
_R FPfT fl-IIMENTATION PAGE FM o. 00Ap 08rove. ... -OMB No.I0704-0788
to average I hour per response. Including the time for reviewing Instructions, searching existing data sources;gatheting and
lonot Information send comments regialng this burden estimate or any other aspect of this collecion of Information. Including
Ices. Directorate for iniormaiionOpeiations and Reports. t2i5Jefferson Davs Highway.Suite 1204. Autngion.VA 22202-4302.A D -A 241 121 5roject (0704.0188). Washington, O-20503

2REPORT DATE a3,iEPORTTYPE AND DATES COVERED

lAugust 1991: -professional-paper

4.IiE.ANU SUBTIILE 5 FUNDING NUMBERS

A GENERAL THEORY FOR THE FUSION OF-DATA
In-house funding

6, AUTHOR(S)

I. R. Goodman
ELECTE

7PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CT .PERFRMING ORGANIZATION
OCT 2 19 REPORT NUMBER

Naval Ocean Systems Center D
San Diego, CA 92152-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MCNITORINGO
____ AGENCY REPORT NUMBER

" NavalOcean Systems Center
San Diego, CA 92152-5000

11. SUPPLEMENTARY NOTES .....

12a, DISTRIBJ'IONAVALABILITY STATEMENT 12b; DISTRIBUTION CODE .A)

Approved for public release; distribution is unlimited.,

13, ABSTRACT (Maxmunr1200 words)-

The problem of-data fusion is in a-real sensetthe problem of how to model the real world with all of its greatcomplexities. A miniaturized version of this is the multiple targettracking and data association- problem. There,;a number of
pieces of information arrive, typically from- disparate sources-such-as from various sensing sytems and from human sources
in the form of narrativedescriptions in natural language. Aprocedure has already-been established-for dealing with this type
of situation,:called succinctly-the PACT algbrithm (PACT - Possibilistic Approach-to Correlation and Tracking). The
technique is based~upon the premise that-all arriving information can be adequately treated through-some appropriate choice
of classical or multivalued logic such as Probability Logic, FuzzyLogic, Lukasiewicz-K, Logic,-or some (t-norm,-t-conorm,
negation function) general logic as discussed in-a recent text of Goodman and-Nguyen, UncertaintyModels for
Knowledge-Based Systems. Moreover, it can-bedemonstrated that for-a-large class-of logics ch6sen, a version-of a partially
specified Probability Logic may be used instead-. Indeed, other approaches to~uncertainty, such-as tlieDempsterShafer
approach, can also be strongly related to Probability Logic-through the vehicle of random:set modelifig. Ifi anycase, the
structure of the PACT algorithm is based upon a generalized chaining and disjunction relation, which in a classical
-probability setting reduces to the usual posterior-probability descriptionas a-weighted sum of intermediate probabilities, an-
alternative form of Bayes' formulation. In the PACT-algorithm; joint inference rules are-represented which connect various
combinations of matches of the intermediate attributes relevant to correlation (such as geoloc-tion, radar-parameters, visual
narratives, etc.) to the consequential correlation !evels between track histories. In Addition, error relations involving these
attributes are also-represented.

In the present paper; the PACT technique is extended to-the full combination of evidence problem, viewed as-being
identical tothe general data fusion problem. In.addition, data fusion is also intimately linked nith internodal activity within
a-larger C3 system. Here-suchC systems are identified as networks of interacting decision-maker node complexes. Some
general examples 6f datafusion in'this context are presented, including a new approach-to the.use of-marginal Conditional
probabilities measuring validity of inference rules via "conditional objects."

Published in DFS-87,-1987 Tri-Service Data Fusion Symposium-Technical Proceedings, Volume 1, June,1987.

14-SUBJECTTERMS 15, NUMBER OF PAGES -'

data fusion probability logic algebra
C3-  -algorithm 16 PRICE CODE-

-17, SECURITY CLASIFICA1ON 18. SECURITY CLASSIFICATION - - 19. SECURITY CLASSIFICATION- 0. LIMITATION OF ABSTRACT
OF REPORT OFTHISPAGE " - OF ABS tRACT

UNCLASSIFIED - UNCLASSIFIED- -UNCLASSIFIED SAMEAS-REPORT

NSN 7540-925500 0Standard form 29



Best
Available

Copy



'UNCLASSIFIED

21a. NAME OF RESPONSIBLE INDIVDUAL 21.TLPOE~n~~ raCd)21c OFFICE SYMBOL

I. R. Goodman- (619)-553-4014 Code 421

NSN 7640-OI.2M0S=C Standard formi 29N

UNCLASSIFIED



Woo

__ 
*A 0

_!N%

~ - ~ - -f -

u g .-~ * - --=- --

~~ .Z9flR~.Ic.2 -
SYPSU

US -R

"NURE

- ~ ~ ~ ~ t- - 7 . .9tS..-. -* 17 -r

~--~P~6SO 7 ED BY:".-. .-
- - - - g~c___________ ~ * ______Aogaa1~aFor

-~~ ~ ~ OFFICE- OF NAVAL TECHNOLOGY ~oti-

- AND0

JOINT DIRECTORS OF LABORATORIES Jrwi ztore-. T
.2DATA FUSION SUB-PANEL

-. .. Avilablity Codes

fDiat s.jj



,GENERAL THEORY FOP. THE FUSIONWOF DATA

1.R. Goodman

Co mand &-Control Department
-Code 421

Naval Ocean Systems Center
San-Diego, California 92152-

-Abstract future evr.lcP.,cr.ts. -.ecent events in theoretical
physics involving "superstring" theory, -an attempt atThe problem of data fusion is in a real sense the developing a Grand Unified Theory--of the Universe,-

problem of -how to model-the-real world with all of its- underscore this quest [1).
great complexities. A miniaturized version of this is-
the-multiple -target tracking and data association prob- In azlmore modest~way, this paper seeks to estab-
lem. There,a number of pieces of information artive, lish-a theory unifying, coordinating, and extending=
typically--from disparate sources - such as from various the-somewhat appearino distinct con~epts of data fus-
sensing systems and from human sources in the form of ion,-combination-.of evidence, and-C systems analysis-.
nariative descripti ons -in natural language. -A-procedure -On the other hand, relatively little-attention will-be
-has already been established for dealing-with this type :paid here-to detailed-computational techniques-which.
of situation, called succinctly the PACT algorithm. are-particular to certain -types of common data:fusion
-(PACT = Possibilistic -Ap-proach to Correlation and. problems -such as.regression -Procedures for com-ining-
Tracking.) The technique is ba-sed upon the -premise stochastic sensor information, or-maxirim likelihood
that all arriving information-can be--adequately treat- or Bayesian-procedures for-putting toge ther goloca-
ed through-some appropriate choice of classical or tion data: arriving from differento sources relative

-multivalued -logic such as Probability Logic, Fuzzy to a given target of interest. All of the aboye-men
-Logic, Lukasiewicz-K Logic, or some-(t-nori, t-conorm,. tioned techniques are essentially special cases of_
-negation function)geieraI--logic as-discussed in-a a much moire general combination of evidence approach
recent -text-of Goodman -and- Nguyen, Uncertainty Models on-which this pa.r ill concentrate.
for Knowledge-Based Ssems. Moreover, it can bee-
onstrated that"fo'---a large class of .logics-chosen,- In the past there has been much -dispute as to
z vcr-.icn of a partially specified-Probability-Logic whit -constitutes data-fusion. A reasonable three-fold
may-he-used instead. Indeed, other approaches to-un- definltion'has been proposed in [2J, which, except for

-certainty, such-as the Dempster-Shafer approachican a minor modification (as'shown below), will be-the
also be strongly related-tr, Probability Logic through- basis for the work here. In a related vein, mention
the vehicle of random set modeling. In" any- case,, the should becmade of the-recent (unclassified) survey-of
-tructure of the-PACT algorithm is based upon a- gen- data-fusion techniques [3.-The-basic definition for-

-eralized chaining-and dis-junction relation,_ which -in data -fusion, for-comlleteness, is--given:-below:
a classical: probabilitv setting reduces to -the usual
posterior probability description as a weighted sum -(i) 'The integration of -information from multiple
of intermediate prpbabilities, an alternative form of sources tb-produce the most -comprehensive and-specific
tBayes'- formulation. In the PACT algorithmjoint in- unified data about an-entity."
-ference rules are rfepresented--which connect various .. ,.

;combinations-of matches-of the intermediate attr-i- (ii) 'The analysis of intelligence information from
butes -relevant to-correlation (such-as geolocatiOn, multiple-sources- covering a~number of different events
radar pararcters, visual- narratives,,etc.-) to the to produce a comprehensive -report of activity that
consequential correlation levels between track his- assesses its significance. -The analysis is often sup-
tories. In addition, error relations involving these ported by- the inclusion-of bperetional data."
attributes--are also represented. (iii) "Intelligence usage, the logical blending of-

In the present paper, the-PACT technique is-ex- related information I--intelligence- from-multiple sour-
tended to the full-combination of evidence-problem, ces." [ "After fusion, the sources of the inputs and:

.,viewedas being- identical to the general data-fusion single pieces of information-must not b-e evident-'to-
-problem. In addition, data fusion is also -intimatsly the user." This-we believe to beitoo restricted, IRG.
linked:with internodil activity within a larger-C
-system. Here such-C systems are identified as -net- One of the-most common examples of fusion-of data
works-of interacting e¢eison-naker node complexes. occurs in-the multiple target-tracking problem. Here,
Somi general- examples of-data fusion in this context information arrives in disparate 'form. Typically, thisare-presented, includinga nw-approach toithe -use includes sensor information- emanating from possibly:

of marginal conditional-,probabi-lities measuring- valid- several different types of sources, such as radar,-
ity of inference rules via, "conditiohal objects", acoustic, non-acoustic, infra-red- and varicits others.

In-addition, non-mechanical:-/ human sensor sources
may be present -in the -form of natural language narra-

1. INTRODUCTION tives or-descriptions, possibly in-a parsed fcrm.suit-
able for symbolizations. Much- of the arriving- informa-

For the past several years, throughout many fields tion can be related to the -targets' observed or pre-
of science and technoaog3, researchers -have been seek- dicted positions, locities, or related equations of
ing unification andextenslon:of past results in-order motion. On the other'hand, some of the data may refer
-to explain realityobetter and to be able to predict -to other characteristics or attributes of the- targets.
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xa.-l.es of the latter include: hull lengths, vessel cision-makers, human- or automated, ,"terfacing with
shapes, observed flag coloirs, names, classifications, each- other in general. Each node--receives "signals"-
and- other non-geolocational sensor parameter esti- which-may be ordinary-communication s-gnals,- either
mates, from: friendly or-hoatile sources -(pos ibly unaware),

or which may-be-reiVed weapon fire. 'n general,
Nevertheless, as recently as a fed years apo, the these "signals" are stacked-vectorS cofirised of in-

great majority of approaches to -target data fusion coming data .rom several different nodes In turn,
were concerred only with target positions and other each node, which may'consist of a single. decision-
geolocation data and-ignored, at least in a formal maker or some coalition- of decisioxr-irr':ei; and which

way, most-of the other potentially useful stochartic may include passive type decision-makers, i,,h as
and-non-stochastic (such as linguistic) information. "followers-" , then processes the data.. This, ", follow-

For a solid justification of this conclusion, se!e -(4] ed by a response or action taken -towards oti;er nodes.
and (5],-where a comprehensive survey-of mul-tiple friendly or hostile. -(See Figure -1-.) Associated with

target-tracking techniques was carried out. For 
. *. "

comprehensive mathematical -trcatments of such "class-
ical" data association and correlation, seen(6], LOW,

e.g. For an exception to the above stateirent con- FRIENDLY
cerning the restriction of -fusion to geolocation-only AIRPLANE NODE-
information, see, e.g. [7],[8].[9]. FRIENDLY NODE:

3-DECISION-MAKER

However, with thr advent of AI in--the form of ALL STATIONARY __,.___\_____

expert and knowledge-based-systers, it is apparent ENEMY NODE: I
that this additional information could-be utilized. - -- FORMATION OF1
(See, e.g. (10].) Following the lead of medical diag- FRIENDLY NODE: TANKS MOVINGI
nostic systems such as MYCIN (11-, many such systems IEAMY ISQAD ENEMY NODE: TO ENGAGE
(not necessarily military oriented) utilize only =-,N TO EA . SECOND-LEVELX"
two-valued logic in conjunction with some use of 0, COMMAND COMPLEX
probabilities to represent confidences. On the other
hand, some approaches take a"softer" decision view-
point as to the nature of descriptions 2nd-employ - INDICATES INTERVENING C3 ENVIRONMENT AFFECTING
throughout some- form-of multivalued logic (such as RECEIVED "SIGNALS" AND RESPONSES: TERRAIN, WEATHER
the-PACT algorithm (12]). SECRECY NEED -

Moreover, data fusion is intimately related to - INDICATE NODE ACTIVITY AT GIVEN TIPME SLICE:
the functioning-of C3 systems. Indeed, in many cases, RECEIVED "SIGNAL" OR-RESPONSE
data fusion may be perceived as an interacting decis-
ion process occurring-within ach-decision-maker
node relative to the-entire-C setwork-of nodes. Figure 1. "Signal"amd Response Activity ina Portion -

Thus, any-ongoing work in ;he C -arena, must-effect of Two C Systems.
data fusion e~forts. Since 1978, :the annual MIT/ONR F
Workshop on C Systems - with its associated&(un-
classified) annual Proceedings - has serveo as one-of j THREAT LEVEL (TH)
the primary academic sources for generic ( studies. -ODE NO..OF MEN (NM)
(See (13] for a partial survey of these e Sforts. See NODE IMPORTANCE (IM)
also (14] for a more thorough survey of-C work, where STATER -SUPPLY LEVEL (SL)
many, abstracts, analyses, and comparisons and-con- EQ. OF OTIONf(EQM)
trasts of C- thecr-ws and rela-ted work -are Given.) (M) DAMAGE LEVEL (DL)
Surprisingly, relatively few comprehensive theories PHYS. PLANT CHAR.(PL)
of C3 systems have been produced, althoug h many val, IOOE -

uable papers have been-written as a resu.t of the CI
Workshop on problems of distributive decision-making, 'STATE -------- w;- -...--------------

hierarchical systems,corr4nunications and security, i ( - AVAILABLE UPDATED
multipe- target-tracking and correlation, and vWrious 'ESTIMATE OF OTHER
miscellaneous :Vrc thaCrf!-fc ':d aar sifr n rob- KWL DG NODE STATES (R)

lems. -Anong the- few theories of C- should be mentioned BASE (0.- ALGORITHSUPPLY (F)(41 ] and (42], the 15tter taking zrelated Vieo: offtis-or nj
Based upon the above remarks-, it is the author's J-IITERNAL NODE

conclusion that: STRUCTURE -(INS)

(1) -Data fusion,as commonly applied, is a process C.
occurring intranodally within the context of an ap- Figure 2. Components of C Node.-States.
propriateLy chosen overall C3 system. That is,fusion - .
occurs typically within decision-making nodes.

(2) All analysis and models of C3 systems must in- ( I NT-ER ,tA L DAT-A P'R 0 C ES S
clude subanalysis and models for fusion-processes. In YES (D1l) \
parti.:ular, this applies to this author's, proposed INCMING- 0=

.model for C3  s-'sle s l], . S MULTI-S C- L 
Q

(3) Data fusion in its most generic sense can be . - - DETECTIOI OF EVIDENCE/ -

eqdated uth the ccrb-ination of evidence problem, a I SE;SInG (0)/ ( DATA FUSIOU (FU)
well-known probler lrtsin5, In..e modeling of uncer- DU)-- -

tainties for knowlece-based systems. (For further ..-(D=-

elaboraton and backgrourd, see (17].) . - R--L ",O;
RI EPE C TE  , ALGCRI-THIH - HYPOTHESESRESPONS P., J tS . . . . FORF.ULAT.O N:/

" IF). , .,u, " OPT IONS/ .(). .
2. DATA FUSION, C SYSIEM.S, AND DATA PROCESSING I (F) DECISIONS (J

Previously, this author proposed a-bottoms-up, kN - 0 0- B 0 -0 R

microscopic, quantitative approach to general C3 sys- i - Fso as 0 OtE B 0 U N-VA R ;
tems (ISJ,(16]. in that joproach, a generic CJ system Figure 3. Data Fusion as an integral , c a 'cce'S
is identified as a netuork of node complexes of de- Rata Processing Structure.
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each ncde is the node state (see Figure 2.-) describing- DATA FUSIONJ PROCESS (FU) -

the-current state-of-affairs given in- terms of a--nurn-
her of functions such asthreatleveli equations of

motion, and supply-level. In addition, there is an as- IAL IENTAL IMAGING NATURALLANGUAGE
sociated knowledge base reflecting the node's local ECOGNITION- ACHINE LANGUAGE:-
knowledge of the t'ar nodgug (fiion:ly or adversary). IiFSELSIN AL r TRANSFOR ATINS,
Also associated withpeach node is its -internal "signalI Anderson & Bower, MORPHLOGY, CA
processing design, as described in Figure 3a Thtre, Meyer, Grossberg MA ROLOGY, G
data fusion plays a central role-in transmitting de- :aget, McDermott
tected "signals" tolhypotheses formulations, which in N PCOoPSyAkCavAlOey
turn through algorithm selection leads to an-output ; ILyoILPns, Montaguee
response to other nods (again, ts ay be friendly- PAR Gor adversary). 

SEPANTIC FULLFORMAL -TU LTI
,EVALUATIONS/ LANGUAGE! I Virogra ,Shn

Next, since we identify data fusion with the cor- LOGICS/ SYNTACTICS S G s
binino of evsdence, all of-the knowledgebasee system of BAS Initia S IgAl1
techniques associatediwith the latter are available. Scot". Bt nabou, AsIC MBlioT. I
in particula , this infers (see (17), Chapters 1,2 Zadeh, Gddel O AS A QUAN E STRINGSIWFF'S

uksiewic3 SYSTe n S ION EM S
and Figure 1, page 14) that a series of underlying i Snap o fetC
procsseseare involved in data fusion.oBasically st, -Eco, Korzybski,
there are-five such-processes (including natural-e iven f Morris
language in its broadest context) ,given below in se-

qunc f -nfra oicsi h implcatonA InpuAIC LOGIC DESCRIPTION PAIa l
gof ir n pheroceing: -_ sd it s t nne ve oI(AL oP)

() Cognition: Human and/or machine in recognizing-mong t r si-y .-
the-pattern of received "Signals(, recalling that tt
".signals"-refer--to either ordinary signals or any DECISION PROCESS- EXAMPLES OF ALDP'S
other received input, including-weapons fired. Auzz -- I - ( R)pLoL - CALLOGC,

(H 
Y O TEu 

rS 
ESA LuD Pe 

F o r mBti o n : rAi iL L g 
L O G I C

(2)NatralLanuag Fomultio: Tis s rle- FORMULATION/ ALOP 2 =(MODIFIED IlOOL.ALG.
vant to all narratives produced by huan observors. OPTIONS/ ZADEH'S F UZY LOGC (rn
Machine lanuage could also be put inthis area, if DECISIONS(H) L B R I
used-in the same-context. Parsing leads to the next is, e P 3- ( within OGI),
process: oALDPi4 = (CONO.BioL.ALG.,

(3) Primitive sybolic formulation of -data, iner COND. 'o411B. LOGIC)--.
cludingo strings ofwell-fomed -formulas accord ng( n NEWLY PROPOSfD ALDP)c y
to basic syntax, wit'hout-further-or refined-con- 'IN THE FIRST THREF ALRP'S, -IMPLICATj'0NlA IS INTrRPRETED
straints on structures. Formulations incoude-userof ]-AS - -WHERE (s '>C) - (6 v a) . IOR ALL PROPOSIT ioNS c a,.basic quantifiers-and-connectors: .,for &("and" or not voir &C LACEI!RA PSEUC COMPLEMENTED
conjunction); v,for "or" (disjunction)!-i )'.tfor 

tnotJstand, but(negation); _tfor "if thet - rplication). IE ATTla
(i Full formal -language formulation of data: Use Figure 4. Subprocess Expansion of Data Fusion/Cobinationc

of-rules of syntax, constraints on wff's, such as of Evidence Process-Connecting-Initial "Signal"
commutativity, associativity, idenpotece, distrib- IDetections-with Hypotheies Fnrmulations.
utiviptyietc. I

(tuFull comtpatibles(homomorphic-like)nseb tiantic
evauatonsor ogc cose (o mdelselcte).3. DATA FUSION AS A QUANTITATIVE PART-OF AN OVEkALL
evalatins r lgicchoen or ode seectM).C 3 SYSTEM AND DECISION GAME

-Any consistent or compatible choice of ao vrull
formal lan-guage (A)-and a semantic' evaluation or So far, in this-devclcpr.cnt toward a gineral-
logic (5)WwVe will call -6r algebraic logic description theory for'the fusion-of -data, only general- qualita.-
pair-(ALDP). tive-descriptions- have been given for the processes

Three -common- choices for ALOP are: involved. -However, as-mieoti oned befo-re, a-quantita-
tivevmodel_ for-generic C3 -systems- has :.been-establ ished-

ULP I (Boolean algebra(or ring9), Classical cornatible with~;these qualittv fori_.ations(I5J,
(two-valuedlLogic) wihipiain.116]. Inputs--to the structure consist- basically -of
given as ->-, where - ->a is identified ten -sorts of -known-relativye priini t~ve -relations PRIV.
as -0' V a , for all :J-Fr's R C. among the--variables describing a6 -C1 system. These var-

ALCP 2 =(Mo1dified-boolean-algebra =pseudo-comple- lables are :nude (N)hypotheses selection :(H);-detection
mented-lattice, Zadeh's (min-miax) Fuzzy (DY of incoming- "signals" '(5); alvorithn selef-tions-
Sets or Logic)-. -As above, M- = F;initiel r~oce respQnses IR),prfor -to r.nvxfrrr.rzntal

distartln-(Ge ant additive noise To each va-
ALOP 3 (Boolean-algebra, Probability Logic);:) - ale is affixed-subscrips -(9,k)- (or (hgk)) where

A fourth useful(Conriitional Probability Logic): g=(aO) -denotes- the--inti-fi!7ation of-a-particular
ALOP-will be introduced- later. In the past, often-only nd-nqeto intrsj th-C 3 sytma(red

ALDP 1l or ALOP 3-w!ere-chosen, in effect, to-the ex- ly or hostile) and n6de number i-, while k represents
clusion-of-multivalued logical choices. That is, either a discrete-time-inder. t ' ecifically, the-relation

,Clasica Loic o Prbabiity ogi~or omecombna-breaks down int -o-5 intrhnodal -(within nodes) rela-
Clicawold-b L o or rbbltye boicmore so corbine- tions, 2 internodal (between nodes)-.or re ression-re-

tionlawould bed choseneaton-o eaor thCai oe ocmie3 sytm.
information or fuse data, with little attention-paia ainad3pirrltosfrec yt

to te-fomal specs pror o seanti-evauatins.These relations-S -re express -ed in terms-of conditional
to te frma asect pror o smanic valatinsor uinconditional -probabilities,-as they stand, but(Again, vse -(43.(53--- the-resultS 11tb extended, with appropriate-replace-

Figure 4 suimrirzes the-above analysis of data rrents, ta .anmu~tiyAluIji i a 1 . -(Again, see
fusion. (15).) Then-by making certain reasonable -sufficiency

assumptions- among the -variables and utilizing-basic
properties of conditional-- pobabilities, it can be
shown that-each-updated no'de state can be obtained
explicitly in(prob'bilisttc) terms of the-other vari-
ables and node states--through PRIM. Thus, we have;

I- 756



nrem 1. (See (iS), Theorem-1.) klg,1gkgki.

Suppose PRIt1-_ and Ng,k are-as des-cribed-above -fJ(V (2g.-(3)gk+dFg,kHg -k
with PRIM~given in furthe deal r q.(.) over ali *11)H
(3.4)- and tables 1-3- Then under the-above- mentioned-
-sufficiency conditions,

P(gk g,k 9- k) 31 -k 10 gk4l "(Nqgk+lIDg,kISg,kilk)

where- 6 ?  is a computable functional- involving a -fi- -f(4)gk+I:'(9)g,k4I dRgkl -.Y
nite-numbier-of integrations -and-arithmetic -perations (oe ai
-upon,-the -elements -of PRIM k given-in Table 4-. g.k+i

k' -k -k- * (.)-
where- for Csystem a, g=(a,i),-etc., ((9 k~'(9k

R~ ~ J16 gl)~~ V(g.k lO~Igk~gk

and where (.)lOgk+l'(S
1g,k

Osk sk E 0((12)~)

(3.4) - 91-

The-numrerical symbols MS ~k etc. arc sftorterned forms ()hog,k+l- J(g~(h)
for tk:e primitive -relation; giv~n i n Tabl es --I-3: - G5 - (R )

______________________________________h.g~k+l= g-,k+l- ?rg,k+l h.k

(1) P(Hg9'0kJ.k g,k) (15) h,g~k p(R h,kiHWgik+fzh)
- f f(ll)..L~l6,.!.118)h.,._l dSh', dkk

(1616) _1 pCS9..,IN

(2)ove all f _'1 -l

g ~o kglk g overdail

() PM IF( Soe
hgkl- +l h -g,k-i withk g ~ (16 - 'p S

() p 1gi k+ oil (1)-=pN f) ~ - l'
hg,kWl Pg,k+l- f , g9 -Ihqk (I5h-1 7 ) hgk A.A h(8,k--l

Tbe b.easie-rimitaniv Isa a eltions.- (171

gj'lI~g~1 (h i))=h~k?(Rh)4-F,: o(qkIver I O)~,

hg,k+l PQ~~~)wt PM-

'Trepti bnter node at kyl.- sdvlpdv. tgk1
adhv Table-4r Structuren ofreinThormioTrog

g,k '() t

whaber2 e aie Prkliiiv te-rnodal Reaos. _ eu No0acltos novn§RH

4 RIQR/IITIAL 711 In--turn, a simple two-p rson zero sum game can

()-p(11) be established, called the Cl dec-ision game. Here.
0 0 Player I corresponds to entire CJ system a-1 l y

friendly) and Player 11 corresponds to-entire-C sys-I~ ~ ' h9 p(h'OI~l tern a=f2 (say, adversary). ntisgmeamoeb0'Player J-corresponds- I o-a-choice (up to-givencon-

(16) p(S 111I straints) of -~i~ IJ j:I,!1, and the-resulting
g, g, 0 loss or-utility-due-to any such ' oint move L is a

- function of the marginal updated node state listri-

Tabl 3 elalvePrimtiv Pror/nitil Rlatons-butions! according to Theorem I as
Tal . ______-rmiiv___ rlntil Rltin Lk(pRilI)*MOE (001 l% a;l gI)



=-MOE ({~gk(PRIMk)Iall g)), (3.5) iable Z is often present. Z-represents the vector ofk , auxiliary or "nuisance" characteristics or attributeswhich can 6e useful in-connetng, the vrblep

where HOE represents a single figure-of-merit, com- whinpbe f noting or e vra- rep-meaure ofeffctvenss moes) r esentinig-possible hypbtheies or-decisions as- to-what--bining-vaious-measures ofefectiveness-(oe's) or unknown-parareter value or situation-or diagnosis is
performance (mop's)- for the two C3- systems. (Note, that occurring. with.input.data S and-detection-state O.
although ideally the-entire joint-node state distri- Thui for-example, if"We are-physically inta- bunker-
bution-of the-two C3 ssessol esuh, ~ Tu o xwli.w-rfths is dfsystems should besought, i-11 a C node- S may be observed loud-noise, with D-lpractice this is difficult to do,._because of-the breat (definitely-detected), and W!could have possible-do-
cambinatoric computations-involved.) Typical moe's main values say dom(H)-(H1,..,H5) as.given-in Table 5.that could be used include;averaged-measure of import- " 5___ __
-ace eie- meaur o threat IF
ance k aver dmeasure ofak upper H=no change in revious situat-ion
bound total entropy -'IaI ; and averaged measure of- I n c

ak H =-enemy is about to mount the-promised bigperfo-mance k all computable tLr.ur. i(Ii)'s2 offense
ak - S- fes

ior t3 syste- r.; ty use of Theorem I. (See also [15], H, =-enemy is just feeling us outeqs.(Sg)-(6z).) Then one could let
H4 =-enemy-wants to negotiate

PeOEa k z MOE 1 4 
-E 

2,k(3-6-I' =-none of the above situations hold-where

MOE 1 A I + x2 Ha4k A -fak Table 5. Typical Set of Val,,es fnr dom(H).

X4-- ak , Thus,dom(H)-could serve-as a legimate.-sample

space, if conditional .probability p(HID,S) could beand the .'s are some predetermined weightings. obtained-for all possible values of H in-dom(H); i.e.
Symbolically, the C3 decision game appears-as (HaOS) could be interpreted-as a random variable

iven in Figure 5: over dom(H). in -this case, suppose also that Z is an
P 3 auxiliary variable representing any-of a likewise col-3 PlayerI (Friendly R y, tem) lection of disjoint exhastive situations locally go-

PAyer-aryIl 3 T ingon at the bunker. Here,let dom(Z) be given as in%Adversary C Table 6 below:
Sys temn)--

TypicailHove: z nothing happening

PI M Loss= Lk (PRIM = accidental explosion in-compartnient11

__Z 3 -accidental explosion -in-compartment 12
Fu 5 yr Z= enemy-sfot missile-at us and it either

S-Figure-S. SyPEoltc For for C-Decision Game. hit-usor just-missed-

Finally, one can-then -pply all the usual -game- 5  none of the above situations hold
theoretic methods to-this C game, such:as seeking
Bayes decision- functions for moves, least favorable Tabe-_._TypcalSetofVauesfordom(_).
strategies (all subject to practical constraints),
minimax strategies, the game value, and-various sensi-
tivity measures. It is the long-range hope that such Thus, again-by disjointness-and exhaustion- itis--reasonable tO--conclude-that dom(Z) could-serve as
a-cqame will be-a useful decision-aid in-planning co- is-easonabe toclude atdZc ul d ereas
mand-strategy. At present, a- relatively simple-imple- a legitimate sample spce.and Z-can-be interpreted as
Irentation scheme is being carried-oui for testing the- a random:variable. All--of this leads to the evaluation
feasibility of such an-approach to C systems. (See of the conditional probabilities p(ZIDS), which-to-
[feasibily uh dtan gether .ith the-values- for P(HID,S):can be used-to[ obtain the standard "integrated-out" form-for the post-

erior distribution-of- H-z given-below.
4-. STRUCTURE FOR-DATA FUSION: THE-CLASSICAL

PROBABILITY-CASE p(HH.IO&S)=Fp(H&Z(ID&S)
3-- "

With the general- C system context for data P(Zi!&S)-p(H IZD&O&S )  (4.2)
fusion established in the previous sections, let us
now return to the task of developing a general quanti-1
tative structure for data fusion. In linht of the pre- using the standard-chaining property of conditional
vious rerarks (again, see Figure 3), fusion isa pro- probabilities ad -replaclngthe antecedent comma no-
cess intermediate with ilitlal sensing-and hypotheses tation by-conjunctions. One could-reasonably interpret
formulations, within-a C node complex-of-decision- the.evaluation in (4.2) as the-probability value-for

-makers. -In addition,-the fusion process decomposes in- the-expression
to-natural subprocesses -(see Figure 4). Thus, in "If andS,then H." (4.3)
essence,-we wish to expand the first relative-primi- - -.

-tive intranodal relation appearing in Table 1 :through the probability values for the-expressions

P(FU) = ,P(HIOS), (4.1) "If 0 and S, then Zi" and "If Zi and nand S, then H"

where for reasons of 6onvenience from now o: ,e sup- (4.4)-
press the denotional-time indices, unless necessary.
As stated before, p need not necessarily refer to ord- Of course, one needntt use the-above evaluation ex-ny ractly to obtain-useful equivalent values. As it.stands,inary prbability, evaluation, but may represent other P(Z.ID&S)--can be interpreted-as an-error-or variabilityevaluations such as possibilities for Zadeh's -Fuzzy pro_-ability for-attribuJte Z,while-p(H.Z&OSS) -can be
Logic or-for more general multivalued truth systems. understood to mean the inference rule lroabilityco,-

Indetermining the above evaluation, another var- necting 7 and-O and S-with H; On the other hand, often
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Lite Lutua i uonav Oa La -or regress ion probab iIi ty -and -the variables -S and-IZ are -known, then-the
P(sliZ&H i) -and the joint prior probability p(Z OH) -P(Hj I Z, 6CS)_,ai_ be -comp u_-ted in (4.2). For example,
are-available,-assuming here 0=1, which-by use of -if the-aj, given the Z.SCSS are all-mutually statis-
Bayes'-theorem-also-yields p(lHHj0 I&S)-. One standard tically Independent. tAen-

result is -to assufre thc above- probabil ities -are- (H jz -05) I_ p- . I.0 54
gaus-sian, -which in -the discrete problem-here,-must W k -M~IYOS
serve as--very rough-approximations- in-addition, thekl
sets- dom(P)- andfdom(Z)- are nrot easily ordered scm- and in-general
rettb: :*it. in real domain -for ga-ussian -random- var-
iables'. Then, -if the mean-of the~conditional-data -1 p(HjIZ18D&S) > 1 _ (5.5)
distribution is linear in-the-data 5,_p(F.8Z. IJS) 1~
takes ona- generalized-wei~htied least squ~reJ orm.
(See, e.g. -[181.-) The--final--result, p(H:-H.jS), as -in and-tht! computation in--(4.2) invol ving- summing- over
(4-.2), is then-a mixture of the-probabilities of th -oii of a is-n loge v-li if Zlorp

such least squares estim~ators. sents,.as-H,- possibly complex-overlapping-events.

One approach--to redefining the-problem here-is
S. STPUCTURPE FOR-CATA-FUSION: THE-CLASSICAL -to replace the, in ,general,ov'cr'apping P.'s-and over-

PROBABILITY CASE HO0D1FIED -lapping Z.'s-by suitable -partitionin-g ofatheir-domain
spaces-ana then-recompute the-corresponding-condition--

Retaining the same terminology as-before, sup- al probabilities-in-(4.2) involvina-the partitioning
pose-now-that-H,Z,S-are variables--Such that any of variables. For example, -for conveni ence, denoting-
the-corresponding "sample spaces"-do not truly con-I
tain-disjoint exhaustive events; in particular, the (l.51,-.6
disjsintness condition may-be violated-more-often for-any subset KrlI,-or equivalently,-KcP(I) (power
than- exhaustiveness- which we will assume here is class of I, the class of-all su-bsets--of 1). define
always satisfied. Then it follows that-simple-cor-
responding-probability measures as in Section- can- H(K -- u H SD,-57
not be immediately assigned. Nor should "brute- K]-jcK jcI-K -

force" normalization- procedures be employed, -unless-
absol utely- necessary. -For example, -consider H. Sup- H U)-(H l.;ck) c P(do().
pose in the above example-in-Section 4 (Table -5), the ()-o()) 58
enemy could-simultaneously mount-the promised offense Thus for-K=O,
I(H )~ yet also-be feeling us out for peace (H,), or
evgnwaddi tional ly, wanting -to-negotiate (H ). Thus, in H~0  -( (5.9)
t hat case, dom(H)=(H H Y as it standl, is Ma a- [1 )=o-
suitable sarple -spac1 oFdqsjoint elementary events, for WDj, je!,
Indeed, the elementary-event -s P. are-not-so element- 1.0ary, many of them, due to- coulplix- -causes, -beinig -over- H( 1) =fI. , 510H
lapping! Equivalently,-H- in--its current form-way-not D 2
be a-'1eoitimrate--random~variable. What to-do? end for K:I,-

Note first ta itsreasonable to assure t.h-H dm();H 1  n .;(51-
the simple labels H. really re-iesent cowple 1p,1.enorr-
ena and may be bettor described -through fa-ctors con- and for-exan'ple, for K=(l-,2,4)-,
tributing-to them. For example, solme fic&ors for H
in Table 5 are-. HEK H1 n H n H , (H -u H) Y 5.2

a. = Mz.ortance of nodelery

a I re lative :trenoths of us and then., Clerly

a. past and present in:omning salvo ra-te, tHoJk S4. H[K] t-#- (S13

a4  duration of-war-to this point, is a disjoint-exhaustive -partitioning -of i1. ln a sense,-
whatthe nemyknow abut u: ioatio~, is the tightest-disjoint exhaustive-partitioning of

a reset eaerknwabuus 0-which-generates back all H.'s- through-disjoint
a6 =peetwahrconditiris, unions. Thus " can serve as 3a-sample- space in place

safet of initial do.(H); the-H.'s are in general-overlapping
a7  lee-oriainlv,~compourd events of H. Sikiilar coament-s hold for Z-.

prev2ent accidents;
a N x..xa7,ioeta1 77Notethatthe-mappings H __:P(I) .. P(dom(H))-

Then ideally, in turn, given-enough-of these r- P()-(Daeinctv(Io-it),factors, define rigorously the H.'s in terims of ccm- an H( : P(I I()aeiicie(-olIt)
binations of values of the a ,s.3One sirple approachfoal-stsuh'a-i -C-Hn whvete
is to-det'-1rine the natural homains-of-values-for tt fo l-KI uhta I -Hne~ehvte
ak' s , dom(ak ), kzl,..,7, letting bijective relation for all K such H(~ IE

and 0 dom(a,)-x.dorm(a7  (519 - H~K] - H(~ (5.14)-1
and ~ ~ H b. 71q M:aso . dH= i - x bj-7 S D , c'r any jell define the~filter cls f .,6I ore point coverage class rf H., as

where- .a C is .aererrmired by Hf., J .
-- the o'e n P.* f.-t-e H1.'s in se-ai Gi:.; -c(H Hrics

appear, but r ar wilb lrfie, i.e., in qenera.. d / o (515

H jni 2 define a

Clearly, in this case, if all- ;tatistical releticsdenesmlry
between th'e rnw1v-introduree facter variablas '. F-S 0).(~iCc q / (.6- (1! I J rK]



-ijote aiso tnat mnW riPP1ng9 I- )omU.-'Po(i coirplex-and possible -over-lapping natures -of the

and -F :dom(H) -. PP(P) are injective. Note,-further, events in dom(h), then by letting L' be any uniformly
£ 2distributed random-variabl 2 ver (0,;1) and defininc,

for any d h ietv eain the-nested random subset-S of dom( by-

H = _U( 1 fjiFI -Fr IN - F (H1  (2) d- -1

S(Kijrc-sI) H57 -_1 poSS1
1(CU'lJD:

* Now let (P,5,-p) be-a probability space-and -(H jid poss (H-. z- U), (5.22)-
V2:a -- V be a-random va-riable corresponding to H*

(a IZ.&D&S). In turn, define random subset of it -follows -that for -all Vcl ,

* dom(H),, S0)1 :f - -P(dom(H) ) -where for any w- c P, ~ H (c if2o) 1(~ ,(.3

S-'- (H.jjcI,W(w) c P1) (5.18) whence there-exists-a legitimate probability-measure
H p:PP(dom(H)) -- r-0,11 such that

Then it follows-that

11C H. ff. or (V2 C llH] Jos1 H) I(Hj-c SH) (S2 G(H )

iff c~ , or/ 0 ( (l) I p(s (2) H (5.24)
Kiff KS or HO (K)'- jcKsI H (K) -

ifS~ FH Remarks.

iff- 0 (.19)Note first that-the two -defiitions -for S11-will=
(5.19) differ in-general in structure, but-are both (among

many other possible definitions for-such random-sets-
Hence £17), ~Chapter 5) one-point-coverageeqiantoth

Theoem 2 Iee:[9); 17]pp.39-38.)-given- arbitrari'posslbil ity function over-dom(H). (For
Therem2. See (1); 17JPP.79.8L)comiparisons of--choices among-such can~idate random-

For all ici-, sets, see (20], where entropy-is used as one-criterior)
Each-domain value-H-. is naturally -identifiable-with -the

0) filte class . G(1  qontaining-all possible sets of-H-.-s
Poss(J -JW- H ( having also H. -in them, i-.e., all possible--sets

(HIZ i 90S)P (52)interactio ns H-~ -j- in K. Thus it -is -not- unreasonable
*tha t the given ~dssibility value assigned- to 11 .- can

also be expres -sed ri gorously as a-probability 4involv-
-the next-higher order interaction doomain.P(doin(H))

lhe-significance of this theorem will-be-more above dom(II). Agaitr,_ as before, -all -results- hold- for Z.
apparent below. Note also that uple -ss don'(HY is a-
disjoint partitioning-itsel-f-of 0, (5.5) holds; but In-aword, the-possibilistic or-general -fuzzy-set
it always follows that approach -is seen -to--be essentially a wakened form' of

(5.1)the -full randomset-approach, where~any-ono -of-the one
Sp(WcP -(.21 point coverage -equival ent_ random -sets S is fixed for

KSIthe-modeling over P(dom(H)), replacing dOWN). This
dom(Z) relaced by-can -be thought-of-as- being: somewhat ainalgu 0 ' h

Again. similar results -hold for dmZrelcdb-situation-where a probability- distribut ion ecsctribino.
a-suitable space resulting-from-appropriately chosen-aFolmi nyprilyseiid uha-pt
factors, the mean and variance.

On-the other -hand,_often-we do not-know-all -the -Finally, hiomomorphic-like relations (involving the
relevant factors-or subvariables co~tributing to one -point -coverage -retlations) can be established-be-
given-compound-events and even-if these-va-riables can twe- ubrof operations etbise amngpossi-

e inpintd, ftn w-donotknisthrirutinarl d- bil-ity functions ,or -fuzzy-sets,- representing generab
mains or-perhaps-do not-know the ditiuinlr-ized unions, -intersections, and other set.-like opera-
lationships involved, etc. Thus-the technique of con- tions _ and correpndn-odnry -set counterparts

strutin diecty aprouct pac , uchas fo-Happlied to- the -one- point -coverage equivalent random
as above, may not-be appropriate. sets-. (See, e.g-. (17-], -Chapter 6.) Some-of -thes e re-

lations- will -be- used in-Section-6 for-representing
However, we can-still make the basic idertifica- dt uini-em~ftegnrlcmiaino

tiorS -in (5.14) and (5.17)-.-soicre we orit all the ev-nepolm.(narltdvein-, see (21) -'or

square--bracket expressions. Suppose now that-prob- some recent-work-using-random sets in modeling p:rob-
abilistic evaluations are available _turh-as lm.
p(H.jZ.&O&S)_ and p(Z 109S) for all i and-j --but that ln.
theipolsible overlap~iing nature-of the compcwnd e-ents
i,."aken into-account. For example,-these calcula-
tions -could be obtained -from- experts -by olliclting 6. STRUCTURE FOR--DATA FUSION:THE GENERAL FIXED

the individual/marginal-:possibilities occurring with- ANTECEDENT CASE
out' regard to the joint--or-overall occurrences of the

reiaiin eens.The rcuits c-f the-previous section point up
remainin events.some-of thce difficulties involved--in: evaluating -prob-.

Can-thes-e individual probabilities-or possibili- ablte frapaetfijitelementary' events

ti= -be- ade-cor.patible Jn-a rigorous manner with -the -which are'in reality.-compound overlapping and diffi-
previous-random-set-construction? The answer is-Yes. cult -to define- precisely.

Theorem-3.((17J, ChapterS5) -Following--the philosophy of approach--outlined in
:do(H)-(012 s a fuctin, erhpsFigure -4,-we- will establish-a general procedure for

If- Poss :oP -101 is.. tratn th obination of evidence-problem, which
representing the eXpert-opinions of panel, as hurran reduces otepoaiiyo osliiycsswe

integriltors of irformation, taking- into- account -the appopria-te. Ideally-, this procedure-shoul--reflect-
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co g~ition :(box-1- in Tigure-4), the -first stage -follow-- Next, two- more- res trictive assumptidns are made:
Ing-initial "signal" detection, but -for purposes-of (c-hintcdn f PImpicaticn- is distributive
simplicity- this 1will -be omitted-in- the-present paper.(c Thanednto

over o6r'!; equivalently, a--homeomorphism-exists rela-
Iln-particular, consider-the- 'ruciav-expression tive toor" -for a_- fixed- implication antecedent. Thus

Q-for-data: fusion appearing as- pri:-itive igitranodal for any-propori tions -a,9-..,o -
rel ation (1) in-Table 1,. sans the probability evalua- mmIn
tion,and--in-natural language form: ( (v .)= v( -).(12

Q -"If 0 & S, then-H". (.111 =1 -

:In staboltc- form, .herz - -represents A-, v reo-re- -(d)- -Implication chains -relative to "P'. Thus- for aby
sents "or",. ) represents "not-", -4 -represents -impi- propositions- a,B,*f

-cto,'T(0.--v s-8'61 (Y J6) (iyB 4 a). (6.13)

~ "os H) -(.2)Again, it can-be -shown -quite- readily tI:-ffrst 3

Suppose n ext, the following-two basic properties -ALOP examples_ in=Figure-4 are-such tat -their -formal
hold.-for -the natural-language used: langua -ge-components satisfy as well (c)-and (d), when

(a) -Letting T 0 represent-abs.olute truth,-for any-pro- (6.14)oni itrpeeda
:Potllion a, , 4 (.4

a-& To Ct -(6.3)- where for al-,

-ie., T plays the role of a tmultiplicative-unity w.r. (B *) "i(5' v a). (6.15)
t. " and9, and can-be denoted w.l.o.g. as 1. Dually. (See Examples- 1-3,_ Section -7, -where ALOP- 1-3-are -pre-
we can assume the existance-of an absolute-falsehood sented -in-some detail . -For ALOP-4, :see Section.8.)
-F and let it play-the role of an additive-zero-w.r.t.

"Sr".Theorem-4.

_(b) ""psea fomllngaeo nd 'or" are-commutative and-associative Sups oml agaeo roposi tions- satis-
with-"6 being distributive over "or". -fies constraints (a) .(b),(c),(d). S uppose also- that

variables D,S,H-Z -are to-be -inteepreted as before in
These- properties are quite mild and-will serve the general senseand-are such -that (i) and-(ii) are

-in no-wayhere-to restrict-our choicp -of ALOP Calge- satisfied, -then
:braic-logic description-pair). The four exaeples -in Q V 6Z DSH- (.6Figure-4 all-satisfy-these-conditions. 2." c v (Z;,;) -(.6

0i) -Suppose also- that--at'iltiratry ,tt-vrxl Z , where-for all -- in dom(Z).
used -to connectD-and-S with H, is-such-that

-. or (L-T.(6.4) -6(zi;D;.S;H) -- (G-S 2)Z-.H)_

Equivalently, dom(Z)' -o(ZD,)(HZDS. -6.7
Equialenlythis means-that the possible "values" of-;,)hHZ;sS (61-

Z are exhaustive, even-if they overlap. Symbolically, (jD) -Sa 6.8

v (Z.) =I- . -(6.5)
Z. c dom(Z) 1 can be interpreted -as an -attribute variability-or

1 error form and
-(ifl Suppose, further-,-that:Z relative- to-C.S,and H,.(; 1 DS Z.. )(.9
is sucii that

can- be interpreted as- an, inference- rule connecting Z i

2.he Q ="If- S65, then P or 0" , (6.6)_ and- HI.

0i or RZ & ot Z .(6.7)

Z. c-dora(Z) Thus~from the -remarks preceeding Theorem 4,_ the
- formal language for-Classical Logic and-Probability

In-many form~al languages, the Law'of Excluded- Logic. bool ea n algebra, with -impl ication -given- in
-Middle hOds so that for all propositions a, 61)(.5,aife 6)(.9. Siilrl, h

modified boolean -al gebra-- representing -the -formal
a nt~) .(68 language-of Zadeh's Fuzzy Logic (mina yp)as

satisfies the -above -formal relations for the decompo-
But-in many multiple-valued logics, such-as Zadeh's sition-of the-key -expression -for- data fusion-Q.-
zFuzzy-Sets, (6.8) does-not--hold, and an alternate
-condition m ust be sought to obtain the-desired-Fe- In turn, we seek the full-semantic evaluation-of

..suits-we seek. (See also Example 2, Sectioli 7.) -the data-fusion expression through -probability- or
Symbolicalliy, possibility or other means, compatible with the re-

sul ts-of Theorem-4-.

QwD- J(H -v(6 9 In -order -to accompl ish hr above goal, we first
where review some concepts which may not be too- familiar to

- V (Zi & Z. ~ (6.:c) many. Def ine a -copuia o-as a-mapping - -,:Cln{~
Z. c don(Z) 1which is the sam-e as a cumulative probability-distri-

Thenif w appy-(a,(b)(i)bution function over (O,l]n-such that each i-rrlnzl
The ifwe ppy (),(),(),ii) to -(6.1). we distribution, -of one -dimension-corr-esponds to a-

obtain in symbolic form random vartable U'. uniformly distributed over [0,1].
icl_.,n. (Copulal can-be used-to solve elegantly the

. (O-S v ( H-Z*. v Z ZZ1 Y (4.11) irp-ortant problec of determining-all possible joint
2.i c dom(z)1  distributions given-specified marginals. See (22].)
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For-purPoSe of simplicity-here, define-a co-cocula- with b(l) zmO and-R denoting- -the- extended- real line
aors amapping o :(0,1J"-{O,13 which-coincides -including +a uhtht sumn h above-pair is

with--the disjunction-probabilities-corresponding to as eogn
the conjunction ones for some given copula.-Thus if- -1
U. is-any-r.v. uniformly distributed over (0,1], for A- t, h(minrh(o).-1h(x)) (6.28)
1 n

--and (V',..,U ) has some Ilegi timec tJoi nt i
distribution, -the.. d~ difined as- follows -will--be a
copula and- t- definldbelow-will -be the co-ccPuia conversely.- any- such- h as-above -generates a- legitimate

ccrsprd nfrto d., archimedean~pair. -where -the -t-norrm--part--is given -in

ror any c, c (01,iC
o- N1ext,- for convenience define -for-all j,j-

&C...:, (&(U 's c1),(.0 DiZ UsiZ -629)

* I Z, 9K) ; Z 8 9-.). (6.30)
-. ~~~~ v U 1)Z-D-S 4 H)-..;.S .3

d'r.l-Then make the following-semantic evaluation of
_,lardr)+.,F~r) -(6.21) -preserving Ahe formal structuire in Teii-e-nT

where-anaaiOopus to previous-notation ps( Q. =po( ( - a-H)

(y) ~khcK),(6.22)-= or$(1po5sz().pOsS (a M)).

by use of-the modularity or-Poincari expansion proper- IY(6.31

ty of prcba -bilileL (ror further-properties -of ccp-u- In particular,Aftc evattt'tf. o. 1Qusing Webd~'s
las anc' relatee fsUrctions, see e.g. (17], =cction original fuzzy-set theory-or FPuszy-Logic is easily
2.3.6.:1 Consider aisc the following related concepts: sent be a special case of-(6.31), when

Definri-r also-denoted as a - Ma- =m *o =mx (6.32)
ping 6:Ol~-!Z' which- is -associative. co_-Uta-
tive, n on-decreas-r-2, -continuous, -and possessinc-bound-
ar" cendit-on: _ More-~ geealy h PACT- algorithmn [12],briefly

7 4(.X C0(6.23)- ally-a-special case-of the data -fusion-evaluation
for il. srs , ad sch -hatgiven--in (6.31), wherenow OL--and Cor are-in certain-

2:-min.(6.24) paraisterized-families-of conjunction and-disjunction
z m. (.Z4 -unctions. -In thrPACTal gorithm, data- association or-

'correlation' is -to-be determined- to hold or not -for
Similarly, define a-t-conorm-as the decorgan transform a- feasible- pair-of- developing -track, histories. -where
of some t-norm in -addi tion -to -geol ocation -i nformation,present- may be

~ ~ I- ~(l.x~-x ~(6.5) other attribute- fos. -A -typical- example -is where
cr ~ ~ ~ ~ (.5 a 'nZrersnstefloing poterntial matching attri-

,.., c 0.1. Alo,-c~i~r,-ar -1re&rn, butes for the two-tracksi71l and 12)-:
for all x n 013 Jto Ean cIicc_~

t-nora- as a t-nor-- whfr: for all C-cx'l, j~eolocatbon-paraceters for 1, for 12'
Isensor-system paramieters for 11for '2

0- (x~x) -x W 626) Z hull-lengths for 11, for 12 J(6.33)& classifications for-fl, for-12
dually, define a t:-conorm-to-be archinedean iff ~flag colors for fl, -for 12

C ox% >X (6.27) I.lso, Jor -this -exaz'ple,-H- (deroted- in (12! by-e) rep-
for ll Ox~clrtsents-carro'latict level between-11 and-fl (between
Ifor~~' -al-O-~ d 1 whten evaluated)-, white 0=1 is assumed andS

Consider somr. examples -of conjunction and disjunc- rerset obe-e (i eror conedr o Te
tio fuctin pir beng opuasor -nocs ~the inference rules poss (8-.) correspond to some-x-I

pert-derived (or deredy~ anlyi oI psiacopuias or t-conrers. cons iderations) relation- between some coicbination of
Firs, i shuldbe otedtha (mr,,ax)anddegrees of matching attributes in general with poss-

(prdirosum ar h-e-oy suha funcionsm whcndr -ible correlation -levels- H ; the term pos's (a ) rep-
(proprobua)are te:only- suh fnctins hichareresent error distributions -between true an-otserved

both(copula~c~ouaatnr~coronr 0iul a-iir trbtsZ ATcan operate upon-a-mix
taneojisly; -further. the latter-pair is also archimedean fpoaiitcifrato-n trbtsadh.

-Wher-proddenotei ordinary arithmetic product,-whle ofpoblstic informationand attributes ad sbo".
probsudenotes 'forr-al -probability "suz' (dsplayirng -in (6.33), where-typically the first, second, and
Aidularity-of probability)-as t1ic-dr;:crqan transform possibly the third entries are in stochastic form,
-of prod. (See (233, Section 4.) whi le: the -remaining -entries are narrative-based and

-(prodsum) is a -nor,-der-organ zrc!eean- pair-. -given in natural language. The-basic PACT output.
where-suG- is to be irterpreted as -ordinary arithoetic before- further -integration -into- an-overall tracking-

sum bu bonde- b unty: he attr i a -coorccorrelator design, is the posterior- descript' Mn cf
bUt not aboud-b-co ula. h lte sa -oor correlation-based upon-observed or-reported-d-ata fn

but-no-a co-opula.valving - the track- history pair -in -question, as is
-Finally. to cor-plete this brief prelimfiary dis-rersnd-I(63)b s(..

cussion,~SA th motn aoia EVZXIentatio teor On the-other hand.-if-we-choose
for srchinedean pairs-of t-rorms,t-conorjis, states -that
for anty such pair (c.sr.there always-existsa - 41 prod .0or su
respohdlng-contirnuous rcnrcercasir.S fc.-ction--h:(C,lI4-R



then (6.31)' reduces to the classical probabilistic (5.31)-and assuming the-con~tructions -in (6-.-35);-(6.39)-,_
daita fliion-eValuation given-in (4.2).itflos htfral c-

Next, consider the-evaluation of data fusion-as -os0l) osA ( S )$
given in (6.31-) when 0-is any copula and 0o is -the- j _
co-copula determined by-O & as-in (6.21), compati ble =p -A n(s a 'iSj4_0 )

with -the--data flision problem-as modeled -here-. Thus,-(.
11~1.rt h s-cli eape-giv -en-in Section-5, -plaus 0  -(-(6.44),

sir~~~il~~r toMSjifceapbut with- generality in mind,usfng (6.29),(6.30),_let-
(fixing I and-S) where plaus5  S denotes the-plausibility or upper

dom(CO = ajiliei)' dom(Z)- (1icI-), (6.35)- %- So-
dom8) ''domZ),doml)probability-measure with respect to random isubset

dmo-=(8 i itI-,JcJ)=-:'dmZxo( SOX S 8 of dQM(a)xdom(O).

= ((Z1 H i)-I i CTI cj) (6.36)

where L-and J are- suitably chosen index sets. Rmrs
Let Ud-krud 

e(U* 6.7-For-related-results and-general backrud e
utic, (637 17., Chapters 3 and 4. Shafer £24] independ'ently-has

JCJ- developed use_-of plausibility measures-and other bi-
be-any-stochastic process where each marginal U. jectively related functions, such-as "belief" and-

1- 'ecott'easures in'model ing- combination of-evidenceand V1,1 is some-random-variable uniformly-distributed problems. However,-Nguyen [25] has emphasized, via-
over[0,]. Thendefne ando suset S o do~a)Choquet's Capacity Theorem which-characterizes such

and S 0-of dom(S) by , for all il,jcJ,- a functions in~-terms-of both their random set connect-
8ions and thei r generalized Poinca-r6 expansion forms,

ai C S a1ff V_ !; Poss ,(a.) (6.38)- that such "measures" require fall -speci ficaition -of
1 the associated random (sub) sets Contrast such-modeling-ai i- S CLiff U 1 > poss (a i) with that-employing- possibility functions in-a general

and multiple logic context,-as given-above, using-some-pair
-0 c- iff ;-Po 0-of =conJun ction and-disjunction functions. -As -shown--in

iji -So i 8 1f V1 iPos( j -(E.39)- the- previous section-and 'here-, the- latter approach only
8..- i ff_ >. po55 8(a ) in-effect requires-knowledge-of the one pointco -verage

13 8 lj iifunctions-of the-relevanit random sets involved. Even-
Note that if the-V. are-all lidentical and-iseparateiy, in 'Theo rem _5,_ where- an- equivalent -plausibil ity descript-
the Uij are ill idintical, then ion is given,.A 4is only specified-over -the 'A- s. In-

short, er~y plausibility--meas-ure is deter-ied -
S~~~ =- rm)ln)e-6.9)-by the

a- s S2 S -()(63incidence funcdtion:.-of some appreopriate random-setwith
all :ordinary subsets of -the- space -any !-eliief -measureas-. given- in Ttoorem 3. -Determine *&~rthrough U. is -determined-by the -uest- eages, f- a_'random
set; any--doubt: measure -is determined -by the subset- cov-

Then- it- follows that the evaluation-of~data erg~e of a -random-set.
fuson-In 6.3) 'ecoesuslg:(.21,(635)(6.9),In- any case,- -Theorem 5 shows -that a -homomorphic Me
.y) (.)card(K)+I -N. (40 ain e-xists -between the possibilistic icdnefr

Pos(I 40) of data fusion evaluati on as giu'm -cri." 10Y- !n(6.3l)
0fRI nd thecorresponding equivalent probabiiity- form

where -for all- subsets -K- in -(6.44).
0d O((iscsC( )p(V. :poss (0 Y)n)6.7)
*6K (pUjps Ua) If in(.7, instead of -being ci-s.~' identical
icK -1 8 jfor all Xi -. rsepa -, rately,_ _is su.:h. that all- Vi

are -statisticll y independent of : or! h-r and of all
-P( &O(Ui_ poss (a;~), Vij:poss8 (t1Q-)-) U which ar.-a aso all independent-, then *_,- resultin

-icK' S. and- S. are-not only statistically in e-n~ent,. but

- p( &((. a ) (e cS) ~ (641)are-the miximal -entropy-one point equiva'ant represent.
P ( W a C S ( e i i - Y ) ( 6 -. 4 -) a i v e s -r - s a n d p o s s 8 , r e s p e c t i v e l -I. ( S e e -[ 2 0 2 .)

But, using-the Poincare-expansion-of probabilities, I nte ietotefloigiprat

(6.40)- and (6.41 ) -yield- asymptotic -result holds for -the data fusion expression
in-(6.31'): Noting that varia-ble Z can represeut a- cor-

poss(Q--Q), =- p( or ((a. a SI-&(a.. a S) plex of attributes,- some probabilistic in nature,
-J icl 1 3 8others l inguistic-based in nature, -so that their de§-

criptions -can -be possibi-istic but- not- orobabilistic,
=-p(- A. n(S-x Sjl 0)-, (6.42) partition Z accordingly-into

wh'ere
-A'I., -il)(7z1H ic) wlher2 w.: .;r 17 is- the vector o~f ~ zcat-

A - i81.ulaI)(( 2H )IcI} ~tribtes nc V' is the vector ci -^ r~s
i I-i~ (643)ones. io-te that by -the cannnical, reoresertEirn theor-

Noting--that the-expression-in the right side~of eq. em-entiorcd in Section -6 (see eq.(6.28,1,i- en arcfii-
(6;31) can be- written in a natural way-in terms of medean t-n-rmr, t-conorn' -pair is chosen for tha ev~lua-
possibilities analogous to that in (6.43), we obtain tion in (6.31), then-poss(Q) becomes a -rotone trans-
the -followlng' result: form Th _ say, for generator -function h of ~,of a
Theorem-S. surd of terms over ici, where

- ivnvaials ,S~and auxiliary variable Z -
as-before, then-under the assumptions 'leading to eq. ~h~x~-l h (i~()x) 6.
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to~r all x c. R4, and the i Ith term i=0lJI), is The somewhat similar, but mcre general structure

h0l-;t(poss0'(Z' ,G(z'.'til)) (6.47)- for such systems is given in eq.(7.
a i - 11 - dm ( .)

wi~ere a is partitionedl as Z into (a',a") and - do (i(,HjSak Z,-;,D

il~,5  c *o((pos ,.) pos)64 represcrntincJ, (nHS:) ), where fo-llI k-, 1k and k k

Note that dom(V')zis finite ,as--well as all other .are,possibly expert-derived, boolean functions ,l.e-..
% aains of relevant variables, in order for finite ar- -combiliations of operations : -v_, ( ).-

%,-ument iunctions *& and % r to bezwell~efined. Inl some Next, to complete the general data- fusion theory
,.ases. trese finite domains are -the-result of discreti- again referring to figure-4, we-must choose-an ALDP,_

tc-ons and truncations of initial natural domains i-.,,a pair consisting of a compatible choice-of
%;Wach are infinite and/or continuous, especially -those formal language followed-by a semantic evaluation or
Locrresponding-to continuous probability -density logic.
functions. In this ccntext, suppose-all protabilistic
cttributes, making up-Z' are-such that they correspond -Consider then-as reasonable candidates for the
to actual protabilllty-dansity functions which have evaluation -of (7.1l)-,ALDP 1,2.3-as in Figure 4.
11 been so discretized as above. Denote the symbol
lim (Po~s(Q)) to mea-n that the limit of-poss(Q)ill E xampl e I1. ALOP I

cov(Z'.R

1-e taken, if it exists, as dom(Z') and poss., are re- ALDP 1-= (boolean alqebra-0 with-J6.14) val id- for 9
fined so that-all1 cell- sizes approach point limits Classical (two-valued)--Logic -)
and thus poss o, approaihes a joint p~d.f-. form Tecluu-frltosfripiain o
crrespornding-to random variable -(Z'ID). Then-we Th aclu-frlain o implitons for:
ca~n show the following: the formal language-part here, Piola-it 61)

For ala ;,oOCfil.. m , 2, -.
Theorem 6. Asymptotic limiting form for data fusion.

-(See-E261.) Mm

Suppose that all of the -above-assumptions hold i=1 i. I M
together wi th-tome mild analytic conditions for themm-m -
dl'chlmedean -t-norm. t-conorm-pair *'orchosen -for 1 (8 al)Y( v Of, a v *.dq( - 1 )).( 7 .3)~
the data- fusion -evaluation -(6.41)._. o 11 1- 11 =

Then -Thus, iIf =.Oca=m.00 then (7.2).and-(7.3)-be-

Iim-(po~s(Qnfl )) T(vE(( Z'H , --(6.49)- come homomorphic-relations for fixed antecedents:
dom(2-).R m  j hhMM

-i ne re 1=1 i 1

h' 1(-d h(x)/dx) ,l (6.50) - m - m (.
und all. OA:51 -x (6 CL =( C L 7.

, ) ( x ,y) /3y)y=0  J 6.51)11 1

and WhIereEdntsodnrsttsia epc- -But negation is in-general -not a.- homomorphic -relation:

t w.r.t. rY. 2', conditioned on D&S throughout. 0 o a o - oEdntsrlaysaitcl xet-( )p B6(~-) 76
V.1lere Z- corresponds -to -the limiting p.d.f. for Al so,- for all ao 6.fl 0 -fln. (7-7)-

Thus, up to essential ly-monotone transforms, the -Consider now the-semantic evaluation part. D..!-
I miting form of the data fusion-computations here nctir. tile evaluation of any proposition variable a,
is an av-raged value-of the-data fusion with Jorly)fixed- having- domain -of possible-(or not) values in fl(dom(cz)
comain- attributes Z". Further simplification- to the CL~sfnto-as_:o~a <Ol)fray~co~
t-lassical integral (and continuous)- version of (4-.2)
cccurs when the fixed non-probabilisitc attribute cam- pass (a.) 0, i.e. -a1  4
ponents are missing. These resul-ts zcan be~-used- for 0 1(7.8)-

pdata checks when modeling via (6.31). (See,e.g. (12).) or
For other-controversies Involving-probability vs. p055 (a.)a-- i-.e.- a. C a

fossibil ity vs. -Dempster- Shafer belief,doubt, etc.,1
-see [17-J,(especially, Chapter 10).- and variable-a-cdn be identified-with a- subset-of fi.

7. .STRUCTURE FOR DATA--FUSION: THE-GENERAL a- Ja.i c dom(o 1 )-poss-(a )=l ).- (7.9)

COMB INATION OF EVIDENCE-CASE Wi th-possC playing--the role of an-ordinary set member-

Let us return to the formal language--aspect of ship functio0n. ThenClassical .Logic, as a truth--func-
cata fusion as- given -in Yheorerr 4. In general know- tional logic (see,e.g. [27) for -further elab -oration)
ledge-based systems such as medical diagnosis ones has the follow ing-homorsorphic forms , for all proposi
c,,rnsist-of a collection of -inference rules corres- -tion--ariab es (n iial o l rpstos
p ,nding to I(H;Z,;D.S) linking either observed data, a,P: posb max(poss_ .PossB ~ (7.10
such as -0,5-or p rtions of intermediate var-iable= Za
h.Ith other portions of 2 or-with diagnoses directly, pass.- min(poss_ ,possV (7.11)-
played by the role of' variable H. Similar comments
hold for the attribute variabil-ity term g(Z1;D,S). p05501  I -posse$ (7.12-)
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0 ,-poss 1  (7.13) -ference -rules -in the k:.owledge--based, system, -multiple-
valued -truth logics can -be-avoided.

and-hence

poss 8  ~ max(l-poss8 , poss_). (7.14) Example 2. ALOP 2.

ALDP 2 =-(modified boolean algebra il with (6.14)_
where in all of -the above equations-, all -functions arc:Zdh m-a)Fzyt~c
understood to be-evaluated at--arbitrary conrion-domain. ae'-11i-a)FzyL~c
polnts-7component-wise._ As -mentioned -earlier (again, see-Figure 4 and-

The usual presentation --which -is equivalent - isassociated remarks in Section 2). -"modified' boolean
through-truth tabl-es,-but the-above dslyallows for means a. pseudo-complemented (distributive) lattice,

-ntra enrliainst Zdh d-(isplay)Fuz or roughly a'boolean-like-system ,without the Law--of
Laoral enraliztin to2dh. m-ax uz Excludedl-Middfie and--all its consequences holding.

Logc n AOP2.(See (28L.pp. .14-16 -for a related'discEussion. (28)'-as

It also follows that the-semantic evaluation ofa he3losrsasagdInodtintoads
the dta fusion form in (7.1) becomes here: da-Fuzzy Logic.)

poSS(nAQ) = poss -(H ) The-calculus of relations -for Implications -for
DeS ) H i the formal language -part here. , , is -the same -form-

ally as .tAh t for Ql as in Example I-, except for the

=-max ( mm C-max(l-^ 1  following-slight modifications giver. ir~ the-two
Z c dom(Z)(k=l,..,m)ki statements (I), (II) bpltw:

wtere for all k,.

pkij P05(zi.Hj;DS) --(7.16)- MI ) The-middle equation -in (7.7-) will- be val-id, p-
*D 5 vlded-that a B0 S *i-.e., a otherhSe in

pkij k k (Z IH DS,-(7.17-) general it is n-ot-true.

and where the expressions in (7.16)--and (T7-17). if (I donte emvee t hecneun f
necessary, can be evaluated further using -(7lo)-A7.l4~ I-- on the lefthand- side of -the equal ity for the far

right- chaining msquation in- (-7.7,)-.
But since we have here a simple-two-valued .logic,.-

eq.7.l- ) reduces to: Then the, semantic -evaluations -Prccide in formally

-poss(fl) -1 iff there Is-some attribute value the same-way as-4or ALOP I-, but -here the range of val- -

"I __ uesof eac -h possibility function-is I.tn-the unit inter-
Z. uchtht fr echk.-k=l,.m val V[0, 1] instead-of being restricted-t te set

1 (0.)latdatZH.D, J, -replacing (7-.81-. Thus eqs-.(7.g)- (7.l7) all re-
(42 kk) we-vlae atiHJ. main valid here. Eq.(7.18) and eq.(7.lg) are no ionger
S, is -true,i.e.. poss.Zk~lS val-id in the context-of ALDP 2. On-the--other-hand-,eqs.

Ok(7.20)41-7.22) hold here, with appiropriate-modifi[ca-
:1~~~ j* or e~iaety ~ DS all tidons'followin gtlos6 in (I -Il)abov.

tire inference rule N(fk k) . eith-
er 1k is false atthis eva ~ation Example 3-. ALOP 3.

(vacuous antecedent being satisfied)-
or mrore non-trivially, k k is true ALDP 3 z-(boolean algebra q with (6.14),
for this-evaltuation-, (7-.18) Probabi Iity-Logic)-

- SQ ) 0 iff no such attribute value Zas Since nl is the-same as- in-Example 1, all of the
4 above-exists, relations in iqs.(7.2)-(7-.7) hold here also. Cn the

(7.1gy other hand, the-semanitic-evalua~ion aspect - Pr,:babil-
ity- Logic -differs considerably 'from he two prev-

Alternatively-, o,.a can evaluate-(7.1)-, by first- ous examples. -In this- non-;truth- functional logic (see
directly applying the calculus of relations for in- again (27). especial-Iy~lapter 2-, Sections 26 and 27
fcrences in the formal language ((7-.2),(7_3)) and-then for-back wound):-, we have the usual basic (finitely
evdluate the -result semantically. Thius, additive? )probabillty- properties, -for a- given -prob-

ability meastkreiip:fl - [0,I). playing the role-of the

PoWsQ=Q.) =poss(qH.0,S)A(H ;D.S))- seranticeivaluation-poss, in--the two previous-examples.
.1 i (1Iii order--to usie-the more -standard notation. -p is-used
= max(l-poss(q(H.;D,S)).poss(4L(H ;0,S)))- in-place of pKssj-0nty for purposes of-ompar-itons-the

61.20) - flwigvelknown ,proflerties are given:
where m- _M For -all--Oroposit-ions a-hc r

q(H;D.S) d Y(ki'. *-j v 1i
Z c-dom(Z) lc=l i k -pta v a plcx Y + pf ?0) 130~.) .7,23),

(7.21) -0 0 -0 -
th'e modularity property, extendirng to 'h~e

arid mn exp-ansion, used pire~iously- In 'his ?:er.-a~~r
v ( kk.. ), (7.22) all ~i,.,~C fl,letting !n (ii

Z I-c dom(Z', kfl 1  
-

wtiere, in -tursI.(7.l0)-(7,.-l4) could be used- to evaluate- - n Vlo ..Y)card(K)4l .P(-&~ ,.4

further poss(q) and p055(41, which .,f c ourse should iJ=I) WsK n icK
l.'ad-back to ( '.15-) anJ-Ctius (-.18 ).(7.191. asa-
check. p(Ud Z :1 - p(O -) *(7.25)

The philosophy of approach in this example is
that for the-modeling-of data-fusionjin the ConL.eXt -PC) :0 . pO1 (7.26)-
or medical- di6nosls. f'nr example, although truth-can -resultinq in the- following evaluations -fr iimpiication
only be 0 or]-1, by introcucing sufficiently many in- (by(6.14)., for- 0 )-anfd some less-Known inequalities



involving conditional probabilities: p( 0 s ao ) p(B') t p(o ) - p(Bo o

Ii(B % p( v o ) l -p((vo)'). 1-p(6,o ) p(B) + p(o0*6), (7.35)

p( 0 1bo) 1 P(o,16) - p(so *) for all o0.8o c rs, followed by use again of the basic
(o ) 0P(- )  

pruperties of probability function p in (7-.23)-(7.26).

00 00-0 0 0 Obviously, in the aboye sche.mes, the number-nf
P(co: ) + p(t,6 o).p(6.) computations involving-pobabllitlesof theconJunct-

ions or relevant events or propositions can be quiteI 6cJ.) (7.27) large and~as well ,lt may be difficult to evaluate

each-s'iLh conjunction, unless some simplified depen-
- o , (7.28) oency-or other relations are essume&-or-certain-of

the events. As a consequence ,-s~vvrds te(hniques
where Ithe conditional probability is efilned as usual have-been established for evaluating-combination-of
as, e.g., evidence in a krneledgc-based system, when-narginally

p(%oo) 9 p( o.eo)/p(6o), (7.29) one has availahle estimates of probabilities, or rela-
pted certainties or likelihoods or confidences, etc.

provided p(ao) > 0. for each of the inference rule forms (jkij- kkij).

The above inequalities are strict,in general-,and Some:of these procedures are ad hoc in nature, others

show thatbasically, we cannot Identify implication, are more analytically-based. For a-compendium, see

as defined in the formal language (n) via eq.(6.14), (29].
-with -a "conditional object" such as :(c 1 -). otherwise
this would, -following evaluations by-p an- making the
-natural identification 8. DATA FUSION AND CONDITIONAL OBJECTS

Wooled) P(%Ib), (7.30) In Section 7, we have seen how-a general infer-

contradict the inequality in (7.27). Hence-tne behavior cnce rule structure for-data fusioncan be-evaluated

of conditional probabilities, while roughly resembling through three different approacbes ALOP 1-3. In-all of

that-of the probability of implications is not the these, the-key connector for inference 2 was Inter-

sane m indeed, one-canby choosing judiciously 0 preted in the formal language~components as + as
close-to o in some natural sense, make P(8 0) ogiven in eqI(6.14). On the other hand a natural - and-ccome-nly ose in seomei naturatl -sense makeerenec
approach unity, while for the same choice of ao, commonly used - semantic evaltion-for inference

p(aIB)-approaches zero. The sgnifiIcance-of these rules is through conditional probabilities. That is,wil-.. nfc.c-os .t evaluation of a typical -form (Jkij kij) is

results will be explored= further in the next section,

where-we develop an ALDP-(4) where formal implications p(kkij-lkij) for-some choice-of probability measure

ao !6 can~be identified with-"conditional objects" p over i,-the set-of all events or propositions, which

0 aI- ), whose sem-antic-evaluations as in-(7.30) are for-purposes of simplicity, from now on is assumed to
( , whe sbe aboolean algebra. With this ctoice of evaluation,

conditional probabilities; but in light of -the above apropos to-the spirit of this paper- we seek a formal
re.arks, necessarily these entities lie outside of the -lang-age which :ll1 be compatible with these evalua-
original space of:propo'sitions P. tions,i.e., will form-an-ALDP.

Returning to-the data fusion form in (7.1),--the -However, asrpointed out in the-discussion in the
semantic evaluation for-Probability Logic becomes, previous section-centered around (7-.27),=on cannot
using first (7.24): and then (7.5), identify implication via- (6.14) with conditloninq

as evaluated in (7.30). The apparently commonly-held
p(Q- c) p(D.S 9Hj) belief that such an identification can be -made ith

S 1cardfK)+l ,1K) (K) no serious-consequences, often called in the -litera-
= o ) Pqj :p j), (7.31) ture-of logic as Stalnaker's -Thesis-[30],:was attacked
0tK-dom(Z) by Lewis [31) and independently by-Calabrese (321. The

latter indeed showed,by-use of a simple canonical ex-
which-can be further evaluated through use of (7.27) pansion, that not only * in- (6.14)-would-not work,
(euality part) in conjunction-with (7.23)-(7.26), but any boolean function of two variables-could-not be-

where similar to -(7.21), (7.22), but differing in- the used-to play the role of conditioning, cdmpatible

-operations involving Zi, with-conditional-probability-evaluations.

v " j (7.32) -Moreover, it wouldbe particularly desirable, toqj v (732
kij kij replace this rather flawed situation, with an ALOP(Zic K , i Zc -K , which would yield feasible computations for data

Ik c ) fusion or at least be-on the same order of complexity

m -m as AI.DP 1,2,3. Note of-course, if truly all inference

ruleantecedents-are identical, as -s the-case es-

(( 3 sentially in Sections 4,5,6, then there is no real
Ili 'klj (7.33) need to work with conditional objects, since all- con-

- K ditiocd events dzn be simply considered as uncon-
ditional ones relative -to their Intersections with the

k / fixed common antecedent, or one can stick--with the
In interpretationof implication as in-(6.14). Compatible

Alternatively, by using both (7.4) and (7.5)- from with this result , note the homomorphic relations

the calculus of inference relations, and then applying for implication 4 w.r;t. disjunction and-conjunction
p, one obtains the sane-as (7-20), with"pose' replaced - but not-negation - as- given, in eq .(7.4).(7.5).by"p. Thus,

But,for the modeling of-data fusion through in-
O(Q=n = p((H ;D,S) :&(H ;D-.S)), (7.34) ference rules with varying antecedents, no such-direct

simplification occurs and the-development-of such-con-
which-can be-evaluated through the equality part of ditlonal objects;would address the problem. Although
-(7.27) or through the expansion we hive stated above that implication op- ator - for

a fixed antecedent yields homomorphic relations- for
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v,&, but -not (iconditiona I pro babilIities- are cornm;IA= ly +
P-tible with -homomorphic relations holding -for all 0 00.

three operations, for -any-fixed antecedentJi e., ob- o 0- 0- 0
viu~y fral 0 0 C (x-Y' I -& *y jIx c f?) s--a- (8.14)

P((a 01y0  1 p(o0 b'- ) (C p'y)'Y, (8 -1)Y 0 0 0.9
000 0 0 the-principal ideal coset generated by-y' :,ith resi-

- 0
IJI(a % 0 )V(60 I 0)1) =p(cv-0 0 y 0)T (8.2) due -0
p((o01'r0)Na- I10 ) P(603 !) (8.3) Eraf: Use -first- tlhe basic -homomorphism -theorem for

quotient rigs and thea q1al..nce-clas-s property
Recall also the-operation-+over fl-, which in- of cosets apled-to (813).Ain se[4.

trsof -.* sfor any- 0r .0 0£ Ca
0 ~ ~ . P --0 ~ ~ (.4 hs o fixed--antecedent even-though, as

0- 0 stated earlier the r~sulting conditional objects
and-conversely,- could-be identifi ed as subsets or- subevents-of th-e-

o~v~ ~(85) antecedent'.(notingq Stone's-Relprientati6n Theorem),0 0 0 00nevertheless the-actual- algebic tutrso
a ao + I. (8 6) -these entitles-will 1 be-of non-trivial use: Suppose
a we wish to-perfor-m boolean operations-6n-conditional

objects with differinq- antecbdents_; how--can this be-
Thus there-is a- biject-ive rel-ationship 'between accompl ished, _oimpat e with the-results in-Theorem-
(nv P( ), a-boolean algebra-and (n,+,.-,--a boolean 7?

ring. (For f~urthecr discussio-n- and properties, see [3313 Previobs work in this direction includes:Hail-'
Furthermore, recall the Stone Representation- Theorem-penr 3 JwhexnddsmofBoesrina

([33, Captr 5)whih etablshe anorde-prse~- ieas-and-develooed essentially -the same entities-
ing-isomorphism between any~given-booliian ring and--a a s -rcduc'-d here-, but from a-different--and 'mo~re-
corresponding -boolean- ring- of actual sul'sets -of a compl-icaled-perspective- with,.relatively, little-
fixed universal-set say X-where the coirespondences atninpi odvlpnoeaosaogcn

hod:ditional objects--with different -antecedents, using
-~ ~..~- ; -~( P~retric set difference)-; the technique of-universal *algebras and "partially

0 -~~ ;v-*u(set-union)-; -define "operators; -Droo -8, h olwn the
direcfionof*".;.i, itiative-probability structures",

~- n (sqt- intersection),; -as used in-Ipl'eference drderings an-d- subjective-proba-;
I -)... on X-4( ) (set complemenet); -bility, develo'ped-rather-cornlicat-ed-expressions

(partl orer ovr ~- ~ (sbsetfor combining-conditioialo obec -,not realizing -the
5 prta rdr nvrr) 4 suetrelation) -rich- structure inherent 'in -such entities *Adams -[39),-

(8.7) among othes -in -the l iterature, who considered-- con-
.ll ollwingresltscan~e iterpete inditional logics"-which-appear A0 be somewhat related

terms of o in su tscan-te-altrpti boin -to the6-conCepit produced -here, -hut -di ffee-cons iderablyterm-ofordnar subetsan d~he lt--natv6-oolan in structure; and-Calabrese {32]- who -wa-s--appareantly
algbraor oolan ingstrctuesthe first to--attempt to--develop-directly--conditional-

-I:olnr, that also, for any- 'i ~-bjcs from a oical -conse-quence-vlewpbint,- which
- o ocan ba- shovii-to-beequivalent-to that given h- e(eQ36-J
p~o 6 ~) ,(8.8 V~i~n2?;but Calabr~ese prop6sed-ad hoc-definitions

oP ~ o os f)=Pa6'00or boaolean operations on conditional-objects-with

the-next result shows--that under :-. L MI. z-redsiqp1e -varyin'g -antecedents.
ccnditions, ccnditional objects are essenti al-ly char- -hI- the- approach -taken -here, 4eveloon -all re-

acterzed:suits fronm-jist~principles considerations, thnr-
Theorem 7. Characterization-cf *.'ncitional objects- qie-oe'T~i pncnitoa ojcsaedfn

- 34) -ed s imply -a -the natural--class rr- ~ntws
-tensions of- the original operations, Thus, frn exam-

Given -boolean ring-f:, there is a unique space -p~let- 0a0 ;Y , 0 .6 0 c fl arbitrary. XThe-natural class
.- of smallest possible -classes-ac-cording to-subset exe)o ofnapidnwt~ 8 ( 6,'ot-

-partial or-dering-dootvd e.s -the cornditional objects 0- 0 B 14)
(" li'0  (6 Ii ), (' 0 k),.. for allI a 10, -9- 9C -i9 each-conditional object is in-reality via 8l)

0 0 0 0 te0000asbe fa ilsc 0i such that th-measure-free counterparts of a usto-n ils
(8.l-(8.3)- and- (8.8) -hold. -that is , (a Is,)- (Y' 16- (q - -rlqc(o 0, -)r~yij

(a0 Ii')' (a y 0) 1 (8.9) ((X-6 + a -)(Y. 4- + -iV~

0p o -0 0 0~ 0 j-0i
lca ji'0-) v Ce "Y f" (-~ 60I (8.10) ~.(.5

0% 10) ( 0  00 - 0 sn The basic structure of :-'e-condittonal! object

Mr~ equivalent -to (8)Yi.l' ~e can require-eqs. etninao ~i ~maie er
(iNI1 and- TheorerT-8. Bar'c !,tructure of [-74],C3S5,[36].

-(0 Ii' ) 4 -(6 ly z (C.", I F(8.2

0t od n 0 V 0 (' 0 0 -(i) In terms onf quotient rings,

(a I.,) (o "r Ii' ). (8.13) Y rr' 0 cr.

Specifically, such conditional objects conSti- (ii) Conditioning as defined here can be idntified,
tute all possible principal -ideal cosetsof ring P, essentially as 6he functional inverse of one-sided

wher forany 0 ,y c f, cnjunction,i.e., conditional- objects le y all sat-
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isfy- the basic relation -analogous to (7.29) for -velopment of- an outer -approximation- technique to
conditional probabil-ities and a-related condition: force -closure for znon-boolean -functions , infcludifg-

arithmetic -operations -over conditional objects;_-rela-

ffd -vari 6le." and a randomized versilon of- conditional ob-
-jetsr, ad-establishmeni of--vaious--probabil-istic

(~ v~- c.. X 0  0 (81)cnecins cit r i-cstire-free--ind-.pendence;-meas-
0 0 -aure-free bayesian -and-se-q u-ntia-l ea~rnih9-,forms;-_ and

(ii-i) The natural class ex~ensilans ofl-all boolean -the proof that the-extension-of any-probabllty-
operations frorrlT tc are wcel -de fi n-e7closed with measure p:IV-_ £0,1) to- p: (0[P,1)tirotifieq-(7.30)
ring-like progertics,i.e.,_ in the sa'ne previous -Yields for-the extension-a-mo notone -functidn.( -Again,
sense, F. is a rodified Iboolear. -Algcbra. se 34]-(36], for further details.1

(iv) M ost- importantly here, analogues of calculus-o,
(8.1) sows randiatly hatrelations for ALOP i (eqs.(7.2)-(7.7)) hold for con-

since fo ati am I ~~o objects ,-as Theorem- 8- shows . Moreover, -the

(aIl1) .(o (8:19) hypotheses -for Theo-rem -4 al 1-hold here. At this point-
~o -let-us define-ALOP-4, for a given, bool ean- algebra Ri

(v) Alsc, partial order :5 defined over S1,,!1.aracter- -ssml
ized by--, for any 0 O C~ c o ALOP 4 =-(5,p), -(8.25)-

if 0 0 0 0 l f 0 -0v -0 ( where-p:fi - (0,1) is the-conditional-proba -biIi ty ex-

can be extended directly to 5i with the same charac- itenpsian is- inerree -[OlI -as ctondtioin i e o

tferizations as in (8g.20)-where('unconditiona-) ob- almlicato is inepee as-odtinni2. o

jects in C are replaced by conditional ones in 5. ol o01 E.
*nen,cornbiring this with -(iii)- and 00v) establishes (.~a- (a

(,,( ,;)as a natural extension of-its o- 0- (8I80a))- (8.26)-

unconditional- counterpart 01,.v,-,( )*-(Note -that imPlication or conditioning here is- re-

(vi) A basic-calulus of operations is-, in~addition stricted to- be upon unconditional elemon ts, i e.- el-
to the-properties in. (8.9)-(8--13) for any-oiy* £cfl, ements-of fi-, nottupon-other prcperly-conditional -ob-

rn I jects. Some~results indicate-a-possible identification-z
il..r, , maM m -, -of i terated cninditional- -formns wi th -simple -Conditional

v(aIy.) =(-v a~Il v-o .tr' v T Y ),(8.21) objects(E3GL]ctio. C~ - that inr a- sense- this -re-
i~l- i~l i~~ sticton~a.Xbe unnecessary.)

M -n m -m- -Finally, consider-use-of-ALDP 4>in evaluating
(oiy) Y 0i v cx- -r v -Y1')(

8.22) data fusion expression-Q in (7J):

Direct- use of. (8.21 ) a.-d- (8.22): show that
Mr. n m A
4-(i1y) 4C -:1i I-- -1 i) . 8;3) -p(Q-71)_ = PC v .~Z-~ _(kki-jlijkil)

Noting the reductions; of (8.2l)-(8.23)--whenZc
antecedent Y1: =-=yff=Y 0  - as in (8.9)1__8.12),_ it = p(A(H j PD, t) 16(k ;D,S)vq(H i ;D1S))_

follows that all boolean-operational extensions
over r. coincide-with- corresponding- coset operations
when restricted to-.a fixed quotient ring, here- 8.7

-f/C -etc. wtere q is giveh--i eq (721)-and- (.7

(vii)-As a special- case _of- (F.22), the following- -(.DS m ki.kij) 82)

chainfing ~condition-holds- fcr alle 9 s c: &(jDS v kki-k-)l 92

(00.6 I = (S 1 e I' 1.0 80y (8-.24)= Zi C dmZ-k
Thus, due to the-calculus~of-operations given in

Proof:-The most difficult proof is that of-(8.22). -Theorem 8, computations -for data fufion- using- ALOP 4,
Z--s~teh-of the proof for the case m=2 is given -in- wvti implication -interpreted as a-conditioning,com-
(35], Thecrcm 3.1; a full- proof is presented ir% (34] patiole With-conditional probabilities, appears no

where All-other proofs are-also given. -more-complex- than-that-for the other choices of-ALOP's.

Remarks. 9. CONCLUDING DISCUSSION

Apropo -s -to Theorem 8(i),it fol lows- that- allILmar
results in the theory and application of Linear Siay
(w.r.t. * over v):booleah-equations,-such-as pre- -

sentd i (4~canbe einerpitedin ermsof on-This-paper -presents a number of results contribut-

ditional objects. Extensions of- the concept of con- -ing toward a -cohesive -top-down-theory-of data fusion-.
ditioning to more-general structures than, boolean,InScin1agerl vvewothdt-
such as modified -boolean~or Vor.-leusmanr regular,or I eto ,agnrloeve ftedt
to- a- category- theory setti ng,have-been cons-idered -fusion-problem isprtesented,with the -conclusion that

(34). data -fusion is identifiable as the combhin-a~on o-f evi-
dence occurring-within-decision-nodes of C -systems.

Manyothr mtheatial popetie hae ben-In Section-2, qualitative relations-are sstablished

derived for conditional obe ticluding: char-, pinpointinqth rOle-of data -fusioninCste- -
actriztios fr o~ecspecially as-perceived by-the author in previous-work

conditional iobetweantecnt n -obncs eee (see Figur~s 1,2,3), *here dat,; fLtrlcn is, a process
objets woseanteeden an conequece within a C decision-maker node-intermcediate with

are al-so -condl tiondl objects. extensions of- Stone-'sinong"gal-ecinadhytes-eeto.
Representation Theorem to-conditional -objects; de-
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Also, the concept of an ALDP-(algebraic logic-des- a disjunction of conjun tions of Inference rules with
cription-pair) is introduced as part of of the -total antecedents and consequenicei- in general functional
evaluation -procedure involv~ng datd- fusion (Figure 4). forms involving possibly~al- four-relevant varaibles
Three important examples of ALOP's-are given,-corres- D,S,Z,H (see eq.(7.1))-, essentially the same structure
ponding to- Classical Logic, Fuzzy Logic, and Probabil- as-a general knowledge6based~system, such-as used in,
ity Logic where in alimp'jcation-ls interpreted as medical diagnosis or parameter ,stimation. A' lculus
a disjunction-of a negation and affirmation. A partic- of opErations invclving.implications is reviewed for
ular quantitative counterpart of the qualitative model each-ALOP and then applied to thi-evaluationof- data
given in the previous section is presented in Section, fusion (Examples 1,2,3). Finally,-a fourth ALOP is
3. In this-model-, the collection of all updated-mar- detcir.ined in Section:8, based on interpreting-infer-
ginal node state distributions (in either the classic ence-rules through conditional probabilities. For con-
probability sense or in a multivalued logic sense or sistancy, this requires the fil development of--a
broader scope) is shown to depend functionally ion es- calculus of "conditional objects" (Theorems 7,8). It
sentially -ten types of primitive relations Cinte is shown that this ALDP can be succesfully used to
probability iriterpretation, they become conditional cwlutt, dita fusion probabilitieswitha- level of
probabilities) arong the basic variables determining complexity of calcula tons not exceedn2 that of the
the C system in-question. These variables include: alternative methods,,but here allowing rigorously for
S, "signal'nodes N r R, response of nodes; O,de- conditional probability intarpretations of implica-
tection state; H, hypotheses selection; and F, algo- tions.
rithrr choice (Theorem 1). In -turn, this r~sult is
used to establish a zero-sum-two perssn C decision Future Work and Open Problems
game between adversary and friendly C systems. There,
each game-move corresponds to a choice of the ten In this paper the-cognitive process phase has
types of primitive relations, up to feasible and com- been used-only implicitly in-the e6aluaticn of data
patible conditions, and the resulting loss due to a fusion distributions. Future-work will be-directed
joint move-by both players is soRe figure-of- merit toward more-direct use-of mental imaging'and related
based upon moe's-and -rp's,,which are in turn eval- thought processes. This is because-in addition to the
uated through the node state distributions as a-con- "formalistics" involved in translatingdetected-sig-
sequence of the primitive relations'forms(Figure 5'. nals- (or "signals", using the more general sense)

as shown in the sequence of processes in Figure 4,
In Section 4, the-quantitative-expression for heuristic processes may also be used, possibly short-

data fusion p(HIDS) (eq.(4.1)) is considered for the ening-the-process path or providing alternative-means
classical prubability case. An auxiliary variable Z as for example in NI (Natural:-Intelligence).
is introduced for the evaluation, representing possi-
ble -characteristics or-attributes which can be used Alternative-structures -for data fusion may-also
to connect-D-andS with:H through probabilistic con- be investigated -as opposed-eg., -to that given here
ditioning-here. This results in the-wellknown weight- in (6.16) dci (7. in formal' language form. Recursive
ed sum of conditional robabilitiesform (eq.(4c)). compjtations for-general- data: fusion may-also be-pos-
In Section 5, two-modifications of the classical- prob- sibi,.analogous to the-well-known Kalman filter or
ability case are considered. First treated is the rela.ed maximum likel-ihood forms. in a similar vein,
situation where variables Z or H in actuality are progiessive chang for hypotheses distributionsbased
not random-variables due to their"sample spaces-of upon newly-arriviig-data-may-also be-monitored t.roughf
elementary events or domain values not representing entropy measurements. Details of this-have-yet to-be
truly disjoint (and exhaustive) events, but where estatlished-for the general case we seek here.
the relevant subfactors contributing--to these - in
actuality,'compound - events can be-determined at :Finally, conditional object theory must certainly
least in a full probabilistic sense. This-results, in be developed- further, if only to be able to better
effect, in random set descriptioereplacing the treat iterated conditioning and required approxima-
original "distributions" for the variables (Theorem tions or -truncations of- computations- for data fusion
-2).-Next, the case where not all subfactors are eva'uatin.-V.nma&ethrough conditional probability
known-is considered. In -this situation, iflexperts evaluation-ot inference forms,i.e., through ALOP4.
are available, possibility functions-can be gleaned
for-the overlapping or vague events, whi'h .rn
effect, take into account the possible joint occur- 0. ACKNOWLEDGMENTS
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