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CONDITIONS FOR SUB-POISSONIAN PHOTON STATISTICS IN
PHASE-CONJUGATED RESONANCE FLUORESCENCE

Henk F. Arnoldus
Department of Physics
Mendel Hall
Villanova University
Villanova, Pennsylvania 19085

and
Thomas F. George
Departments of Chemistry and Physics

Washington State University
Pullman, Washington 99164-1046

ABSTRACT

Photon correlations and statistics of phase-conjugated resonance

fluorescence of a two-state atom is considered. The Q-factor, as a function

of the incident laser power, the deturning, the laser linewidth and the phase-

cenjugate retflectivity, has been calculated. 1t is shown that for small and

large reflectivity the statistics is predominantly sub-poissonian. For unit

reflectivity the statistics appears to be exactly poissonian (0 = 0) for all

values of the optical parameters.

PACS: 42.65.H, 32.80, 52.50.D




1. Introduction

Photon counts, as measured by a photomultiplier, appear as random events
on the time axis [1,2]. The intensity I(t) is defined as the photon counting
rate at time t, and therefore I(t)dt equals the average number of detected
photons in [t,t+dt]. Then, in a time interval {0,t] the average number of

counts is given by

-
“

u(t) -jdz:' I(c') . (L
0

For stationary radiation the intensity is time independent, and we have u(t) =
It. The statistical fluctuations in the number of counts in {0,t] are
- 2 . : .
represented by the variance o (t) of the count distribution. ITn the case of

s . - X . 2
pure random events the statistics is poissonian, for which ¢ (t) = p(t), and
deviations of Poisson statistics are most conveniently expressed in terms of

Mandel’'s Q-factor, defined as [3]

2
g (€)Y - pu(®t)
t) = . 2
Q) 4(t) (2)
Obviously, Q(t) = - 1, and for Poisson statistics we have Q(t) = 0. As

pointed out by Manlel (3], any radiation field which has a classical analogue

i

must necessarily have a positive Q-factor for any counting interval [O0,t].
For such fields ihc variance is larger than the average, and the statistics is E;;
]

said to be super-poissonian. Conversely, any observatio.. ol a negative O- g

P A

factor would indicate the essential quantum nature of the detected radiation. ]




Such sub-poissonian statistics was predicted [4] and demonstrated
experimentally {5] in single-atom resonance fluorescence.
The Q-factor can be expressed in terms of the two-photon correlation

function Iz(cl,tz). By definition, IZ(tl’tZ)dtldCZ is the probability for the

detection of a photon in { +dt1] and a photon in [tz,t2+dtn], irrespective
£
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of photon detections at other times. For stationary fields, 12(tl,t2) depends

and the Q-factor assumes the form [6f

only on Y and t, through r = t2 -t
t
Q(t) = & [ ar ((c - DI(0,7) - 1% (3)
Tc T t - T 2 , T T .
0

In terms of the normalized correlation function

IZ(O,T) - 12
h(r) = 5 , (&)
1
the Q-factor can be written as
t
Q(t) = Z—E J dr(t - r)h(r) . (3)
0

Of particular interest is the limit of long counting times. For t -+ =, Eq.

(5) reduces to

Qo) = 21 j dr h(r) , (6>
0
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provided that the limit exists. When we adopt a Laplace transform
@
R(s) = j dr ¢ °" h(r) (7)
0

the long-time Q-factor becomes

Q(=) = 2Ih(0) . (8)

2. Phase-conjugated fluorescence

We consider a two-state atom, with excited state |e>, ground state [g>
and level separation hwo, which is positioned near the surface of a four-wave
mixing phase conjugator (PC). The medium is pumped by two strong
counterpropagating lasers with frequency w. A laser beam with frequency wp is
parallel to the surface and irradiates the atom. Resonance fluorescence is
emitted by the atom and detected in the far field by a photomultiplier. It

can be shown [7] that the negative-frequency part of the detected radiation is

proportional to the Heisenberg operator

2iwt
- e

b(t) = d(t) pal () (9)

where d = |e><g| is the atomic raising operator. The (complex) number P is
the Fresnel reflection coefficient for a plane wave with frequency w which
is incident on the surface of the PC under the same angle as the location of
the detector. This coefficient P depends in a complicated way on w the

angle ¢f incidence and the polarization of the pump beams [8]. The term d(t)




in Ea. (9) represents ordinary fluorescence, and the term proportional to P is
the phase-conjugated image which is reflected by the PC. We shall assume that
the wedium of the four-wave mixer is transparent, so that there is no ordinary
specular reflection of the incident fluorescence radiation. In terms of b(t),

the incensity of the detected radiation is

I(t) = & {<b(c)b(c)7>$ , (10)
and the two-photon correlation is given by

I,(c.t,) = 521‘:<b(tl)b(c2)b(c2)Tb(tl)T>$ . (11)

The parameter £ contains the proportionality factor between b(t) and the
detected field, and £ is proportional to the detector efficiency. An overall
time retardation between emission and detection has been suppressed. The
finite linewidth of the driving laser will be considered to be brought about
by a stochastically fluctuating phase. The notation #...} in Egqs. (10) and
(11) indicates an average over the random laser phase, whereas the notation
<...> represents a quantum average.

Transforming Eq. (10) to the Schrédinger picture yields
I(t) = ¢4Tr B(oyp(0)} (12)

where we introduced the Liouville operator &S(t), which is defined by 1its

action on an arbitrary Liouville vector Il according to




Bon - @t - e 219%* i nca - e21Wlpgty (13

In expression (12), p(t) is the atomic density operator. Its time evolution

operator will be indicated by the Liouvillian X(t,t’'), which is defined as
p(t) = X(t,e")ple’)y t >t . (14)

With this notation, the two-photon correlation from Eq. (ll) becomes in the

Schrédinger picture
2
I,(t,,t,) = ¢ *Trg(czm(cz,tl)B(cl)p(cl)$, €,z t, . (15)
The terms inside rhe brackets {...# in both Eq. (12) and Eq. (15) are randomly
fluctuating functions. Only their average over the stochastic laser phase

will reach a steady state.

3. Equation of motion

The Hamiltonian of the two-state atom is given by
Ha = %wePe + ﬁung , (16)

in terms of the projectors Pe = |e><e| and Pg = |g><g| on the excited stace
and ground state, respectively. The interaction between the atom and the
laser field, in the rotating-wave approximation, is represented by the

Hamiltonian




1 -i(th + ¢(t))
Y w T4 a N
Har(t, 2nﬂ@_ + H.c. , (17)

where I is the (complex) Rabi frequency of the dipole coupling and ¢(t) is the
stochastic laser phase. Then the equation of motion for the atomic density
operator p(t) becomes

dp

ifg = (H_ + H__(©),p] - iHTp . (18)

Spontaneous decay and excitation is accounted for by the Liouvillian [, given

by
1 ta 1 t
MM =7A (PO +10IP - 2diad) + JA (PN + P - 2dId') (19)
27e e e 27g g g
which defines its action on an arbitrary Liouville vector II. The rate

constants Ae and Ag are [9]
11,512 1 2
A, = A(l + 2]P| y Ag - 2A|p| , (20)

with A the Einstein coefficient for spontaneous decay of an atom in empty
space.
Oscillations with the laser frequency 2 in the Hamiltonian can be

eliminated with a transformation. With the Liouvillian Lg defined as
L= [P ,0] , (21)
g g

for Il arbitrary, the transformed density operator o(t) is given by [10]




8
-i(th + $(t))L
o(t) = e & pl{t) . (22)
From Eq. (18) we then obtain the enuation of mocion for o(t),
192 L (L, + oL - i) (23)
de d g = 7
Here, the dressed-atom Liouvillian Ld equals
1 * .t
LI =ALT - Z[(0d + 0 d 0] (24)
d g 2
with A = Wty the detuning from resornance.
Equation (23) is a stochastic differential equation for o¢(t). We shall

take ¢(t) to be the independent-increment process {ll], which has the phase-
diffusion model as its gaussian limit. Then Eq. (23) can be solved for the

average, with the formal result [10]

-i(Ld - W - iM)(e - t)

fo(o)} = e “fo(c )t (25)

The operator W accounts for the phase fluctuations and is given by
; (26)

with A the half-width at half-maximum of the Lorentzian laser profile. The
steady-state value «fc(m)}‘» will be indicated by s, and is the solution of

(L, - iW - il)o = 0 . (27

d




This equation is easily solved for the matrix elements of o. For the

population of the excited state we obtain

aln + A]Plz(A2+qL)
- - 1l o
n —<e|ale>=" , (28)
e 2 2 ni, 2 2
Qon + 2A(0A7+n7)
where we have set A = %(Ae + Ag), n =4+ X and Qo - |Q| . The population of
the ground state is ﬁg -1 - ﬁe, and also tne coherence <e|o|g> can readily be

fournd (but is not needed here).

4. Incersitw

With Eq. (22), expression (12) for the intensity can be transformed to
the o-representation, and with Eq. (13) this gives four separate terms. Then
we take the stochastic average and the limit t = «. In the og-representation,
the terms proportional te P and P* acquire phase factors of the form

exp(*2ig4(ty). With the idencity ([12]

2id(t y
im kei“L” %(:);» -0 (293

these cross terms vanish identically in the steady state. When we introduce

the Liouville operators Re and Rg as
R n=-dlnd = p <elnfes (30)
e B

R0 - 12| 2ana’ - |P[2Pe<g|n|g> , (31)
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then the steady-state intensity can be written as

I - ETr(Re + Rg)c} ) (32)

For the two contributions we write

I - fTrE{aé , a=e,g . (33)

and wicth Eqs. (30) and (31) this is IC - fﬂe and Ig - 5}? ng, respectively.

The tozal intensity is

r—
i
R M~
—
—
()
o~
p—

and with Eqg. (28) this becomes

) 2

: Oir](L + |P1%) + Ai?'z(A2+q2)(3+lP12)

I = =< . (35)
2 Oir) + ZA(AZ + 772)

The significance of the two contributions follows from Eqs. (30) and (31).

The part Ie is brought about by the action of E{e on the density operator 7,

which given Eﬁe; - ﬁe|g><g[. Therefore, the probability for the emission of
an "e-photon" 1is proporciornil to the population of the excited state, and
after the emission the atom is left in the ground si~te. Similarly. the
action ol ‘Qg produces a “"g-photon". According to Eq. (31), the probability
for this process is proportional to the population of the ground state, and

1fter the emission the atom is in the excited state. 1t can be stown [7] that
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this stimulated transition actually involves a three-photon process: twc
photons with frequency w are absorbed and a photon (the g-photon) with
frequency 2w - w_ is emitted as fluorescence. An atomic transition from lg>
to |e> then guarantees conservation of energy. The e-photons are ordinary
fluorescence in an |e> - |g> transition, and they have frequency W, (in the

weak-field limit).

5. Two-photon correlation

The two-photon correlation function from Eq. (15) can be worked out in
the same way as the intensity. In the steady state (tl -+ ©, 7 = t2 -ty

fixed) the cross terms vanish identically, and we obtain

-i(L,-iW-il)r

2 .
(0,7 = £Tr(R_+ R ye ¢ (R +R e . (36)
2 e g e g
This can be written as
Lz(o.f) = } fﬁQ(T)IQ (37)
a,f
in terms of the four functions
2 -i(L,-iW-iD)r
£ d -
fﬁa(r) - ;;TrﬂQﬁe E{aa , a,f = eor g . (38)

From the interpretation of the 6{ operators it then follows that f a(r) equals

B

the intensity of f-photons at a time r after the detection of an a-photon.

From the identity




12

-i(Ld-iw-iF)r )
lim e M=ol , (39

T—®

for arbitrary II, we then obtain

lin £, (r) = fTrRﬂa -1 (40)

T+

This illustrates that for a long delay time r the detection rate of f-photous

equals the uncorrelated intensity I With Eq. (37) this gives

5

. 2 2
1im 12(0,7) - } IﬂIQ - (Ie + Ig) -1 , (41)
a,p

T+

i.e., the correlation function factorizes. For r - « we find

£,(0) = £ (0) =0 , (42)
feg(O) =£>1, (43)
£ (0) = §[P|2 >1 . (44)
ge g

Equation (42) expresses that the probability for the detection of an e-photon
immediately after the detection of an e-photon is zero (antibunching). This
can be understood from the fact that after the emission of an e-photon the
atom is in the ground state. It takes a finite time r for the atom to make a
|g> - |e> transition, which is necessary for the emission of a subsequent e-

photon. In a similar way it follows that fgg(o) must be zero. Equation (43)
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shows that the probability for the detection of an e-photon immediately
following a g-photon is larger than the uncorrelated probability for the
detection of an e-photon (bunching). This follows from the fact that after
the emission of an e-photon the atom is in the ground state, rather than o.
This enhances the probability for the emission of a g-photon, which is
proportional to the population of the ground state. The inequality in Eq.
(44) can be explained in a similar way. From Eqs. (42)-(44) and with ﬁe + 5g

+ 1 we find
1,(0,0) = gzlplz X (45)

It appears that 12(0,0) does not depend on any of the parameters Oo' A, A or
X.

The Laplace transform of Eq. (38) is

o

1
B s+ iL, + W+ T Ra ! (46)

d

2
= e
Epa(s) = I rr R

irn terms of an operator inversion. Working out this expression then yields

for the four combinatiouns

£ 1 2
L9 = 5o (302(s + n) + al(s +m° + 2%y (47)
2
~ P 1 2
fge(s) - i%?£7 (Eﬂi(s + 1) + (s+Ae)[(s + n)z + A7)y, (48)
- £
F o (5) = sy (gh(s + ) + (A (s + )% 4 2%]) (49)
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2

2 2
gg’S) " op(sy %S+ M F AL T+ AT, (50)

where

D(s) = n§<s +n) 4 (s + 28) [(s+ m>+al] . (51)

With Eq. (37) we can then construct IZ(O,S). The result, however, is not very

transparent.

6. Photon statistics

From TZ(O,S) and with Eq. (4) we can calculate h(s). Then the Q-factor

follows from Eq. (8), with result

Oi(l+|PI2)((A-A)(n2+A2)-anzé)+A|P|2(3+|P|2)(ni(nz-az)-(n2+A2)z)
Q=) = &

{n§q+2A<q2+A2>)2

2 2+02

4P| (n )

+ (52

§
a’n(1+|2)y+al| 2 (n%+a?) (3+[p] %)

For IPI2 -+ 0 this reduces to the Q-factor of a free atom (6].

Close to resonance (A - 0) and for a small laser linewidth (X - 0) the Q-

factor can be written as
£
Q=) = Fq(x,y) . (53)

which depends basically only on the two parameters




2 2 '
x= 2|2, y-aa’ . (54)
The function q(x,y) is
x(3 + x){y - %(1 + x)z) - %y(l + x)2 2x
q{x,y) = 1 7 2 + 1 . (55)
by +5 (1L +x)7) y+x 3+ x)

The sign of q(x,y) then determines the regions of sub- and super-poissonian
statistics, and this is shown in Fig. 1. It can be checked by inspection that
q(x,y) has a factor 1 - x, and therefore we have q(x,y) = 0 for x = 1, all y.
This is the wvertical line in Fig. 1. The curve in Fig. 1 gives the second
solution of q(x,y) = 0. On the y-axis (PC absent) tﬁe statistics is always
sub-poissonian, and q(0,y) has a minimum of -i at y = l. In absence of the

4 2

4
laser (x-axis), q(x,0) decreases monotonically from 3 at x = 0 to -1 at x = «.
The function q(x,y) is discontinuous at (x,y) = (0.0) and has a saddle point

at (x,y) = (1,2).

7. Unit reflectivity

The reflection coefficient |P|2 is proportional to the square of the
intensity of the pump lasers of the four-wave mixer, and can therefore have
any value. In particular, reflectivities larger than unity have been obtained
experimentally [13-15]. An interesting special case is unit reflectivity, for

which |P{2 - 1. With Eqs. (47) - (51) we then obtain

£.(7) + fge(f) -£ (36)

feg(f) + fgg(r) - £ . (37
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These two combinations of correlation functions turn out to be independent of

r. The intensity, Eq. (35), reduces to

I~-£ | (58)
and the two-photon correlation factors as

IZ(O,r) - I2 , (59)
for all r. With Eq. (4) this yields h(r) = 0, and therefore

Q(t) =0 , (60)

for all t and any combination of parameters. In general, it is not necessary
that h(r) is identically zeroc in order for the statistics to be poissonian;
for t - =, only the average of h(r), in the sense of Eq. (6), has to vanish.
Furthermore, the functions f a(r) separately have a non-trivial r-dependence,

B

as illustrated in Figs. (2) and (3).

8. Conclusions

We have studied the photon correlations and statistics of resonance
fluorescence radiation, emitted by an atom near the surface of a PC. The two-
time intensity correlation appeared to have four distinct terms, each of which

is proportional to a function f a(r). These f a(r)’s were shown to have the

B B
significance of the detection rates of B-photons at time 7, after the

detection of an a-photon at time zero. From these correlation functions we

constructed the long-time Q-factor, as given by Eq. (52). For A = X = 0, Q(=)
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could be expressed in 1 two-parameter function q(x,y), and the conditions for
sub-poissonian statistiecs (q < 0) were represented pictorially in Fig. 1. For
small reflectivicties |P|2 the statistics is always sub-poissonian; for |P|2 -
L che photons have Polsson statistics for any value of the optical paramecters:
and for large value: of ‘P]Z the statistics becomes again sub-poissonian. It
follows from Eq. (52) that for |P|2 ~ o the Q-factor reaches its ultimate

lower limit of Q(w) = -£/A.

Photon correladons and stadsdcs of phase-conjugated resonance fluorescence should be amenable
to experimental observation. When an atomic beam and a laser beam are projected along the surface of
the PC, above which they intersect, then the fluorescence can be detected in a direction perpendicular to
the surface. A complicaton, however, might be the background radiation which is emitted spontaneously

in all directons by the nonlinear medium.
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Figure Captions

Fig. 1 Regions of sub-poissonian (-) and super-poissecmian (+) statistics for
A =X =0 as a function of the phase-conjugate reflectivity x and the relative
laser power y. The indicated signs are the signs of the function q(x,y). At
(x,y) = (1,2), q has a saddle point. The curved line approaches the
asymptotic value of x = 3 for y + =, and q(x,y) is negative for all x > 3.

Fig. 2 The two curves represent fee(r)/f and feg(f)/f as a function of Ar for

A =2 =0, |P|2 = 1 and 02 - 2A2. These parameters correspond to the saddle

point in Fig. 1. The dashed line indicates the value for Ar - =, which is %

for both curves. The overshoot in the curve of feg(r)/E below the asymptotic

limit is a remnant of Rabi oscillations. The Rabi frequency for these values

of the parameters is %/7A.

Fig. 3 Functions fgs(r)/g and fgg(r)/§ for the same parameters as in Fig. 2.
5

Tue asymptotic limit here is g as shown by the dashed line.
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