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1. INTRODUCTION

We summarize in this final report the main results and

findings of the theoretical study of the electronic structure of

superlattices which we have performed under Contract DAAB07-86-C-

F114; research papers sponsored by this contract which detail all

the technical results are quoted as Refs. 1-7.

!n rcent years there has been an explosion of interest

in the experimental and theoretical study of the electronic

properties of superlattices,8 related heterostructures and quantum

wells, as well as two-dimensional structures and surfaces in

general. The reason of such attention is certainly not a matter of

fashion: there are deep motivations and ambitious perspectives.

The importance of the electronic and optical properties

of superlattices is best appreciated within the general framework

of the study of quantum electronic microstructures, i.e. systems

where the electronic wavelength becomes comparable to the size of

the alternating layers which form the superlattice structure. The

ultimate goal of microstructure physics is to produce a new

generation of electronic devices, whose operation is based on the

very fundamental principles of quantum mechanics: these new quantum

devices are already entering in competition with the more

traditional electronic devices.' Exploiting ingeniously new

concepts in band engineering, quantum size effects, electron

ballistic transport, tunneling and resonant tunneling, the new

microstructurp4 ehbthit effects compleatly bey..d t.Xc-se of muLe
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traditional devices.

Furthermore, the importance of the study of electronic

states in microstructures is not limited to applicative and

technological aspects: in fact, microstructure physics has been

stimulated by, and has itself spurred, very fundamental research.

In this regard, we recall the unexpected and spectacular results of

the quantum Hall effect,"0 which has provided a new relationship

among the funaamentai constants, and, as a byproduct, the new

standard of resistance.

The theoretical study of the electronic properties of

superlattices is of major importance to interpret, understand, and

possibly predict the wide range of structures and effects produced

by the engineering of materials. After a preliminary study on the

advantages and intrinsic limitations of the various methods of band

structure calculations in superlattices: we d'-c!idPd to fort on the

renormalization method; its formal procedure is basically related

to the renormalization group introduced by Wilson to study second-

order phase transitions, which produced a complete understanding of

these phenomena for the first time." At the beginning of this

research the only existing calculation performed with the

renormalization method ir' a siipprlattice referred to a one-

dimensional highly simplified model. 2 Nonetheless, that pioneering

work had given us encouragement to pursue the renormalization

method tu full-scale calculations in realistic superstructures. To

this end, we have enriched the reno~-alizatinn method with concepts

and techniques peculiar to solid state physics, and we have now
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developed it into a very powerful tool for the study of electronic

properties of superlattices.

The main achievement of our work has been the development

and firm establishment of the renormalization technique for the

study of superlattice structures. A further step consists in

including defects in this study. Defect levels are very important

from both the fundamental and the applied point of view, as they

influence very strongly the performance of electronic devices. We

have already developed very efficient procedures to study

microscopically impurity states in standard lattices. These are

Green's function techniques based on the recursion method." 6" A

preliminary work with the recursion method in a superlattice

structure has also been performed. 4  The exact formal relation

between the renormalization and the recursion method has also been

established recently."1 A discussion of this and other perspectives

is given in the third and final section of this report. But first

we summarize in the following section the most relevant technical

aspects of electronic-structure calculations in superlattices with

the renormalization method.

1L
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2. TECHNICAL DISCUSSION OF 61ECTRONIC-STRUCTURE CALCULATIONS

IN SUPERLATTICES WITH THE PENORMALIZATION METHOD

2.1 Motivation for imolementing the renormalization method

In 1986, when this research program began, the state of

the literature for calculating the electronic structure of

superlattices was unsatisfactory in several aspects, despite the

tremendous importance that superlattice studies were acquiring. In

principle, all the standard methods of band-structure calculations26

can be extended to superlattices, since these are still periodic

structures, and translational symmetry is included in Bloch form

for the wavefunctions. However, in practice, only very thin

superstructures can be satisfactorily treated this way.

Calculations for ultrathin superlattices (i.e.

superlattices where the alternating slabs of the composing

semiconductors consist of only a few atomic planes) have been

performed both with the empirical tight-binding method and the

empirical pseudopotential method. Sophisticated calculations of

ultrathin microstructures have also been performed with linearized

method, and the linearized muffin-tin-orbital method in particular.

None of these methods, however, can be extended much beyond the

cap- of ultrzthin structures, except possibly the empirical

pseudopotentil 4 meto: I . that e d, th' mraLt sivp1ici:% of tLc

matrix elements and the adoption of a folded-band scheme balances

to some extent the complications due to a large number of atoms in
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the supercell.

Before the introduction of the renorlalization method,

there were basically only two methods which dealt with

superlattices of arbitrary length: namely, the envelope-function

and the complex-k tight-binding method (the complex k.p procedure

is somewhat intermediate between the two, and bcrrows some features

from both).

The envelope-function method is based on an overall

description of the bulk properties of the two crystals composing

the superlattice, rather than their detailed microscopic nature.

More or less appropriate boundary conditions 7" 8 are then

established at the interfaces, and determinantal-compatibility

equations yield superlattice eigenvalues and eigenfunctions. The

applicability of the envelope-function method is quite restricted.

The two composing semiconductors must be chemically alike and have

similar band structures: extensions to multivalley band structures

are not quite justified. Beyond such a restricted range of

applicability the envelope function can at best be used for

qualitative considerations: this is generally inadequate to

interpret quite accurate experimental results, especially optical

data and transport properties.

The other previous method capable of treating

superlattices of possibly large periodicity is tight-binding with

a complex-k procedure. 9 From a computational point of view this

method is very complicated, since it involves a cumbersome energy-

dependent procedure. One starts with a given energy E and
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determines the complex-k vectors compatible with it. Then, all the

evanescent and stationary generalized plane-waves of each component

crystal are used as energy-dependent basis-functions. Matrix

elemencs oZ thit oin-electron crystal Hamiltonian are determined,

and the matrix (which is energy dependent) is then diagonalized.

The procedure is repeated until the input and output energies

coincide. This procedure, which is already very cumbersome for

idealized superlattices, becomes prohibitive for treating disrupted

interfaces. Those may be treated in principle with an appropriate

use of the transfer-matrix method,20'21 but that is not a routine

procedure at all.

In summary, the envelope-function method is

unsatisfactory because it is not based on a genuine microscopic

description, while the complex-k tight-binding method is

unnecessarily cluttered with computational difficulties. These

were the only previous methods which can in principle treat

superlattices of arbitrary periodicity.

2.2 Basic features of the renormalization method and

relevant aspects of the implemented computer programs

The renormalization method consists basically in a

systematic reduction of the degrees of freedom of a given system.

The reduction may be such that the Hamiltonian at each decimation

step maintains the same form. If that is the case, it is possible

to repeat the reduction process iteratively until a large number of
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degrees of freedom of the system is eliminated.

We have shown that it is possible in the case of a

superlattice to maintain the Hamiltonian invariance through

decimation by properly exploiting the intralayer symmetry.

Technically, one adopts a k-space representation for layered Bloch

sums and a real-space representation for interactions among

different layers, i.e. families of planes perpendicular to the

growth direction. The microscopic description of the crystal is

then done in terms of two-dimensional Bloch sums, called layer

orbitals, and atomic planes are grouped into layers such that

inter-layer interactions are limited to the nearest neighbors.

These "sites" are then decimated in the renormalization procedure.

There are several distinctive features of the

renormalization procedure that we have developed for superlattices,

which make it very appealing from both the physical and the

computational point of view. They are:

(a) The decimation process only requires at each step

inversion of matrices of small order, namely the order of the

degrees of freedom at a given site.

(b) It is possible to take advantage of the local symmetry to

drastically reduce the number of decimations performed in bulk-like

regions. In those regions, whenever layers are equivalent, one can

eliminate all alternate layers in a single stroke.

(c) For superlattices with N sites (in a slab of either component

crystal) it is possible to show that the first N moments do not

depend on the boundary conditions. Hence, the renormalization
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process can be organized in such a way that only the very last

renormalization depends on the boundary conditions. Then, the

whole superlattice energy-band dispersion in the growth direction

can be obtained with a minimal additional effort, once a given _q-

vector of the parallel two-dimensional Brillouin-zone has been

fully investigated.

(d) The knowledge of the energy bands can be supplemented, when

this is required, by calculation of the superlattice wavefunctions.

This can be done by simply repeating the renormalization procedure,

in correspondence to any given eigenvalue, preserving different

layers. Alternatively, one can propagate the Green's function from

any pair of layers to the adjacent ones and so on: this procedure

requires, however, a careful check of the numerical stability when

layers sufficiently faraway are reached.

We have developed various efficient computer codes which

perform all the operations mentioned above. For superlattices with

composing crystals with diamond or zinc-blend structures we used a

tight-binding parametrization for the starting Hamiltonian. That

has typically ten orbitals per atom, i.e. the product of the s, p1,

py, p,, s* atomic orbitals22 and spin-up and spin-down states, since

spin-orbit interaction is typically included. Our current codes

assume only nearest-neighbor interactions and stacking of layers

along a crystallographic axis, but these restrictions could easily

be removed. Exact lattice-constant matching between the two types

of composing semiconductors has been assumed, but we have also

initiated the study of strained superlattices. The computer code
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automatically recogrizes and eliminates equivalent sites.

Subroutines for calculation of wavefunction-amplitude a: all anion

and cation sites are included in the program.

2.3 Impurity effects in lattices and superlattices

The role of defe-, ts in superlattices is a major one, just

as it is in ordinary lattices. At this point, our renormalization

procedure cannot be directly applied when a defect breaks the

periodic symmetry of the superlattice. There is, however, the

possibility of applying the recursion method. Formally, that is

equivalent to the renormalization method, and both can be derived

withia the same framework by partitioning differently the Hilbert

space of the total Hamiltonian.' 5 Both methods represent iterative

procedures which yield immediately the Green's function of the

Hamiltonian operator, without requiring its direct diagonalization.

Each method has nonetheless different advantages in practical

situations. t;ith the recursion method wt have been able to give

for the first time a unified description of shallow and deep, bound

and resonant, defect states in both a cubic model and !n silicon,

including short- and long-range contributions to the defect

potential consistently and non-perturbatively.A A preliminary

application of the recursion method to a aodel superlattice has

also been attempted. 4 A theoretical model of the DX center and its

experimental investigation in Gal.xAlAs alloys and superlattices has

been proposed.7



3. SUI.-ARY OF RESULTS, CONCLUSIONS AND RFCMMENDAIONS

The resu +' -t mentioned in this report are described in

detail in Refs.1-7: we summarize here the main findings.

We begin with the study of silicon superlattices, with a

superimfosed external potential in the [100] direction.' This can

be considered as a protoype of oup-IV superlattices. It also

represents a simplified model of the very interesting Si-Si.-Ge,

zvstem, and othe: composition or doping-graded elemental group-IV

superlattices. The study of this superlattice was indeed

challenging, due to the complicate multivpley structure of

silicon, and represented a severe test of our renormalization-grour

approach. With that formalism we have been able to calculate the

dependence of the energy gap on the applied external potential for

various superlattice widths. We have evidenced level-quantization

effects, which are large for small superlattice widths, and we have

examined the possibility of tuning the energy gap down to a

semiconductor-semimetal transition. A very interesting feature is

the transition from an indirect-gap to a direct-gap material, as

the width and the value of the potential aie changed. That may

have far-reaching consequerces for the optical properties of this

material, which await an exnerimental confirmation. Another

interesting and peculiar effect of the superlattice band structure

that we have evidenced is the doublet structure of the lowest

states of the conduction band; this is due to the folding of the

valleys in the [0,0,1] and [0,0,-I] directions. Such effe-t has



12

been compared with the intervalley effects w ich arise similarly in

impuricy problems. 6'23  These calculations, beside the direct

interest in this particular system, have definItely shown the

capability of the renormalization method to treat multivalley

components, thus opening new perspectives for the vast class of

superlattices composed by materials with complicated ene.:gy-band

structures.

Another system that we have studied with the

renornialization met.-od is the InAs-GaSb superlattice.2'24 This is

a typica) ty-oe-IT sujierlattice, where the bottom of the InAs

conduction band is lower in energy than the top of the GaSb

conduction band. Because of quantum confinement, for small periods

the superlattice is a semiconductor: but for large ercc'jh unit

supercells (InAs thicknes around 100 A) the syscem becomes

semimetallic. The superlattice band structure exhibits high non-

para olicity, mixing and anticrossing, and significant spin-orbit

effects: yet, all that could be accurately accounted for by the

renormalization procedure. The interpretation of the sentimetallic

regime is a delicate problem. The renormalization method has

allowed a new explanation in terms of an intrinsic semimetallic

behav-or, an effect that could not be obtained with the envelope

function method."8 Another subtle and quite interesting effect is

the remarkable asymmetry of the wavefunction amplitude with n the

GaSb layers; that is due to the differEnce between the two

interfaces, which are In-Sb and Ga-As, respectivel--. This somewhat

surpris.ing effect persists even at considerably large superlattices
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widths.

In the study of impurity problems,5,6 we have used the

recursion method, which reduces the initial Hamiltonian to a chain-

like form. That can be directly diagonalized, or used to get

immediately a continuous fraction expressing the Green's function

matrix elements. We have approximated an infinite crystal of Si

with a finite Si cluster, supplemented by periodic boundary

conditions. We have considered clusters containing 32768 atoms (or

more in some instances), corresponding to 163840 orbitals when the

s, p., Py, p,, s* microscopic description is adopted. Our results

have clearly shown, for the first time, that the recursion method

can provide an accurate description of both shallow and deep, bound

and resonant impurity states, including self-consistently both

short- and long-range defect-potential contributions, as well as

the complete multivalley band structure. An original model of the

DX center, which explains consistently both electronic and

relaxation effects, has been proposed for Ga1,_AlAs alloys and

superlattices.

In conclusion, we have proved the effectiveness that Green's

function techniques based on the renormalization and recursion

methods can provide in the study of superlattices and defect

levels. We expect that these methods of calculation will play a

major role in interpreting the wealth of experimental data which

are increasingly being collected on these new materials. In

particular, we have made considerable progress in a thorough study

of HgTe-CdTe superlattices, which are of great interest from both
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points of view of fundamental research and infrared-detector

technology. We recommend a completion of this study. We also

recommend completion of the proposed study of the DX centers with

the recursion method,? since these defects affect crucially the

performance of modulation-doped field-effect transistors (MODFET's)

made of Ga1_,Al1As/GaAs, the structure of devices used in high-speed

digital and analog circuits (the DX is believed to be responsible

for slow transients in the switching characteristics of these

MODFET'S).
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