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CHAPTER 1
GENERAL PRINCIPLES OF DIGITAL FILTERING

Data reduction includes an inherent requirement to filter
measured data. The part of the measured values which is noise,
that Is, which does not characterize the phenomenz being mea-
sured, must be removed so that the data expresses the character-
istics of the system being tested. (A system is a device which
interrelates the excitation and the response.) Often it is
necessary to perform integration and differentiation based on
measured data. The digital filter is & means by which these
operations can be performed. Without data fiitering, the mea-
surements and the derived values, from these measurements often
depict physical phenomena that are virtually impossible. Air-
craft and missiles are predictable, 80 it is possible to design
fitters which mode! their physical performance.

The application of digital filters is continually growing as
more computers are placed in line in the measuring systems, as
classical measurement systems are being upgraded, and as new
measur ing data concepts are being introduced. Video signal image
enhancement, video signal! transmission, the Globai Positioning
System, and mircraft onboard systems will necessitate the devel-
opment of naw digital filtering theories. Filters havn many
different functions; for example, filters are used in water
purification to remove those particlies which are undesirable.
Filters are also used In coffee pots to keep the grounds separate
from the liquid, Digital filters serve much the same purpose;
they separate true data from errorg which are added during the
measurement process.

Signal processing filters were originaliy circuits with
frequency selection characteristics. Some of the fiiters which
developad as a result of this concept were the Butterworth, the
Chebyshev, and the elliptic. These filters can be designed to
meet some specific criteria regarding amp!itude and phase re-
sponsae, but because filters of this type work on data frequency
characteristice, they are not very uszful in their original
real izations on data recorded in digital form. There are time
domain realizations which exhibit similar characteristics on time
domain data. Whan digital realizations exist in software, a
design error can be easily corrected; when they do not exist,
however, roundoff error, storage requirements, and delays become
important design factors,

Digital filters are not always derived from a frequency
domair. realization. Filters can be used directly with digital
data, based on the statistical characteristics of the useful
signal and noise. The Kalman filters belong to this class of

-1




filters. Some of the principles used in filters of this type
were developed by Gauss in his concept of weighted least squares.
Although he used this concept in data analysis, it was not until
the advent of digital computers that the full potential of this
concept was realized. A few extensions have been added to Gauss'
work, and many techniques have been developed based on his
principles.

Related to digital filters are the terms smoother, filter,
predictor, and wild point., These¢ terms are inciuded because the
range surveys 1n appendix A include references to these terms.
Given measurements 1n the time interval [0,tl, a smoother produc-
es estimates for times ty, < t, a filter produces estimates for

times t, = t, and a predictor produces estimates for times

t. > t. Thus, optimal estimates are obtained postflight by
smoothers (using all recorded data) and are obtained in real time
by filters {using all Jata up to the present). A wild point is a

measured data value that fails to meet some predetermined statis-
tical ariteria. A "wild point application” of a digitai filter
is the replacement of a wild point.

A few of the current digital filtering apptications by the
Range Commanders Council| (RCC) member ranges are

(1) in rocket firing to give position, velocity, and
acceleration in real time for range safety information;

(2) in inertial navigation where navigation errors
have to be estimated in real! time for corrections to be applied;

(3) in radar and theodolite data processing to give
trajzctury estimates for position, velocity, and acceleration;

(4) in satellite trajectory determination;
(5) tn processing airplane flight test data; and
(8) in reconstructing photographs or voices which have

been transmitted digitally,.

This document catalogues some types of digital filters
widetly used by the RCC member ranges, explores the principles
behind these filters, and shows the design techniques rtor specif-
ic appiications. Obviously, a rigorous, theoretical treatment of
the sub;ect cannot be given in this document, nor can all the
details of design techniques. The intent i1s to give the reader a
teei for the subjsject of digital filtering as defined by the
members of the RCC Data Reduction and Computer Group. Noted are
the appropriate bibliography references for any of the subject
areas where more detail might be helpful to the reader.

1-2




1.1 Time Domain Measurement Data

Two representations can be used for discrete data in the
time domain. The most commonly used definition for a sampled
function is the sequence {f(n)} whose elements are

fn)=f(t(n))=f(t) (1-1)
t=t(n)

where n i1s an index for the times at which samples are taken and
f(t) is the continuous function from which the samples are taken.

In further discussion n this paper, this reoresentation will be
used for measurement data. Another mathematical representation
for a sampled function in the time domain, f*{t), is

fr(t) = Ekf(t(k)) S(t-t(k)) (1-2)

where the t(k)'s are the instants in time at which the function
is sampled and 8(t) is the Dirac delta function or impuise func-
tion having the properties of

0 t » a
d(t-a) = (1-3)
0 t = a
at+e€
d(t-a) dt = 1 € >0 (1-4)
a-€
The above definition of 8(t) 1s from reference 47, page 15.
Another common definition 1s
d(t) = 0, t=0,
3(0) = o, and
€
J'é(t)dt = 1 € >0 (1-56)
~€

As explained in reference 48, page 70, the function represents an
imaginary rectangle whose base is 0, height 1s », and area is 1.

The first representation allows filters to be analyzed using
some of the calculus techniques of continuous functions and
allows oridging of the gap between discrete and continuous

analysia, In many current papers on this topic, the mathematical
model tfur the measurements and the state of a system are given in
terms ot vectors. in this notation, a group of variables is
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treated as one vector variable; hence, a compactness of notation
is obtained, and very general filters can be discussed without
becoming immersed in details. For the sake of completeness, this
representation is mentioned here.

Consider a sequence of measurements which are represented in
a form similar to equation (1-2). Instead of considering a
sequence of real numbers, consider a sequence of vectors, {X(n)}.
A particular element X(n) of this sequence consists of measure-
ments made at time t(n) and should relate to the true state of
the process from which the measurements were taken. For in-
stance, X(n) could consist of measurements of azimuth, etevation,
and range for some object in space. It is known that the se-
quence {X(n)) can be related, for example, to the position,
velocity, and acceleration in the x, y, and 2 directions. Now
assume that the true state of the process Y(t) can be represented
by the differential equation

dY(t) = F(Y(t),t) (1"6)
dt

where Y(t) is a vector composed of scatar functions y(t,1),...,
y(t,N) and all the derivatives of each of these scalars;
F(Y(t),t) is a vector function that is, in general, nonlinear and
has as each element a function of all the elements in Y. Y(t) is
known as the state vector and could consist of x, y, and 2
coordinate positions along with the first and second derivatives
of these positions, for instance. Further assume that X(n), the

measurement vector, is related to the state vector as

X(n) = G(Y(t(n)),t(n)) + N(n) (1-7)
where G 1s the measurement function of the state variable and
N{n) 1s the noise vector or the measurement error vector. In
many applications, equation (1-6) constitutes a |inear and
homogenrsous system, and the relationgship between the measurement
vector and the state vector is assumed | inear. In this case,

equations (1-6) and (1-7) reduce to

dY = Art)v(t) (1-8)
dt
X{n) = M(n)Y(n)+N(n) (1-9)

where A(t) is a matrix function of time and M(n) is a matrix
known as the measurement matrix. In digital filtering, equations

(1-6) and (1-7) are used to give some type of best estimate for
Y(t).
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in many cases, the measurements are made on certain elements
of the state vector itself; that is, the measurement and state
vector frequently represent the same test item. For example, an
airplane’s azimuth and elevation may be measured from several
different stations to obtain its "true" azimuth and elevation.
In this case, the matrix M(n) is diagonal and contains only 1s
and Os on the diagonal. Most future discussions will operate
under this assumption. For ease of undergtanding, this document
will consider the case where an attempt is made to estimate one
variable from measurements made on that variable. The state
differential equation will be implied rather than given explicit-
ly.

1.2 Error Assumptions

In digital filter analysis, three types of errors are
considered: (1) errors in the mathematical modei, (2) random
errors 1n the observations, and (3) unwanted discrete frequencies
in the observacions. The first type of error is caused by a fack
of understanding of the physical system for which the estimate is
to be made. The second error type 's due to inaccurate measure-
ments and is assumed to be normally distributed and unbiased.

The third error type is caused by =2ither the reception of noise
along with the desired frequency signal or the intention to block
out one or more bands of frequencies to suit a specific applica-
tion. (If a digital filter is used for the second reason, then
the third type of “"error” is not really an error.)

The random errors are discussed next. Assume that {x(n)} is
a sequence of measurements corrupted by noise {e(n)} and that the
true value of the process is given by {Y(n)}. In all applica-
tions the noise is considered to be additive so that the equation
relating the state variable to the measured variable at time t(n)
is given by

x(n) = Y(n)+e(n). (1-10)

it 1s often assumed that the noise is Gaussian with zero mean and
uncorrelated with itself. The quantity which is most often used
to characterize the noise is the variance given by equation

A 1 N
62 = — ¥ e(i)? (1-11)
N

i=1

where N is the total number of measurements being considered. How
much this variance is reduced by the filter may be used as the
criterion for determining the filter characteristics. Caution
must be exercised when using this criterion, because f{e(i)} is a
time sequence and thus, in most cases, correlated with itself.
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Now consider errors of unwanted discrete frequencies In the
observations. Again consider the relationship between the true
value Y(n), the measurement x(n), and the error etn) to be of the
form in equation (1-10) with {e(n)} being a signal containing
uhwanted frequencies. in this case, it 1s assumed that {Y(n)!
and te(n)} are not in the same frequency band. This property is
best illustrated using the power spectral density function, the
quantity which indicates the extent that a particutar range of
frequencies present in the data. Iin the case when the frequency
range of the signal and error are nonoverlapping, then the power

spectral! density function G(®) would appear as shown in figure
1-1.

G(e)
Y(n)

e(n)

Figure 1=-1. %Graph of power spectrum G(@) versus frequency
@, comparing true frequency signal {Y(n)} with
noisy frequency signat f{e(n)i.

In this case, a filter would be designed having a frequency
response such that tY(n)} would pass through unchanged, whereas
{e{n})}! wauld be suppressed as much as possible.

The wower spectral density function for Gaussian white noise
' a constant as shown n figure 1-2. When {e(ni}l 1s of this
form, the signal and noise are in overlapping frequency ranges;
hence, part of the noise i1s treated as signal and 1s not sup-
pressed. However, the desired signal i1s often of a low enough

frequencv and of a sufficient amplitude that most of tne noise in
this freauency range can be neglected.




3(@)

Figure 1-2. Power spactrum of Gaussian white noise,

1.8 Beslc Purpose and Filter Use

Filters are used to ascertain information about a process
from measurements made on that process when these measurements
are corrupted by noise. Any of the following data should be
incorporated into the filter if known:

(1) the differential equations describing the process,
{(2) the statistics describing the noise, and

(3) the frequency range of the signais describing the
process.

In many applications the differential equation describing the
system 1s not known. In these cases, it is often assumed t{hat
over smail enough time intervals the differential equation of the
process ts given by

dky

=0 (1-12)
dtk

for some positive integer k.

The noise most often encountered in physical applications is

Gaussian; however, often the variance is not known. When the
variance of the noise is not known, a least squares criterion is
often used to design a filter. The least squares criterion

requires that
N
2 (?(n)~y(n))2 = a8 minimum (1-13)
n=0
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where ivV(n)} 1s the sequence obtained by some type of fit to the
data, which is used to give a filtered output. Combin.ng equa-
tions (1~-12) and (1-13) gives birth to the many filters which are
based on least squares polynomial approximation. There are many
variations of these filters used in a variety of applicattions in
both real and nonreal time. Probably the widest application of
these filters i1s found in the processing of tracking data. For
example, in processing radar data, azimuth, elevation, and range
are measured. From these measurements a raw x, y, and 2z are
computed. The digital filter is used to obtain smoothed values
for x, vy, and 2z as well as the first and second derivatives for
these quantities. Other uses for filters, based on least squares
polynomials, include processing of theodolite tracking data and
obtaining rates of climb and accelerations from alt:itude and
airspeed data measured onboard an airplane. When the differen-
tial equation describing the process and the statistics of the
notse are both known, then a Kalman filter can be used to esti-
mate the process. The Kalman filter has found wide application
in the fields of guigance and navigation. (The kalman filter is
discussed in chapter 6.)

When the signal describing the process lies 1n a certain
frequency band, a filter is designed which will aitow oniy the
fr equencies in this band to pass. (Passing frequencies of a
certain band are discussed 1n chapter 4.) These filters are used
for square-law detection, frequency-selective smoothing, phase
and amp! itude determination, and smoothing differentiation.
Specific applications include processing of digitally transmitted
photograpns, medical records, and tracking data. The determina-
tion of the best filter for any particular application requires a
careful analysis. The filter which is ultimateiy selected will
depend o the physical svstem under analysis, the type of mea-
surements being taken, and the constraints 1n computation time.

1.4 Lingar Filters

Linear fiiters are filters which conform to
F(x+ay) = Fi(x)+aF(y), (1-14)

where F denotes the filteri1ng operation, x and y denote 1nhputs to
the vitlter, ane a 1s a constant. For such filters, the output at
a particutar time equals the input multiplied by a set of weights
which are not a function of the output as given by the equation

y(k) = Lih(k,j)x(k=y) (1-185)
The set :nlk,j)} denotes the weighting function described in
paragraph 1.5, The advantage of linear fiiters is that they
operate on signal and noise independently, so 1t 15 relatively
easy to aetermine how they will treat both signal and noise.
Most of the filters 1n current use are |inear; least squares
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moving-arc polynomials and most applications of frequency-con-
strained and kalman filters fall in this category. (The least
squares moving-arc polynomials filter is discussed in chapter 7.)
If the system under considaration is nonlinear, then some type of
linearizing scheme is used so that some of the nice properties of
lingarity can be retained.

1.6 Filter Weighing Functions

To illustrate the idea of filter weighing functions, consid-
er a continuous linear filter having one input variable and one
output variable. Such a filter is defined by

o

y(t) = j hie,TIx(t-T)dT (1-16)

- 00

The integral 1n equation (1-16) is the wel!l-known convolution
integral. Here x(t) is the input, y(t) Is the output, and h(t,T)

is the filter weighing function. The discrete analocg to equation
(1-18) is

y(j) = Ekh(j,k)x(j—k) (1-17)

where {x(j)} is the input sequence, {y(j)} is the ocutput se-
quence, and {h(j,k)} is a set of weights corresponding to the
weighing function previously defined. The last equation charac-
ter. e&s the nonrecursive digital filter discussed in paragraph
1.8. The summation in equation (1-17) is known as the convolu-
tion sum. The filters, as defined, can be time varying; that is,
the weighing function can change with time. in the continuous
case, if h(t,T) is a function of T only, then the filter is time
invariant. Similarly, in the discrete case, if {h(j,k)} is a
function of k only, then the digital filter 1s time invariant.
The equation for a digital filter then becomes

y(j) = Skh<k)x(j-k> (1-18)

A digital filter is time invariant when the system is being
modeled by a constant coefficient differential equation, and the
relatianship between the state variables and the measurements
does not vary with time. When measurements are made at equal
increments in time, the set of weights for a time-invariant
filter remains the same for each output point. Thus, time

invariarnce is a desirable feature from a computational point of
view.
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1.6 General Purpose Fllters

Many filters in use today are ganeral purpose; that is, they
are not restricted to a particular application. The most common-
ly used of these filters are the least squares polynomial fil-
ters. fhese filters are usually designed so that the degree and
number of points to be used can be specified. Within this
category there are many variations. For instance, a fllter can
be constrained so that it passes through the lacst filtered point .
and has continuous slope through that point. In addition, the
specific implementation can vary; for example, the recursive sums
or orthogonal polynomials are different implementations of the
polynomial filters.

Most of the frequency-constrained filters mentioned in
paragraph 1.4 are general-purpose filters. Any one of these
filters can be used in a number of applications. Some uses of
general-purpose filters were mentioned in paragraph 1.3. In many
instances, these filters can be moved from one application to
another without modification.

1.7 Specis! Purposs Filters

Certain filters are designed for a special mission. Once
designed and checked out, these filters then ideally remain the
same for the duration of the mission. Two important categories
of special purpose filters are range safety and navigation
system. An example of a special purpose range-safety filter is
the QD filter, (see paragraph 7.7). This filter is suited for
its mission because of the speed with which it can deliver
smoothed position, velocity, and acceleration in real time. ie
also has the ability to do spike editing in real time. (Spike
editing is defined as editing out the wild points or spikes,)
For navigation filtering, special implementations of the Kalman
filter are usually used. The Kalman filter is well suited for
this application because of its ability to give optimal estimates
of a system’s state variables in time.

1.8 Nonrecursive Filters

in paragraph 1.5, a digital fiiter was defined in equation
(1-17). For a filter defined in this way, each output point is a
function only of the input and the weighing function, Any filter
for which the current output is not a function of previous
outputs such as the one defined by equation (1-17) is said to be
nonrecursive. Nonrecursive filters are analogous to open-!oop
filters in servomechanismgs. Many implementations of the least
squares polynomial filters and of the frequency-constrained
filters fall into this category. Such filters are not subject to
problemnis of instability; that is, an error occurring in a comput-
ed output point does not propagate into future output points.
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it the right-hand side of equation (1-18) represents a
finite sum, then it is called a finite impulse response (FIR)

system or FIR filter. 1iIn FIR filters, if the right-hand side of
equation (1-18) contains q terms, then the filter can have an
impulse respunse at most q samples long. if the last impulse

occurred more than q samples ago, the entire right-hand side of
equation (1-18) is zero. A presentation of design methods using
FIR filters, along with a summary of advantages and disadvantages
of using this filter type, is given in chapter 5.

1.9 Recursiva Filtars

Recursive filters use past output values in computing the
current output value. These filters take advantage of past
computations in such a way that output values are used to yield
information about previous input values to the filter. In this
way, storage and computation time are saved. The general form of
a recursive filter having one input and one output is

N M
yik) = L a(j)x(k=j) + ¥ b(jdylk-j) (1-19)
0 1

where {x(j}} is the input, {y(j)} is the output, and
ta(j),b(j):j=1,...} is the set of weights. Some recursive
filters (for example, Kalman and GD) use the previous output to
predict a value for the current output and uce the current
measured input to correct the current output. Recursive filters
are analogous to closed-loop filters in servomechanisms. Another
commonly used name for such filters is infinite impulise response
(I1IR) tilters or IR systems. in 1IR filters, a!l outputs y(k)
will be influenced by all previous impuise responses a(j) in
equation (1-19) regardless of how large k is. Each impulse re-
sponse has an Influence on an infinite number of terms y(k).

The savings in computation time and storage achieved by
using recursive filters do not come without a price. 1f not
properly designed, the filters can suffer from instability.
Because each filter is computed from previous values vy(j),ji<k, an
error induced in any one of these y(k)'s will have an effect in
each future y(k). |f such errors do not die out as k increases,
then the filter i1s unstable and is not usable. Ways of analyzing
the stability characteristics of filters are discussed in chapter
2. Another factor to consider in using recursive filters is the
fact that they are not self starting. For the first few output
points there will be no previous outputs to use in equation
(1-19). Hence, some other method must be devised through which
the initial y(k)'s are determined. Methods of choosing starting
values depend, of course, on the particular application in
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question and are discussed in references 1 and 42 and in chapter
7. A presentation of design methods using IR filters, along
with a summary of advantages and disadvantages, is given in
chapter 5.

1.10 Filter Weights Crnstruction

Again consider a nonrecursive, nontime-varying linear filter
of the form

y(k) =% hej,k)x(k=i) (1-20)
J

The problem in designing a filter is finding the weights {(h(j,k)}
in such a way that some design criterion is satisfied. Some of
the examples discussed in succeeding chapters are

(1) choosing weights by requiring that the span of

{x(j)} under consideration be fitted by a least squares polynomi~-
nal,

(2) choosing the weights using Fourier methods by
requiring that the frequency response of the filter fit an
ideal ized frequency response function, and

(3) wusing the z-transform to derive filter weights

from the transfer function of a given analog filter (see chapter
3.,

When the filter 1s recursive, and thus takees the form

N M
yik)= L aty)x(k-j) + L b(y)ylk-j) (1-21)
0 1

then there is a corresponding nonrecursive filter which is
theoretizally the same. In this case, the weights are either
derived in terms of the corresponding weights for the nonrecurs-
ive case or are derived directly using z-transforms.
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CHAPTER 2

FILTER ANALYS!S IN THE TIME DOMAIN

2.1 Filiter Charaoteristices Anaiveis

Analysis of a filter in the time domain consists of deter-
mining the characteristics. These characteristics are

t1) Stabitity. With a unit impuise input to a recurs-
ive tilter, the filter is unstable if the output oscillates or
never dies down to zero amplitude or attenuates.

(2) Attenuation. With a nonzern input parameter,
attenuation ;s the amount the filter has reduced its amplitude in
the output.

(3) Time Lag. The amount of time 1t takes for a
filter to supply a best estimate of an input parameter.

(4) Distortion. Attenuating or amplifying amplitudes
of different frequencies by different amounts i'n an undesirablie
manner 1s called distortion. If the filter causes minimal
distortion, it is a good fit or well-modeled

To analyze these characteristics, the following techniques are
frequentty used:

(1) Autocorrelation

{2) Unit Impulse Response

(3) Variance Reduction Factor
(4) Simulation

(6) Monte Carlo Methods

(6) Restiduals

2.2 Autocorrelaticn

When data are fed 1nto a filter, the output data may be more
(linearty) correlated in time than the input data: that s,
series ot output data values may be more correlated than their
corresponding series of input data values. The tvpe and amount
of this additiona! correlation wil!l depend on the filter weights
which are used as data multipliers. For example, 1f the fiilter
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frequency response has large side lobe effects ana passes fre-
quencies which were supposed to be suppressed, the rasultant
output wiil show these effects and they can be measured (f the
serial autocorrelation in the data is estimated. The serial
autocorrelation, used in analyzing time lag, is computed by

N-k _ _
I (x (1) =x (1)) (x(i+k)=x(2))
= {2-1)
(k) = '
r N-k ~ N-k N 172
I (x(i)=x(112 % (x(i+k)-x(2))2
i=1 i=\
where x(!) and x{(2) are the means of the first N~k and the last

N-k data points and

N
K

number of points 1n the samptle,
0,1,2,..., M<N, the number of lags.

The value r (k) represents the (linear) correlation between the
first and last N-k data values from a series of N points. This
technique can be used tn conjunction with simulation techniques
by enter ing white noise into the filter and then measuring the
autocorreiation of the output. The amount of correlation imposed
on the data by the filter 15 thus estimated.

Caution must be used 1f an attempt is made to “"smooth” the
same data more than once 1n a sequential manner because of the
correlat:on which may be imposed on the data by the first smooth-
ing process, In cases where it is desirabile to smooth position
and then again smooth computing velocity, a thorough analysis
should be made to ensure that autocorrelation imposed by the

first smonthing process does not bias the estimates made by the
second process.

2.3 Unit Impuise Response

For a continuous, |inear, time-invariant system, a unit
impulse response h{(t) can be defined as the response of the
system at time t because of a unit impulse at time 0, that is,
because of &{(0). (Unit impulse is another term for impulse
function (see page 1-3.)) A system is linear if the input
c fy(th+c,fy(t) produces an output c g, (t)+c,rg,(t) for all f,(1t)

and fz(t), where inputs fl(t) and fz(t) produce outputs 91(t) and

r>
i
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The 1nput f(t) and output g(t) of the system are reiated by
o«

gtt) = J his) f(t~7)dr (2=2)

-

where hiT1i 15 the unit 1Impulise response, Thus, the output equals
the convolution of the unit I1mpulse response and the I1nput.

For a discrete, tinear, time-invariant system, the unit
impuise response 18 the sequence {hni where h, !'s the response of
the system at state n caused by a unit impulise at state 0. For

the discrete case. the input-output retationship can be described
as

o
yn = 2 hmxn_m (2-3)
m=

where {x,} ana ty,t are the input and output signals, and ihn} s
the untt 1IMmpulse response.

For eirther case, the output of a linear, time-invartiant
system 1s thuse the convoiution of 1ts input and 'ts unit 1mpulse
response, For this ourpose, equation (2-3) w:!! represent the
system of interest, since digital filters are defined to be
discrete, linear, time-invariant systems. As seesn from eguation
(2-3), rne unit impulse response can be regardeg as a set of
weights. Thus, from what was discussed i1n paragraph 1.5, the
untit 1mpulise response completely determines the characteraistics
of a digital firiter. Reference can then be made either to v e
weights, given past Jdata, tn the averaging process or to the unit

impuise response.

In reality, 1t 1s 1mportant to know how much a filter
distorts a deterministic 1nput. One way to determine the distor-
tion 1s to analyze unit mpuise response. The c-transform is a
conventent too! for the analysis of the response of digital
fitters when the unit impulise response 1s known. The z-transform
for a seauence {xnl is defined as

[ ]

xtz) = L . 27" (2-4)

n=--mw

Stated eartier 1n this section 1s that the output the
system can be found by convolving the 1nput anc unit impulse
response. The output can be found easier througn the use of the
z-transform. An e<ampie taken from reference LU demonstrating
the use of the z-transform 1n determining the output signal or
the unit Mpulise response |18 described next.
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Let the input signal be {2 1} and the unit mpulse response
bpe 18 4 2 1}. Referring to equation (2-2), the Convolution
Theorem, which states that the z-transform cf the convolution of
two functions is equal to the product of tne z2-transforms of
those functions, 1s applied (see reference 23 or 50). The
z-transforms of the input signal and unit impulse response are

2 + 27" and 8 + 4z7' + 2272 4+ 78 (2~5)

The product of those z-transforms is
16 + 16271 + 8272 + 4273 + 274, (2-6)

This poiynomial 1s the z-transform of the output signal. Hence,
our output signat 1s {16 16 8 4 1}.

To find the impulse response, the input and output must be

gtven. Then, the Convolution Theorem can be appl.:ed by dividing
the z-transform of the output by the z-transform of the input and
expanding the result as a polynomial in z"'. The coefficients of

this polynomial represent the impulse response. To find the
inpulse response, the process described in the previous example
1s reversad. For any given filter, the unit mpulse respcnse,
which returns to and remains at zero, is an indication of the

fiiter's stability, time-lag characteristic, and amplitude
attenuation.

Another means of specifying a filter is by 1ts step re-
sponse, which 1s, the response to a constant signal. A constant
signal 1s represented by a step function, which 15 described as

0 t < a
ult-a) = (2~-7)

| t > a

The unit step function 1s the integral of the unit impulse
function. Likewise, the step response is the integral of the
impu lse response. Quite often, the function used 1s equal to |
for a fir.te period; that i1s, u(t) = 1 for a<i<b, for some b>a,
and u(t) = 0 for t>u,.

Sometimes In actual practice, rather than using the impulse
function. a smooth input step function i1s generated. A smootn
input ste2p function is a function that does not switch values
abruptly, as does the step function just defined. but rather that




changes values 1nh a continUoOus manner. There are many examples
in which a smooth step function simulates real-!ife situations
more accurately than does the i1deal step function. For example,
the acceleration of a rocket at motor burnout dces not vanish
instantaneousiy, but tapers off to zero gradualiy.

As an example of using the step function, the smooth input
step function shown in figure 2-1 can be used as a model to
evaluate a typicatlt general-purpose, recursive, gsecond-order

filter. (An nth order filter 1g a tilter that cran be designed
with an nth order di1fferential equation. The acceteration at
rocker motor burnout discussed 1n the previous paragraph can be
simutated using a second-order filter). The sterc response (s
shown 1n figure 2-2. A recursive filter must be given inittal
values, since each output value depends on the previous output
value. The first three points in figure 2-2 represent the

mnitial values used by the prospect.ve filter.

2.4 Veriance Reduction Factor

Let F be an arbitrary aig:tat filter. Assume that the 1nput
and output of F are stationary random processes. A process is
called stationary i1f 1ts statistics such as mean and variance are
not affected by a shift in the time origin. Thecretically,
assume tnat F has been filtering the same process for an infi-
nitely iocng time for the output to be stationary. Further,
assume that each of the noise processes for the input and output
data are uncorrelated with themselves. Let v(i) and v(2) be the
varances of the i1nput and output random processes. Then the
var iancv reductq-on factor 1s defined as

)
)

v (L
Vi

£

R =

—

The var ance reduction factor must be interpretex with caution,
pecause thne assumptions underlving the estimation of variances
are, in most cases, not realistic, The parameter R 1s not
necessar 1ly less than one, although R is genera:'!'v less than one
tn a practical case.
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2.6 Simulation

Ordinarily, 1t 1s assumed that a signal process s(t) and a
noise process n(t) defined for a discrete or continuous variable
t are addrtive resulting in a process denoted by s(t) + n(t). A

filter is used to suppress n{t) and extract s(t) with the least
amount of distortion under a given set of operational criteria,

for example, variance reduction factor, impulse response, and
computation time. These factors usually vary from one process to
another depending largely on the values of s(t) and n(t) even for
a particular filter. it is therefore often des.red to examine
various response characteristics of a given filter applied to a
specific signal plus noise process s(t) + n(t). The objective s
to compare the filtered data, say S(t), obtained from s(t) + n(t)
against the originally known signal process s(t). The act of

perturbing s(t) with an additive noise process n(t) or filtering
s(t) + n(t) or both 1s called the simulation of the signal plus
noise process or of the filtering.

The simulation techniques are classified 1nto two major
categories: hardware simulations and numerical simultations,.
Simuiated equipment tests and scale model exper iments are typical
of the hardwnare simulations. in the case of the numerical
simulations, the entire system to be analyzed must first be
represented by an appropriate mathematical mode! 1n the form of
s(t) + ni(t), in which the contribution of various perturbations
is treated as the noise process n(t). The purpose here is to
concentrate on numerical simulations.

The numerical simulations are divided i1nto digital, anailog,
and hybrid. The digital simulations use digital computers as the
primary simuiation tools and are effective for discrete processes
of the fuorm st(i) + n(i), i=1,..., m. They are particularly
suited fur highly accurate simulation. Similarly, the analog
simuiations are made using analog computers or similar analog
devices and are suited for the simulation of a process continuous
in time. The hybrid simulations Invoive the mixture of both the
digital and analog simuiations incorporating digitali-to-analog or
analog-to-digital conversion processes or both. 8y the nature of
their construction, neither the analog nor the hybrid computers
can achieve a high degree of accuracy. Digital simulations have
become more frequently used as the primary toois for analyzing
systems performance and operational characteristics, even for
those processes with continuous time variables.

Various digital filters may be applied to the outputr process
of hardware simulations, digital simulations, or digitized values

of analog/hybrid simulations. The performance of the filters is
best evaluated under the conditions of the closed-100op simuiation
setup tn figure 2-3. In a closed-loop simulation, the signal
process s{t) 1s given a priori. The noise process n(t) 1s

2-7




generated using random noise generators or random number genera-
tors and is added to s(t), thus forming s(t) + n(t), Thenfilter
Is applied to s(t) + n(t), yielding the filtered process s(t).
The original signal process s(t) is fed into a comparator with
apprapriate delay to form the difference process s(t) - s(t),
which can be evaluated for the performances of the tilter.

NO I SE
GENERATOR
n(t)
SIGNAL SUM FILTER
PROCESS N .
s(t) Tls(t) + n(t) i e(t)
COMPARATOR
DELAY .
’1s(t) - s(t)
Figure 2-3. A closed loop simulation logical diagram,

2.8 Monts Cario Methods

An analogy of the random numbers used in digital simulations
te the random outcomes of gambling devices such as roulette,
dice, and cards has led to the use of the celebrated term "Monte
Cario” since the inception of digital simulations. The simula-
tion of a random process by random numbers, followed by the
calculation of statistical parameters of the end result of this

process, 1s called a Monte Carlo technique. The random numbers
in question can be generated by a computer. In the digital
simulations of s{(1) + n(i), 1=1,..., m, the signal process si(i)
Is assumed to be known a priort and is available 1n the computer
storage. The noise process n(i) is frequently assumed, unless
facts to the contrary are known, to be independentiy and identi-
cally distributed random variables for all i=1,.. , mwith a

iven propapbility gaistr ibpution function. The prooliem then

-2dutes to the generation of random numbers with these qualifica-
tions.,




2.8.1 Generation ot Random Numbars From a General Distribution
Function

Suppose {(x(k): k = 1,..., }, are random numbers generated
with a probability density function f(x), where f(x) can be
either discrete or continuous in x. Basic concepts for the

descrete and continuous cases are described in the following
subparagraphs.

2.8.1.1 Definition of Discrate Case

If f(x) is discrete, it is then described as P{X = x}, where
X is a discrete random variable (r.v.). There exists a probabil-
ity value f(x(j)) for each random number x{(j), j = 1t, 2,..., ®
such that
f({x(j))>o0, j =1, 2, , ® (2-9)
and
0
L f(x(j)) =1 (2-10)
i=1
The cumulative probability F(x(n)) is defined to be
n
F(x(n)) = L f(x(i)) (2-11)
i=}
It is the probability that the random variable X equals any one

of the random numbers x(1), x{(2),..., x(n). Notice that

lim Fix(n)) = 1.
n - >

2.6.1.2 Method of Random Number Generation

In the case of f(x) being continuous in x aver the range of

interest [a,b], f(x) is then described as having these three
properties

f(x) > 0 for all x in [a,b] (2-12)
b
j fx)dx = 1 (2-13)
a
d

I f(x) dx =

Pic<X<d},




where X i1s a continuous r.v. and [c,d] is contained I1n ¢ fa,b].
The cumulative distriburion function F(t) is defined to be

t
F(t)

I f(x) dx, a < t < b (2-14)
a

Obviously, F(a) = 0, and F(b) = 1. (2-15)

2.86.1.3 Method ot Random Number Generation

Let v(k), k=1,..., n, be random numbers uniformly distribut-
ed between O and 1. Random numbers x(k) can be generated from
v(k) by finding a cumulative distribution function F mapptng x to
Y. s0 thart

y(k) = F(x(k)). (2-106)

Pick F so that the new random numbers x(k) will be distributed 1n
the manner desired. Now generate the new random numbers by using

x(k) = F l(ytk)). (2-17)

in this manner, it is assured that the source y(k) of the new
random numbers x(k) is random and uniformly djigtributed. The
uniqueness of x(k) and the inverse mapping F 'y(k) can be seen
imnediately from ftigure 2-4. Equation (2-17) is applied often,
since random number generators of many compiters produce numbers
uniformly distributed between 0 and 1. The problem then narrows
down to the generation of the random numbers y(k) from a uniform
distribution over [(0,1].

2.6.2 Random Numbaers From a Uniform Distribution

Computers have mathematical routines which generate uniform-
ly distributed random numbers. Various different earlier pseudo-
random number generators have been examined in H. A, Mevyer,
Symposiur on Monte Carlo Methods, John Wiley, New York, 1956.

Une technique called the "congruence method” uses the
tollowing scheme. Given an initial random number x(k),
O<x (k) <27-1, x(k+1) s computed recursively by

s(k+1) = (x(k)[1+28) + 1) (mod 27 (2-18)

where a = (n/2} (['] is the greatest integer function). This

technique 1s frequently used to generate random numbers in an
w-bit binary machine.
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2.6.3 Ranoom Normal Deviates

Another kind of random number ofter used In digital simula~-
tion is that of the random normal deviates. A random normal
deviate is a number in a set of random numbers that (s normalty
distributed. Random normal! deviates are used to simulate a
random sample from a standard normal distribution. These random
numbers can be generated using the mapping technique described in
subparagraph 2.6.1 with the probability density function

f(x) = (2m)”1/2 axp(-x2/2). (2-19)

x(n)
y (k) >
' ]
, |
/// {
7 |
pid i
e |
I
1
I
i

o ; Xk = Xm
X0 X9 X2 (m-1) x (m) x (m+1)
F(x)
0
x (k)
Figure 2-4. Graphic description of how the random number
x(k) is determined. It is obtained with a
cumulative distribution function F(x(n)) {(in

top graph) or F(x) (in bottom graph) and a
random variable y(k) uniformiy distributed

over (0,1).
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The resultant random numbers possess zero mean and unit variance,
For the generation of random numbers z(k), k = 1,..., N, with a
(nonstandard) normal distribution with mean m and variance v, use
the transformation

2(k) = m+ vi{x(k)), k= 1,..., N. (2-20)
2.7 Resaiduals

Some filter characteristics may be determined from using
real test data by analyzing the residuals about the fit, that Is,
the differences between the filtered data values and the nonfilt-
ered data values. A statistical analysis may be made for the
autocorrelation and for the amount of variance or standard

deviation. in addition, if the residual distribution includes a
randomness about zero, this randomness is a good i1ndication that
the systematic error because of improper filtering is small. | f

these residuals do not display this randomness about zero, then
the filter may be introducing bias or gsystematic error. The
feature of randomness, however, in the residual analysis is only
for the case when the noise 1s uncorrelated. Often the noise is
correlated., Then the residual analysis becomes more complicated
and must be undertaken with caution. Spectral analysis may be
performed on the residuals as defined in RCC Document 153-71,
Error Analysis and Methods For Estimating Errors i1n Position,
Velocity, and Acceleration Data.
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CHAPTER 3

FILTER ANALYSIS AND DESIGN IN THE FREQUENCY DOMAIN

3.1 Analysis of Fiiter Charaocteristiocs in the Time Domain

in the previous chapter, the analysis of filter characteris-
tics in the time domain was caonsidered. Also of i1nterest are the
characteristics of the filter tn the frequency domain. To cite
an instance, it may be necessary to know how the filter treats
different frequencies which might be present in the data being
filtered. Probably the most useful tool in any kKind of analysis
tn the frequency domain is the Fourter transform as defined by

o0

X(f) = J expi-2nift)x(t)dt (3-1)

-

Here x(t) 1s some function of time, f is frequency, and i = -1.
The function X(f), the Fourier transform of x(t), gives an
indication of how different frequencies are distributed I1n the
function x(t). To transfer from the frequency domain to the time
domain, use the inverse Fourier transform, given by

©

x{t) = J exp(12ntf)X(f)df (3-2)

-
X(f) and x(t) are known as Fourier transform pairs.

3.2 Discretse Fourier Transform

Because the digital! computer requires that input data be In
sampied form, 1t is often more apppropriate to use the discrete
version of the Fourier transform given by

€KR
X(i) = t ¥ expi=2mify)x(j) (3-3)

J=-®

where t 1s the time increment at which samplies are taken. The

variable t 15 sometimes referred to as the sampling period. lts
reciprocal 15 sometimes referred to as the sampling frequency or
sampling rate. The function X(f) is known as the discrete
Fourier transform (DFT) of x(t). For a finite seauence

x(0), x(1),..., =x{(N-1) (3-4)

@
!




the aiscrete Fourier transform is given by the sequence

N- |
X(k) = 3 exp(-2mik)/N)-tix(3)} k=0, 1,..., N-I (3-5)
1=0

The inverse discrete Fourier transform is given by

N- 1
) = (1/N) L exp(~2TikJy/N)et(x(J)) k=0, 1,..., N-1 (3-6)
1=0

An efficient algorithm, developed by J. W. Tukey and J. W.
Cooley 7ublished 1n 19656 and commonly used to calculate the
discrete Fourier transform, is the Fast Fourier Transform (FFT).
(A paper by |. J. Good a decade ear!lier describes a very similar
atgorithm.) Essentially, the FFT sptits the sequence into two
subsequences with each containing every other element of the
oritginat sequence, computes the discrete Fourier transforms (DFT)
of those sequences, and rearrvanges the values of their DFTs back
In their proper order to form the DFT of the original! sequence.
In this manner, the DFT can then be computed by using fewer com-
plex operations (mulitiplications and additions).

Normaily, the subsequences are divided again in the same
manner as the original sequence to further reduce the number of
operationys required to compute the DFT of the origtnal sequence.
The subsequences are divided still further until there are only
one-element sequences. When this subdividing has been completed,
the ratio of the number of operations used for the FFT compared
to the mimber of operations used to calculate the OFT directly is

N
where N 1s the order (length) ot the original sequence.

It 15 often desirable that the original sequence have an
order equal to a power of two, so It can be dividea in the manner
descrbed earlier,. In the event that the original sequence is
not of such order, the sequence is often padded with zeroes, soO
that it can be completely reduced. The extra space used for
padding the sequence with zeroes is more than compensated for by
the savings afforded by the algorithm. Table 3-1 and figure 3-1
(obtaineoy from references 47 and 53) demonstrate the difference
between the number of muitiplications used when caiculating the
DFT directly and that used when applying the FFT. See reference

52 for & brief and clear explanation of the Fast fourier Trans~
form.




TABLE 3-1., COMPARISON OF REQUIRED MULTIPLICATION OPERATIONS
USING THE FFT AND THE DIRECT DFT.
N N2 (direct DFT) 2N fog, (FFT)
64 4,096 768
128 16,384 1,792
256 665,636 4,096
512 262,144 9,216
1,024 1,048,576 20,480
1024 —-
§ Duect Calcuigtion
s
b
'y
= 5
-4
5
3
e
o
=
&
3 2% l//71
F 4
FFT Algonithm
128 \
64| {f-- -\
=
s4 128 258 $12 1024
N {number of sample posnis)
Figure 3~1. Comparison of multipiications required by

direct calculation and FFT algor ithm.




Another useful too!l i1n the analvsis of a filterS frequency
characteristics is the power spectral density function (psd) or
power spectrum. This function’s name came from a widely used
term 1n the field of electrical engineering where it gives
gistribution ot the signal power for each frequenc.. in this
case, the power spectrum s measured in terms of watts per hertz.
(In etectrical engineer ing, the Fourier transform as a function
of time s measured i1n hertz. Hertz i1s cycles per second.) The
power spectral density function is the Fourier transform of the
autocorretation function, which is defined 1n chapter 2. tn the
statistical sense, it indicates how the variance is distributed
as a tunction of frequency. For the discrete case. the power
spectral density function of {x(s})} 15 given by the following sum

(]
G, (f) = L exp(-2mif(j)) t(R(;)) (3-8)

1=-00

wnere R(j), the autocorretfation function, is given by

o]

Riy) = L x(0)x(1-j) (3-9)

| ==

One of the best ways analyzing a fitter's frequency
properties 1s to look at the frequency content of the output when
the input 1s white noise. As mentioned in chapter !, the power
spectral density ot white ncise 1s a constant for all freguen-
cies. Thus, by taking the power spectral density of the output
of a filter whose I1npuf s white nolse, it can be determined how
the tilter treats all the frequencies In the data. For example,
it miagnt be desired that the filter might pass frequencies in a

vand f] < f_gf2 while rejecting all frequencies outside that band.
Then, 1 the input 's white noise, the ideal power spectral

density of the output woul!d be a translated rectangle as shown In
the fiqure 3-2. In other words, if the psd of the output is that

shown tn the figure 3-2, then the appropriate frequencies (those
tess than f, or greater than f,) were filtered out.

f] fz f

Figure 3-2. Power spectrum of output, where the input is
white noise and where the filte: passes only
the frequencies between f1 and ..
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An indication of how good the fifter is can be seen by comparing
the power spectral density of the filter output, when the snput
is white noise, to this i1deal ized power spectral density.

3.3 Transfer Function of Filter

in chapter 1, it was noted that the output of a filter
equais the input convolved with the filter weighting function. A
convolution for a time-invariant system takes the form

o0

yi{t) = j h(TYx(t-T) dT {(3-10)

-0
where h{(T) is the weighting function.

By taking the Fourier transform of the above equation, the
equation hecomes

Y(f) = H(f)X(f) (3-11)
The Fourier transform of the weighting function, H(f), is known

as the transfer function of the filter and represents the ratio
of the filter output to the filter input in the frequency domain.

Repeating equat.on (1-18), the equation for a nonrecursive, time-
tnvariant digital filter s
v(1) =L hikix(j~k) (3-12)
Kk

The transfer function H(f) for this filter 1s gtven by

H(t) = £ hiklexp(-2rifk)-At (3-13)
Kk

Likewise. we repeat equation (1-19), the equation for a recursive
time-1nvariant digital filter:

N

M
y(i) = L alk)x(y-k) + L b(k)y(s~k) (3-14)
k=0 k=1




The transter function H(f) for this filter is given by

N
) a(k)exp(-2nifk)
k=0
H(f) = (3-18)
M
1+ ¥ b(k)exp(-2nifk)
k=1

The modulus of the transfer function is called the gain of the
filter and represents the amplification of the input.

Filters can be categorized according to the characteristics
of their transfer functions. A filter is called an ideal low-
pass filter if

1 for 0 < J ¢ < f,

lH(H) | = (3~16)
¢ for fc <!|fl

The plot of | H(f) | is as shown in figure 3-3.
FH(E) |
~-fe feo f
Figure 3-3. ldeal low-pass filter.

A tilter 1s called an ideal high-pass filter if the transfer
function 1s given by

0 for 0 <l f 1l < £,
FHO(E) | = (3-17)
I fer f <l £

and the plot of | H(f) | 1% as shown 1n figure 3-4.




| H(f)l

Figure 3-4,. fdeal high-pass filter.

A filter is calted an ideal band-pass filter 1 f
0 for 0 <l f 1 < f
bH(H § = {1 for £, <) < f (3-18)
0 for f_ <|f|

and the plot is as shown in figure 3-5.

1 HH)

Figure 3-5. ldeal band-pass filter.




These ideal filters cannot be attained because there isgs, in
practice, a finite number of samples. The mpulse response in
equation (3-10) is muitipiied by a "boxcar” or window function
which covers the time interval being sampied. Alternatively, the
limits of integration can be changed to the appropriate, finite
time |imits. As stated in paragraph 1.5, the transform of the
product of two functions is the convolution of the transforms of
the two functions. Now the transform of the boxcar function ts a
sinc function. (By definition, sinc x = sin (nx)/nx.) The
resulting transfer function is the sinc function convoived with
the transfer function of an ideal flilter. The graph of the
resulting gain is a boxcar function with ripples and not the
ideal boxcar function iltustrated in this section.

Methods for simulating the Ideal low-pass filter are given
in chapter 6. High-pass, band-pass, and band-rejection filters
(discussed in chapter 4) are normally derived by first designing
a low-pass filter. Methods for obtaining all! of these filters
are given in chapter 4.

3.4 Cutoff Frequency, Roli-0ff, and Quality of Filter

In the previous section, a low-pass filter was defined in
terms of a frequency denoted as f_,. This frequency f¢ is called
the cutoff frequency (see equation 3-18). The cutoff frequency
is used as a criterion for designing digital filters in the
frequency domain. it also gives a standard for analyzing the
performance of filters in the frequency domain.

As explained in paragraph 3.3, ideal filters are simulated
and not used directly. The simulating filters do not have gains
that look Ilke the boxcar functions drawn in paragraph 3.3. The
gain of a simulating fi ' ter does not suddenly drop off from 1 to
0 the way the gain of an ideal filter does. Instead, it normally
starts off (at f=0) with a value that is within a predetermined

tolerance &y of 1| and tapers off to within a predetermined toler-
ance 62 of 0.

The band of frequencies in which the gain is between 1-3,
and 1+8, is called the passband. The greatest frequency value in
the passband is the cutoff frequency for the passband, The band
of frequencies in which the gain is 362 is called the stopband.
The lowest frequency value for the stopband Iis the cutoff fre-
quency for the stopband. The band in which the gain is < 1~61
and > 62 1s called the transition band. These items are illus-
trated in figure 3-6, which is obtained from reference 56.

One commonly used simuilation to the ideal low-pass filter
that is not designed on the basis of a transition band and two
cutoff frequencies is the Butterworth filter. This filter and
other simulations are given and explained in chapter 5.
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Figure 3-86. Tolerance |imits for approximation
of ideal low-pass filter.

Another important concept in the analysis is the rolt-off.
This quantity indicates to what extent the slope of the transfer
function of a simulating (nonideal) filter (see paragraph 3.3)
approaches the 90° slope of the transfer function of the ideal
filter. Roll-off is related to the intuitive notion of “sharp-
ness” of the cutoff. This quantity is defined as

-f dinl

p = =

H df

(3-19)

A value for p can be obtained at any frequency desired. For
purposes of comparison and analysis of filters, this quantity 1s
often calculated at {H| = 1/ {2, In figure 3-7, the plots of

| H(f)] for two filters, A and B, which approximate the ideal
low-pass filter are given. Both filters have the same cutoff
frequency, but A has a higher rolloff than B.




17 V2 8

fc f

Figure 3~7. Comparison of rolloffs for filters A and B.

A third concept used in analyzing low-pass filters in the
frequency domain is quality, which is defined as the extent to
which the filter attenuates frequencies well above the cutoff
frequency. (An attenuating function In the frequency domain is
one that approaches zero as the frequency increases.) There is
no standard mathematical definition for quality, so some subjec-
tive Judgment must be used to determine the quality of a filter,
One tool that can be used in making this judgment would be the
power spectral density function as discussed in paragraph 3.2,
For exampie, if two filters, A and B, yield the power spectral
density functions shown in figure 3-8, then it might be concluded
that fiiter A has the baetter quality.

G(f)

N’

Figure 3-8. Comparison of the quality of filter A
with the quality of filter B.
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8.5 Phase Shitt of Fiiter

The transfer function H(f) of a filter is generally a
complex number and can be expressed as

H(f) =1 H(F) | exp(ig(f)) (3-20)
O(f) is called the phase snift of the filter. Aiternate names
are phase response and phase angle. A time shift in the time

domain corresponds to a phase shift in the frequency domain.

Equation (3-20) can be expressed as

H(f) =1 H(f) J cos(B(f)) + i H(f) sin(B(f)) (3-21)
or

H(f) = Re(H(f)) + i+im(H(f)) (3-22)

where
Re(H(f)) = | H(f) | cos(8(f) and Im(H(f)) =] H(f) | sin
(6(f)). Re and Iim denote real and imaginary parts of a complex
number .
Now 'MH(Y)  _ an(a()) (3-23)
Re(H(f))

The phase shif{t of the filter is then

©(f) = arctan M{H()) (3-24)
Re(H(f))
The output of the filter is in phase with the input only if
Im(H(f)) = 0. In most applications, this phase shift is impor-

tant, and the analyst should be aware of its magnitude.

3.6 Construction of Filter Weights

Again consider a |inear, nonrecursive digital filter whose
defining equation is

M
yik) = ¥ h(j)x(k=y) (3-25)
j=o0

in this section, a general discussion of the way the {h(j)} are

determined will be given so that the filter wili have a8 desired

frequency response function. The frequency response is the same
as the transfer finction except that it is applied to a specific
class of inputs in the form
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x(n) = exp(12nfn). (3-261}

One way of approaching this probiem s to assume a desired

frequency response function, H{(®), then take the :nverse Four.ier
transtorm to get h(t) as shown I1n equation (3-27). The variable

® 15 the angular frequency and i1s equal to 2nf.

o0

hit) = ! j expli OIH( Q) d 0 (3-27)
2n -0

The weights for the discrete filter are then determined by
evaluating this continuous weighting function at specific in-
stants in time,

h, = h(tn)At. (3-28)

There are problems with constructing these weights 1f the ideal
trequency response 1s used. For example, the i1deai frequency
response for the low-pass filter i1s the unit rectangie as given
in figure 3-3. The inverse Fourier transform must pe truncated
1in the applied case, so oniy a finite number of we:ghts are used
in equation (3-25). The truncated Fourier transform of the unit
rectangle is very “"bumpy” (see paragraph 3.3, page 3-7) because
of the discontinuity at fC and 1s not useful in most applica-
tions.

Approaches to avoiding this dilemma are given in references
7, 11, and 183. in reference 7, Gennery el iminates the dilema byv
using various modifications of the Gaussian distr:bution function
for the ideal response function. In reference 11, Ormsby replac-
es the ideal frequency response function with a function having a
finite slope. In reference 13, Stirton multipilies the h(t) for
the ideal filter by certain "apodizing” functions which el iminate
the bumps in the frequency response function.

In certain applications, the z-transform rather than the
Fourier transform is used for designing filters 1rn the frequency
domain. The z in the z-transform is often used as a replacement
for the exponential function in the discrete Four:er transform
(DFT) . It is used as such for computational ease and to facili-
tate transfer function analysis. For example, it i1s easier to
determine stability of a filter by looking at the z-transform
rather than by looking at the DFT. Determining filter stability

in this manner will be discussed again in paragraph 3.8 and In
chapter 5.

The z-transform approach i1s used when the transfer function
of an analog filter is known, and when construction of a digital
tiliter having that same transfer function 1s desired. The
z-transform of an analog function f(t) i1s defined as
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[+ ]

(f(t)) = P fnmy 2! (3-29)
n=0

t

It can be shown that the 2-transform of the weighting function 1s

the ratio of two polynomials in the form

N .
Y aimz! (3-30)

n=0

H(z) =

b(n)z !
1

1 +
n

neI=Z

if the filtered output {y(k)} is given by the recursive relation

N M
yik) =L atnx(k-n) + L b(nylk-r) (3-31)
n=0 n=1

It can also be shown that the z-transform of the weighting
function is in the form

a(n)z ! (3-32)
0

H(z) =

n ez

n

if the filtered output {y(k)} is given by the ncnrecursive
relation

N
vik) = ¥ a(n)x(k-n) (3-33)
n=0

Other ways in which H(z) can be expressed are discussed in
chapter b.

3.7 Aliasing

In performing with digital filters, sampltes are taken from
an analog sinusoidal waveform, and the waveform 1s reconstructed
from the samples. The samples are typically taken at equal-
spaced time intervals. The problem arises about how short these
sampling intervals should be so that the original analog waveform
can be exactly reconstructed. if the sampling intervals are too
large, that is, if the samples are too infrequent, the original
analog waveform may be reconstructed to have a !ower frequency
than it actually has. This misrepresentation of a frequency by a
lower trequency 1s known as aliasing.
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The appearance of wheel spokes turning slower than they
actually are is an example of aliasing. The alternate term
“foldover"” can be expressed by the next example. Suppose an
observer i1s taking visual samples at a constant time rate of the
fast-turning wheel spokes. As the wheel's rotational speed
increases, the whee!l spokes seem to be rotating faster up to a
certain point. Then the wheel spokes appear to slow down until
they seemingly rotate faster and faster in the backward direction
up to & certain point. The spokes then seemingly siow down until
it looks as though they are going in a forward direction. tf the
observed rotational motion is placed on a plot of obgerved
frequency versus actual frequency, the graph "foids over"” at a
frequency value known as the Nyquist or folding frequency (see
figure 3-9). The Fo axis represents the observed frequency while
the f, axis represents the actual frequency, and the value fy i8S
the Nyquist frequency.

Figure 3-9. Foldover or aliasing resulting from observing
a wheel's increasing rotational speed.

3.7.1 Aliasing In the Tims Domain

An illustration of aliasing in the time domain is given in
figure 3-10. The original analog waveform is the thinner sinu-
soid and is sampled at the points shown. With these sampled
points, the original waveform is reconstructed so that the result
is the thicker line which, of course, has a lower frequency than
the original waveform. In producing new waveform, the original
one was misreconstructed because the samples were taken too
infrequently (see figure 3-10).,
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Figure 3-10. Aliasing in the time domain.

More often than not, the original waveform represents the
sum of many sine and cosine functions. Figure 3-11, obtained
from reference 62, illustrates this notion. The bottom sinusotd
18 the sum of the top three sinusoids. The frequency of each of

the top three sinusoids is called a "frequency component” of the
bottom sinusoid.

AN -

(o)

y\/\/\A AN
VVW v

Figure 3-11. Bottom sinusoid shown as the sum of three
frequency components, C2, Ci. and St.
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3.7.2 Allasing in the Frequency Domain

The discrete Fourier transform of a signal can be expressed
in terms of the analog Fourier transform by

00
xe'®T) = (1/1) I xpa0 + (2r/Tym) (3-34)

m=—o
where Xa () (in the right-hand side) 1s the analog Fourier trans-

form, and X() (in the left-hand side) is the discrete Fourier
transform. This equation is derived 1n reference 55.

The frequency interval of each term in the summation sign of

equation (3-34) will not intersect with 1ts adjacent i1nterval if
1t is at most 2n/T wide. Figure 3-12, obtained from Reference
54, point to this fact. Figure 3-12 1llustrates the analog
Fourier transform of one of the terms, which covers a frequency
bandwidth of 2n/T and iliustrates the infinite sum of such terms.

As can be seen, 2n/T is the widest that these terms can be
without 1ntersecting each other.

Xalif}) (o)
{
_r o w f
T T
X(e iwT) (b)
VAS
Ww
_5T _3r T o 37 LA
T T T T T T

Figure 3-12., Sampling relations for analog and digital

systems for properly sampied incuts,
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Figure 3-13, obtainaed from reference 54, gives an example
where samples are taken too infrequently, in particular, where

they are taken at a rate of w/3r, which is less thar w/2r. In
other words, the frequency bandwidth for each term, which is
3n/T, is greater than 2n/T. Figure 383-13a shows the graph of one

of the terms in the summation of equation (3-34), when substitut-
ing 3n/T for w. Figure 3-13b explaine how the adjacent terms
over lap each other, and figure 3-12c dispiays the resulting graph
of the Fourier transform, it is easily seen how the frequency
3n/2T can be mistaken for the frequency n/2T. This phenomenon,
where in effect a frequency component takes on the identity of a
lower frequency, is aliasing or foldover.

X, (iQ)
(o)
L. o v a
F34 7
{d)
> r o ¥ v
T T T T
x(e/*")
G + Ve (¢)
. j' l-l" o i l'j l' w
Y Y

Figure 3-13. The effects of undersampling on the digital
frequency response.

3.7.3 Sampling Theorem and the Nyquist Frequency

The Sampling Theorem offers a way to avoid aliasing. it
states that if the Fourlier transform of a signal is bandl imited,
then the original signal can be exactly reconstructed if samples
are taken at a frequency of at least twice that of the highest
frequency component in the signal. In mathematical terms, the
Sampling Theorem states if F{@), the Fourier transform of a
periodic time function f(t), is band)imited so that

Fl@ =0 for lol > o, (o, = 2nf ) (3-35)




then f(t) can be uniquely determined if it is sampled at inter-
vals no greater than 1/2f_ = n/@,, that is, at a sampling rate of
no less than 2f_ = @ /n.

Figures 3-11 and 3-12 imply the validity of this theorem.
From these figures, it can be seen that the frequency 0 should
be at most n/T to avoid foldove-. |In other words, the sampling
rate 1/T should be no less than 0c/n.

For samples f_ which equals f(t ), where t, < n/2f = nn/ac.
then the original analog signal f(t) can be reproducad by
f(t) = o L sin(act - nn) (3-36)
n=-w Oct - nRn

2fc is known as the Nyquist or folding frequency. (This theorem
is stated and elegantly proven in subparagraph 9.1.1 of reference
a7.)

3.8 Stabillty of Filiter

A digital filter is stable if every bounded input sequence
yields a bounded output sequence through this filter. A sequence
is bounded if all its terms are less than a specific positive
integer. It can be shown that a necessary and sufficient condi-
tion for stability is that the impulse response | h(k) | be such
that

. ]

! k) ) < w (3-37)

k==-w

From this condition, it can be shown that another indication of
filter stability is that ali the poles of the transfer function
be inside the unit circle in the (complex) z plane. |f poles are
on the uznit circle, then the fiiter may or may not be stable. |t
a pole is outside the unit circle, the filter is not stable. See
chapter 5 for the relation between pole location and filter
stability.




CHAPTER 4
CATEGORIES OF DIGITAL FILTERS

in Chapter 1, some of the fundamental principles of digital
filters were discussed. As stated earlier, the basic reason for
using a digital filter is to separate or suppress errors and to
pass signals without significant distortion. As discussed in
Chapter 3, the frequency response of the filter shouid be such
that those frequencies consisting mainly of the desired signal
should be passed through the filter, and those frequencies
consisting mainly of noise (error) should be rejected. 1¥ the
compiete statistical characteristics of the signa! and noise are
known, then using the principles discussed in chapter 3, a filter

can be constructed to separate signal from noise 1n an optimum
manner .

1 Low-Pass Digital Fllters

The data from missile trajectory work usually contains a
signal which consists mainly of large low-frequency components.
The noise error is usually assumed distributed throughout the
frequency spectrum with the desired signal being much greater in
amp!itude than the noise at low frequencies but smaller than the
ampl itude of the noise at the high frequencies. in this care, a
low-pass filter is desligned to pass the desired signal.

A low-pass filiter has a frequency response of exact unity at
zero frequency, approximate unity at low frequencies, and approx-

imately zero at higher frequencies (see figure 4-1). The low-
pass filter Is simulated by the ideal low-pass filter defined in
paragraph 3.3). Tl. frequency at which the transition occurs

between the high anu low frequenclies Is called the cutoff fre-
quency (fc) of the filter. Because a low-pass filter removes the

high frequency fluctuations from the data, it is often referred
to as smoothing the data.




A
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Figure 4-1. Typical freguency response ot Jlow-pass

filter (represented by the curved [ine).

4.2 High~Pass Digital Fllters

The category of low-pass filters discussed in the previous
section can be transformed into filters which perform other
tasks. Iln analysis work, one of the most commoniy used is the
high-pass filter. As the name implies, a high-pass filter is
designed to pass high frequencies and reject the low freguencies.
A low-pass filter can be transformed into a high-pass filter in
several conceptually equivalent ways. One of the most common
ways is to subtract its frequency response from unity at all
frequencies. That is, if HL(f) is the frequency response of a

low-pass filter, then
Hy (f) = 1 - HL(f) (4-1)
defines the frequency response of a high-pass filter.

Since

HL(O) = 1 (4-2)
fer a low-pass filter, then it follows that

HH(O) =0 (4-3)

Equation (4-1) shows that output from a high-pass filter is
the same as the difference between the unfiltered data, that 1s,
output from an "ali-pass” filter and the output from a low-pass
filter. Clearly, since a filter whose response i1s unity over ail

frequency bands, an all~pass filter passes the data without
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change; that is, it does not filter the data at all. Therefore,
the effects of a high-pass filter can be duplicated by filtering
the raw data with a low-pass filter and then subtracting the
results from the raw data as in

Y = HyX = (1=H )X = X = H X (4-4)

X is the raw data (in the frequency domain). H X is the low-pass
filtered data. This technique is often used in analysis of high-
frequency noise on missile trajJactory data; however, the proce-
dure of subtracting the low-pass or smoothed data from the raw
data can be cumbersome and time consuming. A generally faster
approach is to construct the weights of the high-pass filter and
apply them directly to the raw data.

The weights for this high-pass filter can be obtained by
taking the difference between the weights for the two filters
given by the right-hand side of equation (4-1). Remember from
paragraph 2.3 that these weights amount to the unit impulse
responses of their respective filters. For an ali-pass flilter,
the response to a unit impulse is a unit impulse, because the
input data Iis left unchanged by this filter. Consequently, all
the weights of an all-paz. ¢ lter are unit impulse responses.
The weights for the low-pass filter are then subtracted from the
weights of the all-pass filter to obtain the weights for the
high-pass filter. Letting wL.k represent the weights for a
low-pass filter and W, Kk represent the weights for the corre-
sponding high-pass filter, then

Wk = Sk ~ WL,k (4-5)
where
1 if k=20 (4-6)
5, = {
0 ifke O.

4,3 Band-Pass Flilters

The band-pass filter passes a set of adjacent frequencies
while rejecting the frequencies above and below the set of
frequencies. A band-pass filter is said to be narrow |f the
frequency band contains very few frequencies, and wide if it
contains many frequencies. If the desired frequency bandwidth is
large compared to the center frequency of the band, a wide
band-pass filter would be desirable to use for filtering the
band. if the bandwidth is small compared to the center frequen-

cy, it would be better to filter it with a narrow band-pass
filter.




The wide band-pass filter is constructed by combining a
high~-pass filter with a low-pass filter. The high-pass filter,
used for this construction, has a cutoff frequency fc in the area
of the spectrum where the low-pass frequency response is approxi-
mately unity. The low-pass filter that is used has a cutoff
frequency f, where the frequency response of the high-pass

H

filter is approximately unity. There is a resulting band of
frequencies where the low-pass and high-pass filters are both

unity, so that f, > f_, . The frequency response of the
L H
reculting filter would have a low end of f, , a high end of
H
fo and a center frequency of

L

fo + T (see figure 4-2}. (4-7)

fH(FY | filter gain
1\

/ N

0 fc f0 fc

H L

o

> frequency

Figure 4-2. Frequency response of wide band-pass filter.

To perform the band-pass filtering, the high-pass and
low-pass filters can be applied separately to the data in series,
which is usually time consuming. |t is more desirable to combine
the two filters into a single band-pass filter by convolving the
weights of the two filters with the input data in the time
domain. The same resuits can be obtained by multiplying the
frequency response of each filter with the Fourier transform of
the input data in the frequency domain and then taking the
inverse Fourier Transform to get the band-pass filtered data in
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the time domain. The methods mentioned here are essentially the
same as the methods described In paragraph 4.2 for converting a
low-pass filter Into a high-pass filter.

if the frequency response curves of the high-pass and
low-pass filters are sharp and closely approximate the ideal
frequency response of a step function, the techniques discussed
previously will work for a narrow band-pass filter. |If this 18
not the case and the roll-off is not steep, a narrow band-pass
filter can be constructed using the following technique. The
frequency response of a low-pass filter is translated so that the
center frequency of the low-pass filter, f=0, is moved to the
desired center frequency of the passband with its own mirror
image reflected about the zero frequency, thus its mirror image
is at the corresponding negative frequencies (see figure 4-3).

FIRST STEP: Design the SECOND STEP: Translate so
approximate that the new
low-pass filter, center fre-

quency is fd
and refiect
about the line
f=0.

,
-
L

i i 4 — f
7

Desired passband

center frequency

Figure 4~3. Method of converting a low-pass filter with
shallow roll-off into a band-pass filiter.

4.4 Band-Rejection Fllters

To remove a particular band of frequencies from the data
and, at the same time, to preserve the lower and higher frequen-
cies, a band-rejection filter can be constructed. The band-
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rejection filter is the opposite of the band-pass filter. Tnere
are various methods of constructing a band-rejection filter from
a band-pass filter. Each method Is analogous to an approach
discussed in paragraph 4.2 in obtaining a high-pass filter from a
low-pags filter.

The frequency response of the band-rejection filter can be
obtained by subtracting the band-pass response from unity as
shown in figure 4-4. In the time domain, the band-rejection
results can be obtained by band-pass filtering and then subtract-
ing the band pass-filter results from the raw data.

Another approach is to construct band-rejection weights and
then filter the data directly in a one-step operation. The
weights are constructed by

Wr.k = %k " WB,k (4-8)
where
wB.k are the band-pass weights (4-9)
and
it if k=20 (4-10)
S =
0 if Kk #0

Filtering can be accompl ished by convolving the weights of the
band-rejection filter with the input data to obtain the filter.

A
LH(F)Y |, filter gain

->» frequency
c (o} (o fN

Figure 4-4. Frequency response of band-resection filter.
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4.5 Phase-Shift Filters

All categories of digital filters have a phase-shift curve
which character izes the amount of phase shift the filter :nduces
for each frequency. It is sometimes desirable to construct a
filter which will shift the phase of a signal by a constant
amount over a narrow band of frequencies whiie maintaining
constant amplitude. For example, a sinusoidal signal with
amplitude & and phase ¢ can be resolved into two components with
amplitude &« cos @ and phase 0° and amplitude « sin @ and phase
90°. in this case, a filter is constructed which produces a
phase shift of 90° and combines the output of the filter with the
unshifted data in the appropriate manner to produce any desired
resul tant phase shift. A phase lead of 90° and no amplitude
change corresponds to frequency response equal to v-1. An ideai
digital-phase shifter maintains this value for all frequencies
between zero and the Nyquist frequency.

4.6 Filter Combinations

Any or aill of the filters discussed in this chapter can be
combined to form filters which perform more compiex tasks. In
any case, whatever effects are wanted can be accomplished 1n the
time domain by applying the filters independently in series or by
getting a one-step compliex filter by convolving the filter
weights together in the time domain. On the other hand in the
frequency domain, the frequency response curves can be multi-
plied, added, or subtracted to give whatever response s desired,
then transformed to the time domain via the appropriate use of
the i1nverse Fourier transformation.

One special combination fiiter is referred to as a “"comb
fitter.” This filter consists of a series of n narrow band-pass
filters having a frequency response curve with n narrow frequency
bands at equal spaces between zero and the Nyquist frequency,
which was discussed in subparagraph 3.7.83. This type of filter
is constructed by convolving the raw data with the weights of n
narrow band-pass filters that can be accomplished in a one-step
operation. (A similar one-step operation is discussed in para-
graph 4.4, in converting a band-pass filter into a band-rejection
filter,) The fiiter is then usually used to aid 1n determining
significant frequencies and cut-off levels for other |ow~pass cr
high-pass filters. The Fast Fourier Transform 1s usually consid-
ered a petter tool for this analysis than the comb filter.




CHAPTER b6
FREQUENCY DOMAIN FILTER DESIGN

There have been many filters developed for digttal signal
processing in the frequency domain and var ious wavys to express
thegse filters. in this chapter, a synopsis of the filters 18
given along with their various modes of expression. For recurs-
ive filters, methods of conversion from the analog form tno the
digital form are given as well. Also discussed are the advantag-
es and disadvantages of using each type of filter, mode of
expression, and method of conversion., Since the approach 1o
designing infinite impulse response (1IR) (recursive) and finite
impulise response (FIR) (nonrecursive) filters, described earlier
in this document, ate compietely different, the chapter s
divided into two parts: 1R and FIR filter design.

5.1 Infinite Impulse Response (iIR) Filter Design

The (iR filters have been extensively analyzed in the analog
form. Consequently, digital |IR fiiters are usually described
first in analog form and then converted to digital form.

The probiem of approximating an iR filter invoives a
compiex transfer function of the frequency ®. The transfer
function can be written as

iB(2)

H(z) =l H(z) | e (6-1)

where z=ei°, and B(z)=B(e'®) is the phase angle. which can be
defined as

Im(H(e'®))
Be'® = arc tan

Re (H(e'9))

Thus both the magnitude and the phase angle (alsoc called the
phase response) are examined to determine the nature of the
filter approximations.

Advantages to using an IR filter are that 1t (1) can be
expressed in closed form and thus can generally pte computed more
efficiently, (2) does not require powerful computational facili-
ties to be calcuiated, and (3) achieves a superior amplitude
response. An undesirable consequence of using an IR filter s
that i1t yields a nonlinear phase response. More on the |inear
phase characteristic is covered in paragraph 5.2.




5.1.1 Modes of {!R Filter Exprasssion

Recall from chapter 3 that an IIR filter car. be expressed as
N M

yik) =L a(i) xtk-i) + T b(i) y(k-1) (5-3)
1=0 i=1

Three popular modes of expression for the transfer function of an
IR fitter are

{1) the direct form,
(2) the cascade form, and
(3) the paraliel form.
The forms assume those names because when they are illus-
trated in network diagrams, they are depicted in the forms

mentioned. In the following subparagraphs, the mathematical

forms and illustrations are gi:ven as well as the advantages and
disadvantages.

6§.1.1.1 Diraect Form

As mentioned in paragraph 3.6, the z-transform of a weighing
function, that is, the transfer function of an JIR filter can be
written as

M
I bkz—k
k=0
H(z) = . (6-4)
N
1 - ¥ akz_k
k=0
The network design illustration for this equation I1s known as the
direct form realization of the IR filter, which 1s expressed by
equation (56-83). This illustration is given 1n figure 5-1 and is

obtained from reference 56.
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Figure 6~1. Direct form realization of |IR fiiter.

The advantages of this form are that the direct relation
between the |IR fiiter equation (5-3) and the transfer function
equation (5-4) is easily seen, and it is easy to formulate
equation (6-4) given equation (6-3). The disadvantage of this
form is that coefficients a, and b, are very sensitive to discre-
tization errors. These errors will affect the accuracy and
possibly the stability of the calculations. This form i1s gener-
ally not recommended for filters of order three or higher.

5.1.1.2 Cascade Form

Equation (5-4) can be rewritten as

M M
1 2 N
T a-gzh T a-nzha-nezh
k=1 k=1
H(z) = A (5-5)
Ny N2 .
k§‘<1 - oz h k§ (1 - dez"hia - a2z™h




with M.

as the "cascade form realization"

expressed by equation (5-3)., This
figure 5-2 and

where M, + M2 =M and N, + N

2 = N, The numbers g, and cy are
the real

zeroes and poles of the transfer funct.cn, The numbers

hg, hgy di, and dz are the complex conjugate zeroes and poles of
the transfer function. (A is a real number.)

This equation can be written as

H(z) = A X

1 > (6-6)
k=1 T+ w1kt w2k?

(where [(N+1)/2) is the greatest integer

legs than or equal to
(N+1)72). Assume that M<N.

if N<M, replace N in equation (5-6)

The network design illustration for this equation is known

of the IIR filter, which is

illugtration is given in
is obtained from reference 56.

fi

ters are to be

Figure 5-2, Cascade form realization of the IR filter.

The advantages of this form are

(1) the zeroes (roots) of H(z) are easy to find,

(2) it is convenient to use for filters whose parame-

computed and changed in real time, and

(3) the poles (roots of the denominator) are easy to
nd.




The poles are important because they determine the stability of a
filter. The filter is stable if and only if the poles are inside

the unit circle. |t & pole is on the unit circle, other criteria
have to be used to determine stabiiity.

A disadvantage of this form is that it is heavily subject to
undaer flow and overflow problems.

8§.1.1.8 Paratie! Form

Equation (5-4) can be rewritten in terms of a partial
fraction expansion as

N N -1
1 A 2 B (1 ~ .27 ") M-N
k k k -
H(z) = I — + I - + I Gz
k=t 1 -z k=l (- dezTH - areTh)  km
(6-7)

The first two terms in equation (6-7) can be combined so that the
squation becomes

M-N [(N+1)/2) Yo + Yic2!
H(z) = I ce2”! «+ ) 1 >
k=1 k=1 1 2" - r
nik u2k (5-8)
The network design illustration for this equation is known
as the "paralle! form realization” of the IR filter, which is
expressed by equation (6-3). This lilustration is given in

figure 5~-83 and is obtained from reference 665,

An advantage of this form is that the problems mentioned for
the direct and cascade forms are normaliy not encountered. A
disadvantage is that while pole locations can be easily located
(as in the cascade form), the zeroes cannot.
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Figure 5-3. Parallel-~form realization with the real and
complex poles grouped in pairs,

6.1.2 Converting From Analog to Digital

The filters to be discussed in subparagraph 5.1.83 were
originally derived in the analog form. Since these filters were
discovered, a need developed to use frequency domain filters in
the digital form. Because the art of analog filter design is
highly advanced, it is considered advantageous to adopt the
design procedures developed for the analcg form to convert to the
digital form. n this section four methods of analog-to-digital
conversion are given along with their advantages and disadvan-
tages.




The two desirable properties of any convers:i1on method are

(1) The frequency axis in the "s plane” (the analog
plane) be mapped to the unit circle in the "z plane” (the digital
plane), ensuring that there is a one~to-one mapping between
frequencies in the s plane and frequencies 1n the z pilane. | f
this property is satisfied, the "frequency selective properties”
of the analog filter are said to be preserved. With a conversion
method that has this characteristic, the digital filter shouid

filter through all and only those frequencies that the analag
filter filters through.

(2) The left half of the 8 plane {Reisl<0} be i1nside

the unit circle in the 2z plane (1 z1<1), which ensures the pre-
servation of filter stability.

All the recommended conversion methods described in these sub-
paragraphs have at least the second property.

8.1.2.1t Impuiss Invarliance

The main idea of the impuise tnvariance method is to pre-
serve the impulise response when converting from analog to digi-
tal. That is, the purpose is to ensure

h(n) = ha(nT) (5-9)

where T is the sampling pericd, h is the digital impulse re-
sponse, and ha is the analog impulse response. in other words,
the characteristic property of this transformation is that the
impuise response of the resulting digital filter 1s a sampled

version of the impulse response of the analog fiiter. Use the
following method:

(1) set up analog transfer function H(s) in direct,
cascade, or paraliel form. (Generally, the paraliel form i1s the
most preferable, because it is easy to perform step (2) when
using a table for transform pairs);

(2) obtain the inverse Laplace (or Fourier) transform
of H(s), giving the analog impulse response function h(t);

(3) get your digital impulse response function hi{n)
using equation (5-9); and

(4) take the z-transform of h(n) to obtain your
digital transfer function H(2).

Steps (2) and (4) are jointly Justified, because it can be shown
that the Laplace transform of the analog function h_ is related
to the z-transform of the digital function h(t) bv
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With the z-transform, the relationship z=e® s used In
going from the s plane (for the analog function) to the z plane
(for the digital function). Each horizontal strip of the left
half of the s plane of width 2r/T s mapped 1nto the unit circle
in the z plane (see figure 5-4, obtained from reference BB).
This multiple mapping may lead to aliasing (explained in chapter
3) because distinct frequencies from different strips in the s
plane can be translated into one frequency tn the 2 plane.

The ocecurrence of aliasing can be seen by noting that if
s = ¢ + in, then

sT e%T (cosnT + ixsinnT)

2 = e

e%T (cos(® + (2nn/T))T + ixsinie + (2rA/TIIT)

{(6-11)

for any integer n.

o -1
M-z ____ ___

aBaR et b - e - -

Figure 5-4. The mapping of a aorizontal striv of w:dth zn/T
in the s plane to the unit circle of the z plane,
througr the impulse invariance method.
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A disadvantage in using this method is that it is subject to
aliasing. This method works best when used with band! im:ted
filters such as iow pass and band pass.

£.1.2.2 8ilinear Transformation

With the bitinear transformation, to go from the s plane
(which represents the analog filter) to the z plane (which
represents the digital filter), the following equation is used:

t + (T/72)s

2z = (6-12)
1 - (T/72)s

Likewise, s can be expressed in terms of z by

s = (6-13)

That is, the transfer function of the digital filter, H(2), is
set equal to the transfer function of the analog filter, H(s),
where s is expressed in terms of 2 as in equation (5-13), or
where z is expressed in terms of s as in equation (56-12). These
equations were obtained by the procedure outliined next.

A digital filter is essentially a difference equation. For
an analog filter, a differential equation 1s used. The analog
transfer function is obtained by using Fourier or Laplace trans-
forms. To obtain the bilinear transformation, integrate both
sides of the differential equation and use a numerical approxima-
tion to the integral so that the integrated equation is expressed
in discrete terms. Then take the z-transform of this equation to
get the digital transfer function. When comparing the analog and
digital transfer functions, it can be seen that s and z are
reiated as stated in equations (5-12) and (5-13). Reference 55
gives the derivation of these equations in more detail,

tllustrated in figure 5-5, which was obtained from reference
55, is the relationship between s and z.




ift s plone 2 plone

o

left hotf plane

N

Figure 5-5, The mapping of the left haif of the & plane to
the unit circle of the z plane, using the
bilinear transformation.

Reference 55 shows that the analog fregquency ! can be expressed
in terms of the digital frequency ® as folliows:
Q = (2/T)tan(®/2) (56~-14)

The graphic relationship between Q and @ is given in figure 5-6,
which was obtained from reference 54.

|
0 n/4 n/2
©T/2

Figure 5-6. The relation between analog and aigital fre-
gquency scales for the bilinear transformation.
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As seen from the last two figures, the bilinear transformation
maps an infinite range of frequencies onto the unit circle,
representing a finite range of frequencies. This mapping,
consequentiy, distorts the frequency scale.

The frequencies of interest in the & plane must be predis-
torted to make sure they will come out In the right places in the
2 plane. The predistortion formula is

2

Q = . (5-15})
Txtan(©@T/2)

To sum up, this method will probably produce warping in the
frequency axes. Frequencies in the s plane are mapped into
frequencies in the z plane in a digstorted manner. To make up for
thi1s distortion, the frequencies can be prewarped. As given in
equation (56~15), this method satisfies property (1) of subpara-
graph 5.1.2, This method works best when used with nonband-
limited filters such as band stop or high pass.

5.1.2.83 Direct Mapping of Ditfersntials

There are three ways to employ the direct mapping of differ-
entials: backward difference, forward difference, and general-
ized di1fference. Consider the following differential equation
representing the analog filter:

N diy(t) M dix(t)
!aj— = 1b — (6-16)
i=0 dt! i=0 gt!

Equation (5-16) is then discretized by

M
a;A;ly(m1 = by b;A;[x(n)] (6-17)
0 i=0

Y-

where Ai[y(n)] is the |th difference defined by the recursion

A lytm)) = A (A [y(nm) ]} (6-18)




and by the initialization

(1/T)ly(n) - y(n-1)] backward difference

(1/T){y(n+1) - y(n)] forward difference
Ai[y(n)] =

1 L
- I & [y(n+i) - y(n-1)] generalized difference
T,

=1

(6-19)

and Ai[x(n)l is defined in the same way. The factor «, for the
generalized difference is a constant of the user’s choice.

Backward Differences: When using backward differences, make
the repliacement

dy y(n) - y(n-1) (6-20)
— peemmcre—lp
dt T

which, in terms of the relationship between s and z, corresponds
to

1 - 2
8 = (6-21)
T
and
1
z2 = (6-22)
1 - a7
The relationship between 8 and z is |llustrated in figure

6-7, (obtained from reference 54). As can be seen, property (1)
mentioned in subparagraph 5.1.2 (one-to-one frequency correspon-

dence) is not satisfied and that property (2) (stability preser-
vation) is satisfied.




>~

Figure 5-7. s plane to z plane mapping of jQ axis for
method of backward differences,

# s PLANE

Reference 5b describes how property (1) becomes closer to
being satisfied the higher the sampling rate. The high sampling
rate required to make this technique adequate for analog-to-digi-
tal conversion is said to result in a very inefficient represen-
tation of the filter and the input signal. This technigue 1s
considered usabies for low-pass filters only. An example for
which this technique can be used is air flight control, where
frequencies are normally at 100 Hz or less. An advantage of this
method i1s the simplicity of the design.

Forward Differences: When using backward differences, we
make the replacement

dy y(n+1) - y(n)

— < > (56-23)
dt T

which, 1n terms of the relationship between s and z, corresponds
to

s = (5-24)

and

N
1]

1+ sT (6-25)




The mapping of the frequency axis from the s olane to the

r

plane is illustrated In figure 5-8, as obtained from reference
§4. As can be seen property (1) mentioned in subparagraph 5.1.2
(one~-to-one frequency correspondence) is not sati. ied. Also

shown from either egquation (6-16) or equation (5-17) property (2)

(stability presarvation) is not satisfied elither. This method s
not recommended.

2 PLANE
§ s PLANE

Figure 5-8. s plane to 2z plane mapping of jfI axis
for method of forward differences.

Generalized Differences: As can be seen from equation
(5-19)., this method uses higher-order differences to replace
lower~-order differentials. The mapping between the s plane and
the z prane for this method is

1 L ,
s = - T =i - z2') (5-26)
T 1=

where L 15 the order of difference to be used. Reference 54
shows that with the proper choice of coefficients «,, the fre-
quency axis In the s plane I1s mapped monotonicaily to the unit
circle 1n the 2 plane, thereby satisfying property (1) in sub~
paragraph 5.1.2. The mapping of equation (5-26) can be shown to
be conformal. A conformal mapping preserves angles and relative
locations of points from the domain to the range. (From this
conformal ity, the left half of the s plane i1s mapped to the
tnside of the unit circle of the z plane, therebv. showing that
property (2) 1s satisfied.)
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This method is considered efficient and accurate, 1f the appro-
priate coefficients «. can be found. it 1s normally difficult to
determine these coefficients. As a result, other techniques for
digitizing filters are sought.

§.1.2.4 Matched 2-Tranafaormation

The matched z-transformation 1s motivated by the foliowing
facts, stated without proof:

(1) to maintain stability, ail the poles of H(z), the
transfer function in the 2z plane, must lie within the unit
circle, and

(2) all poles and zeroes must either be real or occur
in complex conjugate pairs.

As such, this method matches poles and zerces i1n the s plane

to poles and zeroes in the z plane. For a real pole or zero, say
-a, the transformat:i:on is

s +a — 1 -2 lgmal (5-27)
where T is the sampling period.

For complex conjugate poles or zeroes, say a+pi, the transforma-
tion is

(s+ta-bi) (s+at+tbi) =
(s+a)2 + b2 —— 1 - 22" 'e"3Teos(bT) + 2z 2e-23T (5-28)

(Since b=0 in the real case, it is easily seen that equation
(5-28) can be simplified to equation (5-27).) The continuous
transfer function H{(s) must be in factored form to app!y the
transformation. The advantages of this method are that it
ensures stability (it was designed to) and that it is very easy

to implement. One disadvantage is that it may lead to aliasing.
For i1nestance,

(s+a)2 + b2 vields the same transformation as (s+a)2 + (b+2n)2.

(6-29)

This transformation is considered unsuitable where H(s) 1s an
all-pole system; that is, H(s) has only poles and no zeroes.
Quite often for this case, H(z) is an all-pole system that does
not adequately represent the desired continuous system. General-
ly., the bilinear transformation and impulse 1nvariance methods
are said to be preferred over the matched z-transformation.
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65.1.3 Low-Pass |IR Fllters

Discussed next are three classes of low-pass IR filters:
the Butterworth, the Chebyshev, and the elliptic (or "Cauer"”)
filters. Each of these filters takes the form

1
H(@PR = (6-30)
1 + esz(e)

where H 18 the frequency response, ® is the freguency variable, N
is the order of the filter, € is a factor in the interval [0,1]
that determines the height of the passband ripples, and f is an
nth-order polynomial containing only odd or oniv even powers of
®. Banapass, high-pass, and band-reJection filters can then be
designed from any of the aforementioned low-pass filters using
the methods described in chapter 4.

5.1.3.1 Buttarworth Fliters

Butterworth filters take the form

1
| H@) } 2 = = (6-31)
1 + (»/uc)

where o, is the cutoff frequency of the filter.

The Butterworth filter contains the following characteris-

tics:

(1) It 1s defined by the property that the magn:tude
response | H(@) | is maximally flat in the passband, meaning that
the maximum number of derivatives, 2N - 1, of the squared magni-
tude function | H(@) | ¢ are equal to zero at @=0.

(2) |H@ | = 1//2 at the cutoff frequenty o, since,
when attempting to simuiate the ideal low-pass filter, it s
desired that n->wlm | H(@) | =1 for altl @ 1In

(05,01, (IimH@ |=1 for all o] <o .)
N~>0
(3) it is computationally and conceptually simpler

than the Chebyshev and ellipt.c filters.

(4) The higher N is

, the better this filter simulates
the ideal low-pass filter.

(8) The magnitude of the frequency response I1s monoto-
nic in both the passband and the stop band.
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lllustrations of the Butterworth filter, obta:ned from

reference 55, can be seen in figure 5-9.

| Mot

i

Dependence of Butterworth magn:tude

Figure 5-9.
characteristic on the order N.

§.1.3.2 Chebyshev Filters

Chebyshev filters take the form

1
| H(@) 2 = — (5-32)
1 + @ VN(u/uc)
where VN(x) is the nth order Chebyshev polynomial defined by
Vy(x) = cos (Ncos™ 'x) . (6-33)
(6-34)

(For erxampte, for N=2, VN(x)=V2(x)=2x2-1.)

The Chebyshev fiiter contains the following character stics:

It distributes uniformly the inaccuracy I1n simu-

lating the ideal LP filter in either the passband or the stop
band (but not both). That is, it produces an equiripple curve
ei1ther in the passband (about the iine | Hie) 221) or in tne stop

band (about the line | H(®) | ¢=0).

(1




(2) It usually leads to a lower-order polynomial than
does the Butterworth filter to accomplish the same resuit.

There are two types of Chebyshev filters, C(hebyshev Type !
filters are equiripple in the passband and monotonic 1n the stop
band. Chebyshev Type || filters (sometimes called inverse
Chebyshev filters) are monotonic in the passband and equiripple
in the stop band. Figure 5-10, obtained from reference 54,
illustrates Type | and Type || Chebyshev filters of odd and even
orders. (The A near the vertical axes is what reference 54 uses
at the parameter related to stop-band loss.)

P’J-
t
|
|
]
- --1-—-——————

CHEBYSHEY TYPE XL

Figure 5-10. Type | and il Chebyshev filters
of odd and even orders.

§.1.3.3 Elliptic Filters

Eiltiptic (or Cauer) filters take the form

1
H@)! 2 = (5-35)
1 + EZUE(Q,L)
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where Uy(@,.L) is a Jacobian e¢'tiptic function. Discussion of
this function is highly intricate and is bevond the realm of this
paper. Those interested in studying this function are referred
to reference 58, Those interested in further studying the design
of elliptic filters are referred to references 59, 60, and 61.

The elliptie filter contains the following characteristics:

(1) It distributes uniformiy the inaccuracy In simu-
iating the ideal LP filter in both the passband and the stop
band. Iin other words, it produces an equirippie curve in the

passband (about the line | H(#l 21=1) and in the stop band (about
the tine | H(@I 2 =0).

(2) it yields a smalier transition band than does the
Chebyshev. {Note that the Butterworth filter does not vield a
transition band.)

Figure 5-11, obtained from reference 55, iliustrates the
elliptic fliter.

M|

— oy e o=

-8,

- e S ap e W WD e e cae ==

Figure 5-11. Equiripple approx:imation in
both passband and stop band.
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6.2 Finite impulse Responsae (FIR) Fiiter Design

The FIR filters were briefly described in paragraphs !'.7 and
1.8. in this section, modes of expression for FIR filters and
FIR filter design techniques are given. A disadvantage in
impiementing an FIR filter is that it cannot be expressed iIn

closed form., Instead, it must be calculated through iterative
procedures, and thus generally requires a great deal of computa-
tional time and the use of powerful computational facilities.

In many signal-processing applications, phase relations are
important and must not be disturbed by filtering. For such
purposes, a zero phase shift would be ideal; in practice, howev-
er, a filter whose phase shift is proportional to frequency is
generally used. Such a filter 1s called |inear phase. An
advantage in using FIR filters is that they can have exact |inear
phase. Referring to figure 3-6, it has been found that the most
favorable conditions for an FIR design are large values of &,
small values of 8,, and large transition widths.

5.2.1 Modes of FIR Filter Expression

An FIR filter can be expressed as
N
yik) =% atn) xtk=i) (6-36)
1=0

There are four popuiar modes of expression for the transfer
function of an FIR filter. They are

(1) the direct form,

(2) the cascade form,

(3) the frequency sampling form, and
(4) the | inear-phase form.

The first two forms assume those names because when they are
tltustrated in network diagrams, they are depicted in the forms
mentioned. The direct and cascade FIR forms may be dertved from
the corresponding IR forms by simply omitting the pole-producing
portions of the IR forms. (The second term on the right-hand
side of equation (5-3) generates the pole-producing terms in the
I IR modes of expression.) The advantages and disadvantages of
the direct and cascade forms are essentially the same for FIR
filters as they are for IIR filters. As a result, 1t will be

sufficient just to give their forms in the following subpara-
graphs.




The frequency sampling form for FIR filters is a type of
paraliel form of IIR filters but is derived in an entirely
different way from the parallel form. The fact that FIR filters
can have exact |inear phase is used for the |inear-phase form.
When given [ts form, It will be sasy to see how it can produce
considerablae savings in computations.

6.2.1.1 Direct Form

The direct form of the transfer function for FIR filters can
be found to be

H(z) = § az7® (6-37)

65.2.1.2 Cascada Form

The cascade form for the transfer function of FIR filters is

Y(2) K
= ag b1 Hi(z) (6--38)
X(2) =1

H(z) =

where Hi(z) is either a second-order cascade section, that is,
Hi(z) =1 + a;,27" + ay,272 (5-39)
or a first-order cascade sgction, that is,
Hitz) = 1+ a;;27! (5-40)

and K is the integer part of (N+1)/2, where N i1s the order of the
filter.

it should be mentioned here that if |inear-phase filters are
realized in this form, sensitivity to discretization errors in
the coefficients will be less, but the errors may destroy the
phase | inearity.

6.2.1.3 Frequancy Sampling Form

As mentioned in subparagraph 6.2.1, this form is a type of
paraliel form but is derived differentiy from the paralleil IIR
form. The paraltlel |IR form was derived from a partial-fraction
expansion of the transfer function. Since partial-fraction
expansions are based on poles, this approach cannot be considered
for FIR filters. This form is derived by a design technique
called the frequency sampling design technique and is explained
in subparagraph 5.2.2.2.
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6.2.1.4 Linear-Phase Form

Many applications require filters whose phase response is
linear with frequency. |t can be shown that |inear-—-phase FIiR
filters have a symmevrical Impuise response, that is, for an
N-order filter

h(n) = h(N-1-n) (6~41)

This symmetry requirement leads to certain economies in implemen-
tation. In an FIR filter, the h's correspond one-to-one with the
a's of equation (6-37). Because of the symmetry in h(n), equa-
tion (5-37) becomes

y(n) = agx(n) + a;x(n=-1) + ... + ay;x(n-N-1) + aox(n-N)
(6-42)
which can be written for N even, as
N/2 - 1
y(n) = i§o bn[x(n=1)+x (n~N+i)] (6-43)

or for N odd, as

(N-1)/2 - 1
vi{n) = bN/2x(n - N/2) + 1§o bn[x(n-1)+x(n-N+i)l

(6-44)

Since the number of terms in the sum is reduced by approximately
one-half, considerable economies in computation are achieved.
Because of the symmetry in this form, errors in quantizing
coefficients, that is, discretization errors of the coefficiants,
will not disturb the |inear-phase characteristic altiough perfor-
mance but may still degrade performance.

6.2.2 FIR Filter Design Techniques

The techniques covered in this section are
(1) windowing,
(2) frequency sampling design, and

(3) equiripple design.
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There are many types of windowing and some will pbe briefly
described here. The second two techniques are computer-aided

design techniques and require a great deal of iterative calcula-
tion.

5.2.2.1 Windowing

it is natural to design a filter by first simutating the

ideal low-pass filter, defined in equation (3-16). {n doing so,
the impulse response h{(n) should meet these two conditions: (a)
it is finite, and (b) it is causal,. In particular, that h(n) = O

f-r n < 0.

The impulse response is the inverse Fourier transform of the
transfer function. The impulse response of the i1deal Iow-pass
filter transfer function can be found to be

sin(wcn)
h(n) = ——
n

(5-45)

Ne:ther condition (a) or (b) above is met. The ideal low-pass

tfilter and h(n) are shown in figures 5-12a and 5-12b, obtained
from reference 56.

o)

hind

~atttta, o atllle a

)

Figure 5-12. (a) ideal low-pass filter characteristic
with cutoff at @. and (b) impulse response
corresponding to ideal low-pass filter.
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A solution to meeting conditions (a) and (b} s to find a
finite, causal approximation to h{(n) which can be done by window-
ing the impulse response, (by truncating it for | nl greater than
some cutoff time) and by shifting the response tn time until the
system is causal. The two steps are shown in figures 5-13a and
5-13b, obtained from reference 56.

As explained towards the end of paragraph 3.3, truncating
the impulse response would result in a boxcar function with
ripples (see figure 5-13c). Three deviations from the ideal
low~pass filter emerge:

(1) the passband response is no longer fiat but shows
ripples that steadily increase in amplitude until the cutoff
frequency,

(2) the stop~-band response is no [onger zero, and

(8) the transition between passband and stop band is
no longer abrupt.

hin) nn)

-—-1] »N - N
(a) (b)
|H(ei°)|

Figure 5-13. (38) Truncated version of impulise response in
figure 5-12, (b) Truncated response shifted
S0 as to make system causal, and (c) fFiiter
frequency recsponse resulting from truncation
of impuise response.
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To minimize these ripples, multiply the original i1nfinite-
impulse response by a windowing function (other than the rectan-
gular function that was initially introduced). There 18 no
finite window function whose transform has no side lobes, but
functions can be found whose transforms have very smail side
lobes. If one of these functions is used, the rippies i1n the
frequency response will be correspondingly reduced.

Some of the best-known windowing functions are listed In
table B6-1 and shown in figure 5-14, along with their transforms.
({The table and figure are obtained from reference 56.)

TABLE 8-1. COMMON WINDOWING FUNCTIONS

Name Description®

Rectangular w(k) =1

Fejer-Bartlett w(k)= 1~ [2k/N}

Hanning wik)= (1 +coszk/N)/2
s
Hamming w(k) = 0.54 + 046 cos=k /N
lo[ NoN1 - (k/N) ]
Kaiser w(k) = 1IN

*For all windows, w(k) =0 for [k] > N.

For the Kaiser window, !0 is the zeroth-order Bessel func-
tion and 8a 1s a constant that specifies a frequency response
tradentfft between peak height of the side lobe ripples and the

width or “energy” of the main lobe. (The Fejer-Bartlett window
is also called the triangular window.) Reference 5§55 also men-
tions the Blackman window, which is @(n) = 0.42 - 0.5cos(2nn/

(N-1)) + 0.08cos(4nn/(N-1)), 0<ns&N-1.

5
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Figure 5-14. Common window functions and their

transforms: (a) rectangular,
(b)

triangular (Fejer-Bartlett),

(c) Hanning, (d) Hamming, and )
(e) Kaiser.
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Common window functions and their trans«
forms: (a) rectangular, (b) triangular
(Fejer-Bartlett), (c) Hanning,

(d) Hamming, and (e) Katiser.

Figure 5-14 (Con.).

Reference 55 compares various windowing functions 1n one graph.

ingserted here as figure 5~15.

which s
are much

the si1de lobes
and the

in all of these windowing functions,
smal ler than those resulting from the rectangular window,
main iobes are all wider than those resulting from the rectangu-
lar window, producing a much closer approximation to the i1deal
iow-vass filter. The search for the ideal windowing function 1s
a search for the best tradeoff between side lobe amplitude and
main tobe width., No FIR filter designed by Fourier transforma-
tion and windowing is aoptimal. The appeal of the technique lies

in 1ts simplicity and economy.
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Finding the desired transfer function using windows can pe
summar ized as follows:

(1) write the equation for the desired frequency
response,

(2) find the impulse response (taking the inverse
Fourier transform cof the frequency response),

win) Rectongulor
1.0

08

0.6

0.4

0.2

. o s . an - -

o
2

.

Figure 5-15. Commonly used windows for FIR filter design.

(3) select a windowing function and a window width to
meet the required rippte and transition-width specifications,
(Window the impulse response accordingly.)

(4) shift the impulse response to make i1t causal, and

(5) take the Fourier transform of the product of the
windowing function and the new impulse response. The result is
the desired transfer function.

6.2.2.2 Fregquency Sampling Design

The approach of this method is to take samples of the
frequency response and to design an FIR transfer function based
on these samples. The approach starts by cons:dering the trans-
fer function H(z) of a digital filter, which can be found by
taking the z-transform of the impulse response hi(n)
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N-1
H(z2) = h{n)z"" (5-486)
n=0

The impulse response can be found from the frequency response by
applying the inverse DFT as

N-1
hinm) = (1/N) £ H(k)wnK (6-47)
k=0
where W = exp(i2n/N).
Combining these two relations gives
N-1 N-1
H(z) = (/M) 2 27" Huow"k (6-48)

n=0 n=0

which can be rewritten as

1 H{k)
H(z) = ——m— (5-49)
0 1-7 Twk

Z
x
1]

As can be seen, this design procedure consists simply of substi-
tuting samples of the desired frequency response into equation
(6-49) .

As seen from the last equation, there is a pole on the unit
circle which leads to marginal ﬁtability (see paragraph 3.8.) To
ensure stabiélty. muitiply z"w by a number that is almost one
(say 1 - 2-12) Good accuracy for this method requires many
closely spaced samples. This design works particularly well for
narrow-band filters in which only a few samples are nonzero.
(Reference b5 states that even if more than a few samples are
nonzero, the frequency-sampling design method yields excel lent
results.) A disadvantage of this method is that it lacks flexi~-
bility in specifying the passband and stopband cutoff frequen-
cies. in addition, the ripple response for this design procedure
is poor. Reference 65 suggests a method in which the ripple
response can be greatly improved.

6.2.2.3 Equiripple Dasign

The approximation error of the frequency sampling design
tends to be highest around the transition region and smaller in
areas remote from the transition region. The equiripple design

affords a way in which the approximation error can be spread out
more uniformly.
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Of concern are the zero-phase FIR filters with frequency
responses of the form

) M
Hel® = § nime'@n (6~50)
n-=M

For zero-phase filters, symmetricalness, h(n) = h{(-n), and
causal ity are required. Shift the summands in equation (5-50)
are shifted to obtain causality, so that

M
Hie'®) = h(o) + ¥ 2n(n)cos(en) (5-51)
n=1

To be specified for the equiripple curve are the parameters M,
34, 62, ®w,, and ©_.., where 6, and 62 are the upper and lower
ripple tolerances, and @. and 0, are the passband and stop band
cutoff frequencies, (see figure 3-6 or figure 5-16).
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Figure 5-16. Equiripple approximation of a low-pass filter.
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Messrs. O. Herrmann and H. W. Schuessler, (references 66 and
67); E. Hofstetter, A. V. Oppenheim, and J. Seige! (references
68 and 69); and J. Seige! (reference 70) developed procedures in
which M, 61. and 8, are held fixed and ®_ and 0  are solved.
Messrs. T. W. Parks and J. H. McClellan, (references 71 and 72)
and L. R. Rabiner (raferences 73 and 74) develioped procedures for
which M, g, and “p are held fixed and for which 51 and 62 are
solved.

In an example using a method by Herrmann and Schuessler,
there are five frequencies greater than 0 and less than n where

there are maxima and minima in the rippies (see figure 5-16). It
can be easily shown that for a symmetric filter of order

N = 2M+1, there will be at most M+1 local extrema in the i1nterval
0<@<rm.

Consider the fact that at the passband cutorf frequency, the
frequency response curve is at the lower tolerance [ imit about 1
and that at the stop band cutoff frequency, the curve is at the
higher tolerance {imit about 0. This fact can be used to obtain

the following two equations:

H(e‘“p) = 1-8. (5-52)

and

10 = -
He'®) = &,. (5-53)

By observing either figure 5-16 or equations (5-52) and (§-53),
the following set of equations can be written:

He'® =1+ s, Hel™ = &, (5-54)
H(e'®) =1 - &, H'(el®) = o (5-55)
1® ’ iQ = -
H(e 2) = 1 + 6], H' (e 2) = 6] (5-56)
1@ - ’ i® - -
H(e ®3) = -85, H' (e ®3) = 0 (6-57)
1@ = ' @ = -
H(e 4) = 62. H' (e 4) = 0 (6-58)
H(e'®) = -s,, H'(e'®) = o (5-59)

For this method, there 1s the flexibilty to decide which of the
M-1 frequencies properly between 0 and n should be in the pass-
band and which ones shouid be i1n the stop band. Iin this case,
M+1=7, there are seven unknown coeffictents (h{n)) in equation
(5-51). There are 5 unknown frequencies @ ,...,0g at which
extrema occur, so there are 12 eguations in 12 unknowns. These

equations are nonliinear and must be solved by an itterative
procedure.

5
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Generally, there are 2M equations in 2M unknowns. This

approach has been found to be satisfactory for orders of M
or tower, and it provides the narrowest transition betwsen
passband and stop band.

-
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CHAPTER 6

KALMAN FILTERS

A kalman filter 1s a linear, recursive algorithm for comout-
ing an optimal estimate from measurements, some of whicnh may
contain noise. The noise on the measurements 1s assumed to be
white; namely, the noise values are not correlated over time.
Also assumed is knowledge of the statistics of. the noise on the
measurements. The algorithm is recursive and thus requires an
initial estimate to start the filter as well as a guess as to the
corractness of that estimate. Finally, the algorithm is |inear,
consisting of matrix equations. (Reference 3 has an excellent
intuitive introduction to Kalman filtering in its first chapter.)

The Kalman filter is most often used as a data-processing
algorithm (a computer program) and can be extremely efficient,
requiring a minimum of computer storage and using all available
data by weighing the data measurements. The fiiter has the
abirlity to take several different types of data and generate an
estimate of a totally different quantity. Because it 1s a
predictor-corrector, it can generate 1ts next estimate based on
less current data than would be needed for a directly calcuiated
solution. The data need not be entered at equaily spaced time
intervals, at the same time, or in certain sequences. The filter
allows the user to apply the knowiedge of the behavior and
statistics of both the measurements and the guantities to be
estimated to obtain the solution; in fact, these models and
statistics may vary with time. in addition, a self-contained
error analysis 1s included in its equations. Finally, as <
predictor, it is useful! for real-time control.

A few caveats apply, however. To begin with, there is no
"general” Kalman fiiter. Each algorithm is dependent on the
quantities to be estimated and their dvnamics, the measurements
available and their statistics, and the initial valuas needed to
start the algorithm. Secondly, the algorithm is most efficient
if matrix inversions can be avecided. Matrix i1nversions can
usually be done, although it depends on the appl!ication, that is,
the particular Kalman filter written. Thirdly, a Kalman filter

will updiete with less current data than is required for a calcu-
lated solution, but if updating with this data i1s done for too
fong, the estimate may become grossliy invalid. ine filter is
satd to have diverged. Fourthly, the order of the input of data
is unimportant only for the basic Kalman filter: a filter whose
dynamic and measurement models are both linear. Thaugh all
derivations and claims of optimality are valid only for such
filters, tinearity is rare in the real world. Hence, suboptimal-

tty is often settied for using an extended Kaiman filter.
Somet imes it is found that permuting the order i1n which data is

6-1




entered may significantly change the estimate. Finally, the
validity of the self~-contained error analysis is dependent on the
degree to which the noise statistics fit the theoretical assump-

tions. For example, biases in the data will not be indicated by
the output error covariance matrix.

Before describing a Kalman filter, the description of some
terms are in order.

The "expected value” of g(x) of a random variable X whose
frequency function is f(x) is

. ]

Elgix)] = J. g(x) f{x)dx

- 00

Loosely speaking, the expected vaiue of g(x) is the average of
g(x).

An "estimate” is a computed value of a quantity. For
example, the sample mean

X

u
(IR o Jo]

i=1 9

ts an estimate of true population mean u.

A statistic t is called an "unbiased estimate” or "unbiased
estimator” of the parameter v if E[t] = v. For example, the

sample mean X can be shown to be an unbiased est mate of the true
population mea~ M.

An “optimal estimate” is one that minimizes the variance of
an estimate and is unbiased. When using an optimal filter such
as a filter computing an optimal estimate, it is assumed that the
exact descriptions of the system dynamics and the measurement
process are known. In addition, an optimal filter must mode!l all
error sources in the system including unmodeled parameters,
linearization errors, leaky attitude controls, and solar winds.

Error sources mentioned in the previous paragraph constitute
"process noise,” noise that stems from mismodeling. Other error
sources include those of “measurement noise,” which stems from
faulty measuring devices or the misuse of those devices. (Be-
cause the Kalman filter is based on least squares, an error
source 1nherent in the Kalman filter is the difterence between
the estimate sample measurement values and the true population
measurement values.) An example dealing with unmodeled parame-
ters is filtering a position parameter without including the
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velocity or acceleration parameter into the model!, which where
incinding these parameters could facillitate filtering the posi-
tion parameter.

Leaky attitude controis and solar winds are factors that can
lead a spacecraft off course. They are usually considered
negligible and as such are normally not included in the models.
The errors that may result from their not being included consti-
tute process noise.

A suboptimal fllter is a filter that does not take into
account all the factors that have been mentioned in describing an
optimai filter. A “predictor-corrector” is a recursive algorithm
that has two steps to each raecursion: a predictor and a correc-
tive step. A predictor step is the state of the system predicted
by using the output data of the preceding recursions in which the
nth state of the system is predicted using the firgt n-1 states.
A corrective step is the given input nth state of the system used
to correct the predicted nth state of the system, thus producing
the final output nth state of the system, (The nth state of the
system is the state of the system at the nth recursion,)

6.1 Linear Digcrete Kaiman Fi! ter

In the case of a linear discrete Kalman filter, the dynamics
of the quantities to be estimated may be described by ! inear
difference equations. Additionally, the refationship between the
measurements, taken at discrete times, and the estimated quanti-
ties is |inear.
6.1.1 Definitions

To write such a Kalman filter, begin with these definitions,

(1) A model describing the dynamics of the quantities
to be egstimated. This model will be of the form

x(k) = @k, k=-1)x(k-1) + G(k,k=1)w(k=1) (6-1)
where
k refers to the kth time point te

x(k) is the set of quantities to be estimated, arranged
‘n a vector, and called the state vector;

®(k,k-1) is called the transition matrix and describes the
change in the state vector from time te-4 to tes




G(k,k-1) is called the input matrix; for practical pur-
poses, it is generally taken to be equal to the
identity matrix;

and

wik-1) is called the plant or process noise. The vector
w(k-1) is assumed to contain zero-mean white noise
with Gaussian distribution. The vector resuliting
from the product G(k,k-1)w(k-1) represents the
unknown portion of the dynamic model. The covari=
ance matrix of w(k) is designated by Q(k).

(2) An equation relating the state vector to the
measurements. The form of this equation is

y(k) = H(k)x(k) + v(k) (6-2)
where
y(k) is the measurement at time t,;
H(k) is called the measurement matrix and | i1nearly relates
the measurements to the state variables;
and

vik) is the measurement noise. The vector v(k) is assumed
to contain zero-mean white noise with Gaussian
distribution. The covariance matrix of v(k) s
designated by R(k).

(3) Finally, the following quantities are needed:
2(0) the initial state estimate; and

P(0) the corresponding error covariance matrix. (in
the Kalman filter algorithm, P, is the covariance
matrix of the estimate error of the kth gta;e
vector. That is, P, = E[(x(k)-X ) (x(k)-X,)"].)

To write a Kaiman filter, three matrices, !, G, and H, are
needed to define the dynamic and measurement structures as well
as the matrices, @ and R, to define the dynamic and measurement
statistics. Also needed are the initial values, x(0) and P(0).

Given these items, the filter is written using the equations
described next. in these equations, the notation X denotes the
estimate of the state vector x. The notation X(a/b) signifies
the estimate of the state vector at time ty given measurements
taken up to and i1ncluding time tb.
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The first step in this Kaiman ftilter algorithm i1s the

extrapolation or time update for the estimate and its covariance
matrix. These equations are

x(k/k=1) = Ok, k=1)x(k=1/k=1) (6-3)
and
P(k/k=1) = ®(k,k=1)P(k-1/k-1)8T (k,k-1) + G(Kk,k-1)Q(k=1)G" (k,k=1).

(6-4)

The next step is to compute the weighing matrix k. called
the Kaiman gain, by

K(k) = P(k/k=1)HT (k) [H(K)P(k/k=-1)HT (k) +R (k) )" (6-5)

Finally, the output is obtained by

Kik/k) = R(k/k=1) + K(k) [y(k) - H(k)&(k/k=1)] (6-8)
and
Plk/k) = [ - K(k)H(k)] P(k/k=-1), (6-7)
where | is the proper size identity matrix.

X(k/k) in equation (6-6) is, ultimately, the result for the
kth step in the algorithm. P(k/k) of equation (6-7) 1s used as
P(k-1/k-1) in equation (6-4) in a recursive step. Equations

(6-3) through (6-7) represent one recursive step in the Kaiman
filter algorithm.

Table 6-1 1s obtained from reference 2 and gives a summary
of the entire algorithm. The top two boxes give the original
mode| equations, initial conditions, and assumptions. Equations
(6-1) ana (6-2) are equivalent to the system and measurement
model equations., (The z in the table 1s the same as the y vector
of equation (6-2).) The “other assumptions”™ equation 1n the
second box means that the system model errors and the measurement
noises are uncorrelated. The equations in the bottom two boxes
correspond to equations (6-3) through (6-7), which comprise one
recursive step in the algorithm,.




TABLE 6-1. SUMMARY OF DISCRETE KALMAN FILTER EQUAT IONS

System Model Xk~ Pk-1Xk-1 *Wk-1, %%~ NQO Q)
Measurement Model 2k = Hexk +3ke Yk~ N, Ry)

Initial Conditions E{x(0)) = X, E[(x(0) - X0)(x(0) - Xo)T} = Po
Other Assumptions E{wiky;T] = 0 forallj, k

State Estimate Extrapolation Xk(-) = @)1 Xk—-1(+)

Error Covariance Extrapolation Pr(~) = &x_1 Px-1(#) QR-IT + QK -1

State Estimate Update Xk(#) = Xie(=) + Kilzx - HyXk(-)]
Error Covariance Update Pr(#) = [I = KgHk] Pi(~)
Kalman Gain Matrix K = Py(-) H T [HyP (-1 T + Ry ] ™!

(~) and (+) are used to denote the times inmmeaiately
before and immediately after a discrete measurement.

For example, P (+) and P (-) in the tabie are equivaient
to P(k/k-1) 1n equation (6-7).

Several quantities in equations (6-3) through (6-7) are

of

particufar interest. The vector H(k)X(k/k-1) in equation (6-6)
Is called the predicted measurement,and its difference with the

actual measurement, given by

yi{k) = H(k)x(k/k=-1) (6-8)
1s called the innovation. this vector s often used for testing
for filter divergence or for data editing.

The matrix

HIK)P(k/k=1)HT (k) + R(Kk) (6-9)
in equation (6-5) 1s considered the covariance matrix of the
innavations and 1s wsually chosen to be one-dimensionai, namely.
a scalar, 1n the fotlowing manner. 'If only one measurement 15
input at time t,, then in equarion (6-2) y(k) is a scaiar, H(K)
nas only one row, and v(k) is a scalar. The matrix (6-9) s then
a scalar. whatever the size of P(k/k-1). Ilf more than one
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measurementy is avaiiable at time Ty, it is usualily more ecanomi:-
cal in computer time to process each measurement individually,
since matrix inversions are avoided, Hence, the first measure-
ment used woul!d be preceded by a time update (equations (6-3) and
(6-4). (The estimate X and the estimate error covariance matrix
P being 1s updated from time t _, to time t, . (equations (6-3)
3nd (6-4j) The other measurements at time t, would not need a
time update, so only equations (6-5), (6-6), and (6-7) woulid be
used with the ald x(k/k=1) and P(k/k=-1} of the previous step
being replaced itn each equation by the new ones.

As menticvned before, for a Kalman filter with | inear modgels

and tihe assumed noise statistics, the order in which all the
measuremants at time t, are processed is not significant. Masrt
importancly, processing the measurements ind:isidually will give

the same outpbut as processing them together 'n a measurement
vector if there 1s no cross correlation among the measurements at

time t,. Usually this is the case or at least can be assumed
true with a minimum of error.

The preceding equations will easily yield a computer program
which 1s a working Kalman filter. The probiem remains, however,
to make sure the filter does the jaob for which 1t was intended.
Once written, the filter must be subjected to extensive simulia-
tion testing. Testing is necessary to detect moaeling errors.
stat-stical assumption errors, inapproprti:ate initial conditions,
brases, correlated noise sequences, and finaily to determine
tuning value.

Filte:r tuning 1s the process nof achieving the best possi'bile
estimatiuv . pir “ormance from a filter once i1ts structural form has
been specified. in a2 Kalman filter, the structural form is
spec:fied by the mptrices ®, G, and H. The initra! estimate
error covariance matrix P(0), the mode! error covariance matrinx
@, and the measurement nnise covariance matrix R are the vari-
abies modified during tuniny, The use of Q@ and R is normaily
based on the knowledge of w {the system mocel error) and v (the
measurement noise). These vectors, w and v, account for actual
noises and disturbances 1n the physicai system as well as inade-
quacies in the dynamic and measurement mcae:s.

8.2 The Linear Continuous Kalman Filter

For a linear continuous Kalman filter, start with the
dynamic model

£0t) = F()x(t) + GlElwlt) (6-101)

and the measurement model




y(t) = H(t)x{t) + »(¢) {(6-11)
with initial values x(0) and P(0), where w(t) and v(t) are
zero-mean white noise processes uncorrelated with x(O) and have
covar iance matrices Q(t) and R(t) (see table 6-2).

TABLE 6-2. SUMMARY OF CONTINUOUS KALMAN FILTER

EQUATIONS (WHITE MEASUREMENT NOISE)
rrm e e e eqan e o = —
System Model Al = F(t)z(t) + G(w(t), xnh N(Q. Q)
Measurement Moded P "(l)MU + V(t). V(l)“ \”.L R“»
Initial Condittons Fumpxoumwh;wum Mﬂl?o
Other A:sump ons R™' (1) exsts
State Emmale _&(l) = Fx(t) + K(t)z(t) - “(l)\(l)l MO = 3o
Enror Covanance Propagation P(t) = FPW) + POFT() + GOQUIGT(D)
~KORKT(), P0) =Py
Kalman Quin Matnia K(1) = BOHT(OR™ (1) when E{w(tyT(n)] =0
= {POKT() + GOCIR™ (1)
P when Efut0xT() s Ctowet -]

Then the filter equations are

R(t) = FOIR(L) + K(t) [y(t) - H(DIX(D)], (6-12)
and

P(t) = F(E)P(t) + P(IFT(t) + G(H)A(E)G 1) - K(IR(HIKT (t)

(6~13)
with

K(t) = [(P(OHT(t) + G(t)C ()] R~ (1) (6-14)

where Elw(t)yv 1 (s)} = C(t)&(t-s),

vaitue and &,

algorthm.

the Dirac delta function.
compr ise one recursive step

with E representing the expected
The three equations
in the continuous Kalman filter




The probiem 1s, in part, to solve P(t) i1n equation (6-13),
whirch is known as the "matrix Riccat: equation.” (Reference 2
gives methods for solving this equation.) Then plug P(t) into
equation (6-14) to solve for K(t), which is used :n equation
(6-12) to obtaiu the final desired result X(t) for a particular
recursive step. (See reference 2 for further discussion.)

6.3 Extended Kalman Fliters

An extended Kalman fiiter is a data-processing aigorithm
which 1s based on the Kalman filter algorithm and which eff -
ciently grovides estimates for noniinear problems. Such filters
are suboptimal because no theoretical optimalitv of the estimate
can be preven. Either or both of the given models (continuous or
discrete, otherwise known as "dynamic” or "measurement”) of a
Kaiman filter may be nonlinear for an extended Kaiman filter to
be required. The extended Kalman filter 1s stiifl a |inear
algorithm, however.

For an extended Kaiman filter, assume the cynamic model is

Xx(t) = fix(t),t) + G(x(t),t)w(t) (6-15)

with 1nitial conditions x(tg) and P(0) = cov ixlty),x(ty)}, where
w(t) 1s a zero-mean, Gaussian noise vector, such that

coviw(t) ,wis)} = Q(t)s(t-s), and covix(ty) ,wit)i = 0 for t > t,.
The notation covi.,.} represents the covariance matrix of the two
vectors., The & is the Dirac delta function. The vector f is a
noniinear tunction of the state vector x(t) and of the time t.
Notice that the model! (6-15) is not completeiy general since the
dynamic noise is assumed additive.

The measurement model is given by

yite) = hix(t ), t ) + vit ), k = 0,1,..., {6-16)
where vit,) is the zero-mean measurement noise vector. with
coviv{t ), v(t )} = R{k), coviv(t, ),v(t.)} = 0, covix(ty),v(t )} =

-~ k=t ke LA SRS LAl (A

0, and coviw(t),v(t )} = 0.
Note that the measurement model, though nonlinear, 1s still
discrete since the measurements are taken at discrete times.

Aiso assume the initial values X(0) and P(0) are given.

Then the extended Kalman filter update from the measurement

at time T to the measurement at time te+1 'S accomplished in the
fol lowing manner:

(1) The state vector update is achieved by using the
vector function f of equation (6-15). Thus, the equation
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R/t = £(x(t/t), 1) (6=17)

1S i1ntegrated for t, < t < tp,.q, resulting n Xi(t/t,).

(2) The matrix

. df(x(t),t) (6-18)

Fix(t),t) =

Sx

ix(t) = Z(t/t,)
1S calculated.
For the rest of the chapter, F(X(t),t) will be denoted F(t),
f(x(t),t) will be denoted f, and x(t) will be denoted x for the
sake of convenience.
(38) The transition matrix ®(g,, .4 ) is calculated

using
Mt
ot

where t, < t < t ., and §(t ,t ) is the identity matrix.
1s calculated

(6-19)

= F(t)d (e, ty)

(4) The state noise covariance matrix Q

using
S+t
= T T -
ae(t, ) = J ® (£, .1)6(1)Q(1)G (£ ' (t, ., . t)dt. (6-20)
Tk
(6) The measurement matrix H(t ,y) is calculated by
ah (6-21).
H(t ) =
K+l
ox

where £(tk+1/tk) was obtainea in step (1).

The update 1s not ready to be performed. 7To obtain the gain
matrx &(tk+1). first extrapclate the state covar iance matrx
using equation

= T -
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Then
T T -1

(6-23)

The state update is then
(6-24)
Equation (6-24) gives the desired update at time te+1. To com—

plete the filter update, compute the state covariance matrix at
time t, ., by

where | is the appropriately sized identity matrix.

Further modifications of the basic Kalman filter equations
are possible and often necessary for the proper functioning of a

Kalman filter. If the noise vectors are not 2ero mean, the state
vector may be expanded to soive for bias estimates. If the noise
sequences are not white, shaping filters may be used. if the
noise statistics are unknown, adzptive estimation schemes may be
added to determine these statistics. I f computer word length
affects the numerical stability of the filter, square root type
filters can be written. The |literature is filled with such

Kalman filier applications and more are being added every d.y as
kalman filters are used to solve harder and harder probiems.

A disadvantage of the extended Kaiman filter is that the
Kalman gain K(t,,,) and the error covariance update matrix
Pltes1/tksy) must be computed in real time. They cannot be
precomputed before the measurements are collected and stored In
computer memory as can be done when using the basic Kalman fitlter
because K(t,, ) and P(t, ,,/t ., ) are both dependent on

3(tk+]/tk). In equations (6-23) and (6-25), 1t is seen that
H(t, ,y) iIs needed to calculate K(t, ,q) and Pt /t 4q).
H(t ,y), gitven in equation (6-21), is dependent on Xt /7t

H{t, ,y) is actually shorthand for H(g(tk+1/tk)). Needed 1s the
estimate update, and hence the measurements themselves, to cal-
culate the Kaliman gain and the error covariance update.

After the extended Kalman filter is designed, a3 "sensitivity
analysis” is sometimes performed. A sensitivity analysis com-
prises a set of analyses to determine the sensit:vity of the
filter design to any possible differences between this suboptimal
filter and a filter that fits the optimal moild exactiy.
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References 1 and 2 discuss solutions to several of the
problems mentioned in the preceding paragrarhs. Since the
discussion here was |imited to conventional real-tire Kalman
filters, the reader may also wish to consult ~>ferences 1 and 2
for a state~of-the~art exposition on post-flight Kalman smooth-
ers.

6.4 Example

A simple exampie will illustrate an extended Kalman ‘fiiter
as described in paragraph 6.3. A moving target ias t-acked by N
stations, each measuring at times tg ., k=1,2,..., m, the distance
of the target from the station. Estimate the target’s position
and velocity at time t;, 1<j<m, using all the range measurements
up to and including those at time tj.

In this example, the state vector x(t) is chosen to be the
six~vector consisting of tha position and velocity of the target
in a geocentric coordinate system, so
x(t)
y(t)

x(t) z(t) (6-26)

vx{t)
vy (t)

"

L vz(t)

The continuous dynamic mc 21 corresponding to equation (6-16) is

x(t) = f(x{t)) + G(x(t))w(t) (6-27)
where
- o 1
vx(t) 000
vy(t) 00O
f(x(t)) = vz (t) , G(x(t)) = 000 (6-28)
0 100
0 010
0 J L 0 0 1
and
ax(t)
w(t) = ay(t) (6-29)
az{t)
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where ax, ay, and az are Gaussian white noise errors. Thev can
also be considered geocentric components of targut acceilerat:on.
0f course, f(x(t)), G, and w(t) could have been assigned other
values to satisfy equation (6-27). in real-life situations,
however, the v&(ues assigned to f, G, and w are as given above.

The initial conditions X(t,) and P(0) are assumed to be
provided befores time t;. A simple (and usually inadequate)
method is to take three ranges prior to }ime T and trnanqylate
to get X(ty), y(t,), and 2(ty) and set vx(ty) = Vy(ty) = vz(ty) =
0. The 6x6 matrix P(0) can be chosen to be diagonal with vaiues
on the main diagounal to reflect the filter designer's confidehce
or lack thereof in the method of determining g(to). (Generaliy,
the greater the confidence, tnhe larger the values.)

The matrix_Q(t) where cov wi(t),w(s)} = Q{t)d(t-s) is
assumed to be ¢ I3+ where lg 1s the 3x3 identity matrix and 02 is
chosen to compensate for unmodeled accelerations. The valiue ot ¢
may be determined by subsequent tuning studies.

The measurement model is given in equation (6-16) as
Yl = hix(t ), 5.) + vit).
For this example, the vector y(t ) is N-dimens:ional consisting of

the N ranges available at time ty - For any i, 1<i<N, the ith
component of hi(x(t ), t.) 1s

\ (x(t ) = X2 + ty(t) - Y2 + (z2(t) -2)2  (8-30)

where »(t, ), yl(t, ), and z(t, ) are components of the state vector
at time t, and (X , Y;, Z,) is the location of the ith tracking

station in geocentric coordinates. The matrix R(k} = cov
vt ) vt )} is assumed to be uiagonal with main diagonal
element 1, 1<i<N, equal to the expected variance of the measure-

ments provided by the ith ranging station.

The measurements in this example are going to be processed
individual ly as described 1n paragraph 6.1. Hence, for each tye
there are N measurements to process which satisfv the scalar
equation

yn(tk’ = hn(i(tk’) + Vn(tk)' = 1,2,..., N, (6-31)
where
= _ 2 _ \ 2 , - 2
n,(xie )) = V (x(t ) X%+ (yle) Y oo (20t Z))
(6-32)
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The matrix R; (k) = oov(‘(tk),v‘(tk) is then a scalar.
Now proceed with the steps described in paragraph 6.3.
These steps describe the quantities needed to estimate the
position and vaeiocity of the target at time te+ir given the
estimate at time t,., and the measurements at time t, ,,.
(1) The squation
5(t/tk) = i(g(t/tk)) (6-33)

must be integrated vor t, < t < t_ ., to get g(t/tk). According
to equation (6-27), equation (6-33) is written cut as

Rt/ | [ Vx(t/t,)
ylere) vy(t/t,)
Bit/ty) vz (t/t,) . (6-34)
Jk(t/tk) 0
J»(t/tk) 0
L GE(t/tk) J L 0 J

To integrate the vector equation (6-34), this example begins with
the lower three components of the vector. The fourth component
of the vector equation (6-34) is

vx(t/t) = 0. (6-35)
Integrate equation (6-35) for te £t <ty to obtain
VIt g/t = vx(t /1), (6-36)
Similar computations hold for Jy and vz. Since the velocity
estimate is constant over the interval [t,, t, ,,}, the first
component of equation (6-34) can be rewritten as

Rit/t) = vx (t/t,). (6-37)

Integrate both sides to obtain

LD Tt
J x(t/tk) dt = vx(tk/tk) J dt (6-38)
te te

so that

X(tk+1/tk) - X(tklltk) = VX(tk/tk)(tk+1 - tk) (6-39)
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or
Q(tk+1/tk) = Q(tk/tk) + d§(tkltk)(tk+1 - tk).
Similar computations yield ¥(t .1/t ) and 2(t,,q/t).

Thus, the state vector time update equation is

X(tk*’/tk) x(tk/tk; + VX(tk/tk)(tk+1 - th
y(tk+1/tk) y(tk/tk + vY(tk/tk)(tk*l he tk)
vx(tk+,/tk) vx(t, /t,)
Vy(tk+1/tk) Vy(tk/tk)
b VZ(tk+’/tk) p e \{\’(tk/tk) J

(2) Tha next step is to compute tne matrix F(t)
equation {(6-18). Using equation (6-27), the i,jth element
matrix F(t) is

of af),
= — 1<i, j<6,
Ox | ii ¢ (x))
evaluated at x = g(t/tk). For 1<i<38 and 1<j<3,
2(8) dvx(t)
is of the form '
3(5)j ax(t)

(6-40)

(6-41)

(6-42)

of
of the

(6-43)

(6-44)

which is zero, since velocity iIs not dependent on position.

For 1<i<3 and 4<j<6, if i # j,

a(f) dvx(t)
is of the form ,
9(x) dvy(t)
which 1s zero. ¥ i=j,
9(f), dvx(t)
is of the form '
d(x) ovx(t)
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which is 1. For 4<i<6 and all j,

AL
. = 0 (6-47)
a(x) |
Hence,
 000100]
000010
F(ty = 000001 (6-48)
000000
000000
L 00 0 U O 0]

(8) The next step is to compute the transition matrix
® according to the matrix differential equation (6-19) which is

2 8(t,t)

s F(t).(tptk)
at

where t, < t < t ., and &(t,,t ) is the 6x6 identity matrix |g.
The solution to equation (6—19§ is

tk+1

I F(t)dt
te
.(tk‘." ,tk) = e
2
tie tics1
. |6~+I F(t)dt + 1/2 j F(tyde |+ ....
tx t :
(6-49)
Lo+
Then, since I F(t)dt
tx
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0 O (] (tk+1“tk) 0 0 1

0 0 0 0 (tk+1-tk) 0
= 0 0 0 0 0 (tk+1°tk)
0 0 0 0 0 0
0 0 0 0 0 0
[ O 0 0 0 0 0 '
and ( F(t)dt) is the zero matrix for n>1,
te
p L
1 0 0 (tk+1'tk) 0 0
0 1 0 0 (tk+1‘tk) 0
.(tk"""tk) = 0 0 1 0 0 (tk+1—tk)
0 0 0 1 0 0
(o} 0 0 0 0 1
L 0 0 0 0 0 1 1 .
{6-60)

(4) The next calculation is equation (6-20) to obtain
the state noise covariance matrix Q*, To evalyate ?quation
(6-20), compute the product ®(t, ., .t)G(t)Q(1)G ()8 (t . 0).
Rgcall that in defining the dynamic mode!, it was assumed Q(t) =
0“lgq. Furthermore, the matrix G may be partitioned as [ O4 ].

'3
0

s(han et (o) = Tz [02I3] [03l 13]

where 03 is the 3x3 zero matrix. Then




0 0-
= - — (6-61)
03 Oélg
Then, it D = t 4y - t, then .
' DI 0 On
3 3 3
Ot £)G(IALEIG (£) = k 3 .
o3 ! I3 05 | 0”1y
04 | o015 | |
03 02'3 » 3
and
2
0 o“DI 1 ! 0
3 ‘ 3 3 ‘ 3
ﬂ(tk+1,t)G(t)Q(t)GT(t)OT(tk+1,t) = .
03 1 o%ig Dig '3
|
|
= 202 2 |
= <D I3 l o 0'3
020'3 I 6213
(6-52)

To evaluate equation (8-20), the integrals of the four btocks of

the partitioned matrix_(6-52) are calculated. For every nonzero
element 1n the block a<D I3,

T+ Y+t
2.2 .0 . 2 _ 2
tK tk

t
_ 2 .[ k+1 2 _ 2
= g (tey)© = 2t gt + t7)dt
Ty

T+t

Uz(tk+12t = tk+!t2 + t3/3)

t

1]

2 3 _ z - 3 z 3
Tty The1“ Tk T Tkt * otk BT P TeatT/3 - 43/
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- gl 3
- A2 - 3
3
(6-53)
Hence,
Y+
2n2 = gl - 3 -
ty 3
Similarly,
L+
2 = n2 - 2
ty 2
and
L+t
2 = 2 - -
T
Thus,
- 3 - 2
(1/3)(tk+1 tk) |3 I (l/2)(tk+‘ tk) l3
Q*(tk+1) = 0 > [
(l/2)(tk+1-tk) I3 (tk+l'tk)'3
{6-56)
(5) This step defines the measurement matrix for the
measurements at time t .,4. |n processing the measurements indi-
viduaily, for each tk+1 there are N matrices H’(tk+1). i=1,...,
N. Each H; is defined by equation (6-21) as
oh
ax

x=x (tee/t),

where h, is defined in equation (6-32) and 2 (ti ,1/tg) was ob-
tained in step (1). The matrix H, is defined bv equation (6-57)
to be i1x6. The first component of H; s




an, 3 Vix(o) - X2 4 (y(t) = Y2 4 (zit) = 202

Ox(t) ox(t)

X(t) - Xi

Y o - X124 (y(t) - Y2+ (ztt) - 2?2

which, evaluated at 3(tk+1/tk) is

(X(tk+1/tk) - X,)

. S x)2 4 (0 -v2 4+ T
\ (X (e 78) = X8+ (Y(Eeq/t ) = Y€ 5 (2t /) -Z)

(6-58)

Similar calculations can be made for y and z=. Since h; s
not a function of vx, vy, or vz, then

onh, ah, oh,
———— = —— = —— = 0 for‘ ‘ = '.,., ’N. (6-59)
dvx ovy ovz

Hence, if r denotes the denominator of equation (6~58), the
measurement matrix HI' i=1,..., N, is

Hi(tk+1) =
r r r

(6-60)

Now all the values have been obtained that are needed to
update the estimate of the position and velocitv of the target at
time t.,,;, given the estimate at time t,, and_ tne measurements at
time t ,,. Assuming that the initial values x(ty) and P(0) are
given, then the following sequence will give the kalman filter
for this example. This sequence can be used to write the filter
program. 1n FORTRAN for example, with steps (1) through (5) as
subroutines which are called at the appropriate times in the
sequence.




First, extrapolate the state vector X(t,/t, ) using equation
(6-42) in step (1). Also extrapolate the state covariance matrix
P{t, /t, ) using equation (6-22). For this, It .. t) is needed
from step (3) and Q*(tk+1) from step (4).

The data at time tk+1 is input as an N-vector x(tk+1).
However, process the measurement from each station individually.
To do so, process them in sequence by considering each measure-
ment y;, 1=1,...,N as a one~-dimensional measurement vector. Then
go from Y; to v,4y in a similar manner as going from l(tk) to
x(tk+1). Once the calculations of all the yi’s have been com-
pleted, the measurement vector for time t, ., will be known, which
is designated as

.x(tk+1) = (y1o y2|c-~- YN)- (6"61)

Now, begin the sequence of measurement updates for time L with
Yi-

The gain matrix is computed using equation (6-23). The
matrix H; from step (5) is used here. Note then that the result-
ing K(t, ,q) will be the first of N gain matrices, denoted
Kilteseq)o 0= 1,...,N and that they are all 6x1.

The measurement update of equation (6-24) is then completed
for the one-dimensional vector y,, using Yy as the v(t . ) of
equation (6:24). and plugging h1(3(tk+1/tk)) from equation (6-32)
into the hix(t , /7t ).t ) of equation (6-24). 1he output
ROt 41/ teey) will be designated as R, (t, ., /t, ,) to indicate its
catculation from measurement y,. The covariance matrix 1s also
updated, using equation (6-25) and resulting in P,(tk+]/tk+,).

Only the last three steps consisting of ga:n calculation,
measurement update, and covariance update are repeated for
measurements Yor ¥Y3e--0 Vi No time update 1s needed because
these measurements are all at the same time as Y- Thus, for
measurement vy,, x(t +1/tk) is replaced in equation (6-24) by
Xt 1/ tesy) s and P?tk+1/tk) is replaced in equations (6-23) and
(6-25) by P1(tk+1/tk+1)' since Xy and P1 are the best estimates
currently available. The output of equation (6-24) will then be
Ro(tes1/tesq) and that of equation (6:25) will be Pyt /t,, ).
These three steps are repeated untii xy(t, ,,/t ., ;) is obtained
which 1s the estimate of the target’'s position and velocity at
time t, .,y given ail the measurements up to and including those at
time ti .4, and Py(t, 4/t ,y) which is i1ts corresponding covari=_
ance matrix. The updates have now been compieted for the (k+1)
time point.




CHAPTER 7

FILTERS IN CURRENT RANGE USE

This chapter contains a description of some of the most
frequently used filters. The filters sanrlead from the survey
provide a good cross-section of range data applications, and no
attempt has been made to selact a filter which is best for any
application. There are seven least squares filter applications
in use identified by the survey, and probably several more that
were not identified., Discussion of several variations of the
least squares filters is given in this chapter. Also discussed
is the Quadratic Digital (@QD) filter which has been in use for
many years, and at the time of the survey, there were five QD
users. The originator of the QD filter is Mr. W. A. McCool,
White Sands Missile Range (WSMR). A section on the Digital
Filter X (DFX) is included to provide support for the QD filter.

Appandix A contains a summary of filter information based on
a survey of the Data Reduction and Computer Group of the Range
Commanders Council. The appendix essentially contains all of the
information received. In addition, the appendix provides areas
of application used at the contributing ranges and observations
about the suitability of the filters.

7.1 Least Squares Fiiters

There are numerous filters based on least squares. in this
section, one basic and most widely used least squares filters is
the least squares poliynomial moving arc filter. Although the
simple average filter is not usually recognized as a type of
least squares filter, it is addressed here. The least squares
methods described throughout the rest of the chapter are varia-
tions of the least squares polynomial moving arc filter,

7.1.1 Simple Moving Average Fllters

Simple moving average filters give the average of the N most
recent observations and are equivalent to fitting a zeroth degree
polynomial evaluated at the midpoint. The formulation is quite
elementary; it is

Xg ¥ Xpag v 77T IXpIN+

N

Xt T X¢-N
N

= Moy +




This filter 1s very simple and straightforwara and is usefu! for
observing a constant process. However, if the process is chang-~
ing, a small value of N is neaded for rapid response.

The following is an explanation of a simple moving average

filter as a least squares filter. It is assumed that the average
is a constant value (call it a) expressed in terms of the parame-
ter 1n consideration (call it x). The problem starts out with

the simple equation

X = a (7-2)

=

The problem now is to find the value for a so that the N
data poInts X,_nsp......%X¢ COllectively deviate from equation
(7-2) as littie as possible (in the least squares sense). Then,

to find the best least squares estimate for a over the last N
values of x, the value

t
s=  §  (x;-a? (7-3)
i=t=-N+1

must be minimized.

Taking the partial derivative of S with respect to a,
38 t

= 2 : {x; - a) = 0 (7-4)
1=t-N+1

9 a

It can be seen that S 1s minimizad when

t
T x, =na (7-5)
i=

from which it is found that the best least squares estimate for &
1S

t
T x,
1=t-N+1
(7-6)
N

the average value of the parameter at the most recent N points.

7.1.2 Least Squares Polynomial Moving Arc Filters

Least squares polynomial moving arc filters are based on the
assumption that the true function can be expressed over a finite
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span of time by a polynomial of fairly low degree and that the
errors In the measurements are random with 2zero mean and finite
rms value 7nd are serially uncorrelated. Noted here, the smaiter
the time intervals are, the less the degree the polynomial needs
to be to provide a good estimating curve for the data. A sam-
pling interval of .05 seconds is said to be sufficientiy small
for good data fitting. It is desired to solve for the coeffi-
cients of the polynomial which best fits the data in a least
squares sense, that 1s, to minimize the sum

n
= 2 d .. 2 -7
S = _21‘50 tagty v oaptl vt oagtt - v (7-7)
1=
where
8, kK = 0, 1,...,d are the coefficients of the polynomiail of
degree d
t = time of each sample refarenced to the midpoint of

|
the span under consideration.

Y

i sampled measurements

[}

n number of points in the span (constrained to be odd
and greater than d).

To minimize S, take the partial derivatives of S with respect to
each ot the unknowns, ap, and solve the resulting set of d+i

linear equations. In matrix notation, write th'!s as
CA = B, where (7-8)
n 1+)=-2
C is composed of Cij = ¥ ty . =1, 2,...,d+1,
k=1 =, 2,..,,d+1
= T
A= (ao. a,,...,ad) , and
n
B 1s a vector with elements bl = I yktk' l. i=1, 2,....d+1.
k=1
Then A = C"B. If the polynomial ag * a;t + a:t: + ... + a,td

reoresents position, then velocity and acceleration are found by
taking the derivatives of the polynomial with respect to time.

The vector A of coefficients has been founi: for the first n
time points. Normaily, the polynomial with these coefficients is
applied just to the midpoint of the time span. The first (n-1)/2

points are generally used just for finding the new data value for
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the midpoint, but new vaiues may be generated (using that polyno-
mial) for the first (n-1)/2 points aiso,. Once the new midpoint
data value has been found, the next step is to redetermine the
coefficients of the poliynomial using points 2 to n+l, so a new
data value for the new midpoint can be found. Repeat this
process until finished with the polynomial moving from points
m,...,mtn~1 to m+l,...,m+*n with each step (where m ranges from 1
to the total number of time points minus n), thus describing a
moving arc.

|f the data are sampled at equal'y spaced intervals of time,
the t can be considered to be unity and C~ %s uniquely deter-
mingd when d and n are chosen. By use of C*' and t;, a set of
weights can be computed for determining the ay such that

n
ak = igtwk iy N‘ﬂ"’i, where (7-9)
N is the subgcript of the last point in the span.
Thess weights are useful for determining the expected error in
position, velocity, and acceleration for data with known input

error since

(«]

a
Kk n

— = (T w222, (7-10)

oy i=1
It is assumed that the standard deviations of all the measure-
ments y, are the same, and it is called o,,. Thus the sampl ing
interval can be chosen, as wall as the number of points smoothing
and the degree of the polynomial which will accompliish the

desired results, with a minimum expense of computational effort
(see reference 3). There are methods of calculating C°' that do
not entail finding the inverse directly, which would be very
time~consuming. One of these methods will be discussed later in
this chapter.

An advantage of using a polynomial is that much need not be
known about the true process, because if the polynomial is of
high enough degree, it will tend to seek out the signa!l in the
presence of noise and give a reasonable estimate of it. For this
reason, the higher degree of the polynomial, the more flexibility
is allowed in accurately constructing the true process. Another
reason is by using least squares, the polynomial is not forced to
pass exactly through any of the observations, which would resuit
in a certain amount of smoothing.




7.2 Position and Veloalty Constrainad Least Squares Fi|ters

Position and velocity constrained least squares filters are
based on the philosophy that the best estimate of the true
function and its derivatives can be obtained by fitting a polyno-
mial to fixed time spans of the measurements by the method of
least squares whila imposing constraints on the polynomial which
force continuity betwesen successive spans. The assumptions
concerning the data are the same as for least squares polynomial
filters, but the additional requirement is made that the polyno-
mial being fit to the filter span must pass through a point on
the previous curve with the same slopa. For example, consider
fitting a quadratic to data sampled at evenly spaced intervals.
Suppose there are five points in the span, that the midpoint of
the span is at t=0, and that each point in the span is one unit
apart from the one next to it. For the first span, the time
values are t,, i=t,...,6 where t,= i-3. It would be desirablae
to have

9i = .o + 81ti + .2t? (7-11)

evaluated at i=3 to be the filtered data value for the midpoint.
Thus, the filtered data value is equated with a,, since tq = 0.
Once a,, a;. and a, for this span have been solved for using the
regular least squares method, the first step is completed.

The next step is to solve for 9. at t; = 1. Move the span
one point over so that the new span ‘s for points i=2,...,6. The
new midpoint is at I=4., Remember there are two constraints:
position and velocity. Note now that t; is the middle time value
for the new span. The idea of tha filter is that the polynomials
of both spans have the same value (position) and the same s!ope
(velocity) at time tg,.

For both the old and new spans, consider the middle time
value to be 0 and the following time value to be 1. So for the
old time span, tg = 0 and t4 = 1. For the new time span, tg = -1,
ty = 0, and tg = 1. Let

L4

- o 2
p(t4) = ao + a1t4+ 32t4 (7-12)

be the polynomial for the midpoint of the new span, and let

2
Q(t4) = ag + a1t4 + 82t4 (7-13)

be the polynomial!l for the same point of the old span. Use the
position constraint to obtain 36 and the velocity constraint to

obtalin a;.




7.2.1 Position Constraint

Bacause p(t4) is for the midpoint of the new span, the
method equates t, to 0, so that p(t,) takes on the value aq
Because q(ta) is for the point to the right of the midpoint of R
the oid span, the method squates t, to 1, so that q(t4) assumes
the value ag + ay + a,. To ensure that these two polynomials
have the same value at t,, equate sl with ag + @ + a,. Now the
value has been found for the first coefficient for the new span.

7.2.2 Veloeiiy Constraint

Again, consider the polynomial p(t,) for the midpount of the
new span. The slope for this polynomial is a, + 2n2t4 Because
this slope is for the midpoint of the new span, the method
evaiuates this slope at t, = 0, whence the siope takes on the
value a{. Also consider the polynomial q(t,;) for the same point
of the old span. The slope for this polynomial is a; + 2a2t4.
Because this siope is for the midpoint of the old span, the
method evaluates the slope at t=1, whence the slope assumes the
value a, + 2a5. To ensure that the slopes of these two polyno-
mials have the same value at tya, we squate a with a, + 2a,. Now
the value has been found for the second coafficient of the
polynomial for the new span.

So from the position constraint,

ao = ao + 31 + 82 (7"'14)
and from the velocity censtraint,

31 = 81 + 232. (7"’15)
Now proceed to find the valuae for a;.
Start by minimizing the sum

N P P v 2
S= I (agtajt+ayt] - y;»? (7-18)
i=N-n+1

where

ag, @y, and a, are coefficients for the second span .

n = number of points in the span (should be odd and
greater than 2; in this case, n=5) -

N = subscript of last point in the span (in this case,
N=6)
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(ad
]

. time of each sample referencea to the midpoint cf
the span such that t, - t|_1 =

v, samp led measurements.

Taking the partial derivative of S with respect to the unknown.
ay, equating It to zero, and solving for aj gjves
2 ’, 2 g 3
328 1 (2 y!t"'aozt' -a,zt!’. (7-17)
Eq

Similarl, to the first span, the filtered data vaiue for the
midpoint ot the second span is

A » L4 -

y| = ao + 81ti + ﬂzti (7-18)

evaluated at i = 4. That is, equate the fiitered data value with
aj., since ty = 0. The subsequent steps are done in the same
manner as the second step. Sometimes it is desirabie to con-
strain position only to be obtained from the previous fit. in
this case both ay and aj in equation (7-16) are unknown, and the
solution wouid involve two aequations with two unknowns.

This method has a distinct computational advantage over
unconstrained least squares, because there are fewer summations
and simpier equations, it also produces smoother output because
of 1ts recursive nature. However, it is siower to react to a
change 1n the input and under certain conditions results In
oscillation in the output.

7.3 Orthogonal Polynomiain

in smoothing data by the usual method of least squares, 1t
1s necessary to choose in advance the degree of polynomial which
will be used to approximate the data. This choice 18 necessary
because the coefficients found are dependent upon tnhne degree of
curve peing fitted. Often, however, it is not xrown 1n advance
what dearee curve will best fit the data. in such a case, 1t 1Is
desirable to fit several polynomials, each time .ncreasing the
degree used, unti! it 1s seen that any further increases woula
not produce a significantly better fit. The comoutation of
success ve polynomials is greatly simplified bv the use of the
or thogonal poiynomial procedure. This method determ:nes the
approximating polynomial in terms of another variabie, so chosen
that each coefficient found is independent of the others, making
i1t possible to increase the degree of curve used without makKing
1t necessary to recompute the previously found coefficients.




This program is genera!ly used to smooth position data. The
degree of curve fitted is increased until an F-test indicates
that additional coefficlients of the polynomiali would not be
significantly different from zero. The smoothed positions are
then differentiated to obtain velocities, and the veiocities
differentiated to obtain zccelerations. The error estimates of
the smoothed data and der ivatives are computed in the form of
standard deviations for each point. Coefficients of the original
poiynomial are derivaed In terms of the new polynomial. Orthogo-
nal polynomiais are discussed in reference 46. The method is
given here. First, the term "orthogonal polynomials” is detfined.

Two polynomials P (x) and Pj(x) (of degrees i and j) are

orthogonal on a sat of points XqseoosXp provided that
n
I PP (x) = 0 for iwj. (7-19)
k=1

Given a poitynomial of order k, k orthogonal polynomiais can be
found whose |inear combination expresses the original polynomial.
The method of orthogonal polynomials follows. Assume that the
poliynomial

p(t‘) = ao + a1t| + ﬂzt? + ... + !ktT (7-20)

expresses the true function. Reference 46 shows directly and by
aexample that this poliynomial may be re-expressed as

+,,.+
P(ti) = DBoPor ¢, * ByPy.g, baP2y ¢,

where PO'tg = 1
Py.ty =t
P = St
jrt = tiP1-1.» - Pj—2.l
Q-2
YiPj, ¢ ’
- ity
b, =
Q;
where @, = § P2 (7-21)
j it '
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The time variable t, ranges from -(N-1)/2 to (N-1)/2 I1n steps of
one. {The i1ndex i could have been used insteac of t,, but t s
the more conventional variable for time.) FReference 46 shows
that the Pj.ti's are orthogonal to each other.

Once the original polynomial of equation (7-20) has been re-
expressed in terms of orthogonal polynomials (in equation

(7-21)), p(t) can be expanded to be of one more degree through
the Gram-Schmidt orthogonal ization process,

where

n

Y Pi(xk)Pj(xk) is the inner product and (7-22)

k=1
where the polynomials P,(x) and P;(x)_are vectors in the vector
space of polynomials spanned by 1,x,x ,+..,x", where n is the
degree of the higher degree polynomial. In this manmer, the
values of any of the previously obtained b.'s or Pi 's are not
changed. instead, another such term is merely aaded on.

At what degree should expanding stop? Reference 46 suggests
a cliever criterion for deciding when to stop. The variance V of
the data can be expressed in the following two ways:

(N=1)/2 K

2 i==(N-1)/2 =1 '
V = ¢ =
8 N -1 -k
=0 = a. (b B.)2 7-23)
V=o, = jtby — By (

where bi is the computed coefficient and B. is the true coeffi-
cient. "Reference 46 gives the derivations for the tast two

equations. Of course, 02 = oi, but two different notations are
given for the sake of future reference. The object now 1s to
tes' the hypothesis that the true value of the th coefficient B
its zero. Test the hypothesis using an F-test. (The F-test tests
the proportion of two variances.) Test the prorortion,

B= 0 (7-24)
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2
Of course, the numerator o, = Gjb?. If B. is ideally 0, then
ngo
this proportion should be close to 1.

In the test, If

B;=0 < F, (7-285)

N

then the hypothesis is accepted as true, and b, is set equal to
zero. The next coefficient is tested in the same manner. When
two consecutive coefficienis are set equal to zero, then the
degree k of the polynomial is determined from the last coeffi-~
cient which was not set equal to zero; that is, k=j=-2.

Stopping after two consecutive 2ero coefficients assumes

that succeeding terms in the polynomial will carry negligible
weight. For practical purposes, most parameters can be modeled
using a lower-order polynomial. |f the polynomial is of higher

degree, the higher coefficients are close to zero. Normally,
data generally does not shoot up or down suddenly enough to
warrant higher degree, high-magnitude coefficients.

7.4 Least Squares Polynomia! Moving Arc Filters Using Recursive
Sums

A recursive scheme for computing the sums required to
per form least squares polynomial moving arc smoothing has been
developed at the Air Force Development Test Center which permits
this type of smoothing to be accompl|ished considerably faster
than by the usual |insar combinations of observations. This is
not a recursive filter In the usual sense in that previous filter
output is not used in determining current output.

in paragraph 7.1 it was stated that the equation for this
type of smoothing may be written in matrix notation as

A= c g, (7-26)
where the elements of A, B, and C have been previously defined.
Each eiemant of B and C consists of a summation of n terms (i =
number of points smoothing) which must be performed each time a
point is dropped and another is picked up in the moving arc
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process. However, these summations can be avoided by computing

the sums for a given span in terms of those for the previous
span.

For i1nstance, suppose it was found that through the method
discussed in paragraph 7.1

(1 g =1 te = T = T+
b, = Yk tk 2
k=1

’ (7‘27’

where T; is the ith time value. So t, is the length of the
interval between the kthtime point and the midpoint of the sp .

To find
(2) N1 -
b, = L oy (t, - M7 where A = Tnes - Theq (7-28)
i k Kk —_— 2z,
k=2 2 2
. (1)
do so in terms of bi by means of the recursion
(2) i"" . - (1) "l . - i-j—1
b =3 Moo o+ y T o-ndodith e
i . j i=J n+l i n+1
i=0 j=0
(7-29)
i-1 -
. s - ..]
~yy T Ty T
i=0 !
The elements of C are computed similariy by considering the y,=t.
However, as previously stated, if the data are evenly spaced, C
is uniquely determined when the degree of the polynomial and_?um-
ber of points smoothing have been selected. in this case, C
can be precomputed and stored for use in the smoothing. In

addition, A can be considered unity, and the equations for the
recursion are simplified.

With this formulation no lengthy summations are required and
the number of operations, once initiated, is i1ndependent of the
number of points used in the smoothing. Furthermore, by comput-

2
Iing recursively 2.yk, reference 63 shows that with very little

extra effort the residual sum of squares of each span can be
obta:ned as an estimate of the error in the data by

2




7.6 Derivative Information Recover

Technlque (DIRSIT)

The data smoothing technique known as Derivative information
Recovery by a Selective Intagration Technique (DIRSIT) was
developaed In 1862 at White Sands Missile Range. The technique
has been modified somewhat to permit more contro! of interval
program parameters to satisfy the raquirements of a greater
number of users. The basic steps In the DIRSIT smoothing philos-
ophy are

by a Selective Integrastion

(1) the sign of the difference between the raw and
smoothed position data is examined at each point within the
filter span;

(2) the smoothed position data is satisfactory if the
number of positive signs differs from the number of negative
signs by one; (The total number of signs is odd.) and,

(3) if (2) above is not satisfied, the acceleration

history within the filter span is modified as much as necessary
to force the difference to one.

It is assumed that gsampled position data is being entered
with associated time. The output is smoothed position, velocity,
and acceleration with associated time. For the filter span 2m+1,
which is odd, table 7-1 shows a starting condition.

TABLE 7-1. A STARTING CONDITION FOR A DIRSIT
FILTER WHOSE SPAN 1S 2m+1 POINTS
Raw Position Smoothed Position Velocity Acceleration
;; X, X, x;
Xm+; §m+i
sz;, £2m;1
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The parameters i,, §1. X;, i=1,...,2m+] are generatea during
initiatization; consequently, the initial estimates are obtained
independentiy. Columns X, and X; are computed as

- - . 2“
Xxiep = X v At gx; + (1/72) A 7%, (7-31)
Xpaq = %+ At Ry (7-32)
where i=1,...,2m+1; At ., = ti,g

Al! accelerations ﬁi,i=m+1,...,2m+l are equal.

Having completed the columns of table 7-1, examine how
closely the smoothed and raw positions agree. Generate m values
of xi by computing Ax; = x;- x;, i=m+1,...,2m+1. Hence, the
number of negative Axi and the number of nonnegative Ax. cannot
both be odd, neither can they both be even. Let NL be the number
of Ax; which are negative; that is, the X, is larger than the x, .
Let Né be the number of Axi which are nonnegative, NL + NS = m

and the Ax, (i=m+2,...,2m+1) are acceptable if | NL-NS | > 3,
These conditions are corrected by changes in the X ,
i=m+1,...,2m+1, which will also produce changes in the x, and X ,
1=m+2,...,2m+1,

Examine the procedure for changing the §i. To be specific,
assume that NS > NL + 3; then the x; must be increased. Starting
at some time t, the acceleration will be increased with slope 1,
to time L which will be caliled t., the pivot point. Then for
times t,, tyo4o0,....tomyy the acceleration increase will be con-
stant. This type of increase in acceleration will just result in

a change in only one ik so0 that Axk would just barely become
negative where formerly it was nonnegative, The first step i1s to
equate Axk as shown in the following equation:

- -8 )2 (¢, - -t —t )2
Ax, = (1/6) (1 -1)% + (1/2) (£ -t) (e -t,) + (1/2) (e =t) (t-tp)

(7-33)

Note that the change in distance is obtained by a double integra-
tion of acceleration. First integration of figure 7-1 would
vield a velocity curve of the shape shown in figure 7-2.
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Figure 7-1., Example accelera- Figure 7-2. Corresponding

tion curve. velocity curve.

= "—-3 = —-2 -t
Where Area A (1/6)(Lp t)°, Area B (1/2)(tp t! (tK tp.,
= -7 - 2 -
and Area C = (1/2)(1:p t)(tk tp) (7-34)
= 3 _2 - s - 2
Bx = (1/8) [(t~1)7 + 3(t ~)%(t~t) + 3t -t) (-1 ]
(7-35)
= -3 - - 3
= (1/6) [(t|< t) (tk tp) ]
from which (tp-;) = [6Axk + (tk~tpp ﬂ/3 - (tk-tD) (7-36)
Thus, equation (7-36) gives the distance between t- and tp. This
change made in x, and the changed x, would decrease NS by 1 and
increase NL by 1. For each positive Ax, , compurte a Ei but only

the largest Eiss used. _Thus only one Axi would change sign. For
this selected value of t, the changed %i, *i' and x, are caicu-
lated for each time beyond ¥. A check is made again: 1 f
NL-NS<1, then the output at t, of X, %X, R, is the output of

DIRSIT: if NL-NS>!, the above computation of t i1s repeated.

Suppose that NL > NS+3 or that the number of negative Ax, 1s
three or more greater than the number of nonnegative AQ .  Under
these ccnditions equation (7-36) becomes

“3) = (= - 173 _ - -
{ b t) = [ BAxk+(tk tp)] (ty tp) (7-37)
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To this point it has been assumed that ;itl. when t>t
another proctedure is employed. increase the siope of the accel-
eration as shown i1n figure 7-83.

Figure 7-3. Example acceleration curve for t > ty

T = 6"k
- 3 . - 3 -
(t = £8 = (g - 1) (7-38)
With this new value of T the new ii, *i' ;‘, i=2,...,2m+1
are calculated. If | NL-NS | =1, the data output is finished; if

not, repeat calculation of t. Now redefine terms by shifting
their previous values down one, that is, shift

tivy —> 8
Xi+1 X ) 3
XH_1 — Ki |=2,.-.,m (7"391
a L
Xie1 > X
Xisr > X%,

The next asata po:nt s now input Lo the T ite- s “n2 zbove

ArOcess 1s repeated.

The DiIRSIT was the originai real-time fiighnt f:iter at wWSMR
and has been successfully used with data from such missiie
systems as the Nike Zeus, ARPAT, Pershing, and Athena. The
filter has been used for Nike Zeus and ARPAT elevation data, to
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generate acquisition data, and to initialize a re-entry simu,a-
tion 1n the Athena's real-time operational program, It s the
major filter being used at Holloman Air Force Base ana WSMR to
evauiate the Athena re-entry data and 1s the pr ime source of
post-flight data for the flight safety impact prediction programs

at WSMR. The post~-flight data is then used for vectoring recov- "
ery aircraft.

Because DIRSIT, a self-editing filter, uses a2 median-smooth-
ing criterion, random splkes will have no effect on the filter
output. Operation is not dependent upon equal time increments
between ocata points, and a missing or repeated data point will
not cause probtems. With existing subroutines, numerous jnternal
parameters can be controlled to obtain the des:ired filter re-
sponses. However, DIRSIT was not without its problems. Posi-
tion, velocity, acceleration, and time arrays must be stored,
thus reauiring a significant amount of storage space and comput-
tng time. In addition, the filter has a !ag which makes It
undesirabie for real-time use. (For additional information on
DIRST, see references 36 through 39.)

7.6 Digita! Fliter X (OFX)

In 1963 at WSMR, real-time flight safety support was first
provided from the central computer facility. Originally, the
DIRSIT filter was used, but it became evident that DIRSIT was not
a satisfactory real-time filter because of the excessive storage
requirements, computing time, and inherent lag. Consequentl!y,
the original version of the DFX filter was developed. The DFX is
a variation of a constrained second~degree filter which defines
"best fit” criterion to be that the afgebraic sum of the differ-
ences between the raw and smoothed data 1s zero.

The filter is more efficient 1n both speed and storage
requirements because of a development which avo:ds computing the
constraints explicitly and which stores oniy the array of differ-
ences rather than arrays of both raw and smoothed data. Addi-
tionaliy, a mean rather than a median smoothing criterion is
used. The fiiter response is controlied by a set of input
parameters which, in turn, determine the shape of the accelera-

tion correction curve. The smoothing criterion for the DFX
filter s

N
s= T (X,-x;) =0 (7-40)

which loads o
N - . . 9
S= I (X, * Xy (i At + Ky (12 At%) - x) =0 (7-41)
=1 2
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With the constraints RO and io fixed, only the acceleration has
to be adjusted with each step

(1] N . N
: -
Xg *  —pm— L X, - Nxg - Xo &t L (7-42)
° At 2 i=1 i=1
2

Equation (7-41) differs from the constralnog Iegst squares (CLS)
equations only in the multiplying factor (i< A and this
difference will affaect only the computation o% the correction

coefficients used by the filter. The method of applying the

correction to the acceleration terms is the same for both a CLS
and DFX filter.

To see how, this mathod is developed, first look at the

expression for X,;,q in terms of X, where x, is the new data value
of X cfter smoothing:

2

(1 f X were expressad in terms of x,, At would be the step
size. ;n this case, consider i At to be the step size.) Rede-
fine terms by shifting down the values for the next cyclae, so
that §-+1 of the previous step becomas what will be designated as
X. In {he current step, where the bar indicates "prior to apply-

ing the correction factor."”

This redefining of terms gives the following equation:

Xi= Xo + %o (i At) + Xo (i2 At?) (7-44)

2

Compare the previous equation equation (7-44) with the following
equation (7-46), which expresses the ith smoothed point based on
the constraints,.

X; = Xg + %o (i A + X (12 Ae2) (7-45)
2
Subtracting equation (7-44) from equation (7-45)
(X, - X)) = (12 At?) ‘io - %o (7-46)
2
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which wiit be written as

(X, =X = (2 At?) (8xy) (7-47)
2
or
X, = X, + (i2 A%y 8x, (7-48)
2

That is, the smoothed position at the ith point equals the
position before correction plus a constant factor depending only
on the celta time increment and the position of the ith point in
the N point span times the correction to the acceleration. The
significance of this fact is that 1f there are predicted outputs
and a means of computing the acceleration correction, then there
is no need to compute the constraints explicitly or save arrays

of both raw and smooth positions. Note that equation (7-48) can
also be written

(X, - x;) = (X, - X)) + (i% At?)  ax, (7-49)
2
or
Ax, = ax, + (i%2 At®)  &x, (7-50)
2

N
The quantity % Axi is set to be zero as the smoothing criterion.

i=1

T

The array Axi can be used instead of the two arrays X; and
X; for computing each cycle. The AX;'s, which are the differ~
ences between predicted and raw input at each time are saved,
shifted down, and corrected after each succeeding computing
cycle. As each Ax‘ is operated on in successive computing
cycles, it becomes numerically smailer. Most of the correction
s applied to the Axi at the cycle when i=N, the real=time span.
This factor, it will be seen, is what makes the QD filter possi-~
ble. Per formance is almost identical to second order CLS smooth-
ing; however, DFX requires much less computation time and storage
regardiess of the span size. In addition, filter characteristics
can be changed dynamically during flight to improve performance.
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The basic DFX package i1ncludes editing, initialtzation,
radar selection, and noise estimate routines. Versions of ths
filter were used in all WSMR real-time programs for over five
vyears., References 40 and 41 are concerned with the DFX filter.

7.7 Quadratic Digital (GD) Fitter

The DFX equations can be derived using the CLS smoothing
criterion, 1f an approximation is made concerning the effects of
the terms of ths sums of products, the necessity of even one
stored array is el iminated and the second order DFX faormuiatian
can be reduced to a set of six equations. The performance of the
resulting (QD) filter is practically identical to CLS perfor-
mance, although computing time is independent of the filter span.
In reality, the QD filter span is implied rather than actual
because no arrays are stored. The QD filter is essentially a DFX

filter which applies all the corrections needed to the real~-time
point only.

The QD formulas emplioy a predict-correct procedure using the
gstimates determined for the current given data vaiue evaluated
in the preceding step. They are, therefore, said to be recur-
sive. The prediction formulas are

- A
Xn+1 = Xp (7-51)
- A o)
xn+l = X, * At Xn. (7-82)
- A 3 2 3
Xnep = Xp + v X+ AES X, (7-53)
2
or
A — A
xn+1 = Xn + At (xn+1 + xn) (7-54)
2
where
£n+1 - is predicted second derivative,
in - second derivative estimate from preceding step,
§n+1 - predicted first derivative,
*n - first derivative estimate from preceding step,
;n+! - predicted data value,
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Xn

At

The corrections of the predicted values are based upon the

- data value estimate from preceding step,

time differentiatl

from preceding step.

and

differences between the given data and the predicted data vatues.
The correction formulas are

n+1

where

AX

The functional
cients Ky K2, and K

CLS filter,

"

”
Xn+1+ Ky AX,
-
Xne1 * Ko Ax,

Xnet + Kg AX,

correction aof the
correction of the

correction of the

(7-55)

(7-56)

(7-57)

predicted second derivative,

predicted first derivative,

predicted data value,

and

correction coefficients which minimize the error of

the estimates:

difference between given and predicted data values.

in the

relationship among the correction coeffi-

are revealed through study of predicted
values obtained by use of the second order CLS fitter. in the
intercept and slope constraints are applied at the
oldest value end of a given data span M,

fit to the M data values

Using these con-
the predi:cted data vaiue

and 1ts derivative can be obtained with the truncated Taylor

sert1es.

xn+1

xn+l

~ N
. .

= xn__M*_‘ + MAt Xn,_M+l.

= Roomer * MAE X _puq + (M AEXP

xn-M+1.

so that the polynominal
least squares sense must also
contain the estimates of the true value and the corresponding
first derivative at the oldest span point.
straints in the second order CLS filter,

{7-58)

(7-59)

|
-
|
|

-



where n-M+! indicates the oldest value in the fi!ter span, having
been shifted from,_ its position in the preceding step of n-M+2,
Since X,_m+y 8nd X _m+1 @re fixed (because the position and
velocity are constrained), oniy n-M+1 can be adiusted to make
equation (7-59) fit the M data values in the least squares sense.
Let AX be the required correction. Then

>

Xne1= Xpomeq + AK (7-60)

Note that the second derivative is constant across the second
order CLS filter span. Applying the correction to equation+ins

(7-58) and (7-59) holding x,_pm+q @nd x _m,q fixed, gives the
estimates

>

A
L

Xae1 = Xpomer * M AT Xy + AX) (7-61)

~ A '.\ 2 (13 (13
Xnetp = Xpomer + M AEX _piy + (M ADZ (X _y,q + AX) (7-62)

2
Subtracting equations (7-58) and (7-59) from equations (7-61) and
(7-82) gives

Xns1 = Xpeq + M At AR, (7-63)

Xns1 = Xoeq +(M ADI2 AK, (7-64)

2

Compar ison of equations (7-60), (7-63), and (7-64) with equations
(7-58), (7-868), and (7-57) reveals the relationship between K,
Ko, and kg as desired. From equations (7-55) and (7-60)

AX = K, AX (7-65)
Then from equationg (7-683), (7-66), and (7-65),

Ko = MAtK, (7-66)
and from equations (7-64), (7~57), and (7-65),

Kg = (MAL)? K, (7-87)

2
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in the QD theory, Ky 18 developed as a function of the corre-
sponding CLS filter span M, that is,

Ky = Ky (M) = BOM2 (7-68)

toM3 + 33M% + 23M-6

(See reference 45 for the derivation of this foermuta.) Thus,
when M 1s arbitrarily specified, the QD correction coefficients
are determined by equations (7~66), (7-67), and (7-68).

in ite basic formulation, QD can be used as a real~-time
fiiter, because the argument (or subscript) of the estimates
corresponds to the latest value accepted by the filter. On the
other hand, estimates can be obtained for tne data value at the
oldest end of the span which are significantly petter than the
corrgsponding real-time estimates. Such estimates, which are
often called "smoothed” data, corraspond to the constraints
computed 1n the CLS filter. Smoothed estimates are simply

obtained with a Taylor ser ies expanded about the reai-time
estimates; that is,

Xpey = §n+, - (M-1) t§n+1 (7-69)

Xne - Ry M-D ot (§n+, NI (7-70)
2

for thi second order QD filter and

§n+‘ = §n+, - (M-1) At§n+, (7-71)

228 - e e B+ R0 (7-72)
2

~ 2 R A

Knep = Xopy = (M=DAE K,y + X, - =133 A3 X,
2 12 (7-73)

for the third order QD filter.

The GD filter achieves smoothing effectiveness aimost identical
to that of the comparable constrained least squares filter
without he usual array of saved input data samples. The QD s
the reai-time filter used in the majority of WSMRK operational

programs. References 42 through 45 discuss the QD filter :n more
detail.
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APEP

1. Name or Acronym

Advanced Medium Range Air-to-Air Missile (AMRAAM) Parameter
Estimation Program (APEP)

2. Contact Mr. John E. Lindegren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
(904) 882-4267
DSN: 872-4267

3. Dbcumentation Sources

a. Bierman, G. J. Ffactorization Methods for Discrete Sequential

Estimation. New York: Academic P, 1977.

b. Luenburger, D. G. Optimization by Vector Space Methods. New

York: Wiley, 1969,

c. Sorenson, H. W, Kaiman Filtering Techniques, Advances in
Contro! Systems. Vol. 3, C. T. Leondes, ed. New York:
Academic P, 1966.

4. Origin Bal! Systems Engineering (formerily VERAC,
Incorgorated)
10975 Torreyana Road, Suite 300
San Diego, CA 92121
14 February 1982

5. Comments

Strengths of the APEP filter are described in the following sub-
paragraphs:

a. This filter provides optimally smoothed trajectory estimates
in the same sense as an extended Kaiman filter but with superior
numer ical accuracy because of echelonized square root information
matrices with Householder orthogonal transformations of augmented
state transition matrices. in addition, the matrices are partitioned
for dynamic and measurement bias states and make explicit use of the

bliock diagonal matrix structure to minimize computation steps for the
sparse matrices.

b. The forward filter cycle is slightly slower than the standard

Kaiman filter, but the smoother cycle (backward filter cyclie) is sig-
nificantly faster tham a standard fixed interval kalman smoother.
Smoothed estimates require only backward substitution, and smoothed
covar iances are generated with a UDU decomposition of the filter

state covariances. Propagation of the smoothed square root informa-
tion matrices does not require matrix inversions.




c. The procedure for “"folding in" new measurements using House-
holder transformations to echelonize the measurement augmented state
equations ailows inclusion of asynchronous or irregular measurement
data rates without reinitializing any of the filter solutions.

d. Trajectory propagation using the current filter estimates and

state transition matrices avoids dependency on any particular measure-
ment input.

e. Al|l kinematic parameters are provided with 1-sigma error
bounds for the estimates, which require propagation of the error
covar iances for Indirect parameter derlivations.

f. Data dropouts of short duration or changes in the number of
avallable Iinstruments are accommodated by APEP without catastrophic
filtar/smoother estimate aerrors or failures.

g. A review of filter cycle measurement residuals allows iden-
tification of wild points for edit and adjustment of a priori measure-
ment covariances used in program input. (Automatic edit may be
selected for a multiple of the expected residual standard deviation.)
Deviations from the measurements error model used by the software are
indicated by correlated measurament residuals.

Weaknesses of the APEP are described in the following subpara-
graphs:

a. 1f no inertial navigation system (INS) data are available for
measurement input, the square root inverse filter (SRiIF) cycle may
have to be repeated to fine tune the a priori filter measurement and
state noise covariances or to edit wild points which seriously perturb
the estimates in the state propagation steps.

b. The smoothing cycle requires reversal of read order for the
entire measurement interval, thus requiring al! measurement data to be
stored on disk files or other random access storage media. The algo-
rithm uses fixed interval smoothing. The volume of data that can be
processed at one continuous time interval is |imited.

c. Data-processing time is significantly longer than the data-
collection time interval if Time-Space~-Position-Information (TSPI1)
from several Iinstruments and from the inertial data are included as
measurement inputs to the filter.

d. The present error modal for TSP! instruments include only
bias terms as the systematic error source. (The error model dpes
provide for the Markov noise model.) For the short time iIntervals
associated with alr-to-air missile flights, bias terms may provide an
adequate model. For longer time interval'c, with large shifts in tar-
get range or angle relative to TSP! instruments, a more extensive

error mode! would be required to ensure stationarity for the measure-
ment residuai.




FAST LEAST SQUARES

1. Name or Acronym

Least Squares Moving Arc Pelynomial Using Recursive Sums

2. Contact Mr. John E. Lindegren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
(904) 882-4267
DSN: 872-4267

3. Documentation Sources

Sterrett, John K. “Manual for Moving Polynomial Arc Smoothing."”
Ballistic Research Laboratory Report 840, Aberdeen Proving
Ground: Ballistic Research Laboratory, 1952,

4. Origin Ms. Martha D. Everett
AFDTC/KRBA
Eglin AFB, FL 32542

6. Commants

The filter accomplishes its designed tasks very well. By chang-
ing the time span or the polynomial degree or both, the filter can
be adapted to the trajectory, and by changing a single time constant,
the polynomial can be evaluated at the end point for post-mission pro-
cessing. No knowledge of measurement errors is required, and the wild
point edit is adaptive vecause the distance off the curve considered

defective is proportional to the noise in the data for the particular
time span.

This filter has one weakness. 1t cannot handie a step function

properly and thus fillter gives poor results at missile booster igni-
tion, burnout, or similar occurrences.
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Name or Acronym

WE IGHTED LEAST SQUARES

Weighted Least Squares Smoother

Contact

Mr. Mike Dodgen

Computer Scisnces Corporaticon
6645 Test Group/ENAC

Hiil AFB, UT 84056

(801) 777-6497

DSN: 458-6497

Documentation Sources

Origin

Mr. Mike Dodgen

Computer Sciences Corporation
6545 Test Group/ENAC

Hill AFB, UT 8405686

Kentron International, {ncorporated




WLSRE in MITO28

1. Name or Acronym

Weighted Least Squares Recursive Estimation (WLSRE) contained in
Multiple Instrument Trajectory Module (MITO26) .

2. Contact Mr. Robert Fierro
U.S. Army White Sands Missile Range
Attn: STEWS-NR-AM
White Sands Missile Range, NM 88002
(505) 678-2b643
DSN: 258-2543

3. Documentation Sources

a. Fierro, Robert and Carolyn Nicholson. "“Dynamic Optimized
Smocthing Span (DYNOS)." Analysis and Computation Directcrate
Document. White Sands Missiie Range: Analysis and Computation
Directorate, 1970.

b. Comstock, D., M. Wright, and V. Tipton. “Handbook of Data
Reduction Methods."” Data Reduction Division Tech Rept. White ‘
Sands Missile Range: Data Reduction Division, 1964 !

¢. Greene, Earl. "Edfil, A Routine for Editing and Filtering
Data.” Analysis and Computation Directorate Document. White
Sands Missile Range: Analysis and Computation Directorate,
1977.

d. Comstock, D. "Introduction to Least Squares.” Analysis and

Computation Directorate Document. White Sands Missile Range:
Analysis and Computation Directorate, 1968.

4. Origin Software Branch
Data Sciences Division
Attn: NR-A
White Sands Missilie Range, NM 88002
1970

6. Commaents

The filter is embedded in several modules which make up the Modu-
lar Integrated Processing System (MIPS) of Data Sciences Division. The
Multipie Instrument Trajectory Module (MIT026) exercises the filtering
process most extensively. With this module, ‘

a. observations are rotated to a common plane;
b. observations are filter-smoothed;

c. a set of predicted position, velocity, and acceleration com-
ponents are obtained;




d. corrections for items such as refraction and velocity of
propagation are made;

e. initial editing is performed to el iminate observations that
have gross errors;

f. approximate position components are obtained using standard
weights;

g. weights are determined for position-related observations:
h. best estimate of position components is obtained;

i. final editing of pogsition-related observations is performed;
(1f any more position-related observations are rejected, steps f
through h are repeated.)

j. approximate vaeliocity components are obtained using standard
weights;

k. weights are determined for velocity-related observations;
i. best estimate of velocity is obtained;

m., final editing of velocity-related observations are performed;
(tf any more velocity-related observations are rejected, steps
through | are repeated.)

n. approximate acceleration components are obtained using stand-
ard weights;

0. weights are determined for acceleration~related observations;
p. best estimAate of acceleration components is obtained; and

q. finmal editing of acceleration-related observations is per~-
formed. (1f any more acceleration~-related observations are rejected,
steps n through p are repeated.)




M-STATION

1. Name or Acrdonym

M-Station
2. Contact Mr. Wen-Mi Liou
Pacific Misgila Teast Center
Code 3400

Point Mugu, CA 93042
(805) 989-7931
DSN: 351-7931

3. Documentation Sources

Liou, Wen-Mi. "Square Root Information Filter/Smoother for
Multiple-Radar Tracking."” Tech Note 3440-02-87. Point Mugu:
Pacific Missile Test Center. Mar. 19887.

4. Origin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
1987

6. Comments

The square root information fil!ter/smoother had bean designhed to
merge measurements from different radars to obtain the best estimate
of trajectory. The measurements consist of range, azimuth, etevation,
and range rate from radar tracking of up to 10 radars. This filter is
a version of the conventional nine-state extended Kalman filter but
has a fundamentally different approach to the optimal estimation prob-
lem. The whole updating process of the filter is founded on numeri-
cally stable, orthogonal transformation and preserves non-negativity
of computed covariances. An ad hoc procedure for adaptive estimation
had been implemented. In the implementation, the user has the options
to select the time span for smoothing and to appl!y more weight on the
measurements of some of the radars. Real radar tracking data were
used to test the filter/smoother; the test results were satisfactory.
In the testing, 100 data point smoothing was found adequate; conse-
quently, more data point smoothing provided no significant improve-
ment. This finding saves computer computation time and storage. As a

result of this finding, a better divergence control method is being
investigated.




PBS PROGRAM, M-STATION

1. Name or Acronym

Post Batch System (PBS) Program, M-Station

2. Contact Mr. Wen-Mi Liou
Pacific Miasile Test Canter
Code 3400

Point Mugu, CA 83042
(806) 989-7931
DSN: 351~-79831

3. Documentation Sourcess
Powers, W. "Multiple Station Radar Solution, Part |, Mathod of

Calculation.” Tech Note 3285-581. Point Mugu: Pacific
Missile Tast Center. Sept. 1964,

4. Orligin Pacific Missile Tast Center
Code 3400
Point Mugu, CA 83042
1964

5. Comments

Radar measurements are inversely proportional to estimates of
their standard deviations. These weighta are fixed and cannot change
as the distance between target and site change; thus, separate passas
are necessary during a tracking operation. The routine is fairiy
robust to individual site errors as sach observation is edited if it
exceeds a specified residuai,; however, to work well generaily, indi-
vidual radar data must be extensively pre-edited for on track (beacon)
times, and bias errors should be correctaed through calibration. The
procedure produces a nine-state vector and its covariance matrix for
each time point and, additionally can estimate individual radar
biases.




4.

6.

PBS PROGRAM, DERIVE

Name or Acronym

Post Batch System (PBS) Program, DERIVE

Contact Mr. Wen-Mi Liou
Paciflic Missile Tast Center
) Code 3400

Point Mugu, CA 93042
(805) 989-79831
DSN: 351-7831

Documentation Sources

Morris, G. "Polymnomial Smoothing and Diffarentiation by Least
Squares.” Working Note. Point Mugu: Pacific Missile Test Center,
Code 3442, 1965.
Origin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
1966
Comments
This filter works well if data are well-approximated by a given

quadratic expression. The trchnique may give poor estimation of end
points where midpoint computations are not applied. The improved rate
estimation is being examined through the PBS program, Optimum Finite
Impuise Response Linear Phase Digital Filter (OPFILT).




PBS FILTER

1. Name or Acronym
Post Batch System (PBS) Filter

2. Contact Mr. Wen-Mi| Liou
Pacitic Missile Tast Center
Code 3400

Point Mugu, CA 83042
(805) 989-7931
OSN: 361-7931

3. Documentation Sourcess

Welch, M. Working Note 3442-22-79. Point Mugu: Pacific Misaile
Test Center, Code 3442, 1979.

4. Origin Pacific Missile Teat Center
Code 3400
Point Mugu, CA 93042
1966

6. Comments

This filter technique is superior to any time domain method for
post-operations analysis; however, the results are poor when signal
frequancies cannot be separated from noise frequencies or when the
signal lies partly In transition zones. The usual end point problems
occur because of the requiraments for midpoint estimation. One solu-
tion to the end point problam is to collapse or expand the data at the
ends, although the small! filter size would result in a wide tranaition
zone. Response function improvement |is possibie through a computer-
alded design of fllter weights. (See Post Batch System program Opti-
mum Finite Impulse Response Linear Phase Digital Filter (OPFILT).)
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PBS PROGRAM, OPFILT

1. Name or Acronym

Post Batch System (PBS) Program, Optimum Finite Impuise ﬁesponse
Linear Phase Digita! Filter (OPFILT)

2. Contact Mr. Wen-Mi Liou
Pacific Missile Teast Center
Code 3400

Point Mugu, CA 93042
(805) 9898-7931
DSN: 351-7931

3. Documentation Sources

a. Liou, Wen-Mi. "Optimum Finite Impulse Response (FIR) Linear
Phase Digital Filters: Theory and Analysis of the McClellan-
Parks Algorithm.” Tech Note 3442-02-82. Point Mugu: Pacific
Missile Test Center, May 1982.

b. McClellan, James A., Thomas W. Parks, and Lawrence R.
Rabiner. "A Computer Program for Designing Optimum FIR Lin-

esar Fllters." |EEE Trans. Audio Electroacoustics. AU-21.6
(1973) : 506-26.

4., Comments

This genaral purpose filter design algorithm is capabie of
designing a large class of optimum (in the minimax sense) finite
impulse | inear phase digital filters such as low pass and high pass,
as well as first and second differentiators. The algorithm can also
be used to design filters which approximate arbitrary frequency
specifications provided by the user. The user has control! over the
sizes of transition bands and ripples in both passband and stop band.
The sharpening technique equipped with the filtar design aigorithm
further reduces the sizes of smael| rippies in the designs of |ow-pass,
high-pass, and band pass filters of any complexity. At the same time,

this technique increases the sharpness of the frequency response in
the transition bands.
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1. Name or Acronym
Air-to-Air Gunnery Assessment System (ATAGAS) Kalman Filter
2. Contact Mr. Laeae Gardner
6521 Range Squadron/RCP
Edwards AFB, CA 83523-5000
(805) 277-2828
DSN: B27-~2628
3. Documentation Sources
Analytic Sciences Corporation. "Optimal Estimation for the Air-
to-Air Gunnery Assessment System, Final Program Review."” Reading:
Analytic Sciences Corporation, n.d.
4. Origin The Analytical Sciences Corporation
One Jacob Way
Reading, MA 01867
(617) 9844-68560
5. Comments
The Analytica! Sciences Corporation has a report which describes
their evaluation of the filter's effectiveness. It was concluded that
the filter's effectiveness was better but very costly computer time-
wisea,

ATAGAS KALMAN FILTER




MOT ION TRACKING KALMAN FILTER

1. Name or Acronym

Motion Tracking Kalman Filter

2. Contact Mr. Len Childers
8646 Test Group/ENAC
Hill AFB, UT 84056
(806) 777-8606
DSN: 458-8605

3. Documentation Sources

High Accuracy Multiplie Object Tracking System (HAMOTS) Computer
Software Maintenance Manua!, Dec. 1979.

4. Origin Messrs., Doug Troxler and Mick Chaplin
Ganarsl Dynamics
Electronics Division
San Diego, California

£F. Comments

The filter does not handla wild points from input data as wel! as
expected.




TEC TRACKER

t. Npma o: Acraonym

U.& Army TEXCOM Exper imentation Center (TEC) Tracker (formerly
Combat Developmants Exper imentation Center (CDEC) Kalman Filter)

2. Contact Dr. Joseph M. Weinstein Mg. Julie Lemen
Scientific Support Scientific Support
Laboratory Laboratory
P.0. Box 100 P.0. Box 898
Fort Ord, CA 93491 Jolon, CA 93928
(408) 384-2161 (408) 385-2880

3. Documentation Sources

a. Weinstein, Joseph M. “Position Location Logic.” TEC Scien-
tific Support Laboratory Document. Jolon: TEC Scientific
Support Laboratory, June 1888,

b. Weinstein, Josep: and others. “Kalman Filter User Manual."”
Revigsion 1. CDEC Scientlific Support Laboratory Document.
Jolon: CDEC Scientific Support Laboratory, July 1881,

4. Origin

Kaiman tracking software developed by Genera! Dynamics staff in
1971 was furnished to TEC for use with Range MNeasur ing System (RMS)
hardware. The TEC has since upgraded tracking procedures, logic, and
code, notably around 1978 and 1980 but especially since 1987.

6. Comments

Descr iption. The TEC Tracker provides three-dimensional position
and v.. locity of ground and air playars during instrumented field com-
bat simulations. This tracker is comprised of a Kalman filter and
several other real-time routines which together process ranges bestween
A and B units (RMS ranging and player units) as well as altimeter and
other input. Post-operation routines smooth and analyze tracking out-

put and apply alternative tracking algorithms to logged real-time input.

Per formance. The tracker meets TEC's main real-time need for
tracking as many as 100 players reasonably well with 10 meters hori-
zontal error. As upgraded, the tracker reinitializes quickly as
needed, does not require time-cliumped ranges to any given B-unit, and

prefiltars (with outlier reject.on) ranges between any given A,B pair
before using them in the Kalman filter.

Prospects. The Kalman computations are intensive and must rely
on predictive modeling of ground and air combat maneuver dynamics.
Recent study suggests that throughput and accuracy may gain from
replacing the Kaiman filter by 2 simpler routine which relies just on

good qual ity measured inputs, for example, a |inearized least squares
fit to the prefiltered ranges.
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4.

DRIFT TRACKING KALMAN FILTER

Name or Acronym

Drift Tracking Kalman Filter

Contact Mr. Len Childers
6645 Test Group/ENAC
Hill AFB, UT 84066
(801) 777-8606
DSN: 458-8606

Documentation Sources

High Accuracy Multiple Object Tracking System (HAMOTS) Computer

Software Maintenance Manual. Dec. 1978.
Origin General Dynamics

Electronics Division
San Diego, California
1879

Comments

This filter has not been used because score pod equipped vehicles

are not available at Utah Test and Training Range.




3.

EATS KALMAN FILTER

Name or Acronym

Extended Area Test System (EATS) Kalman Filter

Contact

Mes. L. Wilson

Pacific Missile Tast Center
Code 34562

Point Mugu, CA 93042

(805) 984-8784

DSN: 351-8784

Documentation Sources

The General

Dynamics, Electronics Division, System Controller

Design document for EATS.

4.

6.

parameter.

Any technical reference for Kalman filtering.

Origin

Commants

General Dynamics
Eiectronics Division
San Diego, California
1978 to 1980

The EATS design requirements called for real-time state vector
estimation with accuracy constraints. This six-state Kaiman design
provided the best alternative while satisfying design goals. Real-
time accuracies can be improved with finer tuning capability which is
currenttly available with tri-level (low-medium-high) dynamic tuning

most purposes.
currently under study.

This dynamic tuning parameter appears satisfactory for

Post-operations accuracy improvement techniques are
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TRIDENT KALMAN FILTER

1. Name or Acronym

Trident Missile Tracking Kalman Filter

2. Contact Mr. Donald Olson Mr. Eric Senor
Paciflic Missile Test Center Pacific Misgsile Test
Code 10561 Canter, Code 3442
Point Mugu, CA 93042-5000 Point Mugu, CA 93042-5000
(805) 989-8804 (806) 989-7931
DSN: 361-8804 DSN: 351-7931

3. Dogumentation Sources

a. Gelb, Arthur. Applied Optimai Estimation. Cambridge: MIT P,

1974.
b. Oison, Donald. "Filter and Smoother for Trident Missile
Tracking.” 7TP-84. Point Mugu: Pacific Missile Test Center,
June 1988.
4. Origin

Designed by Pacific Migsile Test Center parsonnel, the prelim-
inary covariance simulations of the Trident Kalman filter bagan in
1977. These simulations |led to the first operational version which
supported four missile tests in the Pacific during 1983-19884. In
1984, a major redesign effort resulted in a more reliabie and accurate
second version which has supported 13 operational tests thus far.

5. Comments

For range safety redundancy, the nine-state extended Kaiman
filter operates on two CDC Cyber 176 mainframes. Square-root filter-
ing was found to offer no advantage over standard covariance filtering
in this application, presumably because of the large, 60-bit word size.
Measurements consist of range sums and range rate sums from five
transmitting stations operating 20 mill iseconds apart. In addition,
pedestal angles at the receiving telemetry antenna are used. While
procass noise Is constant, the filter awitches to a lower value at

third stage burnout. Constants are also used for measurement noise
standard deviations and edit |imits.

Accurate initialization was found to be crucial to filter per-
formance throughout migssile flight. The initial state estimate is
computed in a tangent plane, rectangular coordinate system. Ranging
data from three stations are fiitered with a recursive, first-degree
polynomial filter, then used to solve for missile position and veloc-
ity. Because the z component of the ranging solution is inaccurate at
low elevations, z position and velocity are obtained from missile
telemetry. If telemetry is not available, the scheme defaults to a
combination of nominal date and the ranging solution.




4.

6.

and

QD - WSMR

Namae or Acronym

Quadratic Digital (QD) Filter

Contact Mr. John Falke
U.S. Army White Sands Missile Range
Attn: STEWS~NR-AR

White Sands Missile Range, NM 88002
(606) 678-34b68
DSN: 268-34568

Documentation Sources

McCool, W. A. "QD-A New Efficient Digital Filter." Analysis and
Computation Directorate interna! Memorandum 60. White Sands
Missiie Range: Analysis and Computation Directorate, August 1967.

Origin Mr. W. A, McCool
Acting Diraector
Analysis and Computation Directorate

White Sands Missile Range, NM 88002
August 1977

Comments

The quadratic digital filter's computing time is extremely small
invariant with point span. |t achieves amoothing effectiveness

almost identical to that of the comparable constrained least-squares
filter,




QD ~ EGLIN

1. Name or Acronym

Quadratic Digital (GD) Filter

2. Contact Mr. John E. Lindagren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
(804) 882-4267
DSN: 872-4267

3. Orlgin €glin AFB, Florida

4. Comments

Al though this filter is efficient, extremely fast, easy to use,
and does not require extensive data arrays, its instabilities caused
by unedited wild points limits its use.




QD - APO SAN FRANCISCO

1. Name or Acronym

Quadratic Digital (QD) Filter

2. Contact Mr. Sonny Padayhag
Kentron International, lIncorporated
Box 1207

APO San Francisco, CA 96b5b
(806) 238-7994, Ext. 8-2020
DSN: 254~2020

3. Documentation Sources

Real~time program (RTP) or real-time impuise filter (RTIF)
documentation.

4. Comments

This filter works well for speedy execution and extrapolation of
small periods of time such as 200 milliseconds. |t doas not perform
wall with exoatmospheric, ballistic trajectories and fong extrapola-
tions or propagations.




QD ~ YUMA

1. Name or Acronym

Quadratic Digital (QD) Filter

2. Contact Mr. Robert Mai
Yuma Proving Ground
Attn: STEYP-MT-TA
Yuma, AZ 85365
(602) 328-3296
DSN: 8989-3296

3. Ddcumentation Sources

a. McCool, W. A. "QD-A New Efficient Digital Fiiter.” Analysis
and Computation Directorate Internal Memorandum 60. White

Sands Missile Range: Analysis and Computation Directorate,
August 1967.

b. Mai, Robert W. “"The QD Filter in YPG's Real~-Time Laser
Digplay System.” STEYP-MAC Document. Yuma: Yuma Proving

Ground.
4. Origin Mr. Robert Mal

Yuma Proving Ground
Attn: STEYP-MAC
Yuma, AZ 853865-8102
1974

5. Comments

The quadratic digital filter does a much better job of estimating
velocity than conventional ieast squares moving arc routines. Compu-
tation time Is very small and does not depend on fiiter memory length.
This easy-to-ugse filter is very simple to put into computer code.
Filter response to impulse changes in acceleration is slow, that is,
approximately two to three times the memory length selected, so filter
estimates are useful primarily during segments where acceleration is
minimal. The filter memory length, which determines the constant gain
coefficients for position, velocity, and acceleration, can be adjusted
to accommodate higher accelerations but then the noise on the filter
estimates increases. Perhaps the major drawback of the QD filter is
the difficulty in determining accuracy of velocity estimates which is
dependent upon the complex interaction of sampling rate, target,
dynamics, filter memory iength, and noise on the measurements.
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QUADRATIC POLYNOMIAL FILTER

1. Name or Acronym

Quadratic Polynomial Filter

2. Contact Or. Floyd Hall
Naval Weapons Center
Code 62303

China Lake, CA 935656
(619) 939-6346
DSN: 437-6346

3. Documentation Sources

Gossett, Eric. "On-Axis Tracking System."

4., Commants

This filter works quite well for real-time trajectory data from
radar or laser data. The quadratic polynomial filter is an w-8-Y
filter based on two parameters. This filter is a little different
from what is expressed in Gossett's paper although it gives the same
resulta. The filter is not considered adequate for close-in targets
with tracking radar problems. Naval Weapons Center is currently
developing a filter that rectifies this inadequacy. The new filter
will have noniinear constraints.
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QD - NATC

1. Name or Acronym

Quadratic Digital (QD) Filter

2. Contact Mr. John Shields
Naval Alir Taeast Center
Computer Sciences Division (CS358)
Patuxent River, MD 20670-5304
(301) 863-3396
DSN: 326~3396

3. Documentation Sources

McCool, W. A. "QD-A New Efficient Digital Filter.” Apalysis and
Computation Directorate internal Memorandum 60. White Sands
Missile Range: Analysis and Computation Directorate, Aug. 1967.

4. Origin Mr. Frederick K. H. Hoeck
Computer Services Directorate
Patuxent River, MD 20670-5304
1979

5. Comments

This filter is adequate for the application; however, as with atl
filters, there is some setting time., Comparisons made to other data
sources were favorable. The filter requires little mgmory because
samples need not be stored. Constants need to be calculated based on
sample rate and number of points in the point span. It handies data
errors and recovers with few problems.




1.

AVRAGE

Name or Acronym

AVRAGE
2. Contact Mr. Ly V. Tran
6621 Range Squadron/RCP
Edwards AFB, CA 93623~5000
(806) 277-0871
DSN: 527-0871
3. Documentatlion Sources
Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Average Data Smoothing Subroutine.” Uniform Flight Test
Analysis System (UFTAS) Reference Manual. Chapter 8. Version
3.1. Edwards Air Force Base: Air Force Flight Test Center,
October 1990.
4. Origin Syetems Development Corporation
June 1972
6. Commants
The AVRAGE gives an average of up to 61 consecutive input data
values.
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buz2

1. Name or Acronym

Differentiation by Least Squares Subroutine (DUZ2)

2. Contact Mr. Ly V. Tran Mr. Mike Tietz
6621 Range Squadron/RCP Computer Sciences Corporation
Edwards AFB, CA 935283 P.0. Box 446
(805) 277-0871 Edwards AFB, CA 93523
DSN: 527-0871 (8056) 277-3800

DSN: 527-3800

3. Dogumentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Differentiation by Lesst Squaraes Subroutine (DUZ2)." Uniform
Flight Test Analysis Systam (UFTAS) Reference Manual. Chapter 20.

Version 3.1. Edwards Air Force Base: Air Force Flight Test Center,
October 1990.

4. Comments

The DUZ22 calculates smooth values as well as first and second
der ivatives by fitting a |least squares parabola. This subroutine
works well with low-angular acceleration but not with high-angular
accelerations. It is limited in how much data can be processed in one

call to the subroutine by the array sizes, because an ‘excessive amount
of computer memory could be required.




SDIFFR

1. Name or Acronym

Differentiation Subroutine (SDIFFR)

2. Contact Mr. Ly V. Tran
6621 Range Squadron/RCP
Edwardo AFB, CA 83623-6000
(805) 277-0871
DSN: 527-0871

3. Documentation Sources

Computer Sciences Branch, 6621 Range Squadron, 6510 Test Wing.
"Oifferentiation Subroutine (SDIFFR)." Uniform Flight Test
Analysis System (UFTAS) Reference Manual. Chapter 20. Version

3.1. Edwards Air Force Base: Air Force Flight Test Center,
October 1990,

4. Origin Messrs. R. C. Schram and R. T. Scott
White Sands Missile Range
New Mexico
Juily 19872

B. Comments

Basically, the SDIFFR functions as a single-parameter, cycling
DIRSIT which c -eates parameter arrays containing up to 60 time points
of smooth values, first derivatives, and second derivatives as desired.
Thhe SDIFFR is slightly different from DIRSIT in that it ‘s called once
for each desired parameter, initializing (if requested), and process-
ing up to 60 points and then returns. Thus, SDIFFR cycles up to 60

points inside itself for 1 parameter instead of being called up to 60
times.

As a method of computation, the initiulization is accompl ished by
fitting a least squares parabola and using a maximum ! ikel ihood proce-
dure to the first user-designated interval input data points. The
DIRS!IT process then takaes over for subsequent points. Because this
process is not self-starting, at least the first interval of points
should be allowed at the beginning for start-up. Once the DIRSIT pro-
cess begins, a second-order Taylor series expansion is adjusted ac-
cording to certain statistical criteria unti! the number of points

above the curve differs from the number beliow the curve by a user-
degsignated amount.

The first and second derivatives of the resulting second-order
curve are taken as the derivatives at the first of the interval. The
interval is then moved by one point, and the process continued until
the end of data is reached. At the end of the data, the interval size
is collapsed unti! only one point remains. The derivatives for the
last point are set squal to the daearivative of the next to the last
point. Because of this interval coilapsing, up to INPTS-1 points
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should be disregarded at the end of the data, where INPTS is the
number of points in the interval.

A wild point has only minimal effect on the DIRSIT process since
the only test made is whether it is above or below the curve. How far
above or below Is of little importance.

The conditions of validity are |isted below.

a. Care should be taken to avoid processing large discontinu-
fties; however, time increments nead not necessarily be constant.

b. The appropriate slope parameter and tolerance criteria
parameter must be provided to ensure valid results.

c. The number of input data points per parameter is |imited to
60 for each call. More points can be accommodated through multiple
calls to SDIFFR.

d. The SDIFFR is not a salf-starting routine. The initial~-
ization process requires a number of points to get things moving, so
the first severa! time points of derived values will be poor approxi-
mations.

e. The SDIFFR uses a collapsing technique to process the last
Iinterval of time points, but the results for these last several points
(INPTS-1) become increasingly degraded as SDIFFR is forced to work on
smal ler and smaller intervais.

f. The calliing program for SDIFFR uses an over lapping technique
to avoid including the invalid results at the beginning and end of
each array processed. A check should be made to ensure that the
overlap is adequate so that no major discontinuities appear at each
overlap point.

g. The calling program for SDIFFR uses a default interval size
which the user may change.




DIRSIT

1. Name or Acronym

Der ivative Informz>ion Recovery by a Selective integration
Technique (DIRSIT)

2. Contact Mr. Len Childers
65645 Test Group/ENAC
Bidg 1284

Hill AFB, UT £4056
(801) 777-8605
OSN: 468-8606

3. Documentation Sources

Utah Test and Training Range postflight data reduction documents.

4. Origin Mr. Len Childers
6545 Test Group/ENAC
Hill AFB, UT 84056-5000
(Adaptation of SDIFFR)
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UFTAS FILTER OVERLAY

1. Name_or Acronym

Uniform Flight Test Analysis System (UFTAS) Digital Filtering
Primary Overlay (FILTER)

2. Contact Dr. William G. Kitto Mr. Ly V. Tran
6521 Range Squadron/RCP 6621 Range Squadron/RCP
Edwards AFB, CA 93523 Edwards AFB, CA 93523-5000
(805) 277-3198 (806) 277-0871
DSN: 527-3198 DSN: 527-0871

3. Dgecumentation Sources

Computer Sciaences Branch, 6521 Range Squadron, 6510 Test Wing.
"UFTAS Digital Filtering Primary Overlay (FILTER)." Uniform

Fiight Test Anaiysis System (UFTAS) Reference Manual. Version
3.1. Edwards Air Force Base: Air Force Flight Test Center,
Oct. 1990,
4. Origin Dr. Witliam G. Kitto
1982

6. Comments

Currentiy, this filter is used heavily in the Frequency Response
Analysis (FRA) program. (Butterworth or User Supplied Weight Type
filter.)




BET

1. Name or Acronym

Best Estimate of Trajectory (BET)

2. Contact Mr. Robert Mai
Yuma Proving Ground
Attn: STEYP-MT-TA
Yuma, AZ 853656
(602) 328-32956
DSN: 899-3296

3. Documentation Sources

Liebelt, Paul B. An_ Introduction to Optimal Estimation.
Reading: Addison-Wesley, 1967.

4. Origin Mr. Robert Mai
Yuma Proving Ground
Attn: STEYP-MAC
Yuma, AZ 85366
19876

6. Comments

The Kaiman filter and Rauch~Tung-Striebel smoother take range,
range rate, azimuth, elevation, and apparent angle measurements from
up to 20 instruments and based upon a priori statistical information
about the trajectory, the measurements, and the initial conditions,
optimal estimates of the state vector are computed at each of the
measurement times. The state vector size is expandable from the basic
three components (x,y,2z coordinate system) to include up to five
der ivatives: measuremant source, pitch, yaw, pitch rate, and yaw rate.
Estimates of the state vector are optimal in the sense that the uncer-
tainty in each component of the state vector is minimized., This BET
can provide excellient results; howsever, the results are only as good
as the a priori statistical information. For applications where
knowledge of measurement uncertainty and dynamics in the trajectory

are well known or easily estimated, then the BET will undoubtedly
provide very close to the absolute best estimate. If the a_priori
statistics distort the truth, then the BET trajectory wil} be dis-
tor ted. In actual practice at Yuma Proving Ground, a BET trajectory
is derived in an interactive fashion. Initial runs are made with a

priori statistics implying more uncertainty than is actually present.
Then analysis of the measurement residuals and estimated dynamics are
used to refine the a _priori estimates. A new BET trajectory is then
generated and analysis of residuals and dynamics und: rtaken. This

process continues until the a priori statistics match the derived
estimates.

There are significant disadvantages to using the BET. Al thcugh
the program setup is very complex and tedious, obtaining a_priori
statistical information is often perceived as an art rather than a
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science. Errors in setup or in judgment almost always have a detri-

mental effect on the final estimates. in addition,

computation time

Ils very long, and the required iterative process can cause data turn-

around time to expand to longer than two weeks. So
very best, you must be willing to pay for I[tl

it you want the




RTUF

1. Name or Acronym

Real-Time Update Filter (RTUF)

2. Contact Mr. Andy Roy or Joe Warren Mr. J. V. Copp
Computer Sciences Raytheon Computer Sciences
Unit 2310 Raytheon
Eastern Space and Missile Eastern Space and
Center Missile Center
Patrick AFB, FL 329256 Patrick AFB, FL 32925
(407) 494-7133 (407) 853-7783
DSN: 854-7133
3. Origin Ms. Marie Colmar and Mr. Royal Pepple
RCA/MTP

Eastern Space and Missile Center
Patrick AFB, FL 32925
1971

4. Conmments

This filter is used mainly for the Missile Precision Instruction
Radar (MIPIR) class of radars. These radars are large-scale. The
RTUF is recursive, adaptive, exponentially weighted, and has fading
memory. By adaptive, it is meant that the filter can adjust as the
data gets seemingly noisier or less noisy. As the data becomes
noisier, the bandwidth is decreased, and as the data becomes less
noisy the bandwidth increases. In an adaptive filter, the coeffi-
cients of the terms involiving the difference between the predicted
value and the given raw value vary with time. In an exponentially
weighted filter such as this one, the coefficients have the time
variable as part of their exponents. In a fading-memory filter, the
memory fades with time. In this case, the memory fades exponentially.
In other words, newer data are weighted considerably more than older
data when predicting a new value.

The RTUF is a simple filter because it does not work with partial
derivatives or matrices. For this reason, Mr. Joe Warren says that
this filter was good in the 18960s when computers were slower and had
less memory. Mr. Warren predicts that no more RTUFs will be used
within two to three years and suggests using a Kalman-type filter in
lieu of this one.
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RFILTR

{. Name or Acranym

Rea!-Time Software System (RFILTR)

2. Contact Mr. Robert Crolene
Pacific Misgsile Test Center (formerly Pacific
Missile Range (PMR))
Code 1074
Point Mugu, CA 93042
(805) 982-8073
DSN: 351-8073

3. Documentation Sources

Cragun, G. C. "Real-Time Data Filtering.” PMR Tech Note
3285-576. Point Mugu: Pacific Missile Renge.
4. Origin NAMTC
Code 3400
18656

5. Comments

The RFILTR is a simple, exponential adaptive filter. The advan-
tage of this fliter is its simplicity. Upgrading can be achieved with
some adaptive smoothing controls by basing it on residuais or by
employing a Kailman algorithm. However, this step wouid complicate
filter operations and may not be practical for the software system of
the Univac 1230 for which this filter was originally designed. Up-

grading the filter for use in a mainframe computer should present no
problems.

Major problems with this filter are smoothing control and ini-
tialization variance control. Correcting one control usually makes
the other one worse. Initialization errors are especially large for
velocities and accelerations.




RCHECK

1. Name or Acronym

Rate Check Data Smoothing Subre ine (RCHECK)

2. Contact Mr. Ly V. Tran
6621 Range Squadron/RCP
Edwards AFB, CA 93523-6000
(80B) 277-0871
DSN: 527-0871

3. Documentation Sourcas

Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Rate Check Data Smoothing Subroutine (RCHECK)." Uniform Flight
Test Analysis System (UFTAS) Reference Manual. Chapter 8. Ver-

sion 3.1. Edwards Air Force Base: Air Force Flight Test Center,
October 1890,

4. Origin Mr. G. A. Lott
Lockheed~-Georgia Company
June 1972

The RCHECK was successfully used by the Lockheed-Georgia Company
in processing C-bA test data and was later modified to fit into UFTAS.

6. Comments

This subroutine searches for wild points by comparing DLY, the
absolute diffarence betwaen the current and previous point values,
with TOL, a linear function of the average of successive differences
within a given interval. The TOL represents the tolerance |imit for
the interval’'s data variations. The multiplicative and additive
factors of this linear function are user-supplied. The TOL is
increased or decreased from point to point according as DLY is greater
than or less than TOL. Iin addition, if DLY is greater than or equal
to TOL, the current data value is replaced by the last valid one.
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EYBALL

1. Name or Acronym

Eyball Dats Smoothing Subroutine (EYBALL)

2. Contact Mr. Ly V. Tran

65621 Range Squadron/RCP
Edwards AFB CA 93523-5000
(806) 277-0871

DSN: 6527-0871

3. Documentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Eybal | Data Smoothing Subroutine (EYBALL)." Uniform Flight Test
Analysis System (UFTAS) Refergnce Manual. Version 3.1. Edwards
Air Force Base: Air force Flight Test Center, Octcber 1990.

4. Origin Mr. C. F. Carpenter Capt J. H. Pierson, USAF
General Dynamics Edwards AFB, CA
July 1972

6. Comments

The user specifies a valuaea DELTA that represents the difference
between the maximum and minimum values for a given parameter. The

value of DELTA is based on the user’'s prior knowiedge of what values
the parameter should take.

I|f the actual range of values within the interval is less than or
equal to DELTA, then the output parameter value is the average of the

values in the interval. |f the range is greater than DELTA, then the
welghted average of the most common values in the interval, with the

more central values given the greater weight, is the output parameter
value.

The advantages of the EYBALL subroutine are

a. the EYBALL closely approximates intuitive treatment of data,

b. the user has controi by using prior knowiedge of the
parameter,

c. the wild points are discarded before determination of the
output parameter value, and

d. the excessive wild points are identified.
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ON-AXIS

1. Name or Acronym

'

On-Axis Radar Target Tracking System (ON-AXIS)

2. Contact Mr. John E. Lindegren
3200 SPTW/KRTAR
Egl!in AFB, FL 32542
(904) 882-4267
DSN: 872-4287

3. Documentation Sourcaes

"On-Axls: Philosophy/Technology/Development.” Advanced Research
Project Agency, Radar Microwave Link Tech Memo 211. Patrick AFB:
Advanced Research Project Agency, Radar Microwave Link, 15 Dec

1970.
4. Origin Advanced Research Project Agency, Radar
Microwave Link
Patrick AFB, Florida
1969
Modified: Air Force Davetlopment Test Center
AFDTC/KR
Eglin AFB, Florida
1973

5. Comments

Strengths of this filter include self-calibration capability
through stelliar track; adaptive track gain with smooth, low-noise
track; and predetermined missile trajectory sliew at launch.

This filter's weaknesses consist of requiring a well-qualified
crew and careful maintenance and software control of the computer
system and data base. The On-Axis track accuracy (with pedestal posi-
tion pick-offs) offers no significant improvement over normal
AN/FPS-16 TSPl for aerodynamic maneuvering targets if standard post-

mission smoothing procedures (moving-arc-polynomial midpoint fits to
raw data) are used.
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DYNO43

1. Nameg or Acronym

DYNO43

2. Contact Mr. Robert Fierro
U.S. Army White Sands Missile Range
Attn: STEWS~-NR-AM
White Sands Missile Range, NM 88002
(605) 678-2543
DSN: 258-2643

3. Documentation Soyrces

a. Comstock, D., M, Wright, and V. Tipton. “Handbook of Data
Reduction Methods."” Data Reduction Division Tech Rept. White
Sands Missile Range: Data Reduction Division, 13 Aug 1964.

b. Comstock D. Introduction to Least Squares. White Sands
Missile Range: Analysis and Computation Directorate, 1968.

4. Origin Classical Least Squares Smoothing
August 1970

5. Coaomments

The filter derives smooth data from observation using the least
squares moving arc method. The smoothed positions are differentiated
to obtain velocities which, in turn, are differentiated to obtain
accelerations.




GNFL

1. Name or Acronym

Gennery Filter (GNFL)

2. Contact Dr. Kenneth Lane
CSR 3200
P.0. Box 4127
Patrick AFB, FL 32925

3. Documentation Sources

a. Computer Program 285, GNFL

b. Gennery, Donald B. "An Improved Digital Filter.” Mathemati-
cal Services TM-63-8, Dec. 1963.
4. Origin Mr. Donald B. Gennery
1963

5. Comments

Thic filter is designed to give a frequency response with sharper
roll~-off and with increased attenuation at higher frequencies when
compared to standard least squares polynomial filters.




GNSM

1. Name or Acronym

Gennery Smoother (GNSM)

2. Coniact Or. Kenneth Lane
CSR 3200
P.O. Box 4127
Patrick AFB, FL 32925

3. Documentation Sources

a. Computer Program 586, GNSM

b. Gennery, Donald B. "Direct Digital Filters for General
Purpose Use.” RCA Document. Patrick AFB: RCA/MTP, Jan.
1966.
4. Origin Mr. Donald B. Gennery
1966

5. Comments

Designed as an improvement of the GNFL filter with sharper rotl-
off, this filter has the additionual feature of being able to bridge
discontinuities in the derivatives of the input data.
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6.

FIRFILT

Name or Acronym

Finite impulse Response Filter (FIRFILT)

Contact Mr. Jerry Biedscheid
Sandia National Laboratories
Division 75822
P.0. Box 5800
Albuquerque, NM 87185
(60B) 844-4048
DSN: 244-4048

Documentation Sources

McClel lan, James A., Thomas W. Parks, and Lawrence R. Rabiner.

"A Computer Program for Designing Optimum FIR Linear Phase
Digital Filtaers.” 1EEE Trans. Audio Electroacoust. AU-21.6
(1973): 506-26.

origin Mr. D. J. Miller
Sandia National Laboratories
Division 1414
P.0. Box 5800
Albuquerque, NM 87185
1980

Comments

This filter gives good results in low dynamic situations, but the

filter is difficult to controi.
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RECFLT

Name or Agggg!g

RECFLT

Contact

Mr. W. D. Swartz

Sandia listiona! Laboratories
Diyision 7624

P.0. Box 5@00

Albuquarque. NM 871856

{B05) 844-2237

Documentation Sources

Stearns,
1975.

Origin

Comments

S. D. Rochelle Park: Hayden,

Mr. D. J. Miller

Sandia National Laboratories
Division 7524

P.O. Box 6800

Albuquerque, NM 87185

1980

This filter provides excellent results, particulgrly with large
data sets using the phase shift removal option.




F HLMAX

1. Name or Acronym

F 1 LIMAX

2. Contact Mr. D. O. Smal lwood
Sandia National Laboratories
Division 7544
P.O. Box 5800
Albuguerque, NM 871865
(606) 844-1074
DSN: 2441074

3. Documentation Sources

Smal lwood, D. 0. "An Improved Recursive Formula for Calculating
Shock Response Spectra.” Shock and Vibration Bulletin. 51.2
(1981): 211-17.

4. Origin Mr. D. O. Smal iwood
Sandia National Laboratories
Division 7544
1979

B. Comments

The older recursive modeis of this filter used for calcuilat-
ing the shock response spectra resulted in significant errors when the
natural frequency exceeded one-sixth of the sample rate. This new
filter avoids the problem.




MDPTH1

1. Name or Acronym

MDPTH1
2. Contact Mr. J. A. Ward
Eastern Space and Missile Center
RCA/MTP

Patrick AFB, FL 329836

3. Documentation Sources

a. RAID Computer Program

b. "Filtering Tracking Data for Range Safety Displays."”

Document. Patrick AFB: RCA/MTP, Jan. 1984,

RCA




1. Name or Acronym

BSMW

2. Contact Mr. J. A. Ward
Computer Sciences Raytheon
Eastern Space and Missile Center
Patrick AFB, FL 32925

3. Documentation Sources

a. RAID Computer Program

b. "Fiitering Tracking Data for Range Safety Displays.” RCA
Pocument. Patrick AFB: RCA/MTP, January 1984,

4. Comments

The BSMW is a quadratic filter that is recursive but not adap-
tive. (A nonadaptive filter is a filter with a fixed bandwidth. The
coefficients of tha terms invoiving the difference between the pre-
dicted value and the given raw value are constant; they do not vary
with the perceived noise content of the data.)




1. Name or Acronym
SMwW
2. Contact Mr. J. A. Ward

Computer Sciences Raytheon
Eastern Space and Missile Center
Patrick AFB, FL 32925

3. Documentation Sources

a. RAID Computer Program

b. "Filtering Tracking Data for Range Safety Displays.” RCA
Document. Patrick AFB: RCA/MTP, January 1984,

4. Comments

The SMW is a linear filter that s recursive but not adaptive.
(A nonadaptive filter is a filter vith a fixed bandwidth. The coeffi-
cients of the terms involving the difference betwren the predicted

value and the given raw value are constant; they do not vary with the
perceived noise content of the data.)
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FREQUENCY RESPONSE ANALYSIS

1. Name or Acronym

Frequency Response Analysis (FRA)

2. Contact Mr. Barry Mishier
6521 Range Squadron/RCP
Edwards, CA 93523-5000
(805) 277-6040
DSN: 527-6040

3. Documentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test Wing.
"Frequency Response Analysis (FRA) Overlay.” Uniform Flight Test
Analysis System (UFTAS) Reference Manuai. Version 3.1. Edwards
Air Force Base: Air Force Flight Test Center, Oct. 1990.

4, Origin Mr. Tom Twisdale Dr. William G. Kitto
6510 Test Wing/DOEF 6521 Range Squadron/RCP
Edwards AFB, CA 93523-5000 Edwards AFB, CA 93523-5000
(805) 277-1248 (805) 277-3198
DSN: 527-1248 DSN: £27-3198

5. Comments

The Frequency Response Analysis program transfers the dynamic
time domain data into the frequency domain to do the frequency
response analysis specified by the user. Power spectral densities,
transfer functions, and coherence functions can be calculated in the
frequency domain. The dynamic time domain data are contained on either
a B-file or a C-file. After the desired analysis is complete, FRA can
put the frequency domain results back into the time domain.

The FRA program is not a filter. This program is meant to aid
the user in determining what filter to use and how to use it. For
instance, the FRA can aid in determining what cutoff frequencies
should be in the frequency spectrum or if the filter should be band-
timited or nonbandlimited. At the present time, the program cannot
accept more than 1024 time points. It uses the first 1024 time points
received and discards the rest of the points.
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