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CONDITIONS FOR SUB-POISSONIAN PHOTON STATISTICS IN
PHASE-CONJUGATED RESONANCE FLUORESCENCE

Henk F. Arnoldus
Department of Physics

Mendel Hall
Villanova University

Villanova, Pennsylvania 19085

and

Thomas F. George
Departments of Chemistry and Physics

Washington State University
Pullman, Washington 99164-1046

ABSTRACT

Photon correlations and statistics of phase-conjugated resonance

fluorescence of a two-state atom is considered. The Q-factor, as a function

of the incident laser power, the deturning, the laser linewidth and the phase-

conjugate reflectivity, has been calculated. It is shown that for small and

large reflectivity the statistics is predominantly sub-poissonian. For unit

reflectivity the statistics appears to be exactly poissonian (0 - 0) for all

values of the optical parameters.

PACS: 42.65.H, 32.80, 52.50.D
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1. Introduction

Photon counts, as measured by a photomultiplier, appear as random events

on the time axis fl,2J. The intensity I(t) is defined as the photon counting

rate at time t, and therefore I(t)dt equals the average number of detected

photons in [t,t+dt]. Then, in a time interval [O,t] the average number of

counts is given by

t

P(t) - f at' l(t')(I

0

For stationary radiation the intensity is time independent, and we have A(t) =

It. The statistical fluctuations in the number of counts in [0,t] are

represented by the variance a-(t) of the count distribution. In the case of

pure random events the statistics is poissonian, for which a-(t) = p(t), and

deviations of Poisson statistics are most conveniently expressed in terms of

Mandel's Q-factor, defined as [3]

2(

Q(t) = ( ) O(t) (2)
p(t)

Obviously, Q(t) _ - !, and for Poisson statistics we have Q(t) = 0. As

pointed out by Manuel {3], any radiation field which has a classical analogue

must necessarily have a positive Q-factor for any counting interval [0,t).

For such fieids .hc varince is larger than the average, and the statistics is

said to be super-poissonian. Conversely, any observati- oZ a negtive 0-

factor would indicate the essential quantum nature of the detected radiation.

* *... ,

amp*
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Such sub-poissonian statistics was predicted [4] and demonstrated

experimentally [5] in single-atom resonance fluorescence.

The Q-factor can be expressed in terms of the two-photon correlation

function 12(tlt2). By definition, 12(tlt2)ldt2 is the probability for the

detection of a photon in [t1,tI+dt1 ] and a photon in [t2 ,t2+dt 2, irrespe;tive

of photon detections at other times. For stationary fields, 12(t lt 2 ) depends

only on t1 and t2 through r - t2 - tl and the Q-factor assumes the form [6]

t

Q(t) J dr ((t - r)12(O.1) - rI 2} (3)

0

In terms of the normalized correlation function

h~)=12(0,r) -

h (r) = 12( r) 2(4)
1 2

the Q-factor can be written as

t

Q(t) = 21 f dr(t - r)h(r) (5)t

0

Of particular interest is the limit of long counting times. For t - , Eq.

(5) reduces to

Q(-) - 21 f dr h(r) (6'

0



provided that the limit exists. When we adopt a Laplace transform

h(s) - f dr e h(r) , (7)

0

the long-time Q-factor becomes

Q(-) - 21h(0) (8)

2. Phase-conjugated fluorescence

We consider a two-state atom, with excited state le>, ground state If>

and level separation o , which is positioned near the surface of a four-wave

mixing phase conjugator (PC). The medium is pumped by two strong

counterpropagating lasers with frequency w. A laser beam with frequency WL is

parallel to the surface and irradiates the atom. Resonance fluorescence is

emitted by the atom and detected in the far field by a photomultiplier. It

can be shown (7] that the negative-frequency part of the detected radiation 4S

proportional to the Heisenberg operator

b(t) = d(t) - e2 iwtpdt(t) , (9)

where d - le><g is the atomic raising operator. The (complex) number P is

the Fresnel reflection coefficient for a plane wave with frequency w , which

is incident on the surface of the PC under the same angle as the location of

the detector. This coefficient P depends in a complicated way on W , the

angle cf incidence and the polarization of the pump beams [8]. The term d(t)
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in Eq. (9) represents ordinary fluorescence, and the term proportional to P is

the phase-conjugated image which is reflected by the PC. We shall assume that

the medium of the four-wave mixer is transparent, so that there is no ordinary

specular reflection of the incident fluorescence radiation. In terms of b(t),

the intensity of th. datczted radiation is

l~t)- <b~tb~t~>$ ,(10)

and the two-photon correlation is given by

12 (til~t2) 2 2<b(t 1)b(t 2)b(t 2) tb(tl ) t> (11)

The parameter ( contains the proportionality factor between b(t) and the

detected field, and is proportional to the detector efficiency. An overall

time retardation between emission and detection has been suppressed. The

finite linewidth of the driving laser will be considered to be brought about

by a stochastically fluctuating phase. The notation {...4. in Eqs. (10) and

(11) indicates an average over the random laser phase, whereas the notation

<...> represents a quantum average.

Transforming Eq. (10) to the Schr6dinger picture yields

I(t) -(, (12)

where we introduced the Liouville operator e(t), which is defined by its

action on an arbitrary Liouville vector H according to
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t 2co 2i~tpd

1(t)Il - (dt - e2it P *d)l(d - e dt) . (13)

In expression (12) , p(t) is the atomic density operator. Its time evolution

operator will be indicated by the Liouvillian X(t,t'), which is defined as

p(t) -X t ') t) , t t (14)

With this notation, the two-photon correlation from Eq. (11) becomes in the

Schr6dinger picture

12 (t1 ,t2 ) = 2{Tr (t2 )X(t2 ,tl)1 (tl)P(tl)}, t2 e tI  (15)

The terms inside the brackets {... in both Eq. (12) and Eq. (15) are randomly

fluctuating functions. Only their average over the stochastic laser phase

will reach a steady state.

3. Equation of motion

The Hamiltonian of the two-state atom is given by

H a -W e P + WgPg , (16)

in terms of the projectors P - Je><eJ and P = g><gl on the excited statee g

and ground state, respectively. The interaction between the atom and the

laser field, in the rotating-wave approximation, is represented by the

Hamiltonian
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I i( L t + 0(t))

Har~t - -L t +H.c. , (17)

where 0 is the (complex) Rabi frequency of the dipole coupling and 0(t) is the

stochastic laser phase. Then the equation of motion for the atomic density

operator p(t) becomes

id - [H + H (t),P] - i'(p (18)
dt a ar

Spontaneous decay and excitation is accounted for by the Liouvillian F, given

by

F1 =Ae(PeR + TIP - 2i id) + I A(P n + TP - 2dTld t) (19)2ee e 2 g g g

which defines its action on an arbitrary Liouville vector I. The rate

constants A and A are [9]e g

A - A(l + -IPI 2) A - AIPI2  (20)e 2 g

with A the Einstein coefficient for spontaneous decay of an atom in empty

space.

Oscillations with the laser frequency jL in the Hamiltonian can be

eliminated with a transformation. With the Liouvillian L defined as
g

L - [P ,i] , (21)
g g

for TI arbitrary, the transformed density operator a(t) is gilen by (10]



-i(toLt ¢t

a(t) - e g p(t) (22)

From Eq. (18) we then obtain the equation of mocion for o(t),

ida

dt d(L + -(T)L ir)a (23)

Here, the dressed-atom Liouvillian Ld equals

Ld r= ALl - 1[d + (*dt  ] 24)
d g 2

with A - wL - W the detuning from resonance.

Equation (23) iz a stochastic differential equation for c(t) We shall

take (t) to be the independent-increment process "III, which has the phase-

diffusion model as its gaussian limit. Then Eq. (23) can De solved for the

average, with the formal result [10]

{a(ti' = e -i(L d - iW - iF)(t - t )(25)

The operator W accounts for the phase fluctuations and is given by

2W = L , (26)
g

with A the half-width at half-maximum of the Lorentzian laser profile. The

steady-state value {a(-)} will be indicated by 3, and is the solution of

(L d - iW - iF)a - 0 (27)

.. . - - -- mm z m nlm ~aI I
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This equation is easily solved for the matrix elements of a. For the

population of the excited state we obtain

2 2 2 2
fl+ AjPj (A +77 )

e <ejuje> -  2 2 (28)
e n + 2A(A +7 )

where we have set A - -(A + Ag), - A + A and (0 - JQt . The population of
2e g

the ground state is n - I n, and also tae coherence <ejaig> can readily beg e

found (but is not needed here).

4. intersitv

With Eq. (22), expression (12) for the intensity can be transformed to

the a-representation, and with Eq. (13) this gives four separate terms. Then

we take the stochastic average and the limit t - -. In the a-representation,

the terms proportional to P and P* acquire phase factors of the form

axp(±2i ( t)). With the identity [12]

11im e±!2i' ( (t) - 0 , (29)
t -

these cross terms vanish identically in the steady state. When we introduce

the Liouv'ille operators Pe and Pg as

F, e - did = P <ejITe> (30)

P9r - 1P 2d!ld t _ IP12 Pe<gtlg> (31)
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then the steady-state intensity can be written aq

1 - + )a (32)

For the two contributions we write

I - aTrQa , o-eg (33)

=11 wiith Eqs. (30) and (31) this is I - ne and I - jPj 2n respectively.C n g g'

he total Intensity is

I = I34)

and w ith Eq. (28) this becomes

2Q ( + 2P
2 ) + AIPI 2( 2+r 2)(3+IPI )

2P 2 -2 2 (5
2 0 ?2 + 2A(A + rj2
0

The significance of the two contributions follows from Eqs. (30) and (31).

The part Ie is brought about by the action of Re on the density operator a,

whizh giv-7 F. e - n Ig><gl. Therefore, the probability for the emission ofe e

an "e-photon" i - proporcionil to the population of the excited state, and

after the emission the atom is left in the ground s!tte. Similarly, the

action of Q PLoduces a "g-photon". According to Eq. (31), the probabilityg

Cor this process is proportional to the population of the ground state, and

after the emission the atom is in the excited state. It can be slown [7] that
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this stimulated transition actually involves a three-photon process: twc

photons with frequency w are absorbed and a photon (the g-photon) with

frequency 2W - W is emitted as fluorescence. An atomic transition from Ig>

to le> then guarantees conservation of energy. The e-photons are ordinary

fluorescence in an le> - Jg> transition, and they have frequency w (in the

weak-field limit).

5. Two-photon correlation

The two-photon correlation function from Eq. (15) can be worked out in

the same way as the intensity. In the steady state (tI -l , r = t2 - t1

fixed) the cross terms vanish identically, and we obtain

2 -i(Ld-iW-i)r

22(O,r) 2Tr(e + P )e d (R + R )a (36)
e g e g

This can be written as

i2(Or) - fQ (r)I (37)

in terms of the four functions

f2 -i(Ld-iW-ir)r

f _(r) - aTr6 e a , a,6 - e or g (38)
a

From the interpretation of the F operators it then follows that f a(r) equals

the intensity of 0-phorons at a time r after the detection of an a-photon.

From the identity
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.-i(L d-iw-ir)r

lim e 11 - ;TrI , (39)

for arbitrary H, we then obtain

lim f (r) - Trpl - I (40)

This illustrates that for a long delay time r the detection rate of 8-photons

equals the uncorrelated intensity I. With Eq. (37) this gives

lim 12 (0,r) - II - (I + Ig)2 - 12, (41)

i.e., the correlation function factorizes. For r - we find

f f(0) - f(O) - 0 (42)

f eg(0) = a > I e (43)
eg e

f (0) - Jp 2 > 1 (44)ge g

Equation (42) expresses that the probability for the detection of an e-photon

immediately after the detection of an e-photon is zero (antibunching). This

can be understood from the fact that after the emission of an e-photon the

atom is in the ground state. It takes a finite time r for the atom to make a

g>- le> transition, which is necessary for the emission of a subsequent e-

photon. In a similar way it follows that f gg(0) must be zero. Equation (43)
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shows that the probability for the detection of an e-photon immediately

following a g-photon is larger than the uncorrelated probability for the

detection of an e-photon (bunching). This follows from the fact that after

the emission of an e-photon the atom is in the ground state, rather than a.

This enhances the probability for the emission of a g-photon, which is

proportional to the population of the ground state. The inequality in Eq.

(44) can be explained in a similar way. From Eqs. (42)-(44) and with ne + ne g

+ I we find

12(0,0) - E21 2 (45)

It appears that 12(0,0) does not depend on any of the parameters o0 , A, A or

The Laplace transform of Eq. (38) is

fr(s) I k T s + iLd + w + r a (46)

in terms of an operator inversion. Working out this expression then yields

for the four combinations

C 1 2 2 2
f (s) A f(s + -2) + A ) (47)o 2s) ( + '7) + A )[(s + 2 A2  , (48)ee sD(s) 2 o

d ( 1 T1 {2(s + q) + (s+A)[(s +i)
2 + 2

fg(S) + A (48)

P- 1 0 2(s + YI) + (S+Ag)( 2 )2
feg (S )  sD(s)) s + A 2 }  (49)

e= =DS 2.- o m 9lnmi mmm u nB
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222j ( 1 2 20
f (S) - (fo(s + 7) + A [(s + 17) + A]gg sD(s) 2ea

where

D(s) - 02 (s + ) + (s + 2A) [(s + )2 + 2(51)

With Eq. (37) we can then construct 12(0,s). The result, however, is not very

transparent.

6. Photon statistics

From 12(O,s) and with Eq. (4) we can calculate h(s). Then the Q-factor

follows from Eq. (8), with result

(I+IpI2 )((A-),)( 2 +A2)- 4 ,2 A)AIPI 2(3+IpI 2)to(2-A2)-(2+42)2 }

41P2 (2+62 )

+ Q 2 (l+pIV2)+AIPI2( 2+A 2 )(3+IP12 )  (52)

For IP 2 - 0 this reduces to the Q-factor of a free atom (6].

Close to resonance (A - 0) and for a small laser linewidth (A - 0) the Q-

factor can be written as

Q(-) - 3q(x,y) )

which depends basically only on the two parameters
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- I, y - a20/A 2  (54)

The function q(x,y) is

1 2 3 2

x(3 + x){y - 4(1 + x) 2 2- Y(1 + x) 2x

q(x,y) - 1 22 + I (55)
y + 2 (l + x) 2  y + ix (3 + x)

The sign of q(x,y) then determines the regions of sub- and super-poissonian

statistics, and this is shown in Fig. 1. It can be checked by inspection that

q(x,y) has a factor 1 - x, and therefore we have q(x,y) - 0 for x - 1, all y.

This is the vertical line in Fig. 1. The curve in Fig. 1 gives the second

solution of q(x,y) - 0. On the y-axis (PC absent) the statistics is always

sub-poissonian, and q(0,y) has a minimum of -i at y - i. In absence of the
4 2

laser (x-axis), q(x,O) decreases monotonically from - at x - 0 to -1 at x .
3

The function q(x,y) is discontinuous at (x,y) - (0.0) and has a saddle point

at (x,y) = (1,2).

7. Unit reflectivitv

The reflection coefficient IPj 2 is proportional to the square of the

intensity of the pump lasers of the four-wave mixer, and can therefore have

any value. In particular, reflectivities larger than unity have been obtained

experimentally [13-15]. An interesting special case is unit reflectivity, for

which IPt - 1. With Eqs. (47) - (51) we then obtain

f (r) + f (r)- , (56)
ee ge

feg~r +gg()- 57



16

These two combinations of correlation functions turn out to be independent of

T. The intensity, Eq. (35), reduces to

1 -(58)

and the two-photon correlation factors as

12 (0,r) - 12 (59)

for all r. With Eq. (4) this yields h(r) - 0, and therefore

Q(t) - 0 , (60)

for all t and any combination of parameters. In general, it is not necessary

that h(r) is identically zero in order for the statistics to be poissonian;

for t - -, only the average of h(r), in the sense of Eq. (6), has to vanish.

Furthermore, the functions f Pa(r) separately have a non-trivial r-dependence,

as illustrated in Figs. (2) and (3).

8. Conclusions

We have studied the photon correlations and statistics of resonance

fluorescence radiation, emitted by an atom near the surface of a PC. The two-

time intensity correlation appeared to have four distinct terms, each of which

is proportional to a function f P(r). These f (r)'s were shown to have the

significance of the detection rates of fl-photons at time r, after the

detection of an a-photon at time zero. From these correlation functions we

constructed the long-time Q-factor, as given by Eq. (52). For A - X - 0, Q(-)
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could be expressed in i two-parameter function q(x,y). and the conditions for

sub-poissonian statistics (q < 0) were represented pictorially in Fig. 1. For

small reflectivities PI 2 the statistics is always sub-poissonian; for 1P 2 
-

I the photons have Poisson statistics for any value of the optical parameters;

and for large valuea of PI2 the statistics becomes again sub-poissonian. 1z

follows from Eq. (52) that for PI 2 
-2 the Q-factor reaches its ultimate

lower limit of Q(-o) - - /A.

Photon correlations and statistics of phase-conjugated resonance fluorescence should be amenable

to experimental obser ation. When an atomic beam and a laser beam are projected along the surface of

the PC, above which they intersect, then the fluorescence can be detected in a direction perpendicular to

the surface. A complication, however, might be the background radiation which is emitted spontaneously

in all directions by the nonlinear medium.
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Figure Captions

Fig. I Regions of sub-poissonian (-) and super-poissc nian (+) statistics for

A - A - 0 as a function of the phase-conjugate reflectivity x and the relative

laser power y. The indicated signs are the signs of the function q(x,y). At

(x,y) - (1,2), q has a saddle point. The curved line approaches the

asymptotic value of x - 3 for y - , and q(x,y) is negative for all x > 3.

Fiz. 2 The two curves represent f ee(r)/ and f eg(r)/ as a function of Ar for

2 _2 2
- A - 0, IPI - and 02 - 2A2 . These parameters correspond to the saddle

3
point in Fig. 1. The dashed line indicates the value for Ar - , which is

for both curves. The overshoot in the curve of f eg(r)/E below the asymptotic

limit is a remnant of Rabi oscillations. The Rabi frequency for these values

of the parameters is 17A.

Fig. 3 Functions f ,(r)/ and f (r)/ for the same parameters as in Fig. 2.

The asymptotic limit here is 5, as shown by the dashed line.
8'



L++

3

2

I --

0
0 0.5 1 1.5

x



CN%

a) L

JQJi

NL



Lr)

IN

aj Lfl
0c1

1 0


