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The problem of-data fusion:is in areal sense:the problem of how to model'the real world with all of its great
complexmes A miniaturized version of this is the multiple target-tracking and data-association-problem. Theré,-a nurnber of-
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-probability setting reduces to the usual posterior. probability descnptlon as a-weighted sum of-intermediate probablhtles, an:
alternative form of Bayes’ formulation. In the PACT algorithm; joint inference rules are-represented which connect various
- combinations of matches of the intermediate attributés relevant to correlation (such as geolocation, radar.parameters, visual-

nairatives, etc.) to the consequential correlation-levels between track histories. In addition, error relations involving these
- attributes are also:represented.

In the-present paper; the PACT technique is extended to the full combination of evidénce problem, viewed as'being.
ldentxcal to the general data fusion.problém. In.addition, data fusion is also mtnmately linked with-internodal activity-within
a’larger C° system. Here such C? systems are identified as networks of interacting decision-maker node complexes. Some

general examples of data fusion in this context are presented including a new approach-to the.use of- marginal conditional
probabllmes measuring validity of inference rules via “conditional objects.”
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-K-GEMERAL THEORY FOR THE FUSTIONTOF DATA

i.k. Goodman
Command t-Control Department

Kaval Ocean Systems Center
San<Diego, California.92152:

‘Abstract

The problem of data- fusion is in a real sense the-
problém of -how to-model--the-real world with all of its.
great complexities. A miniaturized version-of this is.
the-multiple target track1ng -and data association prob=
lem. There,a number of pieces. of information arfive,
typlcal‘y from disparate-sources - -such as from various
sensing systems and from human.sources in the form of
narrative descriptions -in natural language “A-procedure
-has-already-been established -for dealing-with this type
-of sxtuatlon called succinctly the PACT algorithm.
{PACT = P0551b1115t1c Approach to Correlation ang.
Tracking.) The -technique:-is based-upon- the :premise
-that all arriving 4information-can-be- -adequately treat-
ed -through- some appropr1ate choice-of classical or
-multivalued 1ogic such-as Probability Logi¢, Fuzzy
-Logic, Lukasiewiczsi Log1c or some(t-norm, t-conorm,;
negation function)geferal: logic as-discussed-in-a
recent text. of Goodman . and ngyen, ‘Uncertainty Nodéls
for Knowledge-Based Systéms. MoFeover, it can-be-dem-
=9nstrat°d that for~a large class of :logics- chosen,.
¢ -versicn of a partially specified-Probability-Logic
may.be -used instead. Indeed, -other approaches to-un-
-certainty, such-as the Dempster-Shafer approach,. can
also bé strongly related-te Probability- Log1c “through-
the vehicle of random-set modellng. ‘In-any “case, the
Structure of the-PACT algorithm is based- upon a:‘gen-
-eralized chaining and disjunction relation,. which-in
-a-classical: probability setting-reduces to--the usual
posterior- probability descrlptlon as a weighted sum
-of intermediate probabilities, an alternative form of
‘Bayes' formulation. In the-PACT algorlthm Joint in-
ference rules are represented:which connect various
combinations-of matches. of the intermediate attri-
butes relevant {o. corre]at1on (such-as geolocation,
radar paraccters, v1$ua1 -narratives,.etc.). to the
-Consequential correlation levels between- track his-
tories, In-addition, error relations involving these.
attributes--are-also represented.

In the present paper, the:=PACT technique is-ex-
tended to the full: combination of evidence- prob1em
~viewed as being- identical to the general daty -fusion
-problen. In-addition, data fusion is also 1ntima;§ly

1inked with intérnpdsl activity within a larger-C
-system. Here suchzC” systems are identified-3as net-
works -uf interacting Jecisca-raker node complexes.
Some general examples of data fusion in this context
-are -presented, including:a new- approach to- the -use

of marginal conditional- probab111t1es measuring valid-
ity of inference rules via, "conditional objects”,

1. INTRODUCTION

For the past several years, throughout many fields
of science and technelogy, researchers -have been seek-
ing unification and -extension:cf past results in-order
‘to-explain -reality.better and to be .able to predict

future develcrenrts, -Recent:-events in theoretical
physics 1nvolv1ng “superstring” theory,-an attempt at
developing.a Grand Unified Theory-of thé Universe,.
underscore this-quest -[1].

In- a:zmore-modest-way, this -paper seeks to estab-
lish-a theory unifying, coordinating, and extending-
the-somewhat appearing cistinct consep:; of -data fus-
ion,. comb1natlon of evidence, and:C’ systems analysis.

-On the -other hand, re]a;1ve1y little-attention will:be
:paid here:to deta11ed -computational techniques-which.

are-particular to certain .types of common datz:‘fusion

‘problems -such 3s.regression: -procedures for combining:

stochastic sensor information, or-maximum 1ikelihood
or Bayesian. procedures for putting together geo1oca-
tion-data: arriving- from-different-sources relative
to a given targét of interest. All of the above-men=
tioned- technuques are-essentially-special cases of-
2-much more general combinatton of evidence approach
on-which-this pazzr will concentrate.

In-the past there-has been much .dispute as to

what-constitutes data: fusion. A-reasonable three-fold

definition ‘has ‘been-proposed in [2], which, except for

-2 minor -modification - (as shown- below), wlll be- the

basis for the work here. In:a related-vein, mention
should-be:made of the-recent (unclassified) survey -of
data. fusion techniques [3]. The-basic definition for -
data fusion, for- comp]eteness, is--givensbelow:

{4) "The integration of ‘information -from myltiple
sources to-produce the most. comprehen51ve and=specific
vnified data about an-entity."”

(i) '*he analysis. -of intelligerce information from
multiple-sources covering a-number of different events
to produce a comprehensive report of actuvuty that
assesses its significance. ‘The ana]ys1s is- often sup-
ported-by. the inclusion-of operctional data.’

(ii1) "Intelligence usage, the logical blending of
related information ./ “intelligence- from-multiple-sour-
ces;" [ "After fusion, the-sources of the inputs_and-
single pieces of information:-must-not be evident “to-
the user."” This-we believe to be ‘too-restricted, IRG.]

One -of thezmost common examples of fusion.of data
occurs in.'the mu1t1p1e target-tracking problem. Here,
information-arrives in disparate form, Typically, -this
includes sensor information-emanating from possibly-
several different types-of sources, such as. radar,
acoustic, -non-acoustic, infra-red; and-varicus others,
In addit1on non-mechanical:-/ human- sensor sources
may be- present 4n the “form of natiiral language-narra=
tives-or descriptions, possibly in.2 parsed ferm,suit-
able for symbolizations.. Much. of -the arriving informa-

-tion can be related to the -targets' observed or pre-

dicted positions, voIocitxes or related equations of
motion. On the other hand, some of the dats may refer
to-other characteristics or attributes of the- targets.




= {2) Al analysis and models of €3 systems must in:
clude sutanalysis and models for -fusion-processes. In

Cxa=rles of the atter include: hull lengths, vessel
shapes, observed flag-colors, names , classifications,
and.other- non-geolocational sensor parameter esii-
rates. .

Nevertheless, as recently as a few years ago, the
great majority of approaches to -target data fusion
were concerred only with target posntlons and other
geo]ocatlon data and-ignored, at least in a formal
way, most._of the other potentially useful stochastic
and -non-stochastic (such as linguistic) information.
For a solid justification-of this conclusion, sre-[4]
and [5], .where a comprehensive survey-of multlple
target-tracking techniques ‘was- carried- out. -For

comprehensive mathematical :treatments of such "class- :2

ical" data association and-correlation, see [6],

¢.g9. For an exception to the above ctaternnt c0n-
cerning the restriction of -fusion to geolocation-only-
information, see, e.q. [71,[8];(9].

However, with the advent of -Al in-the form of
expert and knowledge-based-systers, it is apparent
that this_additional information -could:=be utilized.
(See, e.g. [10].) Following the lead-of medical diag-
nostic systems such-as MYCIN [11], many such systems
(not necessarily miTitary- orrented) utilize-only-
two-valued logic in -conjunction with come use of
probabilities -to represent conftdences Cn -the other
hand, some-approaches take a"softer" -decision view-
point as to the nature of descriptions 2nd:-employ-
throughout some- form-of muYtivalued logic (Such as
the :PACT algorithm {12]).

Moreover, data fusion is 1nt1mate]y related to
the functioning:of C°-systems. Indeed,-in many cases,
data fusion may be perceived-as an interactIng decis-
ion process occurringwithin Sach decision-maker
node relative to the-entire-C getwork -of nodes.
Thus, any:ongoing-work in :he -C” .arera; must-effect

cision- makers, -human-or automa‘ed, ifterfacing with
each other in general. Each node-reccives "signals"-
which-may be ordinary- communication £vgnals,-either
from-friendly -or-hoztile sources (po‘ .bly unaware),
or which may be -reweived weapon fire. “n genéral,

these "signals" are stacked: vectors coiurised of 1n-
coming data ‘rom severa] different nodes In-turn,
each node, which may-consist of a single. fecision-
maker or some coalition-of-decision-miter: and which
may- include passive type dec151on makers, sugh as
"followers” , then processes the data. This: s follow-
ed by a response or _action -taken. ‘towards othér nodes,

frienrdly or hostile. .(See Figure 1) Assocaated with y
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data fusion efforts. Since 1978, the annua] MIT/ONR
Workshop on C” Systems - with its associated=(un-
classified) annual Proceedings - has. served as one-of -
the primary academic sourdes for generic €3 studies.
(See [13] for a partial survey of these-efforts. See

also- [14] for a more thorough survey of C work. where|-

many. abstragts analyses, and comparisons and con-
trasts of C- thecries and relzted work are-given.)
Surprisingly, relatively few comgrehensive theories
of -3 systems have been proouced althouqh many val
uable papers have been-written as a-result of the 3
Workshop on problems of distributive decision-making,.
hierarchical systems,-communications and security,
multiple target-tracking 2n¢ corralaticn, and various
miscellaneous gzie thezerniic ind warfare dasien prob-
lems. Arong the- few theories of C” should be mentioned
[41] and [42], the 13tter takingzrelated vies of fusion

Based upon the above remsrks., it is the-author's
conclusion that:

(1) -Data fusion,as commonly applied, is a process
occurring -intranodally within the context-of an an=

-= )
_Figure 2. Components of C~ ModeiSiates.
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propriately chosen overall c3 system. That .,,fu51on
occurs typically within decision-@aking nodes .

IHTERNAL DATA PROCESS \

parti: Llar,’thvs applies to this author s proposed
_model for C” s-stems [15],fi€3.

(3) Data fusion in its moct generic sense can be
equated aith the certination of evidence problem, 2
vell-known probler zrizing in the moceling of uncer-
tainties for hnowlccée-hased cystems. (For further
elaboratisn and background, see {17].)

2. DATA FUSIOH, c SYSTEMS, ALD DATA PROCESSING
Previously, this author proposed 2 ‘bottamssup,.
microscopic, quantitative 1pproach to general C” sys-
tems (151,[16]. In that joproach, a generic C2 system
is 1dentified as a netuork of node complexes af de-
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each ncde is the node state (see F1gure 2.) describing:|DATA-FUSTON PRO(ESS tFU) -
the-current state-of-affairs given in-terms of 2-num- :

ber of functions such as- threat level; equq;xons -of
motion, and supply- level. -In addlt1on, there is an as~
scciated knowledge base reflecting the node's local
knowledge of the stuer nodss {#rizndly or adversary).
Rlso associated with-each-node is its -internal "signal"l
processing design, as described in Figure 3. There,
data fusion plays 2 central role in transmitting-de-
tected “signals” to:hypotheses formulations, which in
turn through algorithm selection leads to an-output
response to other nodes (again, ‘these may be friendly-
or adversary).

Nox‘, since we -identify data fusion-with the com- |,
bining of evidence, all of the Knowledge-based system

techniques essocmated with the latter are available.
In particular, this infers (see [17], Chapters 1,2
and Figure I, page 14) that a series of undérlylng
procasses. are involved in data fusion. -Basically,
there are five such- _processes (Incluflng natural-
language in its-broadest context) Ggiven below in-se-
quence of inforration processing:

(1) Cognition: Human and/or machine in recognizing
the-pattern of received “signals”, recalling that
"signals" -refer—to either ordinary signals or any
other received input, including weapons ¥irec.

(2) Katural Language Formulaulon Thls is rele-
Machine language could also be put in- tnlS area, lf
used. in the same-context. -Parsing leads to the next
process:

(3) Primitive symbolic formulation of -data, in=
cluding strings of -well-formed -formulas according
to basic syntax, without further-or refined con-~
straints on structurés. Formulations inciude use of
basic quantifiers- and-connectors: -, for & ("and" or
conjunction); v, for “"or" (dlsJunct1on) ( )'; for "not”
{negation}); o, for "if_then " (inplwcation)

(¢) Full formal language formulation of data: Use
of -rules of syntax, constraints on wff's, such as
cormutativity, associativity, idemp otence. distrib-
utivity,etc.

(5) Full compatible {homomorphic-1ike) semantic
evaluations or logic-chosen (or model selected).

-Any consistent or compatible choice of a- full
formal language (4) -and 2 semantic evaluation or
Ioglc (5)-we will call ar algebraic Togic descrlp‘1on

pair (ALDP),

Three -common-choices for ALDP are:
br

]

(Boolean algebra(or ring}, Classical
two-valuedlogic) with imphcation 3
given as-_, where § > c is identified
as B8' va, for all uf'ec ¢ C.

(¥odified boolean 21gebra = pseudo-comple-
mented -lattice, Zadeh's (min-max) Fuzzy
Sets or Logic). As zbove, 3 = =%

ALCP 2

ALGP 3
A fourth useful{Conditional Probability logic):

T ALOPwill be introduced later. In the pact, often-only

ALDPY or ALOP 3-were.chosen, in effect, to -the ex-
clusion-of multivalued logical choices.
-Classical Logic or Probability Logic,or some combina-
tion,would-be chosen for the besic model to combine

information or fuse data, with little attention paid

to the formal aspects prior to semantic evaluations,

~(“‘gai“r Sge ’[&],[5].')“

‘Figure & surmarizes the -above analysis of data
fusion.

(Boolean- algebra, Probzbility Logic);d = =

i DECISION PROCESS-

Gvromeses | - AP = (QOOL.AL“{J'I,CL’ASSJCAL LOGIC),

||ForKuLATION/ ALDP 2 = (MODIFIED BOOL.ALG. |

. opg;snlm . ZADEW'S FUZZY LOGIC) ,

DECTSIONS (H) ALDP 3-= (BOOL.ALG.,PROB. LOGIC),
ALDP-4 = (CONG.BGOL.ALG.,

» IN THE FIRST THREF ALDP'S, IMPLICATSDN 3 IS IhTrQPRETED
:['AS %, WHERE (g>a) ¢

: ROUATIKC FCCLEAN ALCEBRA -= PSEUCC-CGMPLEMENTED
:'(DISTRIBUTED) LATTICE.

* Figure 4.‘Subprdtess'fxpansion'o? Data -Fusion/Conbination
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3. DATA FUSICN AS A QUANTITATIVE PART-OF -AN:QVERALL
c3 SYSTEM AND DECISTON GAME

So far, in this-devcicorment teward 2 géneral.
theory for -the .fusion of data, only general qualita-
tive-descriptions- have been given for the processes -
invglved.tHoweVgr, qs:megt1oned ‘beforeé, a quantita-
tive-model for -generic C°-systems-has: been established:
compatible with=these qualitative formulations{15],
[168 Inputs.-to the-structure consist basically of
ten:sorts of knowp-relative prxmxt&ve -relations PRIV
among thes=variables describing-a-C3 system. These var-
iables are:nude (N }hypotheses selection=(H); -detection
(D) of incoming."signals™ (Sz, algorithm se]ertrons
(F); initizl roce responses (R),priorto cavircrmental
dxstortfur {G} and additive noise (G). To each vari-
able is afffxe¢-subscripts :(q,k) (or (h,g,k)) where
g=(a,i) -denotes- the 1dentx€*ratxon of :3-particular
-node- in question in terms 5f the- €3 system & (friend-
1y or hostile) and node number i, while k represents
2 discrete- time -index t,. $pecifically, the-relation
breaks down int5-5 lntrgnodal (within nodes) rela-
tions,. 2 internodal {between nodes)-or regression:-re-
lattons and 3.prior- relations for each CJ system:
These rclations are expressed in terms.of conditional
or uaconditional probabv]rtres .as they stand, but
the -results can-be extended, thh appropriate-replace-
ments, to 2 rultivalued logic setting. -(Again, see
{i5].) Then-by making certain reasonable -sufficiency
assumptions- among the variables and utilizing-basic
properties of conditional. probabilities, it can be
shown that-each-updzted ncde state can be obtained
explicitly 1n«prob=bllxst{c).erns ¢f the-other vari-
ables and node states. through PRIM. Thus, we have:

256




Theorem 1. (See [15], Theorem1.)
Suppose PRIHk -and N: X are.as described. above

with PRIM given in further detafls ir. egqs. (3.2)-
{(3.4) and Tables 1-3. Then under the-above-mentioned
-sufficiency- conditxons,

PNy ) = 4, (PRI RCAY

‘where-4 is a Lcmputable functional involving a fi-

-nite= numuer of integrations- and arithmetic operations
-upon"-the .elements.of PRIHk given in Table 4.

| B
rRIY, (Pm“ 1 mn“ 2) PRIM(Z)) (3:2)
-where- f?r e system a, g=(a, i), -etc.
1,3)4
prie! 2 (() e lg ,(°)9,(16) 01t g,h,
0k, <k
(3.3)

and whéEe
Pmk“%QGE A7) 15) -
-k - h,g’k"ﬂ h'gi,k'(+1’ h,g;0/all g,h,
OskLSk .
(3.4)

The- numerical symbols (5)¢ g etc. arc shortznec forms
for the prxmutfve relations givan in Tables 1-3:

(1) =p Hg,klog;k'sg,k) ,

(2) a.xltig )

g,k
(g xn® P(“i,kﬂ‘Eggk’s.a?.k'"q.k),
(g e1® p(Né.k+Tiﬁg,k+l’@g;k),
(5)g i = P0g 1S 0 Mg 5

Table 1. Relative Primitive Intranodal Relations. -

i ().
A2 g ke = PG o0
a3

| EL N LS LY

“5)11 PR B L R b

: (16)g 5 =-p(S 41Ny

a7

(G)h,g.k+i = p(Qh’g’k+i)'"ith Gh,'j'kél’

(7)?1 V5% =_p(W -h'f

0);
; The basic internodal gnalyZis is developes v:a
adcnlve renlinedr regressicn relation

a,k+1"

S L AR LR Bt ®n .01 B 749, g s

- where-variable Hg,k+l'indicatgs'original'pqssibie

_} possible node source for "signal™ at time k, given
- reception by another node at k+l.

Table 2. Relative Primitive Internodal Relations.
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 Table:4. Structure of 4 in Theorem-1 Through-

Sequence of~ Ca]culatlons Involvlng PRIHk

= wr § e wEE— o = e

I
-r

In-turn, 2 simple two- pgrson Zero sum game can
be es.ablxshed called the C”-decision qame. Here.
Player I corresponds to entire (3 system a=l
friendly) and Player Il corresponds to-entire- C sys-
tem-a=¢ (say, adversary). In this game,.a move by
Player j~corresponds}§o—aféhoicc {up to-given. con~
straints) of PRIM{Y.J), j=1,11, and the resulting
loss or-utility due ‘to any such joint move L, is a
function of the marginal updated node state-distri-

-butions; according to Theorem 1 as

Lkr(Pﬁle)-MOEk('(p‘(HQ k,[a.l g}




=M ((Z, ((PRIM ) [a11 g}), (3:5)

where MOE represents 2 single figure-of-merit, com-
-bining- vaF\ous measures of -effectiveness (moe" s) or
performance (mop's).for the-two. €3 systems. (Note, that
although- ideally the_entire- joint -node state distri-
bution.of the -two C? systems should be- sought, in
practice this is difficult to do,. becausé of the hreat
combinatoric computations.iinvolved.) Typical moe's
that. could be vsed include;averaged-measure of: import=
-ance TF : averaqed:measure of threat TH' & upper

bound tota] entropy- E T & 3 and-averaged measure of-
—pe—fo'nance ACCa K .eall computable threust plli ) s:

for ¢ syster: 6; &y use of Theorem 1, (See also [15],
eqs.{59)={62}.} Then.one could let

MOE, = HOEI.k : MOEZ,; , (3:6).
where
MOE, = N -]T'.:.k +2 Z'T"—.k + a3 BRT,
+ “ACC ak {3.7)

eznd the- ) 's are some. predetermrned weightings.

Synbollcally. the C deci510n game appears .as
.given 1n quure S: -

S R Player 1 (Friend]y '§¥ste@)§
|Player <11 3\ Typical- Move: PRIML1»
-{{Adversary £ — — — - -
';System)‘ :
|Typical Fove: | ) e

1 SR B N Py L, (PRIH.)

* FigureS. Symtolic Form for ¢ Dectston Game.

-Finally, one can:then gpply 211 the usual -game-
theoretic methods- to -this C~ game, such-as seeking
Bayes decision. functions for moves, least favorable
strategies (all: subject to- practical constraints),
minimax strategies, the game-value, and-varfous -sensi-
tivity measures. It is the long-range hope that such
a:-qame will ‘be a useful decision-aid in-planning.com-
mand - strategy.,At present, a relatively simple-imple-
mentation scheme is being.carried: out for testing-the.
feasibility of such an approach to C” systems. (See
{16] for -further details. g i

4. STRUCTURE FGR-DATA FUSION: THE CLASSICAL
PROBABILITY.-CASE -

- With- the general’ C system context for data
fusion-established in the previous sections, let us
now return to the task of developing a- general -quanti=
tative structure-for:data fusion. In licht-of the pre=
vious remarks (again, see Figure 3), fusion is-a pro-
cess intermediate with xgltial sensing-and hypotheses.
_formulations, within.-a C” node complex-of- decision-

-makers. -In addition, the fusion _process d»composes in-
to natural subprocesses (see -Figure-4). Thus, in
essence,-we-wish to expand the first relative-primi-
-tive intranodal relation appearing in Table 1 :

p(Fu) = p(H|D,S) , (4.1)

where for reasons of. ¢onvenience from now-¢i: we- sup-
gress the denotional-time indices, unless necessary.
ks stated before, p need not necessarily refer to.ord-
inary probab111ty evaluation, but may represent other
evaluations such as possibilities for Zadeh's -Fuzzy
Logic or “for more general multivalued truth systems,

In-determining the above evaiuvation, another var-

iable Z is often present z repre=en*s the vector of
auxiliary-or “nuisance” characteristxcs or attributes
yh1ch can-be useful in: connectlng ‘B, the-variable-rep-
resenting-possible hypotheSes or decisions as to-what
unknown- parameter value or-situation-or d:agn051s is
occcurring, with 1nput -data S and detection:state<D.
Thu§ for-exarple, i we-are- phy51ca11y in-a-bunker-
node- S may be observed. loud_ roise, with D=1

(defrnite1y detected); and: P‘rould have poss1b1e -do~
main values 'ay dom(q) (H]. .,H ¥ as g1ven 4in Table-S.

Hi ;190 ch;nge 1n prevlogs sttyat1on )

H, =-enemy is about to mount thé:progised big
-offense

=-enemy is Jjust feeling .us_out
=-enemy-viants tp negotizte

X
L ¥

Iz =-none of the above-situations hold.

~

Table 5. Typical Set of Values for dom(H)}.

Thus,,dom(H) -could. serve:as a -legimate-sample
space, if conditional probability- p(HlD S) could-be
obtained-for all possible values of H in-dom(H); i.e.
(H]D,5)-could be interpreted-as a-random-variable

-over dom(H). In:this case, suppose-also-that Z is an

auxiliary-varfable representing any-of a likewise col-
lection of disjoint exhaustive situations locally g0~
ing.on at the bunker. Here,let dom(Z) be-given as in
Table 6 below:

= nothlng happening )

| =
Z2 = accidental explosion- in:compartnient -£1
Z3 =- éccident&l'éxplosioh in-compartment £2.
Z, =enemy- sFot missile-at us. -and-it -either

hit-us-or just missed-
5 =-none of the-above situations hold

~
n

_ Table-6. Typical Set of Values. for dom{Z). _

Thus; again-by disjointness. and exhaustion; it
is. reasonab]e to-conclude -that dom(Z) could-serve as
2 Tegitimate sample space-and Z_canbe interpreted-as
a random:-variable. Al1.of this leads to -the evaluation-
of the conditional probabilities p(Z}D,S), which to-
gether with the -values-for-P(H|D,S)- can be used-to
obtain the standard lntegrated -out” form-for the-post=
erior-¢istribution-of H-xs given:below:.

p(H=H le&S)=i§—ip(Hj&Zi |08s)

€
=')} r(Z; !D&S)-p(HjIZi&D&S) . (.2)

using-the:-standard-chaining property of -conditional

_probabilities and-replacing the antecedent comma no-

tation by: conjunctions. One could-reasonably interpret

‘the. evaluation-in (4.2) as the-probatility velue: for
-the- expression

"1 D and S, then H," (4.3)
through the probability values for the:expressions

"If D and S, then Z " and “if Z and-D-and"S, then H}:
(4.4):
Cf ‘course,_one need.not-use the-above evaluation-ex-
actly to obtain.useful equivalent values. As it.stands
P(Z.|D8S)-can-be interpreted:as an:error-or variability
probability for-attribute Z,:while<p(H.|Z;4085):can be

understood-to-mean the inferencée rule rozabxllty cons-
necting 7 and-D-and S.with H: On the other hand: often:




L LUHUILIOHBI qata-or regressuon probabll1ty

(s[Z &H ) -and the joint prior probability p(Z eH, )

are- avaxlable -assuming here D=1, .which-by use of
Bayes' theorem also -yields p(H= H ID&S) :One standard

result is :tdo assume *hz sbove. prcbabrlxtxes are
gaussian, Nhlch in-the-discrete- problem here,-must
serve as_very rough-approximations- in-addition, the
sets dom(H). and=dom(Z) are rot eastly ordered-gem-
patitds with & real domain for gaussian:random-var-
iables’ . Then, 4f the:mean-of the-conditional- data
distribution is dinear in the-data S, p(H.8Z;]S)
takes on a- generalized weinhted lézst squ rel -form,
(See, e.q. .118].) The- final result, p(H= H Is); as-in

( 4.2), is then_ a mixture of the probabllltles of
such least squares estimators.

S. STAUCTURE FGR-CATA-FUSION: THE -CLASSICAL
PEOBABILITY CASE MODIFIED

Retaining the same terminology as before, sup-
pose-now- that-H,Z,S -are variablessuch that any of
the- corresponding "sample spaces"” -do not truly con-
tain-disjoint exhaustive events; in particular, the
¢isjzintness condition mdy be viclated.more often
than-exhaustiveness- which we will assume here is
always satisfied. Then it follows that simple cor-
responding:-probability measures as in Section-4 can-
not be immediately assigned. Nor should “brute-
force” normalization procedures be employed, -unless.
absolutely necessary. For example,.consider H. Sup-
pose in tke above example .in Section 4 (Table €}, the
eneny could-simyltaneously mount -the promised of fense

, yet.also be feeling us-out for peace (H,), or,

En -additionally;wanting to negotiate {H,}. Thus, in
that case, dom(H)=(H,,..,H.}, as it standg, is pot &
suitable sample spacl ‘of ‘disjoint elementary events.
Indeed, the elementary-events H. are-not-so element-

.ary, many of them, due-to- complgx causes, being over-

lapping! Equivalently, H in-its current forn may- not
be a leoitimate -random-variable. What to-do?

Note first that it is reasonable to assume that 7
the simple labels H. really resresent complexzziienoms

-en2 anc may be bettér described through factors con-

tributing-to them. For example, some- faztors for H
in Table 5 are:

3; = irgoriance of node,
2, = relative cirengths of us and ther,

az ='past 2re present incoming salve r:zta,

3, = duration of -war to this point,

2. = what the enemy knows éboug us: iotatiorn,
a; = present weathar conditichs,

ay = safety level-coordination level t¢
prevant accidents;
2 d ax--xaz .,

Then ideally, in turn, ngcn enough -of these
factors, define rigorously tbe H.'s in terms of com-
blnatlons of values of the a,'s."One simpic approack
1s to-cet-*mine the natural Somalns of -values ‘for tre

3 's , don(a ), k=1,..,7, letting

¢ q°m(a])x--xdoﬁ(a7} (5.3)
2nd
Hy = by X bj;, ca, 15,2
where b, z rein
&eaw?ﬁaw u

appeer, but r

Clearly, in this case, ¥f all statistical releticns
between the reiv-intraducec factor variables 3, °s

-H is the tightest disjoint exhaustive- part)tionan of

-and ‘the variables S and:Z are -known, then-the
—p(H [Z 4C8S) can be-computed in (4.2). For-example,

if the 3 given the Z.5C8S are all- mutually statis-

t!cally nndependent then-

p(H,12;8085)= n p(ak eby 1Z;8085) , (5.4)

and in- general

; plH;IZ;8085) > 1 (5.5)

and "thg computatlon in -(4.2) 1nvolv1ng summing: over

‘the domain-of I is-no lonyer valid if Z also-repr¢”

sents,_as_H, -possibly complex- overlappfng events-

One approach ‘to redefining the- problem here_-is

to replacn the, in-general, overlapping B_.'s -and oyer-
-1apping Z.'s:by suitable.partitioning of their domafn

spaces-and then- reccmpute the-corresponding. condition--
al probabilities .in={4.2) involvina-the partitioning
variables, for example, for convenience,denoting.

I={,..,5, (5.6)

for-any subset Kgl, -or equivalently,_ keP(1) (power
class of I, the class of :all subsets-of 1), define

H nHo o~ v Hoo£D, (5.7)
[“] jek jelK
Hix) g (Hj|3£K) ¢ P{dom(K)). (5.8)
Thus for ‘K=o,
Hrgy =H(y) =+ (5.9) b
for K=(j}, jel, | .
- = . i 5.]0 -
u(m) =) (5.10)
end for K=I,. )
= dc 5.11)-
and for-exarple, for K=(1;2,4},
Hegy = By 0 Hy.n Hy = (Hyv H Y. (5.12)
Clearly,
" ‘=’—m[yg‘|n g1, Hpyq #9F {5.13)

is a disjoint-exhaustive:partitioning of f. In_a-sense,.
D-which-aenerates back all HJ s. through- d:s:olnt
unions, Thus,H can serve- as 2- sample space in place
of initiai dom(H); the_H.’s are in general-overlapping
compourd events of H. Sfﬁxlar comments hold for Z.

Hote that the-mappings Hi. :P(1) = P{dom(H)):
aqd’H[ ¥ P(1) = P(D} are injective (1-to-1 into),

for all ¥cl such that'H Xy #-¢. -Henrs ve-have the
bijective relation for a!l X such H[y] r e

ko Hyy Hiyy - f5,14):

for any jel, define the filter class of Hj , or
one point coverage class cf P o 35

C(H ) = (H(r);chc

2 F(H ) (H(”!JCKCI ‘4— 7] £ ¢} s (5.15)
define similarly, .
-[p g {H Kﬁ'.,clc',‘l[ < 7 ¢}, {5.186)




) saom{H)~-PPLaon(H )
‘and Fp ]:dgm(H) - PP(D)-are injective, Note, -further,
for any jcl,. the bijective relations

-ote 4150 THAL inE-GAPPINGS "

Bz O S OFpy = Fry g~ Fryye (517
j (KleKEI) [HjJ “Hj" (Hj)
-How let (n,B,p) be a probability space-and
t'-0t +-G-be z-random variable corresponding to .

(2 |2;8085). In turn, define randon -subset S\1 of
com(H), S}(,”:n +:P{dom(H)}, where for any w-c ,
£1).¢ . . «
SH = (Hjl.]cl,ﬂ(m) 4 hj‘ . (5.18)
‘Then it foliows that

W H, iff ¥
c By or { cll[K])

(X[ Jekel ,Hpy70)
iff or (s = by
{K]jeKs! ,H[K]f@)'
iffsi) ¢ Fpp
3 H,)
e, (1)- :
TEH e 5 (5.19)

Heénce

Tneorem 2. {See:[19); [17],0p.379-381.)
For all jcl,.
3 g - Y = : c(l) -
poss(H.) = plu-c H,) plt; e 8,77
= plK;]2;8085)- (5.20)
|
1he-significance of this theorem will be-more
apparent below. Note also that unless dom(H)-is 2.
-disjoint partitioning itself-of D, (5.5)-holds; but
it always follows that
kel

ARgain, similar results hold for dom(Z) replaced by
2-suitable space resulting from-appropriztely chosen-
factors.

{5.21)

"On -the other -hand, often-we do not know all -the
relevant factors.or subvariables contributing-to
given compound-events ané even if these-variables can
be pinpointed, -often we-do -not know their natural do-
mafns or-perhaps-do not know the distributional re-
lationships involved, etc. Thus the technique of con-
structing directly-2 product space , such as © for-H,
-as above, may not-be appropriate.

However, we can-still meke the basic identifica-
tiors -in (5.14) and (5.17), wiicre we orit all the
square-bracket expressions. Suppose now that-prob-
abilistic evaluations are available zuch-as
p(H.1Z:8085) and p(Z,]D&S) for a1l i and j ,-but that
the“poisiblg over’!apairig nature-of the compcvnd events
i3 taken into-account. For example, -these calcula-
tions -Could be obt2ined from experts by =oliciting
the individual/marginal--possibilities occurring with-
out- regard to the joint-or-overall occurrences of the
remaining events.

Can -these individual probabilities-or possibili-
tize -be macde-compatible .in-a rigorous manner with -the
srevious -random set-construction? The answer is-Yes.

fheoreq:!.([l?].tha;wtéi- 5)
If poss,, :dom(K) =[0,1] is g_n;»fqpction, perkaps

representing the expert opinions o '_a"p,aryﬂ. as huran
integrators of irformation, taking inte-account the
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corplex-and possible-overlapping natures-of the

events in-dom(H), then by-letting U-be any uniformly
distributed r;ndomzfariab}f ?[ér {051 and defining
the-nested rancom s'ybset—:sﬂz -of dom(H) by ’

si2) & poss 10,12y
= -(H.|jel, po Hy) 2-U}, 5.22)
(HJIJ;I poAssur( 73) 2-U) (5.22)
it -follows that for-all jel,
(2) . Nt
ijc Sy iff possH(Hj—) 25U, (5.23)

whence there-exists-a legitimate probability-measure
p:PP(dom(H}) -= 70,11 such that

possKlHj) =fp(Hj;c S(?)) =fb(sff) € G(Hj)—)
- (2) _
Remarks.

. Note first that-the ‘two-definitions for S, will’
differ in-general in structure, but:-are both (among
many other possible:definitions for -such random-sets-
117], Chapter 3} one point.coverage-equivalent to the
given-arbitrary possibility function over dom(H). (For
comparisons of-choices among-such candidate random-
sets, see [20]; where entropy-is used as one.criterion
Each domain value-H; is naturally identifiable-with -the
filter class G(H ) Eontaiping,aﬂ possible sets of H:'s
having also HJ j! -in them, i.e., all possible:sets of
dinteractions H“( . 3.in K. Thus it -is-not unreasonable
that the given &ssibility’t value-assigned-to H. can
also be expressed rigorously as a:probability “involv-
the next-higher-order interaction dosain. P(dom(H})-
above dom(H). Agaim;_ as before, all:results held for Z.

~ In_a.word; the:possibilistic or-general--fuzzy set
approach -is seen to-be essentially a-weakened form-of

‘the full’ random-set -approach, where-any-onz-of the one

point coverage-equivalent random sets § is fixed for
the ‘modeling over P(dom(H)), replacing dom(H). This

-can -be thought -of -as-being-sumewhat analogous t1_the

sitvation-where -a probability distribution Cescriting
a-protlem-is only partially specified, such as.up to
the mean and variance.

-Finally, -homomorphic-1ike relations {involving the
one -point-coverage relations} can be estahlished-be-
tween 2 number of operations established among .possi=
bility functions,or fuzzy sets, representing general-
ized unions, -intersections, and other set-like opera-
tions, and corresponding-ordinary set counterparts
applied to- the ‘one-point-coverage equivalent random
sets. (See, e.g. [17], Chapter 6.) Some of these re-
lations will be-used in Section-€ for representing

-dzta fusion in- terms:of the general- combination-of

evidence problem. (In-2 related vein, see [21] -for
some” r)‘ecehtfworkv using.random sets in modeling grob-
lems, ) i

6. STRUCTURE FOR DATA FUSTON:THE GENERAL FIXED
ANTECEDENT CASE

The-rFecuise of the previous section point up
some-of the difficulties involved in:evaluating-prob:
abilities -for apparently"disjoint elementary” events

which are~in reality.compound overlapping.and diffi-

cult to define precisely.

-Following-the philosophy of approach outlined in

‘Figure-4,-we-will establish 3 general procedure for

treating the combination of evidence problem, which
reduces to the-probability or possibility cases:when
appropriate. Ideally, this procedure-should -reflect




- P - - 77-\\1;
~ cogdtition-(box-T in F!gure *4), the first stage follow--
* ing -initial "signal”-detection,:but :for purposes-of
simplicity this:will_be omitted -in: the present paper

In-particular, consider the: rrucul expressxon
Q-for-data: fusion appearing as prizitive ﬁ“tranodal
relatwn (l) in-Table 1, sans the prcbability evalua-
tion,and--in-natural language form:

Q9 "1fo&s, thenH". . Asay.

In syRbolic. form, nher2 o represents 8, v refire-
-sents “or”, ( )' represents “not”, 3 represents imph-
cahon,

g =(0-S 2 H). (6.2)

Suppose next, the following:two-basic properties
-hold-for the natural language used:

(a) -Letting To represent -absolute truth, -for any-pro-~
pociiion e ,

c- & To - (6.3).

~i.—e., T, plays the role of a2 multiplicative-unity. w.r,
t. and°, and can-be dencted w.1.0.g9. as 1. Dually,
we can assume the existance of an absolute-falsehood
F8 and let it play the role of an additive zero-w.r.t.

“ r"-
(b) "2 znd "or” are-comtutative and -associative
with "&" being distributive over "or".

These properties are quite mild and will serve
-in no-way-here ‘to restrict.our choice-of ALOP (alge-
:braic logic description-pair). The four exzrples -in
.Figure-4 211 satisfy -these -conditions.

(1) iguppoAse also- that-zuxilfzry 24tr®dute -vartsble Z,
-used -to connect D and:S with H, is_such-that

or (Z*{)’ =T . (6.4)
Z ¢ dom(Z) 0

Equivalently, this means -that thé possible "values” of
1 are exhaustive, even-if they overlap. Symbolically,

v (Zi) =1, {(6.5)
Zi ¢ don(2)-
(i1} Suppose, further, -that
is such that

relative to-5,S,and H,

g="1fG3$S, then ¥ or v , {6.6)
or (Zi $ not Zi‘). (6.7)
Z. c=dom(Z)

in_many ’orml languagLs the Law-of Excluded
-Middle hclds so that for all propositions o,

-where-

na.

c & mtla) = F0 . (6.8)
‘But -in many multiple-valued logics, such as Zadeh's
-Fuzzy- Sets, (6.8) does _not-hold, and an alternate
condition must be sought to obtam the-desired re=
~suits-we seek. (Sce also Example 2, Section 7.)

Symbolically,
B 9= {D-5 3 (kv 32)), {6.9)
where
LA v (l.; & Z ) (6.:%)
Z; ¢ don(Z)

Then if we 2ppiy (a),(b).{i),(ii) to (6.1), we
obtain in symbolic form

= (0-Sd v (H%.vz-Z')) (6.11)

2'.: om{Z
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Theorem-4 .

~

Next, tﬁ&mor&re‘sirictiire assumptidns are made:

(c) The antecedent of implicaticn: is distnbutive
over or equlva‘lently, a_homemorphism-exists rela-
tive to. or for-a: fixed implication antecedent. Thus
fnr any- propozitions - n.'.... LI 8-,

(; 9:(%_: a.))= v 1(3 9,5@_i). (6.12)
421} i=1 N

(d) lnphcatwn chains -relative to "8~ Thus. for-any
propositions- 0.5,7. .

(+2 (c-Bv8-8')) = (y 38)-(y-8 3a). (6.13)

Again, it can:be shown quite readily tke- first 3

-ALOP examples in-Figure-4 are-such:that their-rormal

language-components satisfy as well -(c)-and-(d), when
anlicatxon is interpreted as

. 2 =,
where for all-a,8-

(6.14)

(a—-’a)!(ﬁ' va). (6.15)

(See Examples 1-3, Section 7,.where ALOP-1-3-are pre-
sented in-some detaﬂ -For ALDP 4, see Section.8. g

.

Suupose 2 formal language of:propositions. satis-

fies constraints (a),(b),(c},(d). Suppose also- that

variables C,S,H,Z ‘are to-be ‘interpreted as before in
the general sense-and-are such -that (i) and-(ii) are
satisfied, -then

= - (Z:;D,5:H), (6.16)
2 z, . dom(g) !
where “for all-Z; in dom(2),
§(2305550) ¢ (6.5 9°250)
=-g(Z;30,5):h(H;2,30,5),  (6.17).
where _
i 9(Z;30,5) = (0.5 3.2 (6.18)

can be fnterpreted-as an- attnbute variab:hty or
error form-and

'h(H;Z 30,5) ='(Z.,-D'S 3 H).

(6.19)

can be interpreted as_an inference rule connecting Z
anc. H. -

- -

Thus . from the -remarks preceeding Theorem 4, the
formal language for Classical Logic and: Prohab:hty
Logic, boolean algebra, with-implication given in
(6:14) (6. 15),satisf1es (6.16}<(6.19). Similarly, the
wodified boolean -algebra-representing -the -formal
language of Zadeh's Fuzzy Logic {min-max type)-also

-satisfies the-above formal relations for the decompc-

sition_of the key expression -for-data fusion-C..

In turn,-we seek the full semantic évaluation of
the data -fusion expression through-probability-or
possibility or other means, compatible with the re-
sults-of Theorem. &,

In -order -to-accomplish the  above goal, we- first
revisw cone concepts which may not be too famhar 0
oany, Define 2-copuia 9, as 2.mapping 4,: :[6,11"-{0,1Y

which is the Same-35 a cumulative probability-distri-
bution function ovér [0,1]0 such that each-Targinsl
distribution. of one -dimension- corresponds to a-
randoe-variable U, uniformly distributed over {G,1],
i=1,..,n. (Copulas can-be used-to solve elegintly the
irportant problcr of determining 2ll possible joint
distributions given-specified marginals. See [22].)




for purpose of sinplicity,—ggre, define-2 co-copula-
tor 25 2 ‘mapping cor:[o,l] +[0,1).wkich-coingides

with :the disjunction-probabilities corresponding to
the-conjunction ones for some given copula, Thus if
U, is-any-r.v. uniformly distributed over [G,13, for

i=1,..,n ,and (U;,..,L ) has some legitimete joint
-distribusion, the. 2, dBfine¢ as foliows will be 2
zspule and ¢ définéé:belwawin -be the co-copule
cerresponding to 2.: i

«

for any ¢ ¢ {6,1], i ¢ lo,g' {1,...n},

f
e-fcei.o b e Bl 2 (U s ¢, 16.20}
- . H A.;:,'
ti
SopiTysnty ® pé{—:‘(ui s¢))
AK)+
<l
where. anzicgous to previous. notation
(%) ¢ (éilicx}, (6.22)-

N IS

by use of -the modularity or Poincar€ expansion proper~
-ty of prcbabili<iec. {for further properties of ccpu-
325 and related funciions, see e.g. [17], zection
2.3.6.% Consider zisc the following reizted concepti:

‘Define ¢ f-uvrr - 2150 -dencted as gk
. n - e e . »
ping ¢5:{G,~1} - £2.1} which: is associative, cozmute-
tive, non-decrearirg, -continvous, 2nd possessing bound-
ary condition:

v
i
My

ezt =7 5 glCx) =0 {€.23)
for 213 Csxsl, ané suck that
¢y z'min. (6.24)

Similarly, define 2-t-conorm-as the dezorgan transform
of some t-norm -

écr(‘&:«;r-trs} bt ‘; c&(l;x.}'--'}-xn}, (5.25)
for 211 x;,..,x ¢ [0,1]. Also, dafire 2r archizeéezn
t-nors as 2 t-nors whirs for all C<x<i,

¢y(x,x) < x 3 (5.26)
dually, define 2 t-conorm to be 2rchicedean iff
:or(x.t) >x, {6.27)

for a1l O<x<1 ,

Consider sc=¢ exazples.of conjunction anZ dicjunce
tion -function pzirs being copules or t-norms-with ¢
copui2s or t-concros.

first, it should-be-noted that (min,=2x) 2nd

{prod;probsun) 2re ihe only such functions which are
toth{copulz,co-copula)and(t-nors,t-cororn)pairs sisul-
taneously; -further, the latter pair is 2lso archimeds2n
=whera™prod”denotes ordinary aritheetic product, while
probsuve’ denotes “formal probability "su=" (displayisg
midularity-of probzbility) as thc-demcrgan transfora
0% prod. (Sea [23], Section 4.) ’

- {prod,sun) is 2 nor-decorgan arctinededn. Rir,
where=sue is to be interpreted 25 ordinary aritheelic
suz ; but bounded-by-unity: the latter is a t-corors
but not.2 co-copula.

‘Finally, to co=plete this brief prelininary dis-
<ussion, the important cangnical representation theores:
for archizedean p2irsof t-rores,t-conorss, states that
for any such pair (c&.‘;"). there zlways exists 2 cor- |
responding continvous rem~frercesing functionsh:(e,13-8,

with b(1) =:0 and:R’ denoting the-extended real line
including +=, such that, assuming-the above-pair is
21so demorgan,

, n .
$glxps it ) = h'](léin’h(o).‘.ig;(!i))) 3 (6.28)

conversely, any-such-h as.above generates a legitimate
—?rchiqe'dean::pair. -where -the t-norm:zpart-is given-in
€.28).

‘Hext,. for convenience define for-all i,j.

o€ (0537 ;e S5 5T)s  (6:29)
g 92.0.5 3 n). ; 8;: € (E-0-S 9K, (6.30)
i3 i J

Then make the following-sesantic evaluation of-¢
:preserving=the formal structure in Theores &:

]

poss(g = 0.} = poss( = (0-5 3 H,))

9, (#g(poss (c;) ,pdssn(iij))) .
fel

In particular, -the cvatuition of G using Zadeh’s
original fuzzy set theory-or fuzzy:logic is easily
sean to be-2 special case of -(€.31), when

o g (632

~ More generally, the PACT-21goriths [12], briefly
centioned previously, can also be shown:to be essent-
211y 2 special case-of the dzt2 fusion-evaluation

given.in (€:31), where now ¢g-2nd ¢ are in certain

peraaterizec-families of conjunction and disjunCtion

-functions. -In -the:PACT-algorithm, data-association or
“correlation” is to-be determined to hold or not for

a- feasible pafr-of developing:-track. histories, where

in-addition-to geolocation-information,present:may be
cther attribute forms. -A-typical example -is where

I represents the following potential matching attri-

butes for the two-tracksifl and-#2):

geolecation-paraceters for 21, for £2

ensor system parameters for f£lfor £2
7 = 11 Jengths for £1, for £2
© klassifications for £1, for-£2

.(6.33)
flag colors for #1, for #2 -

Llso, for this exavple,-H (denoted:in [12) by-€) rep-
rasents carrsdaticr. level between-#1 and_£2 (between
£ :nd 1 when evaluated), while D=1 is assuwed-and S
represents chserved (in error) ccunterpart of Z. Then
‘the inference rules poss,(B..} corresponc to some ex-
-pert-derived (or §erive§sby'3 analytic or physical
considerations) relation between some cosbination of
cegrees of matching attributes in general with-poss-
-itle correlation levels'H ; the terms poss (a.) rep-

resent-error distributions between true angrcw:served
2uxiliary attributes Z. PACT can operate upon-2-mix
of probabilistic information-and attributes aré 1in-
cuistic-bzsed information and:-attributes, 2s shoma
4n {6.33), where-typically the first, second, and
possibly the third entries are in stochastic form,
while the resaining entries are narrative-based and
given in natural language. The.basic PACT output,
before- further -integration -into an-overall tracking-
correlator design, is the posterior descriptinn cf
correlaticn base¢ upon cbserved or-reported-cata in-
volving the track history pair in questicn, 25 is
represented- in (6.31) by ws;(egej:),

Gn the other hand, if-we choose

pr : 14
¢& = p~r°d »- 60" Fosue (e 3, )

(6.31)




then (6.31) reduces to the classical probabilistic
data fusion.evaluation given-in (4.2).

Next, consider the-evaluation of data fusion-as
given in (6.31) when ¢y 1s any copula and or is -the-
co-copula determined by-¢, as fn (6.21), compatible

with-the.-data fusion problem as modeled. here- Thus,
sirilar to the spccific example-given- in Section S,
but with generality in mind,uséng-(6.29),(6.30), Tet
(fixingD and-S) )
dom(a) = {a,[fel} '=* dom(Z) = (2 lield, (6.35)
dom(B). = (85l1el,Jed)"=" dom(z)=dom(H)
= Uy )il ded), (6.36)
where I-and J are suitably chosen index sets,
Let d
,l.J. = (U{'Uij)igl, (6,.37)‘
Jed-
be any -stochastic :process where each marginal Ui
and—Uij,is some-random-variable uniformly- distributed
over [0,1]. Then define random subsets $ of dom({a)
and Sg-of dom(g) by , for al¥ iel,jed,. ©
a; €S, Tff Uy s possa(ai) (6.38).
ap £S5, iff U > ppssa(qi)

and
By g 10 Uyspossy(ig) (g
gi54£,38 iff U1j> po§se(gij) .

Note that if the.U; are-all identical and;séparately,
the U; s are:all idéntical, then

a: a [ B
as=-given- in Tteorem 3.—Qeteimihg $prd0r thrdughzg},

Then-it_follows that the evaluation of-data

fusion- in (6.31).:becomes, using-(6.21},(€.35)-(6.39),.

poss(ergg) - (@ s

al

where -for all- subsets -k

s o404 (pU;sp0SS, (a))) RV, sSf0ss (8 ).
{ek

Pl 4y(Ugzposs fe;), Uy ;sposs o(8;)))
iek -

P Elleg € 5) & (egge s ). ()

But, using -the Poincaré expansion-of probabilities,
(6.40) and (6.41) yield

poss(gzgy) = p(igrl'- ((o; € 808 5 € S5)) )

= p( Ag. aiS.x SIF o), (6.22)
where
A $(Cas .8, ) [iel =17, 2, H,) [iel}
3o LA (6.42)
Noting-that the -expressicn-in the-Fight side-of eq.
(6:31) -can be written in a natural way in terms of
possibilities analogous to that in (6.43), we obtain
the following:result:
Theorem-5.
- Given variables [,5,# and auxiliary variable I
as before, then-under the assumptions Teading to eq.

for all Uy and 2

(5:31) -and assuming the-constructions -in (6-35)=(6.39),

it follows that for-all jed,

]

pos;(qug) poss(iAjih(Sa *539 o)

'p("Aj;“(so,*‘SéEf'O )

-plausg sf(ij" {6.44):
Ta % Y=
where plausS xS -denotes ‘theplaisibility or upper
a- g R

probability measure with respect tc random-sibset
S, Sg of dom(a)xdom(g)-

Remarks.

For-related results and-general background, see
{171, Chapters 3 and 4. Shafer [24] independently-has
developed use:of plausibility measures-and other bi-
Jectively related functions, such as "belief" and-
“doubt” -neasures in modeling combination of .evidence
problems. However,.tguyen [25] has emphasized, via-
Choquet's Capacity Theorem,wbichfqharac;erizes such
functions in“terms-of both their random set connect-
ions and their generalized Poincaré expansion forms,
that such "measures" require .full-specification.of
the associated random {sub)sets.Contrast such-modeling
with that-employing possibility functions in-a general
multiple logic context,-as given above, using: some-pair
of -conjunction and=disjunction functions. -As shown-in
the -previous secticn-and ‘here, the:latter approach only
in-effect requires-knowledge-of the one-peint.coverage
functions- of the relevant random sets iavolved, Even
in Theorem 5,.where-an equivalent -plausibility desciipt
ion is given, & is on1y-speqified;over’the~A3{s."jn
short, ¢ny slausibility:measure is determined”by the

“incidence function-of some appropriate random-set:with

all:ordinary subsets .of the-space;-any 3elief-measure
is -determinedby the superset-coverages: 5f a-random
set; any-doubt measyre -is determined by the Subset:cov=
erge of a-random-set, ’ B

In-any case, Theorem 5 Shows -that a homomorphic re

ation-exists between the-possibilistic incidence form

of data ‘fusion evaluation as givan-crigiratly %2(6.31)
and” the-corresponding equivalent probabiiity. form
in (6.44),

If in (€.37), Y instead of being choszn identical
21 Uij separately, fs sush that all~Ui

are statictically independent of rach ofhur and
Uij which arz-aiso all indepéndent, ther -pa re

are- the @3;ima]~en§fopy.one point equivaizn: représent-
atives fon—pg;se and possg, respectivel?. {See [201,)

In another direction, the following important:
asymptotic result holds ‘for ‘the data fusion expression.
in=(6.31): Noting that variable Z can reprzsent a.com-
plex-of attributes, some probabilistic in nature,
others linguistic-based in-nature, so that their des-
criptions -can be possibilistic but- not orobabilistic,
partition 7 accordingly--into

I=4{7,27) 3 (6.45)
where w.i.o.q. I' is the vector of 2rze.. "*33ic at-
tributes anc I is the vector ¢f sor-grrzsttestic
ones, liote that by the canonica’ répresertatisn theor-
em-mentiorec in Section 6 (see eq.{(6.28},1- 2n archi-
medean *=nrrr, t-conmormipair is chesen for the evalua-
tion in (6.31), then-poss(Q) beccres a Tonctone trans-
form T, - say;, for generator function h of ¢,, of 2

; it
sum of terms over icl, where

2,00, 41 2 0 min((0) %)), (6.46)

PR




is
(6.47)

tor all z ¢ RY, and the ifh term , 1z}

h(1=¢ {poss . (ng—’e(z;{ﬂjm)'

AR

wiere o is partitioned as Z into (¢',0") and

e

= (_1 B P " [y 2] 1]
‘.Hj) -'Ioor(%(possa..(lig.posse_\Z ‘.Ziiﬂj)) ),(6.48)-
('li ¢ -dom(” Y)
3

Hote that dom(7'): is finite,as-well as all other
~onains of relevant variables, in order for finite ar-
gument tenctions ¢ and or O be-welldefined. In sone

ases, these finite domains are -the-result of discreti-
«&ti0n5 and truncations of initial natural domains
utich are infinite and/or continuous, especially -those
corresponding to continuous probability density
functions. In this ccntext, suppose-all protabilistic
cttributes, making up-Z' are such that they correspond
to actual protatflity-dznsity functionc which have
211 been so discretized as above. Denote the symbol

Vim (pogs(Q)) to mean that the Vimit of poss(Q) will
com(Z' )R )

te taken, if it exists, as dom(Z') and poss . are re-

fined so that-all cell sizes approach point limits
and thus poss . approaches a joint p.d.f, form
cerresponding to random variable -(Z*|D&S): Then.we
can show the following:

?heorem 6. Asymptotic 1imiting form for data fusion.
{see -[26].)

Suppose that all or the-above-assumptions hold
together with Some mild analytic conditions for the
archimedean t-norm. t-conorm-pair T chosen -for
the data fusion-evaluation (6.41).% °F

Then

do;\;‘;;gggg‘s(gﬂlj» = 1h(vh-EZ.(x(G(Z',HJ’))))', :(6.49)4

-where

4 .
v, 8(-d nx)zex) .
end all 0sssl,. h x=1

«(x)-4 (N&(x.y)/ay)y:o» 3 {6.51)
end where E,, denotes ordinary statistical expecta-
tion w,r.t.“r.v. 7', conditioned on D&S throughout,
where 1" corresponds -to the limiting p.d.f. for
poss , .

ks (]

Thus, up to essentially monotone transforms, the
limiting form of the data fusion.computations here
1s an averaged value-of the-data fusion with(ornly)fixed
comain-attributes Z". Further simplification to the
¢lassical integral {and continuous) version of (4.2)
cccurs when the fixed non-probabilisite attribute com.
ponents are missing. These results-can be-used- for
" data checks when modeling via (6.31). (See,e.q. [12].)
For other ‘controversies involving-probability vs.
rossibility vs. -Dempster-Shafer belief,doubt, etc,,
~sae [17],(especially, Chapter 10),

7. STRUCTURE FOR DATA-FUSION: THE GENERAL
COMBINATION OF EVIDENCE -CASE )

Let us return to the formal language-aspect of
csta fusion as- given -in Theorem 4. In general know-
ledge-based systems such as medical disgnosis ones
consist-of a collecticn cf -inference rules corres-
pznding to Li{H;2,;0,5) linking either observed data,
such as(O,S—orip3rtion§ of intermediate variable- Z
with other portions of 7 or-with diagnoses directly,
played by the role of variable H. Similar comments
kald for the attribute variabflity term g(li;D.S).

(6.50):

The somewhat similar; but mcre general structure
for such systems is given in eq.(7.1).
(7.1y

m

d s (F ; - s :

Q5% v ( : (,Jk( Zi.HJ.;f).S)?\kkfzi. ~j;U.Sl)))
7 e don(2) kel gt )

i Ry

; kij__ .
representing. (0:S 3 H), where for all k, Iy and &,

are,possibly expert-derived, boolean functions ,i.e.,
-combinationc of operations « , v-, { )

Next, to complete the general data- fusion theory
again referring to-Figure-4, we-must choose -an ALDP,.
iie,,.a pair consisting of a compatiblé choice of
formal language followed-by a semantic evaluation or
logic,

‘Consider then_as rea;onibiq candidates for the
evaluation-of (7.1),ALDP 1,2,3-25 in Figure 4.

Example 1. ALDP 1.

ALDP 1. = (boolean algebra:ft with-(6.14) valid- for 3 ,.
Classical (two-valued)-Logic ;)

The calculus -of relations for implications for
the formal language part here, 0" boolean_with (6.14):

For a1 ay,b.0008,C Beixl Lo ym, m1,2, .00,
. m

m
(8;9-a5) =(( « 8;)3 ('i:]s}i))'. (7.2)

i=l

|05E<3‘

: v %) ("m )):(7.3)
s, 3a) =({ va'p, v B3« a.)):(7.3)
A S A BN

Thus, 1f 8,=+-=8 =6,, then (7.2).and (7.3)-be-
come homomorphic relations for fixed antecedents:

=111 m
i:](ﬂogui) =(?09 (11101))» (7-4)
-m N m
f;1(1309 a;) =(6,3 (i;]fti)-)- (7:5)

‘But negation is in-general -not a-homomorphic -relation:

= f = aleg- (-5 £
(Bo? uo) a8y f (803 (00 89))- (7.6)
A]so.ifor al °o'eé'Yo'c;n’ 7 o (7.7y
(13a /)= uc;(gcaqo)e(eoaq:'%);(‘ga(%'qol)=(v,93°)'(fg‘§,f="93.
Consider now the-semantic evaluation part. De-
noting the evaluation of any proposition variable a,
having-domain -of possible-{or not) values in @(dom{u)
c f).as functionfpossh:dq@(u) +-{0,1], for any:qicdomqg
posso(ai) =0, i.e., 04 {a

(7.8)
or

n

Jq.ile.,:ni €a,

and variable-a can be identified-with & subsct-of il

posso(ui)

uv=,(ai|ujc dom(ai)r&‘possd(qi)=l}.- (7.9)

with:possc playing -the role of an.ordinary set member-

ship function. Then,Classical Logic, as a trugh-func;
tional logic (see,e.g. [27]) for -further elaboration)-
has the following-homomcrphic forms, for all proposiz
tion-variables (and similarly for all propositions)

a,B: =m I
vg = Max(poss ,poss), (7.10
(7.11)
(7.12)

posS>s
u - s

pOSS o = min(pbgsu,posge).

possa.—= 1 - poss s




possy,= 0 ,-poss; =1, (7.13)
and -hence

POSS gy =_max(1-poss Apossé). .(7.143

B'l
-where in.all of the above equations, all -functions are
-understood to be-evaluated at-arbitrary comton- domaln
:points-component-wise,

The usual presentation - -which-is equivalent - is
‘through truth tables, -but the -above display allows for
-nataral generalizations to Zadeh's (min-max) fuzzy
Logic in -ALDP 2.

It also- follows that the-semantic evaluation of
the data fusion form in (7.1) becomes here:

poss(2=0;) = possy ¢ o plHy)

= -max { min-(max(1-7, ., , B :J) ),
Ze dom{2) (k=1,..,m) kid. k‘J .
{7.15):
where for all k,i,J

R :

Jpqq= poss; (73:H,30,5) , {7.16)

kiJ- Sy §2rgr
kkij—g po;;k (;i,H.;O,S), {7.17)

and where the expressions in (7.16)-and (7:17),
necessary, can be evaluated further using-(710)= (7 1Y)

But since we have here a simple -two-valued -logic,.
€y.{7.1") reduces to:

poss(Q;Qj) = 1ff there is some attribute value
Z such- that -for each-k,. k=1, .m,
( 2 B) when-evaluated at Z
S, is »true,i.e.‘ pqsé‘jk#k&iﬂ}o’gp
=l. , or eguivaliently, Z~ H‘j ,0,5 all
fire inference rule (1 3 k) I eith-
er 'k is false at-this eva*uat1on

{vacuous antecedent being satisfied)
or more non-trivially, kk is true
for this -evaluation- (7.18)

ApCSS(QfQJ) = 0 iff no such attribute valie Z, as
above-exists. (7 19)

Alternatively, ona can evaluate-(7.1), by first
drrectly applying the calculus of relations for in-
ferences in the formal language ({7-.2),(7.3)) and then
evaluate the result semantically. Thus,

poss(0Q=q. ) = poss(q(H;30,5)3 A(Hj;D.S))

max(l-poss(q(Hj;D,Sj);pos$(4(H.;0.S))}

-~

;here . ‘n 7:.20)
H.;D,s) ¢ v(k!
- ol )¢ Ze doé(Z) k=1 ki iyl 1’*‘1 )
) (7.21)
"
and AH 3 0,509 v c k), (1.2)

Z € dom(Z; k=1 kij

where, in-turn,(7.10)-(7. 14) could be used to evaluate-
further poss(q) and poss{n), which of course should
10ad-back to (7.15) and-tius (7.18),(7.19), as.a-
check,

The philosophy of approach in this example is
that for the:-modeling-of data fusfon;in the context
or medical diagnosis, fnr example, although truth-can
only be 0 or ‘1, by introcucing sufficfently many in-

ference-.rales -in the knowledge-based system, multiple-
valued -truth logics-can -be-avoided.

Example 2. ALOP 2.

ALDP 2 = (modified boolean algebra R with (6. 14) .
Zadeh's -(min-max) Fuzzy Lodic)

As mentioned -earlier (againy see Figure 4 and’
associated remarks in Section 2), "modified” boolean
means a-pseudo= complemented (distributive) lattice,
or .roughly a boolean-1ike- system-without the Law-of
ExcludediMiddle and-al11 its consequences holding-

(see [28],pp. 14-16 for a related discussion. [28])as
a-whale 3150 ‘serves as a-good introduction.-to- Zadeh's
Fuzzy Logic.)

The-calculus of -relations -for implicatlons for
the formal language part here, & , is the same form-
ally as .that for @ as in Example 1 except for the -
following- ‘slight modifications g1v¢r ir the-two
statements (1), (I1) below:

(I'") The-middle equation in (7.7) will: be valid, pro-
vided that a, < B Li.e., °o = ~'ﬁ , otherw.se in

general it is npt,true.
(11 ) Adjoin the term- v B+8; to the consequent of.
3 on the left-hand side of the equality. for the far

right chaining-equation in- (7. 7).

Then the. semantic-evaluations -precide in formally
the same:way as-for ALDP 1:, but -here the range of val-
ves .of each possibility funct1on is in>the unit inter-
val-[0,1], instead of being restricted to the set
{0;1), -replacing (7.8). Thus egs.(7.9): (7.17) a1} re-
main valid heré. £q.(7.18) and eq.(7.19) are no ionger
valid in -the context-of ALDP 2: On -the-other hand,eqs.
(7.20)-(7..22) hold here, with appropriate-modifica=
tions “following-these in (1),(11 ).above.

- s

Example 3. ALDP 3.

ALDP 3 =-(boolean algebra @ with {6.i4},
Probability-Logic).

Since f is the same as in-Example 1, all of the
relations in eqs.(7.2)-(7. 7) hold-here also. Gn the
other hand, the-semantic -evaluation aspect - Srogabil-
ity Loqlc - differs considerably ‘from the two previ-

-ous examples. “In this pon-truth- functional logic (see

again -[27], especially Thapter 2, Sections 26 and 27
for. "back round) we have the usual basic (fini tely
add\ttveg probability properties, -for a- given probs
abjlity measure.p:n - [0,1], playing the role-of the
semantic evaluation poss. in.the two prévious examples
(1n order to usSe the more-standard notation, .p is used
in-place gf poss)-Only for purposes of ccmparlsons “the
following welV-known: prcperties are given:

For -all progositions eb'bo €.,

playv 8,) = play) + pley) - 2ls -3 5, 17,23y
the ¢oduiar:‘/ properuy. extendlnr % h reiacert
expansion, used preVIOusl/ )n thiy pacer. -pira o

all Gpaeea8, € A,letting 1.3(%,., a1, a=i,l,.. ,

p( V a. ) = Z( I)Card(f.)Q‘ P( 4 a ) , I.I.Z"O)

izl ongI gk
Plyg) =17 - play) , (7.25)
p(0) =0, p(d) =¥ (7.26).

resylting.in thé following evaluatlons for mpitcation

(by(6.14), for »)-and some Tess-%nown inequalities




dnvolving conditional probabilities:

p(Bg D ag) = plgg voag) = 1-pl(gove )')= 1-p(8; a))
plo le,) + plajis,) - plByey)
= Blag I8,)- * plag e, = ples]s )+nla,)
= p(coiqu),* D(uglﬁo)'P(Sg)
2 olo,|6.) (7.27)
2 p(uc'no) , (7.28)

-where the conditional probability is cefined as wsuai
-as, e.g.,

¢
1 plogley) = p(
provided p(eo) >-0,

0,8, )/P(8,), (7.29)

The above inequalities are strict,in-general,and
show that,basically, we-cannot identify implication,
as defined in the formal language (n) via eq.(6.14),
with-a "conditional object* such as :(a le ), otherwise-
-this would, -following -evaluations byp %and making:the
-natural 1dentif1cat1on

plle 1)) = pla b)) o (7.30)

contradict the inequality in (7.27). Hence :the behavior
of conditional probabilities, while roughly. resembling
that.of the probability of implications is not the

same - indeed, one-can, by choosing judiciously 8
-close-to 0 in somé natural sense, make p(8,2 o)
,approach unity, while for the same choice of eg.Ep,
p(u e ) approaches zero. The significance- of %hese

resul;s will- be explored- further in the next section,
where-we develop an ALDP-(4) where formal implications
% 38, can'be'1dentified’uith'"conditionai“objects“

(o |e ), whese semantic-evaluations as in (7.30) are
condlgional.probabi11§1e§, hut -in Yight of -the above

reuarks, necessarily these entities lie outside of the
original space of -propositions. Q.

Returning -to-:the data fusion- form in (7.1), -the
serantic evaluation for- Probability. Logic becomes.
using first (7.24) and then (7.5),

n(Q‘rQJ-) = p(D-S 3 H, )

(- 1'“"’ KL 2%y,
Ofxcoom(l) LI

“which:can be further evaluated through use of (7.27)
(equality part) in conjunction-with ?7 23)-(7..26),

where similar to -(7.21), (7.22), but differing in-the
-operations {pvolving Z.,

(K)q ' . 7
q: v kli Jk!j Svig (7.32)
(z,. e K ) (zl e K )
ke Im ke ;
and
gL {7.33)-

J kiJ :

. (?%-c K :>
ke Ty

Alternatively, by using both (7-4) and- (7.5)- from

‘the calculus of- inference relations, and then-applying

p, oné obtains thé same-as (7.20), with"poss' replaced
y*p. Thus,

p2=0.) = plg(Hy30,5) I°a(H 50:S)), (7.34)

which-can be evaluated through the equality-part of
(7.27) or through the- expansion-

P8y D-a ) = p(8y) + plog) - p(Bgea,)-

plgy) + plag-s ), (7.35)-
f, followed by use again of the basic

for a1l o.,8 ¢
sruperties of probability function p in (7.23)-(7.26).

Obviously, in the above schemes, tke number-of
computations involving. probabilities of the-conjunct=

fons of relevant events or propositions can be qu\te

large and,as well;'it may be difficult to-evaludte
esch-such conjunction, uness some simpiified depen-
sency. or ¢ther .relaiions are cssumed -for-certain-¢f
the events, As a consequence ,. sgverat techiniques
have -been_established for evaluating-combination-of
svidence in a kncvledge-based system, when-marginally

-one has dvailahle estimates of probabilities, or rela-

ted certainties or likelihoods or conf1dences, etc.
for each-of the inference rule forms(jk‘j hk]J

Some-of these procedures are ad hoc in nature, others
are]@ore analytically based. For a-compendium, See
[29]-

8. "GATA FUSION -AND CONDITIONAL OBJECTS

‘In Section 7, we -have seen how-a general infer-
cnce-rule structure for-data fusion-can be evaluated
through three different approaches ALOP 1-3. In-all of
these, the skey- connector for inference 3 was inter-
oreted in the formal language-components as =% as

given in eq.(6.14). On -the other hand a natural - and

commonly used - semantic evaluation -for inference
rules is through conditional probabilities, That is,

the-evaluation of a typical form (jli 3 kkij) is

p(hPfjljkIJ) for :some choice-of probability measure =

p over i, the set-of all events or propOSItions. which-
for -purposes of simplicity, from now on is assumed-to
be -a ‘boolean algsbra. With this chroice of evaluation,
apropos -to -the spirit of this paper, we seéek a. formal

-1anguage- which v:i11 be compatible with these-evalua-

tions,i.e., will form-an ALDP-

‘However, as:pointed out in-the-discussion in-the
previous section centered around (7-27),-one -cannot
idertify implication via- (6.14) with conditioning
as-évaluated in (7.30). The apparently commonly=-held
belief that such an identification can be=made with
no “serious ‘consequences, often called in the Titera-
ture-of logic as Stalnaker's Thesis [30],:was attacked
by Lewis [31] and independently by-Calabrese [32]. The
latter indeed showed,by-use of a simple canonfcal ex-
pansion, that not only % in-(6.14)-would not-work,

‘but any- ‘boolean function of two variables-could:not be:

used: to-play the role of conditioning, compatible
with-conditional:-probability -evaluations.

-Moreover, it would:be particularly-desirable, to
replace this rather flawed situation, with an ALDP
which would yield feasible computations for data
fusion or at least be-on the same order of complexity
as ALDP 1,2,3. Note of -course, if truly all inference
rule antecedents are identical, as.4s the:zcase es-
sentially in Sections 4,5,6, then there is no real
need- to work with- conditional .objects, since all- con-
ditiored events cen be simply considered-as .uncon~
ditional ones relative -to thefr intersections with the
fixed common antecedent, Or one can stick-with the
interpretation. of -implication as in-(6.14), Compatible
with this result , note the homomorphlc relations
for implication & w.r.t. dISJunctlon and’ conjunction
- but not-negation - as- given-in eqs.(7.4),(7.5).

But,for the modeling of .data fusion through in-
ference - rules with-v varying antecedents, no -such- direct
simplification occurs and the -development-of “such-con:
ditional objects would address the prablem. Although
-we-have-stated above that implication opurator = for
a fixed antecedént yields homomorphic relations for




v,&, but not ( :)', conditional -probabilities are com-
pat1b1e with homomorphic relations holding for all
three operations, for.any-fixed dntecedent,i.e.  ob-
v10us]y, for all ey .8 e € G,

Pllaglyg)') = 1 --pla Iy ) =
'pl(aol?o) (8 v D)
pllaylv )+ (8, Iv )

plaglvy)s (821)-
=:plogv-8lv ), (8.2)
= pla,-8,lv,) - (8.3)

Recall also the-operation- +-over=0., which in-
terms of v, +, ()" is , mranya,e e

4+ B = Y : 4 - {8-4Y
ast Bi= a BV ac €y2 (8.4)
and conversaly,
agV B, = ¢t o+ a - (e.5)
al = oot 1. (816)

Thus. there-is a-bijective relationship between
(Q vo+,{ )'), a-boolean algebra- and (g,+,- g -a boolean
ring, (For ferther discussion-and properties, see [33))
Furthermore, recall the Stone Representation- Theorem.
([33] Chapter 5) which establishes an-order= -presery-
ing- isomorphism between any-given-boolaan ring and-a
corresponding ‘boolean-ring-of actual subsets:of a
fi?ed universal -set say X where the correspondences
hold:

[ Y, e X 5.+ -4 {cyzPetric set differénce);

T 0+ v u (set-union);

.« ++ n-(set intersection);

1) €or X0 ) (set complemenet);

I s (partial order over-¢) «+ g (subset relation)

(8.7)
pag} following results- can-be- interpreted in

terms- of ordinary subSets and- the altcraative boolean
-algebra -or boolean ring-strictures.

‘totins that also, for g"y'“o'@o € f,

(ao 8, soz ' (8.8)
the next result shows.-that under zuilz nild erd-sivple
cenditions, ccrditional objects are assentially char-

actan‘zed:

pla l8) =

Theorem 7. Characterization-c?

[3¢]

Given “boolean rxng i, there 's a unique space
8.of smallest possible- classes—-accordlng to-subset
-partial ordering=denctcd o< -the corditional objects

(o fvy) » (8, |Y ), (84 Ir }eeaw, For all o NN

.. c n . such that the measure-free counterparts-of
(8.1)=(8.3) and- (8.8) -hold. That is,

soncitional dbjects.

- '(aolxp)-:= (aflvg) o (8.9)
Loy lvg) v (8 [y ¥ = (av 8 1v,), (8.10)
i fv. ) s (B} P T
' '(00”6) (go”o) e :o_;o). (8.11}
dﬂ(i z:-qul'va}’ent to (8.9),-(8,”‘, Sie Can réquire,eqs_
{(2.31) and .
Loy lyg) + e 1v) = {or 5 1v)) (8.12)
-to nold; and
(aylr.) - (egvghvg) (8.12)

Specifically, such conditional objects consti-
tute a1l possible principal -ideal cosets. of ring o,
where for any eys¥y € Q,

267

:rich- structure inherent in such entities;Adams

extensfon of » applied-now to (u IB
ing each-conditional object is lF rea11ty via (2.14)

n
=2
y.'

-0
+-
9

X :
aglvgd = fixg +-ay.

oy! +.G.oy = QeyVy g
fiexg *°85°Yg = BYG Y 957y,

{x+vg +v§°'y°]x €0} g9, (8.14)

the-principal ideal coset generated by‘yé with regi-
due do.
Bropf: Use -{irst. the-basic homomorph1sm ‘theorem for
quotient rings and the cquivalsince class property
of cosets-applied- to<(8.13). Again; see [34]."

Thus, for a“fixed-antecedent, -éven:though, as
stated ear]ier the re'u1t1ng condftional objects
could-be identified as subsets or-subevents-of the-
antecedent (noting Stone's:-Repraseéntation Theorem),
nevertheless the-actual- algebi-aic structures-of

-these entities-will be-of non-trivial use: Suppose

we wish to-perform boolean operations. on-conditional

objects with differing=antecedents; how-can this be

;ccomplished compatible with the results in- Theorem-
?

Previous work in this direction includes:Hail-
perin F37], who extended scme of Boole's original
ideas-and- developed essentially -the same entities
as rcducnd here;. but ‘from a-different--and more-
comp! jrated-perspective, with. relatively little
attention:paid to-developing-operators among-con-
ditional objects-with different antecedents, using
the technfque of -universal algebras and "partially

defined”operators; ‘Domotor [38], who -following: the

direction:of “;ielitiative -probability structuc°s"

-as used in preference orderings and’ subJective proba-
bility, develdPed-rather- compl1cated expressions

for combining -conditional-objects, not real1z1n% tge-

39],
among-others -in_.the lxterature who considered: "con-
ditional logics"-which-appear - to be somewhat related

-to the-concept produced “here, -hut -di ffer-considerably
-in structure; and-Calabrese [32] who was.apparantly
‘the first to- -attempt to:develop- directly-conditional-
.objects from a Togical"-consequence - viewpo1nt, which

can bz shown- to -be-equivalerit to that given-here([361,

“Cxeuizp 2)ibut Calabrese proposed.ad hoc-definitions
=for boolean operations on conditional obJects -with
varying-antecedents,

_ In- the.approach -taken -lieré, developing- all re-
sults from first-principles consaderattonsJ thn re-
quired-operations -upon conditional-objects- are defun-

-ed simply-as -the natural-class =r -torpensat-wise- ex-
‘tensions of the original :operations, Thus, for.exam-
.plelet-a_,B ;v ,6 ¢ 0 arbitrary. The. natural class

0°.0°'0-20
o“y ln 7» not=

a- subset of @, yields:
(@Qlao);- (Yol%)

{a + r]aela 18 )sre(y 16,))

(Ix-8y + a5)elye8) + Yé'&ycﬁT
g . (8:15)

The basic structure of +te-conditi onal obaect
extensicn fi-nf ¢ is summarized next,

Theorém-8, Bar-c structure of * [74],(353,(36].

(i} In terms of quotient rings,

iz u{p f)-y;')—)' (n/n-v) (8.16)

f'
v, Ao '{oc
{(ii) Conditioning as defined here can be identified
essentially as the functional inverse of one- -sided
conjunction,i.e., conditional: objects e jr ) al) sat-




jsfy- the basic relation -analogous to (7.29) for
conditional probabilities and a-related condition:

(ag [vg)eag = 051, (8:17)
ind '

o (8.12)

fe Iv) s xbrc @, Xy, = o
e | o) {xix € @, Xy, = o 19).
ii1) The natural class

) ex.ensions of -a11 boolean
operations from & ¢ %

are well-gafingd/closed vith
ring-Ytike propertics,i.e., in the same previous
sense, © is ¢ modified boolean zlgebra.

(iv) ned

since for 211 a, € ©, {8.14) shows immediately that
(c°11) =(&°} . (8:19)

{v) Alsc, partial order s definec over Q,. tharacter-
ized by-., for any oy co=c $ty

a < 8 iff o =a -8 iff 8 =B v o ,(8.20)
can be exténded directly to & with the same charac-
‘terizations.as in {£.20). where(unconditionat) ob-
jects in & are repliaced by conditional ones in R,
Then,corbining this with (iii) and (iv} establishes
(%,v,: }',#;5) as a natural extension of -its
gnconditional- counterpart (f,v;<,( )'i+:s):

{vi} A basic-calulus of operations is., in.addition
to the properties ir (8.9)-(8713) for anya;,Y; €0,
i=1,..,;m, m2l,

m n n

(v 6} voageys v * ¥.),(8.21)
j=b Vsl b Y ey ]

n< 3

(asly;) =
= O
(ol v e
se o) Voaitys v . v.),(8.22
i=1 it e
[ ( m | m
(o)) 2 Cracl e vs) .
g1 07 i=1 ' sl

Noting the reductions of (8.21)=(8.23)-when
antecedent vy="*’=y,Zy  , as in (8.9):(8.12), it

follows. that all booiean. operational extensions
over & coincide with-corresponding coset operations
when restricted to-a fixed quotient ring, here-
AQ/Q‘yé .

t

m
1;](u:iJYi}

(8.23)

(vii) As a special case of (£.22), the following-
chaining-condition-holds: fer c!l’cc,gc,yo €6
. = g 18 oy
(o 85l7g} = (8 hyg)- (65080 v;)- (8-24)
proof: The most difficult proof is that of (8.22).
Z-sketch-of the proof for the case m=2 is given -in-
[35], Thecrzm 3.1; a full proof s presented in [34]
where all other proofs are-also given.
B

‘Remarks.

Apropos -to Theorem 8(i), it follows that all
results in the theory and application of linear
{w.r.t. » over v): boolean-equations, such.as pre= -
sented in [403,canzbe reinterprted in terms-of con-
ditiona) objects. Extensions of the concept of con-
ditioning to.more -general structures "than boolean,
such as modified -boolean,or Vor-lleumans: regular,.-or
~t0’3—cqtégory~theoiy setting,have-been considered

34].

Many other mathematical- properties have been:
derived for conditional objects, including: char-
acterizations for iterated conditional objects,i.e.,
conditional -objects whose-antecedent.and-consequence-
are also cofiditiond) objects; extensions of Stone's
Representatign Theorem to conditional.objects; de-

ptc., wheré g

-dence occurring-within decision nodes of C 1
-In Section-2, qualitative relations-are §stabli;hed

-velopment of an outer approximation-technique to
force-closure for:non-boolean sfunctions, including
arithmetic -operations -over conditional objects;. -rela-
‘tions -established=between ordinary-conditional -random
-variablec and a randomized version of. conditional ob-
Jects; and-establishment of-various -probabilistic
-connections, such.as neasure-free-indupendence; meas-
ure-free bayesian-apd-sequntial learning-forms;: and
“the proof that the-extension-of any.probability.
measure p:0-= [0,1] to-p:i +:[0,1]° through-: eq.{7.30)
yields for -the extension.a-moriotone--function.( -Again,
'see {36]-[36], for further details.): )

Most importantly here, analogues of calculus-of
relations for ALDP i (eqs.(7.2)-(7.7)) hold for con-
ditionsl objects,.as Theorem.8:shows. Moreover, .the
hypotheses for Theorem-4-all-hold here. At this-point.
let us cefine-ALDP-4, for a given.boolean-algebra
-as simply '

ALDP 4 =(R,p), (8.25)-
where-p:& +-[0,¥)_is the conditicnal- probability:ex-
‘tension of p:n - [0,1], as mentioned-above-and where
implication is interpreted as.conditioning, i.e., for
@]] c,\bwﬁo € -‘2 »

(85,2 og) = (,l8,). (8.26)-

:(Note that implication or conditioning here is re-

strictéd to-be upon unconditional elements, i.e. el-
ements .of -, not upon-other preporly-concitional: ob-
jects. Some-results indicate-a-possible identification-

-0f iterated candifional -forms:with simple conditional

objects([36],Scetion £; sc that in a:sense- this re-

striction may be unnecessary.)-

‘Finally, consider use of :ALDP 4..in evaluating
data fusion expression-Q in (7.1):

Direct -use of (2.21) and (8.22): show that

-m
—p(QFij

v e Ayl ) )
Zie do(Z) kel SRR

p(91uj;n§5§latkj;n,s)vq(uj:D.s)r
P(s(H30,5))/Bs(H;:0,5)vq(H;D:S)),
(8.27)

is given-ia eq.(7.21) and-

s(H0.5) 8 . ; ;
A(Hj,Q,s) s (kkij'!ki‘j))- (8328)'

v .
Z§CAdom(Z)'k=1

Thus, due to the-calculus.of -operations given in
Theorem 8, computations for data fusfon-using-ALDP 4,
with ipplication-interpreted as a-conditioning,com-
patiole with-conditional probabilities, appears no

-more-complex- than -that ‘for the other choices of -ALOP's.

9. CONCLUCING DISCUSSION
Summan*

This-paper presents a number of results contribut-

-ing toward a cohesive top-down-theory. 6f data fusion.

In Section 1, 3 general overview-of the data-

-fusion-problem is-presented,with the conclusion that

data -fusion is identifiable as the cémbiq§§ion of evi-
>~ -systems.,

pinpointing.the role-of data -fusion -in C” systems- es-
pecially as -perceived by the-auther in previous -work

(see Eigurgg 1,2,3), where data fucicn ic a -procéss
-within a-C

decision-maker node- intermediate with
incoming "signal”-detection and hypotheses- selection.




Also, the concept of -an ALDP- (algebraic logic-des-
cription-pair) is introduced.as part of of the -total
evaluation -procedure involving data- fusion (Figure 4),
Three  important _examples of ‘ALDP's-are given,.corres=
ponding to;Classical Logic, -Fuzzy- Logic,-and Probabul-

ity Logic.where in all,imp'ication is interpreted as
a disjunction-of a negation and-affirmation. A_partic-

ular quantitative counterpart of the quaIrtatxve model-

given in the previous section is presented in Section:
3. In this:model,, the collection of all updated-mar-
ginal node*state,distributions (in-either the,tlassic
probability sense or -in a multivalued logic sense of
broader scope) is shown to_depend functionally- -0n es--
sentially--ten types of primitive relations (in-the
probability interpretation, they become conditional
probagllltxes] areng the basic variables determining
the - C° system in-question, These variables include:
S, "signak'nodes N recive; R, response of -nodes;.0,de-
tection state; H, nypotheses selection; and F, a.go-
rithm choice (Theorem 1). In=turn, th.s r sul* is
used to establish a zero-sum-two- persgn € decision
game- between adversary and friendly C” systems. There
each- game-move corresponds to a choice-of the -ten
types of primitive relations, up to. feasible and com-
patible conditions, and the -rcsulting loss due to a
Jjoint move by both players is some flgure -of<merit
based upon.moe's .and-mop's, which are in turn-eval-
uated through the node state distributions as a-con-
senuence of the primitive rdlations’' forms({Figure-5;.

In Section 4, the- quantitat1ve -expression -for
data: -fusion p(HID S) (eq.(4.1)) is-considered for the-
classical prubability case. An auxiliary variable Z
is introduded for the evaluation, representxng possi-
ble- Characteristics or- attrlbutes which can be-ysed
to connectD-and S with:H through pgrobabilisticzcon-
ditioning-here. This results ‘in the-well<known weight-
ed sum of conditional probabilities: form (eq.(4:2)).
In-Section 5, two-modifications of the classical prob-
ability case are considered. First treated- is the
situation where variables Z or H inactuality are
not random-variables due to their" sample spaces-of
elementary events or- domain values not -representing
truly disjoint (and-exhaustive)-events, but where
the relevant subfactors contributing- to these - -in
actuallty. -compound -~ events can_be-determined at
least in a- full probabilistic sense. This results in
effect,in  random set descriptiomreplacing the
original "distributions” for the variables ?Tbeorem
-Z). Next, the -case where not a1) subfactors are
known- is considered. In ‘this situation, i¥ experts
are-available, possibility functions: can-be gledneZ
for -the overlapping or vague events, whizii, in
effect, take intc account the possible joint occur-
‘rences, and thus can yield functions-which exceed
unity in summation. However, it is shown .in Thecren
3, quite similar in form to Theorem-2, -that this is
always equ1valent to the partial specuficat1on
{*=rouzh orc po:nf co»erages) of a random set model,
thereby giving rlgorous Justification for this pro-
cedure. The results in Section 5 are further exten-
ded in Scceinn €, where the formal Jlanguage aspect
for data fusion is emphasized (Theorem 4), This re-
sult (extendxng (4.2)) shows data fusion:can, ynder
relatively mild assumptions, be expressed as #-Gis-
Jjunction of conjunctions of inference-rules and var-
iability or error forms connecting 0,5 2ad 2 with
- H, In‘turn, & general semantic eva]uation for data
Afu510n is. presantéd ‘turough t-norms, copuias, etc
(See {6.31)This 2valuarion form generalizes :hé
PACT algorithm which-seeks to determine correiction
level between track histories through disparite dasge
sources, including: possuble Ilnguxstlc based inferm-
ation [12] A relation is giver -in Theorem 5 con-
necting the. abovesmentioned sencrai data fusion
distribution with-random sets and Dempster-Shafer
plauSIbllxty funciions,

In Section 7. the most general -formal setting
is establishes and analyzed for describing-dats
fusion, Basically here,data fusion -is considered

IR} and e g 2
-Panai. i,

a disjunction of conjunvtlons of inference rules with
antecedents and-consequerices. in general functional
forms involving- possibly=a!l. four- relevant varaibles
0,S,Z,H (see .eq (7.1)), esséntially the same structure
as-a general knowledge-*ased system, such-as_used in-
medical diagnosis or parameter estimation. £ ¢alculus

-of opsrations invclving, implications is reviewed for

each-ALDP and- then applied to the evaluation-of data
fusion (Examples 1,2,3). Finally, a fourth ALDP is
detcrnined in Sectton 8, based on interpretinginfer-
ence -rules- through cond1tiona1 -probabilities, For con-
sistancy, ‘this requires the full development of a-
calculus of "conditional objects" (Theorems 7,8).

is shown that this ALDP can-be succesfully used to
cvaluste dzla fusion- probabulities with.a level of
complexity- of calculations not exceediny that of the
alternative methods, but here allowing- rigorously for
conditional nrob¢b111ty interpretations-of implica-
tions. '

Future Hork ggg Open Problems
In this paper the- cogn1t1ve process phase has
been used-only ‘implicitly in-the evaluaticn of data
fusion distributions. Future work will be-directed
toward more-direct use-of mental \magvng ~and related
thought processes. This is because .in.addition to the
*formalistics” involved in translating detected-sig-
nals. (or "signals", using the more general sense)
as shown -in- the sequence of processes in-Figure 4,
heuristic processes may also-be used, possibly short-
en!ng the -process path-or providing-alternative-means
as for example in NI (Natura):-Intelligence).

‘Alternative structures .for data fusion may- -also
be investigated -.as-opposed-e-q., ‘to that given- here
in (6.16) oF (7.7} in farmal lanyuage form. Recirsive
comp 1tations- for-general- data- fusion-may-also be-pos-
sibe, an>logous to thé-well-known Kalman filter or
reld. ed maximum likeiihood forms. In a similar vein,
prog:esswve change for hypotheses distributionsbased

upon -newly -arriviig data-may- -also. be. moni tored t?rough
-entropy measurenénts. Details of this- have:-yet to-be

estaklished for the general case we seek here.

-Finally, conditional object theory must certainly:

be developed further, if only to be able to better
treat iterazed-conditioning anc required spproxima-

-tiens or -truncations-of: computations for data fusion

ava’uation- uhaamadethrough conditionali probab|llty
evaluation-of inference forms;i.e,, through ALDP-4
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