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1. INTRODUCTION

There is a current need for a robust multivariable flight control design technique
which gives good performance under changing environment, disturbances, and uncertainty
in modeling. Also, it is very useful to know the maximum possible performance under
worst case conditions. Design techniques based on Hc methods are ideally suited for
yielding good performance of the aircraft even under worst case conditions. Thus, at the
Naval Air Development Center, efforts are underway to demonstrate the feasibility and
advantages of flight control design techniques based on finite horizon H, techniques.

The H,, optimal control problem has received considerable attention recently and it
is well-known that H,, suboptimal controllers can be synthesized via the solution of two
algebraic Riccati equations under certain restrictive assumptions[l]. These assumptions
can be removed using various transformations[2], and thus controller synthesis can be
accomplished in the general case in an indirect manner. Recently the techniques have
been extended to time-varying systems[3] under similar restrictive assumptions. One of
the contributions of the present report is the derivation of the results in a general case in
the time-varying setting. The synthesis of the controller is accomplished for a general error
criterion in the finite horizon case and the implementation of the equations on a digital
computer is easy. The synthesis can be accomplished by means of two dynamic Riccati
equations, one related to the controller part and the other to the observer part. In the
time-invariant case, the solutions of these equations usually tend to constant matrices.

A lot of current research has also been directed towards the problem of estimating
the infimal H, norm of a given system. There are a few iterative techniques in the time-
invariant case. There are virtually no techniques in the time-varying case and another
contribution of this report is an efficient technique for the estimation of the infimal H,
norm in a very general setting. The technique consists of considering the inherent minimax
problem and treating the adjoint variables associated with the maximization problem as
state variables for the minimization problem. Once this is accomplished, the techniques of
[4-9] can be applied to get the infimal norm.

We treat the problem of existence and computation of the minimal H" norm initially.
Then the problem of synthesizing the suboptimal H, controllers will be taken up. In the
derivation of the output feedback controller, the full state feedback expressions are useful
in the definition of the gain of the controller part and duality plays an important role in
the assignment of the gain of the observer.

In all control problems it is very useful to know the maximum possible performance
under worst case conditions. The theory of Sections 2-6 is useful in obtaining a quantitative
idea of achievable performance. Since suboptimal design is more practical, this topic will
be treated in Sections 7-10. Also the command following problem can be suitably recast
to fit the problem formulation of Section 7.

In the time-invariant case, the solutions of the dynamic Riccati equations involved
usually tend towards constant matrices, if the final time is large enough. This is very

1
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valuable in the case of flight control design. Research is also being done to successfully

deal with parameter variations under the present setting. In our reserach we are mainly
interested in the robust performance aspects of the aircraft under variations of the system
model, as opposed to robust stability considerations.

2. EXISTENCE OF OPTIMAL INPUTS
In this section we obtain results for the existence of optimal exogenous and control

inputs for the finite horizon Ho, problem. Consider the system given by

i = A(t)x + Bi(t)u + B 2 (t)v. x(O) = 0. ,

z = C(t)x + D(t)u + E(t)v, (2.2)

where x and z are the state vector and the error vector respectively. The matrices
A(t), B1 (t), B 2 (t), C(t), D(t), and E(t) will be assumed to be continuous on [0, TI, where

T is the final time. In additica u,v E L2 (0, T).
The problem is to show the existence of u and v for which

To v*/, dt
inf sup f (2.3)
to u f T z*l dt

is achieved. In (2.3) R(t) and W(i) are continuous positive definite matrices on [0, T].

We now consider the maximization part in (2.3). We will show that given any v,

there exists a u which minimizes foT *Wz dr. By simple changes in variables, the above
minimization problem can be converted to a problem of the form considered in Example
2, Section 3.3 of [10]. From the results of [10], there exists a unique u which minimizes
fT z*Wz dt.

We can write the functional in (2.3) as

J(u, V) =foT v*(t)R(t)v(t) dt (2.4)
fo. x.W, + x*lV 2 u + low u + *Vv + l v + 01V6 0}

We will use the adjoint variables associated with the maximization part of (2.3) as state
variables for the minimization part of (2.3).

Let
A = inf sup J(u, v). (2.5)

v60 U

Since we established the existence of a maximizing u for any given v 6 0, it only remains
to estiblish the existence of a minimizing v to guarantee the existence of A.

2
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Let 0 be the adjoint variable associated with the maximization problem. For any
v 5 0, we need to select u to minimize

JoT{ r*'VI.X + X*VV 2u + 1u*IV3u + x'IV4v + 1v*1A'5v + ul'1 6v} dt (2.6)

From the maximum principle[10], which in this case is also a sufficient condition for opti-
mality because of the uniqueness of the optimal u, the Hamiltonian is given by

1 .1 .1 .
H = { + x*Wti + 1u*T U + X*WIv + 1 *vR V + u*11v+

2 2 2
0*{A(t)x + Bj(t)u + B 2(t)r}. (2.7)

The adjoint variable 0 satisfies

dO- = 11'x + ' u + I 4' - A*O (2.8)

x(O) = 0, O(T) = 0. (2.9)

Assuming that IV3 is invertible for all t E [0, T], the optimal controller is given by

= 1V-'(B*0 - IV*x - I'z,). (2.10)

Let
A = A - BI1- 3 2iT,

BiI -'IB *

S 3

= v - U 11,l -1 2 , (2.11)

GI = B 2 - BI IV - 1TV6

G 2 = V 4 - IY 2 1'V 3 1176.

Thus we have

(x) (A b*) ( ) G (2.12)
A o G

with

x(O) = 0, O(T) = 0. (2.13)

3
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Let

(2.14)

M=(~~*)~(2.15)(0 -A*

N=(G) (2.16)N= G2'

U, = I4-'(-T 2 * B;) (2.17)

U,, = -W 3
- 1 W 6 , (2.18)

an(l
L =(IT 0). (2.19)

We define the matrices Q1, Q2, and Q3 by

Q, = UIV1 U, + U*U +- UWU* + U*WL+ UZ, (2.20)

Q2 = UI' 2U, Uzli.'v + ULI4 + U*1V 6. (2.21)

t'=, 3 w" - 2U, , W 6 . (2.22)

The system give:, by (2.12) can be written as

= 4(t)( + (t), (2.2j)

with
x(O) = 0, O(T) = 0, (2.24)

and v needs to be selected to minimize the cost

fT !v*(t)R(t)v(t)dt(22

fJ{ *(t)QI(t)C(t) + (*Q2T, + V*Q3z} dt

We now investigate the conditions under which a minimizing v exists. Note that if

v = 0, the denominator of (2.25) is zero and that the minimum value of (2.25) over v 7 0
is A.

THEOREM 2.1. Consider the system given by (2.23) and (2.24). Assume that there exists

a? E L 2 (0, T) for which 0 < fo { W Q (*Q 2 V + ,*Qv} dt <cc. Let

Tf i t,*R v d t
A = inf . (2.26)

,,Vo ff { 2,*Q, + (Q2v + iv*Q3v} dt

4
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Also assume that R(t) - AQ3 (t) > a > 0 for all t E [0,T] and (Q Q2 is positive(Q2 0 )o
semidefinite. Then there exists vo C L 2(0, T) which minimizes (2.25). Also, the niinimmn
value of (2.25) is strictly positive.

Proof. Since (2.25) is invariant under scaling of v, it suffices to consider only those 1-

for which f0 T{ *Ql + 4*Q2v + t'*Q 3v} dt = 1. Let {z'} be a sequence in L 2(0. T) suchthat li,c T 1t,*R,. v, = A with T

tdt 2 A with f { (Qci,, + *Q2 v, + V,*Q 3 ,dt = 1 for each i.
Here (i is the response of

= M(t)(, + N(t),,, (2.27)

with
X,(O) = 0. 0,(T) = 0. (2.28)

Since {c,} is bounded in L 2 (0,T), a subsequence. still denoted by {Z,} converges
weakly to some v0 C L 2 (0,T). Also we can select the subsequence such that {(,(O)}.
{f? t, Q3 v.dt } {f 0 Tv,,, dt} are convergent. Let ,(0) - . We have

t
(i(t) = (0) + 1(t., T)N(r)rj(7) dr, (2.29)

where 4,(t, 7) is the transition matrix of (2.27). Let ( 0 (t) satisfy

to - 1Uk (,),o + N(t ), C O(a) ,. (2.30)

It is clear that by the weak convergence of {v,}, j(t) converges pointwise to '0 (t). From
(2.29), it follows that for sufficiently large i. the responses (i(t) are uniformly bounded.
By the Lebesgiie dominated convergence theorem, we conclude that

T( T
do t)QIt)((t)dt , fo (,(t)Q,(t) o(t)dt. (2.31)

Also we have

iQ i dt d - ( - o)*Q2 r, dt + f o Q, i - vo) dt. (2.32)

It can be easily shown that the right side of (2.32) goes to zero as i 0C. Thus

hlr Q21', df j (,0Q 2r0 dt. (2.33)
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Note that
+Ql 1 C¢ 2  + -v'Q 3 ,,} dt = 1Vi, (2.34)00 20 '1

jTT 1 * QT VT (
f (oQlo+(oQ2o+ V Q3vojdt=1-lim -tiQ3 t'i dt+ -t'oQ 3 to dt. (2.33)

We already noted that limi- f T VK . dt exists. As a consequence of weak convergence

Tv0Q 3to dt <rnl j v*Q 3vi dt. (2.36)

We claim that the right side of (2.35) is strictly positive. Otherwise by the positive

semidefiniteness of (1 Q2) and by (2.34), (2.35) and (2.36), it follows that ro = 0 and( Q* 0
lioi, f T ]

i 2 7vQ 3 t', dt = 1. From the assumption that R - AQ3 > a > 0, we have

1 1 l. o
-viRci > A iQ3 1,'i + -v ,. (2.37)

-- 2

Integrating L r', ;ides from 0 to T and letting i go to cx, we get A > A + 3, where 3 > 0.
This contradiction shows tAt

f*' 1 1

,j (Q 0 + C+Q2vO + tvO*Q 3v0} dt > 0. (2.3S)

We now show that

,T R,'o dt

S <. 2. 39)
oI Ql(0 + o*Q2  O + VOQ3ZO} dt

Since lim,. fT 1 ,, Riv dt = A, we only need to show that

T T o Rvo dtlira t,*/zti dt - 7' 2 dt > 0. (2.40)

2 fo 2'{ 1 (* IQ 1 ( ;Q21', '*Q1',} -t

Indeed the numerator of

fT I dfo Qjro dt
lim -t',Q1 z, dt - 0  (2.41)6 ,,*Q3,', t+ 7" 1'o Q3 1o (it
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, given by

nr nri (R - AQ3 ),', dt - -) - oQ3)zodl. (2.42)

Since R - AQ3 > 0, as a consequence of the weak convergence of {t',} to v, the above
quantity is nonnegative.

Also A needs to be greater than zero. Otherwise v0 = 0, which implies that the
corresponding unique optimal u = 0. This makes the response (0(t) = 0, and hence the
denominator of (2.25) is zero. contradicting (2.38). El

3. INFIMAL H., NORM
In the previous section, the minimax problem was converted into a minimization

problem. The resulting system was

=M()c + N(t), (3.1)

with
x(O) = 0, O(T) = 0. (3.2)

where 7, needs to be selected to minimize the cost

f 7'1 ,(t)R (t)r,(t)dt.3 3

Jo { "'(t)Q(t) + (O(t) + Q(t)Q2(tW(t) + 1'*(t )Q3(t)(t)} dt

We now state the conditions that are satisfied by an optimal r(t).

TEoHEm 3.1. Consider the system given by (3.1)-(3.3). Assume that R-AQ, is invertible
for allt C [0. T]. If r0 (t) minimizes (3.3). then there exists a nonzero p(t) (p*(t) q*(t) )*
s!-ch that

=- .1)*p- AQI - AQ, (3.4)
dt

where p(t ) and q(t ) are components of the adjoint vector corres)onding to x(t) and 0(t)
respectively, such that

x(O) = 0, O(T)0, (3.5

p(T) = 0, q(0) = 0,

where

A = if T (3.6)
, , fo { Q Il + C*Q2,' + ,"Q3 } d

r,(t) = (? - AQ:)-'{AQ' + \-p}. (3.7)
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Proof. If u0 (t) minimizes (3.3), then it also minimizes

,]() 111
= L c*Rvdt-A f 1(*Q + Q + 1v*Q3 r}dt. (3.8)

The theorem now follows from the mainmum principle[10]. 0
Let

,Al = Al + AN(R - AQ3)-'Q>, (3.9)

= N(R - AQ3)-IN*, (3.10)
and

£ -AQ1 - A 2Q 2(R - AQ3 1) . (3.11)

The variables satisfy a two point boundary value problem given by

(Q L)(I ). (3.12)

wvith

x(0) =0, O(T) 0. (

p(T) = 0, q(0) 0. (3.13)

We now give a criterion for the estimation of A. Notice that A = mineo max, J(u., r)

and gives a Ineasurc of performance of the optimal controller under worst-case conditions
corresponding to to(t). In the Ho case, the evaluation of A would entail the 5-iteration.

TiEOREM 3.2. Let A be the smallest positive value for which the boundary value problem

given by (3.12) and (3.13) has a solution ((,p) with fo Ql(+(*Q2t'+ Q3?ldt > 0,

where 1" = (R - AQ 3)-I {AQ*> + N*p}. Then A is the minimum value of (3.12), ((, p) is an
optimal pair and v ( R- AQ3)-{AQ*( + N t p} is the worst exogenous input.

Proof. It is clear from Theorem 3.1 that if vo(t) minimizes (3.3), then it satisfies (3.12)

and (3.13), with A being the minimum value of (3.3). Now suppose (C.p) satisfies (3.12)
and (3.13) for some A. Let r = (R-AQ3 ) - {AQ,+N*p}. In the following equations ( , )
denotes an inner product.

We have

jT ((R - AQ 3 )rv)d T (AQd (10 dt + IT(N* p,r) dt. (3.14)

By equation (3.1), the second integral of (3.14) can be written as

I' TT(A '*P, (It = ( .A _v ) d(it = 1 (p. -Al )Sdt. (3 1 )
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An integration by parts and equations (3.4) and (3.5) yieldTo To
T(P, - M)dt = A (Qc,)dt + Aj(¢,Q 2 v)dt. (3.16)

Substitut-ng (3.16) in (3.14), we get

v*R dt = A + *Ql(+2(*Q2v + vQ 3v} dt. (3.17)

Thus, the cost associated with v is A. Hence, if ((, p) is a nontrivial solution of the bound-
ary value problem given by (3.12) and (3.13) for the smallest parameter A > 0 with

T1f{*Qcl + (*Q2 V+ ,*Q 3zv} dt > 0. then A is the optimal value and (v, p) is an optimal

pair. 0
Note that the boundary value problem (3.12)-(3.13) has a solution with a nonvanishing

denominator for (2.4) for at most a countably infinite values of A. Theorem 3.2 gives a
sufficitit condition for an exogenous input to be optimal. Equations (3.12)-(3.13) and
Theorem 3.2 completely characterize the worst exogenous input.

The criterion in Theorem 3.2 can be used to devise computational tools for the eval-
uation of the infimal H, norm in the finite horizon case. Our computational experience
shows that for time-invariant problems, the infinal H_ norm in the finite horizon case
approaches that in the infinite horizon case as the final time T becomes large.

4. COMPUTATION OF A

Making use of the transition matrix, the solution of (3.12) can be expressed as

0(t) = 2 1 (t, 0) 0 22 (t, 0) 0 2 3 (t, 0) 0 2 4 (t, 0) 0(0)4

p(t) 63 1(t, 0) 03 2 (t, 0) 6 3 3 (t, 0) 634 (t, 0) A (4.1)

q(t) ) \(P41(t, 0) 042 (t, 0) ( 4 3(t, 0) P44 (t, 0) q(O)

The boundary conditions given by (3.13) yield

03 2(T, 0) o33 (T, 0) 0(0)) -0. (4.2)

Let
_ (22 0223 (4.3)

(032 033)

In view of (4.2) and (3.12)-(3.13), we have det (0'(T, 0)) = 0 if and only if the solution (,. p)
of (3.12)-(3.13) is not identically zero. Thus, we need the least positive A which makes

9
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det( (T,0)) = 0 and the denominator of (2.4) positive. This can be obtained by doing a
search with A over an interval on which there is a change in the sign of the determinant.

We found the following algorithm to be numerically more stable since numbers of
lesser magnitude are involved in the computation of the transition matrices in (4.4). We
have

((T) (T )O(-,0)p(O) (4.4)

Let
61' 12 3 4

: 2T 22= (4.5)€-1 (T, T 1 45
2 61 2 633 634

\41 42 43 64

and

-~ V 1/ 2 "13 /4

2T 0) = V32 V33 34 . (4.6)

V41 V42 V43 4 4

Making use of x(0) = q(0) = O(T) = p(T) = 0, we have

/ll 14) / "12 V13
2 2 (T) = v22 23 (0(0))61 64 q(T) - V32 V33 p(O)

41 44 \ V42 V43

The above equation has a nontrivial solution if and only if

7 'l ' 14 V12 V/13

det 21 24 V22 V23 (4.8)
d 31 64 V32 133

( 41 44 V42 V43

Thus, we need the least positive A which makes the above determinant zero.

5. A DIFFERENTIAL EQUATION FOR A
Fot simplicity we derive a differential equation for A only in the case where W 4 =

WV5 = W 6 = 0. Note that this makes Q2 = Q3 = 0. Thus equations (3.12) and (3.13) can
be written as

= M( + NR-N*p (5.1)

= - M*p

10
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with
x(O) = 0,O(T) = 0,

p(T) = 0, q(O) = 0. (5.2)

Now assume that the final time is changed to T + AT where AT is an elemental
increment. The solution of the above boundary value problem can be extended to [0, T +
AT]. Suppose and P, are the elemental variations in ((, p) owing to the increment AT
in T. That is, (( + (1,p + Pl) is the new optimal pair. Also denote the variation in A by
A A. We have

6 = M i + NR-N*pl (5.3)
=i = -AQI(I - AI*pi - AAQi(

with
x1 (0) = 0,0 1(T + AT) = -O(T + AT), ()
p (T + AT) = -p(T + AT),q(O) = 0.

THEOREM 5.1. As a function of T, A satisfies

dA -A(*(T)Ql(T)((T) - 2(*(T)M*(T)p(T) - p*(T)N(T)R-(T)N*(T)p(T)

dT f T (*Qdt (5.5)

Proof: From (5.3),

fT+AT 
T0 AT

(*p, dt = - {A(*QT l + (*MA*pl + AAC*QiC} dt. (5.6)

By an integration by parts,

f T+AT 
IT+ATS(* j dt = (*pl (T + AT) - 1 T+ (A l*pl + p*R-1N*pl} dt. (5.7)

From (5.6) and (5.7),

IT+AT fT+AT
1 T AT(*Qil + AA *Q1 (} dt = -(,*pI(T + AT) + j p*NR-N*pl dt. (5.8)

From (5.1), the first integral on the left side of (5.8) can be written as

IT+AT fT+AT
A(*Q,(, dt = - (TA ± *p)*( dt. (5.9)

11
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Integrating the right side of (5.9) by parts, we get

T+AT T+AT

A(*Qi(I dt = -p*(,(T + AT) + p*NR-N*pdt. (5.10)

Substituting (5.10) in (5.8), we get

AA f (*Q( dt = p*(T + AT)(,(T + AT) - *(T + AT)pi(T + AT). (5.11)

We have

p*(i(T + AT) - ,*p,(T + AT) = p*(T)(i(T + AT) - (*(T)pl(T + AT) + o(AT)

= -q*(T)O(T + AT) + x*(T)p(T + AT) + o(AT)

= -q*(T)d(T)AT + x*(T)3(T)AT + o(AT)

= -p(T),(T)AT + (*(T),(T)AT + o(AT) (5.12)

From (5.11) and (5.12). we get (5.5). 0

6,. EXAMPLES

The above theory is useful in the comiputation of the infimal H, norm. This problem
is still being researched actively in the case of both static and dynamic controllers and there
are a variety of algorithms in the literature. In the examples given below, we compute the
minimum H, norm given by (2.4) as the final time T varies. The programs were written
using PC-MATLAB and the least positive A which satisfies equation (4.8) was found. The
infimal finite-time H, norm -y is 1/v/A.
EXAMPLE 1. W~e consider the tracking example from [11]. In this case

A= ( 0 0 0 0

0 0 2 1 0

0.0081 -0.045 -0.045
1' =(-0.045 0.25 0.25 , 0 ='1 1

-0.045 0.25 0.25 /

I4 = -0.05 , = 0.01, U" = 0, R=1.
-0.05

The results are given below.

12
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TABLE 1: Results of Example 1
T 1 __ =_I_/_ V_\
5 17.6023 0.2384

10 16.3113 0.2476
15 15.9802 0.2502
20 15.7944 0.2516
25 15.7442 0.2520
30 15.7224 0.2522

EXAMPLE 2. This example, taken from [12] has

A 1 0 -2 - Bi 0 0 B2 = 1

_- - 1 1 0 1(0)

with
1 0 1 0

-~, 1 0 1 0 0 1'
0 0 0 0)

and zero entries in V2 , 1V4 , TV5, and 1V6. Table 2 gives the numerical results.

TABLE 2: Results of Example 2
T A 1_ 1/_v_
5 3.8975 0.5065
10 0.9220 1.0414
15 0.7001 1.1951
20 0.6722 1.2197
25 0.6681 1.2234

EXAMPLE 3. The last example is also taken from [12]. In this case

0 1 4 -4 1) (00)

A= 0 1 - 1 0 B= 0 0 B2 I

1 -1 -1 0B 0
21l 2 1 -2 -2 2

13
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with
R~,1I 0 0 0 0),B

00 0 0 0 1 0

00 0 0 0

with the rest of the matrices having zero entries. The results axe given in Table 3.

TABLE 3: Results of Example 3

T A y = 1/vX
5 0.89262204 1.05843988

10 0.87538735 1.06880842
15 0.87477568 1.06918203
18 0.87476217 1.06919029

7. SUBOPTIMAL PROBLEM FORMULATION
The main contribution of the remaining portion of the report is the derivation of

the suboptimal controller in the time-varying case for a general performance index. We
consider a generalized finite horizon suboptimal H, problem. An expression for a state
feedback controller is given in terms of solution of a dynamic Riccati equation. Also an
expression for a suboptimal output feedback controller is developed in terms of solutions
of two dynamic Riccati equations. Throughout the report an objective has been to derive
results in as general a case as feasible. The formulae for the synthesis of the suboptimal
H,, controller are summarized in Section 5 and these can be programmed easily on a
digital computer to synthesize a suboptimal H controller. In the time invariant case, if
the final time is sufficiently large, the solutions of the dynamic Riccati equations converge
to the solutions of the corresponding algebraic Riccati equations.

Let the n-dimensional time-varying system be given by

i = A(i)x + B,(t)u + B2 (t)v, x(to) 0, (7.1)

z = C(t)x + D(t)u + E(t)v, (7.2)

y = C2 (t)x + D 2 (t)u + E2 (t)v. (7.3)

Without loss of generality, let to = 0. Also let

A, = maxmin f4v*Rvdt)U fior T !z*IWz dt'

where R and W are assumed to be positive definite and the superscript * denotes a matrix
or vector transpose. Computational techniques for the evaluation of Aopt are given in
Section 4. The problems addressed in the report can be stated as follows.

14
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Problem 1. Given A < Aopj, find a full state feedback controller, if it exists, for which

rin fT v*Rv dtmin f -> A.
0 T*1zdt

Problem 2. Given A < Aopt, find an output feedback controller, if it exists, for which

min fT *Rv dtmin fo> A.
Vo$0 fT z. z dt

8. FULL STATE FEEDBACK PROBLEM

Consider the performance criterion

oT v * Rv dt - A z *IVz dt. (8.1)

We will first find a saddle point (u0 ,t v) with respect to the criterion (8.1). The motivation
for finding the saddle point is so that we can construct a suboptimal H, controller on the
finite interval [0, T].

The functional (8.1) can be written as

J(u. v) = _ I *Rvdt - A 1-X*HVIx + X*1'2u + 1_u*l1-U
1

+X*11 4 v + V*WV + u *W6v} dt. (8.2)

Given u(t), let v° maximize (8.2). The following lemma characterizes v0 (t).

LEMMA 8.1. Let A be such that R - AIW5 is positive definite for all t E [0, TI. For a given
u, if v°(t) minimizes (8.2), then tl.ere exists a nonzero 71(t) such that

d r
- A*r - AVlx - AgW2 u - AW 4 v ° , 77(T) - 0, (8.3)dt

and
v 0 (t) = (R - AT 5 )-' {Bt + A/7x + AV6*u.} (8.4)

Proof. By the maximum principle[10], there exists an adjoint response 17(t) such that
the Hamiltonian

1 .1 .- ,1 W
H = A{-1x*Wix + x*W2u + Iu *14'U + X*T' 4V + -vW1v* V + u* 6 t'}

2 2 2
-1 v *Rv + 77* {A(t)x + B (t)u + B 2 (t)v. } (8.5)

2
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is maximized almob everywhere on [0, T]. Satisfaction of H= 0 yields (8.4). The adjoint
variable q satisfies

- OH -A' - A x - "I,"u - AW 4 v0 . (8.6)
dt Ox

By the transversality condition, 77(T) = 0. [1
In a similar manner, we can get an expression for an optimal u0 (t) which maximizes

(8.2) for given v and A.

LEMMA 8.2. Consider the system given by (7.1). Assume that WV3 is positive definite for
all t E [0, T1. For a given v, if u0 (t) maximizes (8.2), then there exists a nonzero V,(t) such
that

- A + W x + W 2u 0 + VVv, 0(T)=0, (8.7)
dt

and
uO(t) = TV17' {B*/- WV*x - 17v}. (8.8)

Proof. Proof is similar to that of Lemma 8.1. D
Simultaneous solution of (8.3), (8.4), (8.7), and (8.8) yields a saddle point solution

(u0 , v0 ) for the functional given by (8.2). We now express the above minimax solution in
a simpler form.

From (8.3) and (8.7), at a saddle point solution (u°, v°), we get

d(Ai, + ri) = -A*(t)(AV, + 77), AV(T) +rj(T) = 0. (8.9)
dt

It follows that
Ai/(t) + q(t) = 0, t C [0, T]. (8.10)

Thus the saddle point solution is characterized by

A*V + H" x + Tu ° + T,°,  (8.11)
dt

u(t) = 91-' {B* - 7W*x - W 1;}, (8.12)

v°(t) = A(R - AW)- 1{-B*', + W*x + W6*uO}. (8.13)

We define the full state feedback controller the following way. Assuming that the
inverse of WV3 + AW 6(R - AW)-W * exists, let

Q (R- AW)-', (8.14)
A = {W 3 + AW6f2W}-', (8.13)

U1 = A(B; + AlW6frB*), (8.16)
U2 = -A(W* + ATV 6 ' 4*), (8.17)

Q= Ai(-B* + W*U,),,(.1,,

V2 = AQ(W* + W6U 2 ). (8.19)
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Substituting (8.13) in (8.12), we get

U0 = UI-'+ U 2x. (8.20)

Substituting (8.20) in (8.13), we get

V0 = + V2x. (8.21)

Let f be arbitrary. On [f, T], let

=(t) P(t)x(t). (8.22)

On [c, T], we get

P + P(A + BIU 2 + B 2 1 2 ) + (A* - W2U1 - I' 4 V)P

+P(B, U1 + B 2V 1 )P - (W 1 + W 2 U2 + W4 1) = 0, P(T) = 0. (8.23)

Define the feedback controller and the exogenous input by

uo = U, PX + U2 x, (8.24)

vo = VI"PX + V2x. (8.25)

We now show that the performance of this feedback controller is greater than A.

THEOREM 8.1. Consider equations (8.23) and (8.24). Then for this controller

Tn if v* Rv dt

inf fT 2 *.v d > A. (8.26)
v -O fT ZZ dt

Proof. An elementary calculation shows that in equation (8.23), B 1 U1 + B2 V, and
TVl + IV2 U 2 + 114 1' are symmetric and

(A + BU 2 + B 2 V2 )* = A* - 9' 2 U, - 14741,. (8.27)

Thus P is symmetric. Since (8.20) and (8.21) follow from (8.12) and (8.13), we have

Uo = 7- { Bj* Px - W2* x - W6 vo}, (8.28)

Vo = AQf{-B2Px + W4*x + W6uo}. (8.29)

Since P(T) = x(O) = 0, we have

[T d (r Px)dt = 0 (8.30)

J0 dt'
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Since
i = Ax + Bluo + B 2V = (A + B 1 UIP + B 1 U2 )x + B2t,, (8.31)

where v is an arbitrary function of time, we get after some algebra

d(x*Px) = x*Px + 2x*Pi

= * + x*W 2 uo + x*Wlvo - x*PB2 vo + x*PBiuo + 2x*PB2v.(8.32)

From (8.28) and (8.29), we get

B*Px = Wuo + Hr*x + 11'6 v0 , (8.33)
Q' -1 t',0

B*Px = I-+ *x W 0, (8.34)

Substituting (8.33) and (8.34) in (8.32), we get

dd(x*Px) = x*ltix + 2x*IV1uo + u*)TVuo + 2x*TV4v

r*)*-'(v 0 )
+ 2ulV' t + ( (8.35)

From (8.35) and (8.30), we get

JT v*Rv dt - A j z*'Wz dt = (v - vo)*Q-l(v - vo)dt. (8.36)

Note that in the above equation v is an open loop function of t, whereas v0 is a feedback
function of x. Note also that Q-' is positive definite on [0, T]. Since the map v - v - v

and its inverse are bounded, it follows that there exists 6 > 0 such that

(v - vo)*Q (v - vo)dt > 6j v*Rvdt. (8.37)

From (8.36) and (8.37), we have (8.26). D

9. OUTPUT FEEDBACK CONTROLLER

Consider again the system given by

x = A(t)x + B,(t)u + B 2 (t)v, (9.1)

z = C(t)x + D(t)u + E(t)v, (9.2)

y = C 2(t)x + D 2(t)u + E 2(t)v. (9.3)

18
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Let
= C2 + E2VIP + E21"2, (9.4)

where V, and V2 are defined by (8.18) and (8.19). Assume that the controller is of the
form

4 = Aq + BI(U1 Pq + U2q) + B 2 (1'jPq + V2q) + L(Cq + D2u - y), (9.5)

u = U1Pq + U2q, (9.6)

where the observer gain L needs to be determined.
Let

Uo = U1 Px + U2x, (9.7)

v0 = TPx + V2x, (9.8)

r = u -u 0 , (9.9)

w = v - v0, (9.10)

e = x - q. 9.11)

Let the control be given by (9.6) and let P be the solution of (8.23). We have

x z Ax + BI(U P + U2 )q + B 2 , (9.12)

where v is an arbitrary function of time.

LEMMA 9.1. For the above system, we have

v*Rrdt - =z*Wzdt = *Q-1udt

-AI r*T 3 r dt - 2A r*16uwdt. (9.13)

Proof. We have

x*PX +2x*P' = x* IW +x*IV2 uo +x W*IVo +x*PB(2U-Uo)+ x*PB 2(2Vt,-Vo). (9.14)

From (8.33) and (8.34),

B*Px = V3uo + 14*x + Wvo, (9.15)

BPx = A + 117* x + TI'V6. (9.16)
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incorporating (9.15) and (9.16) in (9.14) and rearranging, the right side of (9.14) can be
written as

x*lllx + 2x*12u + u*1lau + 2x*'114 V + 2u'6i,,
A

(v - ,Z)f -'(' - ')
-(U -uo)*1V3(u - uo)+ ( - 2(u - Uo)6( v - o). (9.17)

Since

T +(xPx)dt = j {x'Px + 2x*Pil dt =, (9.1S)

the result follows. El
\e want to ultimately show that the right side of (9.13) is larger than < .7 i*Ridt

for some 6 > 0. It easily follows that ( = x - q ani r = u - uo satisfy

= (A + LC')( + (B 2 + LE)w, (9.19)

r =Th, (9.20)

where

.4 + B 2 1"P + B2 V21 (3.21)

= -(U 1P + U2). 9.22y.

Note that C is defined by (9.4) and L is the gain of the observer. The right side of (9.13)
can be written as

f u*Ru'dt- Ao j Wizdt. (9.23)

where (see (7.2))
z1 = Dr + Eu, = DB + Ew. (9.24)

XVe determine L by considering the dual of (9.19) and (9.24). Our ultimate goal is to show
that for the L to be iioson, the controller given by (9.5) and (9.6) is suboptimal.

Let r = -t. The dual system can be defined on [-T,O] as

=7 + C*fi + B*D*t,, (9.25a)
dr
z.. j B 2- + E *fi + E'ti,, (9.25b)

and the functional corresponding to (9.23) is written as

J" 1'zi1U- 'adr- AJ T R-'- dr. (9.26)
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Let us write (9.26) as

1 ' I - , d T - A lu ±+

+*11'4,1, + ±, IV,5,7 + f, * W6,t } dr. (9.27)

We now find a saddl- point solution for the functional in (9.27). The saddle point solution
will be useful in defining the gain L of the observer.

This problem is completely analogous to the full state feedback problem of Section 3
and we can write the solution by inspection. Equations (9.25a) and (9.27) are analogous
to equations (7.1) and (R.2) respectively. Assume that TV3 and W -1 - AIV5 are positive
definite and .3 is the adjoint varial)le. Observing (8.11 )-(8.13), the saddle point solution is
characterized by

-.4 + Ii' + Ii2 fi + Ii' 3(0) 0, (9.28)dr
i- C3 - * 6,}. (9.29)

- A(1--' - Al1-'{-D3 + Il'T" + i" }. (9.30)

Assume that Ii3 + Ali;( -11 - Ali's) 11* is invertible. The equation a anlogous to
(S.14)-(S.19) are

= 1 " - AlV;) -  (9.31)

F {113 + AIV441t}-'. (9.32)

, r(C' + AWAI;DB). (9.33)

S 2 = -F(Wi-" + A~iT64i)Ti4 . (9.34)
T, Aq,(-DB + I''S,). (9.35)

T2 A--(IV* + 116" 2 ). (9.36)

Sub~stituting (9.30) in (9.29). we can write 5i and 6- as

f, = S, 3 + S2 , (9.37)

6, = T, 3 + T2i. (9.38)

Letting

3 Y C (9.39)

on [-TO], we get tie Riccati equation

dY"
- (A - IV2S, - IV4T, )Y + Y(A* + C"S2 + B*D*T2 )

dr

+±(C0 1 + B*D*Ti )Y - (Ii, + li' 2 S 2 + I3T 2 ), )'(0) 0, (9.40)
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which is analogous to (8.23). It can be easily verified that (9.40) is symmetric.
Define tio and tio' by

Uiu = S,1 " + S2j, (9.41)

Uo = T 1Y7+ T2&. (9.42)

LEMMA 9.2. Consider equations (9.40) and (9.41) and assume that at f = , given c > 0
there exists T > 0 such that for any ti, 5 0 and all T > T, j (-T)Y(-T)((-T)_

Cf2T itIY'-1 dr. Then there existq 6 > 0 such that for all T> T,

f 0 0o
Tj'*1 -jd7 -A fJ R-X51 d- > 6 fT *I'-'t d. (9.43)

Proof. Following similar reasoning as in the proof of Theorem 8.1. we can write the
equation analogous to (8.35) as

+C(* z + 2 T172,, + iTV 3i 0 + 2zP117, ' - -51z,

-. -.- f*iv-1lti+ (1i - tilo)*D (7 - ZP0 (9.44)+2i01V;Z -u A + A (.4

Integrating both sides from -T to 0., we get

J7'*I V-16 dr - A z*R 'zl d7-

T (6,- o)* (z - o)di + *(-T)(-T)(-T). (9.45)

Let c > 0 be sufficiently small. Since the map ti --+ zi'- t and its inverse are bounded,
there exists 6 > 0 such that

(f' - ii'0)*D-1(z, - tN'o) d -, (V + AE) j w dr-. (9.46)

Now by the assumption on *(-T)Y(-T) (-r), equation (9.43) follows, if T > T U
We now go back to the original problem and reverse time in (9.40).

T1EOR0EM 9.1. On [0, T]. let

(A - i'2S1 - li'4 Tl )IY + Y(A* + * S2 + B* D*T2 )

+Y(C*Sl + b*D*T )Y" - (WItl + 11'2 S2 + li4T 2 ), Y(0) = 0. (9.47)
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L = (S 1Y + S2 )*. (9.48)

Consider (9.12). Let t be as defined in Lemma 9.2. If T > T, there exists 6 > 0 such that

Tv*Rv dt - A IT z*Wz dt > T v*Rv dr. (9.49)

Proof. From equation (9.43) of the dual system, we deduce that if T> T

w*Rwdt - A z14rzl dt > b, w*Rw dt, (9.50)

for some 61 > 0. Since the map w --+ v is bounded, there exists 6 > 0 such that

j w*Rwdt - AJ 4iVz, dt > v*Rvdt. (9.51)

From (9.13), (9.23), (9.24), and (9.51), we get (9.49). El
The above theorem shows that for the controller defined by (9.5) and (9.6). the per-

formance is greater than A. In fact from equation (9.49), we have

inf f f R dt

inf > A. (9.52)
,7o fT z*5 z (it

10. SUMMARY OF RESULTS
The system is given by

j = A(t)x + B 1 (t)u + B 2 (t)v, x(O) = 0, (10.1)

z = C(t)x + D(t)u + E(t)v, (10.2)

y = C 2(t)x + D 2(t)u + E 2(t)v. (10.3)

Let

Aopt = maxmin f °T v*Rvdt (10.4)
U V:o foT z*Wzdt

and let A < Aopt. Also, let W 1 ,.' ,W 6 be defined by

z*Wz = x*TV x + 2x*1V2u + u*11 3 u + 2x*W4t + v*I'5v + 2u116 r. (10.5)
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The relevant controller equations are

Q = (R - A )-', (10.6)
A = {W 3 + ,d4 6 QV1*}, (10.7)

U1 = A(BI* + Af117 6 B*), (10.8)

U2 = -A(W7* + AllQW4*), (10.9)

V = Af(-B2 + 11'U 1 ), (10.10)

V2 = AM(TV4" + 1 '6 ) U), (10.11)

+ P(A + B, U2 + B 2V2) + (A* - IV2 U - I' )P

+P(BU, + B 2 I 1 )P - (ITW + W 2U2 + W4 1') = 0, P(T) 0. (10.12)

Note that the above equation is symmetric.
Let

= B* + E2i + E*z., (10.13)

and let U-1," ', li 6 be defined by
z,= *117,{ + 2E*-V iii +± 2EauV+2 ±xt,+ '*Ii, + 2i*Ii- z. (10.14)

The relevant observer equations are

) = (1- 1 - A,,*5)- 1 , (10.15)

F = {143 + AW64)1 6 -1 , (10.16)

A = A + B 2VP + B 2 12 , (10.17)

= -(U 1 P + U2 ), (10.18)

= C2 + E 2 VIP + E 21'", (10.19)

S1 = F(C -+ A4)D!b), (10.20)

S2 = -r(W"2 + AWO).i '), (10.21)

T, = A-t(-Db + WgV*S1 ), (10.22)

T2 = A )( + W6 S2). (10.23)

1" = (A - lab2S 1 - 4T,)Y + Y(4A* + C'S 2 + B'D'T2 )

"-'(C'S1 + b*D*Ti)Y - (WI - li2S2 + W17 4 T 2 ), F(0) = 0. (10.24)

Note that the above equation is symmetric.
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The suboptimal controller is given by

4 = Aq + BI(U 1 Pq + U2q) + B 2 (ViPq + V2q) + L(Cq + D2u - y), (10.25)

L = (S 1 Y + S2 )*, (10.26)

u = (UiP + U)q. (10.27)

11. CONCLUSIONS
In this report we treated the suboptimal finite horizon H, control problem. A differ-

ential equation for the measure of performance is derived. The report also illustrates the
usefulness of the finite horizon techniques in computing the infimal H, norm in the infi-
nite horizon case. An expression for a suboptimal finite horizon H, controller is derived
in a generalized case. The general case has been treated directly without the utilization
of transformations. The ouput feedback controller is synthesized via a controller compo-
nent and an observer component. A summary of all the design equations is given and
these equations are easy to program on a digital computer. In the time-invariant case the
dynamic Riccati equations involved in the design usually converge to constant matrices.
The theory developed in this report is useful for the worst case design of flight control
systems of aircraft in the presence of disturbances, commands, and sensor noise. The con-
troller equations are in a form that is convenient for the design of flight control systems
of advanced aircraft, since the results are applicable for a very general case. Preliminary
applications to flight control design have shown considerable promise and the next phase
of research will be directed towards the development of a systematic methodology for the
design of a flight control system for an advanced aircraft. Further research also needs to
be done to assess the relationship of the weighting matrices to satisfactory performance.

12. FUTURE WORK
Software is already in place to predict the best aircraft performance under worst case

conditions. The success of this portion of the software is demonstrated in Section 6 of
this report by way of examples. Future work based on the theoretical results of the report
would entail the following:

1. Making use of the theory developed in Sections 7-9, software will be developed to
synthesize both state and output feedback controllers.

2. Making use of an advanced aircraft model during landing, flight control laws will
be developed to achieve satisfactory performance in the presence of disturbances,
commands, and variations of the model.

3. The performance of the aircraft will be compared with that achieved through other
techniques and the benefits, if any, will be demonstrated.
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