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1 INTRODUCTION

1.1 GENERAL

Today, many computer programs in structural analysis are

readily available and each is designed for a specific

use. Just to name a few are SAP90, ETABS, SAFE, M-

STRUDL, MICROFEAP, MULTIFRAME, RISA-2D, etc... and many

more. These programs are generally used for structural

analysis and design. Most of these programs have

graphics capability which provides visual presentation on

the behavior and response of the structure.

While most of these programs are developed using

sophisticated computer methods in elastic structural

analysis, few are designed to perform elastic second-

order analysis. Its use can be of considerable

importance in the design of various structural systems,

particularly frame type structures.

In this report, the development and implementation

of computerized elastic second-order analysis of frames

is presented. The technique is illustrated by several

examples.



2

1.2 OBJECTIVES

The primary objective of this report is to develop and

implement into a computer program the concepts of elastic

second-order analysis. An additional objective is to

extend these concepts to perform computerized elastic

stability analysis.

In the current LRFD Specification for steel

buildings 1 1 (1st Ed.,AISC 1986), Chapter C, Section

Cl states that, " second order ( P-Delta ) effects shall

be considered in the design of frames. " Chapter H,

Section 2a, of the Manual, which deals with beam-column

design, specifies three (3) ways to determine the

required flexural strength M, of a member:

a. M u may be determined using second-order

elastic analysis using factored loads

b. M . may be determined using plastic

analysis that satisfies the requirements of Sections C1

and C2 of Chapter C of the Manual. Section C1 deals with

the second-order analysis while Section C2 deals with

frame stability.

c. Mu may be determined using linear-elastic

analysis (first-order) combined with approximate

amplification factors.



3

The LRFD Specification therefore requires explicit

consideration of second-order effects and permits either

exact or approximate methods of analysis.

Typical current design practice uses elastic first-

order analysis with approximate amplification factors to

determine M u. This procedure may be tedious and time

consuming, even if computers are being used. In

addition, the approximate amplification factors provided

in the LRFD Specification, are generally applicable only

to simple, rectangular framing. The approximate methods

of determining the amplification factors for complex

irregular framing are not yet well developed.

It is the specific purpose of this report to develop

an automated elastic-second order analysis computer

program that will meet the requirements of Section 2a,

Chapter H and Chapter C of the LRFD Manual. The use of an

automated elastic second-order analysis program will

remove the burden of hand calculations associated with

the approximate methods. It will also permit accurate

elastic second-order analysis of planar frames of

arbitrary geometry.
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1.3 SCOPE

1.3-1 Methods of Analysis

The elastic second-order analysis of a beam-column

originated from the "Buckling of Columns" which was

first introduced in 1729 by Van Musschenbroek 2 In

1744, Euler introduced the first accurate stability

analysis of a centrally loaded elastic column 3. Other

members that were the subject of subsequent study

included eccentrically loaded columns, columns with end

moments, and laterally loaded columns. These types of

columns were treated as "beam-columns".

There are two basic methods commonly used in

performing computerized elastic second-order analysis of

beam-columns and frames. These are called the stability

function approach and the geometric stiffness approach.

The latter is an approximate approach, and will provide

accurate solutions for a limited class of problems. The

stability function approach, on the other hand, is

directly based on the governing differential equations of

the elastic beam-column, and provides exact solutions.

Further, in order to perform accurate elastic stability

analysis requires the use of stability functions. This

approach is used in the development of the Elastic



Second-order Computer Analysis Program [ E S C A P ]

described in this report.

Timoshenko and Gere , Chen and Atsuta I2 , Chen

and Lui [ 5, provide solutions to various cases of

elastic beam-columns. Salmon and Johnson ( 6 1 give an

extensive list of references on the subject of beam-

columns.

1.3-2 Assumptions

The development of elastic second-order analysis is based

on the following assumptions [2, 3, 7 ] :

a. The material is linearly elastic.

b. Rotations are small, so that the following

approximations can be made :

i. sin 0 =

ii. cos = 1

iii. 2 =0
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c. The exact expression for the curvature of a line

is

_ 1Eq. (1)

P [1 + (y') 21 3/2

where p radius of curvature

* = curvature

y = deflection

As a consequence of the small rotation assumption ( y

= rotation ), the usual relationship between curvature

and deflection results

4 = y" Eq. (la)

d. The beam-column is prismatic.

e. Shear deformation is neglected.

f. The frame members are two-dimensional and

subjected to in-plane forces and deformations

only.
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1.3-3 Organization of the Report

The report consists of six chapters. The first chapter

is the Introduction. Chapter 2 deals with the basic

theory of beam-columns. The concept of elastic second-

order is explored at some depth to give an appreciation

of the subject. Its relative importance to the elastic

stability problem is briefly discussed and later covered

in Chapter 4.

Chapter 3 presents the methodology that is

implemented in the development of the computer program L

E S C A P I. It explains how an ordinary first-order

linear-elastic analysis program using the direct-

stiffness method 1 8 1 is modified to include second-order

effects through the implementation of stability

functions. The derivation of the beam-column stiffness

matrix is presented using second-order differential

equations. In Section 3.4-2, a method for determining

the maximum elastic second-order moment within a member

is presented.

In Chapter 4, the reader is introduced to the

concept of elastic stability analysis of beam-columns and

frames. The use of Cholesky's decomposition of the

stiffness matrix in determining the elastic buckling load

of frames and beam-columns is introduced and discussed in
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detail.

Chapter 5 presents several examples of beam-columns

and frames. The computer solutions are compared to

closed-form or published solutions. Some of the computer

solutions to the sample problems are listed in Appendix

B. Also, a Users Manual for the computer program is

listed in Appendix A.

And finally, Chapter 6 provides a conclusion on the

results of the analysis of the computer pzraa

( E S C A P ]. The importance of elastic second-order

analysis and elastic stability analysis of frames are

also summarized. A list of selected references is also

provided.



2 BACKGROUND ON BEAM-
COLUMNS

The term beam-column refers to a structural member

that is subjected to both axial compression (or

tension) force and bending moment. It is a structural

element simplifying to a beam or a column as special

cases. A column is a structural element where axial

compression predominates, while a beam is a structural

element where bending predominates. The interaction of

the axial force and bending moment may result to a

nonlinear behavior of a member in terms of :

a. the axial force and the resulting second-order

deflections, and ;

b. the axial force and the resulting second-order

moments.

The elastic analysis of beam-columns must consider

the effect of change in geometry of the structural

element, i.e, second-order effects. As shown in Fig. 1,

the axial force will magnify the deflection and moment in

the beam. When the axial force approaches a critical

value, the deflection and moment of the beam-

9
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Q

(a) Deflection due to 0

2rid-.,rder deflection Q first-order deflection

(b) Deflection amplified

by axial force P

2nd-order moment
~fir, t-order moment

Mo

(c) Moment amplified
by axial force P

Fig. 1 Effects of Axial Force

In a Beam-Column
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column increase without bound. This critical value is

the elastic buckling load and can be determined by

performing elastic stability analysis of the member or

structure.

Most structures are composed of many structural

elements, where each element serves a unique purpose, and

the combination meets the functional objectives of the

structure. Because these elements are interconnected,

they interact under a given loading pattern. When both

axial forces and moments are present in the members, they

respond as beam-columns and the deformations resulting

from the bending moments induced by the externally

applied loads may be amplified by the presence of

compressive axial loads. However, when the axial force

is tension, the effect on the resulting deformations is

opposite of the compressive axial force.

Since nearly all the members of a structure are

subjected to both bending moments and axial forces, the

interactive effect of these forces may be significant in

the analysis of beam-columns. When the magnitude of the

internal stresses and deflections produced by the axial

force in a member is relatively small compared to the

bending effect, it may be practical to analyze and design

the member as a beam element. On the other hand, if the
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bending effect is relatively small, analysis and design

of the member as a column is appropriate.

The presence of a compressive axial force reduces

the force needed to cause a unit rotation or a unit

translation in the transverse direction at one end of a

member. Conversely, the required forces increase when

the axial force is tensile. In other words, the presence

of axial force affects the flexural stiffness of a member

or frame. The case in which the axial force is

compressive is usually of greater interest, since it

leads to the possibility of member or frame instability.

Using second-order analysis techniques, the instability

can be predicted as the axial compressive force

approaches a critical value, which reduces the flexural

stiffness to zero. Second-order analysis is therefore

central to the solution of stability problems.



3 ELASTIC SECOND-ORDER

ANALYSIS

3.1 GENERAL

Elastic second-order analysis of members and frames can

be accomplished by developing and solving the second-

order differential equations of equilibrium. Classical

closed form solutions for single members and simple

frames are available .2,4,5,6] However, for analysis of

large frames of arbitrary geometry, closed-form solutions

are difficult and cumbersome to obtain. However, with the

advent of computers, automated second-order analysis for

such cases is possible.

The direct stiffness method is commonly used for

computerized first-order structural analysis. In this

Chapter, this method will be used in extending the first-

order analysis to a second-order analysis described in

the computer program [ E S C A P I using stability

functions.

13



14

3.2 METHODOLOGY

As previously noted, the presence of large axial force (

i.e, P / P , is large, where P , is the elastic buckling

load ), affects the geometry and stiffness of a beam-

column element. If the axial force P is known, the

maximum deflection and bending moment can be calculated

using second-order formulations. However, the member or

frame is initially indeterminate and the axial forces are

unknown. The axial forces are related to the joint

displacements and must be first calculated because the

axial forces influence the members' fixed-end actions,

which are the elements of the load vector used in

determining the joint displacements. Additionally, the

axial forces also influence the stiffness matrix of the

member or frame. One way of determining the initial

axial forces is to perform a first-order linear-elastic

analysis ( first cycle ) using the direct-stiffness

method. This will give the first-order shears, moments,

deflections and axial forces.

In the second cycle, the previously computed axial

forces are used to modify member stiffness and fixed-end

actions. Then new values of joint deflections and
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Elastic Analysis Input

SAssemble & Modify ~ holesky's

Calculate _

Deflections s4semble Load

E Vector j

deflections __________

D(i) - D(i) Yes Calculate Member
old new Forces

ess; than or equal

.005 _________

Print Output
No 1. Joint Deflections[2. Member Forces

ICalculate Member
End forces

Fig. 2 - Flowchart
Elastic Second-Order Analysis
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member-end actions are calculated. This process is

repeated until the differences between the deflections in

successive cycles are within the acceptable tolerance.

This is the basic algorithm used in implementing the

computer program [ E S C A P ]. The flowchart shown in

Fig. 2 outlines the basic algorithm of the computer

program.

3.3 DERIVATION OF THE SECOND-ORDER STIFFNESS MATRIX

3.3 - 1 Translation Stability Functions

To begin our derivation of the stiffness matrix of a

beam-column, let us consider Fig. 3 . The beam-column

element is subjected to a unit translation ( Fig. 3a )

and a unit rotation ( Fig. 3b ) under the presence of a

compressive axial load P The elastic stiffness

coefficients for these two beam-column elements will be

derived from second-order differential equations of

equilibrium.

The degrees of freedom of a beam-column element are

shown in Fig. 4a. A free-body diagram of a section of

the beam-column element cut at distance x from the left

support is shown in Fig. 4b. The sum of external
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SM
22 SM

~52

k m

I~ M 62
SM

32 L

(a) unit translation

SM 23SM
53

63

(b) unit rotation

Fig. 3 Stiffness Coefficients

of a Beam-Column
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SM2  SMM5

SM M

(a) member degrees of freedom

SM22

X 32 k . x x. w

(b) free-body diagram

unit translation

SM 2O x P

(c) free-body diagram

unit rotation

Fig. 4 Unit Translation - Unit Rotation

of a Beam-Column
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moments at point 0 (Fig. 4b), assuming counter-clockwise

moment is positive is given by

Maxt = -P(A - y) + SM 2 - SM 2 2 x, Eq. (2)

where SM il = is the member stiffness coefficient

corresponding to the degree of freedom i induced by a

unit displacement corresponding to the degree of freedom

j while the other displacements are kept to zero.

Applying the differential equation of an elastic curve

M = -EIy", Eq.(3)

then the interior moment must balance the exterior

moments, resulting in :

M = -EI d 2y

dx2

-P(A - Y) + SM32 - SM 22 X Eq. (4)

M=Ed2y P(A - Y) + SM22x - SM32

Eq. (5)
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Rearranging the terms of Eq. ( 5 ) yields

d 2Y + k 2y = k 2 A + (SM22X - SM 2 ) Eq. (6)

dx 2  El

where k 2  P Eq. (7)El

The complementary solution of Eq. ( 6 ) is given by

YC = A sinkx + B coskx Eq. (8)

and the particular solution of Eq. ( 6 ) has the form

yP = Cx + D. Eq. (9)

Differentiating Eq. ( 9 ) twice with respect to x and

substituting the first and second derivatives into Eq. (

6 ) yields Eq. ( 10 ). The constants C and D are

determined by comparing coefficients of the terms on the

left hand side of Eq. ( 10 ) to the terms cl the right
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hand side as shown below

0 + k 2 (Cx + D) =

kA SM2 x SM
kE2 A + - Eq. (10)EI El

where C = SM22  SM32

k 2EI

The general solution of Eq. ( 6 ) is the sum of its

particular solution and complementary solution.

Inserting the values of C and D into Eq. ( 9 ), the

general solution has the form

y = A sinkx + B coskx + A +

(SM22 x - SM3 2) Eq. (11)
k 2EI
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To solve for the constants A and B, apply the boundary

conditions at joint k of Fig. 4b . At x = 0, y =A

then

B q3 2 Eq. (12)
k 2 EI

At x = 0, dy/dx = 0; then

A kSEI Eq. (13)

The stiffness coefficients SM2 2 and SM3 2 are determined

by applying the boundary conditions at joint m of Fig.

3a. When x = L , y = 0 ; then

A sinkL + B coskL + A +(SM 2 2 L - SM3 2 ) 0
k 2 EI

Eq. (14)

When x =L , dy/dx =0 ;then

Ak coskL -Bk sinkL + SM2 2 = Eq. (15)
k 2 EI
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inserting the values of A and B into Eqs. (14) & (15)

yields Eqs. (16a) & (16b)

SM2 2 sin kL + SM3 2 cos kL + A+
k 3 EI k 2EI

(SM2 2 L 2- SM3 2 ) =- Eq. (16 a)
k EI

S2 2 cos kL - S32sin kL
k 2EI kEX

+ SM22 = 0 Eq. (16 b)
k EI

Simplifying Eqs. (16a) & (16b) yields

SM2 2 (kL - sin kL) +

SM3 2 k (cos kL - 1) = -k 3 EIA& Eq. (17)

SM2 2 (1 - cos kL) - SM3 2 sin kL =0 Eq. (18)
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Solving Eqs. (17) & (18) for SM 2 2 yields

SM2 2 [kL sin kL - sin 2 kL +

(cos kL - 1 - COS2 kL + cos kL)]

=-k 3 EI sin kL A Eq. (19)

Simplifying Eq. (19) yields

SM2 2 [2 - 2 cos kL - kL sin kL]

k 3 El sin kL A Eq. (20)

Multiply Eq. (20) by 12L 3 / 12L 3 and introduce the term

4= (2 - 2 cos kL - kL sin kL) Eq. (21)



25

the stiffness coefficient SM 22 is

SM22 =2I) ( 6 kL3 sin kL) Eq. (22)L 312 #

SM 2  E (6 s1 ) A Eq. (23)

where S I is referred to as a stability function and is

equal to

s, = (kL) 3 sin kL Eq. (24)
12 ,

Substitute Eq. (22) into Eq. (17) and solve for SM 32

SM32_ 2 EI (3L s 2) A Eq. (25)L 3

The other translational stability function S 2 is

s2 = (kL)2 (1 - cos kL) Eq. (26)6 4c
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3.3 - 2 Rotation Stability Functions

Consider now the beam-column element in Fig. 3b which is

subjected to a compressive axial force P and a unit

rotation at joint n . A free-body diagram is taken at

a distance x from the left support as shown in Fig. 4c

Summing the external moments about point 0, gives

M= t Py- SM23 x + SM3 3  Eq.(27)

Applying the differential equation of an elastic curve

{Eq. (2)} and using equilibrium, the external moments

{Eq. (27)), must be equal to the internal moment.

Rearranging the terms yields

EI d 2 y + 'Y = SM2 3x - SM33  Eq. (28)d~x2
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The complementary solution of Eq. (28) is the same as Eq.

(8). Using similar procedures described in Section 3.2-

1, the particular solution of Eq. (28) has the form

SM2 3  SM 33
YP- k2EI k2EI Eq. (29)

The general solution of Eq. (28) is the sum of the

complementary solution {Eq. (8)) and the particular

solution {Eq. (29)) , and has the form

y = A sin kx + B cos kx + 2 xk2 EI

SM3 3  Eq.(30)

k 2EE

SM23

Y/ = Ak cos kx - Bk sin kx + kE Eq. (31)k 2 EI
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The constants A and B of Eq. (30) are determined by

applying the boundary conditions at joint n of Fig. 3b:

at x =0 ; y =0 then B= SM33 Eq. (32)
k 2 EI

at x 0 ; y 0 then A 0 SM23 Eq. (33)

k k 3 EI

Inserting the values of A and B to Eq. (31) yields

0 _ SM23 ) k cos kx- SM 3 k sin kx +
k k3EI k 2EI

SM2 3
M2 3 Eq. (34)k 2EI
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Applying the boundary conditions ( joint r of Fig. 3b

)to Eq. ( 34 )at x = L , y' = 0 ; then

G9 S23 ) k cos kL- S3k sin kL +
k k 3EI k 2EI

(SM23) =Q Eq. (35)

At x =L ,y =0 ;then

(0 -SM 2 3 ) si L+S33coskL +
k k 3EI k 2EI

SM2 3 ) L - -M 0 Eq. (36)
k2EI k 2 NI
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Solving Eqs. (35) and (36) simultaneously yields

SM33 =-E[sin kL -kLcos kL] *0

Eq. (37)

where 4,= 2 - 2 cos kL - kL]I Eq. (21)

Multiplying Eq. (37) by WL / 4L 3 and simplifying the

terms

SM33 2E1 * (2L 2 ) * (S 3 ) 0 Eq. (38)

where

_3 kL (sin kL -kL cos WL Eq. (39)

Substitute Eq. (37) into Eq. (36) yields

SM2 3 -Elk 
2 1 o cs kL ) 0 Eq. (40)
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Equations (25) and (40) are equivalent and satisfy

Betti's Law and Maxwell's Law This indicates that

the second-order stiffness matrix is symmetric. The

remaining rotation stability function is calculated by

summing moments at joint r of FI.g. 3b assuming counter-

clockwise moment is positive. By equilibrium we have

SM 2 3 L - P(O) + SM 33 + SM63 = 0 Eq. (41)

Substituting Eqs. (37) & (40) into Eq. (41) yields

SM 6  E - [ L coskL] -

EIke [sin kL - kL cos kL]

EIkO [kL - sin kL] Eq.(42)



32

Introducing the term 2L 3/2L 3 in Eq. (42) and simplify

to Eq. (43), which is the coefficient of stiffness at

joint r caused by a unit rotation at joint n , Fig. 3b

2E12 (s 4 ) * 0 Eq.(43)$IS 3 L L3

where

kL (kL - sin kL) Eq. (44)S4 = 2 oo E. 44

For negative values of axial force P (tension)

the stability functions are derived in similar fashion

applying the same concept of elementary beam analysis. To

illustrate, let us investigate Eq. (4). Assuming that

axial tensile force is negative, then the homogeneous

second-order differential equation has the form of Eqs.

(45) & (46)
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Ely" - Py = 0 Eq. (45)

y/ - k 2y = 0 Eq. (46)

where k 2 = - Eq. (7)

The complimentary solution of Eq. (46) is

YC = A sinh kx + B cosh kx Eq. (47)

YC = A sin kx + B cos kx Eq.(8)

Equations (8) and (47) are similar in form except the

former contains the trigonometric functions while the

latter has the hyperbolic functions. Using the

complimentary solution of Eq. (47), the stability

functions for an axial force in tension are calculated

following the same procedures as when the axial load is

in compression. The four stability functions are listed

in TABLE I for axial forces in compression, tension, and

zero [12]



TABLE - I STABILITY FUNCTIONS 34
OF A BEAM-COLUMN

Stability Functions for a Beam Subjected to

Axial Forces

Direction of Axial Force

Function Compression Tension

s 1 (kL)3 sin kL (kL)3 sinh kL

12 ¢ 12 4t

S 2 (kL) 2 (1 - cos kL) (kL)2 (cosh kl - 1)

S3 kL (sin kL - kL (sinh kL -
kl cos kL kl cosh kL)

S4 kL (kL - sin kL) kL (sinh kL - kL)

2 0 2 0t

0C = 2 - 2 cos kL - kL sin kL

ot = 2 - 2 cosh kL + kL sinh kL

Note: When axial force is zero

s = S2 = S s 4 = 1
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The Tremb-r Ym~fnes atrix with the stability

functions is represented by Eq. (48), where [ K,3 ] is the

modified stiffness matrix and includes the effects of

axial forces in tension or compression.

A 0 0 -A 0 0

o 1 2 1 S1 §I 0 -
1 2 1 S1 -§IS

[K E --S 2  41s3 0 _6s 2Is4

L L-A 0 0 A 0 0

0 12Is 6I 1 21S 6is

0 6 I S 21s4  0 7-Is2 41s3

Eq. (48)



36

When *-Ie axi ] force is zero, the stability functions are

reduced to unity and Eq. (48) is reduced to Eq. (49)

A 0 0 -A 0 0

121 61 121 61
L 2  L L 2  L

0 61 41 0 6 21
[K]-~L L

L -A 0 0 A 0 0
0 121 _61 121 _ 61

0 . . 0 -- --L 2  L LT L

0 61 21 0 41
L L

Eq. (49)

Equation (49) is the first-order elastic stiffness

matrix.

3.4 LOAD FUNCTIONS AND MAXIMUM MOMENTS

3.4 - 1 Load Functions

The fixed-end actions for a beam-column produced by

applied lateral loads depends upon the magnitude of the

axial force acting on the member as well as upon the
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distribution and intensity nf the lnteral lo~ds. These

fixed-end actions or joint loads are used in determining

the joint deflections and member forces in the structure.

The fixed-end actions form the elements of the load

vector in the direct stiffness method.

The two types of member loading ( Fig. 5 )

implemented in the computer program are: (1) uniform load

distributed over the full length of the member, and (2)

concentrated loads applied anywhere along the span. The

procedures used in deriving these fixed-end actions are

similar to those described in Section 3.3 and will not be

repeated here. A complete derivation of the fixed-end

actions for the two types of loading is presented in

detail in reference [ 14 ]. Timoshenko and Gere 1 4 1

present solutions to specific cases of beam-columns with

various constraints at the ends. This includes a member

simply supported on one end and built in at the other

end, as shown in Example 5.2-3, Section 5.2 Ghali and

Neville (9] present a different procedure in determining

the fixed-end actions of a beam-column using matrix

methods.

The fixed-end actions of a beam-column for the two

types of member loading mentioned above are shown in

figures Fig. 6 through 8 110, 12, 14]
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FEA

P

(a) Concentrated Load

FEAFEA 5

2t

3 6

(b) Uniform Load

Fig. 5 Types of Loading
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Axial Compression

FEA= (coskL -coska +cosb + kb sinkL -1)

FFA3= (sin ict -sin ka - sin kb

- kb cos kL + kL cos kb - ka)

FEas -k (cos kL - cos kb + cos ka
41C

+ ka sin kL - 1)

FF.% ' (-sin kL +sin kb +sin ka

+ ka cos kL -kL cos ka +kb)

40 2 - 2 cos kL - kL sin kL

2F

Concentrated Load

rig. 6 - Fixed-End Actions for a Concentrated Load
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Axial Tension

FEKA 2 = -P (cosh kL -cosh ka +cosh kb

- kb sinh kL -1)

FA3= (sinh kL -sinh ka-sinh kb

- kb cosh kL + kL cosh kd, ka)

FEA5 - ~(coshkL -cosh kb +cosh ka

- ka sinh kL - 1)

FF-& (-sinh kL + sinh kb + sinh ka

+ ka cash kL - kL cosh ka + kd,)

=2 - 2 cosh kL + kL sinh kL

k- -

Fig. 7 - Fixed-End Actions for a Concentrated Load
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Axial Compression

FE = FEA = wL
2

wL 2  12 6 sinkL
12 (kL) 2  kL (coskL - 1)

FEA6 = - FEA3

Axial Tension

FE% - YEA s  wL

w L 2 [12 6 sinh kL
12 (kL)2 kL (cosh kL - 1)

FEAG -FEA3

FEA 2  FEA 5

p 'PA

3 6
Uniform Loud

Fig. 8 - Fixed-End Actions for a Uniform Load
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3.4 - 2 Maximum Elastic Second-Order Moments

It is important for a designer to know the location and

magnitude of the maximum moment within a member. Some

structural analysis programs only calculate the member

end actions ( i.e. shears,moments and axial forces ) and

the joint deflections. In some cases, the maximum

moments occur at the joints, when the axial forces are

small and no member lateral loads are present. However,

when the axial forces acting on the members become large,

the maximum moment may occur within the span as shown in

Fig. 9 , even if no lateral loads are present.

In this section, the derivation of the maximum

moment is limited to the case of a uniform distributed

load. The formulation for this case is straight forward,

since an equation for bending moment can be expressed as

a continuous function along the length of the member.

The bending moment at a concentrated load point can be

easily obtained by introducing a node at the location of

the load.

The maximum moment in a member with a uniform

distributed load is calculated based on the procedure

suggested by White and Hajjar 1 13. An isolated
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p

p

M M1--

0 elastic 0
first-order

moment

elastic/
scond-order
moment

small axial force large axial force

Fig. 9 Maximum Elastic

Second-Order Moment
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member of a frame structure is treated as a simply

supported beam-column that has joint rotation and no

translation.

To illustrate this procedure, Fig. 10 shows a rigid

frame with its deformed shape when subjected to the two

types of loading described in Section 3.4-1. Member 1

is isolated and the free-body diagram is shown in Fig.

10b.

Let us assume the member end actions are known from

the results of the elastic second-order analysis. When

we connect joints 1 and 2 ( Fig. 11a ), the

member's chord location is established and calculated

using the new joint coordinates If the member end

forces and any other loads applied directly to the member

are transformed to local axes oriented along the member's

chord, White and Hajjar suggest that there is no

difference between the behavior of this isolated member

( Fig. 10 and 11 ) and the behavior of a simply supported

beam-column with the same applied loads ( Fig. 15,

Example 5.2-1 ).

To derive the location of the maximum elastic

second-order moment, we shall use the differential

equation of an elastic curve { Eq. (3) } about the

transformed local axes of Fig. 11b
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2 3
W f

w13

(a) Frame Geometry

Loading, and Deflected Shape

pg
2

2 VI

(b) Member 1 chord

Loading and '

Deflected Shape w

VI

1+ .7 M1 =0

Fig. 10 Derivation of Maximum

Elastic Second-Order Moment
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y 2'

V 
b

(a) E-lefleOt end totces

oriented at the chord's 8aOS

0

ma - r

a

(b) tresbody diagr~fn

igI Transformed Axis

of a 3eafn.Column
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The second-order differential equation of a beam-column

subjected to a uniformly distributed load with member end

forces known is given by

2~YtM y -Vx+ (wX 2

d;C2 2

Eq. (50)

The general solution of Eq. (50) is given by

Y=A sinkx +B coskx + 1 X

kEl 2

+ V x - -M. Eq. (51)
k a
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Differentiating Eq. (51) twice and applying the

differential equation of an elastic curve { Eq. (3)

yields

Y" -A k 2 sin kx- Bk 2 coskx+ k2E

Eq. (52)

Mx -Ely"l

=Elk 2 [A sin kx+ B cos kx - w~

Eq. (53)

When x = 0; Mx Ma

then B = 1[M. + wE.(4
P k2  E.(4

When x = L; Mx Mb

then A-M , ok + wtan kL Eq. (55)
PsinkL pk2  2

where P = k 2El
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Differentiating Eq. (53) once with respect to x gives

the expression of shear force anywhere along the span and

has the form

V, = MI = [A coskx - B sinkx] EIk2  Eq. (56)

When the shear force is equal to zero, the moment is at

local maximum. Inserting the values of A and B into Eq.

(56), the location of the maximum moment anywhere along

the span of a beam-column with a uniform distributed is

determined using Eq. (57):

W tankL + Mb - Ma coskL

tan kx k 2  2 sinkL Eq. (57)M. + w
k2

where x is measured from the left support. All the

applied loads must be transformed in the local axes when

using Eq. (57).

When the end moments in Fig. 11, are equal to zero,

the constants A and B are given by Eq. (58). The moment

anywhere along the member is then given by Eq. (59)
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B= ; A-wtank' Eq. (58)
pk 2  pk 2  2

. =w (tan kL sin kx + cos kx - 1]kx k2 -2

Eq. (59)

The maximum moment for a simply-supported beam-column

with uniform distributed load is located at the midspan.

Thus

tan kx = tan-S; where x = - Eq. (60)
2 2

Inserting the value of x into Eq. (59) yields

w [tan kLsin kL + cos kL
kc2  2 2 2

Eq. (61)
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Introducing the term u , Eq. (61) becomes

M. : w [tanu sinu + cosu - I] Eq. (62)k 2

where u -
2

Applying trigonometric identities and simplifying the

terms in Eq. (62) yields

wL 2 [ 2 (sec u-I) Eq. (63)

8 U2

Equation (63) is the general expression of the maximum

moment at midspan of a simply-supported beam-column with

uniform distributed load. The first-order moment ( wL 2

/ 8 ) is amplified by the terms inside the brackets.

This term is called the moment amplification factor

(MAP).

Let us now investigate what happens when the lateral

load w = 0 and M , M b are not equal to zero.
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Applying the boundary conditions at x = 0 and x = L, from

Eq. (51), the constants A and B are determined. When x

= 0 , y = 0 , and w = 0 ; then

B -R , Eq. (64)P

When x = L, y = 0 , and w = 0 ; then

A L- Mb + Ma Eq. (65)
P 2 PsinkL

where V8 L = (Ma +Mb) L Eq. (66)L

Inserting the value of the trigonometric identity { Eq.

(67) } into Eq. (65),

tan kL - (1 - coskL) Eq. (67)2 sinkL
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Then the constant A is given by Eq. (68).

A =_ (M coskL + Mb)

PsinkL Eq. (68)

Inserting the values of A and B into Eq. (53) when w is

equal 0 , yields

tan icx - A _ - (Mb + Macos kL) Eq. (69)
B MasinkL

M, = (Mb + MCoskL) I sifkx + MacoskxsinkL

Eq. (70)

Thus, Eq. (70) is the moment at any location along a

beam-column when subjected to end moments M,, Mb and an

axial force P. Inserting the value of kx from Eq. (69)

into Eq. (70), the maximum moment is given by Eq. (71).

The minus sign that appears in Eq. (71) simply indicates

that the moment M . causes tension on the top fiber of

the cross section [ I
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M _M (M +2 (M /Mb) coskL + i]
Mm~rax = -Mb[ S(Ma/Mb)2 + i n 2 kL

Eq. (71)

When end moments are present in the member, there is

always a possibility that the maximum moment will occur

at the end of the span. Therefore, the value of x in Eq.

(69) must always be evaluated. When x is greater than

the span length or less than zero, the maximum moment

occurs at the end of the member and it is equal to the

larger of the two end moments.

Equations (51), (53), (54), (55) and (57) are used

in the computer program to calculate the location of the

maximum moment of a member with uniform load and

subjected to end-moments. These equations have been

developed for the case where the axial force is in

compression. For axial force in tension, similar

equations are used, except hyperbolic functions replace

the corresponding trigonometric functions. The maximum

moment is then compared with the end moments of the

member, and the larger of the three controls. The

program also calculates the deflection at the point of

maximum moment. If the maximum moment occurs at one
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end of the member, then the computer program prints out

the deflection at that joint. For deflections within a

member, the computer program only calculates the

displacements relative to the chord member. (See Example

5.2-3)



4 ELASTIC BUCKLING LOAD

4.1 GENERAL

This chapter deals with the elastic stability analysis of

beam-columns and frames. The same stability functions

and stiffness matrix developed in Chapter 3 are used in

determining the elastic critical loads. A load factor

increment is applied successively to the external Loads

until the stiffness matrix of the structure has become

singular. The decomposition of the stiffness matrix

using Cholesky's method will also be presented. Several

examples are examined and presented in Chapter 5.

4.2 COMPUTER ANALYSIS OF THE ELASTIC STABILITY OF

PLANE FRAMES

In Section 3.3, the stability functions of the beam-

column were derived and used to modify the member

stiffness matrix (Eq. (48)) to include the effects of

axial forces. The joint displacements and member end

forces are calculated iteratively.

56
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The computer program was modified to calculate the

elastic critical load using load increments. The elastic

critical load is determined by performing successive

computations until the stiffness matrix of the structure

becomes singular.

In the computer program, the structure's stiffness

matrix is decomposed using Cholesky's method 8, 14

The stiffness matrix [ K, ] {Eq. (48)) is factored into

an upper and lower triangular matrices.

In general, structural systems generate stiffness

matrices that are symmetrical, square, and with positive

diagonal elements. They display the unique property of

positive-definiteness. If this is the case, then

Cholesky's method is valid and the stiffness matrix can

be expressed as { K, ) = {Ut) * { U ). The matrix { U

) represents the upper diagonal elements of the

structure's stiffness matrix {K m } after the

decomposition process. The elements of the lower

triangular matrix are represented by the matrix { Ut ),

which is the transpose of the matrix { U }. Eq. (72)

shows the elements of the structure's stiffness matrix {

K, ) and the elements of the upper and lower triangular

matrices after the decomposition process.
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kil k12 k13 k14 . . kln
k 2 l k22  k23  k24  . . . n

k31  k32 k 33  k 34  . k.. -3

k., k2 . k,

U11  0 0 ... 0 U11  U1 2  U13  U1 4  ... Uln

U12  U 2 2  0 ... 0 0 U2 2  U2 3  U24  ... U 2 n

U1 3  U2 3  U3 3  . . . 0 0 0 U3 3  U 34  ... U3n

Uln U2 n U3n . . . Un 0 0 0 0 . .. Ur

Eq. (72)

Performing the indicated multiplication of { U ) and { U

t } and equating the product to the elements in { K, }

yields Eqs. (73) & (74) shown in Fig. 12. If during

decomposition one of the diagonal elements u i. approaches

zero or is less than zero, the structure has reached the

elastic buckling load.
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k1 = 2k 12
11 U11 OKI

k1 2 = U11 U12  - U1 2  k-

U11

k13k 1 3 = U 1I U 3 " U 3 U 1

k2 = 2 2 U22 k22 -u12 2k2 = U12u2 U 22 -
kc2 3 

= U12 U1 3 + U22 U23

U 123 (k23 - U12 U1 3 )
U 2 2

k2 U32 23 +/ -- 2U+ U U2 )

= 3 + U2
3 + 1 U33 = k33 (U13+ 23

k 34  U1 3 U14 + U2 3 U24 + U33 U34

U k 3 4 - (u 1 3 u 1 4 + U23 U24)

U33

S a~Ia~ E-1(3

where u., = Eq. (7 3)

are diagonal elements of [U]
kii = diagonal elements of [K]

a=i -I

kii - Ua i Uaj

U j = 8=1 Eq. (74)
Uii

i z j (lower diagonal elements)

i < j (upper diagonal elements)

Fig. - 12 DECOMPOSITION OF MATRIX [ K, ]
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To better understand the concept, a flowchart is

shown in Fig. 13. In the flowchart, the process starts

with the calculation of the first-order axial forces.

Then these axial forces are used to modify the

structure' s stiffness matrix [ K , ]. The subroutine

DECOMP decomposes the structure's stiffness matrix using

the procedure described in Fig. 12. The program then

checks the diagonal elements u ii for value less than or

equal to zero. If all the diagonal elements are greater

than zero, a new load factor ( LF ) is calculated and

the process continues.

If any one of the diagonal elements is less than

zero, the program stores the load factor LF, calculates

the joint displacements, prints the output and then

terminates the process. The output contains the load

factor LF and the joint displacements. To obtain an

accurate buckling load, small load increments must be

used.

The buckling mode shape is determined by converting

the calculated joint displacements into relative joint

displacements. The joint displacements at buckling are

expressed in terms of relative displacements.

This approach of determining the elastic buckling

load is simple to implement in the computer program,



ILozd Factor LF =1.0

O rd e A xi l F o c e sF lo w c h a r t
Do i Km[Modify Global Stiffness

For Second-Order
Effects

[ Choleskys Dcoiion7

Check Diagoni Element

U 11  Yes o oa
Less or Vector

Equal 0t

icu late JointNO PDeflection

0WMT Loa vecor

iculate Memberr tOiu
Deflections 1. Load Factor

2. EJolnt DI placements

Calculate New
Load Factor

LF= + STEP

Fig. 13 Elastic Stability

Analysis of a Frame and Beam-Column
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since the decomposition of the matrix is routinely

performed during the first and second-order analyses.

A flowchart showing the subroutine DECOMP t is

shown in Fig. 14. The decomposed structure stiffness

matrix is also used in solving for the unknown

displacements. In the flowchart, there are two returns.

One occurs when the value of I becomes greater than N and

the processing is complete. The second is when the

decomposition fails. The latter serves as a safeguard

against an undefined arithmetic operation and it also

indicates that the critical load of the structure has

been reached. The undefined arithmetic operation will

result to an error in determining the critical load if at

the beginning of the linear-elastic (first-order)

analysis, the structure stiffness matrix is not positive-

definite. In order to safeguard against this error, one

should perform a first-order analysis. If the error

message "WARNING !!! DECOMPOSITION FAILED" shows, then

the stiffness matrix is "singular." The input file

should be checked for incorrect data of joint coordinates

and member connectivity, which are the common sources of

error.
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+ 0

Return Yes No =

Fig 14 - Flowchart <Yes

Subroutine J>N
Decomposition

No

Y e sY e s A ~ ,J ) = u r n T e m p , J



5 VERIFICATION OF COMPUTER

PROGRAM

5.1 GENERAL

In order to verify the program [ E S C A P ], the

following Sections will compare closed-form or published

solutions to the computer solutions. The second-order

moments and deflections are calculated first using the

closed-form solution of the differential equation. Then

a computer solution is generated and results are

compared.

5.2 SAMPLE PROBLEMS OF BEAM-COLUMNS

EXAMPLE 5.2 - 1 Simply Supported Beam-Column with

Uniform Distributed Load.

The simply supported beam-column in Fig. 15 has a

uniform load w of 1 kip/ft acting downward. The span L

= 500 in. and I = 1000 in . Calculate the maximum

deflection and moment at midspan based on second-order

alatzc analysis. Determine the elastic buckling load

64
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and the buckled shape of the member. Assume shear strain

is negligible and neglect the weight of the beam.

The maximum deflection and moment occur at midspan.

The exact closed-form solutions are given by Timoshenko

and GereK 1 , and Chen and Lui 5] The general solutions

are given by Eqs. (75) a (76).

Ymax Yo L 12 (2secu - 2 - 2  Eq (75)
5u

where ukL ;k P Y -5 wL 4

2 E= 384EI

= MO 2 (secu - 1) Eq. (76)
U 2

where M, wL 2

0 8



66

Example 5.2-1

-W
P P

(a) Loading Diagram

y x

ly
max

(b) Deflection Diagram

M

M
max

(C) Moment Diagram

Fig. 15 Simply Supported

Beam-Column with uniform Load
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The computer results are compared with these solutions

in TABLES II and III. These tables show the computer

solution agrees very closely to the exact solution. The

amplification factors (AF ) reported in these tables are

the ratio of the second-order to the first-order moments

or deflections. Note that second-order effects are quite

significant at high values of axial compressive force.

The theoretical elastic critical load for the beam-

column in Fig. 15 is given by ;

= n
2 EI n2 * 30000 * 1000Pe -L2 -5002

= 1184.35 kips. Eq. (77)

The symbol P , is used to represent the elastic critical

load.

The computer solution reports a load factor LF =

2.37, with an applied axial force of 500 kips. The

computed elastic critical load is therefore 500 * 2.37

= 1185 kips, versus the exact 1184.35 kips. The computer

program used a load factor increment of .005

The computed relative joint displacements for the

buckled member are listed in TABLE IV. The buckled shape
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is plotted in Fig. 15b. The buckled shape from the

computer solution agrees with that predicted by the exact

solution.

The values of P / P , versus the moment and

deflection amplification factors (MAF,DAF) are plotted in

Fig. 16. From this figure, the following observations

are made :

- the moment and deflection amplification factors

are non-linear with respect to P,

- the amplification factors are very small for small

values of P / P0 ,on the order of .05 to .10,

- AF increases without bound as P approaches P,.

These observations are typical for second-order elastic

response.
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Table II- MAXIMUM BENDING MOMENTS FOR

A SIMPLY SUPPORTED BEAM-COLUN

Maximum Bending Moments
(at midspan

Axial Exact Computer MAF
Load solution solution
kips ) (kip-in ) (kip-in

100 2851.0 2851.1 1.09

200 3148.3 3148.5 1.21

300 3513.1 3513.2 1.35

400 3971.0 3971.2 1.53

500 4563.0 4563.2 1.75



Table III - MAXIMUM DEFLECTIONS FOR A 70
SIMPLY SUPPORTED BEAM-COLUMN

Maximum Deflections
( at midspan )

Axial Exact Computer DAF
Load solution solution
(kips ) ( in. ) ( in. )

100 - 2.46965 - 2.4698 1.09

200 - 2.72135 - 2.7215 1.20

300 - 3.02999 - 3.0301 1.34

400 - 3.41735 - 3.4175 1.51

500 - 3.91793 - 3.9181 1.73

Table - IV RELATIVE DISPLACEMENTS AT INSTABILITY
OF SIMPLY SUPPORTED BEAM-COLUMN

RELATIVE DISPLACEMENTS

JOINT D(X) D(Y) ROTATION

1 0 0 -1

2 0 -1 0

3 0 0 1
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Fig. 16

Load vs. Deflection/Moment Curve

1.0-

0.8-
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M AIF -s--PIPe

0.41DAF 
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Simply-Supported Beam-Column
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EXAMPLE 5.2 - 2 FIXED-FIXED BEFA-COLUM WITH UNIFORM

DISTRIBUTED LOAD

The beam-column shown in Fig. 17 is similar to Example

5.2-1 except the end supports are fixed. We will

determine the maximum moment, deflection, elastic

critical load and the buckled shape by following the same

steps described in Example 5.2-1.

The exact solution to the differential equation of

this particular beam-column is found in Timoshenko and

Gere [ , and Chen and Lui [ 5 The general solutions

are given by Eqs. (78) and (79):

12 (2 - 2cosu - u sinu Eq.(78)Y.'. = You 2sinu

where y. occurs at x = L wL 4

2 ; 3 84 El

m _ wL [ 3 (tanu - u) Eq. (79)
12 u 2 tan u

Using w = 1 kip/ft, L = 500 in, and I = 1000 in 4 as

in Example 5.2-1, the deflection at midspan and moment at

the end supports are calculated and compared to the

computer solutions in TABLES V and VI. Again, the

results are in agreement.
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Example 5.2-2

-w

(a) Loading Diagram

y l x
(b) Deflection Diagram

MM X (c) Moment Diagram I a

Fig. 17 Fixed-Fixed Beam-Column

with Uniform Load
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The theoretical elastic critical load for a fixed-

fixed beam-column is given by :

P 47r2 EI Eq. (80)

4 * 7* 30000 * 1000 = 4737 .41 kips

5002

The computed load factor LF = 9.4752 with an applied

axial load of 500 kips. The computed elastic critical

load is 9.4752 * 500 = 4737.6 kips. The load factor

increment was .005. The elastic critical load for a

fixed-fixed beam-column is four (4x) times larger than

the simply-supported beam.

The computed relative joint displacements for the

buckled member are listed in TABLE VII. The buckled

shape is plotted in Fig. 17b. The buckled shape from the

computer solution agrees with that predicted by the exact

solution.

The relationships between P / P * and the

amplification factors are similar to those in Example

5.2-1.
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Table - V MAXIMUM BENDING MOMENTS
FIXED-FIXED BEAM-COLUMN

Maximum Bending Moments
( at end supports )

Axial Exact Computer MAF
Load Solution Solution
kips ) ( kip-in ) ( kip-in

100 1760.6 1760.7 1.01

200 1786.3 1786.3 1.03

300 1813.0 1813.0 1.04

400 1841.0 1841.0 1.06

500 1870.0 1870.0 1.08



Table - VI MAXIMUM DEFLECTIONS 76
FIXED-FIXED BEAM-COLUMN

Maximum Deflections
( at midspan )

Axial Exact Computer DAF
Load Solution Solution
kips ) ( in. ) ( in.

100 - .46172 - .46174 1.02

200 - .47176 - .47178 1.04

300 - .48226 - .48228 1.07

400 - .49324 - .49326 1.09

500 - .50474 - .50476 1.12

Table - VII RELATIVE DISPLACEMENTS AT INSTABILITY
OF FIXED-FIXED BEAM-COLUMN

RELATIVE DISPLACEMENTS

JOINT D(X) D(Y) ROTATION

1 0 0 0

2 0 -1 0

3 0 0 0
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EXAMPLE 5.2 - 3 HINGED-FIXED BEAM-COLUMN WITH UNIFORM

DISTRIBUTED LOAD

This problem is similar to the previous two examples,

except this beam-column is restrained against rotation at

joint B and free to rotate at joints A and C ( Fig. 18 )

The maximum moment, deflection at the location of the

maximum moment, elastic critical load, and the buckled

shape of the member will be determined by following the

same procedures described in the previous examples.

The exact solution is determined by superposition.

The general solution is a combination of a simply-

supported beam-column with a uniform load ( Example 5.2-1

and Fig. 19a ) and one with an end moment acting at joint

B without transverse load ( Fig. 19b ). For the latter

case the general solutions are given by Timoshenko and

Gere 1 4 :

y = s sinx Eq. (81)
P sinkL L

M= -M sinkx Eq. (82)sinkL
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Example 5.2-3

P

A B

(a) Load Diagram
y

x

~max

(b) Deflection Diagram

M

M1

(c) Moment Diagram max

Fig. 18 Hinged-Fixed Beam-Column

with Uniform Load
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Example 5.2-3

(a) uniform load

PNb

(b) end moment

Fig. 19 Superposition of
Lateral Load and Moment



80

The rotation at joint B for the case in Fig. 19b is

. bL3 ) Eq. (83)
3EI2u 2u tanu

For the casein Fig. 19a, the rotation at joint B is

wL 3 3 (tan u - u) Eq. (84)1b -24EI u 3

By imposing the rotational boundary condition at B, such

that 0 b + lb = 0, the moment Mb is obtained.

The moments and the deflections at the location of the

maximum moments for members AC and CB are calculated and

compared to the computer solution in TABLES VIII thru X.
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The solutions are in agreement.

The theoretical elastic critical load is [4

20.191EI 20.191*30000*1000(L) 2  (500 )2

Eq. (85)

P, = 2423 kips

The computed load factor LF = 4.8501 for an applied load

of 500 kips. The computed elastic critical load is

4.8501 x 500 = 2425.05 kips. The load factor increment

was .005. The resulting load increment was .005 x 500

kips = 2.5 kips. The computed elastic critical load is

within this tolerance. Closer agreement is possible by

using a smaller load factor increment.

The computed relative joint displacements for the

buckled member are listed in TABLE XI. The buckled shape

is plotted in Fig. 18b. The buckled shape from the

computer solution agrees with that predicted by the exact

solution.
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Table - VIII MAXIMUM BENDING MOMENTS
HINGED-FIXED BEAM-COLUMN

Maximum Bending Moments
( at Joint B of member CB )

Axial Exact Computer MAF
Load Solution Solution
kips ) ( kip-in ) ( kip-in

100 - 2679.4 - 2679.4 1.03

200 - 2761.0 - 2761.0 1.06

300 - 2849.9 - 2849.9 1.09

400 - 2947.0 - 2947.0 1.13

500 - 3053.7 - 3053.7 1.17

The deflections at the support are 0.
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Table - IX MAXIMUM MOMENTS FOR MEMBER AC
HINGED - FIXED BEAM-COLUMN

Maximum Bending Moments
( for member AC at distance x from left support

Axial Distance Exact Computer
Load X Solution Solution
kips ) ( in. ) ( kip-in ) ( kip-in

100 187.11 1533.2 1533.3

200 186.72 1608.0 1608.1

300 186.32 1690.0 1690.0

400 185.91 1780.2 780.3

500 185.49 1880.0 1880.1

i
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Table -X DEFLECTIONS AT MEMBER AC
HINGED-FIXED BEAM-COLUMN

Deflections
(for member AC at distance x from left support)

Axial Distance Exact Computer DAF
Load X Solution Solution
(kips) (in.) (in ) ( in)

100 187.11 -. 96546 - .96636 1.04

200 186.72 -1.0083 - 1.0092 1.09

300 186.32 -1.0552 - 1.0561 1.14

400 185.91 -1.1073 - 1.1076 1.19

500 185.49 -1.1646 - 1.1644 1.25
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Table - XI RELATIVE DISPLACEMENTS AT INSTABILITY
HINGED-FIXED BEAM-COLUMN

RELATIVE DISPLACEMENTS

JOINT D(X) D(Y) ROTATION

1 0 0 - 1

2 0 -1 .33428

3 0 0 0
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EXAMPLE 5.2-4 SECOND-ORDER ANALYSIS OF A FRAME

In previous examples, the given structures consisted of

a single-element. In this example, a frame composed of

several elements will be analyzed.

Since the closed-form solutions for frames are

difficult to derive, the published solution for the given

frame is used to verify the accuracy of the computer

solution. The effect of axial forces on the behavior of

a rigid frame are illustrated by means moment diagrams.

The rigid jointed plane frame is loaded as shown in

Fig. 20 ( Beaufait et al. )[141 El is constant for all

members. The deflections and moments at the joints

considering the effects of axial for-es are required. A

summary of the published and computer solutions is shown

in TABLES XII & XIII. The tables show that the solutions

are in good agreement. The first and second-order

moments are plotted in Fig. 21. From this figure, the

following observations are made :

- the largest amplification factors occur at the

support joints 1 and 4 , and are on the order of 23% to

25%

- for each member of the frame, the maximum moment

is located at the end joint other than the support
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joints. The amplification factors at the points of

maximum moments are less than 10%

In both examples, Example 5.2-3 and this example,

the maximum moment do occur at the member ends.
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Example 5.2-4

200 klps 200 klps

w =-2 k/ft

3 ilY i .1ii .LI .

12 kips 
El

E I

I 6 kps

6 1
24 ft

4
I = 250 in

E = 30,000 ksi

Fig. 20 Rigid Jointed Frame

Geometry and Loading Conditio 91
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Example 5.2-4

857

1186

Legnds
61 115stode3ki-n

_______ n rer (i-n

Fi.26Mmn9Darm
Firs an6ScndOre
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Table - XII SECOND-ORDEP MOMENTS
OF A PLANE FRAME

Second-Order Moments
Plane Frame

Joint Published Computer
Solution Solution

kip-in ) ( kip-in

1 480 482

2 110 110

3 -610 -609

4 1153 1152

5 425 425

6 653 652
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Table - MIT SECOND-ORDER DEFLECTIONS
OF A PLANE FRAME

Second-Order Deflections
Plane Frame

Joint Published Computer
Solution Solution

D (X) Rotation D(X) Rotation

1 0 0 0 0

3 .8483 -. 007 .8526 -. 007

4 .8473 .0035 .8495 .0035

6 0 0 0 0
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EXAMPLE 5.2 - 5 ELASTIC BUCKLING LOAD CF A FRAME

In this example, the elastic critical load of a

frame will be computed using the method described in

Chapter 4. The results are compared to the published

solution taken from Ghali and Neville 9 1. The frame

shown in Fig. 22 has a load Q and Q/2 applied at joints

2 and 3, respectively. Member 2 has a flexural rigidity

equal to EI , while members 1 and 3 have a flexural

rigidity equal to .75EI . Assuming that the loads are

applied simultaneously, calculate the elastic critical

load Q. which causes buckling of the frame. Assume also

that the members are made of structiral steel with the

following cross-sectional and material properties:

I x = 533 in. 4; A = 19.10 in. 2 ; E = 29,000 ksi.

The elastic critical load is determined by implementing

the procedures described in Section 4.3. Using an

applied load Q = 100 kips, the computer solution gives a

load factor LF = 3.94. The computed elastic critical

load is therefore 3.94 x 100 = 394 kips. The published

solution is .254 EI / b 2 = 392.6 kips. The error

between the two solutions is very small (.36 % ).

The computed elastic critical load approaches the
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exact solution when the load factor increment is reduced.

The buckled shape from the computer solution agrees with

that predicted by the exact solution.

For the five examples presented, the computer

solutions are in excellent agreement with the exact

solutions.
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Example 5.2-5

0 0/2

2El 3

3/4 El
E 0

3/4E1

1 4

6b 50Oft.ow

4
2 1= 533 in

Ocr =.254 El/b

.2
A = 19.10 in =l100 kips

Fig. 22 Portal Frame

Geometry and Loading Condition
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EXAMPLE 5.2-6 ELASTIC SECOND-ORDER ANALYSIS OF A THREE-
STORY FRAME

In this example, the capability of the computer program

[ E S C A P ] analyzing larger structures is

demonstrated. The elastic second-order moments,

deflections, and the amplification factors of a three-

story structural steel frame will be determined and

compared to the published solution.

The three-story frame in Fig. 23 15], is subjected

to a combined gravity and lateral loading as shown. The

computed elastic second-order moments and deflections are

shown in TABLES IV and XV. TABLE IV shows that the two

solutions are in agreement.

The maximum lateral displacement located at the top

of the structure ( joint 7 ), is amplified about a factor

of 1.03 This lateral displacement becomes a very

important design consideration in cases of taller

buildings. The lateral displacement at joint 7

represents a story drift of .003H, where A is the story

height of the building. The acceptable lateral

displacements for tall buildings are in the range of

0.002 to 0.004 of the height of the building 16]
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Example 5.2-6

k 7 .148 k /in 8
2.980.,_ _ __ _ _ _ __ _ _ _ __ _ _ _ _

W 14x 30 LO

X ~13 ft

k .148 k/ in
____ ____ ___ ____ ___ ____ ___ ____ ___ 6

W21 x44
c') 13 ft

5.6k .148 k /in3:

W 21 x 44
00 13 ft

25 ft

Fig. 23 Three-Story Frame

Geometry and Loading



Table-XIV MAXIMUM SECOND-ORDER MOMENTS -EXAMPLE 5.2-6

MEMBER Published Computer MAE
Solution Solution
( kip-in )(kip-in)

1 ---- 442 1 .04

2 ---- 26 0.72

3 ---- 333 1.00

4 ---- 1518 1.02

5 ---- 1199 1.01

6 ---- 579 1.01

7 845 846 1.02

8 695 695 1.01

9 579 579 1.01
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Table-XV FIRST and SECOND-ORDER LATERAL DISPLACEMENTS
EXAMPLE 5.2-6

JOINT First-Order 2nd-Order flAP
Solution Solution

(in) (in)

1 0 0 0
2 0 0 0
3 0.5419 0.5603 1.03
4 0.5406 0.5590 1.03
5 1.1093 1.1470 1.03
6 1.1080 1.1460 1.03
7 1.3755 1.4190 1.03
8 1.3674 1.4100 1.03



6 CONCLUSIONS

In the analysis of structures, neglecting the second-

order effects may overestimate the strength and stiffness

of a member or frame. The elastic forces generated

within a member or frame can be more accurately predicted

with the use of an elastic second-order analysis.

The second-order effects ( amplified moments and

deflections ) are of increasing importance as lighter,

and more flexible structures are constructed. The use of

higher strength materials and less rigid non-structural

elements is producing more flexible structures where

second-order effects are of greater importance.

The behavior of multistory frames subjected to

either gravity loads only or under combined gravity and

lateral loading cannot be accurately predicted by a

first-order elastic analysis, when the compressive axial

load level is significant 17 The lateral

displacements may be rather large and may not be within

the acceptable range of lateral displacements for tall

buildings. An elastic second-order analysis such as

[ E S C A P ] can be used to provide an accurate

99
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estimate of the lateral displacements and the elastic

internal forces generated in the structure. If the

lateral displacements become too large, they may become

noticeable and disturbing to the building occupants [16

When second-order effects are included in the

analysis, a more rational design of individual members

may be possible. The beam-column interaction equation in

LRFD is based on the use of elastic second-order moments.

LRFD permits direct application of computer generated

elastic second-order solutions, such as those generated

by the computer program [ E S C A P ].

Structures with very slender members may fail by

elastic instability. For such structures, elastic

stability analysis is directly applicable when

determining the elastic buckling load.

Typical members or frames in structural steel

buildings will fail by inelastic instability, rather than

elastic instability. In such cases, elastic frame

stability analysis is not directly applicable for

predicting the structural strength. However, the LRFD

beam-column interaction equations, which predict frame

instability, require the use of effective length factors.

An elastic frame stability analysis provides a powerful
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tool to determine the effective length factors.

The program [ E S C A P ] was written to provide

exact elastic second-order analysis based on the use of

stability functions. The program was verified by

comparison with published closed-form solutions.

The program [ E S C A P ] also permits elastic

stability analysis of members and plane frames.

Instability is determined by increasing the applied load

increments until the elastic second-order stiffness

matrix becomes singular. Rather than checking the

singularity by computing the determinant, singularity was

detected by checking for a zero or negative diagonal

element using Cholesky's decomposition of the stiffness

matrix. This provides a simple technique to incorporate

stability analysis into an elastic second-order program.

The accuracy of the program [ E S C A P ] in

computing elastic stability loads was verified by

comparison with known closed-form solutions. The

solutions are in excellent agreement.

The future of structural design practice will

include second-order effects in the computer analysis and

design of structures. Structural analysis programs like

[ E S C A P ] will become routine.
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APPENDIX A

USERS MANUAL

ELASTIC SECOND-ORDER COMPUTER ANALYSIS

PROGRAM

Al INTRODUCTION

The Elastic Second-Order Computer Analysis Program [ E

S C A P ] was developed to provide designers a tool in the

analysis and design of beam-columns and frames. The

program [ E S C A P ] has the capability of performing

first-order linear elastic analysis as well as elastic

second-order analysis. The program was also designed to

perform elastic stability analysis of frames and beam-

columns. The program can be used to perform structural

analysis on any two-dimensional structures subjected to in-

plane bending.

The program can be loaded in any IBM PC or compatible

with a hard-disk or floppy. It is written in single-

precision FORTRAN with the IBM Professional Fortran

Compiler.
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A2 CAPABILITY

The program E S C A P has the following capabilities

a. Performs first-order linear analysis of

plane frames, beams, columns, plane trusses

and beam-columns.

b. Performs elastic second-order analysis.

c. Performs elastic stability analysis.

d. Determines the location and magnitude of the

maximum elastic second-order moment within

each member.

e. Has the capability of analyzing multiple load

patterns.

A3 PROGRAM PARAMETERS

The following parameters were used in the computer program

[E S C A P ] :

PID - Problem Identification. This is the name of the

input file with a brief description of the problem. It

consists of 12 characters per line with a maximum of three

(3) lines provided in the input file.

TITLE - is a heading that describes the input

parameters in a read statement.
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NJ - number of joints; Maximum of 40. The user has an

option to increase the size by increasing the dimension of

the joint coordinates X ( ) and Y ( ).

NDELTA - is a code that determines the type of

analysis.

0 : 1st order analysis

1 : 2nd order analysis

NCYCLE - it is the maximum number of iterations. The

program will terminate if after NCYCLE the second-order

solution has not converged, and will priat the output of

the last computed values of member forces and joint

.eflections. It normally takes between 4 to 10 iterations

before the solution converges.

EPS1 - is the tolerance factor used to test

convergence.( recommend .005 )

STEP - is the load factor increment used in the

elastic stability analysis.( recommend .005 )

LB - is the code that determines if buckling load

analysis is desired.

0 : NO

1 : YES

X ( J ) - is the x - coordinate of a joint J, in feet.

Y (K) - is the y - coordinate of a joint K in feet.
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MCL - is the joint release code.

0 : joint is free

1 : joint is fixed.

NDOF - is the total number of degrees of freedom.

( equal to 3 * NJ )

NRJ - number of restrained joints.

S ( I,J ) - is the stiffness matrix of the structure

or a member

NRL - number of restrained degrees of freedom (DOF's)

that are fixed and have 0 displacements.

MNDOF = NDOF - NRL , is the total number of degrees of

freedom that are free to rotate and translate.

NM - is the number of members. Maximum is 80.

The user has the option to increase the size by changing

the dimension of the other parameters in the main program.

MPC - Matrix Print Code for the stiffness matrix.

0 : suppress output

1 : activate output

GX - is the unit weight of the material; 490 pcf for

structural steel.

IHINGE ( I ) - is a joint code that describes the

type of restraints imposed at the joints. It is used to
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modify the stiffness of a member that is pinned at one end.

For members without supports :

0 : pinned at start joint and rigid at the

end joint

1 : rigid joints at both ends

2 : joints pinned at both ends

For members with support joints (hinged or fixed):

1 : if the beginning joint is a support

joint

0 : if the beginning joint is pinned and not

a support joint

JFIX ( J ) , KFIX ( K ) = are joint codes used to

modify the load vector and the force vector for a pin

joint.

1 : for a fixed support or rigid joint

0 : for a hinged support or pinned joint

JM ( I ) - beginning joint of a member

KM ( I ) - end joint of a member

AM ( I ) - area of cross-section, sq. in.

ZM (I )- moment of inertia; in'

EM ( I ) - modulus of elasticity of the material

Example : Enter 29 (ksi) for steel

SPAN - member length in inches

SM ( I ) - member length in feet
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CX ( I ) - cosine

CY ( I ) - sine

WT - total weight of structure in tons.

INODE ( ) - is a degree of freedom ( DOF ) at the ends

of a member

( 1 ) - DOF at joint JM ( I ) along the x - axis

( 2 ) - DOF at joint JM ( I ) along the y - axis

( 3 ) - rotation at joint JM ( I )

( 4 ) - DOF at joint KM ( I ) along the x - axis

( 5 ) - DOF at joint KM ( I ) along the y - axis

( 6 ) - rotation at joint K, ( I )

Q ( I,J ) - stiffness matrix for the restrained

DOF's

NLP - number of loading patterns

LP - load pattern

NLJ - number of loaded joints

WX - joint load in x - direction ( kips )

WY - joint load in y - direction ( kips )

WM - joint moment ( kip-ft )

W ( ) - sum of joint loads in x , y or moments

FEA ( ) - fixed-end actions or forces in members due

to externally applied loads.

MEA ( ) - member end actions after the analysis
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NMC - number of members with concentrated loads

NCL - number of concentrated loads on a member (

limited to 4). The user can increase the size by changing

the dimension of LCN in the main program. The location of

loading is expressed as a fraction of the span measured

from the left support.

FX - concentrated load in x - direction ( kips )

FY - concentrated load in y - direction ( kips )

MO - moment in z - direction ( kip-ft )

NMU - number of members with uniform loads

NUL - number of uniform load3 on a member

SUMWY ( ) - sum of transformed uniform distributed

loads on the member along the y - axis

MWC - member weight code.

0 exclude membets weight in the analysis

1 include member weight in t e analysis

R ( ) - reaction vector

G ( ) - modified fixed end actions

RAL ( ) - identifies the restrained DOF

D ' ) - deflection vector

XNEW ( ) - new x-coordinates

YNEW ( ) - new y- coordinates

Dl, D2, D3, D4, D5, D6 - deflections at member's local

axis
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FIX ( ) - calculated fixed-end actions during second-

order iteration analysis

ST ( ) - modified stiffness matrix for second-order

effects.

LF - load factor use in load buckling analysis. It is

equal to 1 at the start of the analysis.

ITER - counts number of times the load factor

increment STEP was added to LF before the buckling load is

achieved.

QT - restrained stiffness matrix for the second-order

analysis

P - is the axial load or force

XKL = sqrt ( P / EI )

VA, VB - vertical reactions considering axial load

effeCts

MA, MB - moment reactions considering axial load

effects

COMP - stability functions for axial compression

TENS - stability functions for axial tension

FLEXMAX - maximum moment anywhere in the span

YMAX - deflection of FLEXMAX. (Note: this may or may

not be the maximum deflection )

XMAX - location of FLEXMAX and YMAX
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A4 LIST OF SUBROUTINES

a. E S C A P is the main program. It reads the

input file and performs the first-order analysis.

b. NODE is a subroutine that generates the degrees of

freedom for each node.

c. STIFF calculates and assembles the global first-

order stiffness matrix.

d. MATPRT prints the global stiffness matrix.

e. DECOMP is the CHOLESKY's matrix decomposition

program. It decomposes the global stiffness matrix and

stores the matrix in S ( I,J ) or ST ( I,J ).

f. LOAD modifies the fixed-end actions FEA for a

member that is pinned at the beginning node or both.

g. SOLVER solves the equations for unknown

deflections and stores them at vector D ( ).

h. MFORCE calculates the first-order member end

actions in the Z.ocal axis and stores them at vector MEA

i. PNDELTA performs the second-order analysis.

j. XDELTA generates the global second-order stiffness

matrix and stores the matrix at vector ST

k. DFORCE solves the members end actions (MEA) to

include second-order effects.

1. CALMAX determines the location of the maximum
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moment for a uniformly loaded member with end moments. It

also calculates the elastic second-order moments and

deflections.

A5 INPUT DATA PREPARATION

An editor (such as PE FORTRAN ) is used to prepare the

input file. The parameters of every read statements are

entered in separate lines and are format free. A sample

copy of the input file is shown in Appendix B.

PROCEDURES:

A. READ PID - in alphanumeric characters and consists

of 12 characters per line with a maximum of 3 lines.

B. READ TITLE - Enter > number of

joints,NDELTA,NCYCLE, EPS1,STEP,LB

C. READ NJ, NDELTA, NCYCLE, EPS1

D. READ STEP, LB

E. READ TITLE - Enter> Joint Coordinates

F. READ J, X ( J ), Y ( J )

J : is the joint or node

G. READ TITLE - Enter> Number of restrained joints

H. READ NRJ

I. READ TITLE - Enter> Boundary Conditions (Note:
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these are the boundery conditions of the restrained joints

in procedure G & H)

J. READ J, ,MCL ( 1 ), MCL ( 2 ) , MCL ( 3 )

J is the joint or node

MCL ( 1 ) DOF in X - DIRECTION

MCL ( 2 ) DOF in Y - DIRECTION

MCL ( 3 ) DOF in ROTATION

K. READ TITLE - Enter> Number of members,print

code

L. READ NM,MPC

M. READ TITLE - Enter> Member Data

N. READ I,J,K,A,Z,E,GX

0. READ IHINGE (I),JFIX (J), KFIX (K)

I : is the member

J : beginning node

K : ending node

A : area of cross-section ( in 2

Z : moment of inertia ( in ' )

E : section modulus ( KSI/1000 )

GX unit weight of member ( LBS/FT 3 )

P. READ TITLE - Enter> Number of Load Patterns

Q. READ LP

R. READ TITLE - Enter> Number of loaded joints

S. READ NLJ ; if NLJ is equal to 0 go to
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step V

T. READ TITLE - Enter> Loaded joints

U. READ J,WX,WY,WM

J is the joint or node

V. READ TITLE - Enter>Number of members with

concentrated loads

W. READ NMC ; if NC is equal to 0 , go to

step AA

X. READ TITLE - Enter> Members concentrated loads

Y. READ M, NCL

Z. READ K, A, FX, FY, MO

K load orientation

0 member axis

1 structure or global axis

A location of loading ( fraction of the

span )

AA. READ TITLE - Enter> Number of members with

distributed loads

BB. READ NMU ; if NMU is equal to 0 go

to step FF

CC. READ TITLE - Enter> Members uniform loads

DD. READ M,NUL

EE. READ K,FX,FY,MO

M : name of member
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K : load orientation

0 : local or member axis

1 : global or structure axis

MO is expressed in kip-ft / ft

FF. READ TITLE - Enter> Member weight code

GG. READ MWC

0 : exclude member weight

1 : include member weight

A6 OUTPUT DATA

The computer output shows the joint coordinates, members

data, joint loading, and the member loading in a load

pattern. It also prints the joint deflections, member end

actions and the reaction forces. The location of the

maximum moment, its magnitude and deflection are also

shown. The load factor LF is printed and used in

determining the actual buckling load, and is obtained by

multiplying the load factor LF with the member's load or

joint load. A sample output data is shown in Appendix B.
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A7 RUNNING THE PROGRAM

The following steps describe how to run the Elastic Second-

Order Computer Analysis Program [ E S C A P ]:

1. Name the input file described in Section A6 above.

The input file is named when saving the input data.

2. Go to the Fortran Directory.

3. To run the program

ENTER > XFRAME

RETURN

4. The program will prompt>

What is the name of the input file?

5. ENTER > Name of input file. Make sure the input

file is saved in the Fortran directory.

6. RETURN

7. Execution of the program is completed when the

message Execution Terminated : 0 shows in the screen.

8. The output file is automatically sent to the file

named SOLOUT in the Fortran directory.



APPENDIX B

COMPUTER INPUT AND OUTPUT DATA

For Example 5.2-4
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INPUT FILE - SAMPLE.IN
RIGID FRAME

EXAMPLE 5.2-4
NUMBER OF JOINTS,NDELTA,NCYCLE, EPSI, STEP, LB
6,1,1000, .005
.005,0
JOINT COORDINATES
1,0,0
2,0,12
3,0,20
4,24,20
5,24,6
6,24,0
NUMBER OF RESTRAINED JOINTS
2
BOUNDERY CONDITIONS
1,1,1,1
6,1,1,1
NM, MPC, MCODE
5,0,1
MEMBER DATA
1,1,2,13.3,250,30,490
1,1,1
2,2,3,13.3,250,30,490
1,1,1
3, 3, 4,13.3,250,30,490
1,1,1
4,4,5, 13.3,250, 30,490
1,1,1
5, 5, 6, 13.3,250,30,490
1,1,1
LOAD PATTERNS
1
NUMBER OF LOADED JOINTS
4
LOADED JOINTS
2,12,0,0
3,0,-200,0
4,0,-200,0
5,-6,0,0
NUMBER OF MEMBERS W/ CONCENTRATED LOADS
0
NUMBER OF MEMBERS WITH DISTRIBUTED LOADS
1
LOADED MEMBER
3,1
1,0, -2,0
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MEMBERS WEIGHT CODE
0
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" OUTPUT DATA "

ELASTIC SECOND-ORDER COMPUTER
ANALYSIS OF BEAM-COLUMNS AND FRAMES
PLANE FRAME ANALYSIS BY STIFFNESS METHOD

GENE MUNOZ *

* ** * ** * ** **

* JOINT DATA*
* ** ** * * *** *

JOINT COORDINATES RESTRAINT
X Y CONDITION

(FEET) (FEET) X Y R

1 0.000 0.000 R
R

R
2 0.000 12.000
3 0.000 20.000
4 24.000 20.000
5 24.000 6.000
6 24.000 0.000 R

R
R

* ** * ** * ** ** *

*MEMBER DATA*

MEMBER LENGTH CROSS-SECTION PROPERTIES MODULUS OF
AREA I(ZZ) ELASTICITY

(FEET) (INS**2) (INS**4) (KSI/1000)

1 12.000 13.300 250.00 30.000
2 8.000 13.300 250.00 30.000
3 24.000 13.300 250.00 30.000
4 14.000 13.300 250.00 30.000
5 6.000 13.300 250.00 30.000
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TOTAL WEIGHT OF FRAME: 1.448 TONS

* ***** ****** *** *****

*** FIRST ORDER *****
**** ANALYSIS ** ** * *
* * *** ** ** ** * ** * * *** *

LOADING PATTERN 1 OF 1 LOADING PATTERNS

* J INT L 0 A D I N *

J OINT LOADING
F (X) F (Y) COUPLE
(KIPS) (KIPS) (KIP-FEET)

2 12.000 0.000 0.000
3 0.000 -200.000 0.000
4 0.000 -200.000 0.000
5 -6.000 0.000 0.000

* ** * ** ** * * * *** *

*MEMBER LOADING*

NO MEMBERS WITH CONCENTRATED LOADS IN PATTERN

MEMBER UNIFORMLY DISTRIBUTED LOADING
ORIENTATION W(X) W(Y) M(O)

(AXES) (KIPS/FT) (KIPS/FT) (K-FT/FT)

3 S 0.000 -2.000 0.000
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*MEMBER WEIGHTS NOT INCLUDED IN ANALYSIS*

LOADING PATTERN 1 OF 1 LOADING PATTERNS

JOINT DE FL E C T10N S
D(X) D(Y) ROTATION

(INCHES) (INCHES) (RADS)

1 O.OOOOE-O1 O.OOOOE-O1 O.OOOOE-O1
2 3.0288E-01 -8..0369E--02 -2.5911E-03
3 6.4644E-01 -1.3395E-01 -6.306CE-03
4 6.4031E-01 -1.3553E-01 3.8776E-03
5 1.6280E-01 -4.0658E-02 -4.2348E-03
6 O.OOOOE-O1 O.OOOOE-O1 O.OOOOE-O1

LOADING PATTERN 1 OF 1 LOADING PATTERNS

*MEMBER END ACTIONS*

MEMBER END X-FORCE Y-FORCE MOMENT
JOINTS (KIPS) (KIPS) (K-IN)

1 1 2.2269E+02 3.5060E+00 3.8739E+02
2 -2.2269E+02 -3.5060E+00 1.1748E+02

2 2 2.2269E+02 -8.4940E+00 -1.1748E+02
3 -2.2269E+02 8.4940E+00 -6.9794E+02

3 3 8.4941E+00 2.2688E+01 6.9794E+02
4 -8.4941E+00 2.5312E+01 -1.0757E+03
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4 4 2.2531E+02 8.404!~E+00 1.0757E+03

5 -2.2531E+02 -8.4941E+00 3.5134E+02

5 5 2.2531E+02 2.4941E+00 -3.5134E+02

6-2.2531E+02 -2.4941E+00 5.3091E+02

LOADING PATTERN 1 OF 1 LOADING rATTERNS

R EA CT I VE FO0RC E S

JOINT R EA CTIO N S
R(X) R(Y) MOMENT

(KIPS) (KIPS) (KIP-INCH)

1 -3.5060E+00OO29EO

3. 8739E+02

6 -2.4941E+002.51E0

5 .3091E+02
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S SECO0N D O RD E R *

LOADING PATTERN 1 OF 1 LOADING PATTERNS

J JOI NT D E FL EC TIO N S

JOINT DE FL EC TIO N S
D(X) D(Y) ROTATION

(INCHES) (INCHES) (RADS)

1 O.OOOOE-O1 O.0OOOE-01 O.OOOOE-O1

2 4.0855E-01 -8.0162E-02 -3.7614E-03

3 8.5261E-01 -1.3360E-01 -7.0316E-03

4 8.4646E-01 -1.3587E-01 3.5363E-03

5 2.0170E-01 -4.0761E-02 -5.2386E-03

6 O.OOOOE-O1 O.OOOOE-01 O.OOOOE-O1

COW~kZZCE OCC-t;:PZD AT ITER 1
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LOADING PATTERN 1 OF 1 LOADING PATTERNS

*MEMBER END ACTIONS*

MEMBER END X-FORCE Y-FORCE MOMENT
JOINTS (KIPS) (KIPS) (K-IN)

1 1 2.2212E+02 3.4786E+00 4.8161E+02
2 -2.2212E+02 -3.4786E+00 1.1006E+02

2 2 2.2212E+02 -8.5214E+00 -1.1006E+02
3 -2.2212E+02 8.5214E+00 -6.0936E+02

3 3 8.5212E+00 2.2115E+01 6.0936E+02
4 -8.5212E+00 2.5885E+01 -1.1522E+03

4 4 2.2588E+02 8.5213E+00 1.1522E+03
5 -2.2588E+02 -8.5213E+00 4.2502E+02

5 5 2.2588E+02 2.5213E+00 -4.2502E+02
6 -2.2588E+02 -2.5213E+00 6.5212E+02

LOADING PATTERN 1 OF 1 LOADING PATTERNS

R EA CT I VE FO0R CE S

JOINT REA C TIO N S
R(X) R(Y) MOMENT
(KIPS) (KIPS) (KIP-INCH)

1 -3.4786E+00
2.2212E+02

4. 8161E+02
6 -2.5213E+00

2.258E+02 6. 5211E+02
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LOADING PATTER~N 1 OF 1 LOADING PATTERNS

*MAXIMUM MOMENTS*

MEMBER MOM E NT S
XNAX YMAX MOMENT

(INCH) (INCH) (KIP-INCH)

1 O.OOOOE-O1
O.OOOOE-O1

4. 8161E+02
2 9.5948E+01

-1. 3360E-01
-6. 0936E+02

3 2.8799E+02
_1.3587E-01

-1. 1522E+03
4 O.OOOOE-O1

-1. 3587E-01
1. 1522E+03

5 7.1960E+01
O.OOOOE-O1

6. 5212E+02

ANALYSIS COMPLETED
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