

where II. 1 , III I., and I I iI are the natural norms
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2 5 P11 W~
PO Po

and

I i#, 112 <5 c2J I( ,*m;kood3r = c20o.2

where c1 :Max =, ,and c2=Max , . Therefore,

22-PO 90V+ IV{

+4 5+i V2 1

,4,,,, r2 o2 4( 12 (A -14)
m41 ~ V(0.m2 r 0 .1 12

The three infinite series in (A-14) converge if the Green's function representation (9) exists.
If V is regular, then I I IP,,11 I I,., and I lyl 11 are finite. Therefore, the series in (A-il)

converges for it is monotonically increasing and bounded above by the RHS of (A-14). The
convergence of the orthonormal eigenfunction series in (13a) and (18) is guaranteed by the
Riesz-Fisher theorem.
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Appendix B

Assume that the first 3 eigenvalues of a finite, elastic solid without inclusions (System 3
in Fig. 1(c)) are repeated and the remainder are distinct. The perturbation formulas (14a,b)
are not valid for the eigenfunctions W (r) (n <3) because small divisors appear for the
repeated eigensolutions in (14a).

Let e be a dimensionless, small parameter measure of the inclusions (e.g., volume ratio
of the inclusions to the solid). Being defined on the small inclusion domain t,, <w,, 10>p,,

<W, 0, >t, and <V,, Im>l can be expanded in asymptotic series of F; i.e.,
,3 W. (B-la)

<1V, Ix>pi= Pln(r)O.(r)d3r = e F&i <w, Im>P(
c 

i=O

< 1 *m,>, j I('.,,;),Px) d r = e i <- i >" (B-lb)
TC i-O

and

<4n (.,*m;X4,id 3r = e e <V. > (B-ic)i=O

where <¥V *. >O)m < >I 1 4, and <V, I m>J) are coefficients of the asymptotic series.

These coefficients can be determined explicitly by expanding the integrals JC ( . ) d3r into

series of e and comparing these series with those in (B-labc). This process is illustrated in
Section 5 when obtaining (23a). Therefore,

U(Vn,*m;V.) = F I E [v2~wn inm>Vn<VR I#m>>,1 +<V I0mni]
i=o

Assume also that the eigenfunction #y,(r) and the eigenvalue v, take the asymptotic series
representations

.(r) (r) + E' aj#j(r) + e2 ]' bn Oj(r) + (B-2a)
I j

vn =(i) + E.t, + + • •B-2b)

or
2. ~2
nE n G)2 + c(2ioRtl ) + E2 (2iOnflX. +UPI) + (B-2c)

Equation (13a) for the exact moce shape 4', (r) (n ! (3) is then rearranged a.,

#. IE V . >'i)- -pV <Wn I O>r +<W.nI1m>f '
lv"(r=O(r) + E 4 (r2+WM ,= 1 2 i , B ,  + e ( 2 i (o , k , + .)  + • • -

+ Y 2 2 *(r), n_<3 (B-3)

,n =f I VM + COM

where the troublesome small divisors in (13a) are addressed by the second term on the right
of (B-3), which contains an order e0 term d) -o) 2<# 1,.-, < ,>/.)+ < I,> "

(nm !(3). In order that the perturbed mode shape W, (r) remains nearby the unperturbed e,
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(r), n = 1. 2 13 must be specified such that D(0) ra [d, )] (n,m <13) is a diagonal matrix.
The specification of #, (r), n = 1,2, . .. ,13 is unique only when all the diagonal elements of
DR are distinct. Otherwise, those #, (r) corresponding to the repeated diagonal d ) can be
arbitrarily chosen within any orthogonal transformation.

With diagonal D(°), (B-I), and (B-2a,b), equations (13a,b) for the exact 41,(r) and vX
(n < become

+ (r) = (0(r) + a " +2 e, ." +
m=1 2ijo, A, ltl nj m

e2 'aj (d( +ej.O + e ()+ dZ)_(L +  An )d+(ml) +
A, 2i (o,

[b ... tLA",. I,.(o) + L" ] }2it p-'441
a rv  + [bJ -(- +-n)a *Id/) +0(E 3)

+ {Ed.() , j(.)+d,.) .,. i o .d() + 0() ~ (B-4a)

M 0+1(2 021 Li

and

where

dpq4) =-0.24 p I q > (i) R4p1 IP ~+ 4,Iq 1,>?
ep,) = 2i ). A~. <#p I 0,t >(,) ,t <*t I0 >/) n: P. i =0, 1, 2,3. , , (B-5)

pq~ qL< I(

First Order Perturbation. Comparison of (B-4a,b) with (B-2a,c) to the first order of e
implies

It,, 2= =# 20 +>( - Cn I > (°)  (B-6a)

and

tor n 13,m >13

a., (B-6b)
a. ,d.0) + ,,(0) + ,(,')

i'f+1 , for n,m S13

If A, g,,,, the perturbation a,,,. (nm <15) is well defined by (B-6b). If An -A'm, a,,, , (r),
and 9,. (r), n, m -- 13, must be determined by higher c:der perturbations.
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Second Order Perturbation. Assume that I, are repeated for all n = 1,2 .. 13. The
procedure shown below can also be applied to the case when some of the I,. n 1,2 .... [5.
are repeated. Select the unperturbed orthogonal eigenfunctions #, (r), n = 1, 2. 13, such that
the matrix P(')[p,sI (rs !53) with

d (o), (o)
pr = E - 2+ e( 0) + drl)" (n 53) (B-7)

is diagonal. Comparison of (B-4a,b) with (B-2a,c) to the second order perturbation E2 gives

S Pnn, -P), + ( ,(02i-j 2 ) + L(,,) + (B-8a)2 i c o , , 2 i o pt j -:O -1

as well as the following relations between a,,,,, and b,,

b,n = 1 2 aljd,()+ P -dn)a,1 (B-8b)

2 _21ZCOrn ( on j=

'jin

for n 13,m >13, and

a, (ej m) + d,()) +  bnjdj ) - Pnn,, an + f (,0) + e(1) + d,) 0=0 (B-8c)

for nm _13, where f,> (2i o,X,, + .2)<#p I* >()-X,,<*, Iq>i). Notice that a,,,,, for nm !53
is unknown in both (B-8b,c). Substitute (B-8b) into (B-8c) to eliminate b,, and recall that
[p,,,,, I is diagonal for n, m 5 3. These reduce (B-8b,c) to

I - (e,$0)+d.(i)-d 0)a,)dj(.0) ft()()a =2 + , apjn -+-- f()+ e() + d (B-9)
pO -PM 0 C)j -), n

for n, m < 13. If p,,,, =p,,. (i.e. X,, = ,, then a,,,,, is not specified uniquely. Higher order per-
turbations similar to the one described above can be developed.
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Table 1 - Splitting of Eigenvalues in a Circular Plate
by Three Viscoelastic Inclusions

Complex eigenvalue , ,v,,,, E

Plate: clamping ratio 0.5; a=0.3; fixed at inner rim, free at outer rim.
Inclusions extend from r =0.75b to r .zb; c=0.035.

Po' E0' EOIh 2

O L =.5; ao'=0.3; ,= -=,Eo0.05; co=0.3.
po E0  E0  4POb 4

Eigenvalues With Three Inclusinst
(m, n) Mode Without

Inclusions: Re[Vm,,,] Ini, ]

(0,0) axisym. (0, 7.88264) - 3.5974x10 -3  7.90959

(0,1) cos (0, 3.04334) -4.0253x10 -3  8.06966
sin (0, 1,.04334) -4.0253x10 -3  8.06966

cos (0, E.89915) -7.2558x10 -3  8.92844
(0,2) sin (0, 8.89915) -7.2558x10 - 3  8.92844

(0,3) cos (0, 11.23423) - 1.4344x10 -2  11.31474
sin (0, 11.23423) -3.1725x10 -2  11.20828

(0,4) cos (0, 15.49129) -6.4819x10 - 2  15.51938
sin (0, 15.49129) -6.4819x10 -2  15.51938

(0,5) cos (0, 21.62483) - 0.15262 21.66391
sin (0, 21.62483) - 0.15262 21.66391

cos (0, 29.45800) - 0.43977 29.63642sin (0, 29.45800) - 0.18127 29.41778

(0,11) cos (0, 90.41296) - 3.2630 91.58853sin11)
sin (0, 90.41296) - 3.2630 91.58853

(0,12) cos (0, 106.61302) - 7.1748 109.84900
sin (0, 106.61302) - 1.8536 106.82114

(0,13) cos (0, 124.10038) - 56289 126.72937
sin (0, 124.10038) - 5.6289 126.72937

Perturbation iteration with error of v- i < 10 6, and error of norm square < 10 j.
' The eigenvalues are represented by complex numbers (ab), where a and h are real and ima-
ginary parts of the eigenvalues.
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(a) System 1, XoJo,Po and A0, , pb, 4, g9

02

(b) System 2, Xkr),g(r),p(r) and ( g5(r)

(c) System 3, Aoio,Po

Fig. 1 (a) An Elastic Solid Containing Viscoelastic Inclusions
(b) The Equivalent Inhomogeneous Viscoelastic Solid
(c) The Homogeneous Elasfic Solid without Inclusions
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(c) t=0.22 (d) t=0.25

Fig. 2 Evolution of Nodal Curves of (0, 1 2C)
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(e) t=0.30 (f) t=0.50

Fig. 2 (Continued)
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Fig. 3 Loci of Eigenvalues vmn
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Fig. 4 Displacement Contours of
Green's Function with

t=O1 r0=(b,300 ); v=6.00, Aw=O.05

w=0.05

w=w=O15
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Fig. 5 Displacement Contours of
Green's Function with

tNO9 r0=(b,60'0), v=l1.40, Aw=O.4
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Modal Analysis of Kelvin Viscoelastic Solids Under Arbitrary Excitation:
Circular Plates inder Moving Loads

I. Y. Shen t
and
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Berkeley, CA 94720
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ABSTRACT

The response of a finite, inhomogeneous, Kelvin viscoelastic solid under arbitrary excita-
tion is determined by modal analysis. Through the reciprocal theorem of viscoelasticity,
vibration modes of the Kelvin viscoelastic solid satisfy orthogonality conditions and the sys-
tem response under any excitation is represented in a modal series. This formulation tech-
nique is illustrated on an asymmetric, classical, circular plate containing Kelvin inclusions
excited by a constant transverse force rotating at constant speed. The viscosity of the inclu-
sions suppresses the instability excited at supercritical speed in the elastic plate, but it may or
may not suppress instability excited at subcritical sveed depending on the geometry and loca-
tion of the Kelvin inclusions.

t (415) 642-6371
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1. Introduction

Viscoelastic cr nponents are often introduced to elastic structures to suppress excessive
vibration and to reduce noise level produced by the structures [1-3]. Instead of adding addi-
tional damping material to elastic structures, which is common in damping design such as
tuned dampers [4,5] and surface treatments [6,7], viscoelastic components can be introduced
as inclusions in the structure [8]. In addition, the location and geometry of the viscoelastic
inclusions can be specified to significantly strain the inclusions during particular vibration
modes.

In an earlier study [8] eigenfunctions and Green's function have been determined for a
three dimensional, finite, elastic solid with Kelvin viscoelastic inclusions through an integral
equation and a perturbation iteration method. The purposes of this paper are to develop the
orthogonality of the eigenfunctions of the viscoelastic solid and to present the response of the
solid to arbitrary excitation.

Following the viscoelastic reciprocal theorem [9], eigenfunctions of the Kelvin viscoelas-
tic solid satisfy orthogonality conditions in a state space representation. Eigenfunction expan-
sion of the response in a modal series then discretizes an action integral whose stationarity
governs the response of the viscoelastic solid under arbitrary excitation. Stationarity of the
action integral and the state space orthogonality conditions give a set of decoupled equations
governing the generalized coordinates of the modal series.

This technique is illustrated on an asymmetric, classical, circular plate containing viscoe-
lastic inclusions excited by a constant transverse force rotating at constant speed. The steady
state response of the plate is obtained through the modal analysis.

2. Orthogonality

Consider an inhomogeneous, isotropic, Kelvin viscoelastic solid with Lam6 distributions
X(r), gI(r), density distribution p(r), and damping distributions X (r), pt (r). The solid occupies
a three dimensional domain t with zero displacements on the boundary a] and vanishing trac-
tion on boundary 02. The complex-valued eigenfunction V(r) = [V(1)(r), 4(2)(r), xVl()(r)IT and
eigenvalue v satisfy

d i=1 2,dj[o 0 (Vy(r),v;XL,p.,X ,pt)] = v2p(r) (i)(r), i = 1, 2, 3 (1)

#1

with boundary conditions
V(r) = 0, on 0l (2a)

0 (ll(r),v;X,,X ,t" )n, = 0, on o2, i = 1,2.3 (2b)

where

i((uvi ,I* ) = X (u)+2gitj,(u) + V [?." ,1FkA ( U ) + 2it* ,(u)] (3)

In addition, the divergence theorem 191 gives

J (Uv.X,g, . .i)n, u', d2r - f d r

fdx,
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= I (u,u';XA) d3r + v f, (uu';X 4L ) 3r (4)

with

I (u,u';,L) = J [ t (U) e1 (u')+2Aei, (u)eij (U') d 3r (5)

where u(r)ew and u'(r)ew are harmonic displacement fields vanishing on a,, and %(.) is
infinitesimal strain.

Replace the unprimed and primed u in (4) by W,,,(r) and #,,(r). Since eigenfunctions
satisfy (1) and (2a,b), (4) implies

V p()vmi -vn d r = d (V,~Xr)p()dr + vm JrR (m,4(11(r)) d r (6a)

and

-vi . p(r)V,,¥,#,, d 3r = I l(!.,)mX(r),p(r))d3r + v, I I (V,,X (r),i* (r)) d 3r (6b)

Subtract (6a) from (6b), apply the symmetry of I, and normalize

(Vm +Vn)J p(r)-m'Wn d3r + J( I (v.,¥nX (r),g± (r))d 3 r = 8, (7a)

Multiply (7a) by v. and add to (6b)

VmVn J P(r)om'Wn d 3r + I( m,V+ ;kr),l(r))d3r = -v, ,m,, (n no sum) (7b)

Orthonormality (7ab) can also be written in a compact form

<O,.,. >A = ,T UAD.d 3r = 8,, (8a)

<'D,.A >B = jO 4 -B.d 3r = -v, 8, (8b)

where 0,, A, and B are

0m= (V ] (9a)

0p(r)]

-p(r) 0

B= 0 1(.(r)(r))] (9c)

The first and second entries of I in (9b,c) operate on the premultiplied and postmultiplied
functions, respectively.

3. Response Under Arbitrary Excitations

The response w(r,t) of the solid under arbitrary excitation f(r,t) satisfies stationarity of
the following action

, =f [1 T-8V +W+Sw r 3dt (10)
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where

ST = f p(r)*(r,t)&i(r,t)d 3r (1 la)

8V = JI (w,8w;X(r),t(r)) d3r (I1 b)

8WD = - I f 1,Sw;X (r),±* (r))d 3r (I lc)

8WF J f(r,t)'8w(r,t )d 3r (lid)

are the variations in the kinetic and strain energies plus the virtual work done in the viscoelas-
tic material and by the external load. By (lla-d), (10) can be rewritten as

wher =f {t2 pr! [sw ] dT- [<+,8W>, + <,,FB+ F.8 FIdc }dt (12)

where

Vr~)- *(r,t ) ,F= frt) (13)

If the eigenfunctions (D.m(r) in (9a) are complete, then '(r,t) allows a representation as an
eigenfunction expansion

'P(ra) = q,.(t)4o.(r) (14)
m=l

Substitute (14) into (12) and recall the orthogonality (8ab) to obtain

8I f2 p(r) 7 rw ]dt dt - 2 [(4 -vnq - Q)8qn t(5
ft, ] 15

where

Q.(t) = f'oT(r).Fd3r fJWT,(r).f(rt) d 3r (16)

The stationarity of J, U1=0, and &,,(t 1) =&/q (t =0, n = 1,2 . imply that

qn(t) -v.qn(t) = Qn(t) ,n =1,2,3, ••.(17a)

with the initial condition

q,, (0) < (D (r), (r,0) >A, n =1,2, 3, • - • (17b)

The complete response is then
w t = I+oe V. (t - ' )

w(r,t) = q (t)V,, (r) = <[<D(r), I(r,0)>Ae v'l + J e V .()d -z I,(r) (18)

4. Applications to Asymmetric Circular Plates

The steady state response of a stationary, classical, asymmetric, viscoelastic circular plate
under a rotating force is determined by modal analysis. Classical plate theory requires

w(r,t) = (r,t)k , fir,t) =f(r,t)
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where k is the unit vector normal to the middle surface of the plate. The eigenfunctions are

4,.(r)i and ,,,(r)k, m=0,1,..... n=0,+1,.-

where W/,(r) and v.,.,(r) and their complex conjugates (denoted by the overbar) are four
orthonormal complex eigenfunctions of the plate with m nodal circles and n nodal diameters.
Therefore, the plate response is

2 o

w(r,t) x v m )(r)q (.L)(t) (19)
Co=I m=O n--

where w4(r) * , (r) and li(r) - i, (r).

For a unit concentrated force rotating along a circle r = r0 at constant speed f0;
f (r, t) -L 8 (r - r 0) 6(60-akt) (20)

r0

the modal response is
()(t) - v ( ) q (">(t) = W ()(r , at) (21)

Because W,)(r, 0) is periodic in 0

W.()(r. )- a, )(r;p)e"P', (22)
p=-

and the steady state q,,.)(t) is
q()()= 'rp) eap (23)

p ipa-v(a) (

Resonance occurs when v,. =ip Q and a4. )(ro;p) is nonzero.

The average strain energy of vibration is

<E, > = I I (w,2r.,i)dA at , T 21r (24)

Substitute (19) and (23) into (24) to obtain

<E,>=- X r J( mi ,g)dA [ (4 '_(r ;p) )(ro6p)+ 1 (25)
aon fAP (ipQ-v?Ma)(ip(2+V2)

2 2
where : Y, Y, I . Similarly, total dissipation per cycle is

cnnM cz- mad. n=-Ik=-- lO -

<Ed > = fo fA I(w,W;X*,g"*)d dt (26)

Substitute (19) and (22) into (26) to obtain
<Ed> -X Lt/ / , B; -. l~*)d [ 2gj2p 2a(')(r°;p)a:2'(r°;P)

<Ed> =- I f~ I(.cJj X.g*)dA I MR (27)ao=--*A* (ip a -v ()) (ip Q+ Ve)) (7

An averaged loss factor <rg > is [7]
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<Ed>
<> <Ed > (28)<E, >

As a numerical illustration of the moving load instability, consider an uniform, elastic,
circular plate with three evenly spaced radial inclusions. Each inclusion spans an angle 0.035
rad (z 2o) and extends from r =0.75b and r = b, where b is the outer radius of the plate. The
inclusions considered are elastic or viscoelastic. Material properties of the plate and the inclu-
sions, and plate eigenvalues are described in Table 1. Eigenfunctions W,,,(r) of the plate are
calculated by the method of perturbation iteration [8, 101.

Figure 1 shows the average strain energy of the asymmetric plate. The thin lines are for
elastic, and the thick lines are for viscoelastic inclusions. When the inclusions are elastic,

resonances occur at = ., where (o, is the critical speed of the axisymmetric plate
03cr n

without the inclusions and n is a natural frequency of the asymmetric plate in Table 1.
Increasing modal damping (Table 1) results in greater amplitude reduction in Fig. 1. Figure 2
shows the strain energy of the plate at subcritical speed. Subcritical speed resonances, which
do not exist in axisymmetric plates [11], do occur here at rotation speeds

-I3j±n I j=±, ±2, (29)

because [10]

(aor0, p = 3ji ±, ji, ±
a,)(r°;P) , Otherwise (30)

The resonance around QzO.704Oc, is caused by Woo(r), and the ones near (0=0. 92o~c and
Q=0.82903c are caused by the repeated modes tVo4(r) and Wo,-4(r). The subcritical speed ins-
tability may or may not be suppressed by damping in the inclusions depending on the modal
damping ,,,. The resonance by W0o(r) is slightly suppressed because of the minimal modal
damping in xVoo(r) (cf. Table 1).

5. Conclusions

1. For an inhomogeneous, isotropic, Kelvin viscoelastic solid, eigenfunctions Wi,(r) and
, (r) satisfy orthonormality conditions (8a,b).

2. A lateral force rotating at constant speed will excite asymmetric plates containing
elastic or viscoelastic inclusions to subcritical speed rcsonances that do not exist in axisym-
metric plates. The occurrence of the subcritical resonances depends on the plate asymmetry
and can be predicted analytically.

3. The viscosity of the inclusions may or may not suppress the subcritical resonances
depending on the geometry and location of the inclusions. The suppression of resonances can
he predicted by the modal damping of each vibration mode.



Table 1 - Normalized Eigenvalues of a Circular Plate with Three Inclusions

Normalized natural frequencies:

,,,, = -- (axisymmetric plates), (asymmetric plates)
-Ocr (Ocr

Modal damping ratio: C,,.

Plate: fixed at inner rim at 0.5b, free at outer rim at b; -- = 0.7.tDo

Inclusions extend from r =0.75b to r =b; e=0.035.
_f D1o _fFor elastic inclusions: --- 0.5.t

Po Do WO
*~ P' D 0  W10For viscoelastic inclusions: D0 = 0.00489, w ° = 0.7; P'o = - = - = 0.5.4

Do Po D0  Wo

No Inclusions With Three Inclusions

(m, n) Mode Elastic t Viscoelastic *

(0,0) axisym. 2.1050 2.1121 4.5481xlO-4  2.1122

cos 2.1479 2.1549 4.9882xl0-  2.1549( sin 2.1479 2.1549 4.9882xl0 -4  2.1549

(62 cos 2.3764 2.3842 8.1266x10-4  2.3843(2 sin 2.3764 2.3842 8.1266x10 -4  2.3843

cos 3.0000 3.0212 1.2677x10 -3  3.0215sin 3.0000 2.9927 2.8305xl0 -3  2.9931

cos 4.1368 4.1429 4.1766x10 -3  4.1443( sin 4.1368 4.1429 4.1766x10 -3  4.143

+ Converted from T~iole I of 110)
f Converted from Talc I of 181
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Strain Energy of Asymmetric Plates
Viscoelastic Inclusions
Elastic Inclusions
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a 5 .0  - s 3C
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0
v 3.0

0
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1.9 0.95 1.0 1.05

f cr
Fig. 1 Average strain energy of asymmetric plates with three elastic or viscoelastic inclu-

sions excited by a rotating force at supercritical speed
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Strain Energy of Asymmetric Plates

(a) Plates with Elastic Inclusions
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(b) Plates with Viscoelastic Inclusions
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Fig. 2 Average strain energy of asymmetric plates excited by a rotating force at subcritical
speed; (a) plate with elastic inclusions, and (b) plate with viscoelastic inclusions
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Abstract

Originally, we were interested in minimizing, by a damping treatment, the vibration and
acoustical response of R plate-like structure (such as a railroad bridge) to a dynamic force
applied at a single point. Often, in practice, a damping treatment is applied to the entire
surface of such a structure. We were interested in evaluating the effect of providing
selected damping treatments on selected surface areas of the plate-like portions of the
structure in order to maximize reducing the responses with minimal amounts of selectively
located damping treatment. If information of this kind was available, the cost of applying a
damping treatment to a large structure could be reduced. Before we proceeded to the
practical problem of treating an actual structure, we sought first to obtain information on the
responses of a simple structure, such as a circular thin plate, to damping treatments applied
selectively to its surface area. We studied the first three axisymmetric modes of vibration
of a thin circular plate by a finite-element approach. The elements of the plate were
modeled in terms of their mass, loss factor and flexural rigidity. The measured Q factor for
an untreated plate vibrating in its third mode was 425. When 15 percent of the surface area
of the plate was covered with a damping treatment, the measured Q factor of the treated
plate in the same mode was 40. In general, there is good agreement between the computed
and experimental frequencies, mode shapes and motion amplitudes of the untreated plate.
As the treated area of the plate was increased, the agreement between computed and
experimental results deteriorated, particularly with respect to the motion amplitudes of the
higher modes at and near the antinodes. Based on the results obtained from these tests, we
have concluded that it should be possible to optimize the amount and location of a surface
damping treatment on a large plate-like structure in order to obtain reductions in the acoustic
and vibration responses that approach those which can be obtained by applying a damping
treatment to the entire structure.

Introduction

Structural vibrations cause noise radiation which can be excessive and objectional under
certain circumstances. This occurs particularly when a structure goes into resonance. At
this condition, the amplitudes of vibration are large, and must be reduced to a safe level.
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The most common means of controlling structural vibrations is by applying damping. If a
damping treatment is properly applied, it can prevent the structure from failing, perhaps,
catastrophically.

Usually, the form of application of the damping treatment depends on the type of the
structural system. It is well known that the response of a coupled lumped-mass system at
resonance can be reduced significantly, using viscous dampers in the form of dashpots;
while a plate vibrating at resonance in more than one mode should be treated with a
continuous damping layer.

The analysis of damped structures is relatively simple if the application of damping is
proportional, that is, if the damping matrix is a linear combination of the mass and stiffness
matrices. This formulation assumes that the structure is fully coated and the coating is
uniform. In this study, a viscoelastic material which provides only damping is used, in
which case the term characterizing dry friction damping in the inertial matrix, will not
appear. The damping matrix is still a linear function of the stiffness matrix, and the
undamped modal matrix may be used to uncouple the equations of motion. The damping
parameter is introduced only to calculate the response of the structure.

However, the search for light-weight, rigid structures requires that the external damping
treatment be minimized. Then, only selected areas must be treated and, since the damping
layer is of the free type, it must be applied to regions of large vibration amplitudes where
tensile stresses are highest. This will result in a case of nonproportional damping, because
the stiffness matrix will contain real and complex elements pertaining to untreated and
treated structural elements, respectively. This type of problem is complex and the response
of the corresponding system can not be found from the eigensolution containing no
damping.

A numerical model of a circular plate clamped at its center is considered. The plastic is
partitioned into annular elements, and only axisymmetric modes are allowed.

Formulation of the Problem

Elastic structures can be analyzed by classical mode superposition methods after evaluating
their mass, stiffness and damping matrices. The equation of motion of an n-degree of
freedom system with hysteretic damping is

[M] (qi + f[K] +f [HI] (q) = (Q). (1)

The damping matrix [H] can be linearly related to [K], depending on the configuration of
the coating. If the entire structure is treated, then

[H] =f ri [K], (2)

where r1 is a proportionality constant, referred to as the loss factor of that structure.
Introducing Eq. (2), Eq. (1) becomes

jM]IqI + (I +f r1) (KI (q) = {Q). (3)

Assuming a solution in the form {q(t)} = {qo) sinot, the classical eigenvalue problem is
obtained. The response in the case of a nonproportionally damped system, as expressed by
Eq, (1), is [Ii
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{q}= {q{}TQ

where the squaz c of Wr is the rth eigenvalue in the solution of the eigenproblem
corresponding to Eq. (1). Both the eigenvalue and the associated eigenvector are complex.
In the case of proportional damping, Eq. (4) takes the form

(qo} = (q)(q) T(Q)
T=l 1 4(1 +f To)- (u2 (5)

where, now, the eigenvalues and eigenvector are real.

In the above, the stiffness matric is a function of the equivalent complex modulus of
elasticity of the structure, E* = (1 + f Tl) E. In turn, the latter is determined
experimentally at given frequencies and temperatures. Therefore, the introduction of
hysteretic damping in the equations of motion does not necessarily imply that the damping
material used has hysteretic properties. Thus, in general, these equations are only valid at
the conditions under which the measured quantities are obtained. In this respect, the
complexity of frequency dependence of the treatment material is irrelevant, as long as a
different eigenvalue problem would have to be solved at each frequency of interest.

The Damping Model

Among the energy-dissipating mechanisms which have been considered for the design of
damped structures, hysteretic damping has been the most widely exploited; particularly in
structural configurations incorporating viscoelastic materials, capable of dissipating
relatively large amounts of energy. The dissipating capacity of a given material is
characterized by the loss factor, defined as the ratio of energy dissipated during one cycle to
the total energy stored in the system for the duration of that cycle.

Some viscoelastic materials and most metals possess stress-strain characteristics which
deviate from the elliptic shape, exhibiting a nonlinear property. In these cases, compromise
is necessary and a linear approximation is used, unless the deviation is unacceptably
excessive. The best compromise appears to maintain the loop areas and the amplitudes of
the stress and strain [2].

Mathematical models developed to evaluate parameters of linear damping have been
reviewed by Bert [3]. Because of their complexity, some of these have no immediate
implementation in the general sense. Others are limited in their range of application. A
comparison of the various models shows that the difference between them lies only in the
way the respective loss factor is expressed in terms of the input variables, such as
frequency aai temperature.

The work done on the dynamics of beams and plates incorporating continuous damping
treatments is well documented [1]. In these models, attempts are made to duplicate the
dyn."mic characteristic of the treated plate using an equivalent angle plate, with the loss
factor, the mass and the flexural rigidity remaining constant. These conditions may be
expressed as follows, see Fig. 1.
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I= Tlo, (6)

ptfpltl+p2t2 , (7)

EI= ElI + E212. (8)

Fig. 1 Transformation of (a) the plate into
(b) a singular equivalent plate.

In Eq. (6) it is assumed that the damping of the base plate is negligible. The unknown
quantities here being p, t, 71 and E, a fourth equation is required. Since the mass moment
of inertia is a function of the material density and the geometry of the composite, it can be
used here.

J=J1 +J 2

Three of the four unknowns may be calculated using the geometry of the coated plate as
shown in Fig. 2, using Eqs. (7) through (9).

-'P "'' .. 7... . Z. Z . 4 . -. . .. ..

- -  I

Fig. 2 Cross section of a coated element.

HCC-4



The equivalent loss factor may be determined using different approaches [4,5]. The model
due to Cremer et al. [4] is used, yielding the following expression for ti.

12n E2t A2

11 2 (10)
E1 t 1 + 12F 2t2 A2

Now the four unknowns which define the model of the treated plate completely can be
calculated for given a material ard thickness of the base plate and the coating. The values
of E2 and T12 in Eq. (10) are determined experimentally, using the resonant beam method
[6]. The inertial and complex matrices of Eqs. (1) and (2) are evaluated from the equivalent
parameters obtained for a circular plate clamped at its center. The plate is partitioned into
ten annular elements and allowed to vibrate only in its axisymmetric modes.

Experimental Work

The experiments performed in this work may be grouped into two parts. The first part is
concerned with the measurement of the loss factor and the storage modulus of the damping
material. The resonant-beam technique was used, whereby a carefully machined cantilever
beam was coated with a commercial damping material, Type GP-2 supplied by SoundCoat,
Inc., New York. The test beam, made of aluminum 66-60, was machined with its root in
block to observe the clamped condition.

The coated-beam experiments yielded loss factor values of 0.259 at 76.0 Hz, 0.420 at
136.0 Hz and 0.418 at 758.0 Hz. The two latter frequencies correspond to the second and
fourth modes of the composite beam, respectively. According to the recommendations put
forth in the measurement method based on its acceptance as ASTM E 756/83, reliable
measurements were obtained only if the beam was vibrated at higher modes whose shapes
exhibit half wavelengths. The first value of the loss factor was obtained accordingly at the
second mode, with a concentrated mass attached to the free end of the beam to lower its
resonance frequency to 76.0 Hz, 0.420 at 136.0 Hz, and 0.418 at 758.0 Hz. The two
latter frequencies correspond to the second and fourth modes of the composite beam,
respectively. According to the recommendations put forth in the measurement method
baszd on its acceptance as ASIM E756/83, reliable measurements are obtained only if the
beam is vibrated at higher modes whose shapes exhibit half wavelengths. The first value
of the loss factor was obtained accordingly at the second mode, with a cenentrated mass
attached to the free end of the beam to lower its resonance frequency to 76.0 Hz. The
respective values of the storage modulus were found to be 2.50, 2.74 and 2.82 GNm "2 .

Damping due to air resistance was verified by driving the untreated beam into resonance in
vacuo. The pressure in the vacuum chamber was gradually increased from 18.0pmHg to
ambient pressure. At 30.0Hz, the loss factor was found to be 0.0050 at ambient pressure,
and 0.0048 at 18 gmHg. At 216.0 Hz these values were 0.00095 and 0.00086,
respectively.

The second part of the experiments consisted in measuring the plate response with different
damping treatments. The experimental set-up is shown in Fig. 3, showing a plate, 1.2 mm
thick and 286.0 mm in diameter, excited by seven electromagnets placed equidistantly
around the circumference. The exciting force was kept constant by fixing the value of the
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current in the coils to 200.0 Ma. This value was chosen to avoid saturation of the circuit
cores, and to obtain a response large enough to be measured in the cases of heavy
damping. The various positions of the damping patches and their areas as a fraction of the
total plate area are shown in Figs. 4 and 5 for the second and third mode, respectively.

The plate was first fully coated, then it was gradually uncovered according to Figs. 3 and
4. In the case of the first mode, the damping material was removed from two elements at a
time, starting from the circumference.

Since the damping layer is of the free type, the areas to be treated are those in the
neighborhood of a displacement antinode, where strain energy is maximal. If the wave
neighborhood of a displacement antinode represents also the point with the smallest radius
of curvature, where stress and strain are both high. However, in situations where the
deformed shape is not symmetric, the treatment is applied in the area with small radii of
curvature.

Reference
Field Probe
Probe Ferrite core

Fig. 3 Experimental set-up for the plate model.

Results and Discussion

The resonance frequencies of the untreated and fully coated plates are given in Table 1.

Untreated Fully treated

Mode I Calculated 56.3 55.8
Measured 55.0 54.5

Mode 2 Calculated 329.7 330.7
Measured 3336.5 3332.0

Mode 3 Calculated 955.9 959.3
Measured 1016.8 997.7

Table I Natural frequencies of the circular plate (Hz).

The measured resonance frequency of the first mode is lower than the calculated value for
both the treated and the untreated case. This is consistent with the principle by which the
Rayleigh quotient ovtestimates the natural frequency of a system. In the second and third
mode, the measured values are higher. Since the Rayleigh quotient is applicable only to the
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fundamental mode, it can not be used to justify this result. However, we believe that the
numerical model did not predict the proper ratio of the added mass and stiffness. Also, the
damping layer in the experimental model is not constrained at the boundaries. The
assumption that the coating does not undergo shear deformation, and the invariance of
Poisson's ratio in the calculation of the flexural rigidity of the composite plate have
contributed to these discrepancies. These will also affect on the amplitudes and mode
shapes.

The Q factor of the plate evaluated at elemen, node 4 is shown in Figs. 6 and 7. The
measured and the predicted curves are in good agreement. However. this comparison can
n:t be made for the outer region of the plate described above as it wilU be seen later in the
discussion.

The displacement response for th: first three modes is shown in Fig. 8 through 13. A
curve fit was performed on each set of data for presentation clarity. A detailed comparison
was made between the calculated and experimental results for each damping case. The
response of the undamped plate was predicted with an error of less than 1%, evaluated at
the free edge. A close agreement is also obtained with coverages up to 36% of the plate
surface area. The error at 36% coverage is 8%, while that for a full coating is 6%. This
discrepancy, which increases as the treated area is reduced, can be attributed to the
unconstrained boundary elements. These, being at the edge of the treated area, are not
subject to tensile forces, as is assumed in the numerical model. As the treated area is
reduced, the surface area of the boundary element becomes relatively high, and its
contribution to the damping of the pla:e appears to be less significant. An error of 32%
was recorded in the 4% and 16% coverage cases.

The results for the second mode are presented in Figs. 10 and 11. The damped waveform
exhibits two regions of interest. The first is the region within the nodal circle where the
measured values are greate than the predictions. This is consistent with the argument on
the boundary element as explained above. The error varies from 28% at 27% coverage to
3% for full coating. The second region of concern is that between the nodal circle and the
edge, which behaves simply as an annular plate, simply supported at the inner dianiter and
free at the outer edge, oscillating without undergoing flexural deformation. The induced
tensile stresses in this region are small and, as a consequence, the damping treatment has
little effect. The vibration amplitudes are controlled by the inertia of the annular region
which may have contributed to an observed progressive shift of the nodal circle in the
coating cases above 40% coverage of the plate area.

This behavior is more promounced in the third mode, shown in Figs. 12 and 13. The
results agree in the area within the first nodal circle, where an error of 22% was recorded
for a 15% coverge. This error drops to 8% for the fully coated plate. Although the flexing
motion of the region located outside the first nodal circle is pronounced, the local antinode
is heavily damped.

Conclusion

The dynamic response of a circular plate incorporating patch damping is investigated using
a finite-element approach, with only axisymmetric modes being allowed. The predicted
response was in reasonable agreement with our experiments at low frequencies, or in the
regions where half wavelengths are described. A flexing motion of the outer part of the
plate is observed which the numerical model failed to predict.
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Fig. 4 Different damping treatments in mode 2.
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Fig. 5 Different damping treatments in mode 3.
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DEVELOPMENT OF THE PACOSS D-STRUT rm

David C. Cunningham'
Honeywell Inc., Satellite Systems Operation

ABSTRACT

This paper presents the design optimization procedure that was used to size the
D-StrutsTM used on the Passive/Active Control of Space Structures (PACOSS) program.
While this design uses a diaphragm for the pumping member of the damper, the
method can be adapted for other approaches. Fourteen D-Struts are fabricated anct
extensively characterized using the method of complex mechanical impedance.
Performance agrees well with predictions, except that the peak phase lead is low.
Additional compliance, which is responsibile for this loss in performance, is primarily
due to the diaphragm flexing at its inner and outer edges. This paper suggests solutions
to improve the diaphragm damping as well as alternatives to using a diaphragm.

'Senior Staff Engineer, Honeywell Inc., Satellite Systems Operation,
P.O. Box 52199, Phoenix, AZ 85072, (602) 561-3211
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INTRODUCTION

The viscously damped strut, or D-StrutTM, was invented by L. Porter Davis and Dr.
James F. Wilson to provide damping augmentation in a truss-type structure. The D-
Strut co.,,,ists of two concentric tubes, rigidly fastened together at one end, and
connected through a viscous damper at the other. D-Struts can be used selectively in a
truss-type structure to provide high damping of specific modes by placing them at
locations of high modal strain energy. See the paper "Design, Analysis, and Testing of
the PACOSS D-Strut Truss" by D. Morgenthaler in these proceedings for a discussion of
this methodology.

THREE PARAMETER MODEL

The simplest dynamic model of the element is shown in Figure 1 and consists of three
parameters: a stiffnes representing the outer tube, a second stiffness representing the
inner tube, and a viscous damper in series with the inner tube stiffness.

KAF-

L CA 
KB

S691-2-144

Figure 1. D-Strut Simplified Model

The ratio of force to deflection at one end, with the opposite end fixed, is the mechanical
impedance, and it is given by:

Z3(s) = KA (1 +s/wl)/(l +s/w2) (1)
where,

o = KAKBI(KA+KB)CA (2)

o2 = KB/CA (3)

The magnitude of Z3 is plotted against radian frequency in Figure 2. At frequencies

below ", the D-Strut acts like a "soft" spring, while at frequencies above 2, the D-Strut

acts like a "stiff" spring. The phase shift follows a bell-shaped curve between oi and (t)2.
The rn - --" -nij-n phasc Xzad occurs at the geometric mean frequency:

0-b = ( o02 (4)
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Figure 2. Mechanical Impedance

Letting a2 denote the lead/lag separation ratio,

a = (012/")1/ 2  (5)

the complex impedance at a0 is:

Z3(jaOj) = KA[2 +j(a-O-1)I(1 +ar2) (6)

The maximum phase lead is:

0 (coo) = tan-(a-rl)12 (7)

When the D-Strut is used in a structure, damping will be proportional to the phase lead
at any frequency. Maximum damping then occurs when the frequency of maximum
phase lead is made to coincide with the resonant frequency to be damped. For example,
if the D-Strut supports a simple mass, M, the damping ratio will be equal to:

C= (ar-1)12 (8)

provided that the D-Strut is optimally tuned to the resonant frequency. This is
accomplished by selecting the damping constant, CA, such that:

c~o = (aKAjM) 12  (9)
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PACOSS REQUIREMENTS

For the PACOSS program, D-Strut requirements were defined by the contractor, Martin
Marietta, to provide damping of the first two structural frequencies when D-Struts were
used as the longerons in the lower 3 bays of an 8-bay truss structure. Figure 3
summarizes these requirements. The static stiffness is 78,000 lb/in., and the dynamic
stiffness (KA + KB) is 179,000 lb/in. Maximum phase lead is 22.6 degrees and occurs at a
frequency of 5.6 Hz; this corresponds to a 1.5 separation ratio, 0t.

The structural design of the D-Strut is based on accommodating a Dtep function of force
equal to 566 lb. (This corresponds to the longeron force developed by a 100-lb lateral
load at the tip of the truss.)

Finally, the D-Strut is to meet the interface and outline dimensions shown in Figure 3.
The maximum diameter indicated is to be minimized.

izl ! 179,000

(Ib/in.) I
78,0oo

S3.7 8.5 f (Hz)

a = 1.5 €o=22.6 fo =5.6 Hz

F (t) 566

(Ib)

t (s)

.3,00 max X

1 .47 b 0 ± 0 .0 0 2

rain ,

32.416 ± 0.010

S691-2-24

Figure 3. PACOSS D-Strut Design Requirements
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DESIGN CONFIGURATION

Figure 4 is a conceptual view of the D-Strut showing the selected dimensions that
provide the required performance. In this implementation, the viscous damper consists
of a circular diaphragm connecting the inner and outer tubes. Viscous fluid is sheared
in the orifice of length, L, and diameter, d, when the fluid is pumped by relative motion
of the inner and outer tubes. The spring shown on the left provides a preload in the
fluid contained by the bellows such that damping will occur in both forward and
reverse directions.

T2 D2

S691-2-34

Figure 4. Conceptual D-Strut Design Dimensions

FIVE-PARAMETER MODEL

Analytical models were developed for the stiffness, damping, and stress of each of the
components shown in Figure 4. In the case of the tubes, the stiffnesses KI and K2 are
simply AlE2/L1 and A2E2/L2 for the respective members. For the diaphragm, however,
the static stiffness ((3) is a complicated function of the dimensions a, b, and h and the
diaphragm modulus of elasticity, Ed. Damping (C) is calculated from the fluid viscosity,
pu, and orifice dimensions, d and L. An additional stiffness (K4) is calculated for the
diaphragm/fluid cavity to account for the compressability of the fluid and the finite
volumetric stiffness of the diaphragm. This stiffness involves parameters a, b, h, g, the
diaphragm modulus of elasticity, Ed, and the fluid bulk modulus, Kf.

A complete dynamic model of this system is indicated in Figure 5. In this model, there
are now five parameters: K, through K4 and C. The mechanical impedance of the
complete five-parameter model is:

Z5(s) = F (KlK2+KK3+K2K3)IN + (K2K4+K1K2+KlK3+KIK4+K2K3)Cs (10)X1 (K2+K3)K4 + (KZ+K3+K4)Cs
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Figure 5. D-Strut Detailed Model

This transfer function is of the form:

Z5(s) = KEQ(l +s/.z)/(l +s/oap) (11)

where, oz = (KIK 2+KIK 3+K2K3)I/(K2K 4+KK 2+KK 3 +KlK4 +K2K3)C (12)

C. -: (K2+K3)1Y4(K 2+K3 +K4)C (13)

KEQ = (K1K2+K1K3+K2K3)/(I+K 3) (14)

EQUIVALENCE OF THREE- AND FIVE-PARAMETER MODELS

Typically, the stiffness due to fluid compressibility and damping chamber expansion,
K4, is large, and the stiffness due to diaphragm flexure, K3, is small compared to K1 and
K2. If K4 = - and K3 = 0 are substituted into (10) through (14), these equations reduce to
(1) through (3), with KA = K1, KB = K2 and C = CA. However, it is also possible to
establish an equivalence between the three-parameter and five-parameter mechanical
impedance models with finite, non-zero values for K3 and K4.

Equating the static stiffnesses:

KA = (KIK 2+KK 3+K2K3)/(IJ+K3) (15)

Equating the zero and pole frequencies:

KAKBI(KA+KB)CA = (KIK 2+K1 K3+K2K3)I,/(K2K4+K 1 K2+K1K3 +K1 K4 +K2K3)C (16)

KB/CA = (K2+K3)K4/(K2+K3+K4)C (17)

IA~A-6



Equations (16) and (17) can be solved simultaneously for the two unknowns KB and CA:

KB = K2
2K41/(K 2+K3+K4(K 2+K3)J (18)

CA = [KzI(K2 +K3)12C (19)

This equivalence is significant because it allows the three-parameter model to describe
the D-Strut dynamics just as accurately as the five-parameter model.

D-STRUT PARAMETER SYNTHESIS

In the above section, it was shown that an equivalent three-parameter model could be
used to represent the dynamics of a five-parameter D-Strut. In the detailed design of a
D-Strut, however, it is necessary to utilize the five-parameter model, because it is these
parameters that can be related to specific physical quantities (tube stiffnesses,
diaphragm stiffnesses, etc). The relationship between the three-parameter and five-
parameter models is not unique, and this fact may be used to develop a D-Strut
optimized for minimum stress or weight without affecting its performance (i.e., its
mechanical impedance).

To determine allowable values of the five-parameter D-Strut from the three-parameter
description of the mechanical impedance, equations (15), (16), and (17) are solved with
two additional constraint equations:

N = K4/K3  (20)

M = K2/KI (21)

In addition to providing a closed solution, these two constraints make intuitive sense.
M is the ratio if inner-to-outer-tube axial stiffness, and should generally be in the range
l _M 100. N is the ratio of series-to-shunt stiffness of the diaphragm/fluid damper.
Typically, one would expect N to also lie in the range 1_<N/00. As will be evident, the
actual range of M and N to meet a specific mechanical Lnpedance will be less.

The solution of the five equations noted above for the five unknowns is tedious, but
there is a closed-form solution. In fact, there are two solutions, both of which are valid:

Letting a = N( +M) (22)

b = KA[a 2(M-N)-(N+M+NM)J (23)

c = a 2 KA2 N (24)

Ki = [-b ± (b2 - 4ac)1I21/2a (25)

K2 = MK1  (26)
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K3 = IK2(KA-K)1/[K 2-(KA-K1) (27)

K4 = NK3  (28)

C = NK3(K2+K3)/((4[K2+K3('-+N)]) (29)

For specific values of KA, KB, CA, N, and M the above equations may produce compl!x
or negative values for K;, K2, etc; however, where a positive real solution exists, two
positive real solutions exist.

In order to minimize the D-Strut weight, M should be made as small as possible. There
is, however, a minimum value of M once N is selected. Figure 6 illustrates this
relationship for the PACOSS D-Strut case. Clearly, N should be made as high as
possible, consistent with practical design and stress consiueratiorts. The point circled in
Figure 6 shows the value for M and N ultiinatAy selected for the PACOSS design.

10

MMi n = K2/K1

5

5 10 15 20

N = K4/K3
$691-2-5d

Figure 6. Minimum K2/K1 Versus K4/K3

D-STRUT FORCES

When sizing ihe D-Strut mechanical components, the applied forces are required in
order to calculate static and dynamic loads, fluid pressures, stresses, etc. Let FT denote
the externally applied axial force. This force divides (dynamically) between the inner
and outer tubes. Let F1 denote the force in the inner tube. Referring to Figure 5, F1 =
K2 X 2; this leads to the following transfer function:

IAA-8



FI/Fr(s) = I(2 K3(1 +s/w3)/[(K2+K3)KA(I +s/wi)] (30)

where, " = K3 K4 /I(K3+K#)C) (31)

The force in the inner tube depends not only on the ratio of stiffnesses, but on the
frequency content of the applied force. Two cases are of interest:

(1) FT is a sinusoid of magnitude FT and frequency wO. In this case the magnitude of

Fr is obtained by substituting jwo for s in equation (30).

(2) FT is a step function of magnitude FT. The force in the inner tube is then an

exponentially decayed step, which has an initial value FD and a final ,'.,,v FS
(referred to as the dynamic a.-A static forces, respectively). FS is obtained by
setting s to zero in (30), while FD is obtained by letting s approach infinity.

Fs = FTK2K3/[KA(K2+K3)] (32)

FD = FTK2 K3 o/[KA(K2 +K3) 3 1 (33)

DESIGN OPTIMIZATION PROCEDURE

The flow chart shown in Figure 7 summarizes the design procedure.

Steps I through 3 determine a set of the five parameter model values meeting the
specified requirements. The selection of M and N is arbitrary, but if the limitation
shown in Figure 6 is violated, the computed stiffnesses will be imaginary.

Steps 4 through 13 are used to size a diaphragm and damper meeting the required K3,
(4, and C. This is done iteratively for various diaphragm aspect ratios (the ratio of

diaphragm outside diameter to inside diameter, ri), and the peak stresses and
deflections are calculated under the two conditions of peak static and dynamic loads.
An optimum design is then selected to provide the minimum peak stress and a peak
diaphragm deflection less than the fluid gap.

fo complete the design, Steps 15 through 17 are used to size the tubing thickness to
provide the required K, and K2. Each design corresponds to one row in Table 1. Steps 4
through 17 must be performed twice for each set of five parameter requirements
determined in Steps I through 3 because there are two valid solutions for ee ch assumed
M and N. In Table 1, the two solutions are distinguished by the notation' or - under the
column "SIn."

In Step 18, the entire process (Steps I through 17) is repeated iteratively for alternative
values of M and N. In Table 1, the best case (H) is underlined. Most of the cases run
assumed the use of titanium for the diaphragm material. Beryllium copper was also
evaluated, but found to produce a lower fatigue stress margin of safety.
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Given System Parameters:

KA = Static Stiffness
o 1 = Lead Frequency
0) 2 = Lag Frequency
FT = Applied Force Step

12[ Assume D-Strut Ratios:
N = K4/K3

-II M = K2/K1

3 Solve For 5 Parameter
Values And Diaphragm

Static And Dynamic Forces

KI, K2, K3, K4, C, FS, FD

Select Diaphragm Parameters:
b = Outside Radius
a = Inside Radius
E = Young's Modulus

Solve For Diaphragm Thickness To Provide K3

Select Fluid Parameters:
A = Viscosity
K = Bulk Modulus

Sole orThickness Of Fluid Above Diaphragm GK Solve For To Provide K4

i8/" Select Damper Parameter
L = Orifice Length

Solve For Orifice Diameter To Provide C

S691-2-60 t)

Figure 7. Design Optimization Procedure (Sheet 1)
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[""ClclaeDiaphragm Stresses Under State Load FS l- Orr ,teo o

16cuaeDiaagm Stresse s Under Dynamic Load FDO rp,((O
Calcu~ate Diaphragm Peak Dis,-1Iacement

Under Static & Dynamic Loads

Iterate Diaphragm Inside Radius, a (I = b/a)

Choose a (rj) Based On Minimum Max Stress
And Peak Displacement Less Than Fluid Gap

a, b, h,' K, g, L, d

Select Outer & Inner Tube Parameters:
El, E2 = Young's Moduli
L1, L2 = Lengths
D1, D2 = Diameters

Solve For Wall Thickness To Provide K1 & K2 i... T2.

Iterate N And M (M MMin)

f

1 Increase Diaphragm Outside Radius So Stress Is
Less Than 60,000 psi (120,000 After Preloading)

S691-2-6(2)4

Figure 7. Design Optimization Procedure (Sheet 2)
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The stresses shown in Table 1 do not include the effect of fluid preload. To prevent
cavitation when the D-Strut is used in tension rather than compression, the preload is
typically selected to equal the peak pressure in the fluid. This has the effect of doubling
the stresses in the diaphragm. Therefore, the minimum stress design will be 2 x 77,000
= 154,000 psi, which exceeds the 120,000-psi limit for titanium.

Table 1. Optimum Diaphragms for 0.75-inch Outside Radius

N M Sin MtI Case GD/ID Stress h g wa

297 1.543 - Ti G 1.2 117 0.005 0.043 0.007
40 8 - Ti X 1.4 136 0.007 0.607 0.007
40 8 ' Ti Y 1.6 116 0.030 0.010 0.005
40 4 - Ti V 1.4 116 0.008 0.471 0.007
40 4 Ti W 1.6 112 0.026 0.016 0.005
20 32 - Ti R 1.4 112 0.009 0.851 0.007
20 32 Ti S 2.0 100 0.046 0.010 0.004
20 8 - Ti T 1.4 101 0009 0.720 0.007
20 8 Ti U 2.0 99 0.041 0.014 0.005
20 4 - Ti P 1.6 86 0.014 0.357 0.007
20 4 Ti Q 2.2 91 0.038 0.012 0.006
2 a. = Ii a .0 2 1M.098 IM 007
10 8 - Ti C 1.8 83 0.019 0.420 0.007
10 8 ' Ti D 3.2 93 0.056 0.010 0.005
10 4 - Ti A 3.0 81 0.038 0.042 0.006
10 4 Ti B 3.0 85 0.041 0.033 0.006
20 4 - BeCu P1 1.4 94 0.010 0.530 0.007
20 3 - BeCu F1 2.0 86 0.020 0.098 0.007
10 8 - BeCu C1 1.8 91 0.018 0.420 0.007
10 4 - BeCu Al 3.0 91 0.036 0.042 0.006

7 6 - BeCu El 3.0 93 0.035 0.109 0.007

S691-2-74

All the cases shuw, , In Table I assune a diaphragm outside diameter (OD) of 1.5 inches
(because our initial goal was to design a D-Strut having approximately the same OD as
the undamped PACOSS struts.) In Table 2, the results of increasing the diaphragm OD
are shown. These cases all assume the same optimum ratios for M, PJ, and 77. The final
entry shown (Case H4) provides an adequate fatigue stress margin and has a
diaphragm OD of 2.0 inches.
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Figure 8 is a cross section of the final design, and Figure 9 is a photograph of the
prototype.

Table 2. Optimum Diaphragms for N=20, M=3, Sln=-

b MtI Case OD/ID Stress h g wa p

0.625 BeCu F2 2 110 0.018 0.068 0.007 493
0.750 BeCu F1 2 86 0.020 0.098 0.007 343
0.875 BeCu F3 2 70 0,022 0.134 0.007 252
1.000 BeCu F4 2 59 0.025 0.174 0.007 193
1.250 BeCu F5 2 44 0.028 0.273 0.007 123
1.500 BeCu F6 2 34 0.032 0.392 0.007 86
0.625 Ti H2 2 98 0.019 0.068 0.007 493
0.750 Ti H1 2 77 0.021 0.098 0.007 343
0.875 Ti H3 2 63 0.024 0.134 0.007 252
1.000 Ti H4 2 50 0.026 0.174 0.007 193

S6 9 1 -2 -8

5691-2-94

Figure 8. Final Layout of PACOSS D-Strut

1 22600 IC

Figure 9. PACOSS D-Srut
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D-STRUT CHARACTERIZATION

Testing of the D-Struts was conducted at CSA Engineering in Palo Alto, California,
between January and April 1990. The mechanical impedance was measured using a
shaker driving the D-Strut under test through a load cell with the other end of the
D-Strut rigidly grounded. The differential displacement across the D-Strut was
measured using a pair of Kaman eddy current proximeters. Calibration was verified
with a "dummy" tube consisting of an outer tube (1.5-in. 0- (.035-in, aluminum wall)
mounted between two end fittings, which provided the same overall length and
mechanical interface as the deliverable units. Both static and dynamic tests verified that
the stiffness was equal to that calculated for the tube alone, and that the phase angle
was only a few tenths of a degree.

In the succeeding tests, two basic procedures evolved. Static measurements were made
by commanding the shaker with a 20-second period triangle waveform corresponding
to ±500 lb force peak amplitude. The displacement was plotted by the Zonic analyzer
against force so that the stiffness (slope), linearity, and hysteresis were readily apparent.
Dynamic impedance was measured by applying a random noise having a flat Power
Spectral Density (PSD) over a selected bandwidth. The input was controlled by a
GenRad Servo Controller that monitored the force transducer output. Peak force and
bandwidth can be independently controlled and a constant compressive or tensile force
can be superimposed by the shaker amplifier electronics. A crest factor (peak-to-rms
ratio) of 3.6 was assumed for adjusting the output of the controller. For dynamic
impedance measurement, the Zonic analyzer computes the complex Fast Fourier
Transfer (FFT) of the force and differential displacement, then displays the amplitude
and phase angle of their ratio. Further details of the testing procedure are given in the
paper, "Testing of a Viscous Damped Isolator." by B. Allen, also in these proceedings.

Figures 10 and 11 are plots of the magnitude and phase of the complex mechanical
impedance of a typical D-Strut. Analysis of the test data indicates that the peak phase
lead is about 16.5 degrees, which is less than the 22.6 degrees desired. Considerable
effort was spent in an attempt to identify the source of the added compliance that
caused this loss. The results of the development testing program showed that the
added compliance was distributed between:

" Diaphragm edge clamping (both inner and outer edges)
" Low modulus in the inner tube aluminum
" Series compliance in the spring housing and end fittings
" Low shear modulus in the epoxy originally used

Alternative designs were also hypothesized, which would replace the diaphragm with
(1) a piston, (2) an annular flexure, or (3) a bellows, which might provide a higher phase
lead. Unfortunately, the schedule or funding did not permit our pursuing these ap-
proaches. These alternatives are discussed further in the paper "Design Trade Data on
the Arch-Flexure D-Strut," by L. Porter Davis and Dr. Steve Ginter, also in these
proceedings.
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A total of 14 D-Struts were built, which incorporated improvements to the diaphragm
edge clamping and tube bonding. Results of the characterization testing are listed in
Table 3.

Table 3. Test Results

Seral No. KSTATIC Hysteresis (%) *PK fO

1 75k 1 16.5 6.5
2 71k 1 13.5 5.0
3 76k negligible 14.5 5.0
4 74k 1 14.5 4.5
5 74k 1 15.5 6.0
6 69k 1 12.0 6.5
7 74k 1 13.0 6.5
8 71k 1 16.0 5.1
9 77k negligible 16.7 6.5

10 73k 1 15.7 5.8
11 73k negligible 16.0 6.2
12 72k 1 15.5 6.5
13 70k 1 15.0 6.0
14 72k 1 15.5 6.5

S691-2-13d

CONCLUSIONS

Analytical techniques were developed to optimize the design of a D-Strut that utilized a
diaphragm to pump the damping fluid. The optimization minimized the outside
diameter of the diaphragm (which determines the OD of the D-Strut). A prototype unit
was built and tested, and 14 additional units were fabricate"' and characterized.

The results were qualitatively very close to those predicted, showing that the dynamic
models used to analyze and design the D-Strut were functionally correct. However, the
peak phase lead was less than that desired (16 to 18 degrees versus 22.6 degrees
desired).

The most significant factor limiting the peak phase lead achievable is the difficulty of
obtaining bending rigidity of the diaphragm edges. Some radial compliance must be
accommodated to permit differential thermal expansion between the titantium
diaphragm and the aluminum housing. An all-titanium machining might provide a
better soluion for the diaphragm design, but would be expensive to fabricate.

An alternative would be to replace the diapragm with either a piston, an annular
flexure, or a bellows.

Truss testing at Martin has now been completed, and the results indicate that the D-
Struts, as delivered, demonstrate a very high damping of the lower frequency truss
modes. The design optimizations and testing methodology presented in this paper
should be of help in future D-Strut development.
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DESIGN, ANALYSIS, AND TESTING OF THE PACOSS D-STRUT TRUSS

Daniel R. Morgenthaler *
Martin Marietta Astronautics Group

Denver, CO

ABSTRACT

Future space systems may be large, lightweight, and flexible. Such systems will
often include trusswork due to the high specific strength and stiffness typical of trusses.
Damping of these structures will minimize detrimental vibration, which otherwise may
reduce system performance to unacceptable levels.

A damping device suitable for application to trusses, which is designated the
D-Strut TM,.has been developed by Honeywell. This paper discusses the further
development of the damping member, the derivation of analytic procedures required
for efficient integration of these members into truss structures, and the results of testing
of a structure which incorporates these damping members.

Following design, prototyping, fabrication, and impedance testing of D-Strut
members, a truss structure which includes these members was assembled and
subjected to modal testing. Comparisons of the finite element model of the truss with
the experimental modal test data show excellent agreement for the first seven modes,
and verify damping levels in the fundamental modes of nearly 10% critical.

The D-Struts were compared with viscoelastic extensional damping members
designed to produce similar damping levels. These comparisons included weight,
temperature stability, strength, etc. Results of the comparisons currently favor the
viscoelastic members; however, advances in the design of the viscous device will
allow the D-Strut to provide an efficient damping treatment for truss structures of the
future.

" Mail Stop H4330
P. O. Box 179
Denver, CO 80201
(303)-971-9387
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1.0 Introduction

A goal of the Passive and Active Control of Space StructuLres (PACOSS)
Program is the developT art and verification of passive damping treatments for
application to flexiYe s'oac struc,,res. An examination of +he performance of the
Honeywell viscous fluid damping struts (D-Struts) for use In truss sruciures was
completed during the seccnd phase of the PACOSS Program.

At the onset of tho investigation, there were considarei to o 'r potential
advantages of the D-Strut over otner types of damping treatments for truss . .ctures,
such as viscoeiastc damping members. These potential benefiits were (educed
temperature dependency, decreased susceptibility to outgassing, higher static loading
capability, and tre potential for decreased weight as compared to viscoelastic
dampers. The obiedives of the rm, search were to develop tne analytic toois necessary
to efficiently design and ana:yze truss structures including "'Soruts, in design and
build a structure consisternt with goals for the test truss, and to confirm the performance
of the members through unit testing and a modal test on the structure witn the damping
members installed.

To meet these objec-ives, a truss structure which contains the D-Strut members
was designed, fabricated, and tested (Fig. 1). The truss structure was designed and
fabricated by Mart~n Marietta, while the D-Strut members themce!vGs were built by
Honeywell. The structure consists of eight bavyQ whid, are each 34-in. square, with
damping members as the lonyeron 'or the lower three bays. During the design
process, desion techiniques which allow for the efficient application cf D-Strut damping
trsaiments to structures was developed.

Following fabrication of the D-Struts, unit testing of the members, and their
integration into the structure, a modal test was performed. The resulting modal
parameters were compared with analytic predictions to determine model accuracy and
D-Strut performance. Finally, the D-Strut damping members were compared with their
viscoelastic counterparts for important properties. This paper discusses the design
methodology and analysis techniques which were developed, the results of the
D-Strut member design and fabrication, the structure modal test results, and the results
of the damping member comparison.

2.0 The D-Strut Member and Viscous Fluid Damping -evice

The D-Strut is comprised of a viscous fluid damping device, structural tubing,
and end fittings. The tLbing atiaches to the joints of the structure and supplies the
static stiffness of the element, while the damping element is us,;Jd to atenuate vibration
of the structure. A schematic of the damping device as ised in the PACOSS D-Struts
is provided as Figure 2

The working elern..:nts of thp damping device consist of i tainrum diaphragm, a
small orifice, arid a bel:'ows wiiicr' contains a visc;us siblcCoe fui W When a dynamic
load is applied to iho r a portion cIf the icnr , -rnsx -,,3d through the inner
tube, and a porlion is trans;mrtte9d through the outer tube ->, force applied by the
inner tube to the damirji n device bends the circuiar d." '.i'hc s connected to



Figure 1 - The D-Strut Test Truss In the Modal Test Configuration
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Figure 2 - Schematic of the Honeywell Viscous Fluid Damping Device

a fitting on the inner diameter, and is constrained to move with the damper housing on
the outer diameter. The deformation of the diaphragm pressurizes the fluid behind it
and forces the fluid through the orifice. The resistance of the fluid flow due to its
viscosity creates a damping force which is applied to the structure at the joints. A
spring is used to apply static pressure to the fluid to eliminate cavitation of the fluid for
dynamic tension loads applied to the damping device. The spring and bellows also
allow for expansion and contraction of the fluid with temperature.

Two D-Strut concepts were developed by Honeywell which have been
designated the SD and the D1 strut. The SD strut incorporates two tubing members:
an outer tube member which connects directly across the span element, and an inner
tube which connects to the damping device. The D1 strut is similar. However, a single
tube which connects to the end fitting on one side and to the damping device on the
other is used. The potential application of both designs was examined during the
PACOSS effort.

3.0 D-Strut Modeling Using the Spring / Dashpot Model and
Impedance Methods

Design and analysis of truss structures which incorporate D-Struts necessitates
models of the damping members. Two methods of modeling the D-Strut were
investigated. These methods include modeling of the strut using a spring / dashpot
network and modeling using impedance methods.

The D-Strut can be modeled using a series of springs and a dashpot [1], using a
network which was previously formulated by Honeywell. The network model of the SD
strut is included as Figure 3.
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K2 C K

Figure 3 - Spring / Dashpot Model of the SD Strut

The correlation between hardware effects and network parameters is given in
Table 1. The 5-parameter spring / dashpot model effectively simulates the dynamic
response of the D-Strut, when appropriate values of the model elements are chosen.
This analytic model can be directly incorporated into truss models and the matrix
equations solved to provide the complex eigenvalues and eigenvectors of the damped
structure. However, this method does not provide insight into the best selection of
locations for the dampers or effective design of the damping members. Alternative
modeling methods can be used to determine the effect of the strut on the dynamics of a
structure, and to provide insight into the proper selection of the various strut
parameters.

To efficiently model the D-Strut behavior, the impedance of the strut was
developed. The impedance of the strut is a frequency-dependent complex number
which provides the ratio of the applied force to the resulting displacement across the
strut, as well as the phase relationship between them. The strut impedance can be
determined by transforming a dynamic load and the resulting dynamic displacement
across the member to the frequency domain using the Laplace transform:

X(s) = , (x(t)) F(s) = . (f(t)) (1)

where:
x(t) = the dynamic displacement across the damper
f(t) - the dynamic force applied

The strut impedance then relates the frequency-dependent force and

displacement. However, it is a function of the Laplace variable:

F(s) = Z(s) X(s) (2)

where:
Z(s) = member impedance function

The impedance can be written in many alternative forms which have utility in
different applications. A representation of the impedance which is useful for the
analysis of dynamic systems and for optimization of the D-Strut is the complex stiffness
representation. The complex stiffness representation can be determined by evaluating
the real part of the impedance, and defining the loss factor as the ratio of the imaginary
part of the impedance to the real part of the impedance:
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Table 1 - Hardware Effects Modeled by Various Springs

Model Hardware Effect
Parameter

Ki Outer Tube Axial Stiffness
K2 Inner Tube Axial Stiffness
K3 Diaphragm Bending Stiffness
K4 FIL'd Compressibility and Chamber Compliance
C Orifice Fluid Flow Restriction

Keq (S) = Real (Z(s)) re(s) = Imag (Z(s)) / Real (Z(s)) (3)

When represented in this manner, the frequency-dependent impedance is
identical to the "complex stiffness" which is typically used to model viscoelastic
damping treatments. Impedance (complex stiffness) models of viscoelastic damping
struts were previously used for the design and analysis of the PACOSS Dynamic Test
Article (DTA) and were shown to provide a useful representation of the damping
elements which allcwed the determination of the c6inamic properties of the damped
structure [2].

To show how the impedance is determined for a simple spring / dashpot
network, consid,?r the network in Figure 4. The network consists of a spring which is in
parallel with a spring and dashpot in series.

F

Ke CA
X

Figure 4- Simple Spring / Deshpot Network

The impedance of any network can easily be determined using network
simplification. The impedance of I is network is:

CASKs
Z~s) = K A + CAsK3

CAs+KI (4)

The strut imredance for sinusoidal inputs as a function of fr6quency is
determined by evaluating along the imaginary axis in the Laplace domain (at s = hw):



3

Keq(lo)) = Real (Z(lw)) = K + KA + K6C2 2 2

CA o +KB
2

Imag(z(hw)) C 2A B O

ReaZ(l))) CA2 W(KA+KB)+KAK1 (5)

The complex stiffness representation can be plotted versus frequency to show
the shape of the impedance function. Figures 5 and 6 provide representative
impedance plots for the simple network. The values used to generate the impedance
plots were 50,000 lb/in., 100,000 lb/in., and 2,000 lb-s/in. for KA, KB, and CA,
respectively. The equivalent stiffness asymptotically approaches the sum of KA and
KB, while the loss factor displays a distinct peak. The low-frequency stiffness of the
network is the stiffness of the shunt spring KA.

A high loss factor is desirable to provide high damping ratios to the modes of
flexible structures [3]. To determine the maximum loss factor of the spring / dashpot
network and the trequency of the peak as a function of the network parameters, the
derivative of the loss factor equation with respect to frequency is taken, and the
frequency Cwmax is determined:

K8
omax CAKA+KB

KA (6)

Substituting this frequency into the loss factor equation, the peak loss factor is
determined to be:

KA+KB
KB KA

Tlmax= 2(KA + KB) (7)

Notice that the value of the peak loss factor is independent of the dashpot value
CA. The peak loss factor is determined by the stiffness ratios in the network, and the
value of the dashpit coefficient sets the frequency of the peak. This is counterintuitive
to most structural dynamicists, as in most simple dynamic systems it is the stiffnesses
which set the frequency and the dashpot value which sets the damping ratio.

Impedance analysis of the D-Strut network model is similar to the simple
network. In fact, the 5-parameter network can be converted to an equivalent
3-parameter network which has an identical impedance. The conversion of the
5-parameter model to the 3-parameter model is useful to provide insight into the
proper selection of the spring stiffnesses and dashpot values for the more complex
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network. Solving for the values of KA, KB, and CA of the 3-parameter model in terms
of the parameters K1, K2, K3, 1(4, and C of the 5-parameter model yields:

K1 K2+K 1 K3+ K2K3KAM K2+K 3

2
K2K4

KB= 22
K2 +223K2

K2 + 2 K3 + K3 + K4 K2+ K4 K3

K 

C A 2 K3]2 (8)

The 3-parameter network is entirely equivalent to the 5-parameter network with
this selection of the parameters, with any internal effects of inertias neglected.

The behavior of the spring / dashpot impedance as a function of frequency is
very similar to the impedance characteristics of viscoelastic materials (VEMs). The
network stiffness increases monotonically, while the loss factor shows a distinct
maximum value. The maximum loss factor occurs in the transition region between soft
and stiff behavior. The strut properties, as the viscous dashpot coefficient is altered,
can be written in terms of a reduced frequency, which depends on both the forcing
frequency and the dashpot coefficient. The similar characteristics of the spring /
dashpot network and viscoelastics has previously been used to model viscoelastics
materials as networks, as in Maxwell's and other models of damping material
behavior.

Tlae impedance representation of the strut properties provides insight into the
design and efficient use of D-Strut members. The incorporation of these models into
truss structures and evaluation of alternative structural modeling techniques was
evaluated for use in the design and analysis of the PACOSS truss.

4.0 Modeling Techniques and Design Methodology for Structures
incorporating D-Struts

For D-Strut members to be used efficiently to provide damping to flexible truss
structures, a coherent design methodology is required to provide structural designs
which meet requirements with minimal additional weight and system impact. Modeling
methods were developed which allow simple calculations to estimate the effects of
incorporating D-Struts on system natural frequencies, damping ratios, and mode
shapes. These methods were shown to be accurate and allowed the development of
a simple design methodology. When applied to a structure, the methodology will
provide efficient damping designs without the high cost associated with the solution of
large complex eigenproblems.
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A preliminary concept which must be developed is the conversion of a viscous
system to one with complex stiffnesses (impedances). The concept can be extended
to arbitrary systems with many networks and many degrees of freedom. In general, the
Laplace transform of the free vibration equations of motion of an arbitrary system with
viscous damping are:

[MS2+Cs+K x= °  (9)

where: M = system mass matrix
C = system viscous camping matrix
K = system stiffness matrix
X = vector of transformed global displacements

By choosing an initial estimate to the eigenvalue, the transformation from a
system with viscous damping to a system with a complex impedance can be obtained:

IMs2+ CC + K]X =0 (10)

define: Ca+K = ZR +IZZ
where: a is an initial eigenvalue estimate

The impedance matrix can be obtained as shown above, or by the assembly of
elemental impedances:

NE
Z(s) = XzRts)+I.Zqs)

11 (11)

This conversion will typically be performed on an element level prior to
assembly of the impedance matrix. The utility of the method ie in noting that the
impedance matrix has the form of a complex stiffness matrix. If iterations are
performed to calculate an eigenvalue and eigenvector from the initial estimate, and the
impedance is updated using the result as a new initial eigenvalue guess, the
procedure will converge to an exact eigenvalue and eigenvector of the viscously
damped system.

The transformation transfers the 2 N-size complex eigenproblem (solution of the
2 N real matrix eigenproblem in state form) to a 1 N-size eigenproblem with a complex
matrix which must be solved iteratively. The iteration method can be used efficiently in
conjunction with matrix iteration methods such as the inverse power method, since this
method converges to a single eigenvalue and eigenvector at a time. In fact, the
inverse power iterations performed in MSC/NASTRAN to calculate the complex modes
of a viscously damped system are performed essentially by making this substitution
and iterating with a shifted dynamical matrix. The real value of the transformation of
the eigenproblem, however, is that approximate methods can be used to obtain
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modes, natural frequencies, and damping ratios without the solution of a complex
eigenproblem.

The modal strain energy (MSE) method is a well known method for
approximating the solution of a system with complex stiffness using only real
eigenproblems. The MSE method is typically used to approximate the behavior of
systems with viscoelastic damping treatments, and was used in previous PACOSS
efforts in the design and analysis of the PACOSS DTA [4]. Similar to the D-Strut
network, VEMs exhibit frequency-dependent complex stiffness behavior (frequency-
dependent shear modulus and loss factor). Therefore, visco-elastic damping
problems must also be solved iteratively by supplying an initial estimate to ths? natural
frequency, substituting this value to determine the material complex modulus, and then
solving a real eigenproblem to provide approximate mode shpes, frequencies, and
damping ratios for modes "nearby" the initial frequency ostimate.

Note that the member impedances should be calculated at the system pole
(eigenvalue) for the analysis to pr',,idle the best approximation. For D-Struts, the
impedance can readily be calculated at the system poles using the spring / dashpot
network. Computation of the impedance at the system eigenvalue provides a more
accurate approximsaion to the system behavior when used with the MSE method.

Due to the similarity of the D-Strut behavior and the behavior of viscoelastic
damping struts, the methods previously developed for viscoelastic damping struts to
select damping member locations and provide approximate system behavior can be
directly used for the design of D-Strut damping treatments [4]. A simple methodology
to be used when designing a truss structure with D-Strut members as a damping
treatment is provided in Table 2.

This method allows the designer to achieve a satisfactory design for strength,
natural frequencies, and damping ratios using only real eigenproblems, except for
complex analyses at the end of the design cycle. It is apparent, when using this
method, that the optimum locations for the dampers are areas of high strain energy,
and that the sizing of the selected members for damping should be such that the
maximum possible strain energy is contained in these members within the constraints
of the problem. It is also evident that the damping members should have high loss
factors at frequencies of the modes in which they have high strain energy to provide
the highest system damping ratios.

A final benefit of the design method is that it allows the number or locations of
dampers to be readily changed in the finite element model, since the only difference
between the damper modeling and undamped member modeling is the member axial
stiffness and member weight. Using this method, the only input data alteration
required to change an undamped member to a damping strut is a property
designation. With network modeling, a significant effort is required to add and/or
remove additional nodes and element connectivities, when a damping element
location is changed.

The D-Strut design procedure was exercised on several sample problems
using the MSE method, in order to determine its accuracy and applicability for
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Table 2 - Design Methodology !r Incorporating D-Struts

1 ) Create a finite element model of the undamped structure.

r\. L bsystem natural treque,,sies ar(i dbl i uer . f-,4j: damAng ?vz1s thm ,,-gh.=,
simulation.

3) Select favorable damping locations for struts from MSE and loading considerations.

4) Size members such that high percentage of MSE Is obtained in damping locations
without causing an excessive shift In frequencies. Revise damping requirements
based on altered mode shapes obtained in this step, I changes in the mode shapes
significantly alter the performance.

5) Specify maximum additional weight over undamped members for the D-Stiut members.
Or, alternatively, specify the required D-Strut loss factors, since there is a direct
relationship between strut weight and maximum achievable loss factor.

6) Specify the minimum static stiffness and strength for the damping struts.

7) Design a D-Strut such that the maximum weight is not violated, the designed stiffness
and maximum loss factor are achieved at the frequency of highest D-Strut partlcipation,
and strength requirements are met. It is possible that all the constraints cannot be met,
while simultaneously achieving the desired loss factor. The maximum weight constraint
will then have to be relaxed, lower damping levels may be required, or additional
damping locations must be selected.

8) Estimate the damped elgenvalues using the MSE method.

9) Calculate the strut properties at the damped eigenvalues.

10) Insert the damper properties into the model as an equivalent bar element; and
recalculate system modes, natural frequencies, MSE. (Several runs may be
necessary for several frequency and/or damping ratio values.)

11) Check the frequency and damping values to be sure that the eigenvalues have not
changed significantly and, therefore, damper properties are accurate. Iteration may be
required on the strut loss factors and system damping.

12) Determine if performance requirements have been met. If not, return to step 3 and select
additional damping strut locations or alter D-Strut designs for higher loss f"-,tors.

13) When the design requirements have been met for all modes, model the dampers as
spring / dashpot networks with K1 and K2 Implemented as bar elements, and solve the
complex eigenproblem. This will check the results and allow final complex modes to be
used in simulations. Alternatively, use accelerated complex subspace iteration with the
dampers modeled as frequency-dependent complex stiffness elements [5).
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problems of this type. From these sample problems, several conclusions were drawn.
Most importantly, it was shown that for light damping levels the procedure is accurate
and effective. For modest damping levels, however, the MSE method often produces
approximations which have relatively high error. Therefore, an alternative method of
determining the properties of damped structures using real eigenproblems, termed the
absolute value modal strain energy method [6], was developed which improves the
accuracy of the solution for higher damping levels.

*.0 Prelminary Des;gi, of i6e Z-Shui Trus

To ensure the success of the PACOSS D-Strut truss as a verification testbed
while providing an economic validation tool, several goals for the structural design
were established. The basic configuration selected for the truss consisted of eight
bays with a 34-in. bay size.

The fundamental goal was to achieve high modal damping of major structural
modes in the frequency range characteristic of future Large Space Structures (LSS).
Modal damping levels of 10% critical viscous damping in the fundamental truss modes
were selected as a goal for the truss design. This level of damping was to be achieved
using 12 D-Strut members in locations selected to achieve the highest damping
possible in the fundamental modes.

To provide data in the frequency range characteristic of future LSS, a
fundamental frequency of 5.0 Hz was selected for the truss. In addition, a frequency
separation of 0.5 Hz for the two fundamental bending modes (bending in two
orthogonal planes) was desired, to allow the separation of the modes during the
modal test and simplify the modal test data reduction problem.

Hardware design issues, such as joint design and member integrity, were
addressed during the preliminary design process. Bonded joints ;Imilar to those used
on other PACOSS structures were selected [4], primarily since they have been shown
to provide strong connections with negligible inherent damping. Aluminum members
were selected for the basic truss to provide the greatest economy.

A finite element model of the truss was created to allow for member sizing and
preliminary design. A back-to-back K-diagonal pattern was selected to provide a
structure with two planes of symmetry. This diagonal pattern results in two separated
modes which have their primary motion along 450 axes with respect to the sides of the
truss bays. The members were sized so that the major strain energy portions were in
the longerons of the structure, as the damper locations were selected to be the lower
longeron members due to the high modal strain energy content.

A plate located at the top r.. the truss was adjusted to achieve the desired
5.0-Hz frequencies; and the desired frequency separation between the fundamental
modes of the truss were obtained by replacing the aluminum longerons in two of the
vertical sides of the truss with steel members. This nearly achieved the desired 0.5-Hz
frequency separation. Member offsets at the joints were included in the model to
model the effective free length of the tubes when bonded in place.
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An investigation of the effect of valous tip weights was also undertaken for the
truss. Various tip weights were incorporated into the truss rnode6 ,od ana!yzed tc
determine the natural frequencies and damping ratios. Witn tip weights which wer
twice the nominal, one-fourth, and without a tip ;,eight, the fundamental modes of the,
truss could be altered wi h;n a range of 3.5 to 11.0 Hz. These values of the tip weigh
were selected for use on the truss so that the D-Strut members could be validated ove
a greater frequency range.

A summary of the truss properties following the preliminary desin is included ir
Table 3. Notice that the 5.0-Hz frequencies with 0.5-Hz separation ard hirh strain
energy in the dampers were achieved with stock aluminum and steel sectiono for the
members. This design provided an economically-manufactured structure which allows,
extraction of the two major modes due to the frequency separation and inheren:
structural symmetry.

Preliminary design for the damping members were generated based on the
impedance equations for the strut network. The parameters of the network were
selected to provide high damping levels with minimum strut weight. The hydraulic
stiffness in the damping device was selected to be as high as was thought to be
achievable, and the sizes of the tubing members were selected to provide the required
loss factor with minimum weight. The dashpot coefficient was selectsd to place the
peak loss factor at the frequency of the fundamental frequency of 5.0 Hz and,
therefore, to supply the peak possible damping. Using the parameters of tho
preliminary D-Strut desig;., the damping in the truss was calculated using the MSEI
method for both the SD and D1 shut types. The damping ratios using these members
are given in Table 4.

6.0 Detail Design, Fabrication, and Impedance Testing of the D-Struts

The preiiminary D-Strut parameter selection information was provided to
Honeywell to allow them to perform the detail design and fabrication of a prototype D-
Strut memher [7]. The detail design of the strut members was performed using the
member design equations developed by Honeywell in prior internai research efforts.

Table 3 - Summary of D-Strut Truss Natural Frequencleg and Strain
Energy Distribution Following Preliminary Desig-i

Mode Description iFrequency (Hz) % Sk , Dampers

1 st Bending Mode (Plane 1) 4.98 61.7
1s Bending Mode 'Plane 2) 5.44 66.0

1st Torsion Mode 14.26 4-0
2 nd Bending Mode (;!ane 1) 28.97 2.6

2nd Bending Mode kPFarie 2) 30.84 1. 7

Tcla! Weight cudin Jonts and Tip Weight 26
TiO Plate Weight -13



Table 4 - Modal Damping Levels Using SD and D1 Strut Preliminary Designs

MODE DESCRIPTION SD STRUT DAMPING D1 STRUT DAMPING

Plane 1 1st Bending 13.1 19.1
Plane 2 1 st Bending 14.0 20.4

From the detail desigr, effort, it was apparent that the stresses within the viscous
damping device and the achievable values for the device hydraulic stiffness were the
major considerations in the design of the damping members. These constraints on the
design eliminated the D1 strut from consideration, due to the very high damping
element stresses for this configuration.

Due to these design constraints, the prototype design philosophy followed by
Honeywell was to match the impedance characteristics of the preliminary design,
while minimizing the stresses in the damping device diaphragm under constraints on
the overall diameter of the damping device. This allowed the design of the strut to
achieve the desired impedance characterstics, however, a significant weight increase
over the preliminary design was required to obtain the required loss factor. A
prototype of this design was then constructed for evaluation.

Impedance testing of the strut prototype was performed to verify the design of
the member and to provide data which would allow improvement of the design. Tests
of the prototype D-Strut showed that the strut possessed good linearity and provided a
peak loss factor at the desired frequency. The peak loss factor, however, was lower
than expected. The clamping of the diaphragm was suspected as the most probable
reason for the degraded performance, although the effects of bonds and low modulus
of the aluminum of the inner tubing also contributed to the low performance. Several
design/test/build iterations were undertaken, however, the desired performance
specifications of the preliminary design were not obtained.

The fabrication of the delivery D-Struts was undertaken using the prototype
design with the modified clamping arrangement for the diaphragm which provided the
best performance. Fourteen D-Struts were fabricated by Honeywell, and following
completion of the member fabrication, each individual strut was tested to verify its
strength and impedance characteristics. A typical impedance measurement is
provided as Figures 7 and 8. The individual members showed some unit-to-unit
variation, however, "average" strut parameters were synthesized for use in the model
of the D-Strut truss pretest analysis. The static stiffness, peak loss factor, and peak
loss factor frequency of the 14 D-Strut members are given in Table 5. The individual
strut impedance data were also fit to determine the parameters which could be used to
represent the individual strut members in a refined model for analysis following testing
of the actual truss structure.

7.0 Modal Testing of the D-Strut Truss

The objectives of the D-Strut truss test were to identify the natural frequencies,
mode shapes, and damping ratios of the test truss, and to allow for correlation with the
truss modal analysis. The undamped truss assembly was first tested to validate the
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Table 5 - Static Stiffness, Peak LosS Factor, and Peak Loss
Frequency as Read from Impedance Plots

Strut No. Static Stiffnes Peak Loss Factor Frequency of
Peak Loss

1 78,000 0.29 6.2
2 80,000 0.23 4.5
3 83,000 0.26 4.0
4 80,000 0.26 4.5
5 78,000 0.28 6.2
6 80,000 0.20 6.4
7 80,000 0.23 5.2
8 78,000 0.28 4.8
9 80,000 0.30 6.2

10 82,000 0.28 5.2
11 80,000 0.29 6.0
12 77,000 0.28 6.3
13 78,000 0.27 5.8
14 77,000 0.28 6.0

test fixturing and setup and allow the verification of the structural modeling without
additional damping treatments. The nominal tip weight was used in the undamped
truss test, which caused the fundamental frequencies of the truss to be close to the
damped truss fundamental frequency of 5.0 Hz. A full modal survey of the undamped
structure was performed to determine the structure natural frequencies, damping
ratios, and mode shapes below 45 Hz.

The damped truss assembly was then tested with the nominal tip weight to
determine the properties of the damped assembly with the D-Struts as the longerons
in the lower three bays. Again, a full modal survey was performed on the truss to
determine the modal properties of the damped assembly.

Finally, various tip weights were added to the truss to determine the truss
properties over a significant frequency range. Sufficient data were acquired in each
configuration to permit the identification of the natural frequencies, damping ratios, and
mode shapes of the two lowest frequency structural modes, which are most greatly
affected by the D-Strut members.

8.0 Analytic / Test Correlation of the Truss Modal Data

Following completion of the D-Strut truss modal test, correlation with the
analytic model was evaluated. The undamped truss test results were initially
compared with the analysis, and minor revisions to the model were made to improve
the correlation. The model was compared with the test results in terms of the natural
frequencies and mode shapes, with excellent agreement found for the modes below
45 Hz. Table 6 provides the analytic / test comparison for the modes of the undamped
structure. Note the light damping ratios which were determined by parameter
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Table 6 - Undamped Truss Tuned Analysis/Test Comparison

Analytic Measured Measured
Measured Frequency Frequency Damping
Mode No. (Hz) (Hz) Ratio (%)

1 4.62 4.61 0.07
2 4.78 4.79 0.08
3 13.64 13.72 0.08
4 26.46 27.10 0.08
5 29.32 28.84 0.08
6 31.86 31.55 0.08
7 43.24 43.74 0.11

estimation. Decay measurements of the structure without cabling show damping of
0.01% critical in the fundamental mode.

Following correlation of the undamped structure, the model of the damped
assembly was modified to reflect the changes in the undamped portion of the model.
The truss properties with the nominal tip weight and each strut modeled as the
"average" strut were then computed and compared with the test data. Excellent
correlation was found for natural frequencies and mode shapes, and good agreement
was found for the damping ratios. One final model modification was made which
involved the incorporation of the properties of each individual strut in the proper strut
locations, with the individual strut parameters determined from member impedance
data. Table 7 provides the comparison of the damped structure modal analytic and
test results. With the individual members incorporated, the agreement with the test
data showed some improvement over the "average" strut model, although the previous
model showed good agreement. Modal orthogonality checks were performed
between the analytic and test modes using the analytic mass matrix. Table 8 provides
the orthogonality results, which show outstanding agreement between the experi-
mental and analytic mode shapes.

Finally, the refined model of the damped assembly was altered to reflect the
various tip weights and reanalyzed to determine the truss properties. Again, these
results agreed well with the measured data and verified the performance of the
damping members at frequencies other than the peak loss factor location. Table 9
provides the frequency and damping correlation for the various tip weights.

The model correlation showed that accurate modeling of truss structures
incorporating D-Struts was achieved using the 5-parameter D-Strut model. Howeve,,
determination of the model parameters from impedance measurements on the
individual struts was required. The test/model correlation of both the damped and
undamped structures are excellent, particularly if the highly damped nature of the
structure with the D-Strut incorporated is considered, and the difficulty in parameter
estimation associated with these high damping ratios is recognized.
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Table 7- Nominal Tip Mass Tuned Analytic/Test Comparison
with the D-Struts Modeled Using Parameter Fits

Analytic Measured

Frequency Damping Frequency Damping
Mode No. (Hz) Ratio (%) (Hz) Ratio (%)

1 4.98 7.23 5.00 6.59
2 5.10 9.62 5.25 9.43
3 13.61 <0.1 13.68 0.11
4 26.20 0.72 26.79 0.79
5 28.42 0.28 28.16 0.39
6 30.77 0.49 30.67 0.52
7 40.70 0.22 40.99 0.26

Table 6 - Croes-Orthogonullty Matrix for Tuned Analysis of Damped Truss

Anat'~
-Frequemy

4.98 5.10 13.61 26.62 28.42 30.77 40.70
5.00 1.00 0.00 0.00 0.00 -0.01 0.03 0.01-
5.25 0.00 0.99 0.00 0.00 0.01 0.00 0.00

13.68 0.00 0.00 1.00 0.00 0.00 0.00 0.00
26.79 0.00 0.00 0.00 1.00 -0.03 0.00 0.00
28.61 0.00 0.00 0.00 0.03 1.00 0.02 0.00
30.67 0.00 -0.01 0.00 0.00 -0.02 1.00 -0.01

0%.9 00 0.00 -0.01 0.00 0.02 0.00 1.00
Experilnal

Frequency
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Table 9 - Tuned Analysis/Test Comparison with Various Tip Weights

Analytic Measured

Measured Frequency Damping Frequency Damping
Mode No. (Hz) Ratio (%) (Hz) Ratio '%)

Twice 1 3.62 7.17 3.68 6.59
Nominal 2 3.70 8.83 3.87 9.39
Weight

1 7.85 6.17 7.84 6.70
Fourth 2 7.98 8.82 8.18 8.67

Nominal
No 1 10.46 7.40 10.27 7.23
Tip 2 10.45 5.08 10.87 5.91

Weight 3 10.68 4.27 10.97 5.52

9.0 Comparison of Viscoelastic Extensional Shear Dampers
and D-Struts for Truss Damping Applications

The PACOSS DTA [2,4] includes damping strut members which were designed
and fabricated using VEMs. For treatment of the box truss and equipment platform,
viscoelastic extensional shear dampers (VESDs) were designed and incorporated into
these truss structures. As the D-Strut is also designed to be used as a damping:
element for truss structures, a comparison of the state-of-the-art hardware for the two
methods of dariping treatment is beneficial.

To allow a direct comparison of the properties of these darmping members, a
viscoelastic damper was designed, which had an identical stiffness and loss factor at
the 5.0-Hz frequency of the fundamental modes. Similar elements were designed,
built, and tested under the PACOSS Program, and the analytic #r.sign equations for
these members have been adequately verified. The pertinent properties of the VESD
were then compared to those of the D-Strut.

The results of the comparison show that the D-Strut hardware which was
developed for the PACOSS truss structure has one advantage over viscoelasti:
members, and several disadvantages. A comparison of the imnortant characteristic;
of these two damping members is provided in Table 7. The pr!,nary advantage of the
D-Strut is its reduced temperature dependency. The D-Strut hps a ±400 F temperature
range for a 10% variation in the impedance, while a similar viscoela'.tic member has
only a ±50F range.
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Table 8 - Comparison of Important VESD and D-Strut Properties

D-Strut VESD

Peak Loss Factor/Frequency 0.275 / 6.0 Hz 0.285 / 4.0 Hz
Loss Factor at 5.0 Hz 0.270 0.280
Equivalent Stidfness at 5.0 Hz 96,000 lb/in. 94,000 lb/in.
Static Stiffness 78,000 lb/in. 54,000 Ib/in.
Static Strength 600 lb 5,700 lb
Damped Element Weight 2.71 lb 1.74 lb
Added Weight / Undamped Weight 2.31 1. '3
Required Temperature Control 1 40°F ±5 0 F

The viscoelastic member, however, has a much higher load carrying capacity
and adds less weight to produce a similar damping ratio. The added weight of the
D-Strut member was roughly twice the added weight cf a viscoelastic member. This
added weight is primarily due to the low hydraulic stiffness (K4) of the current damping
device. The load carrying capacity of the D-Strut is currently very low, due to stress
constraints within the damping device. These stresses cause the maximum load
capacity of the D-Strut to be approximately a factor of 10 lower than its viscoelastic
counterpart.

Whi:e, at this time, the comparison favors the viscoelastic member, future
adv-,nces in the design of viscous damping members should exceed the capabilities
rr viscoelastic struts. The success of an alternative damping device which can sustain
high deflections and has a much larger hydraulic stiffness can cause this comparison
to favor the D-Strut. Damping devices which show almost no temperature
dependence may be developed, which will eliminate the need for temperature control
of the strut members.

10.0 Conclusions

From the PACOSS investigation of the D-Strut, it was determined that efficient
MSE techniques in conjunction with member impedances can be used to design both
the damped structure and to optimize the characteristics of the damping members.
Final analysis of a damped structure can then be performed by incorporating a spring /
dashpot model of the damping struts ditdctly into the finite element model.

The D-Strut members which were fabricated and tested qualitatively agreed
with the 5-parameter spring / dashpot model developed by Honeywell. Quantitatively,
howeve,, the parameters of the model derived from the design equations for the
member did not accurately predict the performance of the viscous fluid damping
device. In particular, the predicted hydraulic stiffr'qss and the diaphragm stiffness
were significantly different from the values predicted by the model. The lower
hydraulic stiffness caused the damping of the truss test structure to be approximately
35% lower than anticipated during preliminary design.
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Following fabrication and testing of a strut prototype, eauh iiia: D-Str t
member was dynamically tested to determine its impedance characerstics Tesing f
the individual strut members provided data for the determination ol the parameters c f
the strut model which woul~d provide an impedance consistent with the rneatuied dat.-
for each unit. The model of the truss was modified to reflect these data;

An undamped lower section of the structure was also fabricalad to determi.n3
the accuracy of the mode! of the undamped section and ver ,' t very ligtt
inadvertent damping was present. Decay testing of the undamped truss ...-rified a-i
extremely low damping ratio of 0.01% critical, which demonstrates the light -;amping
ratios expected for precision truss structures without damping augmentalion. With th3
D-Strut members incorporated into the truss, the damping ratios of the dampeJ
structure were approximately 7.5% and 10.0% critical for the first two srr modeE.
This represents a 4-order-of-magnitude increase in damping over the undamped
structure. Four tip weights were used on the truss, which allowed a significart
variation in the fundamental frequencies and verified the performance of the damping
members over a significant frequency range.

When the modal data as synthesized from measurements are compared wit i
the analytic data, the correlation in excellent. The first seven natural fre r,ncies of th
tuned model of the undamped structure agree with the test data o within 2%, ani
other measures of model accuracy show good agreement. The model of the dampel
structure also has similar accuracy in terms of natural frequencies, and all dampin?
ratio predictions agree to within 9% relative error. This agreement verifies that th3
modal properties of damped structures which incorporate D-Strut members can be
accurately predicted with finite eiement models and the HoneyweOl 5-parameter
model, if the appropriate parameters of the model are detarmined from membEr
impedance test data.

Finally, a comparison of the D-Strut to the PACOSS VESD was r;,ade t)
determine whether the potential advantages of the D-Strut were achieved. F rom' th.4
comparison, it was concluded that the only current advantage of the D-,t is it3
larger temperature range. The current D-Strut design was shown to be haarv-r than i
VESD which was designed to produce identical frequencies and damping rat;-,; whe I
incorporated into the truss. The D-Strut was shown to have oriy a 600-lb si'engti
(due to the stress limitations of the damping element), while 6Cre VE',.aesign rad t
strength of 5,700 lb. This lower strength of the current D-S'.,t ":- T, mOy Precliudq iTs
use in situations where high loads are present.

While the current design of the D-Strut has some decencies, ater;nauv3
designs of the viscous fluid damping device may reduc.i or eliminate thes)
shortcomings In particular. if the viscous damping element can be designed to have i
much higher hydraulic stiffness than the current device, the weight of the oiantper for 3
given performance w!;i bc si:grficantly decreased such that ' -;,01e i hte! than its
viscoelastic counterpart. Similarly, if the damping element cali te designed to sustail
high deflections, the strength of the element will be ccmparble to the VFSD. Future
work should be underaken to investigate alternative designr" of the ,amp~rq elemer',t.
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The PACOSS investigation has shown that the viscous fluid damping strut can
be successful in producing high damping ratios for truss structures. The device can be
modeled accurately from impedance test data, and properties of structures which
incorporate these devices are predictable. Refinement of the design of the damping
elkment will make the D-Strut concept extremely successful and attractive for
incorporation into damped trusses for space applications.
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AN ADVANCED D-STRUTM

L. Porter Davis1

Steven D. Ginter, Ph.D.2

Honeye la Inc., Satellii Systems Operation

ABSTRACT

A viscous-damping technique offering high damping for spacecraft truss structures has
been under development since 1986. The technique, known as the D-StrutTM, uses a
small mechanical viscous damper configured in an inner-outer tube-strut configuration,
and replaces the nominal-type strut. The viscous-damped D-Strut has been employed
in more compliant isolation systems for space applications, including the Hubble Space
Telescope.

The United States Air Force and Jet Propulsion Laboratory have investigated D-Struts
for use in high specific-stiffness truss structures. This technique is an attractive means
of attaining significant damping levels in space structures.
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INTRODUCTION

A viscous-damping technique that offers high damping for spacecraft truss structures
has been under development now for several years (References [1-31). The technique,
known as the D-StrutTM, employs a small, mechanical viscous damper configured in an
inner-outer tube-strut configuration. The D-Strut serves as a basic element in a truss
structure, replacing the nominal-type strut. The viscous-damping concept, employed in
more compliant isolation systems, has been qualified for at least three space
applications and is currently flying in the Hubble Space Telescope, where the function is
to isolate disturbances emanating from the attitude control reaction wheel assembly
(References [4-51).

The United States Air Force and the Jet Propulsion Laboratory (JPL) have investigated
the use of D-Struts in high specific-stiffness truss structures. With considerable
development heritage, the viscous D-Strut now provides an attractive means for
attaining significant damping levels in space structures. The D-Strut is simple in design
and construction, is easy to model, and is readily incorporated into the overall structure
design and analysis process.

The advantages of the D-Strut are:
" Very large dynamic range (no rubbing friction or hysteresis)
" Damping independent of stiffness
" High damping
" Low temperature sensitivity compared to viscoelastic materials
" Adjustable performance
" Linear and predictable performance
" Qualified for space application
° Hermetically sealed fluid (fluid exposed satisfies outgassing and mass transfer

requirement of NASA)

Design alternatives within the basic concept provide a variety of performance options.
Design improvements continue to provide better performance, nearing that of an ideal
damper. The reference to ideal refers to a damper which can be modeled simply as a
spring and dashpot in parallel. The following several paragraphs expand on this
consideration and develop the necessary mathematics for a more complete
understanding. Following that, an improved arched flexure design with test results is
presented. Finally, a glimpse of future plans is provided.

D-STRUT CONFIGURATION

The first D-Struts built, shown in Figure 1(a), employ three basic elements: a small
viscous damper, an inner tube, and an outer tube.

The damper is placed in series with the inner tube and the damper/inner tube is placed
in p1ra!!l ith the outer tube. An axial displacement across the strut produces a
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(a) JPL

Figure 1. Diaphragm Flexure D-Struts for JPL and PACOSS

displacement across the damper. Under an axial displacement, the damper forces fluid
through a small-diameter orifice, thereby causing a shear in the fluid. The fluid shear is
proportional to the displacement rate across the damper; thus, a true viscous-damping
force is obtained (i.e., a force proportional to velocity).

The compliances of the damper, the inner tube, and the outer tube are key to the
damping performance of the D-Strut. The damper is the most-compliant element and
the inner tube is the least-compliant element. The outer tube provides the basic static
stiffness of the strut and is pertinent to applications where the strut is a critical load-
bearing element in the structure. Otherwise, the outer tube is not necessary and can be
eliminated with a resulting improvement in damping performance.

The damper element consists of two compliant metal cavities connected by a small-
diameter orifice of a certain length. The damper cavities are hermetically sealed to
avoid outgassing and fluid loss. The damper is mechanically simple, has no moving
parts or wear mechanisms, and is completely tolerant of space vacuum and radiation.

A diaphragm flexure D-Strut tested by JPL is shown in Figure 1(a). A second
diaphragm flexure D-Strut was developed for PACOSS program (Reference [3]) and is
illustrated in Figure 1(b). Both systems were tested as single elements and as an integral
part of a truss structure. Twelve D-Struts were used in the PACOSS structure.
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The flexing of a metal diaphragm is the mechanism that forces fluid through the small
orifice. The advanced designs replace the diaphragm with a convoluted cylinder or
arched flexure.

D-STRUT MODEL

A D-Strut is readily modeled by five physically lumped parameters, as indicated by
Figure 2. Considerable insight to the damping performance is gained by regarding the
D-Strut as a mechanical impedance. Mechanical impedance i. somewhat analogous to
electrical impedance and related, in the frequency domain, the axial force f to the axial
displacement x across the strut:

z(s) N x(s)(

with s denoting the Laplace transform variable. For no damping, the impedance reduces
to a standard stiffness. The mechanical impedance is a good characterization of the D-
Strut behavior as long as the mass lumped at the internal nodes, labeled N3 and N4 in
Figure 2, is negligible. This is typically a very good approximation over the frequency
range of interest.

ki
'A. A, kl- Outer Tube Stiffness

k2 - Inner Tube Stiffness

c k4

Damper Element:

k3 k3 - Damper Static Stiffness

Kk4 - Damper Volumetric Stiffness

c k4 c - Viscous Damping Coefficient

Figure 2. Inner-Outer Tube D-Strut Equivalent Mdel

The impedance of a D-Strut is a function of three parameters and has a classic lead-lag
network characteristic:

z(s) = ksa s+ O (2)
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with:

ksk2 + kjk 3 + k2k3  (3)
k6= k2 +k3

Lk4 klk2 + k1k3 + k2k3

cZ k-k2 + kk3 + kk4 k2k3  k2k4

k4 k2 + k3
r c k2 + k3 + k4

Because the impedance depends only on three parameters, an equivalent three-
parameter physical model of the D-Strut can be obtained, as indicated in Figure 3.

kA

CA kB

Figure 3. Equivalent D-Strut Model

The equivalent model impedance is:

z(s) = kA COBs + 0)A (6)
(OA S + WB

with:

1 kAkB (7)

OA=-CA A + kB

kB (8)
CA

The relation between the parameters (kk kB, cA)and (kl,..., k4,c) is given by:

- k3 1
kA = k[ 1 + k1+ k3
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kB =k2 ' (10)L rlok

CA C( IL1  ]

The equivalent model indicates that only three parameters - two equivalent stiffness
values and an equivalent dashpot coefficient - are needed to model the D-Strut in
overall structure design and analysis. D-Strut testing verifies that this is indeed the
case.

The expressions above for {kA, kB, CA) show that kA - ki, kB - k2, and CA - c. Actually,
kA is larger than kl, since its multiplying factor in brackets is larger than I and both kB
and CA are smaller than k2, and c, respectively, since their multiplying factors in
brackets are smaller than 1. It will be shown momentarily that the maximum damping
performance of the D-Strut is established by the ratio kBlkA. This ratio depends only on
the stiffness elements in the damper and the stiffness of the inner and outer tubes. To
maximize the D-Strut damping performance, the damper element should be made to
approach the characteristic of an ideal dashpot. This is accomplished by driving k3 --* 0
and k4-* oo. In this situation kA --* kl, kB -, k2, and the maximum damping performance
are established by the ratio of the inner-to-outer tube stiffness k2/kl. A damper with
nonzero stiffness for k3 and a finite stiffness for k4 reduces the D-Strut maximum
damping performance from the theoretical limit.

D-STRUT PERFORMANCE

The D-Strut damping performance is easily understood under the condition of
sinusoidal displacement and forces. If a sinusoidal displacement:

x(t) = X sin cot (12)

is prescribed across the D-Strut, then the resulting force developed in the strut is also
sinusoidal:

f(t) = XA(o)) sin (at + Oko)) (13)

where A(w) and 0(w) are the amplitude and phase angle of the impedance at the
frequency w:

z(jo) = z(w) + jzi(o)) = A(w)dSV  (14)
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Defining the parameters a as:

am kA-(15)

the amplitude and phase of the impedance are given by:

A(o))= kA a 2  1 + (4iraA) (16)

tan O(w) = a2 -1) (040M) (17)

A typical impedance characteristic is illustrated in Figure 4.

log A (wi)

a2 kA

MA 0 log o

AAlog (o

Figure 4. D-Strut Impedance Characteristic

The energy dissipated per cycle due to the damping is determined by O(w). In fact,
using the classical definition of damping loss factor:

1 energy dissipated / cycle
2x max energy stored / cycle
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then:

qo) = tan i(o) (19)

and the impedance can be expressed as:

z(jo)) = zR(ao) (1 + jlo()) (20)

It is easy to demonstrate that the maximum loss factor is given by:

max 1 a2 -1 1 kBIkA (21)

. io()= a -2 4l1+kB/kA

and that i" occurs at

kA

The value of zR(w) at uw* is:

1 + kBIkA
zR(Wo*) = 2kA 2 + kBIkA (23)

Thus, the maximum loss factor is determined only by the stiffness characteristics of the
damper and tubes, not by the damping coefficient c. Since kA is the strut static stiffness,
which is determined by the load capability needed, the damping coefficient c is used to
set the frequency at which the maximum loss factor occurs.

The above equations indicate an equivalence between the physical parameters (kA, kB,
CA) and the performance parameters (V*, w*, zR(wo*)). When designing damping
performance into a structure, the structure engineer often prefers to work in terms of
the performance parameters (7*, e, zR('*)). In analyzing the damping performance of
the structure, the physical parameters (kA, kB, CA) are more appropriate.

From the above equations it is clear that 1* is maximized by maximizing kBIkA. This
ratio is related to the four stiffness parameters (k,.. ., k4) by:

kB k2  1 (
kAki k3  k3  k2 k3 (24)

k1 + +kj k 4
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It appears from this equation that, to maximize the damping performance, the stiffness
ratios k2/kl and k4/k3 should be maximized. The first ratio is that of the inner-to-outer
tube stiffness and the second ratio is the damper's static-to-volumetric stiffness. The
damper volumetric stiffness is due to the fluid bulk modulus and the change in cavity
volume due to stretching of the metal under fluid pressure.

Thus, from the performance viewpoint, the damper element of a D-Strut should be
designed to have as large a ratio of k4/k3 as possible. An achievable stiffness ratio for a
typical diaphragm flexure, as designed for the PACOSS program, is k4/k3 = 20. A
significant factor preventing a larger ratio for the diaphragm flexure is the difficulty
increasing the volumetric stiffness k4 while not compromising the strut's static
deflection capability, which is determined by k3. This limiting factor of the diaphragm
flexure has lead to the development of an improved damper employing an arched
flexure with the capability of achieving considerably greater ratios of k4/k3. As
discussed in a latter section, preliminary testing of several prototype designs has
indicated attainable ratios of 50, more than double that for the diaphragm flexure.

D-STRUT DESIGN

Performance is not the only consideration in D-Strut design. Strut weight and load
capability are two more important considerations. There are four basic elements
contributing to strut weight: the inner tube, outer tube, damper elements, and strut end
fittings that interface the strut to the structure. A typical damper element employing an
arched flexure weighs approximately 0.1 lb. The end fittings also tend to have a rather
small, fixed weight. Thus, the inner and outer tubes are the major weight contributors
that vary in the design process.

The tube stiffness is AE/L and the tube weight is ALp, where A, L, E, and p are the tube
cross sectional area, length, material elastic modules, and material density, respectively.
Thus, for a given tube length and a selected material, the tube weight varies in
proportion to its stiffness. Therefore, the sum of the inner and outer tube weights, and
thus the strut weight varies as:

Wi + Wo - ki (a + 2 b (25)

where a and b are constants. The outer tube stiffness ki is now the major factor
determining the strut's static stiffness (recall that the strut's static stiffness is kA, which
is proportional to ki). The strut-load requirement essentially establishes k1 and the strut
weight then varies as the stiffness ratio k2kl.

The strut load requirement leads to consideration of allowable stresses and strains in the
strut elements. The two most important elements in terms of stresses are the outer tube
and the damper. Consider a static-load condition. If x denotes the resulting static
displacement across the strut (outer tube), y denotes the static displacement across the

IAC-9



inner :,)e, and P denotes the ratio of the displacement across the damper to the
displacement across the strut:

PH" (26)

then the ratio of the axial stress in the damper to the axial stress in the outer tube is
proportional to P. An optimal D-Strut design should tend to have the stresses in the
damper and outer tube approximately equal.

Therefore, three important considerations in D-Strut design are performance, weight,
and allowable stress in the outer tube and damper. At the first level, D-Strut design
involves determining values for the five parameters (ki, ., k4, c) to address
performance, weight, and allowable stress. Specification of performance in terms of the
three parameters [q*, a*, zR(wa*)) leads to conditions for determining three of the five
parameters (k,..., k4, c). Conditions for determining the remaining two parameters
are derived from weight and stress considerations.

To be specific, let the two parameters M and N be defined by-
k2 k4

M and N k3  (27)

M is indicative of D-Strut weight and N is the ratio of the damper's volumetric stiffness
to the static stiffness. D-Strut design addressing performance, weight, and stress can be
accomplished via the equation:

kB M N6)
kA -1+(1 + M)6 1 +(1 +N)b (28)

1 -p (29)

and the previous equation relating n* to kB/kA. As an example, Figure 5 shows M as a
function of N for various values of 17* and a value of p = 0.95. This figure clearly
illustrates the benefit of maximizing the damper's stiffness ratio N. For a fixed level of
performance (f), maximizing N tends to minimize the D-Strut weight (M). Conversely,
for a fixed weight (M), maximizing N leads to improved damping performance (07*).
The arched flexure damper, described next, is able to attain values of N greater than 50,
which provides a significant improvement over the diaphragm flexure N = 20).
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Figure 5. D-Strut Design Curves

ARCHED FLEXURE D-STRUT

The name arched flexure was chosen because of the similarity with a two-dimensional
semicircular arch. The design is more accurately a convoluted or corrugated cylinder.
Figure 6 shows a single-convoluted design and Figure 7 shows a multiconvoluted
design.

Figure 6. Arched Flexure D-Strut
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Figure 7. Arched Flexure D-Strut (Multiple Convolutions)

The arched flexure configuration was selected because its shape will provide the highest
possible ratio of k4/k3, which in turn will minimize the needed ratio of k2/kl. This is
equivalent to minimizing k2,which will also minimize the weight of the system for a
given performance.

The volumetric stiffness, k4, can be characterized as a ballooning effect. It specifically is
the axial stiffness of the system that would result if the shear annulus were plugged.
Both the flexure and the fluid contribute to k4. The fluid stiffness is generally not a
problem if the depth of the fluid is minixrized. The fluid stiffness will range from I to
15 million pounds per inch. The D-Strut configuration used in the PACOSS testing,
using a diaphragm flexure, typically exhibited a k3 in the range of 5,000 to 10,000 lb/in.
and a k4 in the range of 100,000 to 250,000 lb/in. The ratio of k4/k3 ranged from 20:1 to
25:1.

The arched flexure has the potential for much higher values. Several single convoluted
systems have been fabricated and tested. The result of the first prototypes was a k4/k3
ratio of 52 to 1, or a 2-to-1 improvement over the diaphragm designs. Much higher
values are expected with a second-generation design.

The k4/k3 ratio of 52 to 1 was obtained by dynamic test methods as opposed to direct
static-load testing. In the test setup shown in Figure 8, k3 was measured by removing
the fluid, adapting a known mass, and vibrating the system to determine its resonance.
One result of such a test is shown in Figure 9. The resonance was 64.2 Hz. The
suspended mass was 23 lb. Thus:

k3 -= (2 n) 2 w =(2 irx 64.2 Hz)2 23 lb
g - 386 rad/s2  = 9686 lb/in. (30)

To determine k4, the fluid cavity was refilled and the annulus plugged. The resulting
resonance, shown in Figure 10, is 463 Hz. Thus k4 is approximated:

k4 -= (2 rr92 w (2 1r x 463 Hz)2 23 lb

-( = -, -=503,776 lb/in. (31)

g 386,ad/s2
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Sping Cap Mass/Preload Adapter

Spring Spring Retainer

Overload Stop Overload Stop

Arch FexureD-Strut Housing (Tube Side)

D-Strut Housing (Hub Side)
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Figure 8. D-Strut Test Setup

50 -
64.20 Hz

C

0

C

IA-1



1 - 7., 463 Hz -

0
. -

0.001 . . . . . , • • •
so 2000

Frequency (Hz)

Figure 10. Transfer Function With Annulus Block (With Fluid)

For a ratio:

k4 503776
k3 - 9686 =52 (32)

Calculations show that the fluid stiffness is 15,000,000 lb/in. Using this value, the metal
volumetric stiffness is calculated to be 521,100 lb/in.

Parametric optimization using dosed form stiffness equations lead to the conclusion
that k4/k3 ratios much higher than 52 to 1 can be achieved through parametric
optimization. Further, axial strokes can be achieved greater than the deflection capacity
of the tubular part of any strut. This means that the addition of a D-Strut element will
not reduce the static load capacity of the system. Figure 11 shows a table of arched
flexure designs that point to these conclusions. Note that design No. 4 approximates
the results of the single convoluted design just discussed. This design has one
convolution, N = 1; the radiL. of the arch is b = 0.125 in., the radius of the tube forming
the convolute is a = 0.445 in.; the OD (outside diameter) of the element is 1.34 in.; the
modulus e = 16 million lb/in., which corresponds to titanium; the stroke of s = 0.006 in.
results in a stress of 55,418 psi; k3 = 9.68 klb/in.; k4 = 503 klb/in.; k4/k3 = 52; the outer
tube stiffness k1 = 67 k1b/in.; the 3-model equivalent paralleled spring stiffness kA =
76 klb/in.; the inner tube stiffness k2 = 165 klb/in.; and the 3-model equivalent series
spring stiffness kB = 156 klb/in. In this case, ki and k2 were somewhat arbitrarily
selected to represent the character of the PACOSS structure. K2 and k2 were not part of
the testing: only the basic D-Strut element was tested. However, previous correlation
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between D-Strut element tests and D-Strut tests is evidence that this process is accurate.
Notice that the damping loss factor ETA = 0.586 or 58% (in the text ETA is N). Had
k4/k3 been larger than 52, ETA would have been larger. Also the effective damping
constant (CA) = 1784.5 lb-s/in. would have been closer to the actual damping constant
(C) = 2000 lb-s/in. Notice further that the range of frequencies where the damping is
effective from OMEGA A = 4.56 Hz (minimum) to OMEGA A* = 7.97 Hz (maximum).

DSGN (n) (b) (a) (00) (t) (e) (a) sigma 1 (k3) (k4) (kA)
1 1 0.15 0.445 1.39 0.006 16.00 0.006 4-,073 8.06 255 32
2 1 0.125 0.445 1.34 0.012 16.00 0.007 81,497 38.71 1,006 26
3 1 0.125 0.445 1.34 0.015 16.00 0.006 75,260 60.49 1,258 21
4 1 0.125 0.445 1.3 0.01 16.00 0.006 55,418 9.68 503 52
5 1 0.125 0.6 1.65 0.01 16.00 0.006 53,849 26.88 2,425 90
6 2 0.125 0.6 1.65 0.006 16.00 0.014 52,970 4.84 727 150
7 2 0.125 0.8 2.05 0.005 16.00 0.018 52,892 3.36 1,611 480
8 4 0.125 0.8 2.05 0.006 16.00 0.036 56,213 2.42 967 400
9 6 0.1 0.8 2 0.003 16.00 0.06 57,503 0.50 673 1,336
10 10 0.1 0.8 2 0.003 16.00 0.1 57,503 0.30 404 1,336

(k1) (kA) (k2) (k) ALPHA (ETA) (cl) (CA) OMEGA A OMEGA B OMEGA
1 67 75 165 157 1.76 0.598 2000 1817.9 4.44 13.78 7.82
2 67 98 165 134 1.54 0.442 2000 1312.1 6.88 16.22 10.56
3 67 111 165 121 1.44 0.376 2000 1070.9 8.61 17.95 12.43
4 67 76 165 156 1.75 0.586 2000 1785 4.56 13.91 7.97
5 67 90 165 142 1.60 0.491 2000 1478.9 5.93 15.28 9.52
6 67 72 165 160 1.80 0.621 2000 1887.7 4.18 13.52 7.52
7 67 70 165 162 1.82 0.633 2000 1921 4.06 13.40 7.38
8 67 69 165 163 1.83 0.641 2000 1942.6 3.99 13.33 729
9 67 68 165 164 1.85 0.657 2000 1987.8 3.83 13.18 7.11
10 67 67 165 165 1.86 0.659 2000 1992.7 3.82 13.16 7.09

Poisson's Ration (v) (b) Arch Radius (n) Number of Convolutions
Number of Convolutions (n) (t) Thickness (OD) Outside Diameter
Stroke (s) (a) Tube Radius (k1) Outer Tube Stiffness
Validation Factor 4 < u < 40 (e) Modulus of Elasticity (k,) Inner Tube Stifness
Load to Produce Deflection (p) (k) Axial Stiffness of Arch (C) Two Spring Damping Coef
SIGMA 1 - Stress (k4) Volumetric Stiffness (CA) Four Spring Damping Coef
SIGMA 2 - Stress

Figure 11. Damping Spring Design Alternatives (D-Strut)

Two questions arise, as follows:

" How high must the ratio of k4/k3 be to obtain practically ideal performance?
" Once this ratio is known, can the D-Strut be optimized to provide that capability?

To answer these questions, compare the sample designs shown (designs 1 through 10 in
Figure 11), and consider the values of k4/k3. Notice that, as the design parameters of the
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arched flexure change, substantial improvement in k4/k3 is realized, particularly for
designs 9 and 10 (k4/k3 = 1,336). Also notice that, for these designs, cl = CA, kl = kA, k2 =
kB. Therefore, it is clear that this value of k4/k3 results in essentially ideal performance
and further increase will not produce additional value. Further analyses of the 10
designs suggest that values of k4/k3 above 100 are of little additional benefit. It should
also be clear from this data that a second-generation arched flexure D-Strut, with better
parametric optimization, could easily reach the k4/k3 > 100 level. The more optimum
design would appear to be a multiconvoluted design not only because of the better
k4/k3 ratio, but also because of the large stroke capacity.

The data presented here suggest near-perfect correlation between empirical data and
analytical calculations for stiffness. Actually this was not the case; some substantial
differences existed. Specifically, the coefficient of the equation for k3 was factored by
1.156 and for k4 by 2.35. Therefore, only limited value can be placed on the specific
numerical results. The factors were applied to facilitate limited design trades and trend
considerations.

The reason for these discrepancies is believed to be primarily the differences between
the actual thickness of the flexures manufactured and the intended design thickness.
Improved controls are planned for future parts. Some error has likely been contributed
due to the limitations of the equations used. We are currently conducting fundamental
work to improve these.

FUTURE PLANS

Future plans for the D-Strut involve further improvements in the damper element of the
strut, based substantially on the factors and optimization trends discussed in the
preceding paragraphs. A multiconvoluted design will be a first priority.

Another factor significantly influencing D-Strut performance is the ratio of inner-to-
outer tube stiffness. D-Struts fabricated to date have used the same material for inner
and outer tubes. The lengths of the two tubes are also approximately equal. Thus,
using the same material for both tubes, the only way to increase the stiffness ratio k2Ikl
is to either decrease the outer tube cross sectional area or increase the inner tube cross
sectional area. Decreasing the outer tube area will affect static stiffaess requirements,
while increasing the inner tube area leads to a considerable weight penalty.

An obvious alternative is to use different materials for the inner and outer tubes. For
example, an aluminum outer tube with a metal matrix composite inner tube would give
a factor of 2 improvement in the ratio k2Ikl, due solely to the difference in the modulus
of elasticity. The use of different materials for the inner and outer tubes is an important
aspect under investigation.
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Of course, for a nonload-bearing strut, the outer tube may be eliminated, providing a
significant improvement in damping. Other factors then become important. To date,
no D-Struts have been fabricated without an outer tube. There are applications where
this will be an important consideration.
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TESTING OF A VISCOUS-DAMPED
ISOLATOR

Bradley Allen*
CSA Engineering, Inc.

Palo Alto, CA
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Glendale, AZ

ABSTRACT

It is essential that accurate methods for testing mechanical properties be employed
during the development of precision spacecraft isolation systems. Mechanical proper-
ties of the isolator will determine force transmission to the spacecraft; thus they are
critical to its performance. This paper documents component-level tests performed on
viscous-damped isolators developed by Honeywell Satellite Systems for a spacecraft
reaction wheel isolator system.

Two types of component-level tests were performed on the elements: direct stiff-
ness measurements (often called mechanical impedance) and transmissibility tests.
Direct stiffness measurements indicated linearity, linear stiffness, damping, and hys-
teresis. A custom test apparatus was designed for accuracy and repeatability. Stiffness
deviations as small as 5 percent could be detected, and loss factors as low as 0.01
could be resolved with the direct stiffness measurements.

Motion transmissibility measurements determined high-frequency isolation and
verified stiffnecz and damping near the predicted resonance of the sprung payload.
Although the suspension system consisted of eight isolators, tests were performed on
a single unit. Motion was constrained to a single degree of freedom using a system
of air bearings sliding on rails. The air bearing design possessed less than 0.4 grams
of friction allowing verification of isolation properties to above 300 Hz and enabled
transmissibility to be accurately measured over 4 orders-of-magnitude of input exci-
tation.

*CSA Engineering, Inc., 560 San Antonio Road, Suite 101, Palo Alto, CA, (415) 494-7351
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3.A

Figure 1. Reaction wheel isolation system

1. Introduction

Viscous damper designs are finding wider applications in spacecraft; demands for
lower ambient vibration levels coupled with the predictability and simplicity of viscous
dampers make them a good choice for many damping applications in space. This
paper addresses test techniques used to characterize the mechanical properties of an
isolation system by testing its components: viscous-damped isolators.

The isolators are used to suspend the momentum wheel on a spacecraft. The
suspension consists of eight isolators placed symmetrically around the frame of the
momentum wheel, as shown in Figure 1. Machined metal springs provide elastic
forces with nearly isotropic stiffness, but the damping mechanism applies dissipative
forces primarily along the element's axis. These isolators are designed to behave
with a linear force-deflection relationship and an axial stiffness of approximately 950
lbf/in up to a stroke limit of 0.044 inches. Mechanical stops dramatically increase the
stiffness outside this operational region.

Isolation performance was specified for the system to tolerances that required re-
peatable and predictable mechanical performance. Transmissibility was specified to
300 Hz, such that modes introduced by the isolators could not obstruct the transmis-
sibility below 300 Hz.
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2. Test Method

Tests documented in this paper were performed at the component level. Compo-
nent or element level testing provides detailed characterization data such as linearity,
hysteresis, damping variation with excitation levels and temperature, and other vari-
ations in mechanical performance between isolators. Measurements of both axial and
radial properties were made. Component-level tests were performed to acquire data
necessary for the design of the isolators, and system-level tests subsequently verified
that component-level test results could be extrapolated to system level performance.

Two approaches were implemented at the component level: direct complex stiff-
ness (DCS) methods and resonant tests. DCS methods use the force through and
displacement across a specimen to calculate the complex stiffness of a specimen di-
rectly at frequencies well below the resonances of the test assembly. Under this
condition, the elastic stiffness is the real part of the ratio between force and displace-
ment, and damping is calculated from their phase difference. Resonant tests infer the
mechanical properties of a resonant system through an analytical model where modal
frequencies and damping ratios are inputs, and specimen stiffness and damping are
outputs. A single-degree of freedom system was constructed for these tests with a
one-eighth-scale mass sprung on one of the eight isolators. The ratio of acceleration
across the masses was measured to construct a dimensionless function of frequency
known as transmissibility.

DCS tests yielded the majority of the mechanical property data on the isolators. A
DCS test assembly was designed which could measure the unidirectional mechanical
properties in both the axial and radial directions of the isolator. Figure 2 shows the
test assembly for the axial configuration. Motion was constrained to one degree-of-
freedom by the pushrod and linear bearings. Measurement bandwidth of the assembly
was from DC to 96 Hz, limited on the high end by the resonant frequency of the
isolator and sprung fixture.

Transmissibility tests verified high frequency isolation, enabled testing over a
w~Ae dynamic r ,c, .i ~~,, ,,,d vp:i'cati' j' qness and damping at a sin-
gle frequency for verification of the DCS test results. Isolation performance at high
frequency was verified by continuation of transmissibility roll off with increasing fre-
quency.

Transmissibility measurements uti:ized a test assembly that simulated a single-
degree of freedom system. It restricted motion across the isolator to one direction
without exerting forces in the unconstrained direction. Figure 3 shows the apparatus
while outfitted for axial measurements. The center mass floats on the rails through air
bearings. Two center masses were designed for the radial and axial test configurations.
The rails and external mass simulate a rigid massive mounting base which translates
to provide unidirectional excitation. Transmissibility is measured along the axes of
the rails, and is calculated as the ratio of the acceleration seen at the floating mass
to that at the base. The center mass was sized to one-eighth that of the system level,
since only one of eight isolators was under test at any instant in the component-level
tests.

IAD- 3



Figure 2. DC'S test assemnbly in the axial configuration
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3. Results

DCS tests proved particularly useful for development testing because of the availabil-

ity of force and deflection as functions of time under various forms of excitation. A
sawtooth wave with a period of 20 seconds was applied to obtain the data shown in
Figure 4. The plot force vcrsus deflection clearly exhibits a linear relationship up
to the stop locations at either end of its stroke. Stop stiffness can also be measured

from the graph. One measurement identifies hysteresis, linearity between force and
deflection, stiffness, and location of travel restricting stops. Broadband dynamic tests
indicated stiffness and damping of isolators. Band-limited white noise excitation and

Fast-Fourier Transform methods enabled the instantaneous acquisition of data across

an entire measurement bandwidth. Figure 5 shows the resulting curve of complex
stiffness. Magnitude and phase are shown, although the elastic stiffness is actually
the real part of the magnitude, and the loss factor is the tangent of the phase an-
gle between force and displacement. Deviations from constancy of these parameters

above 30 Hz is caused by the mass of the load cell and adapter plate and is not
indicative of the isolator stiffness.

Transmissibility data demonstrated the repeatability and precise performance of
the viscous damped isolators; however, the rigidity of the test fixture fell short of the
specifications requiring a bandwidth of 300 Hz. A sizeable mode appeared to obstruct
isolation of the system near 300 lIz. Figure 6 shows a typical transmissibility plot as

measured. The base mass was supported on flexures to permit unidirectional motion,

and tests mentioned below indicated that an extensional mode of the flexures was
partially responsible for the obstruction.

Modal tests were performed on the transmissibility test apparatus to identify the
harmful mode and exonerate the isolator. It was removed and small compression

springs were installed in the tester to provide a centering stiffness with negligible
added mass to the tester frame. Mode shapes for both axial and radial tester con-
figurations are shown in Figure 7. The external box frame represents the outline of
the base mass, and the smaller frame outlines the center mass. Shapes from axial
and radial tests are nearly identical. Strain energy is concentrated in the flexures

that support the base, as evident by the tilting base mass, and somewhat in the flex-
ible mounts of the air bearings as indicated by the relative motion between the two

apparently rigid bodies.

The detrimental mode was identified as a property of the test apparatus and sub-
tracted from subsequcnt transmis. ibility measurements. It was modeled as a second-
order system as is commonly done in test-acquired modal data, and its transmissibility
was subtracted from the measured transmissibility. Figures 8 and 9 contain plots of
the pre- and post-processed data. The first is an overlay of the raw transmissibility
curve and the generated response for the detrimental mode at 280 Htz. Figure 9 is
their difference, the post-processed data.

The viscous darmped isolators opcr .'tc in a low-level vibration environment, and
tests were performed to verity linearity across a range of excitation levels. Limitations

in the test apparatus and instrunentation limited neasuremcnts of dynamic range to
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90 dB, from 25 micro-Gs to 1.5 Gs rms. Figure 10 is a plot of the output acceleration
PSD for a white noise input from 1 to 375 Hz. Because white noise is a constant level,
the character of the curve is identical to the corresponding transmissibility function
at each level. At base acceleration levels of 50 micro-Gs rms and below (lowest level
curve), a subtle changes in the shape of the transmissibility function became apparent,
and a limited amount of troubleshooting tests wr . -formed. They indicated that
restoration force well below 0.04 lbs was beii-, , 1 by the tester assembly
and is related to the air pressure in the air beari: i r, this level was below the
required specifications for the isolator, it was not . , ,-.her.

4. Summary and Conclusions

Component level tests provide, accurate characterization of the mechanical properties
of the viscous damped isolators. DCS tests were most effective for verification of
linearity, static force-deflection information, and stiffness and damping properties at
frequencies well below that of the DCS test assembly. Resonant methods proved more
effective for examination of the roll off in transmissibility at high frequency and for
acquiring data across a wide dynamic range of input excitation levels.

Tests indicated that the viscous damped isolators performed as predicted, with
repeatable and precise r'echanical properties. They behaved linearly from 25 micro-
Gs to 1.5 Gs, with precise stiffness and damping properties.
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THE EFFECT OF SOURCE IMPEDANCE
On

DAMPING EASUREME TS
USING

RSOINCE DWELL TESTING

by
Ralph K. Tate

LTV Aircraft Products Group
Dallas, Texas

ABSTRACT

J.C. Heine developed a test methodology for evaluating the
damping in various materials, particularly metals. LTV
employs a resonance dwell technique adapted from that of
J.C. Heine, which facilitates the use of a smaller shaker
from that normally required. This test apparatus permits
the rapid characterization of viscoelastic laminates not
only for damping, but also for vibroacoustical fatigue re-
sistence.

During check-out of the modified apparatus, it was found
that the behavior of damped specimens differed markedly
from prior results. That is, significantly higher values
of damping were observed regardless of measurement techni-
que. The author demonstrates, through the use of imped-
ance modeling techniques, that the differences arise from
the coupling the specimen to the electrodynamics of the
excitation source. A refinement of the test procedure is
outlined to remedy the data anomaly and a discussion of
the impact on the interpretation of damping data naturally
follows.
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1.0 INTRODUCTIOI

Various techniques are employed throughout industry to evaluate the
complex modulus of viscoelastic materials. Perhaps, the most common
techniques are the "Oberst" beam-type tests that are prescribed in the ASTM
standards [1]. The simplicity of the test method affords rapid evaluation of
a candidate viscoelastic with a minimal investment in material and equipment.

The cited standard, ASTM E756-83 [1], provides three alternative canti-
lever beam test specimen configurations, depending on whether shear or
tensile modulus is to be measured. The standard presumes base motion
acceleration excitation. The standard also provides a set of equations to
compute the viscoelastic's material loss factor from the specimen's sample
loss factor, based on the Ross-Kerwin-Ungar (RKU) equations for damped
laminates.

LTV employs a resonance dwell methodology adapted from that of JC Heine
[2], which facilitates the use of a smaller shaker. The test apparatus is
depicted in Figure 1. This particular testing apparatus permits evaluation
of viscoelastic laminates not only for damping properties, but for vibro-
acoustical fatigue resistance, as well. This paper describes the analytical
mechanics of this method of resonance dwell testing of constrained layer
laminates, based on a motivating example arising from adaption of the test
apparatus to perform fatigue testing. Further, comparisons of test results
from resonance dwell testing to published nomogram data for viscoelastic
materials are discussed

2.0 "HENE'S" METHOD

JC Heine developed a test methodology for evaluating the damping in
various materials, particularly metals (cf. Figure 1)[2]. A test beam is
clamped into the root lever arm. Then, a constant si3ker force is applied to
the lever near the root of the beam. The shaker force is varied until the
tip deflection peaks and the root acceleration simultaneously minimizes. At
that frequency, the test beam is said to be at resonance.

The prescription works due to the high stiffness of the lever relative to
that of the test specimen. Effectively, the system is rendered mechanically
uncoupled; that is, the test beam resonance is identical with that obtained
from a cantilever beam under base motion excitation. Given the resonance
frequency and tip deflection, the modulus and loss factor for a given
material are easily estimated. For a damped constrained layer laminate, the
sample loss factor is given by

= R n n i+ B .

[T Vtfd 2 [-fo/fd 
(n n' LR,

and the dynamical shear modulus is given by,

, =  4 2 fd2  [1 - (f /fd
2
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a n X (2+o X)d2J
(variables defined at end of paper)

3.0 TEST RESULTS

Although Heine developed his apparatus to study lightly damped materials
such as metals, it is just as applicable to the testing of highly damped
laminates. Further, after reduction of the lever arm stiffness, the
apparatus can be effectively used to evaluate the vibroacoustical fatigue
resistance of damped laminates. It then differs from many similar devices in
that it provides levels of stress that are experienced by aircraft struc-
tures, while using a smaller and less expensive shaker. It was found that
the behavior of the modified apparatus during tests of highly damped
specimens differs markedly from its behavior during tests of lightly damped
test specimens.

Some typical results of a damped constrained layer test specimen in the
adapted Heine test apparatus are depicted in Figure 2. The tip deflection
curve in Figure 2 was generated using the procedure developed by Heine. The
transfer function shown in that figure was computed between the root
acceleration and the tip deflection, as a check on the procedure. The tip
deflection indicates a broader damping than the transfer function, based on
standard half-power estimates [3]. Further, the tip deflection shows a lower
peak frequency, and the acceleration minimized with the transfer function.
Since these peculiarities of the transfer function and the base acceleration
had not been observed during previous testing of lightly damped specimens,
interpretation of the data became ambiguous.

A strain gage was affixed to the root of the test beam, and the test
repeated. Figure 3 shows that the tip deflection and the root strain track
together. Then a controller was added to maintain a constant root
acceleration. Figure 4 shows that the tip deflection (as well as the root
strain, not depicted) and the transfer function agree in damping and
frequency, when the base acceleration is controlled. This behavior conflicts
with the procedure defined by Heine.

Several indications of maximum response for damped test specimens are
displayed in Figure 2 through 4. How, then, should the resonant frequency be
identified, and how should the damping of the specimen be determined, once
the resonant frequency is identified? The mathematical analyses described
below were undertaken to answer those questions.

4.0 !MTION$ OF MK)TION

The equations of motion for the resonance dwell apparatus were devel-
oped using a standard energy inethod approach [4,5,6]. The analytical model
used the geometry described in Figure 5. That test specimen is a laminate
encompassing a constrained layer of viscoelastic damping material, as shown
in Figure 6. The assumed deflection of the system is (tensor summation ass-
umed over free subscript indices, 1 to N):
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v(x,t) = x a(t) _(x)
+ * i(x-LR) v (t) H(x-LR).

The virtual work due to bending of the face sheets, as shown in Figure 6,
can be computed as:

r(L R+ L
)

8WB f (EI)I+(EI)2] v3 8v" dx,
fLR

- (EI)i +(EI) 2] 14,i Vi 8v ,

where
A4, (1i4 L '  (i -j)
-X4, i ( 0, (i-0j, orthogonality).

Analogously, the virtual work from lever flexure is:

8W - K a(t) 8a(t).

Assuming plane sections of the laminated test specimen remain plane, and
given that G* is the complex shear modulus of the constrained damping
material shown in Figure 6, the virtual work due to shearing is (4,7]:

•(L R+L )

8W = 3G y(x,t) 8y(x,t) dx,
2 LR

= d2 (G*/t 3 ) _ i~j vi 8v , where

-ij is defined as,
a i~i (2+oi1 0i L B) (i~j)

J 4 ,j ][ (-1)+j(opi3 -ip 3 )

The virtual work performed by the inertial forces can be similarly ob-
tained. The virtual work due to acceleration of the lever arm is:

8 WL = _[j +M (L /2)2 1 (t)8a(t)

-I &(t) 8a(t).

The virtual work due to beam acceleration is (-[pt1+P2 t 2+P 3t3]) :

( L R +L)11 2
8W 2= -P1 IL(x,t) 8v(x,t) dx

- & 8 xC( 8v

+ 8(I 2,1_ i) + X 3,i 8v I,
where
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[(L R+L B) 3 LR

2L~o i + 2 ]
12, 2

and _3, L .
Employing the identical prescription, the virtual work performed by the

applied forces becomes, including base motion:

8W nc- F LR 8Q,

8Wn,2 = -M a LR 8a, and

4
8Wnc 3-=paB [r4 8a + _2,1 8v ]"

The integrals F 1 and F2,i are defined as follows:

F r(L +LB)2 _L R2 ] _ (L R+LB )3 -L R3
F ~ ~ 1 RI-5 ]

and
2ai  1 2L i+ 2]

f2,i = -

P1 112

The equations of motion then can be written as:
8WB + 8W +8Ws -(8W L + 8We2)

- (8W aI + 8W n 2 + 8W n 3 ) W 0.

The assembled matrix form of the equations of motion is:

[M] i + [K) x - F.

The explicit form of the matrices are given in the Appendix.

The topological features are more readily observed in matrix form. The
coupling between the beam generalized coordinates is the interesting fea-
ture to be observed. The mass matrix is only coupled between each degree of
freedom and the lever rotation coordinate. No inertial coupling exists
between the generalized coordinates themselves.

The opposite situation is true of the stiffness matrix. The beam gen-
eralized coordinates are completely coupled through the shear compliance.
Thus, for a highly damped core material, no simple closed form solution can
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be obtained [8]. No stiffness coupling exists between the beam coordinates

and the lever rotation.

5.0 COUPLED IDK) OLUTION

Figure 7 shows the result of a digital simulation performed incorporat-
ing the first two beam generalized coordinates and the lever rotation
coordinate. The difference between the peak frequencies of the transfer
function and that of the tip deflection in Figure 7 is attributable to
inertial coupling of the beam with the lever arm. The coupling of both
inertial and elastic structural subcomponents is a well documented phenomenon
in structural mechanics [6,9,10].

The rotational stiffness of the lever was lowered to permit testing at
higher strain levels approximating service fatigue environments. However,
that modification lowered the lever arm resonance to near 100 Hz; that is, in
tne middle of the desired frequency range for testing (20 Hz to 300 Hz).
Thus, the maximum tip deflection occurs at the coupled system resonance, not
at the uncoupled specimen resonance. For that reason, the root strain maxi-
mizes at the coupled mode resonance, since it is there that the system is at
Leaonance (cf. Figure 3).

The transfer function peaks at the specimen resonant frequency, since
that is the relationship from root-to-tip; that is, it reflects the beam
properties, per se (Figure 2). The root acceleration minimizes at the
uncoupled beam frequency, since at that frequency the system observes the
beam as a damper. When the root acceleration is controlled as a constant,
the tip deflection and the transfer function indicate the same resonant
frequency. That control enforces a base motion excitation, that effectively
isolates the beam from the fixture (cf. Figure 4).

The mechanical coupling of the test specimen with the test fixture will
cause an error in damping estimates, if Heine's procedure is strictly
followed. First, if the frequency of maximum tip deflection is used, the
damping estimate will be high, since the estimate is inversely proportional
to the frequency squared [2]. Secondly, if the frequency of the minimum of
the root acceleration is used, the damping estimate will again be high, since
that estimate is inversely proportional to the displacement [2]. Depending
on the proximity of the lever resonance to that of the test beam, a con-
siderable error can be realized. The essential point to be considered here
is: the test beam must be isolated from the fixture dynamics to obtain
reliable damping estimates.

6.0 IEDAM -MM0ZL

Whereas the coupled mode solution partially described the measured fre-
quency behavior data, the simulation did not reflect the measured damping
behavior. After repeated attempts to match the difference in damping
behavior between the transfer function and the tip deflection, an equivalent
circuit impedance model was constructed, using a force-voltage technique
(Figure 8) [11,12]. The model retained two degrees of freedom: the first
beam generalized coordinate, and the lever rotation cocrdinate. That model
maintained the important relationships between the fixture and the test beam.
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The motivation for using an impedance model was the observed influence of
source impedance on the electrical duals of mechancal circuits [13,14].

Summing the impedances about each loop (cf. Figure 8) and solving for the
transfer impedances:

12= 1 ,and

V A+B+ jCa

I1 -J°M12 , where
12 R 1 + j1l

A - (R + R2),2 M22

B = 0 R1 R

R2 + 12

CM j r 2 2 2 1)

R 2+

with reactances defined as,

][ M -OL 1 - I and X2  L2 - 1.

C1 C 2
Here, the dependence of the root-to-tip transfer impedance solely on the
specimen properties is readily observed. Thus, the system is at resonance
when the tip deflection is maximized, but the transfer impedance (or
function) possesses the specimen damping property information (cf. Figure 2)
(13].

Since the load should appear as a large resistance relative to the fix-
ture, the Thevenin resistance (R ) was tuned to nearly 50% percent of the
lever arm stiffness. At that levl, the analytical simulation converged to
that of experiment (Figure 9). The loss factor computed from the transfer
function is 0.02 and 0.045 from the tip deflection. Thus, the principal
difference between the damping estimates arises from the shaker source
impedance inertially coupled to the specimen through the lever arm, that is
the back-EMF induces damping [191!!

6.0 VARIIN= WITH RKU DIG 38T1M'S

The Ross-Kerwin-Ungar equations (RKU) were developed to evaluate the
response of damped and sandwich beams [15,161 to acoustical excitation. The
loss factors measured in the above analytical and measured data are somewhat
lower than that expected from RKU estimates and published nomograms for
viscoelastic materials. Much of the available nomogram data was developed
using the RKU formulations, since those nomograms are for materials that were
developed for noise and vibration control, not for sonic fatigue suppression.
Based on those nomograms, loss factors at or above 0.1 should be anticipated.
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The principal source of disagreement arises from the mode in which the
specimen is tested.

The RKU equations assume simply supported boundary conditions[15,16].
Figure 10 shows that the eigenvalues for cantilevered beams converge to
within 80% of those of simply supported beams after the third mode. (For
instance, Anatrol formulates their nomograms based on the average loss factor
measured from the third through sixth modes [17].) Therefore, the loss
factors measured from the first or second mode will be as much as one order
of magnitude lower than those found in the nomograms, since the shearing
strain is concentrated at the root of the beam in those modes. That is, for
the higher modes of vibration, the material is being more uniformly worked
along the beam length; whereas, the lower modes of vibration only work the
material near the root of the beam. This fact illustrates why constrained
layer systems are effective on the higher modes, since more wavelengths are
shearing the core material.

7.0 SOMiE/CONCLUSIONS

The mechanics of a widely used resonance dwell test apparatus were
developed through an energy method application, with respect to the testing
methodology established by Heine using ASTM "Oberst* specimens (1,2]. Test
considerations for fixturing and comparison with published data were
highlighted through analysis of a practical example. The essential points to
be considered are several-fold.

Firstly, the mechanics of an apparently simple apparatus can be quite
complex. Failure to comprehend those subtleties can result in the
acquisition of irrelevant data, especially when the test apparatus is
modified from its original intent. The test procedure and ultimate
application of the test data must be wholly consistent with the physical
parameters of the test apparatus.

Secondly, the test specimen must be either mechanically or artifically
isolated from the fixture dynamics to obtain reliable damping estimates.
That is, the fixture must not possess resonances that may couple to the test
specimen, or the use of a controller may be required to isolate the specimen
artificially. Otherwise, the coupling must be indirectly eliminated in the
data reduction, which may be unsatisfying.

Thirdly, the source and test methodology employed to develop any
published nomogram data must be consistent with the particular test
objectives when comparing measured test data. Lastly, although not a
consideration in the above application, the effect of the root restraint
should be examined, since the damped boundary condition is very difficult tc
effect.

Resonance dwell testing is a cost effective method of screening candidate
damping materials for noise and vibration control, and scnic fatigue
resistance. However, a particular methodology or apparatus cannot bc used
adhoc. A short reflection on the desired results and test objectives reaps a
great reward in acquiring good, relevant, and inexpensive test data.
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L - lever length
L - beam specimen length
M,J - lever inertias
W = specimen width
t't ". facesheet thicknesses
t - viscoelastic thickness
V3 = specimen tip deflection
a - root acceleration
Ra - base acceleration
a
f - bare specimen frequency
fo = damped specimen frequency
dd t + (t +t )/2

- ineal mais density
G =storage modulus
n loss factor
G- G +j )
E - facesheel elastic modulus
v(x,t)- beam displacement
a(t)- lever rotation
v (t) -generalized beam deflection

x-L ) - mode shape

g(.) Q step function
a - mode shape parameter
Xn - eigenvalue
,n- X /L
p- arga Mass density
F - applied shaker force

- angular frequency
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APPENDIX

The inertia matrix, stiffness matrix, and force vector were developed by
application of energy methods above. The coupled inertia matrix is:

P-3,1 0 0 0 ... 0 PX
0 p1 0 0 ... 0 1

0 3,2 2P-3,3 0 ... 0 ,3

P'X2,1 P-2,2 P142,3 ... P4 2,N P-1 +IR
LI

Analogously, the coupled stiffness matrix is:

(EI) + G*X1,1 X .4. G X 0
G (EI) 2 +1 GXGX ... G X ,N

1,2 2,2 X2,3 2,N1* .G4

GX1,N G X 2 ' N  ... (EI)p N + G XN 0
000 K

R
LI

Finally, the force vcctor is:

Fi;2, 
1

-2,3

pa r1 -M a' + F L

4

where G*-G [t3 + t + t2)12

and EI -[(EI) 1 + (El) 2
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THE DEPENDENCY OF VIBRATION
ENERGY DISSIPATION ON THE

AMPLITUDE OF STRUCTURAL MOTION

Dale L. Jensen'
Lawndale, CA

ABSTRACT

Quantitative values of structural damping factors for ground launched aerospace ve-
hicles are seldom precisely determinable. This paper presents measured data from
a large vibration test program and shows correlation of these data with the ampli-
tude of motion. Experimental structural damping factor values and amplitude of
vibratory motion from a vibration test are combined to show the amplitude depen-
dency of structural damping factors. The experimental data show good correlation
of structural mode damping factor with the amplitude of vibratory motion. The
data were obtained from flight control frequency response testing of shuttle orbiter
and ascent vehicles and structural mode damping factors obtained from Ground
Vib-ation Tests, MSFC, Huntsville, Alabama, June 1978 through February 19.'9.

FULL PAPER NOT AVAILABLE FOR
PUBLICATION
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LOW-DEFLECTION LOSS AND HYSTERESIS
MEASUREMENTS ON A

SPACECRAFT TEST JOINT

Eric M. Austin*
CSA Engineering, Inc.
Palo Alto, California

Timothy L. Flora
Lockheed Missiles and Space Company, Inc.

Sunnyvale, California

James C. Goodding

CSA Engineering, Inc.
Palo Alto, California

ABSTRACT

Passive damping has been demonstrated to be an effective and efficient means
for limiting the effects of on-board excitations on the dynamics of space vehicles.
High-precision applications require these treatments to both be effective at very low

excitation levels and not affect the dimensional stability of the structure under quasi-
static and thermal-mechanical loads. This work documents a study of two important
issues facing structures damped with viscoelastic materials: hysteresis and loss at low
deflection levels.

The test article is an I-beam-like structure designed to simulate an experimen-

tal method of fabricating graphite-epoxy/honeycomb structures without using any
mechanical fasteners. After identifying the most critical vibrational modes from a
separate system-level analysis, a damping treatment was designed for the test joint
using standard finite element techniques. A modal test using very low random exci-
tation levels was performed on the resulting damped structure. Statistical methods
were used to determine that the maximum displacement level of the free-free structure
was of the order of nano-meters. Subsequently, hysteresis tests were performed on the

same damped beam. Laser interferometry was used to measure displacements of the

joint after undergoing cyclic static loads of varying magnitudes. Percent hysteresis
was measured while the joint was loaded in three-point bending. Hysteresis behavior

during displacements as small as 150 nano-rncters was recorded

*Senior Engineer, 560 San Antonio Road, Suite 101, Palo Alto, CA 94306 (415) 494-7351
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1. Introduction and Objectives

Passive damping has been demonstrated to be a vital technology for limiting the
effects of on-board excitations on the dynamics of space vehicles. High-precision
applications require these treatments to both be effective at very low excitation lev-
els and not affect the dimensional stability of the structure under quasi-static and
thermal-mechanical loads. Of equal concern are the damping characteristics of the
structure when undergoing very low strain levels. This information is particularly
important when performing analysis of the structure to predict response to launch
and in-service loads. Since this fabrication technique is new, typical levels of inherent
damping are not known. It is also anticipated that passive damping will be incorpo-
rated into any design using this construction technique, so it is necessary to test for
damping performance at very low levels of response.

For many spacecraft designs it is desirable to predict the magnitude the structure
may deform or shift after being launched and placed in service. This deformation can
be caused by gravity release or changes to the thermal and moisture environment.
However, one of the largest and least understood contributors is hysteresis. Structural
hysteresis is the failure of the structure to return to its original position after an
external load has been applied and removed. This effect is typically caused by friction
effects, slippage of fasteners within their holes, and small viscoelastic properties of
most materials. Hysteresis is not to be confused with inelastic behavior of a structure
resulting from loads exceeding the yield strength or proportional limit. It is also
separated from the predictable effects of both long-term creep, where materials deform
slowly due to sustained stresses, and microcreep, which occurs when repeated short-
term loading exceeds the material's microyield strength.[1] In essence, hysteresis is
treated herein as an accumulation of distortion sources that cannot be accounted for
by classical analysis techniques.

Of particular concern is the behavior of dimensionally critical spacecraft struc-
tures. Hysteresis predictions of precision composite structures after being launched
or after small on-orbit maneuvering loads are applied must be based on limited and
mostly irrelevant static test data. The hysteresis of structures constructed using
graphite/epoxy parts bonded together with honeycomb core is not well understood.
When viscoelastic passive damping materials are applied, the hysteresis of the struc-
ture may increase, especially during low-amplitude vibration. The hysteresis test is
designed to give insight into these problerns and aid in analysis efforts to bound or
quantify structural hystere.sis behavior. In summary, the objectives of the hysteresis
tests are as follows.

1. Measure the amount of hysteresis present in a generic -pacecraft joint with a
constrained layer passive damping treatment applied.

2. )eterrnine the linearitv of hysteresis at low displacement levels
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Figure 1. Sketch of the test article

The test article, shown in Figure 1, is designed to simulate an experimental method
of fabricating graphite-epoxy/honeycomb structures without the use of any mechani-
cal fasteners. The article is essentially the intersection, a joint, between two compos-
ite I-beams at an angle of 600. The attachments are strengthened with overlapping
graphite-epoxy (GR/EP) plates attached solely with high-strength epoxies. The pri-
mary mode of interest is the first bending mode of the "I-beam" in its strong direction,
since that deflection best simulates operational deflections using this construction.

A secondary objective of this effort was to design and apply an add-on damping
treatmen. that would increase the damping of the test article significantly in the mode
of interest. A finite element model was developed to aid in this design. The finite
element model was constructed with enough details that it could be used later for
failure analysis of some of the internal parts. This configuration was also tested at
very low levels of excitation.
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Figure 2. Finite element model of the test joint

2. Analysis and Design of the Damping Treatment

2.1 Finite Element Model

The primary reason for creating the finite element model was to evaluate candidate
damping treatments for the test joint. The model was based on drawings supplied by
LMSC and was created using I-DEAS pre-processing software. The finished model
was translated from I-DEAS to MSC/NASTRAN format for the actual analyses.

Figure 2 shows the resulting finite element model. Due to symmetry, only half of the
structure was modeled.

2.2 Predicted Baseline Modes

The modes of interest arc The first overall mode of the Test Joint and the first bending
about its strong axis, shown in Figure 3. The "banana" mode is most representative
of a typical troublesome mode in similar structures. Since only half of the test joint
was modeled, two runs, one with symmetric and one with asymmetric boundary
conditions, are needed to predict all of the structure's modes. Both of the modes of
interest are asymmetric with respect to the symmetry plane, so most of the runs were
done using only these boundary conditions. Since no other boundary conditions were
applied, this predicted free-free modes of the test joint.

The initial run of the test joint model predicted the "banana mode to be the
eleventh elastic mode, at a frequency of slightly more than 1,200 tlz. The high
frequency itself is not a problem for testing; however, the bending mode was coupled
with local modes of nearly every panel section in the structure. This would have

complicated the test greatly, requiring many rmeasurement points in order to identify
the proper mode with confidence. Another concern was that the high level of local
panel participation might distort the inherent level of damping sought for the pure
"banana" mode.

The solution agreed upon by LMSC and CsA engineers was to add some dead
weight to the ends and center of the test .int. It w~a., felt that this would bring the
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170 Hz 500 Hz

Figure 3. Primary vibration modes of interest

first bending mode down in frequency while not affecting the local panel modes. The
finite element model bore this hypothesis out. The solution was to add 10 pounds to
each of the ends and the center, a total of 30 pounds of added weight for the half
model. The added weight brought the mode of interest down to about 585 Hz, and
there was no local panel participation at all.

The frequencies predicted for the baseline undamped structure including the dead
weight are given in Table 1.

2.3 Analysis of Damping Treatments

An ideal outcome of the this analysis would be a damping treatment that added signif-
icant damping without any additional weight. A more realistic goal is to maximize the
damping added to the mode of interest while minimizing the added weight. Though
there are many possible weight-efficient damping strategies, most requiring that the
VEM be on integral part of the structure. A simple constrained-layer approach was
chosen for this work because of hysteresis and creep concerns.

The baseline finite element model including the added weights was altered to add
the effects of constrained-layer damping treatments on both the top of the flange and
the sides of the webs. The damping was predicted using the Modal Strain Energy
Met.iod. Initial runs showed that the modal strain energy (MSE) in the VEM on
the sides (web) was much higher that that in the VEM on the top (flange). Thus,
the treatment on the flange was removed in order to save weight, and all subsequent
iterations were on the web treatment only.
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Mode BC frequency
1 asym 169 Hz*
2 sym 204 Hz
3 sym 360 Hz
4 sym 423 Hz
5 asym 514 Hz

6 asym 585 Hzt
7 sym 640 Hz
8 asym 675 Hz

* first twisting mode

t first bending, strong direction

Table 1. Predicted elastic modes of the baseline test joint

It is often logical to make the constraining layer from the same material as the base
structure, especially when considering thermal expansion. LMSC had soi,, surplus
48-mil-thick GR/EP from the same batch used on the test joint, so this was chosen
for the constraining-layer material. It was shown through analysis that increasing the
thickness from 48 to 96 mils (milli-inches) did not increase the damping enough to
justify the increase in weight. Thus, the final constraining layer was a 18.5-inch-long
by 9.5-inch-wide, 0.048-inch-thick sheet of graphite/epoxy, supplied by LMSC.

The next step was to determine the best combination of VEM shear modulus and
thickness. The properties (shear modulus and loss factor) of viscoelastic materials
vary with both temperature and frequency, and both are important in choosing a
good design. The loss factor is essentially the efficiency with which strain energy in
the VEM is dissipated, i.e., a low loss factor will result in low damping.

The initial candidate VEM's were chosen for their availabilit, The properties
of these canididate were then evaluated at 585 Hz and 70'F, the approximate tem-
perature of CSA's laboratory. Shear moduli of the VEM's having good loss factors
(:>0.7) were simulated on the model, and damping was predicted following the MSE
method. The viscoelastic material chosen for this application was 3M's Y-9473, a 10-
mil-thick double-back adhesive transfer tape. This choice resulted in the most modal
strain energy in the VEM given the other factors that were held constant.

The surface area of coverage of the treatment was approximately 700 in2 (four
sheets at 9.5 x 18.5 inches each), and the VEM has a density of about 0.035 i3b

Together with the constraining layer, the added weight is about 2.5 lbs.
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2.4 Predicted Levels of Damping

Once the final configuration of the damping treatment was chosen, predictions of
damping were made. These damping levels, presented here in terms of viscous damp-
ing (-' ), were calculated using the modal strain energy in the VEM as predicted by
the finite element model. The only modes of interest were the first mode overall of
the system and the first bending mode in the strong direction ("banana"). From Ta-
ble 1, the frequencies of these modes were predicted to be 169 and 585 Hz. Since the
properties of viscoelastic materials (VEM's) are sensitive to changes in temperature
and frequency, two runs had to be made for each set of symmetry conditions: one
each with the VEM properties evaluated at 169 and 585 Hz. The shear modulus of
the chosen VEM is nearly twice as stiff at 585 Hz as it is at 169 Hz.

The damping predicted for these two modes was 2.3% and 2.4%, respectively. A
full summary of the frequencies and damping values will be included in a later section.
Note that these predictions are for added damping, and they neglect any damping
inherently in the structure.

3. Modal Testing of the Test Joint

3.1 Test Setup

The Test Joint was suspended with steel cables and extension springs to simulate
free-free boundary conditions. In order for these boundary conditions to be effective,
the rigid-body modes of the structure need to be about ten times lower in frequency
that the first elastic mode. Free-free boundary conditions were chosen to reduce the
possible effects of fixturing dynamics on the damping measurements. Often times with
simply supported or fixed-end boundary conditions, it is difficult, if not impossible, to
distinguish between loss from the structure and loss from connections at the boundary
conditions. This is particularly important in a precision structure such as this where
few mechanical fasteners are used. An additional benefit is that comparisons with
finite element models are easier since the dynamics of the supports do not have to be
modeled.

The 60 pounds of lead were added by affixing lead blocks to the ends and center
of the beaan. The center blocks were attached with epoxy, and the end blocks were
bolted to an aluminum bar with two 3/8-inch-diameter bolts. The added weights
were placed as close as possible to the center line of the Test Joint to avoid affecting
twisting modes.
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Figure 4. Schematic of test instrumentation

3.2 Instrumentation

The instrumentation for the test consisted of an impact hammer, a signal conditioner
for the load cell, three piezoelectric accelerometers, accelerometer charge amplifiers,
and a four-channel modal analysis system. An impact hammer was used to excite the
Test Joint, since it was adequate for the measurements sought, and it doesn't require
any additional fixturing or rigging.

Coupled with the charge amplifiers, the sensitivity of the accelerometers was more
than adequate to ensure a good signal-to-noise ratio, even for the low-amplitude
measurements. The tip on the impact hammer was chosen to input the most energy
over the frequency band of interest. A schematic of the instrumentation is shown in
Figure 4.

3.3 Measurements

Two points were used for most of the testing: one on the top of the Test Joint near
the center line and one on the vertical web near its intersection with the flange. Two
points were used since it was difficult to excit, both the lowest mode (a twisting
mode) of the structure and the first strong-direction bending with the same excita-
tion, especially when impacting normal to the surfaces of the test joint. Using two
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excitation points also simplified the task of data reduction, since few if any of the
symmetric modes were excited by the excitation directly on top of the test joint.
Recall from Table 1 that both the modes of interest are asymmetric modes.

Impact force and acceleration time records were captured and averaged with a
Fast-Fourier-Transform analyzer within the test system. From these, frequency re-
sponse functions (FRF's) were computed by dividing the accelerations by the exci-
tation force. These FRF's yield insight into the test joint's structural dynamics by
depicting the magnitude and phase relationships of the two signals versus frequency.
Modal surveys were conducted using two impact points. Each impact point was
chosen to excite one of the two modes of interest.

A standard modal analysis curve-fitting technique was used to determine the struc-
ture's resonant frequencies, the corresponding mode shapes, and the modal damping
from the impact test measurements. This circle-fitting technique estimates the mode
shapes by minimizing the least-square error to the FRF displayed in the complex
plane. Fast-Fourier-transform zoom techniques were used to provide the very high
spectral resolution required for accurate damping measurements from the data.

4. Damping at Low Displacement Amplitudes

After the modal tests had been completed, both the baseline and treated configu-
rations were tested at low excitation levels to determine how damping was effected.
The goal was to measure the damping at displacement levels of about 10 nano-meters
peak-to-peak. The primary mode of interest for low-amplitude damping was the
strong-direction bending ("banana") mode. It was necessary to make certain ap-
proximations and assumptions in order to determine the amplitude of the response
contributed by this mode.

The test of the baseline undamped structure was done using the same impact-
hammer technique used for the modal iest, only with much lower impact levels and a
higher sensitivity hammer tip. The response measured at the geometric center of the
joint on the top surface was used as the maximum displacement. If the structure is
excited on the top surface directly over the web, the desired bending mode dominates
the response. Thus, it is assumed that the acceleration time history is due solely to
the response of the bending mode. This allows the peak-to-peak displacement to be
defined as the peak-to-peak acceleration integrated twice, i.e., divided by the square
of the frequency of the mode. In order to get the low response levels, the structure was
excited near the a node of the bending mode. Even if other modes were excited by the
impact, the they would only add to the measured response. Thus, these displacement
levels are conservative in the worst case.

After the damping treatment was applied, the excitation for the low-amplitude
measurements was changed from an impact hammer to a burst-random signal applied
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Lowest Mode Bending Mode
Freq (H1z) ' Freq (Hz)

predicted 169 n/a 585 n/a
measured 160 0.26% 508 0.28%

Table 2. Comparison of predicted and measured frequencies and damping for the
untreated baseline Test Joint

through a small shaker. The change resulted in much better quality data.

A burst-random signal was used to excite the structure with random levels of
energy at all of the frequencies with a specified range. For these tests, the range was
set to 160 to 640 Hz. For accuracy, several bursts are averaged to arrive at the final
frequency response functions. The major drawback to this method for this application
is that there no way to get an exact deterministic output from a random input. There
is, however, a method for handling problems such as this. It is based on a statistical
relationship between the RMS (root mean square) of a function and its peak value.
This factor, sometimes called the crest factor, usually has a value between 3.0 and
4.0.[2,3] Additional details about the application of the crest factor for this test will
be presented along with the results in the following section.

5. Test Results

After testing with various bolt configurations (different torques, different washers,
grease, etc.), the original configuration was maintained for all of the testing.

5.1 Damping Measured in the Baseline Test Joint

A frequency of 160 Hlz was measured for the lowest mode. This compares well with
the predicted value of 169. For the "banana" mode, the measured frequency was
508 Hz, compared to 585 liz predicted. This 15% discrepancy is of some concern,
but not much since there is high confidence in the actual mode shape. Damping
predictions via the modal strain energy method are dependent solely on the system
eigenvectors and the structure's stiffness matrix. Of the two, the mode shape is the
more important in getting accurate predictions of damping. For this reason, only
minimal time was spent trying to match the frequencies of the finite element model
to those measured. (A subsequent finite element model built by LMSC was tuned to
match both of these modes very well.)
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Figure 5. Frequency-response function showing strength of mode at 500 Hz

5.2 Damping Measured in the Treated Test Joint

After the damping treatment was applied, the measurements were repeated, only this
time at a smaller subset of the original 32 points. The 500-Hz bending mode is very
dominant when impacting the joint in the vertical direction from the top side, so it
was not necessary to re-find the mode. This dominance is seen by the relative isolation
(as in distance from other modes) of the mode, as shown in Figure 5. A comparison of
the measured and predicted frequencies and damping values is given in Table 3. This
close agreement between test and analysis damnping levels is good considering that
the viscoelastic material properties were riot verified by test. The model correlates
better with the lowest modes than with the target bending mode. Therefore, it is
reasonable to expect the damping prediction for this mode to be better.

5.3 Damping Measured at Low Amplitude Levels

5.3.1 Untreated Baseline Structure

In order to produce the low-level responses desired, the Test Joint had to be excited
with a light impact hammer to produce very low forces. The untreated Test Joint
was excited with two low-level excitations: one producing about 25 nm zero-to-peak
displacement and the other about 5 nm. Thie acceleration time history produced by
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Lowest Mode Bending Mode
Freq (Hz) Freq (Hz)

predicted 170 2.3% 612 2.4%
measured 169 2.5% 530 1.95%

Table 3. Comparison of predicted and measured frequencies and damping for the

treated Test Joint

one of the impact forces is shown in Figure 6. The displacement was calculated as
follows: The figure shows the zero-to-peak acceleration to be about 2. Consider-
ing the FRF in Figure 5, it can reasonably be asserted that this signal is dominated
by the 530-Hz mode, so the zero-to-peak displacement can be calculated to be

acceleration 2.0-n
(21rf)2  (27r530)2 I

= 1.804 x 10-7 inches x 0.0254 x 109 nano-meters
1 inch

= 4.59 nano-meters

The damping measured for the 5-nm and 25-nm displacements was 0.28% and 0.33%,
respectively. These compare very well with the 0.28% from Table 2.

5.3.2 Structure With Damping Treatment

This test used a shaker producing a burst-random signal. The quality and repeata-
bility of the results far exceeded that of the impact hammer. As discussed briefly in
a earlier section, a statistical relationship had to be employed in order to infer dis-
placements from the random loading used on the treated structure. Two quantities
are needed to determine this crest factor: the ratio of the RMS of a power spectral
density function (PSD) at a point and the maximum response at that point. For this
purpose, the acceleration at the geometric center of the top surface was used. As with
the displacements, deterministic accelerations cannot be determined from a random
loading. In place of finding the maximum acceleration during the random burst, a
limiting value was determined. This was done by placed a limit on the voltage signal
output by the accelerometer at the response point. If this linit voltage was exceeded,
the ensemble was rejected. Knowing the accelerometer's relationship between accel-
eration and voltage output, this provides a good, if slightly conservative, measure of
the maximum acceleration.

The crest factor was calculated for each excitation level by dividing the upper-
limit acceleration by the RMS of the acceleration PSD between 160 and 640 Hz. This
ratio was then multiplied by the RMS of the displacerrent PSI) to obtain a statistical
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Figure 6. Acceleration time trace of low-level impact in the untreated baseline Test
Joint: first strong-direction bending mode

estimate of the maximum displacement. In order to better estimate the maximum
displacement of bending mode alone, the displacement RMS was computed between
the half-power (3-db down) points. The results are summarized in Table 4.

In two of the measurements (marked by * in Table 4), the random signal was
limited to a narrow band around the desired mode. This further ensured that only
the bending mode was excited. This is noted because the crest factors for these two
cases are lower than the others. In the limit, as the frequency band collapses down
to a single frequency, the crest factor approaches the one over the RMS of a simple
sinusoid, or v/2.

acceleration Crest displacement djimit

aimit RMS factor RMS 0-pk
(in/a 2) (in/s2) (unitless) (nano-meters) (nm) (%)
0.259 0.06317 4.100 0.1042 0.427 1 77
0.386 0.1001 3.856 0.1623 0.626 2.04
0.66 0.1751 3.769 0.2937 1.11 1.95
1.93 0.7039 2.742 1.1784 3.23 1.95
5.8 2.821 2.056* 4.9863 10.25 2.04

9.65 2.538 3.802 4.148 16.8 1.95
19.3 5.043 4.808 9.270 44.57 1.95
38.6 10.99 3.51 20.163 70.82 1.95
58.0 27.75 2.090* 47.90 100.11 1.96

* band-limited signal used

Table 4. Results of test of treated joint at low excitation levels
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6. Hysteresis Testing

Historically on LMSC structures, hysteresis observed in static test programs typi-
cally exceeds 10% of their maximum displacements. On structures such as this where
dimensional stability is of concern, hysteresis must be reduced by eliminating me-
chanical faster.ors where possible and bonding or welding critical interfaces. Past
experience with alignment platforms and other precision structures has shown hys-
teresis effects reduced to approximately 1% when a large static load is applied.

Quantifying hysteresis as a percent of displacement is the best method of describ-
ing the effect. It is not to suggest that hysteresis can be predicted accurately in this
manner, rather the effect can be bounded by some ± percent ringe. This allows the
effect to be accounted for within structural stability budgets.

Duration of the applied loading should not be of importance since creep effects
generally take a comparatively large amount of time to accumulate and are treated
separately from hysteresis. Figure 7 shows that hysteresis is independent of time.
However, because graphite/epoxies respond with small viscous effects, a finite amount
of time to settle and take readings was given to allow full recovL.y. 3ecause of
the dynamic and cyclic nature of load conditions of primary interest to spacecraft
structures, the viscous behavior is riot as critical as it first may seem. At any rate,
because of the sensitive nature of the test equipment in use, time dependant effects
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Figi.re 8. Hysteresis test setup

from suddenly applied and removed loadings are left for future studies.

6.1 Description of Hysteresis Test

The test was conducted at the Laser Interferometer Micro Measurement System
(LIMMS) Lab. This lab is capable of measuring small displacements with a reso-
lution of ± 0.6 micro-inches. This is achieved by using a series of Hewlett-Packard
laser interferometers mounted on a seismic pad. The lasers were sampled 100 times
a second and averaged over one-second intervals to eliminate high-frequency jitter
influences. To help minimize temperature effects, the lab uses its own air-conditioner
system, steady to ±1F over 24 hours, and critical fixturing is made from Invar.

The test joint was supported on two blade flexures to simulate a simple support.
The load was applied at the mid-span to put the joint into three-point bending. Seven
lasers were used to measure displacements at varying locations akZng the bottom of
the joint. Figure 8 is a schematic of the test setup.

Two redundant 10-pound (±0.01 lb) load cells were used; one calibrated for tension
and the other for compression. Both cells were located as close to the joint interface
as possible to minimize error caused by fixturing or motor drive slop or relaxation.
The load was applied with a 60000-to-I gear-reduced motor to apply a very smooth
and accurate load to the joint.
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The test sequencc used was to zero the load fixture and take displacement readings.
As load was applied laser readings were monitored continuously. When the target
load was achieved in the positive direction, the motor drive paused for 10 seconds
and unloaded to zero. Another 10-second pause was maintained at zero immediately
followed by a negative load application to reverse the target load. The sequen(ce would
then pause at this negative load and again at zero. 13) cycling the' load between a
positive and negative kad, a more realistic load environment wh,':r, the structure
was not allowed to settle in any one direction, was simulated.

6.2 Results of Hysteresis Testing

The test sequernce was applied at medium-to-small load levels to detctrrolne the beams
response at as low of displacement levels as possible. Tests were run at - 1,5,10,25,50,
and 100 pounds. Stresses at these lV d levels never exceed 50 psi.which is two Or-

ders of magnitude less than the mi,,royield strengthJ41 Deflections ued for hysteresis
measuremen.s were taken at the mid-span of the joint after subtraction of the end
measuremen s, in effect zeroing any contribution of the test fixturing to deflections
or hysteresis. The stiffness of the joint was measured as 142,300 lb/in. so deflections
during all test iiun ,.-te very small.

The data suggests that hysteresis shifts the structure in the direction of the last
applied load. This observation is relatively insignificant considering the dynamic
disturbance and cyclically decaying response typical of spacecraft structures.

Test runs were repeated up to 50 times each to increase confidence in the re-
sults. While every attempt has been made to minimize outside disturbances from
influencing test measurements. the scatter of data levels is much -,eater than the
laser resolution would suggest. Data scatter during higher load levels are probably
caused by large disturbances such as trucks passing by the building, foot traflic down
adjacent hallways, Or the air conditioner switching on at an inopportune moment.
Scatter in the data during the ±1-pound test is much smaller a,:d can be caused by
more sources such as load cell resolution, humidity chang,(- qnr motor vibrations. To
minimize the influences from all these error sources, only th, data that fits within a
one sigma (.68p) distribution is kept for analysis, essentially throw, ig out the worst
one third of the data at each load level.

The remaining data is then averaged and plotted for of ho six each load levels.
The curve plotted for Figure 9 shows that hysteresis in t he.. jli':t is ty pical of precision
structures. The cornpomite construction and applied dainpiii,, treatment have not
appieciably increased hysteresis above oric perccrt for larv, dt .urhances. tHowever
when disturbances are less than about (.00i inches the test diata would suggest that
str..u..iu hvsteresis is noxlinear. The :h I sigma errer band. i, includ(d to show
test reneatarii tv Adtmittedly siuc(e the number ,)f prr:iug rr(,r sourccs and
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significance of test inaccuracies increases at low disturbance levels, one would expect
to see a curve shape similar to Figure 9 even if percent hysteresis is linear and constant.
However the amount of nonlinearity measured is more than expected by attempting
to quantify the test error sources alone.

7. Summary and Conclusions

The viscous damping in the untreatcd Test Joint was measured to be 0.28% for the
strong-direction bending mode and 0.26% in the first twisting mode. The damping
,i the bnading uiode was snown to De constant down to a displacement level of about
5 nm zero-to-peak.

A finite element model of the Test Joint was constructed for the purpose of evalu-
ating damping concepts for the Test Joint. Though few attempts were made to tune
the model to the test results, the model predicted with good accuracy the damping in
the treated Test Joint. The roughly 3-pound damping treatment resulted in about 2%
viscous damping in the bending mode and about 2.5% in the lowest twisting mode.

The best quality signals for the low-level damping came from the test of the treated
structure. Figure 10 shows the damping measured versus maximum zero-to-peak
displacement. It is important to understand that the damping values of 1.95 and 2.04
are virtually the same within the accuracy of the test. With 1024 measurements over
the frequency range of 160 to 640 Hz, the modal and half-power frequencies can only
be determined to an accuracy of (640-160) = 0.47 Hz. The damping is determined by1024
_, where Aw spans the half-power points and Li, is the center (natural) frequency.
Thus, the measurement of damping for the 530-Hz mode can only be resolved to
within , - 047- 0.09% viscous damping. The only deviation comes at the very
lowest level, where the load levels were so small that the signal-to-noise ratio was
poor; most of the response was attributed to the drive gear in the shaker.

This work demonstrates structural damping using a viscoelastic material (VEM)
to be constant with respect to amplitude down to nano-meter levels. It shows that
passive damping is a viable means for reducing the response of structures using this
construction to external excitations. Finally, the correlation between the analysis
and test shows that levels of damping can be predicted with reasonable accuracy.
The collimation of the above factors gives engineers a valuable and powerful tool for
analysis and design of precision structures.

Structural hysteresis of the test joint is shown in Figure 9. Plus or minus 1%
hysteresis can be used as a conservative estimate to bound large-deflection hysteresis
of structures using the passively damped composite construction techniques. The
hysteresis behavior of these structures appears to be nonlinear at very small displace-
ment levels. For analysis of events which produce disturban,-oz less than one mil,
Figure 9 along with an appropriate ur certainty factor can be used as a design guide.
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ABSTRACT

Unlike some structural aerospace materials, as for instance carbon fibers, Kevlar
composites present high damping ratios. This characteristic seems important in
the structural design of satellites and large spacecraft. Besides the use of Kevlar
sandwich structures is particularly interesting because of their high specific stiffness.

This paper presents the experimental results of damping ratio measurements
derived from several sandwich samples, characterized by different skins, fablric and
laminate with different lay-up.

Damping ratios are evaluated by using different techniques and a comparison is
discussed. The effects of frequency and temperature - in the range from the room
value up to 100 Centigrade - on the danping ratio values are also considered.

A model (based on an energetic approach), that permits a theoretical estimate of
tlie damping ratio in sandwich samples is presented. Finally a comparison between

tlie l)erimnental and the predicted values is carried out.
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CHARACTERITZATION OF' THE DAMPING PRC~tRTLE3O i-A~IGAL

i .. , ic -L. Pan

AF3SIRA16I'

Many problems of noise and! viLbration redu t~on cannot be solved by
traditional methods usi.-g, mec-hanical d.aapers or high-damping viscoelastic
materials (e -g.-, r:UbbErs, polymers &nrj plas cics) . Often constrair!ns imposed
by the service enviro ment pdr~icularly toose o i stress, temperatcc; e ano
corrosive atmospheres, will force 'he design engineer to consider high-
damping metals, rllovys ano composite materials. Unfortunately,
characterization of the damping and stiffness properties of promising high
damping metals and alloys has hardly ever been carried out in a syste.matic
manner. Consequently, damping data arc rarely accessible to the design
"lngillel ill a teldi ly wiAh1,' I tt Ti.' lauk of fstoidail data has resulted
in relatively few cases whore metals and alloys have been chosen
specifically for their high dauping properties.

li,; papel ()I!t 1 iou: thi iqltp> ail si t .iegies tocha a- t-M- ize the dam pi ng
properties of high-damping wetals an~d alloys that owe their damping
behaviour to the major classes of high-damping mechanisms, The main goal of
the characterization is to present the damping data in a form that cam be
readily used by the design enginoert ic o-dict thie vibration response of a
component fabricated from the h'nlh-damim ~n metal or alloy in question.
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the bl -  after casting. The composition i;f the uimple .e,;ted ic al,;c

show, in Table 1.

TABLE I--Composition ranges of the iIlo' investigated.

Compos i on

Alloy
Designation Zn Al u MR Si Fe

A380 (SC8,4A) 3.0 remainder H.i- ;.) .i

#3 (AG,A) Lemainder 3. 5- 4 3 05 -,

ZA8 remainder 8.0-8.8 ).8 -1. 3 0.115-0 3 .

ZA12 remainder l0.51l.5 .5 1.25 0.,15, - . 3) .

SPZ (ZA22) 7 22 -

ZAZ7 Lrmainder 2 5 - 2 .1a)-0 5 01)-0.0 20 1 A

Grey Cast Iron -

SONOSTCIN Mn Cu Al Fe Ni C

55.2 38.3 4.36 3.16 1 .42 ()W(; .

TECHNIQUES

LOW FREQUENCIES (1-10 Hz)

Samples were machined from the as-received, as-cast materials into small
rectangular prisms, typically 5 mm x 2.5 mm 1 1.0 mm, for testing in a lo.'
frequency, flexure pendulum. The pendulum used in this study as well as its
electronic instrumentation is described in detail elsewdhere 121.

INTER2EDIATE FREQUENCIES (10 5000 Hz)

Samples in the form of re( tangular ,ect ion bat of various; lengths and
thicknesses were machined from the as-ie(eived matetials for testing in ht th
fixed-free (ca'ntilever) and free-free resonant bar equipment 131. A
detailed descrptior ot some of these techniques adapted to the narrower
goal of the nvestigation of elastic moduli is given in reference 4.

ULTRASONIC FREQUENCIFS (40 kHz and 120 kHz)

3, mples in the form of square-section (3 mm x 3 mm) prisms, 60 mm in
length, were machined from the as received materials for testing by the

[C'A-,4
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(a) AMPLITUDE INDEPENDENT AND FREQUENCY DEPENDENT

IF IF

Ampliude Frequency
or Temperature

(b) AMPLITUDE DEPENDENT AND FREQUENCY INDEPENDENT

IF IF

Amplitude Frequency

or Temperature

FIGURE 1: Schematic diagrams of internal friction as a function of strain
amplitude for (a) amplitude-independent (dynamic hysteresis) and
(b) amplitude-dependent (static hysteresis) damping.

RESULTS

ZA ALLOYS

The first flexure pendulum experiments (-4 Hz), on any one of the
materials, using samples of two different thicknesses immediately revealed a
strong dependence of the damping on the thickness in bending. This in turn
suggested the existence of a large thermoelastic component, subsequently
confirmed by the frequency dependence of the damping of samples of the same
thickness and different lengths, and calculations of the thermoelastic
damping using Zener's theory [6] and the known thermophysical properties of
the materials (Fig.2). Other flexure pendulum measurements established the
presence of a large peak as a function of T, culminating in a phase change
at about 2901C, as shown in Fig. 3 for SPZ and ZA27. Low-frequency and
high-frequency measurements of the low-temperature tail of this peak, as
well as the strain amplitude dependence of the IF at ambient temperature
(-20*C), are shown in Fig. 4 for ZA27.
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FIGURE 2: Thermoelastic damping peaks plotted as a function of log(ft2),
where f is the frequency in hertz and t is the specimen thickness
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FIGURE 4: Damping, Q-1, as a function of temperature and strain amplitude
(at 20'C) for ZA27.

Combining the results of the flexure pendulum and the APUCOT measurements
revealed the following important conclusions:

1. The IF and E are amplitude-independent at both high frequencies and low
frequencies over the useful temperature range from 20 to 1501C. Such purely
linear behaviour of IF and E in a series of alloys is quite unusual and
indicates that all of the major components of the IF come from linear,
dynamic relaxation mechanisms.
2. One of the mechanisms is thermoelastic damping.
3. The IF increases rapidly with temperature at both low and high
frequencies.
4. The IF curves as function of T shift to higher temperatures (without
noticeable change in shape) with higher frequencies. This strongly suggests
that the major component of the IF comes from a thermally activated
relaxation.
5. These results agree with the findings of previous investigations into
the SPZ alloy 17-91.

If the IF at both low frequencies and high frequencies can be accurately
described by the sum of the tvo thermally activated processes mentioned
above (thermoelastic rilaxation and the low temperature tail of a boundary
relaxation), then this suggests that no other mechanisms become active at
intermediate frequencies. However, to be sure that this is indeed the case,
data at the intermediate frequencies must be collected and they too should
be described by the sum of the two components.
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SEMI-EMPIRICAL DESCRIPTION OF THE IF

The main results of the IF study of the ZA alloys are most easily
displayed in a log Q-' vs. log F plot. as shown in Fig. 5 for ZA27. 'ihe
scatter is somewhat large, but not ui:,uly so considering that ,
were cut from commercial die castings with variations in pcrosity,
composition and other micLostiuctural rhara'teristics. Also, it should be
noted that each datum is the av-,cage of at least three reneat measurements
on a separate sample of the same thickness. The IF is highly reproducible
for repeat measurements on the same sample, but variable from sample to
sample cut from the same die casting.

-I IT

ZA 27

1200C
-- 2

ax

0

-3

(b)
-4I I

0 2 3 4 5

Log ( F

FIGURE 5: Log-log plot of damping Q--, as a function of freqoency, 1, for
ZA27 at 20'C and 120'C. The full curves were calculated using

equation (2) and the data in Table 2.

We expect to be able to describe the data of Fi.-.5 by an expression of the
form

) (t,f,r) Ba.kground r , 1 ( 'c )2  1)

where Q-(tf,T) is the IF for a samp.c o. rhikness t. at frequency f and
temperature T. In eqn. (1) the iF :s giv:e- in terms of three components:
(1) a temperature-independent background: (2) the tail of a broadened high-

temperature peak, characterized by t. xponenr n. the activation enthalpy
H, and the constant, A; and (3) the v,-moe1asiic relaxation of strength,

&r l and relaxation time t. w = 2rrf i -adiau toquerc of the
osci . ations. Determination of n andH , thc1- exv erimenta. russits and
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&rE and i from a combination of the thermophysical data on the alloys and

the experimental results is described in detail in reference 10.

The experimental data obtained for all of the ZA series of alloys obtained
over the temperature range from 20 to 150'C and the frequency range from
1 Hz to 120 kHz is well described by the semi-e;,piri~ai formula derived from
eqn. (1):

Q-I(t,f,T) = c 2f - ' + a2f-exp(-e/T) , a 3 T(ft 2 )/[l * (S 1 ft 2 ) 21 (2)

where the first term represents tite f-dependent but T-independent
background, the second term is the tail of a broadened high-temperature
relaxation and the third term is the thermoelastic component. The constants
for the various alloys are tabulated in Table 2. In Fig. 5 it is important
to note that the calculated curve at 1201C is in good agreement with the
limited IF data obtained at that temperature.

TABLE 2--Data used to describe the thickness, frequency and temperature
dependence of the damping in the ZA alloys.

Frequency-Dependent Temperature Thermoelastic
Background Dependence Damping

Material m al a n a3 6

#3 0.26 2.900 x 10- 3  5530 0.16 5222 3.963 x 10- 5  1.556

ZA8 0.28 3.548 x 10-1 4566 0.16 5106 2.758 x 10-5 0.911

ZA12 0.29 4.073 x 10- 3  2937 0.18 4758 2.863 x 10- 5  0.977

SPZ 0.22 1.17 x 10-2 16987 0.13 4875 2.335 x 10- 5 0.918

ZA27 0.29 5.012 x 10- 3  6910 0.16 4990 5.016 x 10- 5 1.495

Young's modulus measured at ambient temperature for the ZA alloys is given
in Table 3.

TABLE 3--Young's modulus of the ZA alloys measured at 20*C and 40 kHz.

Material Young's Modulus
(GPa)

;3 93.8
ZA8 91.4
ZA12 89.5
SPZ 91.6
ZA27 78.0
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FIGURE 7: Damping and Young's modulus of samples of DR-1 and DR-4 as a

function of strain amplitude at 200C and 40 kHz: 1. as-received
DR-4, 2. as-received DR-i, and 3. DR-4 after 2 h at 425 0C and
furnace cooling.

Fig. 8 is evidence of the fact that the thermally activated processes in the

lower-temperature antiferromagnetic phase are shifted to the region of the
phase change, but are inoperative in the higher-temperature paramagnetic

phase. An important point to note in these results is the substantial
differences in the Neel points and the forms of the 0-1 vs. T curves for

samples of DR-I and DR-4. These differences come entirely from
microstructural differences between parts of the same casting that cooled at

different rates. As shown in Figs. 7 and 8 respectively, the highest levels

of damping achievable in the SONOSTON were not present in the as-received

samples of either DR-4 or DR-I. Even higher damping levels were found at
both low arid ,igj,- fiquencie: iii samples iiat-treated tor 2 h at 425'C and
furnace-cooled.

Co,,ibining the results of the flexure pendulum and APUCOT measurements
revealed the following impottart conclusions:

1. The IF and E i.e strongly ,-dependent at both low and high frequencies
at temperatures beolo%- the Neel 'emperature. At higher temperatures the IF
is E-independe; '.

2. At least -),. ,f ' me hr-is'< is thermally activated, since the peak of

Q-1 vs. T sbit < ',- h t,71peraturcs with higher frequencies. An

unexpected feat'un *"ee tes'lts is that the overall peak height als o

increases si h fv j V (s:- -- Fig. 8).
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temperature curves for a sample of DR-i measured at 40 kHz (3).

The strain amplitude in both types of test was 2 10- 5.

12 104

0 .100

u
- E -960

.1 92

z -J

L4 (2 88 0

0 .. . . . . . . 8
2 /84

0 20 40 CO 80 100 120
TEMPERAXTURE 

0C

FICURE 9: Q-1 and E vs. T eurves for - :,m,,le of DR- ! measured at 40 kHz

and different strain amplitudes. i. e = 6 x i) -, 2. c = 2 x

10- 5, and 3. E 2 x l()-'.

• --_ _



12 111

10.:? 107

06 99

4),)
(~(L

zE

4 595

0Q

0

91

0 . . .87
0 20 40 60 80 100 i20

TEMPERATURE 0C
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The difficulties of characterizing the intrinsic E dependence for each of
the vibration modes used in our experiments, together with unknown mechanism
that causes the increase in T- with frequency for the thermally activated
mechanism, make a semi-empirical description of the IF, similar to the
description given above for the ZA-alloys, almost impossible for SONOSTON.
Indeed, at present it is not clear if the same mechanisms are operative at
both low and high frequencies in the antiferromagnetic phase. In addition,
the variation from place to place in the casting is much too large to ignore
in a semi-empirical description of the damping of the whole casting.

DISCUSSION

The characterization of the camping and stiffness properties of commercial
HIDAMETS is a difficult and in some cases tedious procedure. We have
outlined a method that works reasonably well for c-dependent mechanisms and
is not very different from the methods used to characterize viscoelastic
materials. However, the majority of commercial HIDAMETS obtain their high-
damping properties from c-dependent mechanisms or mechanisms involving
aspects of both dynamic and st.tic hysteresis mechanisms that are highly
sensitive to small mi-rosirustural changes. For such materials, it is a
challenge to cxtract e'., the intrinsic damping for a given mode of
vibration. This doe:, ciot mean that such materials are not useful in
practice, but it doe-, ,,eau that some other method of assessing the
usefulness of the damping properties must be employed. A method that we
have employed with some sucr'ess involves the simple substitution of
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VISCOELASTIC AND STRUCTURAL
DAMPING ANALYSIS

Harry H. Hilton*
University of Illinois at Urbana-Champaign

A H STR ACT

The interrelationships between viscoelastic, Newonan viscous :1nd
structural damping are analyzed in ttrms ',f i r transforms and
complex moduli in the frequency domain and afr ,Iso interpreted in trmK

of behavioral responses associaied with real ,nateria! compliances or
moduli in the real time plane. It is sh'-,va that the correspondence
between viscous and elastic structurai damping is spurious, seNerel
limited to only harmonic motion m'nd that i! does not extend to mere
complicated viscoelastic materials beyond Newtonian viscous flow
dissipation. The dissipation energy generated by viscoelastic and
structural damping is also examined. The effects of structural d:imping on
elastic and viscoelastic bending-torsion flutter are evaluated with the help
of numerical examples. The material considered is aluminum, but the
analysis is general and can be applied to any viscoelastic material. It is
shown that the presence of increased structural damping does not
necessarily have a stabilizing effect by decreasing the viscoelastic or elasti,
flutter speed nor are the viscoelastic flutter speeds necessarily lower than
the corresponding elastic ones.

INTRODUCTION

In flutter and vibration analysis, it is standard practice to augment
elastic effects by the introduction of structural damping coefficients g [I-
41, where the latter are essentially measures of losses due to mznterial
hysteres: and/or friction in structural joints. In both instances, the
fundamcnt.il dissipation phenomenon is "dry" solid friction and as such.
the associated force o,d displacement constitutive relations are e:xpic tl\
independent of frequency and of displacement velocities, acceleration., or
their higher time derivatives. Analytically, the a.,gebraic I ooke 's law i>

maintaiied, but the actual, real elastic moduli are replaced by compic ,
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v'flue , F.e., Z- F ( I ig ), where .0  is Young's modulus in the ab'<crce ut

structUra! dpitg. A cii in lai expression is used for the elastic ',,hcir

nlodnllun., C; G - v, and for the elastic bulk modulus, K K,( I + ig-)
The r :' di -,l,,vc !,-rc nav or may not be equal depending upon the
pa lar ,1pi 1mg encounn-.Lrd in a given structure.

.,. 0,q the other hand, obey differential and/r
ni w q L n Ohich relate stresses, strains and Ox ir Ar,

do'ri-itie, '. -,s ordcrs 15[ The viscoelastic dissipation process i>.
prr,,, + , hiaAh frequency sensitive, material depcnde:
VAcoS ph1 olunn, ,0 1ir more coefficients of viscosity 1] an(, ais
,,IA ) h - ,. - ,+ t .., unr.in;ed to the structural damping mechani'-,.
llivttrczy, ail in A i.V. rds weA, the term viscous damping refers ,
is +>AtOP '1 ti,,\, ,..imerc the :res , are proportional to the strain velocitic,
ih r ,ui; i: nm, W ; orc co tficieCt of viscosity for shape changes and no
inor ' ) ..-. , . r vcl c changes. While the structural daqi}i~i,

in .4 o !::i Un .rstood and experimental values fo; 1iv,
darwi%; ctto,:tiu s ,r roadily available 11 .41. its inlerpretation vis a .

d, ,; pm:Ii : ai> - r>. v , Inu d {6, 71, Fung 131, on the other hand. ha.,
w,:rei.% ha>cd hi,< corrc :Dondence between viscous and structu :il

mppig 1111 ha, WO iPA Ia m ton. but has restricted his analysis to, .,!'
ni.ti.n it th. q, ;oin'. naturai trfequency. Under these conditions uke

, v.a,~t r:cturmtl d.Aniin g coefficient is frequency independent.
re, en- a) 8 . ha, rnodled solid friction damping in mechanical

f!iialws 1-- i 4nh Kin! and nonlinear formulations. His modcl, .r
,f i ct, >.r i n, >.. imulate decay behavioral patterns vhh

, , . .:, r ficiion at high amplitudes and low frequcne .' ,
K, +., 0 id pii, n at roi-J impItudes and nid frequencies and, finalv.

i" " fd,.AWi l daiid ,min l -, iap,,ll , tudes and high frequencies. tHowever.
. .... . p! ; (' i do ) n.p)y any relations hctvI, n
fuad: cP 1. . u. X h 1oW rm nve , of soid and viscous da:nping

t: f 1(1 in I ,, i; 1r !"iL' ' [ h~imwi 9 H Inpesent a hysteric d amnipi nmy
ant,, tAKA )npv : Wo, i nd include an extensive hihliography, oit

in01 i t V

>Io : , 's:i- among other iechanis is both elasticir\
Ai; vo.. . uu;;;'.. \ c ta v dependent Newtonian \isc.ol

. .. ;. a. chicle for thie comparison of viscous
1A n, 100 1, 1. in th, paper, general linear viscoelastic strc,
',trm , .la . ' ' ,: ;, iu tural and viscous damping) are used tt)
ii yr , th1 't,.+,, ". ' yc1h ckww es by a critical exam ination ot
C ,Ionm IH ,JLii ' i the rqup ac dnonniln arid of compliances in the real



time plane. Such an approach makes it possible to treat genieralized ~ai
degree of freedom systems anid is i-lot limited to the single mas-;, sro~
anid d!unper combinations of Referenc-us 101 -Jid t71,

Flutter and Complex VModuii

The governing elastic eq u il -Ki UA r -quati on s Y"cr flex ib!r li 110 _

surfaces, fuselages, etc. subjecio..i to ac' od !,- .,:nr! iuertia)j foreM'i
generalized di splacement, q (x;-71 rrnL; I> .K oc 1-rese i -

generalized form

V' N'
N7 V, q _k

where Lin n k are differential operators dc scribing inertia and unsteady
aerocivxnic contributions, V is the flight speed, Fk are geeaie~ forces

and the Dc~n are elastic stiffness terms depend~rq, primarily on -nimteriAl

properties (i.e., Young's and shear moduli F0 and Gio ). on structural
geomietry and on mass distributions. The elastic -viscoela-stic analogy 15,
1 0, 111 consists of the application of Fourier transforms (Fl'.) to Eqs. (1)
an -,d Of the sub)sequent sLubstitutiot Of complexK viscoelastic nioduli

1F arid(; for the elastic moduli E0 and G(), or Osscntially replacing the real

anrd frequency indupendent elastic stiffncsses De by complex viscoelas tic

Stiffness "inctiolis I) (wo) '[his then leads io :,cverr11-n1' \1 i's a~
mflN r- LC

rclations inl the F. TV. planle

%1N'
>1~~~~~~~~ 1)1%1q (01(A~'l (,C)/X~~L n{ ~ eJ F (x, co)(2

cirw he icladik lv ho'.n !,5 thatt (w '!ut harmonic moiJon oKe 1 1'
\arii~c 1, TheW WUKCiIt', tr'~ '01(i thwit in tme case of fiut,,,

I I t becomes the flutter tnrL'uu_1CmNc wh-ile V plays the role of the flutw,
speC! h itr wir.ofei'e ()f of Henvalues at wh ich ai 3 o

ra iI Tht IKte vxo arc M1:7 riOI Z:,'<



Viscoelastic responses may also be characterized on an energy axis
involving all potential energy at one end and all dissipation at the other
which is shown schematically in Fig. 1. Elasticity and viscous damping
represent the two degenerate viscoelastic extremes at opposite ends of the
energy scale, i.e., elasticity is 100% potential energy and zero damping,
whilc Newtonian viscous flow is ad dissipation and no potential energy
storage.

= 100% =0%
DE = 0% DE = 100%

-$- Viscoelastic --

Elastic Newtonian
Viscous Flow

= potential energy
DE dissipation energy

Fig. 1. Energy Representation of Material Properties

In general, linear viscoelastic material behavior (including elasticity
and viscous damping), i.e. the stress-strain relations, can also be expressed
by relations between generalized displacements qm and forces Fm. For
isotropic materials they are given by [5]

Pm {Fm} = Qm {qm} (3)

and where Pm and Qm are either differential or integral time operators. In
particular, for each m these reduce to

Fm = E,1o(l + igri)qni (4)

for elastic structural damping and to

Fm = Emo (1-4 i{g )q%, I- cqm (5)

for combined viscous and elastic structural damping. (When g = 0 inI Fq.

(5), then only viscous damping takes place coupled with an elastic
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response.) Similar, but more involved, expressions may also be written for
anisotropic materials [13], but will not be introduced here for the sake of
simplicity. They are, however, treated briefly at the end of the next
section.

The application of Fourier transforms to Eqs. (3), leads to [5, 10, 111

F m mE (6)

where the Em are frequency dependent viscoelasoc 2orilplex nioduli. Note
that Eqs. (6) are symbolically equivalent to the F.T. of Eas. (4) and that the
F.T. of the elastic Eqs. (4) gives a complex modulus E,= Emo(l + ig) for

structural damping, which is frequency insensitive. Since these complex

moduli are expressible as Em = EmIt(x, o) + iEmi(X, o), it follows that the

viscoelastic stiffnesses are also complex, i.e., Dmnk(X, co)= DmnkR(X, (0) +

iDmnkl(X, CO), where the EmR, En1 l, DrnnkR, and Drnnkl are all distinct real

frequency functions. Such an omega dependence is due to the in:rinsic
nature of the time differential or integral viscoelastic stress-strain laws of
Eqs. (3). It can be readily seen from Eqs. (5), that in the general
viscoelastic case, the complex moduli with structural damping are

Er(x, wo) = (1 + igm)E..R(X, w) + iEmi(X, w) = EmR(X, (o) + iEml(x, 0) (7)

where Em1 = grn EmR + Em1"

Furthermore, elastic structural damping is also included in Eqs. (2),
by virtue of the complex moduli defined by Eqs. (4), except that then the

l)mnkk -nd Dm1 111 k are frequency independent. In any event, the
expressions on the right hand sides of Eqs. (2) (i.e., the generalized forces)
are unaffected by the nature of the elastic or viscoe!astic materials.
Therefore, the fundamental difference is ihat in the elastic case with o"
without structural damping, Dank are frequenc, independent, while forwithout,, Liretra alwaysg f

visc ai;oics,. materials the stiffness parameters I)nrnk are always frequency
tu,,-ctions. For nonhorn ogeneous viscoclastic materials with structural
dampi ng, one needs onlv to replace th,. -Listic stiffnesscs in Eqs (2) ;-'h

I) irnk1  X. 0)) n n k R ( x, 0) ) + ilD',,, (x, t1 ) in the F. T. plane, w h e r e

ljmrjki- grinl)nkR + Drnnkl. Again note, tht for el,,Aic structural damping, 1he



stiffness parameters in Eqs. (2) have a form identical to frequency
independent viscoelastic ones. Table I illustrates the complex moduli
representations in the four combinatorial cases considered.

TABLE I.

Complex Moduli E = ER + iE' and Compliances JE (t)

Material Real Part Imaginary Part Compliance JE--t

Elastic Eo 0
Elastic with

structural damping Eo gEo S(t)JEo/(l + ig)
Viscous damping

with structural damping Eo gEo + c~o exp[-(1 + g)t/t]/c
Viscoelastic with

structural damping ER(uO) gER(o) + El(co) Eq. (14)

The structural damping terms igq may be thought of as out of phase
components of the displacements q, and, as such, bear some resemblance
to velocity effects, i.e., viscous damping. However, examination of the F. T.
of the viscous damping term ccj, in Eqs. (5), clearly shows that it is equal to
ioc4 for a time independent viscosity coefficient c. Consequently, as long
as structural damping coefficients g are frequency independent, they
cannot phenomenologically relate to viscous damping, unless one
postulates a c inversely proportional to co - not the ordinary coefficient of

viscosity, to be sure. Also note that the F. T. of Eq. (5) for g = 0 is E =

2Eo(l+ico */oM*E), where CO* = O/CON and the natural frequency o =Eo/M*,
with M* the system mass. Therefore, the complex modulus for viscous
damping is frequency dependent, and only at the natural frequency can a
frequency independent correspondence be established between structural

and viscous damping when g = c rM*E-o. This relation between the complex
moduli appli, s to any motion, and such a correspondence between g and c
is not limited to harmonic motion as has been discussed earlier by Fung 131.
At all other frequencies, of course, the frequency dependent relationship g
= cco*/I--M*E0, is valid for any elastic structural or viscous damping complex
modulus, but is not physically realistic.

However, while such a proposition satisfies the consistency of
expressions in the co F. T. plane, Eqs. (4) and (5) demonstrate that even an
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inversely frequency dependent viscosity coefficient c or a constant one at
the natural frequencies cannot restore correspondence in the time plane
between the elastic and viscous damping cases for general d'isplacement
functions q(x,t) encountered in creep, relaxation and other n._-osciflav,
motions. As a matter of fact, even in relatively simple motion where q is
proportional to a single exponential function exp(iwt), the correspondence
between viscous and structural damping is lost in those non mechanical
vibration problems, such as for instance fluttei, which have highly
nonlinear sensitivities to frequency eigenvalues. For convenience and
completeness, one usually represents viscoeiastc stress and strain
behavior in terms of mechanical models, sucn as, for instance, the
generalized Kelvin model (GKM) [51 shown in Fig. 2. Consequently, it
follows from Eq. (5) and from an examination of the GKM that viscoelastic
damping represents a much more complicated phenomenon than eithel
elastic or viscous structural damping, since the complex compliances

J E = l/E, J = /G, J - l, etc. with E = 3G/(1 + G /K ) are of the form

N,J Jo/(l + ig) + l/i03UN+l + £ l/{GOnjl ± i(o~tn + g)J} (8)
j 1

with similar relations for the other J 's and where the relaxation times

t n = In/Gn, rln and Gn are all material property, temperature sensitive
parameters [5] (Fig. 2), Viscoelastic compliances in the absence of
structural damping are given by Eq. (8) with g = 0. Similarly, the
expressions (8) also include viscous damping as a degenerate case of the
form N = 0, Jo = 0 and with all Gn = o. The elastic case can be obtained

from tiN+I = Gn co.

These two distinct phenomena, i.e., structural and v IscoeIast
(including viscous) damping, may be interpreted in yet another fashion bhy
examining their complex repre.;entations. For each generalized
displacement q,1, the corresponding elastic modulus with structural
damping can be represented by F0 (I + ig)= Rce-[x(iAe) and the expressions

R c =:z + g and Ac = tan - I (g) are bothI frequency independent. (For the
sake of simplicity of representation, the subscripts m are not incisW
here.) Complex viscoelastic moduli :nay be written in a similar fashion ,s
seen in Eq. (7) with

IJh<7:



E(o) = Rve exp(iAve) (9)

where

Rve(O)) = ER(co) {1 + g 2 + 2g E"(o) + [E"(o)I 2 1/2 1I (10)

and

Ave(o= tan [g + E"(o)] (11)

are both frequency dependent with E*(o) = EI(w0)/ER(c1). These values are
shown in Table II for 2024 aluminum [10, 11]. The Rvemin and Rvemax

values correspond to co = 0 and - (i.e. t =- and 0) respectively and the E'I/ER

peak in the neighborhood of 15 Hz, which is of the order of magnitude of
the flutter frequencies for the examples considered in Reference [11]. The
Re vectors for the elastic structural damping at the temperatures of Table

II are equal to Rvemax and the angles Ae are equal to Avemin at all
temperatures.

TABLE II.

Viscoelastic Damping Properties of
2024 Aluminum [111

Tempe- Strucutral (E/ER) Rve.., Rvein Ave, A vemin

rature Damping psi x 10-7  psi x 10-7 degrees degrees
OF Coefficient

80 0 .00283 1.070 1.060 .162 0
80 .05 .0528 1.071 1.061 3.02 2.86
200 0 .00585 1.038 1.020 .335 0
200 .05 .0559 1.039 1.021 3.20 2.86
340 0 .0144 .990 .966 .826 0
340 .05 .0644 .991 .967 3.69 2.86
450 0 .0258 .954 .900 1.48 0
450 .05 .0758 .955 .901 4.33 2.86

Since the flutter Eqs. (2) are highly nonlinear functions of o, an
analytical comparison of viscoelastic and structural damping is not feasible.
However, a reexamination of the bending-torsion supersonic flutter
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problem for a Timoshenko beam previously analyzed in Reference [11]
based on the addition of structural damping effects as exemplified by Eqs.
(7), leads to the results displayed in Table III.

TABLE III.

Some Flutter Results for
a 2024 AL Wing

Elastic Viscoelastic

g (of Mf (Of Mf

0 20.0001 1.3037 26.8586 1.5167
.005 19.9737 1.3056 26.8070 1.5081
.01 19.9465 1.3074 26.7550 1.4994
.05 '-9.7150 1.3239 29.0102 1.9887

These results are typical for metal wings in supersonic flow and fully
account for the material property dependence on temperature as the
flutter Mach number changes. It is to be noted that as the structural
damping g increases the viscoelastic flutter Mach number Mf may increase
(destabilizing) or decrease (stabilizing). For an elastic aluminum wing with
the same mass distribution, geometry and aerodynamics, the
corresponding flutter Mach numbers are smaller than the viscoelastic ones
and an increase in structural damping for the elastic wing is destabilizing.
Even though the viscoelastic action for 2024 aluminum at elevated
temperatures is far from being as pronounced as it is in high polymers and
composites, the viscoelastic flutter Mach numbers are significantly
different from the corresponding elastic ones. (Table III) This is due to the
highly nonlinear dependence on the flutter frequency " and the attendant
phase re!b tions which shift in a complicated fashion. In References 10 and
11 it has been previously noted that viscoelastic flutter Mach numbers
may be higher or lower than corresponding elastic ones for wings of
identical geometry, mass distributions and aerodynamic properties.
Dugunji [121 has noted similar behavior due to structural damping in
elastic panel flutter.

Dissipation Energy

A comparison of the dissipation energies generated by viscoelastic,
viscous and structural damping processes is next in order. They can be
consid7-ed together by referring to the mechanical models of Fig. 2. For an
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isotropic, linear viscoelastic material the stress-strain relations for change
in shape and in volume are, respectively [5]

2 EkI(X, t) =f J(x, t - t') Ski (x, V) dt' (12)

e(x, t) = f Jv (x, t - t')a(x, t') dt' (13)

where Ski and Ekl are the stress and strain deviators, e and a the mean
strains and stresses and where the compliances are

N+I N

J(t) = I Jn(t) = 8(t) Jo/(1 + ig) + 1/71N+l + I exp[-(1 + g)t/tn]/rln (14)
n=l n=1

and with a similar expression for the volumetric compliance Jv, both of
which are obtained by the F.T. inversion of Eq. (8). Note that Eq. (14)
defines the general viscoelastic compliances in the presence of structural
damping. These compliances may also be written in the manner of Eq. (7),
i.e.

,2

(wi) = 1/G (co) = JR(') iJ(co) = [GR (co)- iGl(o)]/[GR (wi) + G, (co)] (15)

As can be seen from Eqs. (5) and (8), the introduction of structural

damping effects into viscoelasticity results in changes of GnI1 + i(cOiu n +g)] in
the denominators of the sums of Eq. (5) and in first term multiplication by
1/(l+ig). Effectively, upon F.T. inversion, this serves to shift the time to
t+gt in the exponential terms of Eq. (14).

The dissipation energy per unit volume at any point x = (xl, x2, x3)
and at any time t > 0 is

foNI (n) M+I
DE(x, tI = S(k ) (x, t') (x, t) dt' + I '(m)(x, t') e m(x, t') d'

(o' n kt J) e x=C)dn=l o m1l

(16)
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where superscripts (n) and (m) denote quantities associated with each
dashpot n or m in the Fig. 2 model. The stress-strain relations for each
dashpot are given by [5]

((n)
SkI = 211n EkI (17)

and

2 (x,t) = f Jn (x, t-t') Ski (x, t') dt' (18)

where Ski is the total stress deviator in the GKM model and is the sum of
(n)

SkI of any dashpot and the stress deviator of its corresponding elastic
paired spring. Equations similar to (17) and (18) can also be written for
volumetric changes.

Differentiation of Eqs. (18) and substitution into (17) gives

(n) f
Ski (x, t) = 11n I f J a1n (x, t - t')/at' Ski (x, t') dt' + Jn(x, 0) SkI (x, t) (19)

with a similar expression for o(m). Finally, the introduction of Eqs. (17),
(18) and (19) into (16) results in

,N+1 [ft _________

DE(x t) = 1 Skl (x, t) d4
n=1 2 tin 0t,

+ Jn (x, 0) SkI (X, t')] [ Jn (X, t'- 4) Skl (x, ) dt (20)

+ J (x, 0) Sk (x, t')]} dt' + + aiJvm (x, (x, ) d
mJ l rn- vmJ 0 t

+ Jvm (x, 0) Y (x, t')]) dt'
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The total dissipative energy DET(t) is the volume integral

DEw t) = fv DE(x, t) dxj dx2 dx3  (21)

where V is the total volume of the body. It is readily seen that Eqs. (20)
and (21) depend both on material properties (Jn, Jvm) and the loading

process (Ski , 0, i. e. the stresses Oki = Ski + 8kl). Consequently, Eq. (21) is

an extremely useful expression for comparing the dissipation properties of
various materials at one or more processes.

In the viscous no structural damping case, Eqs. (12) through (20)
simplify to only one term in each of the J's, i.e.,

J = exp[-(1 + g)t/]rj (92 9

and with a similar v subscripted expression for Jv and where r = ri/G0 and 't
= r/Ko with, of course, the usual coefficient of viscosity c equal to the
more general T1. For elastic structural damping alone, only the first term of
Eq. (14) remains and due to the nature of the Dirac delta functions the
stress-strain relations (12) and (13) reduce to the usual algebraic elastic
ones. The results are summarized in Table I.

For anisotropic materials, similar but more complicated flutter and
dissipation energy expressions can readily be derived. However, they may
require as many as 21 complex moduli or compliances (instead of the two
isotropic ones used in the foregoing development) to fully describe
anisotropic material behavior [13]. The anisotropic relations between
stress ok and strains Ekl now become in the F. T. plane

3 3

GkI( x , O)) = B klmn (O) Emn (X, () (23)
m=1 n=1

where B klrn are complex moduli. For the sake of economy of length, the
anisotropic flutter and dissipation energy analysis and results are not
included in this paper, however, thtu previous isotropic analysis can easily
be extended to anisotropic materials 'y rewriting Eq. (3) as 1111
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6
Pm F Fm Qml[qml} (24)

1=1

and subsequently redefining each EMD mnk' etc, as E rank in the

relations following Eqs. (3) with I ranging from I to 6. This serves to

expand the discussion from each isotropic Em to six anisotropic E ml, but

does not change any of the fundamental principles and interactions
considered above.

Extensive damping properties of real materials may be found in

References 14 and 15.

CONCLUSIONS

It is shown that for any general motion there is no relation between
elastic structural damping and Newtonian viscous damping except at the
natural frequencies of the system. The viscoelastic complex moduli are
rederived to include structural damping.

The results indicate that in the presence of structural damping the
real part is unaffected but the imaginary part includes effects due to the
structural damping coefficient and the usual real and imaginary parts of
the complex modulus. The illustrative examples for supersonic flutter of
an aluminum wing indicate that an increase in the strut tural daicipin
coefficient may increase or decrease the viscoelastic flutter speeds and the
elastic flutter speeds are not necessarily higher than the corresponding
viscoelastic ones. In other words neither structural nor viscoelastic
damping necessarily produce stabilizing effects.
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ANALYSIS OF STRAIN DEPENDENT DAMPING IN METALS VIA

MODELING OF MATERIAL POINT HYSTERESIS

by

Edward J. Graesser" and Catherine R. Wong

David Taylor Research Center
Ship Materials Engineering Department

Bethesda, Mary)lnd, 20084-5000

ABSTRACT

In strain dependent (or nonlinear) high damping metals, measured values of damping vs.
strain are often inconsistent for different damping test configurations. To better understand the
nature of such inconsistencies shear and bending test configurations were modeled analytically.
A hysteretic material point stress-strain relationship was used for each modeling configuration.
This model is similar to established constitutive laws of viscoplastic behavior and has been
adapted especially for the study of nonlinear hysteresis and the problem of strain dependent
damping. Analytical material response analyses of bending and torsion s2mples indicated that
when the damping of a single nonlinear material is plotted against the one-dimensional local
stiain of the sample, highly discrepant results are produced. However, when the same results are
plotted against an invariant measure of three-dimensional local distortion the agreement
improves considerably. The method can also be applied to homogeneous isotropic nonlinear
damping m'terials that are not metallic (such as amorphous nonlinear high damping polymers).
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15.0 LOSS FACTOR VS STRAIN AMPLITUDE IN 7 FE-CR BASED ALLOYS
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Figure 1. Strain Amplitude [)(J)Cldcnt Damping in Fe-Cr B~ased High Damping Alloys
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Cyclic o- with a Saturated Damping Mechanism Outside -o
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Figure 2: Generalized Macroscopic Hysteresis of Nonlinear Damping Materials
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Strain dependent materials are, at best, difficult to model analytically because of their
nonlinear characteristics. Early work in this area concentrated on evaluating the damping of
members by combining material energy absorbing properties with geometric and stress
distribution factors [9,10]. Another approach is to use a constitutive law which describes
nonlinear material behavior and hysteresis at a point, and this approach will be used here. Many
such laws exist (e.g. see [11,12]), but these are usually specific to postyielding viscoplastic
behavior and large strain levels. In this paper a proposed constitutive law [13] for the stress-
strain behavior of shape memory alloys is adapted to the case of nonlinear damping. The
equations of this law were applied to the cases of simple uniaxial tension-compression and shear
loading, and then were expanded to analyze beam and shaft test samples in bending and torsion
respectively. The strain dependent nature of each test configuration was computed, and because
this behavior was of primary interest, temperature and frequency effects were not considered.

ANALYSIS

In order to make a useful study of strain dependent damping, a three-dimensional
constitutive law of hysteretic material behavior was used in analyses. The law, which is of the
viscoplastic type, was originally developed to model the large strain hysteretic behavior of shape
memory alloys [13], and especially superelastic behavior. This choice of modeling schemes was
pursued because the hysteretic response of superelastic materials is similar in character to that
high damping metals (see Fig. 2), except that the stress and strain levels are different by many
orders of magnitude. This does not prevent the use of the constitutive law, however, as long as
the material properties of the law can be scaled to accommodate the lower stress and strain levels
associated with the dissipative mechanisms in the damping material.

The constitutive law is for homogeneous and isotropic material behavior and is based
upon a separation of strain and strain rate into elastic and inelastic components:

el in
Eij = Eij + Eij (la)

• el .in
= ij + Eii (1b)

Here an overhead dot represents ordinary time differentiation. Thus Eij and i are the three-

dimensional tensors of strain and strain rate, and the superscripts "el" and "in" designate the
respective eldstic and inelastic components of each. The elastic component follows directly from
the theory of ehsticity [141:

l .*v v

J ci- Okk bij

where aij is the stress ten,;or, 8;j is the Kronecker delta,' and where E and v are the elastic

material constants.

1 ij= Iif i=j, bj=O if i -j, i,j=1.2,3
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The basic equations for the evolution of inelastic strain were taken from a model of shape
memory alloy behavior [13]. In this model the growth of inelastic strain is a function of
backstress 3i, which is a variable that accounts for internal stress fields in the material. In order
to model the saturation of damping mechanisms a unit step function was includea to stop the
growth of inelastic strain after a limiting value of distortion. This resulted in the following set of
equations:

bij : ~ ~ n- [!Xbj Eo ij T2 a uq1] 4

2 in = 1 -2K [Vi-2 Y Z

where e1j , sij and bi are the deviatoric tensors of strain, stress and backstress respectively; the
difference Si - bi is often referred to as the effective stress. The quantities 12, J2' and K2 are the
second order invariants of the deviatoric tensors of strain, dimensionless effective stress, and
strain rate, respectively. All these quantities are formally described below:

1 1 1 .

1
Sij = Oij - 3 Okk 6ij

bij 3 ij" 2 v3 kk 12 2= y V

Thus the growth of inelastic strain is a function of stress, backstress, and strain rate. Note that
plus sign appearing with the radical ign of the square root of the invariants in Eqs. (3)-(4)
indicates that the square root, once taken, is to be positive (i.e. the absolute value of the square

root). Also, 12 represents a measure of volumetric distortion that is invariant with respect to
coordinate, ransformations, and this will be an important quantity in the forthcoming discussion.

To summarize, the material constants in Eqs. (2)-(4) are:
E: Axial elastic modulus
v: Poisson ratio of elastic material
Y: Axial stress level where the damping mechw :si is

activated thus giving rise to an inelastic response2

cz: Constant determining the s'lope of the inelastic region
= Ey( - Ey), where E 1 is the inelastic slope

2 The material constant Y, as it is used hcre, corresponds to : stress whereupon the slope of the axial stress-strain
curve is >wered to accomnodate the activation of internal divmp!,g mech:rtisnis. Therefore Y represents a material
consta that is analogous to the yield stress of large stain plastic hesb'or (indeed for the constitutive law in [11]
Y does repres rng the yield stress) and above this streqs the inelastic ri nonw is important.
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n: Constant controlling the sharpness of transition from elastic to
inelastic behavior

fT: Constant controlling the size of the hysteresis loop

a: Constant controlling the amount of elastic recovery during unloading

Also, Eqs. (3) and (4) contain two special functions: the error function, erf(), and the
unit step function, {u( )}. Simply stated the purpose of the error and unit step functions
contained in Eq. (4) is to allow for the recovery of accumulated inelastic strain during unloading,
and thus simulate the unique behavior of superelastic materials [13]. As stated earlier the
consequence of the unit step function in Eq. (3) is to eliminate inelastic growth outside a limiting
value of volumetric distortion.

Let us take a moment to explain the role of the inelastic response in the modeling of
strain dependent damping. The inelastic component of strain is responsible for the dissipation of
energy that takes place in cyclic loading. Equations (1)-(4) have been used to represent the
macroscopic stress-strain behavior of shape memory alloys, and especially superelastic materials
[13]. The hysteretic character of superelasticity is macroscopically similar to that of nonlinear
anelasticity except that the respective stress and strain levels of each type of response are
different by many orders of magnitude. Therefore, the inelastic response governed by Eqs. (3)-
(4) can be used to macroscopically represent the effect of a nonlinear anelastic damping
mechanism.

By using Eqs. (1)-(4), a number of special cases can be considered. First let us consider
the cases of uniaxial tension-compression and pure shear loading. The state of uniaxial loading
(superscript u) is described by:

E 0 ] 0 0 y0 01 r0 0
-. J .U U IoEij= 0 -JA 0 0j 0-p 0 cij= 0 0 0 ij= 0 0 0

0 0 -R1 0 0 -Pi 0 0 00 0 0

Here E, o, and P are the axial strain, stress, and backstress in the x direction of Cartesian space,

respectively. Also the lateral strain and strain rate induced by the Poisson effect (-RE and -pi) are

associated with the coefficients R. and p respeLtively. Because of the nonlinear effect induced by

the damping mechanism p. and p are neither constant nor equal. In order to evaluate these factors
the lateral strain and strain rate are decomposed into elastic and inelastic parts. The total lateral
strain is decomposed in the same way. The elastic component is related to the elastic axial strain
by the elastic Poisson ratio v, and the inelastic component is related to the axial inelastic
response in an ircompressible manner (recall that the Poisson ratio associated with

incompressible behavior is .5) 114]. Therefore we have -E . -- v~e l - .5E in. Similarly, the lateral

strain rate is -pi - -vi e ] - .5i in . Using these relations one can deduce that p. and p are both

variable and different from one another in the following manner:
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1 1t1 do

If the behavior is only a small departure from elasticity then i p v; conversely if a condition
of strain and strain rate exists where inelastic behavior dominates and where o/8 <1 E and do/dE 0

E then the response is essentially incompressible with [t = p r .5.

For the state of shear loading (superscript s) we have:

s 2.S 2 S

Eij 0 0 ij 0 0 T 0 0 0 0

00

Here y and "' are the engineering shear strain and strain rate, t is the shear stress, and is the
shear backstress in the xy plane of Cartesian space.

By using the appropriate stress, backstress, and strain tensors, as well as their respective
deviators and associated invariants, Eqs. (1)-(4) produce the following uniaxial equations:

=Ea [ - 2+ f1 erf 2 (l3 '[) aE {u(-E )}]

Note that , is the limiting strain for inelastic growth. At strains above Eo the damping

mechanism is saturated and elastic behavior prevails. Also, IF- is the absolute value of e. These
equations can be further simplified by taking the total material response to be incompressible in
the inelastic region (i.e. when Y/E < E < E0). This simplification does not greatly affect the

overall dissipative character of the axial response. Thus by setting [t = p = .5 in the nonlinear
inelastic response terms we obtain:

6 Ei- qIn- 1'1 1m (5)

= E( [E - + f1I- erf(aE) {u(-vt)] (6)
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Following the same process, the shear equations are:

i =G 'u(Yo -Ys (7)

= La{[ T+F3(Tef y )] (8)

where

YO = + v0 is strain limiting inelastic growth in shear

G E is the elastic shear modulus
2(1 + v)

Y
Ys = is the shear stress whereupon the damping

mechanism is activated

Note that Y. falls out of the formulation automatically in a manner that is consistent with the
theory of maximum distortional strain energy [15]. This is because Eq. (3) is dependent on the
stress gradient of a potential function [13] that contains a von Mises type condition for the onset
of the inelastic damping mechanism. Later the cases of bending and torsion will be modeled
using finite difference geometries in conjunction with the above equations.

Now let us examine the results produced by numerical integration of Eqs. (5)-(6) and (7)-
(8); a sinusoidal history of strain input was specified with strain amplitudes of Ep in the axial
case and yp in the shear case. These amplitudes were specified to be greater than the limiting
strains so that the full character of the predicted response could be displayed in illustrative plots.
The results of calculations for the axial and shear loading conditions are given in Figs. 4 and 5
respectively. Both figures possess the same characteristics: elastic behavior dominates in the
region of the origin as well as outside the limiting strain, and a hysteresis loop is manifested in
the full cycle of strain application. The area enclosed by the hysteresis loop represents the energy
absorbed by the material undergoing cyclic oscillation. The elastic modulus of E = 28.5x106 psi
and limiting strain of Eo = .0001 were selected based on the elastic modulus and approximate
strain of peak damping in Fe-Cr alloys (see Fig. 1). The remaining material constants used in
the calculations that generated Figs. 4 and 5 were not selected to reproduce the behavior of any
specified damping material; rather they were selected to approximate the general character of a
rnnlinear damping metal and allow for some investigative analyses. It should be noted that the
results generated by the constitutive equations are numerically stable and insensitive to the rate
of strain input [13]. Also the elastic and inelastic mratcrial properties (i.e. E, Ey, and Y) are
accurately reproduced in numerical calculations [13].
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Hysteretic Model of Axial Loading with Elasticity Past Eo
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Figure 4: Hysteretic Behavior Calculated for Pure Axial Loading
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Hysteretic Model of Shear Loading with Elasticity Past -o
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Figure 5: Hysteretic Behavior Calculated for Pure Shear Loading
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By having numerical results of the type just presented, it is possible to numerically
calculate the energy absorbed per cycle. We can then compute the material damping by dividing
this energy by the product of 2it and an energy storage term. This corresponds to the measure of
damping known as the loss factor 'q

AW
-= W (9)

In Eq. (9) AW is the energy absorbed due to damping and W is a measure of stored energy, often
selected as

W = C3 (10)
Emax

When the damping mechanism is linear rather than nonlinear W represents the energy stored in a
linear elastic material at peak strain. Also, for linear materials the loss faco.'.- is Constant over a
wide range strain because AW and W are proportional to one another. This is not the case for
nonlinear inLeriai. BV using Eqs. (5)-(6) and (7)-(8) in calculations for the cyclic material
response over a range of peak axi-l and shear strains, and computing the loss factor associated
with each peak strain according to Eqs. (9) and (10) the general character of the damping vs.
strain diagram of nonlinear materials was produced; this is shown in Fig 6. Note that both
curves possess the characteristic damping peak associated with nonlinear damping materials.

However the separate curves in Fig. 6 that represent axial and shear loading differ
significantly with respect to one another. The cause of this difference was first investigated by
evaluating the amount of energy absorbed in each loading configuration. The amount of energy
absorbed, plotted as a function of peak strain, is given in Fig. 7. Above the respective limiting
axial and shear strains the amount of energy absorbed by the material is essentially the same for
both loading configurations, their difference being less than 1%. Therefore the difference in the
character of the two separate responses must be due to other factors.

It I I ns out that the plots given in both Figs. 6 and 7 are misleading because the abscissa
of these figures represents values of strain associated with separate axial and shear loading
conditions, and the strains associated with these separate conditions are not equivalent. Therefore
another measure of deformation equivalent to both types of loading needs to be employed. One
such possibility is to use a measure of local distortion experienced by the strained material. Let
us definc an equivalent strain E as follows:

12 [3-(11)

This measure is similar to the effective plastic -train in plastically deforming materials [14]. It is
clear that E has a physical meaning that is independent of the choice of coordinate axes si.,ce it is
based (,n the invariant 12, which is the 12 is the second invariant of the deviatoric strain eij (also
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Loss Factor vs. Peak Strain: Axial and Shear Loading
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Figure 6: Strain Amplitude Depending Damping for Pure Axial and Shear Loading
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Energy Absorbed by Axial and Shear Hysteretic Models
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Figure 7: Energy Absorbed in Axial and Shear vs. Peak Axial and Shear Strains

ICC-15



called the distortional component of strain ' ). Therefore t is an invariant measure of the local

distortion.

By considering the separate states of axial and shear strain, and by taking the Poisson
ratio to be the simple constant v for axial case, one deduces that the equivalent strains for each
state of strain are as follows:

-L + v) (uniaxial loading)

- 2 (shear loading)

By using the peak epl,,-,tlnt strains of axial and shear loading in place of the peak strains used
in Figs. 6 and 7 a more consistent pattern of results is developed. This is first done for the
amount of energy absorbed as shown in Fig. 8. Note from this figure that for both cases the
energy absorbed as a function of the distortion is in very good agreement along the entire
abscissa. In ig. 9 the loss factors of the axial and shear loading cases are also plotted against the
peak equivalent strain. The results in this figure are now also much more consistent than before;
indeed the breadth of each damping curve spans the same values of equivalent strain and the
peak of each damping curve occurs at approxim-ately the same level of distortion.

The only inconsistency that now remains is in the value of the peak loss factor of each
separate curve and this is simply due to the occurrence of different values of stored energy being
produced by the separate loading conditions. Indeed, because the modulus of the material in
shear is lower than that of the same material under axial loading, the value of peak shear stress
will also be lower than the peak axial stress at equivalent levels of distortion. Consequently, at
equal levels of distortion, the measure of stored energy W will be larger in axial loading than in
shear and this will cause the loss modulus in shear to be greater than the loss modulus in axial
lo.ading.

Because bending and torsion are common damping test configurations lets us next
proxceed to the following cases: bending of a solid beam having length L and rectangular cross-
section of width b and thickness h, and torsion of a solid shaft having length L and circular
cross-section of radius R. Even though the stress-strain response is nonlinear we can consider
both cases in a simple fashion without needing to consider residual stresses or movement of the
neutral axis of the beam. This is because the response takes place in a manner which gives
symmetric behavior for positive and negative strains, and the response is hysteretic with
essentia!ly no re:Jdual strain. When c:rnsidering bending and torsion problems with more
pronounced inela-tic beha.,i ir aid residual stresses then special considerations must be made
when computing the acting momctnts [1 61.

3 1 The tensor eij is known as the distortional comp-onent of strain because, by definition, it subtracts the dilitational
coxmpvnent of deformation out of thc strain tensor Fij.
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Energy Absorbed by Axial and Shear Hysteretic Models
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Figure 8: Energy Absorbed in Axial and Shear vs. Peak Equivalent Strain
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Loss Factor vs. Peak Equivalent Strain: E =W32
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Figure 9: Amplitude Dependent Damping in Axial and Shear vs. Peak Equivalent Strain
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Schematic illustrations of the bending and torsion cases are shown in Fig. 10. Note that
the strain profiles in each geometry are linear, passing through zero at the position of the neutral
axis of the beam and starting at zero at the center of the shaft. Also note that Ep is the value of

the axial strain at the beam surface while yp is the value of the engineering shear strain at the

shaft surface. Because the problems under consideration involve only small strain, the following
simple relations can be used to compute the moments and angular displacements for the beam
and shaft geometries respectively:

M=-fyodA and 0 (beam)
h

A

T = f rT dA and P_ (shaft)
R

A

Here y is the vertical distance from the neutral axis of the beam cross-section, o is the axial
stress in the longitudinal fibers of the beam, M is the resultant moment bending the beam, and 0
is the beam rotation; for the shaft r is the distance from the center of the circular cross-section, T
is the shear stress due to torsion, T is the resultant torque twisting the shaft, and 0 is the angle of
twist. In both cases A denotes the area of cross-section.

In analyses the surface strains of each geometry were specified to act sinusoidally in
time. In addition each geometry was subdivided into a large number of finite, but thin,
subsections; i.e. the infinitesimal distances dy and dr in Fig. 10 were replaced by small but finite
distance Ay and Ar respectively. Also, the strain distribution for each finite subsection was
assumed to be constant over the subsection thickness and the value of the strain was taken as the
value of the strain profile at the center of the subsection. Having knowledge of the strain profile
of the cross-section of each geometry, specifying the surface amplitudes and a sinusoidal history
for each one, the stress history for each subsection of the geometry was computed numerically.
Specifically, Eqs. (5)-(6) were integrated to give the stress profile time history of the bending
beam and -')-(8) were integrated for the shear stress profile time history of the shaft. Then the
following tormulas were used to compute the resultant moment and torque histories of the beam
and shaft respectively:

N
M -b yji oi Ay

i=l1

N

T = 2-n (ri)2 t1 Ar
i=lI

where " is the number of subdivisions making up the cross-sectional geometry and where the
subsciii-, i indicates reference to the location of a single subsection.
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Bending Beam (Length: L, Width: b, Thickness: h)
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Figure 10: Schematic Drawing of Strain Profile in Bending and Torsion Geometries
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The loss factor of each sample geometry was then calculated for a specified value of
surface strain amplitude according to Eq. (9) where AW was determined by the area enclosed by
the resultant moment vs. angular displacement hysteretic response and W was determined by

1 MI
W = max M10mx  (beam)

1
W = i Omax T (shaft)

The damping values which were computed in this way were found to be it.dependent of sample
geometry, i.e. for a given surface amplitud the ratio of AW to W remaii.ei constant for changes
in cross-sectional size, sample length or both.

By repeating the caiulations over a range o' s;urface amplitudes the loss factor was
plotted against the surface amplitude for both the bending and torsion cases as shown in Fig. 11.
Note that the character of the damping vs. surface amplitude curves are vastly different with
respect to one another. This is analogous the trend shown earlier in Fig. 6 for one dimensional
behavior. Also, by comparing Fig. 11 to Fig. 6 it is clear that the character of the damping vs.
peak strain curve of each sample is quite different than that corresponding to the :espective one-
dimensional material point responses. This is because of the strain dependent nature of the
damping and the fact that strain is distributed throughout the sample; therefore some regions of
the geometry may be contributing significantly to the overall damping of the solid sample while
others are not.

As was done earlier, the inconsiste, nature of the results given in Fig. 11 can be
improved by making use of the peak equi, ent s - ain C at the surface rather than the surface
strain amplitude alone. Using Eq. (11) to calculate the amounts of peak equivalent strain at the
surface of the bending and torsion samples, anc plotting the corresponding loss factors of each
sample against these values produces the curves given in Fig. 12. This figure shows that the use
of peak ect:ivalent strain for the finite sized geometries of bending and to:sion samples gives an
improvec. -asure of correlation in the same manner that was exhibited earlier for the one-
dimensional cases.

Thus presentation of nonlinear damping data as a function of equivalent strain rather than
as a function of sample strain can be very useful. It is probah!:, .,st useful in comparing
dampin'4 lata obtained by different test methods. It may also i-e useful in design work where the
dvnam c strains in a vibrating part or member are known. To show 1tis le! us consider an
example where a designer wishes to use a high damping, hut nonlinear, material in an
application where bending is the primary mode ,, deformation, and suppose that damping d:, is
available only from torsional tests. If the vibi . ,)oaI strain levels to be expected in service can be
deduced from load and design analyses, then tJiese strain levels can be converted to the measure
of eqU:. -lent strain introduced in this paper. Appi-iM :ht stmc 1crion to the peak shear



Strain Dependent Damping in Beam and Shaft Samples
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Strain Dependent Damping in Beam and Shaft Samples
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strains of the torsional damping data the designer would then be able to estimate whether or not
the material damping will be in a range of peak performance for the application of interest.

SUMMARY

The work presented in this paper includes two major aspects; 1) modeling of nonlinear
(or strain dependent) damping behavior via constitutive equations and 2) a way of improving
correlation ot nonlinear damping data via use of equivalent measures of distortion. These efforts
were conducted in ord'r to gain a better understanding of macroscopic nonlinear high damping
material behavior and also to obtain a means in which to better correlate existing discrepancies
in reported data for high damping materials. The modeling scheme applies to homogeneous
isotiopic materials and is adapted from a viscoplastic law through incorporation of material
constants that correspond to small strain damping mechanisms. Also the law was modified to
include damping mechanisms that become saturated after a given amount of strain. Analyses
were made to calculate the loss factor of the common damping test configurations of bending
and torsion. To do this material point relationships were used at each point in the cross-sectional
geometry. In this way it was possible to relate the damping of the material to the damping of the
specimen. The results did not depend on the relative dimensions of the sample geometry; rather
the calculated loss factors depended only on the mode of deformation. The results showed that
the strain dependent damping associated with each test were vastly different when plotted solely
against the peak surface strain of the sample geometry. This is because the peak strains that
correspond to each of these test configurations, namely axial and shear strain, are not equivalent
to one another. However if an invariant measure of peak sample distortion is used in place of
peak sample strain, then the correlation of the nonlinear damping of separate bending and torsion
samples is predicted to improve considerably. Such an improved capacity for the correlation of
nonlinear damping data may be very useful in comparing data obtained from different tests.
Future research will include the modeling of specific nonlinear damping data. Also, constitutive
law material parameters that are physically motivated by the microstructure will be studied.
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NON-OBSTRUCTIVE PARTICLE DAMNIPING TESTS ON ALUMINUM BEAMS

H. V. Panossian, Ph.D*
Principal Engineer, Control Structure System Dynamics

Rockwell International Corporation, Rocketdyne Divisiok

ABSTRACT

Presented in this paper is a novel passive vibration damping technique referred to as
"Non-Obstructive Particle Damping (NOPD)." The NOPD technique consists of making
small diameter holes (or cavities) at appropriate locations inside the main load path of a
vibrating structure and filling these holes to appropriate levels with particles that yield the
maxmum damping effectiveness for the desired mode (or modes). Metallic or nonmetal-
lic particles in powder, spherical, or liquid form (or mixtures) with different densities, vis-
cos :ies. and adhesive or cohesive characteristics can be used.

Two 24- by 3- by 3/4-in. aluminum beams were used and thirteen 2-mm diameter.
equidistant cross-holes (along the width) in one, and seven 2-mm diameter, equidistant
longitudinal holes (along the length) in the other. were drilled. These holes were partially
filled with tungsten and zirconium oxide powder and steel (spherical) particles and the
beams were tested under different conditions. Modal tests under free-free and clamped
conditions indicated an increase in damping ratios from 0.02% without particles to about
10% with tungsten. Moreover. damping of specific modes by placing particles at various
locations of high kinetic or strain energies were also carried out with remarkable effects.
This papei ,-.ill discuss the Lcst results and will evaluate various methods of damping esti-
mation.

IN TROD UCTION

Damping in vibrating structures is described with various terms: loss factor, quality
factor. reverberation time. etc. The interconnections between these various descriptions
are discussed in Reference i. One of the major concerns in vibration control problems is
the response prediction of a structure excited by an external force. The reason for this
concern is the difficult, in accurately determining the damping factor required for re-
sponse prediction in analyses. Several different techniques are utilized for damping me.-
surements that entail vibration decay rate, 'one-half power point" at resonances, and
steady-state input and stored enerzv measurements, among others. All of these methods
invoive tt,. 2eneration of frequency respo)nse functions (FRFs) and sonic curve fitting
technique- ,hat require knowled-ee of input amplitude and corresponding vibration mea-
surements at various locations of a structure. Fraction of critical damp ing (the minimum
viscous damping required in a vibrating structure for it to return to its initial position
without oscillations) 1L, the most common measure used to express the resporse character-
istics of a structure. referred to as damping ratio.

I !:%\1"D technique entils niakin small holes (or cavities) at analytically deter-
mincd and. when possible. experinientaclv \il rifed) loarlons Inside the main load path of
a vibriii,, structure in appropriate areas and fill' . these h ls to proper levels With such
particles as te vield maximum d:imping ,tc:vcacss..A spcitic vibration mode. or
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several modes, can be addressed in a givtn structure. Powders, spherical, metallic, non-
metallic, or liquid (or even mixtures) with different densities. viscosities, and adhesive or
cohesive characteristics can be used. 2" l

This new approach has a great deal of potential applications under cryogenic, high-
temperature, high-flow, or high-pressure environments. It does not affect the mass or the
performance of the structure (on the contrary, it often reduces it). The only drawback.
when applied to an existing structure, is the creation of stress concentrations when mak-
ing the holes. However, this concern can be greatly reduced by making the size of the
holes small compared to the material thickness and by using less destructive manufactur-
ing techniques. In addition, the particles can be embedded inside a structure as a part of
the manufacturing process, thus avoiding the previously mentioned negative effects.[']

NOPD involves the potential of energy absorption or dissipation via friction. mo-
mentum exchange between the moving particles and the vibrating walls, heat, and viscous
and shear deformations. It offers benefits in vibration reduction of rotating machinery.
lasers, rotorcraft, aircraft, spacecraft. automotive, and civil structures, among others,
through the decreasing of structural fatigue and associated savings in cost or extension of
system life cycles.

MODAL SURVEY TESTS

Frj-.°"imeprtl modal survey tests were carried out in the Rocketdvne Engineering
Development Laboratory (EDL) on two 24- by 3- by 3,4-in. aluminum beams under
free-free conditions, and various modal and vibration data were generated. Acce!eration
measurements were taken on five equidistant points on each beam. One of the beams
had seven -a-mm diameter holes along the length, and the other had thirteen 2-rm diam-
eter holes along the width. The holes were filled with various particles and tested for
damping effectiveness.

The tests were performed by suspending each beam from two rubber bands and ex-
cIting it. via an impact hammer and an electromechanical exciter with load cells at their
tips. near one of its ends (Fig. 1). Five acceleration measurements were taken at equidis-
tant points on the beam with the two accelerometers placed at the opposite corners of
both ends. Frequency response functions (FRFs). power spectral densities (PSDs). time
histories, and other appropriate data were evaluated to study the damping ratios. mode
shapes. and frequencies.

The 13 equidistant 2-mm diameter holes drilled across the width of the first alumi-
num beam were partially filled (about 75%) with tungsten powder, zirconium oxide pow-
der, aiid steel shots (0.0 t [ in. diameter). The beam was excited with a shaker (with flat
random inputs between 10 to 1.600 Hz) and an impact hammer (both applied to one of
the corners of :he beam) from the opposite side of the accelerometer. The FRFs were
generated under empty and filled conditions and overlaved for each of the first four vi-
bration modes (Fig. 2). The first plot is that of the first bending mode at about 27'3 Hz
when empty: the second at 749 Hz is the second bending mode: the third at about 1.145
Hz is the first torsional mode: and the last one at 1,455 H7 iK the third bending mode.
The overall FRi' up ) 1, ,;() Hz is shown in Fi. 3.

All of the seven 1- mm diameter Iongitudinal holes were filled with tungsten and zir-
conium o.10de powder, and steel shots separately, and tested under (about) 9W)r full.
Moreover, the beam was als, tested i-;th e;;,4w ,,,,., .J *, F ,,F,,.e . compared by
overlaying the peaks ofeach of the first four vibration modes under a free-free test
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Figure 1. Free-free beam tests in air

235 Frequency Response Funclion Frequency Response Function

100 L Empty 2194. gib Empty
-377.4 g/lb

100.0 -zirconium
~ '. Ziconium172.2 g/lb ~

1C 6gIu 100 -

3. 8 
-

1 0 .

2. 2E-01 3.E0

2 5 0 260 270 280 290 300 725 740 750 760 775Frequency (Hz) Frequency (Hz)

Frequencv Resconse Function Frequency Response Function
3842' 384.2

100 ~cn~rn .- Empty Emp0y

0 M 10.0 Zirconium
-J 100 0 '- 9.2 gilb -.

.ungsten
25 5 c,, b ~--

l~-1.0 Tugte,,

0 4 1g/Ib3 8E-01 L_________________ 
_____6E-01__________L1. 120 1.120 1,140 1.150 1.160 1,170 1,425 1,440 1,450 1,460 1.47-0Frequency (Hz) Frequency (Hz)

6297-2

Fig,.,ure 2. Free-free cross-holed beam vibration FRFs in air
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Figure 3. FRF of empty cross-holed beam
free-free in air

condition with flat random (shaker) and hammer input excitations. The dramatic decay
rate provided by the presence of tungsten powder (see Fig. 4) caused some difficulty in
calculating the damping values and various approaches were used to derive the damping
ratios for each mode. The overlays of each mode. both empty and filled with different
particles, are shown in Fi2. 5. The first mode decreased in amplitude from 911.7 g.b
down to 14.9 g/lb by more than a factor of 6 1.

DISCUSSION

Table 1 summarizes the damping ratios estimated under various damping particle
treatments and with different estimation techniques. In all cases. it is apparent that damp-
ing effectiveness with such a minute particle amount is dramatic. The total mass of the
aluminum beam was 5.4 lb. while the total mass of the heaviest particles used (tungsten)

Time Response Time Response
94.2 79.4 i

50.0

500.0

0.00

CLI

[ -50.0
-50,0

... -98.7-1 0 05' 1 1 2 0 0 1 5 2

Linear Trace Title (s) Linear Trace Title (s) e297-4

Figure 4. Time histories of aluminum beam empty (right) and with
tungsten powder (right) in air
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Figure 5. FRF overlays of first four free-free in air vibration modes of
longitudinal-holed beam with different particles

was only 0.3 lb in the lonigitudinal-holed beam (about 5%). The damping estimates were
derived by using curve fitting, one-half power point calculation. and fast Fourier trans-
form (FFT) decay rate methods. There are discrepancies in the damping ratios, especially
when part: les provide high damping values (Table 1). The reason for this is the fact that
all the cur. L fitting routines used consider structures with low damping values, thus mak-
ing provisions for approximations and losing accuracy. The most reliable damping estima-
tion technique for highly damped systems is probably the log decrement (or the FFT
decay rate) for each mode. Thus. FFTs are used to (generate the time history of each reso-
nant peak in a waterfall pattern and then take the log decrement of each mode (Fig. 6).
The darr)ing ratios were calculated by the following formula:

D (D8 .61)(0

where L- is the J:lrmpin2 ratio. D is the decay rate in dB s. and ,U is the natural
frequ,~ .v.
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Table 1. Damping Ratios With Different Estimation Methods
for Longitudinal-Holed Aluminum Beam

Peak Damping Ratios
Mode Particle/ Frequency a apigRto

Number Condition (Hz) cy Amplitude One-Half FFT Decay

(2/b) Curve Fit Power Point Rate

Holes empty 275.45 911.7 0.000148 0.000272 0.00046

0.011-in. steel 271.7 87.9 0.00415 0.00391 0.00253
shots

Zirconium oxide 272.6 201.4 0.00154 0.00142 0.00111
powder

Tungsten 272.67 14.9 0.109 0.0912 0.0875
powder

Holes empty 755.2 1,358 0.000135 0.000342 0.00090

0.011-in. steel 749 68.2 0.0146 0.0156 0.00942
shots

Zirconium o-ide 749.2 74.6 0.00442 0.00541 0.00365

powder

Tungsten 753.45 41.9 0.0143 0.0275 0.0098
powder

Holes empty 1,151. 1,627 0.000277 0.000344 0.000443

0.011-in. steel 1,144.8 122 0.00325 0.00415 0.00311
shots

Zirconium oxide 1,145.6 100.6 0.0033 0.00536 0.00315
powder

Tungsten 1,148 i18 0.0085 0.0091 6.0069
f powder I I

DS45-a012

CONCLUSIONS

Extensivc modal testing on two aluminum beams (one with thirteen 2-mm diameter
holes a!ong the w jhh and the other xith seven 2-mm diameter holes along the length)
prorided significant data regarding the effectiveness of NOPD. Moreover. different char-
acteristics and key arameters that influence NOPD performance were identified. The
main objective o this program, to assess the applicability of NOPD at low frequencies.
was achieved. Further studies are needed to evaluate the subtle influences exerted by var-
ious test conditions, materials, holes, and structural characteristics.

It is especially remarkable to achieve over 60 times vibration amplitude reduction
by minute amounts of pirticles placed inside small cavities in a beam. The practical issues
related to implemenatiloi of NOPD remain to be tackled. However, the effectiveness of
NOPD over a wide range of frequencies undoubtedly opens new avenues for further re-
search and even applications.
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Figure 6. FETs of free-free beam in air
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COMPLEX DYNAMIC MODULUS OF
NITINOL-REINFORCED COMPOSITES

J. Gilheany1

The Catholic University of America
School of Engineering and Architecture, Washington, DC

R. Deigan
The Catholic University of America

Washington, DC

A. Baz
The Catholic University of America

Washington, DC

ABSTRACT

Shape memory fibers, made of a NIckel-TItanium alloy (NITINOL), are embedded
into fiberglass/polyester resin composites in order to control their dynamic char-
acteristics over wide frequency and temperature ranges. The characteristics of the
resulting NITINOL-reinforced composites can be tuned and controlled adapt to
changes in the loading and operating conditions. Such adaptive characteristics can
be utilized in controlling the shape and vibration of composite structures.

The dynamic characteristics of this class of NITINOL-reinforced composites are
quantified by measuring the complex dynamic modulus. The modulus is determined
using the Dynamic Mechanical Thermal Analyzer (DMTA) over a temperature
range from 0 to 100°C and over the frequency range from 0.3 to 30 Hz. The effects of
shape memory and initial pre-strain of the NITINOL fibers on the complex modulus
are also determined over the same temperature and frequency ranges. The mea-
sured characteristics are compared with those of unreinforced fiberglass/polyester
resin :omposites as well as with those of pure NITINOL. It is observed that the
continuously decaying storage modulus of the fiberglass composite with increasing
temperature, near the glass transition region, can be compensated for by the in-
creased storage modulus of the activated NITINOL fibers. With proper control of
the initial pre-strain and activation temperature of the NITINOL fibers, the charac-
teristics of the composite can be tailored for loading and environmental conditions.
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ESTIMATION OF NONPROPORTIONAL
DAMPING FROM EXPERIMENTAL

MEASUREMENTS

T. K. Hasselman'
Engineering Mechanics Associates, Inc.

Torrance, CA

Jon D. Chrostowski
Engineering Mechanics Associates, Inc.

Torrance, CA

ABSTRACT

The full modal damping matrix (both diagonal and off-diagonal terms) is required
to synthesize the modal damping of a structural system from substructure tests,
and may be used to estimate the distribution of damping in a structure.

A method for determining a full modal damping matrix from experimental mea-

surements was published by the first author in 1972. The method was applied with

limited success, the problem being that complex modes were very difficult to ob-
tain from the analog sine-dwell modal test data which were available at the time.

Since then, several modal identification methods have been developed which derive

complex modes from digitally recorded and processed vibration test data. Only the
real parts of these complex modes are used, however; the small imaginary parts so

far have been ignored.

This paper presents methods which have been developed to condition the experi-

mental complex mode data obtained by the ERA method for purposes of estimating

the fll modal damping matrix. Practical application of these methods using ex-
perireital data from truss-beam type structures are presented.

FULL PAPER NOT AVAILABLE FOR
PUBLICATION

'President, 3820 Del Amo Boulevard, Suite 318, Torrance, CA 90503 (213) 370-2551
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J1

E' and tan della vs TenporatuFe(original dala)

1.2
700

600

500 0.8

400E (original) NImmn2

0.0 ian delta (original)

3O0

0.100-I 
I i 0.2

-50 -41 -31 20 -il 0 tO 19 29 39 49 60 69 79 89

Termperature *C

This Is the original data submitted to the round robin. The
specimen was a 25 mm diameter by 12.5 mm high compression

button. Test conditions were 10hz constant frequency with an
expected 2% prestrain and a dynamic strain of 0.1%. One sample
and one set of transducers was used to collect all the data.
System full scales are ± 10,000 N and ±25 mm. Data "looks good',
but modulus at cold temperature was reported to be low.

Load Unit Deflection Correction
MTS Systems Corporat Ion

Box 24012
Minneapolis, Minnesota 5'1,2l
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K* VO Freq

E 04

1.75

N1.70- __-

N j. 65~~y

in1 .6 0  
- _ _ _ _

0.00 1.00 2.03.00 4.00

Test PrOC mean (N) AMP (MM)
* SHRTO1 STUBEt -1400 .06
V SRT31 STUBEI -1400 .05
13 SRT51 STUBEI -1400 .06
+ SRTBi STUBEI -1400 .06

This Is an example of data taken on a metallic spring with
different lenth extension rods added to the loading path. It shows
very clearly the errors due to ignoring the load unit deflections.

Loag UnIL tefiectIn orrection
tITS 5ystems Corooratlon
Box 24012
Mlnneapolis rmhnesota 5!)21
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LOAD UNIT DEFLECTION CORRECTION

Of Applied Force
0

Om 0S
sDs

Df = frame deflection DISPLACEMENT CORRECTION

Dm = measured deflection Ds - Vom2Df-2-2DmDfcosem

DS = actual specimen deflection

Om measured phase angle
PHASE ANGLE CORRECTION

Os =actual specImen) phase angleOs Irsi n

tan -os0m-DfiDrmJ

This Is the mathematical formula for the load unit deflection
correction as we have implemented it on our systems for dynam ic
mechanical analysis. It was provided to MTS by one of our
customers and agrees well with theoretical and experimental
results.

Load Unit Deflection Correction
MTS Systems Coriooraflion
Box 24012
minneavoflis timnesota 55,124
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Frame D~eflection Errors

400- -r-

3- ---- - --

P.- A E-01 l .

E-1

Specimen Siliness iN/mm)

[his graph gives t,/pical errors for a forced vibration test system.
We have u.edJ hollow uxtens3ion rods to rninimize moving mass
e ror s and al luw dYnamic propertyrneasurements at frequencies
iup 'o 1000 lIz Fio. -muw with no extension is dJue to loadJ cell
def lect ions. A ccinbinat ion of sti ain gaged load cellI and
pjiezoelectric de,/ice is musd to measur-e longc terni mneani levels
and highi reselui or, dJnamic anpli'tudes
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* - ' CORRECTED DATA
2. 00 -------
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I. -- o . . . .--- - -..........

• "-----NO EXTENSION NO CORRECTION

1 . 6 0 -:- . - • . . -. -- ..
' 125 MM EXTENSION NO CORRECTION/.j 5Q __ - _L J. JL _L-_ ± - -L- .L i Lu__ _.. L --

u. 0U 0.20 0.40 0.60 0. 0il I . o
Freq (z) 1 02

lest Proc 'lea, (II) AmIp (iiiiii)
* SI11I1,02 1101-L -1400 .06 NO EXTENSION NO CORRECTION
v S 152 SI UIi -1400 .06 125 MM EXTENSION NO CORRECTION

I [I L LI IB1 -1400 .06 NO EXTENSION WITH CORRECTION
SI 1.:FL 1UI.E -1400 .06 75MM EXTENSION WITH CORRECTION
SI IFIlK IU31 -1400 .06 125 MM EXTENSION WITH CORRECTION

This graph compares the data collected on a metallic spring with

no correction and with the proposed correction This shows a

dramatic improvement from 20% error to less than 1% The

system LVDT is used to measure the errors and the specimen

deflections

Load Unit Deflection Corectlon
11T5 Systems Corpor dl Ion
Box 2012

rllnneaoolls, lMinresoiC )',.12,
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1'1 kie vs Fireq
Coawl!. (0111 WILSU11 W1111i L.U. DEFI. I.C Iiouc1o1
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-2. L 1b.-I- -. L

.~00 .20~ 0.40 I ~ b A0.1j0 1.0

I r-eq (liz) 1' 02
i (:'i PI ~ 1-k di (II Awlp (1111e
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SI 11:11 1O 111 -[00 .00 75 MM EXTENSION WITH C~r'ZTION
S1 11- K I UMJ -1U .0) 125 MMW EXTENSION WITH CORRECTION

This graph compares the data collected on a metallic spring with
no correction and with the proposed correction. This shows no
effect on phase angle measurements, There was some concern
that the correction would increase the scatter in) the phase angle
since there is division by numbers close to zero and
multiplication of numbers close to zero.

Loaa unit Def lection correct ion
115 Systems Corporation
Box 2-1012
rMirneapoils, rflnesotia 5514
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This graph snovs the tradeof f between specimen clef lections and
load unit defilect iofl for the test setup we have used for
zemperalwue , oerty rneasuremen, If the accuracy of the load
mot ijei ec C.rrpc tion is .4 oesolid extension rods u:ari

ue usea 8as lorq j tot frequencies are low
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Tan, Deno cofsecion lot WP round robin darn

10 - ---- -
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This graph compares the data before and after tne correct ionl has
been applied The correction is mnade to existing data so actual
,-ecimen Jynamic strains were lower than expected. This may
explain the strange tan delta behavior at low temperatures
Additional work will be done to verify the low temperature tan
delta mermnson the round robin material.

Load unit Deflection correction
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AN ANALYTICAL APPROACH TO DESIGNING FRICTION
DAMPERS IN TURBOMACHINERY BLADING

Josef Panovskyl, Analytical Engineer

David G. Hendley, Staff Design Engineer

Raymond A. MacKay, Senior Staff Aeromechanical Engineer

GE Aircraft Engines
Cincinnati, Ohio and Lynn, Massachusetts

ABSTRACT

Aircraft engine turbomachinery blading operates in an environment that induces vibration which
can lead ti failure through high-cycle fatigue. This vibration can often be reduced to acceptable
levels by friction dampers, which dissipate energy by capitalizing on the resulting relative motion
between the blade and a motionless structure or adjacent vibrating blades. The key to optimizing
a given damper design is to determine the dynamic weight at which the maximum energy is dissi-
pated without locking the blade at the damper contact point. As the design of turbomachinery blad-
ingprogrese¢ 9wards higher--loaded stages wi;h more complex geometry, vibratory modes beyond
the primary beam bending become more prominent. This paper will discuss the development of an
analytical method to predict damper effectivei;ess for any blade mode. The analysis is based on a
component mode method, and includes provisions for modeling stick-slip at the .riction contact.
Multiple damper contact poini; can be evaluated, and the damper design can be blade-to-ground
or blade-to--blade with arbitrary phase angle. The resulrs of a s:,iries of lab tests with simple beam
specimen; to evaluate the principal damper design variables will be presented along with the corre-
sponding analytical predictions.

1. GE Aircrarl Engines, I Neumann Way. M/D A334. Cincinnati, Oh ,; 4'7215. Tel (513) 583-5117.
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and the governing equations will be used as a starting point. The equations of motion for the blade
are then

[m] Jul + [c]{u) + [k] Jul = {P} - (F) (1)
where

u = displacement of each degree of freedom
m = mass matrix
c = viscous damping matrix (assumed proportional)
k = stiffness matrix
P = driving force
F = friction force.

For typical turbine blade models, (1) represents a very large set of equations, which are all coupled
through the mass, stiffness, and damping matrices. While P will be specified, the F are nonlinear
functions, so the equations cannot be solved directly. One approach to dealing with this set of equa-
tions is to turn to a modal method, where it is assumed that the natural frequencies and mode shapes
have been previously determined by solving the eigenvalue problem,

[m]{u} + [kl{u) = (01 . (2)

An important mathematical property of the mode shapes is that they form an orthogonal set, which
is relevant because the mode shapes can then be used as coordinates to describe the motion. The
physical displacements can be represented as a superposition of the mode shapes,

{u) = [(]{q) (3)

where
(D = matrix of mode shapes, Oi
q = modal amplitudes.

Note that the physical displacements are a function of position and time, while the mode shapes are
a function of position only and the mxlal amplitudes are a function of time only. This can be substi-
tuted into (1), and after pre-multiplying by the transpose of [01,

MIj[q + 2oqi + coqj = Ppi - Fai (4)

where
M4= modal mass of ith mode
oi =natural frequency

= viscous damping
pi ,iode shape component at the location of the excitation force for the ith mode
a = mode shape component at the location of the friction damper for the ith mode.

The mass, stiffness, and damping matrices have been diagonalized due to the orthogonality cf the
modes, meaning the left-hand sides of (4) are completely de-coupled. Any physical quantity can
be described in terms of the modal amplitudes by using (3), and in particular, the physical displace-
ment at the damper contact is given by

n

Iajqj -(5)
J=1
JBA- 3



The equations of motion will be simplified through the use of the method of harmonic balance. The
displacements and forces are assumed to be of the form

q= qq cos Qt + q sin Ot (6)
P = pc os Ot + P sin Ot

F = Fc cos Ot + Fs sin Ot
4= cos Ot + 4 'sin Qt

where Q is the driving frequency. Note that the damper displacement, for example, can also be writ-

ten in terms of its magnitude and phase,

j = f'sin(Ot + V) .(7)

By applying the harmonic balance method to (4), expressions for the modal amplitudes can be deter-
mined,

S(ppi - F'a)(wi _ p 2) - (Ppi - Fai)(2 Q) (8)

M[(o)2 _ g 2)2 + (o )21

q.[ = (Pp - a + (PSpi - Fa )(wo - Q2)

M -[(&) _ 2)2 + (XO)2]

Substituting these into (5), then using (6) and equating like terms,

4c = AI pC-A2 Fc - A3 P+A4 Fs (9)
where Vs = Al P--A2 Fs + A3 Pc_-A4 Fc

where S.A

A] = IPa(w- 2) A3 = I
Al = _aiai('_2-_2 m4 = pZa(2iaoi)

1 Yi i= Yi

A2 = aa(i-A=

and

y, = M[() 2 - 0l2)2 + (2Cp,0Q)2]

Following [2], the damper is taken to be a Coulomb friction element and a spring in series, so that
slip occurs in the friction element when the spring force reaches a value of pN. Lab measurements
have shown this to be a good idealization of the behavior of the damper. The damper displacement
and the resulting friction force are defined in Figure 2, and it is noted that the displacement can be
written

= cosO (10)

and the start of slip in the half-cycle o<0<t can be determined to be

cos-' (1 - N). (11)

JBA-4



i~ I p N
Blade atn ,

Datems repulin i

Damper

2: 0

Tum

Figure 2. Behavior of friction interface. The friction element, shown schematically with the
blade, behaves as a spring until the slip value is attained.

The damper force is expanded in a Fourier series and truncated after the fundamental harmonic
terms, resulting in

F = G 1cos + G2 fsin (12)
where

GI = k +(E -4 sin 2 E))
Z 2

G2 k k.n 2 E

Comparing (6), (7), and (10), this equation becomes

F= G 2 G- G2 (13)
Fs=Gl.~s+G2 c

This is substituted into (9), which is rearranged to give

El =-DIc + D2s (14)
E2=DI E + D2 ,2

where

DI = I+A2 GI -A4G2 ElJ=A]JPc-A3 P
D2 =A2 G2 +A4 G E2 =A] Ps +A3 Pc.

Equation (14) can be solved to give

E1 2 + E22

D1 + D2' (15)

DI El +D2 E2
tan? = D.E2 -D2 E

JbA- 5



Because DI and D2 are transcendental functions of 8, iteration is required to solve (15). A simple
bisection method is utilized because E is bounded by o<E<ft. Once is known, substitution into
(13) gives all the forces acting on the blade. The modal amplitudes qj are then determined using (8),
and any physical displacement or stress of interest can then be obtained by following (3).

A common approach to assess the effectiveness of a given damper design is to repeat the solution
for a range of driving frequencies, determining the displacement and/or stress at key locations on
the blade. By varying the friction or driving forces, a parametric study can be conducted as shown
in Figure 3. From this information, which includes the resonant stress, frequency, and log decre-
ment, the optimum damper weight can be determined.

1.0

0.010

t - 2L25.0

t.10.0

0 . .- ,,

1000 1200 1400 1600 1M00 2000

Figure 3. Frequency response fr 'rinuis friction forces. By using a series of driving
frequencies, the maximum response for a given friction force can be found.

2.2 BLADE-TO-BLADE DAMPERS. A common design approach for blade dampers is to place
the damper between two blades, so that cenmifugal forces cause the damper to remain in contact with
the platform of each blade as they vibrate. Because of the free-floating nature of the damper, its
relative motion along each face ot :he blade platform must be determined. Simply knowing the abso-
lute motion of tie damper is not sLutficizrnt. It is assumed that these vibratory motions are small
enough so that the sc'ubbing surfaceq move in translation enly, that the centrifugal force will cause
the damper to move radially outwatI , : as the platforms allow, and this motion will be continuous
sliding. These ass;umptions are co:,,istent with good damper design practices.

The damper is shown schematicafly i Figure 4. With the assumptions made for damper motion,
the damper position is known once ,he motions of the two blades have been specified. Motion out
of this plane is considered :eparately because i!s effect on damping depends on the physical damper
restraints, and in addition, this compontent is usually not a source of reliable damping. If an oblique
coordinate system is placed along the contact surfaces as sWewn, with the origin at the damper apex,
determination of the relative motion becomes much easier. The transformation equations to obtain



Figure 4. Blade-to-Blade Damper. The motion of the damper is shown schematically. Note that
the location of the damper is determined by the location of the contact points on the blades.

the vibratory motions in terms of the oblique coordinates from the usual Cartesian reference frame
can be found in [8]. Because rotations of the blade contact surfaces are ignored, the A-blade damper
surface will move along lines parallel to 4, while the B-blade moves parallel to 71. The absolute
damper motion is seen to correspond to the k-motion of B and the n-motion of A, and the relative
motion along each face of the damper is given directly by

= dabs _ abs (16)
= A7 abs - 7abs

In this equation, the "abs" subscript indicates absolute components of motion while the lack of a
subscript indicates a relative term. For clarity, the discussion will be limited to motion in the 4 direc-
tion; similar results would be applicable to the il component. Replacing the blade displacement in
(16) with the modal components,

n n
= ajq - biqBi (17)
i=1 i=1

where
ai = mode shape in the direction for the ith mode at the damper contact of blade A

q= modal amplitude of blade A
bi= mode shape in the 4 direction for the ith mode at the damper contact of blade B

= modal amplitude of blade B.

Now assume that blades A and B have identical responses with the exception of an interblade phase
angle, (D. Again assuming harmonic motion, the modal amplitude can be written

q'i = q cos Ot + qe sin Ot (18)

qf = qicos(Ot + 0) + qs sin(Ot + (D)

where the cosine and sine terms on the right-hand side of both equations refer to blade A.
JBA-7



Expanding and substituting into (17),
n nl

= - bi cos -)qci - "(bi sin )q (19

V= (aj - bi cos cI)ql + "(bi sin (D)q
i=1 i=1

The relations given by (8) still apply, and substituting into (19) leads to

=C1 Pc - C2 Fc -C3 P + C4 F (20)
C1 P -C2 FS + C3 Pc-C4 F

where

C1 = Al - BI cos0 - B3 sin4,
C2 = A2 - B2 cos D - B4 sinD
C3 = A3 - B3cos +BlsinD
C4 = A4 - B4 cos 0 + B2 sin

and

B) = pibi()? -Q') B3 = _pbj(2 iQ)

Ii 1= 7,
i=1 Yi i=1 Yi

B2 = ab owL 02 B4 =ab{2Cpig)
i=1 Yii=1

The forces contributed by the damper are still given by (12), where it is understood that is the mo-
tion of the blade relative to the damper at the contact point. Then (20) is identical in form to (9),
the only difference in the equations being in the C-coefficients. In fact, (9) can be obtained by taking
the bi to be zero. The solution can then proeed in a manner identical to the blade-to-ground damper,
iterating on (15) to find the relative displacement.

2.3 MULTIPLE DAMPERS. The analys's is now extended to the case of multiple damper loca-
tions with multiple excitation forces. Becajse the blade-to-blade analysis will easily degenerate
to the blade-to-ground case, only these -esults are derived here. Also, because the approach taken
is identical to that for a single damper, detail will be kept to a minimum.

The equations of motion are generalized to

Mji4l + 2Cjfvjqi + (A2qj] - >jP i -_Fiaji (21)
I j

where
PI = excitation force at Ith location
Pli = mode shape component at the 11 location for the ith mode
Fj = friction force at the jth damper location
aji = mode shape component at the jah damper for the ith mode for blade A.

The relative motion at the jth damper, obtained by starting with (17), assuming harmonic motion,
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and substituting for the qi. is given by

= " CljiP - -C2jF C3jP + C4jF (22)
1I 1 (

4] = Z Cljps - C2jFj + jC3Pc, - Y C4jjFj
1 J l J

where
Cljl= Aljt - Bljicos (D? - B3jzsin (D

C2j= A2j. - B2g cos () - B4j. sin (

C3jj = A3j - B3jt cos i' + Bljt sin (D

C4j= A4jg - B4j. cos ( + B2j. sin (

and
n~ a jgpl(; _ g2) n1 bjp,(oJ2 - U2)

= ~ aaji(w; - Q)B = bjaj,(0 _-l

i=1 i =1i

i=1 Yi i=1 Yi

A =- ajjah(2 4ojQ) Bjj = j= ii =I 7

i Yi i1 Yi

Because the force at each damper is only a function of the relative motion at that location, (12) still
applies for each damper, and (22) becomes

El.= D1jj5- XD2jj t  (23)
I I

E2j = . Dijg 4j + Z D2gj 4j
where I I

D 1, = + 6 C2ji G 1 - C42j G2E = (C 1 , Pc - C3jj Pf

D2g = C2j G21 + >C4jg G11  E2j = (Cljl P' + C3j, Pcj)I J I

where 5j is defined to be the Kronecker delta. The displacements at the various dampers are coupled
through the D-matrices so the result is a set of coupled, nonlinear algebraic equations, with one
equation for each damper location and direction. The solution method employed for a single damper
can no longer be used and is replaced by a method based on Newton-Raphson iteration. This algo-
rithm, though, cannot guarantee convergence, and in practice assumptions are made to reduce the
system to a single equivalent damper whenever possible.

3 EXPERIMENTAL VERIFICATION OF ANALYTICAL METHOD

Verification of the preceding analytical methods by laboratory experiments was deliberately
planned to take place in several stages, beginning with a simple beam model and eventually leading
to actual turbine blade geometry. This paper shows analytical comparisons with experimental re-
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suits for simple beam models of various geometries. Specimens were constructed with a simulated
airfoil, platform, and shank region as shown in Figure 5. A number of different specimen geometries
were tested and the effects of the most significant variable, shank thickness, are illustrated for blade-
to-ground, blade-to-blade, and multiple damper test configurations.

3.1 BLADE-TO-GROUND DAMPER. The first specimens were tested with a blade-to-ground
arrangement as shown in Figure 5. This arrangement allowed the normal load on the damping sur-
face to be varied and the resulting dynamic friction force to be measured. Excitation was provided
by a shaker table. Strain gages were placed on the specimens to monitor the vibration as a result
of the action of the bar damper.

.250 Shamk .375 Shank Ou'-

1 0 Stven Gaps

00 0 2S
Loaa Cel

050

Figure 5. Simple Beam Model and Associated 'est Apparatus.

The vibratory response of the simple beam model in terms of airfoil root stress versus damper load
is shown in Figure 6. The effect on the first flexural (primary) frequency with increasing damper
load is also shown. Each set of data for the two different shank thicknesses shows very good correla-
tion to the analytical method.

Shank 0.375
* 7 Analyms

/ Lab Test

S iank 0.375

5 A.-Aiysis -~_

Lab Tea

Analy -m
Lab ,3s

&O\ 0,*-25
SAnalyWi

DM LW -W Loed

Figure 6. Comparison of Analytical Method with Test Data for Blade-to-Ground Damper.
JBA-10



3.2 BLADE-TO-BLADE DAMPER. Testing of a blade-to-blade configuration was conducted
using the apparatus shown in Figure 7. Two identical simple beam models were clamped in a fixture
with a damper supported between adjacent platforms and loaded by means of a wire attached to a
pulley. The damper load was varied over a wide range by applying varying tensile loads in the wire.
Excitation was provided by means of a pulsing airjet (siren), exciting the specimens in the first flexu-
ral mode of vibration. The level of excitation was controlled by the air jet supply pressure, and the
frequency was controlled by the speed of the air jet rotor.

" --Da~mpere

TestLoad Wire

I 

amer

Figure 7. Blade-to-Blade Damper Test Apparatus.

Vibratory stresses were measured at the airfoil root, the top of the blade shank, and at the bottom
of the blade shank. Two different levels of excitation were used, and results were obtained for in-
phase and out-of-phase blade motions.

Results for the in-phase and out-of-phase damper tests are shown in Figures 8 and 9, respectively.
The averages of several experimental data sets are shown and compared with analytical predictions.
Airfoil root stress at the two levels of excitation and resonant frequency predictions at the lower level
are given.

High Excitation
AnalyisC

Low Excimadon
\ Analysis Low Excitatio

'- LAb T-- Analysis
Lab Test]

OW LoW D-MW Load

Figure 8. Blade-to-Blade Damping Results: In-Phase Vibration.
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High Excitation

na EI \ Low Excitation

bLw Tees -h-\-Analynis
Lab Tlss

Figure 9. Blade-to-Blade Damping Results: Out-of-Phase Vibration.

data for in-phase and out-of-phase vibration. Prediction of frequency change as a result of increas-
ing damper load also shows good agreement.

3.3 TYPICAL DAMPER EFFECTIVENESS TEST. The final stage of experimental testing was
designed to duplicate a typical set-up used in the laboratory to conduct damper effectiveness testing
on actual engine hardware. The testing on model blades was conducted using a damper positioned
either side of a test blade with the dampers retained by two additional blades with ,"aic ils rem.ved,
as shown in Figure 10. The test blade was excited by means of the air siren, but the "dummy" blades
do not vibrate because of the removal of their airfoil. Again several variables were examined, and
the tests were repeated to obtain an average for each setting.

Tet Blade Damper
Load Wires

Damper Damper

Figure 10. Experimental Set-up for Typical Damper Effectiveness Test.

Figure 11 shows the airfoil root stress and resonant frequency change plotted against damper load
for three shank thicknesses compared to an3lytical results. There is good agreement between the
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analytical results and the experimental data. This again supports the use of this analytical technique
to predict the optimum damper weight to ensure maximum damper effectiveness.

Shank = 0.50

S ha n k = 0 .50 A n a lysis -- - _. . . . . . . . .

Analysis - Lab Test 77.- "

Lab Test ,

Shank 0 .375

Analysis
- blab Test D

a oa

Figure 11. Comparison of Analytical Method with Test Data for Damper Effectiveness Test.

4 DISCUS.SION OF RESULTS

A full range of experimental testing has been carried out examining variables such as damper-to-
platform contact angle, platform width, and shank thickness. Various excitation levels were used,
and results were plotted for an average of each data set. It was decided to present the results for the
variation in shank thickness because these illustrated the most pronounced effect on blade damping,
and it has been demonstrated within this paper that the analytical method was able to predict the re-
sults for this variable accurately, Predictions for other variables were also good although not shown
here for brevity. It should be noted that, while comparison of the analytical method with experimen-
tal results has been presented for only the primary bending mode, the method is capable of predicting
the damper effectiveness for any mode of interest.

The analynal method is able to determine the "optimum" damper weight by predicting the actual
decrease and increase in vibratory response as the damper load is increased. The optimum theoreti-
cal weight of the damper is that weight which, when converted into an equivalent load at engine
speed, produces the minimum vibratory response.

A damn,, -an increase the frequency of the blade by significantly high percentages. For first flexu-
ral riodes this can be as large as 25% for a cooled turbine blade. It is, therefore, important to be able
to predict this increase accurately as it has a pronounced significance when considering resonances
with stimuli that could produce detrimental responses of the blades. The analysis has demonst-atrv.
its ability to predict this frequency increase accu ately for the test cases presented and offers a means
of correcting for damping effects when assessing resonances in engines.

The analysis was able to predict the point ,,t which the damper load becomes so high that it prevents
motion in the shank and causes the airfoil to vibrate in an undamped mode. This condition is poten-
tially dangerous for the airfoil because of the high vibratory .;tresses involved.
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5 CONCLUSIONS

" A new analytical method has been developed which enables a1 blade designer to Pre-
determine thie effectiveness of a damper design prior to manufacture and bench esc.

* The method is able to predict the optimum damper load for maximul~ln effectiveness
and the point at which the damper is so heavy that it effectively "lock-.-up- the airfoil
at the platforms so that it is virtually undamped.

* Comparisons made between the analytical method and experimnil- data geic
by using simple beam models confirms the accuracy of the tool frdvesiin ue

* Future work will be centered around developing this analytical ~~o f'or Uj - v it'
actual cooled turbine blade geometry and applying it to a rotatin,, sy stemr of blciews
to predict damped responses compared to engine blade strainC it u data.
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MICRO SLIP DAMPING MECHANISM IN
BOLTED JOINTS

M. Groper'

Western Michigan University

Kalamazoo, MI

ABSTRACT

In bolted structural connections the dissipation of energy/damping depends on the

magnitudes of the frictional force and of the relative slide between the joined parts.
However, in a joint with a large number of bolts, the magnitude of the relative slide
(slip) cannot be large as the bolt hole is not much larger than the bolt diameter

and, thus, some bolts may be sheared at the onset of slip. As the clamping pressure

decreases with the distance away from the bolt the magnitude of slip will be larger in

regions more distanced from the bolt hole. If the applied tangential load is not large

enough to establish slip in an adjoining annulus to the bolt's hole there will be some
slip in more remote regions of the contact surface due to the elastic defornmation of

the joined parts, but the joint will not fully slip. As the tangential load is increased
the joint might slip completely.

As the stage of loading before gross slips occurs in the joint was less studied, the
paper presents an analysis of the mechanism of frictional damping for the partial

slip stage of loading. The factors which influence partial slip friction, and the dis-
tributions of the clamping pressure, coefficient of friction and slip with the distance

away from the bolt are considered in a model of energy dissipation. The proposed

model is then compared with the experimentally obtained li steresi, loops.

FULL PAPER NOT AVAILABLE FOR
PUBLICATION

'Professor, Department of Mechanical Engineering, Vestern Michigan University, Kalamazoo,
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ON A THEORY OF COMPLEX DAMPING

Z. Liang, G. C. Lee, and M. Tong

412 Bonner Hall
State University of New York at Buffalo

Amherst, NY 14260
fel. (/16) 636-2771

ABSTRACT

In non-proportionally damped structures, both energy dissipation and

energy transformation exist. To characterize such aspects. in this paper,

a new concept of complex damping ratio is introduced by means of

generalizing the concept of Rayleigh quotient. The real part of this new

quantity is the traditionally defined damping ratio, which reflects the

modal energy dissipation per cycle; whereas, the imaginary part describes

a ratio of energy transformation of a virtual mode per cycle. With this

new concept, modal equations are set up and other relevant theoretical

results are developed. Such a theory of complex damping is not only an

alternativeway to describe the phenomena of complex modes, but also a

useful tool, with strong physical meaning, for solving many theoretical

and engineering problems of non-proportionally damped systems.
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1 INTRODUCTION

In recent years considerable progress has been made in the field of'

mechanical vibrations and structural dynamics. However, many important

questions remain to be answered in particularly concerning non-

proportionally damped :.ystems. For example, using proportional damping

to describe real structures may result in severe errors (see Sigh 1936).

Under what conditions do we have to change our models, Where do these

errors come from and how can we minimize these errors? These questions are

often asked in considering whether the structure responses should be

calculated of estimated in the design of dampers; in the measurement of the

damping matrix to evaluate the capability of energy dissipation of

strucLures and in the construction of a valid damping matrix in finite

element modeling. In the area of modal testing, we also facn similar

questions when we deal with damping ratios and with the measurement of

damping matrix (see Liaig and Lee 1991). Most of these unanswered

questions are due to the lack of knowledge on energy relationship in

non-proportionally damped structures. They may be systemically answered by

using a theory of complex damping introduced in this paper. This theory

unifies energy dissipati'n and energy transformation by means of one

complex quantity. The real part of this complex quantity is the

traditional damping ratio, describing the ratio of energy dissipation in a

period; The imaginary part is the ratio of energy transmission in the same

period.

One important advantage of using complex damping theory is as follows:

When a structure Is in vibration, the energy dissipation and transmission

often bring the same results to a local region. Therefore, they are diff~cult

to be distinguished. Traditionally, these energy terms are thought to be

undecoupleable for a general damped system in N-dimensional space. We can

now introduce a comple>. valued quantity, the complex damping ratio, to

study each specific mode of the system. In so doing, we also may realize

the physical meanings of the quantities.

2 CONCEPT OF COMPLEX DAMPING RATIOS, MATHEMATICAL TREATMENT

2.1 INTRODUCTION OF COMPLEX DAMPING rOE7-,,,IENT
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In this section we will introduce the quantity of complex damping

coefficient. The equation of motion for a general MDOF system can be

written as
M X"(t) + C X' (t) + K X (t) = F(t)

without loss of generality, consider the monic homogeneous form:

I X"(t) + X'(t) + K X (t) = 0

with order n.

The above equation has elgenvalue matrix

A = diag(AX) diag(- w + j 1 w 2

and eigenvector matrix P . Then we have1

P A p A+ K = 0 (1)1 1 1

= Q A Q T (2)k

A = diag( w ) (3)
k ni

Pre-multiplying QT of equation (1) results in

R A2 + QCT P A + A R = 01 k

where
r r . . r
11 12 1n

R = QT P, r 1 r r[721 j22
r r r
n1 n2 nn

So, using the notations (1) and (2), we

can have the following expression of equations for the Ii

entries, that is,
2 2

A2 r + Q C P A + W r 0 (4)1 i 1 1 11 1 n I I1

where Q and P are the ith column of matrices Q and P respectively.

Note that,
r Tr Q ITP 1rII 1 11

If the system is proportionally damped, r must not be zero. We can alsoII

show that az icaqt two of the terms r ,1j I 1...,n, are not equal "o

zero for at least one P in the case of non-pQ _3:-tonallv d-moed system.j

With

2 Q or T T kWlu Q I K Q, or Q _ Q1
lu
ni

we have
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r Q T k p (5)r11 2 Q1I

w
ni

Suppose r1i * 0. Letting equation (1) be divided by r yields
22( )

A 2+ d A + w 2=0(6
i I ni

Define the term

(Q T p )/ Q pi

I J I = I(

to be a generalized Rayleigh quotient

Since P is generally a complex vector, so is the generalized Rayleigh11

quotient w 2 Q CP )/ Q I P ) We therefore use a complex number

d = aI +jb to describe this quantity,

d= a + jb= 2 (Q P )/QT kP ) (8)
I I J n i II I II

For convenience, equation (7) and its corresponding differential equation

u + (a + j b ) u' + u, = 0 (9)
th

is called the characteristic equation and differential equation 
of the i

virtual mode.

Now consider the physical meaning of Pre-multiplying QT of equation (b).

2We may call the term P A , C P A and K P the inertial force,

damping force and spring force respectively. (see Clough,1985). Therefore

Q P IA , Q Tp IA and Q TkP are the virtual work done along the virtual

displacement Q. Under this consideration, the quantity d is a kind of

ratio of damping virtual work ( Q C P ) and inertial virtual work!Ii

Q TP or spring virtual work ( Q T p ). In a later section, we will1i PII )1rsrn1itulwr I I

see that, the quantity d can play ai, important role the vibration

analyses, we therefore name d to be the It h complex damping coefficient.

2.2 SOME CHARACTERISTICS OF COMPLEX DAMPING

Substituting notations of A and A 2 into equation (7) and rearranging the
I I

results in two equations, for the real part, we have:

2 2 2
(W -+ W wa + w b (10a)

i ni i j I i I I

a ... .. --- y pa;t, -4 save:

-2 w - 1 2 a + wo b (lOb)
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Combining the above two equations yields

1 2 2

a = ( t ( w, ) 1--

U. ni a

I _

io

From equation (Ila), it is easy to see that, a is always greater than

zero if Et is non-zero. However; b appears to be undefined. We will show

that, for a given M-C-K system, the sign of b is uniquely determviried

laking the complex conjugate of equation (9), we have

d = a - -jb = t -(Q C " )/ ( K P I
'i I n 1 II 1!

th

Therefore, the sign of b is completely determined by the i eigenvector

P . In other words, only one of the It h complex conjugate nair of the Ith
11

elgenvectors can give the correct value of b . We thus define this

.th
eigenvector as the i principal eigenvector of the M-C-K system, and

th
define the corresponding eigenvalue the i principal eigen.,alue of the

M-C-K system. We also define the eigen-matrix which consists of all n

principal eigenvectors and elgenvalues the principal eigen-matrix.

2.3 CRITERIA FOR PROPORTIONAL DAMPING, FIRST APPLICATION OF THE

COMPLEX DAMPING THEORY

It is easy to show that b can be used as an index to calculate the

difference between the undamped natural frequency of the system, w I .rd

that o" corresponding non-proportionally damped system, w . In fact, we
n!

have the following theorem:

Theoreno 1: The following facts are equivalent:

I Th system has proportional damping, that i'-,

C M K K M -C or CK = kG

Th(, eigen-mahr.x has following properties:

i-eP(AY kn A~l(A) Rf (A

A ReA) Re(A) A

j " sy; trn t a.s ot , .Ior'mal mode, (all eig rivt ctors of system are

'-.,>rk~y c- plU'Tp that is, P =  Q A
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4) The undamped natura? frequencies o-)f the system and the corresponding

elgenvalues of the generalized stiffness K are all equal. Namely, W I

, i = 1.......n

5) All the imaginary parts of the generalized Rayleigh quotient 1 are

zero. That is, b = 0, 1 = 1, ..... n

Since statements 1) and 2) 3) are well established, (see the paper 'A

Strong Criterion For Testing Proportionally Damped Ssytem-', Theorem 6 anm

Corollary 6) we will only prove 4) and 5).

PROOF:

If a system has no complex mode, then b 's must be zero. This is

an obvious sufficient condition. From the condition, all the P 'si

must be all non-complex valued, that is,

=P , I= ,. N
iii

Then It Is easy to see, from equation (3), d IIs a real scalar,

or, b, = 0; Also, from the argument Q = P we know that other

generalized Rayleigh Quotient R Is , * , are zero.ii

Next, consider the the necessary condition. It is clear from equation

(lOb), that this condition is equivalent to the following:

w C , I = 1.....n (12)
Wl ni (2

Or, in this case, we have

A = Q K Q A k (13)k

We know that, (see the paper "A Strong Criterion of Proportionally Damped

Systems" by the same authors) for an M-C-K system, if equation (12) holds,

it has real-valued eigenvector matrix. Therefore. we know the necessary

condition is also true here. a

Theorem 1 is important. It provides two new criteria to judge whether a

system is proportionally damped. Namely, if all the imaginary part of

= 0 or if W n I , I = 1, ... n. In addition it confirms the

sufficient and necessary relationship between the complex damping

coefficient arid the damping property of the system. Also, from the

equation (lOb), we have a simple but impcrt corollary.

Corollary 1: For a damped system, if' its 1 complex damping co-fficient

is real, its I th undamped natural frequency is equal to that of
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corresponding proportionally damped system.

2.4 INVARIANTS OF SYSTEMS

A general damping matrix can always be written as

C = C + C (14)
p n

where C contains all the exact damping ratios of the system,p

s, by means of the relationship

d d

(15)-I

2!AI 2 w

thT

where d is the ii entry of matrix QT C Q , which is a real number.I1 p

th

Now, consider the i eigenvalue of the system with damping C, denoted by

A (C), and that of the system with damping C , denoted by A (C ), both
I p 1 p

systems have the same generalized stiffness matrices k. For convenience,

the second system is called the corresponding proportionally damped system

or simply the corresponding system, of the first system,; and denote the

first system by H(C) and the corresponding system by H(C ). If b = 0, or

= W , for all i = 1,.., N, the system H(C) and the corresponding

proportionally damped system H(C ) will have the same eigenvalue matrices.p

Next let us consider some invariants of system H(C) by comparing with its

corresponding system H(C ) where H(.) is the state matrix of the
p

system, i.e.

H - C -M-'K

First, consider the proportionally damped system, we have the following

corollary:

Corollary 2: For a M-C-K system with proportionmt damping, no matter how

the camping matrix C changes, as long as the system is proportionally

damped, all undamped nrtural f'iLq:encies remain unchanged. That is,

W constant i I . . (16)

This corollary is a direct deluction from theorem 1, condition (4). From

thi-; fact, we can state, fo-r arny proportionally damped system, if the mass

and stiffness matrices remain ur;changed but cnly the damping matrix
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varies, that system will have the invariant in undamped natural frequencieq.

Otherwise, we know that, equation (16) will be no longer valid if the

system becomes non-pLoportlonally damped. However, we have-

Lemma 1: The determinant of the state matrix and the corresponding

generalized stiffness matrix are identical. That is,

det( H ) = det( K ) (17)

From the second formula of H matrix given on the previous page, using

simple manipulation of linear algebra, we can easily establish this lemma.

Theorem 2: For a M-C-K system, If only the damping matrix C changes while

both M and K matrices remain unchinged, the product of all undamped

natural frequencies also remains unchanged. That is,

2N

-- W = constant (18)
1=1

With the help of lemma 1. this result is quite clear, since

2N

Ii w = det(H) = det(K)
1=1

These invariants will play an important role in the energy analysis of the

damped systems. The energy analysis will, in turn, help us to understand

the physical meanings of these invariants, and also give the physical

meaning of the complex damping coefficients.

3 ENERGY METHODS AND DYNAMICS MEANINGS

In the above section, we mathematically pointed out that the quantity d

can describe the complex property of a system. We now try to Interpret

its physical meaning by the simplest case of SDOF system.

3.1 ENERGY DISSIPATION

Consider a SDOF system with free decay vibration:

m x" + c x' + k x = 0

where m, c, and k are all real scalars. We can rewrite this equation in

another form:

x" + 2 w x'+ w x = 0 (19)

where and ohave the same standard meaning in vibrational analysis,

Solution of Eq (la) requires certain initial conditions. For example, we
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can have

x = exp( A t) (20)

Now, consider the work done by the inertlal force, denoted by W , by the

damping force, denoted by W . and by the spring force, denoted by Wc k

Since the displacement (20) 1s in general cumplex valued, so wili be the

work done. It is important to know that, the work done can also be

considered as virtual work. because the displacement x is in fact the

virtual displacement. For convenience, we may call it, the complex virtual

work or simply the complex work. Consider the work done in one cycle, with

period of T = 2n1w. We have

j2111W

x" x dt
j 2

W {[ 2e., x' x dt = 2 (C- (21)

2n/

W = k x x dt

Tok~ 2 A
where n is a complex number

n = ( exp( 2A T ) - 1) (22)

Now denote n by equation (23)

= e JO (23)

in the normal complex plane, denoted by C This complex work Is shown in
P

Fig.l. If a number is mapped onto this normal complex plane, its module will

be multiplied by n with an angle 0 of rotation counterclockwise. To
0

simplify the matter, we may use a modified com.lex plane C(M) with units
p (n)

measur- I by T and x-axis coincident with a line of angle ¢ in C In
0 p

this plane, we have

W A - 1 + j / 2 W
M 2 2

W } (24)

2 -

k 2k 2

The energy equaticn (24) satisfies the law of conservation of energy, or

the' 'aw of' virtual work. That is,

W 4 Y; + W = 0
M k



Furthermore, the dissipated energy, W , is real-valued. In other words,
C

W lies along the x-axis of the C( M) plane. However, both W and W are
C p m k
complex work dae. The sum of their real parts, w, are just the energy

given from the system in the specific circle to the damper. The damper

dissipates the exact amount of energy . Both W and W will have an

angle I to the x-axis, which ,s called the loss angle. If the damping

ratio is small enough, we can have the following relation:

Im(W Im(W )
tan(= tan[ Re-W-7 tan[(W ) 1 (25)

.a k

where the least three tangent forms are called loss tangent.

Theorem 3: For a SDOF system with real valued damping coefficient,

denoted by (19), its damping ratio -quals to the ratio of work done by

damping force and the geometric sum of work done by inertia and spring

forces during a cycle. That is,
W
C (26)

2 / W W

M k

Equations (25) and (26) can be also be obtained in figure 1.

I M

2 2

Re

/W

(k)

Figure 1 complex C plane
p

The module of the complex wcrk W (or Wk ) Is equal to w. If we return
in k

to the C (n) plane, and suppose at the beginning of the circle, the
p

amplitude of the displacement is one, then, the quantity w represents the

amount of tae kinetic energy at this moment. So, for convenience, we also

call the undamped natural frequency virtual energy , denoted by & and
V

have the following corollary.

Corollary 3: For a SDOF system with real valued damping coefficient-,

denoted by (19), its virtial energy equals the square root of generalized

TCA- 1



stiffness,

Compare corol lary 1 with coro inry '3, Le see that, the vi:'t.ai .. n.,"

sysIem (19) Is an lnva iaitA. 'n other ;ords, for a /s :;:i [19), no eatter

ho t.,,t damping coefficient chatces, the virtual energy remains

unctanged. Also, an MDOF prdoportonally d mped system can be decoupled
C •.t ' , like"'r (19 ,ea

into n--eal modes of n-indiv'coa.iui eqoat ics. 1ike e..U cor. (19), as L. t.

by the fol o,,."g coruliary.

Corollary 4: it' az: MDiD , .... -,  p..r , i 1 disnn O ,s d coupm(-e

toti. n real modes, then each Nas vriant virtuia Unergy, regardless

whether or not thE damping .ti" changes.

Now, consider the Imaginary part.- ,f the complex work W and W . The workin k

done by the inertial and the splng force contains the real part. the

energy to have '.een dissipat.,d, contains the imaginary part. Only when this

later port is Included, the vtrt 1a energy is equal to w. And this amount
of ene'-, is the co-tervat i'' rt ion of the energy during this circle,

(Krm kinetic energy to potert a i energy) If '.he damping is equal to

zero, the conservat ive port in of' the energy is equal to w. However, as

the darmping rati becomes 17' Lr, this njmount of energy will become

-ral ier by thE 'actor - -, because a certain amount energy is

dissipated. The interesting ti ni s, the ortion of energy or work done,

,inder t he notat ion of compiex \ x k l- t. he piare, is perpendicular to

15 isaport t ,:onciusi. ' !"olds for hUC7 system•

N t us cons),'ei' the ir. -v ' ,', Jt. 0" the vel.ocity ter'n in the

,Fl,; o.U rf" pTC t 'r

+ x

IIlI



physical meaning if it is used to express a virtual mode of a MDOF system.

Suppose the solution to equation (28) is

x = exp( u

then
2

x' = v exp( P t) and x" = u exp( u t)

Therefore we have the characteristic equation as follows

2 2
+ 2 j + w = 0 (29)

The solution of equation (28) is given by

Without loss of generality, we may write

V 
=  w + 1 2

The solution does not have real part.

Again using the concept of a modified C (m) plane, with the complex
P

number, n = (exp( 2U T) -1), we may obtain the work done for one cycle

T 22n/:

2 2 J (- + +

w j <W (30)

W -w 1 j 1 2
k 2 v 2

The above quantities expressed In equations (30) satisfy the law of

conservation of energy or the law of virtual work. That is,
W + W + W = 0

m C k

In addition, these work done quantities are all imaginary. Thus, during a

cycle, no energy is dissipated. Figure 2 gives a typical response time

history of system (29) subjectud to an impulse. It is seen that, without

real part of the damping coefficiont the amplitude of vibration will not

decrease. In other words, no energy Is dissipated. The above described

impulse response does not behave like a SDOF system. Rather, it behaves

like an MDOF system with some more natural frequencies, (see figures 2). In

a certain cycle th,.e amplituct o m; to decrease whereas in a different.

cycle it increases. It is Pa!;y to understand that, during a certain cycle,

the energy, which is prop rt Vr:.;j to the square of the amplitude, is

J k\-l 12



Fig. 2 Time History of Imaginarily Damped System
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ie (Sec)

different from that in another cycle. Energy changes or transfers from

time to time. The interesting thing is, energy is also transferred within

a system with real-valued damping. But the energy-transfer is essentially

different from the case where the damping Is only imaginary-valued.

Energy dissipation in real-valued and imaginary-valued systems are

different. The portion of energy transferring between kinetic energy and

potential energy is included in both the first case (24) and second case

rO), In the first case it is the part of

t i I -W; and in the second case, it is the part
2

1. 22 j 1 1 < .

in the first case, the energy transfers or disiptcs to the the damper is

represented by the part w. The energy transferred t o an 'imaginary"

Aev ice in t.he second case is r-vpresented by the peirt j~w The major

difference here is that the energy quantity f, is changed from mechanical

work to another type of enevey, in moo.t cases thermal energy, while the

quant ity j~w remains in the form of mechan;(col wcork. We may think of this

energy is transferred to somewhere and stor,d therr for a period of time

JCA- 13



and then It may be transferred back to the mass-spring system at a

later time. Based on this concept we may call the quantity J2 o the

imaEinary damping coefficient and the quantity < the imaginary damping

ratio. This Is stated in the following theorem.

Theorem 4: For an imaginary damped system, denoted by (28), the imaginary

damping ratio equals the absolute ratio of work done by the imaginary

damping force and the geometric sum of work done by the inertia and spring

force In a circle. That is,
W

2 (31)
SW W

m k

In this paper we refer to the change of energy of w the energy

dissipation, and the change of j<o the energy transformation. It is

interesting to note that, with a given amount energy transferred, the

virtual energy, 9 , i.e. the "undamped" natural frequency Jul, is no
V

longer equal to w. It is modified by the factor

( ±2

This tells us that, with the energy transformation, the total energy

during cycles changes. It also suggests, that for a SDOF system, there

appears to have two different values of virtual energy. But for a SDOF

system, equation (28) does not have real meaning, neither does the virtual

energy of SDOF system have real meaning. In fact, we refer a "SDOF system"

to be a virtual mode of an MDOF system. For any given MDOF system, its

N-undamped natural frequencies are uniquely determined. Therefore, we have

the following corollary.

Corollary 5: A given N-dimensional MDOF system has and only has N-virtual

energy. That is,

= o for i = i...,Nvi

Typically, "virtual energy" is not used in energy considerations of a SDGF

system. However, for convenience, we state the following corollary using

the virtual energy of SDOF system to actually express the energy

relationship between different modes of an MDOF system.

Corollary 6: For a SDOF system (28) with an imaginary damping coefficient

jc, if the value of jc changes, the virtual energy of the system will also

be changed.

jCA-14



3.3 COMPLEX WORK DONE

Consider now the case when a SDOF system has both real and Imaginary

damping coefficient,
2

x" + 2( + J ) w x'+ w x = 0 (32)

That is, the system has complex damping ratio. From theorems 4 and 5,

it is not difficult to qualitatively understand the results of complex

work done. Complex work done consists both energy dissipation and energy

transformation. And, its virtual energ or undamped natural frequency will

not be an invariant. Also, we know that, an MDOF system can only be

"decoupled" with the form (32). Therefore, each equation (28) will no

longer have invariant virtual energy. On the other hand, from theorem 3,

we know that, the product of total virtual energy is still an invariant.

FIg.3 shows the typical time history of complex damped systems, Fig. 4(a)

is a real structure, one of its time histories is given in Fig 4(b) which

shows the complex damping effects.

To quantitatively describe the complex work done and all its implications

is rather complicated. However, it is possible for special cases. One

example is the complex damping of lightly damped structures (see the paper

"Lightly Damped Systems" by the same authors). Figure 3 (a) gives a

response of the complex damped system. Figure 3(b) shows a time history of

a real structure.

CONCLUSIONS

1) If - vibrational structure is non-proportionally damped, there exist

both energy dissipation and energy transformation resulted by damping

effects. The energy transformation is essentially the conservative energy.

If the non-proportionality is heavy, this amount energy cannot be simply

neglected nor be mistaken as dissipative energy. Otherwise severe crrors

may be caused.

2) To describe both the energy dissipation and the energy transformation

quantitatively, a complex-valued generalized Rayleigh quotient can be

usci, which is obtained from natural parameters of' the structure. This

quantity is called complex damping, whose real part is traditional damping

JCA- 15



Fig. 3(a) Time History of Complex Damped System
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Fig. 4(a) 5 -Floor Structure

Fig. 4(b) Acceleration Time Hlistory ('4th floor, north-west)
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ratio and imaginary part stands for the ratio of energy transformation.

3) With the help of complex damping, the energy relationship of modal

equation, the energy based invariants of systems, and therefore the

physical meanings of complex damping itself are explained by the

theory of complex damping described by this paper.
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AN ITERATIVE METHOD IN DYNAMIC STRUCTURAL ANALYSES
WITH NONPROPORTIONAL DAMPING

Wan T. Tsai', Joseph T. Leang2

ABSTRACT

A new method in dynamic analyses of structures with non-
proportional damping is proposed. By decomposing the non-
proportional damping matrix into two portions, the diagonal and off-
diagonal, the iterative technique can be employed through use of the
classic method of solving a large dynamic structural system with
real modal coordinates. Explicitly, the diagonalized damping matrix
is retained to form a system of discrete differential equations with
proportional damping. The off-diagonal portion of damping forces is
treated as a correcting forcing function. The iteration is to use
the off-diagonal damping induced forces for the load correction in
the subsequent computational step. This enables the structural
responses to be simply determined while the effect of off-diagonal
damping forces is included.
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AN ITERATIVE METHOD IN DYNAMIC STRUCTURAL ANALYSES

WITH NONPROPRTIONAL DAMPING

Wan T. Tsai, J. iV. Leang

Dynamic Loads, Rockwell International, Downey, CA

INTRODUCTION

This article presents a new method in dynamic analyses of
structures with non-proportional damping. Computed iteratively,
this method ensures highly accurate responses yet low cost analyses
when the structures are subjected to dynamic forcing functions.

In dynamic analyses of space vehicles, the mass and stiffness
matrices of each substructure are usually generated by different
contractors. Each substructure may contain its own component modal
damping acquired from component testing or empirical data. When all
substructures are coupled together into a system for dynamic
analyses, a difficulty arises. Generally, the system damping matrix
cannot be transformed into a diagonal matrix by using the same
transformation matrix as for generalizations of the system mass and
stiffness matrices. Since the transformed damping matrix is not
diagonalized, the structural responses cannot be determined by
taking the advantage of using the real mode superpcsition technicue.
In order to avoid this difficulty, the off-diagcnal elements of the
transformed damping matrix are usually neglected in the wake Cf
their smallness compared to the corresponding diagonal elements.
Known as triple-matrix-product (TMP) method in the aerospace
industry, this approach has been widely employed as a standard
method in analyses of space vehicles. Using this approach, the
interface loads are usually accurate for design purposes. However,
the responses in some payload components may be grossly incorrect
when the full scale payload-orbiter coupled systems are exercised.

The proposed iterative method is to improve the accuracy of
payload responses yet to retain the advantage of using the modal
superposition technique for cost saving. This method decomposes the
transformed system modal damping matrix into two portions, a
diagonal damping matrix and an off-diagonal damping matrix. The
damping force induced by the off-diagonal damping elements are
treated as a correcting force vector to modify the applied forcing
function. This correction can be repeatedly applied until the
results are within an acceptible range of error. Using this
iterative approach, the desired goal can be reached and the impact
to the currently applied TMP method can be minimized.

The iterative method in treating the nonproportional damping
matrix has been applied by the first author of this paper to analyze
small scale of structures since 1988. Independently, the same
method given by Udwadia and Esfandiari (1990), may be the first
article related to this method published in the open literature.
The convergent characteris;tics of the method is the primary emphasis
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of the article. Prior to using the iterative- method_ . several
approaches have been proposed in treating structural W' L
non-proportional damping. Primarily due to tho''.'elo---
nuclear power plants in the 197Gs, replacemn-'Tsn1- Ez Ctim 0
proportional damping matrix with d ia 4on a j h '1r Vav ot
extensively investigated. Trhose which have been rore mon
emplov _c-i are: (1) using the diagonal el-ements of the
proportional damping matrix, i.e. the tr.iple nint"-rix-produoct (TYP.)
method, (2) replacing the non-proportional dac rping mtrxL: 'by a
diagonal matrix containing each i eo twith a *factor_ nL'
critical damping to each, mode i .e o to arn. e,
(3) obtaining each diagonal damping elemie cy siotfe lorc
sum of the corresponding row of the ron-proportiric- damn2 -.,c matr 'x.
Errors acquired from these arproximatic-n- nod als: bec1ey £Xm:riec.
Those who had been involved- A*.n c chal~(dveo~t
included Clough and Mj -a h e' i LJ' , Crcni, (1-76) Dnr n
Taylor (1979) , Hasselman (1976) , Thlipsrac, 0an ntd -,van:
(19714) , and Warburton arid Soni (±9-: 7. A diifferent ancocnr i.
synthesizing the diacjonal system -,a x;-*ng ee m e nts ;fr o 7 th1e2- c.-.Po(,ne nt C
modal cesting was given by Tsai (19 89. it i:: knc"'n '1-_-:. 0, no-
proportionally damped system can c3ec co mpletey gEn e r -i ~Ec th r oogh'
th -e complex mode transformations. MIany investigators lhave_ lcee-n
involved in developments of this method, for instanCe, BEr -iveau :-nd~
Soucy (1935), and Veletsos and Ventura (190'6.) A 1t h o ic -h, the
complex mode transformation iLs the exact me,,,thod' cc treatin Coca
proportionally damped Structural sy st. ems, ta real ma C
trans format ion seems to be stij -'1 more favorable toC most appl icat on
engineers for two reasons: (1) It is less costly in the full sca-le
transient analysis when an Epproxlimate method is e.mrlayed. (2) I
is easier- to czirture , tne image of physica-l biehavior Twherr the real
mode transformation is appl ied. Therefore, the appr'on? .masions
developed in the 197Cc'O are Still favorably used. The TMP and the
system- dIamping approaches have been pa-ticularlv favored in the
aerospeace industry.

Tin -iddition to the derivation of' the iter-ative rotho-cl. ti
paper e- -nasizes on case applicationrs of the method c-. a :LIscal1e
payloaa/ orbiter dynamic analysis, 'i.e. , the IUS/TDPS1,'': pay'lc:ad"- foCr the
26th space traansnortation system,, (STS-26) rnanifest'. Th 4 _~e Ct
integration method is emp] eyed a,, the basis tosur:: ae7
validity of the n-.e; method. The reason that the TM',Pao di
i n red e qi ate for p aylIo ad r es po n se Cunr, I : er 1 eten siv e
d i s c i e d Re -omrendations 1-n t r a. i nz analyses foCrnon-
propnt- Iiona 117 damped structures art: pr:7": ,ded

ITERATIVE METHOD

Let M, C, and K be the pil .a ical ly coupled mccmig o
stiffnes s ratrlces, P tdr C app-j r (7 v~ 7 Vc o r S: t: iC S Cn
vect. and dots tU-, rvtoe-i> I '. - >r hjocnc



differential equation of the dynamic system is given by

MX - CX + KX = P

?q. (1) can be solved in a simple manner by transforming the physical
response coordinates X into a system of generalized responre
coordinates x by introducing a transformation matrix (p. Name>

X = Px

Through use of Eq. (2), along with the correlations

rnm=p 2VM(p, -:pCqp, k=: 7 cp, p -a ,?, -

Eq. (1) then reduces to
mX4+ ck+ kx = o

wh-ere, m is a unit matrix, c is a fully populated maorix, -
diagonal matrix containinc eigenvalues in the diagonal el

is a generalized forcing vector.
Eq. (1') could be easily solved by using the e m_

superpositions if c were a diagonal matrix, in order
advantage of expressing all respo. -ses with the sure -
real modes, let c be expressed by the sum cf a diagcna -
and_ an off-diagonal matrix e. I y ,

Y. (. ') can then be rewritten by

.Cd x - kx = T - :7

Thus, all the coefficient matrices on the left hand side ct E . (5;
are diagonal. The contribution of each generalized mode can be
directly determined without coupling with the other modes. The
technique of modal superpositions can then be applied to sImpli:f
the analysis inasmuch as the forcing function vector on the riono
hand side is explicitly given. The industrial practices generally
assume that the effect of c. is negliqible since its elements are
generally smaller than the corresponding elements of c. The
approach using this assumption is the method commonly referred in
the aerospace industry as the triple-matrix-product (TMP) . in fact,
the words triple-matrix-product (TMP) does not comprise any meaning
of stripping the off-diaaonal damping elements. Nevertheless, this
article uses the commonly accepted definition that the TMP method
implies the applications of the diagonalized damping matrix.

Now, the iterative method comes to play by treating the
response vector x on both sides of Eq. (5) as if they were
independent at different stages of computations, xn and x1 , where?
n is the number of iterations. Eq.(5) is then rewritten into the
form



X_ C k + kx =pck 1  n =01, 2,..(

The left hand side represents the classi c: mocdalI s ys t e
whereas the right hand side is the forcing function cretu~
off-diagonal damping induced force-_ Using th-is system
equations, the modal DOFs can be easily determrined since
equaation is associated with a single DOE.

In Eq. (6), k0 when n=0. The response x~ is the ThP result.
The off-diagonal damping force obtained from th1-e TMP r'
applied to modify the applied force and th-,n first iterative om.
x, fo-r n~l is then, determined from Eq.(6 . laioqjusiy, t1-., __

iterative response x. for n=2 is computed by us1 og the reu
forc-e obtained from th-,e xi response. This pr.oced ,:ce can t,-
repeat edly applied until theo nth iter --iive response x, reae'" -,-
acc-ptible accuracy.

The iterat ion camno Lepp: h theD respcre ccnv er'-,
d e s i re ac Cu racy:. , Us iLog va riouLs exampl1e ,s of1 three de';-e -- f
freedomi, Udwadia ani Es,:fandiari sno. wed that the res-ul :s c As_

>trVioswere almo.ist idenica Lc th xats cltns.

The a.,alys is, may be- termii-4. by sct-~tinca cgrc
rm ha thecne~n rate of the modal ac~ "'

S p ec I ,d a4 -'7oZs Cbc: error, ~.Namel1y,

Fcr-rp~ tne modal accelerat ios mu'- he ':urt
e -c n Eh as-~ s am , al: 1- sbe e rror of- 51 (C .Of 0 inva s

suomestecd or, b, vi~ oL om prac.-t ices, not a sohiaelyV
co:oua~ "~Lr.Experiences ino., c; Ie th-at responses may genera.l lv

~ t: CC* wh.~it,- at, ens are pc-rfo:rmed.
T Ae 4 L.. -z -

acc-:err cn- doe rr;- .aoour- 0 tr the mod1 - -

~~ ~the sa limit 1 ov r, ter lji o r -
ci r I L c Pa h o t-h er In~ Mot-. ac,-mD 1 at _cns. It: 7"- s r~ -1

"isdto be ju~ ihthe ('-I ) th iterat ive vaLu-)s.

APPLICATIONS OF ITERATIVE METHCD

hed-n-mamic 1 fo n y.';frthe STS-26 f ctmnifs a
a i t~

,a7~' c'o:t of t -' z trc nc dc ti ea



L ie (TIURS) hire uCU sge (US) boCcsL;t e r, flarc
4 bcoI-e (SR9) , and I'c~ra tanik (ET) .Temc L

.,itearated to the .,ih as in turn secum-d t
'~bay tnrough paim. '~n. The,, primary pur-,-s,

:Z~i I W as Lo d e plocy p , 2G ~a-d IL S 'DRS.
Criginrially, al I o I c--~a~ wer-e individually/ mcdrl e --
v ~.c~ueseach w~as _r,-rsen, tecj by hnundreds O- ~

r-aj f - f r edocms, (DC F_ A ~et ce're ralI s t agqes o f s,,2 !L -3

Iin, and cod c n final model used fcir -,,e 1-Ln
c 17.a Jy se s ,,i s Phe sysT-em was sbc
Cf-orcmg. 1,Uu~ 11 C 1-u 0 one of the concitioiis s

'f rans,-nt ai n- -h e analvisi was perfo-r-r. ;

Lc> of 11 secoris t-_ tje c-implete li-ftoff evn_
or -btacn 4 ng an accmm-- e it,_ t5'e small time J nterva1 o-t

-~-- -rwas used over U r, -t rc ti'me stman of trans4 cent
I-71 tKe d!ynaMi'c Mn a1 of the criticalda

7D~l 12ar al h i Ia (-,d lrac)es. Focr te c r~
nelo I F 1  frequancies abc-ve

.nr. No da, ing z. c a n payload;c~o
The analy.ses Per i >r:ed by us ing va r 'cous apcer- e
cSO ns TS sism rie in Tabl es I

* ~.cn reor _ nntc~h -" f i't~eSt. oun
mcnn;:and eai: -bt1ie from var -Cusa C

-iaI±, the 'sn steri wo-s ana_'Yzedi by u- q~ n
T~ip s-r',.ar edin colum-,n 2t c-

r,,--,~'c r p o n os The accelerations; a I o c m-
at tin c t. cporreA ribs ( node 115 wa s exceS nI

a Ti, a max 4rnum o f 27. 2 g a s s hcw7n in
bo 1. . ' result was not acceotitle arc. a

Sr~spoo-''_ wvas very uc-iiScal, a similar analysr L a p,-c,,u
-7, Car 4 damig. As swnin ccum 6',

the rei_-s same itmreduces s lic~nt It C
01: 1, )q~COo 9 . Clearly. the ccr-p C;

t two -'sos Its idicates a co r, t r
C,11. th:At t-', sysi e it a h (gher damping v -1 ue !,s

c~pnse awrt a lower damping vai2. Thi s
i SC.n V-- a t-S -I t ?I of mechanics that a strur'.Lre tias

eill -n t; to *ra t~ iI e app P '- d the peak acceliances
--t " 71am ur-_7c 7i. 4g for one iteration, and -7 oann;

q. cu 'r t'v i er.ai I- a results are respect ively shown in
r3 4 )f hey a.re significantly differ-ent f rom

that a~ e ~MP n - 1 " 'E-, responses of several othe i te_ r
s s S gn i i cant Iv as c;:i be--ween. the T!'TP and iterative methods.

Fr~ ir.stan'ce , h_ Y -c er on c f the C-band re fl1ector CG in Tabl1e
I and the aenrfcrcm-, --. -- LTM row 149 in Table 2, their-
r-;mponses using heiterar i,-. metbo appear to be less than one-half''
the TMP results. The difference b t-ween these selected item reveal
I f,_ndamentaily severe d--evi.Atdon between the TMP and iterative

Ti-



methods, although the responses of many other items are in good
agreement. Physically, the results obtained from the jtZ~t&C,

method make better sense than from the TMP method when t,

compared to those using the system damping method, as shown 
column 6 of Tables 1-5.

To make sure that the iteratively computed results
reasonably accurate, the first iterative result is compared t': tb-
second one, i.e., column 3 compared to column 4 of Tables ]-5.
Among all interested items, the maximum difference between these two
iterative analyses is only 4.6% cocured in the X-acceleraticn at the
tip of SA antenna ribs. Furthermore, in --er to assure of correct
results obtained from the iterative analyses, a direct integration
method using the fully populated damping matrix is also performed.
'he results are shown in column 5 of Tables 1-5. All iterati-:e
responses are in very good agreement with the direct integration
results. In general, the results of the second iteration are much
closer to that of the direct integration than those of the first
iteration. In certain particular items such as the tip of SA
antenna ribs, the second iterative value has slightly more deviation
than the first iterative result when both are compared to the direct
integration result. It just happens on the way of converging
process to the final result, but does not indicate any inaccuracy in
the iterative method.

A question has been raised regarding the magnitude cf the
interface loads between using the system damping and iterative
methods. Specifically, the load of -8909 lbs in the 1% system
damping analysis appoar to be weaker than -9024 lbs of the iterative
analysis for the X-interface load at X=1155.53 inches (node 43.)
This may not be surprised since the damping matrix established for
the iterative method is more complex than that for the system
damping matix. The one for the iterative analysis consists of zero
damping value at the inteface nodes as well as 1% and 2% for the
Craig-Bamptom form of substructure modelling. But the 1% system
damping implicitly include damping values at the interface nodes as
we'l as the other DOFs, as shown in the reversed expression of
Eq. (3t. This explains the reason that some of the interface loads
a,-e stronger in the ite±_La anallses than in the analysis of using
1% system damping. The discrepancy for most of other quantities
appears to be in the right order that the responses using the syse:on
damping method (17 damping) is slightly greater than those using the
iter it iv, method (]'% and 2% dampinq for .... ,r ter. I

REASONS FOR THE RESeoNSE DISCREPANCY OF TMP METHOD

The reason for such a significant deviation in the TMF m thcd
has been interpreted as the consequence of modal response supe:-
positions from two modes that Vave two closely spaced modes. This
can be explained by considering the modal contribution for an item
at a varticular time slice. For instance, the modal contributions



tie acceleration at the tip of SA antenna ribs at t=3.1 seco a"
shown in Figures 1 and 2 respectively for the TMP and one-

rc,::a-e analyses. Although both modal contribution plots appear
-e different, the major contributions occur at the same frequency

of 23.4Hz in either analyses. Near the interested frequency, the
cct:'ributions from Figure 1 of the TMP approach are both negativ'e
,li',l-eas the contributions from Figure 2 of the iterative methosd

mi;ec with a negative and a positive value. Owing to this type cf
is;representaticn in the TMP modal contributions, the TMP ccnpuzed

rcsponses become significantly different from those of the iteratie

Although the above interpretation is mathematically ccrrec=.
.. ,_ rc remains a clout regarding the true driving source that c
such a strong impact to the component responses in the pres-st
:,ustration. A careful study indicates that the light weLn:

flxible components are driven by wrong forces when the TMP apprcach
ic. acpliec". That is the true reason to induce such a signif :,

;aset at the component responses. This can be directiy interprete:
>'::sing Eq. (5). Since the generalized mass m is a unit nat:

can be rewritten into an alternate form to express the
.cce-eeration in terms of p, k, C0, c , x, and x. The acce~erct_:n

:7?: the ith modal DOF is given by

: :c .:-c. x. - <c%) k. -Z~s.):k .i.

.n te TMP analysis, the last term associated wich c0 has been
,-lri neglected. This may be justified when the applied force

stif ness force kix , and diagonal damping force ( cd) are much
r than the total off-diagonal damping force. For the internal

A- gonerts of a payload, the DOFs are generally not subjected to
1.-.cl applied forces. instead, the component DOFs are driven Lv

:cobined action of stiffness and damping forces. When the
: ness is relatively small like the SA antenna ribs, th

, i stiffness force is small and the damping force becomes an
.Lc:r ttant part of the driving force. Furthermore, the off-diagonal
,,i qing force becomes the dominated portion in the total drivinu

C! r: Specifically, the sum of several hundreds of off-diagonal
,rq force components may override the stiffness and diagonal

,i a i c4ng forces to influence the final responses of the transient
,1 s, a .though each off-diagonal damping force component may be

compared to the counterpart of the stiffness and diagonal
.. forces.

The co;-,ponent ;tiffness is small compared to the other
rcI 0a ot the st-i(.:tural system. However, the component frequency

-i' rz.t be small since the corresponding component mass is usually
. too.

JCB-8



The above interpretation can be substantiated by the TDPF-"
member loads shown in Table 2. The item at the LTM row 149 b:,
peak member force reduced from 21.7 lbs in the TMP aprcacr c-z:
11.9 lbs in the one-iterative analysis. Similarly, the small -T T

motor (node 3457) has the peak Y-acceleration changed from 0.471>
0.23g as shown in Table 4. The changes are up to 100%. On tnr
contrary, the changes in the interface loads at the bridge points
between the IUS/TDRS and orbiter as shown in Table 3 and the orbiter
bridge acceleration as shown in Table 5 are much less, a maximum of
13% only. Therefore, thE. TMP may still be applicable if all
substructural components are stiff. However, when the component is
flexible, it may be subjected to a wrong driving force when the off-
diagonal damping force is neglected. As a result, the component
response is incorrect. it is particularly sensitive to tne
component of small mass since it is more responsive to any varietnon
of the driving force.

CONCLUSIONS

1. The commonly referred TMp method has assumed that the off
diagonal damping elements are small and negligible; and that uses of
the diagonal damping elements are sufficient to capture accura-2
component responses of structures. This has been proved to he
incorrect. In fact, the TMP method may produce a srctur~
response totally different from the true result. Therefore, t e
currently applied TMP method should not be used.

2. A new method using iterative procedur- is proposed fcr
transient analyses of dynamic structures with non-proportional
damping. This method can provide an accurate result within small
number of iterations. The validity of this method has been
substantiated by using the direct integration method through Lhe
illustrative analyses for the STS-26 flight.

3. The proposed iterative method is cost effective. On the
basis of analyses for various structure sizes, the cost of usinq
each additional iteration is about 15% inre than the cost o. us.na
tne T, approach. Generally, two iterations may resalt in n
accuraz.: response for design purposes. If two iterations are used,
the expected computing cost may increase about 301. This cost is
noct a significant impact when it can assure of obtaining a
response in all payload components. Therefore, the iterative methcdi
is a -iable approach for transient ana],vnes wh. the tram
systa: d-oping matrix is non-proportionai.

RECOMENDATIONS

To ensure accurate componcnt responses of structures, the ofi-
diagonal damping elements must t :±t be neglected. In order to retain'
the off-diagonal damping without significantly increasing
ccimncational cost, the iterative meThcd riay be used.

JOB3- 0
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Figure 1 MODAL CONTRIBUTIONS FOR X-ACCELERATION (in/sec
2) OF

STS-26 SA ANTENNA RIBS USING TMP METHOD, t=8.3 sec.
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JeB- 17

U.S. Governenft Prinltinlg Office 548-076


