' N

REPORT DOCUMENTATION PAGE o raoss X

1 NOUr DAY EEPONE. NCILOING The UM 1of FEVIeWING NSINLCTIoNS. S44/CTING SXBUNQ GALA LOUICES GATheNNQ ANd Martaring
1 Durden estimate or any other aspect o 1.3 collection of NforMAaloN. NCUCNG SUJEASTIONS 10f BAUCIG TS Durden. 10 Washingon

AD_A24O 7 4 5 Jatterson Davis Highway Sufte 1204 Arington, VA 222024302, and 10 the Office of irormanion and Reguutory Atarrs, Office of

["m l,f” ” ""Im I'lj m FORT DATE 3 REPORT TYPE AND DATES COVERED
l i lh hl”)": Final: 30 Jul 1991 to 01 Jun 1993
4 TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report:U.S. NAVY, Ada/L, Version 4.0
('OPTIMIZE), VAX 8550(Host) to AN/UYK-43 (Single CPU)(Bare Board)(Target).
91062651.11172

5 AUTHOR(S!

National Institute of Standards and Technology

Gaithersburg, MD

USA

T BERFORM NG ORGANIZATION NAME(S) AND ADDRESSES) 8 PERFORMING ORGANIZATION
National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST90USNS10_5_1.11

Bidg. 255. Rm A266

Gaithersburg, MD 20899 USA

3 SPONSORING MONITORING AGENCY NAMES) AND ADDRESS(ES) 75, SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E114
Washington, D.C. 20301-3081

T1 SUPPLEMENTARY NOTES

123 DISTRIBLTION AVAILABILITY STATEMENT, 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13 ABSTRACT :Maximum 200 words)
U.S. NAVY, Ada/L, Version 4.0 (OPTIMIZE) Gaithersburg, MD, VAX 8550, running VAX/VMS Version 5.3 (Host) to
AN/UYK-43 (Single CPU)(Bare Board)(Target), ACVC 1.11.

S|
E,J g5

SEP 19 1301 ' '91'_ 11054
' AT

T4 SUBLELT TEAMS 15. NUMBER OF PAGES
Ada programming language. Ada Compiler Val. Summary Report. Ada Compiler Val.
Capability, Val Testing. Ada Val. Office. Ada Val. Facility, ANSI'MIL-STD-1815A, AJPO. 16. PRICE CODE .
17 SECLRITY CLASSIFICAT ON 8 SECURITY CLASSIFICATION 19 S_CURITY CLASSrICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540 01 280 550 ~ Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

9v 4

AIMER NOTICE

T o —

:f‘gé? 4 3 -u«gg’ ; é’::» ‘{1? 5
B eyl ¥ o) Fords
- LA b o .
RN
S ST Yia e
x’:_'f 5 i d.i‘;‘
':1* X e
3 % ‘3? H .
B B N -
. A B N

ety :7_:5 s L

R\

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

AVF Control Number: NIST90USNS510 5 1.11
DATE COMPLETED

BEFORE ON-SITE: 1991-04-05

AFTER ON-SITE: 1991-06-26

REVISIONS: 1991-07-30

s
|

Ada COMPILER
VALIDATION SU/MMARY REPORT:
Certificate Number: 910626S1.11172

U.S. NAVY
Ada/L, Version 4.0 (/OPTIMIZE) .
VAX 8550 => AN/UYK-43 (Single CPU) (Bare Board)

Prepared By:

Software Standards Validation Group
National Computer Svstems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

e —— e e ——— e .
AZcasion For -
e ,_.,___‘_.‘~‘_~‘— ——n N
P e - “
NS] S
- ‘ \ '
!]
S T..L . ! copd
L i 0
’ LIS RIS TORA NS - } . ngPECY '
Pt e, ; Lt
e : !
Lo
,
By
Ot oan

J
.
)

T
\ 5
T

AVF Control Number: NIST90USN510_5 1.11
Certificate Information
The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 1991-06-26.

Compiler Name and Version: Ada/L, Version 4.0 (/OPTIMIZE)

Host Computer System: VAX 8550, running VAX/VMS Version
5.3
Target Computer System: AN/UYK-43 (Single CPU) (Bare Board)

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
910626S1.11172 is awarded to U.S. NAVY. This certificate expires
on 01 March 1993.

This report has been r2viewed and is approved.

;%Z/i/;é;% ¢ZLJé2£;ﬂ4/

Ada Validation Facility
Dr. David K. Je Mr. L. Arnold/Johnson
Chief, Informatioct ms Manager, Software Standards
Engineering Division (ISED) " Validation Group
Computer Systems Laboratory (CLS)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

17 S e P

Ada Validation

alidation Organization ,».Ada Joint Program Office
#; ;/ Computer & Software " Dr. John Solomond
_ Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE
The following declaration of conformance was suprplied by the
customer.

DECLARATION OF CONFORMANCE

Customer: U.S. NAVY

Certiricate Awardee: U.S. NAVY

Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Ada/L, Version 4.0 (/OPTIMIZE)

Host Computer System: VAX 8550, running VAX/VMS Version
5.3
Target Computer System: AN/UYK-43 (Single CPU) (Bare Board)
Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1937 in the implementation listed above.

v '
\ . S~

s S - ‘- vl
c! o LMy ‘JKJ‘V,Q»L/,L‘ LL"-E"j 1
Customer Signature Date
Company U.S. Navy
Title | o =
) . ' Y .
o ,if}’]\ - J/xvl‘/(:(vv,\“ > /V\ : 1
Certificate Awardee Signature Date
Company U.S. Navy
Title

TABLE OF CONTENTS

USE OF THIS VALIDATICN SUMMARY REPORT

CHAPTER 1 .o
INTRCDUCTICN
1.1
1.2 REFERENCES .
1.3 ACVC TEST CLASSES
1.4 DEFINITION OF TERMS
CHAPTER 2 . e e e e e e e e e
IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAWN TESTS
2.2 INAPPLICABLE TESTS
2.3 TEST MODIFICATIONS
CHAPTER 3 e e e e e e e e
PROCE NG INFORMAILCON . . .

APPENDIX A

S8I .
3.1 TESTING ENVIRONMENT
3.2 SUMMARY OF TEST RESULTS
3.3

TEST EXECUTION

MACRO PARAMETERS

APPENDIX B

COMPILATICN

LINKER OPTIONS

APPENDIX C

APPENDIX F ©

SYSTEM OPTIONS . .

F THE Ada STANDARD

.

R

1
(S N

SIS S N
[|
O N el

]

G W W W
| |
N

>
| [
b b

UJ(FU?
N

a0
"ot
e

= — CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90} against the Ada Standard {[Adasg3:
using the current Ada Tompiler Validation Capability (ACVC). This
validation Summary Report (VSR) gives an account of the testing of
this Ada implementaticn. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
cf the ACVC may be found in the current ACVC User's Guide [UG389).

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
«with the "Freedom of Information Act®™ (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this wvalidation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation-Organization
Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1.2 REFERENCES

"24a327 Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

"Pro90; Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Offie®, August 1990.

9 Ada Compiler Validation Capability User's Guide, 21 June

TG
8

T
-
a
b

[So RN}

o

.3 ACVC TEST CLASSES

Cempliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
tast classes: A, B, C, D, E, and L. The first letter of a test
r:ame identifies the class to which it belongs. Class A, C, D, ard
I tests are executable. <Class B and class L tests are expected to
croduce errors at compile time and link time, respectivelv.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the

result when they are executed. Three Ada library units, the
cackages REPORT and SPPRT13, and the procedure CHECK FILE are used
fcr this purpose. The package REPORT also provides a set of

identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Stanaard. The procedure CHECK FILE 1s used to check the contents
cf text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
3 tests are not executable. Each test 1in this class is compiled
and the resulting compilation listing is examined to verify that
all viclations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal by
~he compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

n some tests of the ACVC, certain macro strings have to be
eplaced by implementation-specific values -- for example, <the
argest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
nodificaticns, additional changes may be required to remove
unforeseen conflicts between the tests and implementation~dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

Tor each Ada implementation, a customized test suite is produced by

1-2

the AVF. This

customization consists of making the modifications

dzozcoibed IW tHe preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2

and [UG897).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite acceording to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Inplementation

Ada
Validaticn
Facility (AVF)

Ada

Validation
Organization
(AVO)
Compliance of
an Ada
Inplementation

Computer
System

The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executaple form and execution thereof.

The means for testing compliance of Ada
implementations, Validation consisting of the
test suite, the support programs, the ACVC
Capability user's guide and the template for
the validation summary (ACVC) report.

An Ada compiler with its host computer system and
its target computer system.

The part of the certificaticn body which carries
out the procedures required to establish the
complianca of an Ada implementation.

The part of the certification body that provides
technical guidance for operations of the Ada
certification system.

The ability of the implementation to pass an ACVC
version.

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

1-3

Conformity

Fulfillment by a product, process or service of

=~ —all requirements specified.

Zustomer

Ceclaration of
Conformance

Host Computer
Systen

Inapplicable
test

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated ada
Implementation

validation

An individual or corporate entity who enters intc
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

A formal statement from a customer assuring that
conformity is realized or attainable on the Ada
implementation for which validation status is
realized.

A computer system where Ada source programs are
transformed intc executable form.

A test that contains one or more test objectives
found to be irrelevant for the given Ada
implementation.

Software that controls the execution of programs
and that provides services such as resource
allccation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
conplete hardware implementations are possible.

A computer system where the executable form of Ada
programs are executed,

The compiler of a validated Ada implementation.

An Ada irnnlementation that has been validated
successfully either by AVF testing or by
registration [Pro90].

The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use cof the Ada programming language.

§

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

.1 WITHDRAWN TESTS

Scme tests are withdrawn by the AVO from the ACVC because they dc
¢ conform to the Ada Standard. The following 94 tests had ceen

withdrawn oy the Ada Validaticn Crganization (AVO) at the time oI
salidatlion testing. The raticnale for withdrawing each test :s
available from either the AVO or the AVF. The publication date for
tnls list of withdrawn tests is 91-05-03.

£23005C B28006C C34006D C355081 355083 C35508M
C35508N c33702a C357028B B41308B C43G004A C45114A
C+5316A Ci5612A Ci5612B Cc435612C C45651A Ci6022A
B49C0BA B49008B A74006A C74308A B83022B B83022H
2320258 B83025D B83026B C33026A C83041A B35001L
C385001F C94021A C97116A C38003B BA2011A CB70C1A
370018 CB7004A CCl223A BCl226A CCl226B BC3009B
BD1B0ZB BD1BO6A AD1BO8A BD2A02A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
BD4008A ch4022A CcD4022D CD4024B CcD4024C CD4024D
CD4031A CD4051D CD5111A cD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD72Cex
BD8002A BD800C4C CD9005A CDS0O0SB CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111cC
CE3116A CE31lisaA CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 IUNADPLICABLE T3

A test 1s inapplicable 1if it contains test objectives which are

irrelevant for a given Ada implementatioun.

The inapplicability

criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the

fcrmat AI-dddd.
inapplicable for the reasons indicated;

are included as appropriate.

The

following 201 tests have floating-point

requiring mcre digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C25706L..7 (l4 tests)
C33708L. .Y

(14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
C35802L..2 (15 tests)

For this implementation, the following tests were
references to Ada Issues

type declarations

C2a5241L..%Y {1+ tests) Ci332.L..7 (1+ tests)
T N - .~ o=~ R

C433I2TL..% ‘14 tests) C35521L..2 (15 tests;

C+ZZ224L..2 (15 tests) Ca3521L..2 (15 tests;

Cizh41L..7 (14 tests) C3/012L..2 (15 tests)
Z23113H..X {4 tests) use a line length greater than MAX IN L:XN
2357138, C43323B, 3850017, and C86006H check for the redef ined
= pe SHCRT FLCAT; fcr this implementation, there 1s nc s”ch T re
The following 21 tests check for the predefined type SHCRT INTIGEIR;
fzr this implementation, there 1s no such type:

C354043 336105C C45231B C43304B Cilsslls

C4i35412B C+55028 Ci55038B C455048B C433324Z

Ca36118B C45613B C456148B 45631B Ci3h2ZB

B52004E C55B078B B55B0SD B86001V C360CHD

CCT101E
C23404D, C43231D, 336C01X, C86006E and CD7101G check for a
credefined integer type WwWith a name other than INTEIGER,
_ONG INTEGER, cr SHCRT INTEGER: for this implementation, thera is
nC such Tyre.
C357120 and Bg8s001Z check for a predefined floating-point type with
a name ¢ther than F_OA LONG_FLOAT, or SHORT FLOAT; for this
implementaticn, there is “o such type.

C45331M..P and C453532M..°P

f2r types that requi
<his implementation,

.B (2 tests)
_FVERFLCWS i
ntaticn,

.

[OR
v
<

0w
o)
@]
0
rh O
o un

O

5
r4 O

[I

- C

O
Vel

(fg‘ﬂ

w o

[

&}
TN B2
3OO
0

ur Oy
A

[SRS
[NENO]

344,

S
e

CD2A34E,
to specify
mentation dces

S)
IO
oo
IR N

1)
b

0z ¥ M

Py b b2 B

0y by
3y O

>
-

[GRS
r 1 o

o3
O

Uy sk Uy e
t\: -
[

CD

&)

(8 tests) check fixed-point operaticns
re a SYSTEM.MAX MANTISSA of 47 or greater; for
there 1s no such type.

check that the proper exception 1s raised if
s FALSE for floating polint types: for this

MACHINE OVERFLOWS is TRUE.

name of a predefined fixed-point type cther than

implementation, there is no such type.

whether a length clause can specify a non-default
cating-point

type: this 1implementation doces nct

2A34I..J (2 tests), and CD2A840
non-default sizes for access
nct support such sizes.

use
types;

length
this

(2 tests)
S&-

e
aul

(1, O 1
o 3

use instantiations of package
ained array types and record types with
ts; these instantiations are rejected

[

t 3.

o
“

-2

1D, and EE2401G use instantiations of packacge
2 wTmhr unconstrained array types and record types with
n T t defaults: these instantiaticns are relected

in the following table are not aoo icable becausa
atlicns are supported for the given ccmbinatic
access method.

Test File Operation Mode File Access Method
CEZ13ZE CREATE OUT_FILE SEQUENTIAL IO
JE2122F CREATE INCUT FILE DIRECT IO
CZz1027 CREATE CUT FILE DIRECT IO
CE2132XN QPEN IN FILE SEQUENTIAL IO
CEZ21320 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT_FILE SEQUENTIAL IO
CEZ1020 RESET OUT FILE SEQUENTIAL IO
CEZ2102R CPEN INOUT FILE DIRECT IO
CE2122S8 RESET INOUT FILE DIRECT IO
JE2Lo2T CPER IN FILE DIRECT IO
CZ2132C RESET IN FILE DIRECT IO
CZ2102v opEN OUT_FILE DIRECT IO
CEZ2132W RESET CUT _FILE DIRECT IO
CZ3132F RESET Any Mcde TEXT IO
CZ3102G DELETE =====--- TEXT_IO
CE31G21 CREATE OCT _FILE TEXT IO
CEZ1d2J7 OPEN IN FILE TEXT IO
CE3102K OPEN OUT FILE TEXT IO

The tests listed in the following table are not applicable because

zh iven file operations are not supported for the iven
g9 , P . J¢

cembination of mode and file access method.

Test File Operation Mode File Access Methcd

CE210CZA CREATE IN FILE SEQUENTIAL IO

CE21023 CREATE IN FILE DIRECT IO

CZ310%A CREATE IN FILE TEXT_IO
The following 13 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the
same external file; USE ERRCR is raised when this association is
attempted.

CE2107A..H CE2107L CE2110B CEZ110D CE2111D
CE2111H CE3111A..B CE3111D..E CE31'14B CE3115A
TE2203A checks that WRITE railses USE ERROR if the capacity of an
2x*ternal seqguential file is exceeded; this implementation cannot

restrict f£ille capacity

3A checks that WRITE raises USE_ERROR if the capacity of an
nal direct file 1s =xceeded:; this implementation c¢annot
ict file capacity.

O

W~
0wt
(t (b 4>
HH O

3304A checks that SET _LINE_LENGTH and SET_PAGE_LENGTH raise
E_ERROR if they specify an inappropriate value for the external
file: there ar: no inappropriate values for this implementation.

CE3413B checks that PAGE ralises LAYOUT_ERROR when the value of the
rage number exceeds COUNT'LAST. For this implementation, the value
cf ZOUNT'LAST is greater than 150000 making the checking of this
chjective impractical.

2.3 TEST MCDIFICATIONS
Modificaticons (see section 1.3) were regquired for 44 tests.
The following tests were split into two or more tests because this

implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B22004A B23004A B240035A B24005B B28003A
B33201C B33202C B33203C B33301B B37106A B373011I
B38003A B38003B B3800%A B38009%9B B44001A B44004A
B54A01L B55A01A B61005A B85008G B85008H B95063A
B97103E BB1006B BC1102A BC1109A BC1109B BC1109sC
BC1109D BC1l201F BC1201G BC1201H BC1201I BC1201J
BC1201L BC3013A BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT):" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may ke elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAM ERROR.

C34005P and C34005S were graded passed by Test Mod.fication as
directed by the AVO. These tests contain expressions of the form
"T - X'FIRST + Y'FIRST", where X and Y are of an array type with a
lower bound of INTEGER'FIRST; this implementation recognizes that
"X'FIRST + Y'FIRST" is a loop invariant and so evaluates this part
of the expression separately, which raises NUMERIC_ERROR. These
tests were medified by inserting parens to force a different order
of evaluation (i.p., to force the subtraction to be evaluated
first) at lines 187 and 262/263, respectively; those modified lines
are:

"C34005P, line 187)

IF NOT EQUAL (X (I), Y ((I = X'FIRST) + Y'FIRST)) THEN ‘
(C340055, lines 261..4 (only 262 & 263 were modified)]

IF NOT EQUAL (X (I, J),

Y ((7 - X'FIRST) + Y'FIRST,
(J - X'FIRST(2)) +
Y'FIRST(2))) THEN

= CHAPTER 3

PRCCESSING INFORMATION

3.1 TESTING ENVIRCNMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For a point of contact for technical information about this
Ada implementation system, see:

Mr. Christopher T. Geyer
Fleet Combat Directions Systems Support Activity
Code 81, Room 301D
200 Catalina Blvd.
San Diego, California 92147
619-553-9447

For a point of contact for sales information about this Ada
implementaticn system, see:

NOT APPLICABLE FOR THIS IMPLEMENTATION

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
"Proso].

For all processed tests (inapplicable and applicable), a result was
cbtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3772
b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 304
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

3-1

£~ Total Number of Inapplicable Tests 304 (c+d+e) .
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

when this implementaticn was tested, the tests listed in secticn
2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 2304
tests were 1inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
In addition, the modified tests mentioned in section 2.3 were
also processed.

A magnetic tape containing the customized test suite (see
section 1.3) was taken on-site by the validation team for
processing. The contents of the magnetic tape were loaded
directly onto the host computer.

After the test files were loaded onto the host computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system .
and executed on the target computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B
for a complete listing of the prccessing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

FOR /OPTIMIZE the options were:

/SUMMARY /OPTIMIZE /SOURCE /OUT=<filename>

The coptions invoked by default for validation testing during
this test were:

FCR /OPTIMIZE the cptions were:

N0 _MACHINE CODE NO_ATTRIBUTE NO_CROSS_REFERENCE
NO_DIAGNOSTICS NO _NOTES PRIVATE LIST CONTAINER GENERATION

®

CODE_ON_WARNING NO MEASURE DEBUG CHECKS NO EXECUTIVE
NO RTE=BNLY TRACE_BACK ,NO_EMR

Test output, compiler and linker listings, and jop logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

- APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for
customizing the ACVC. The meaning and purpose of these
parameters are explained in [UG89]. The parameter values are
presented in two tables. The first table lists the values
that are defined in terms of the maximum input-line length,
which is | the value for SMAX IN LEN--also listed here.
These values are expressed here as Ada string aggregates,
where "V" represents the maximum input-line length.

Macrc Parameter Macro Value

$MAX IN LEN 120

$BIG _ID1 (1..V=1 => 'aA', V => '1')

$BIG _ID2 (1..V=1 => '"A'", V => '2")

$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V-1-V/2 => 'A')
$BIG_ID4 (1..V/2 => 'A') & '4' & (1..V=-1-V/2 => 'A')
$BIG_INT LIT (1..V=3 => '0') & "298"

$BIG _REAL LIT (1..V=5 => '0') & "690.0"

$BIG_STRING1 & (1..V/2 => 'A') & '

$BIG STRING2 Mg (1..V=1-V/2 => 'A') & '1' & ‘'m1
$BLANKS (1..V=20 => ')

$SMAX LEN INT BASED LITERAL
M2TM & (1..V-5 => '0') & "11:"

$SMAX LEN REAL BASED LITERAL
"16T" & (1..V-7 => '0') & "F.E:"

$MAX STRING LITERAL '"' & (1..V=2 => 'A') & '™

The folldwing table contains
macro parameters.

Macro Parameter Ma

—— . — — . - —— — — — —— —— W -

$SACC_SIZE
SALIGNMENT

$COUNT _LAST
SDEFAULT MEM SIZE
$DEFAULT STOR _UNIT
$DEFAULT_SYS NAME

$DELTA_DOC

SENTRY ADDRESS

SENTRY ADDRESS1

$ENTRY_ADDRESS?2

SFIELD_LAST
SFILE _TERMINATOR
$FIXED_NAME
SFLOAT_NAME
SFORM_STRING
SFORM_STRING2

$GREATER_THAN DURATION

$SGREATER THAN DURATION_ BASE_LAST

$SGREATER THAN FLOAT BASE_LAST

SGREATER_THAN FLOAT SAFE_ LARGE

A=-2

the values for the remaining

cro Value

2 147 483 647
1 048 576

32

ANUYK43

2#0.0000_0000_0000_0000_0000_0
000_0000_001%

SYSTEM.CLASS I UNHANDLED ADDRE
ss

SYSTEM.CLASS II_ UNHANDLED_ADDR
ESS

SYSTEM.CLASS III_UNHANDLED_ ADD
RESS

2 147 483 _647

v

NO_SUCH_FIXED TYPE
NO_SUCH_FLOAT TYPE

"

"CANNOT RESTRICT FILE CAPACITY"
131071.5

131 _073.0

7.5E+75

7.5E+75

SGREATER_THAN_SHORT_FLOAT_SAFE_LARGE 0.0EO .

SHIGH PRIORITY
$SILLEGAL _EXTERNAL FILE NAME1

SILLEGAL EXTERNAL [ILE NAMEZ

SINAPPROPRIATE LINE_LENGTH
SINAPPROPRIATE PAGE_ LENGTH
$INCLUDE_PRAGMA1l

SINCLUDE PRAGMA?2
SINTEGER_FIRST
SINTEGER_LAST
$INTEGER _LAST PLUS 1
SINTERFACE LANGUAGE

$LESS_THAN DURATION

$LESS_THAN_DURATICN_BASE FIRST

$LINE _TERMINATOR
$LOW_PRIORITY

SMACHINE CODE_STATEMENT
$MACHINE CODE_TYPE
SMANTISSA_DOC

$SMAX DIGITS

$SMAX_ INT

$SMAY_INT PLUS 1

SMIN INT

SNAME

SNAME LIST

15
\NODIRECTORY\FILENAMEY

THIS-FILE-NAME-IS-TCOO-LONG=-FOR~
MY-SYSTEM

-1

-1

PRAGMA INCLUDE ("A28006D1.TST")
PRAGMA INCLUDE ("B28006F1.TST";
-2147483647

2147483647

21474836438
MACRO NORMAL
-131071.5

-131_073.0 .

ASCII.LF

0

formati'(f 1b,0,0,0,0,0,0)
formati

31

15

9223372036854775807
9223372036854775808
-9223372036854775807
WO_SUCH_TYPE AVAILABLE

ANUYK43

SNAME SPECIFICATION1

e Y

SNAME SPECIFICATION2
SNAME SPECIFICATION3
$NEG_BASED INT
SNFW_MEM SIZ
SNEW_STOR_UNIT
SNEW_SYS_NAME
$PAGE_TERMINATOR

$RECORD DEFINITION

SRECORD NAME

$TASK SIZE
$TASK_STORAGE_SIZE
$TICK

$VARIABLE ADDRESS
$VARIABLE ADDRESS1
SVARIABLE ADDPESS2

$YOUR PRAGMA

X21z2cAa
X2120B
X3119A
l16%FFFFFFFEFFFFFFFFD+
1 048 576
32
ANUYK43
ASCII.FF
record
k:1i3 bit;

s:13 bit;
record;

f:16 _bit; a:i3_bit;

b:i3_bit; 1:i1 bit;
y:113 bit; end

formatii

32

1024

0.000048828125

16#00204%

16400214

1630023#%

EXECUTIVE

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specificallvy
noted otherwise, references in this appendix are to compiler
decumentation and nct to this report.

= LINKER OPTIONS .

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation
and not to this report.

= APPENDIX C .

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies <correspcnd o

implementation-dependent pragmas, to certain machine-dependent
ccnventions as mentioned in Chapter 13 of the Ada Standard, and +2

certain allowed restrictions on representaticon clauses. The
implementation-dependent characteristics of this Ada implementaticn,
as described in this Appendix, are provided by the customer. CUnless
specifically noted otherwise, references in this Appendix are t=
conmpiler documentation and not to this repcr=.
Implementation-specific portions of the package STANDARD, which ara
not a part of Appendix F, are:
vackage STANDARD is
type INTEGER 1s range -2 147 483 _647 .. 2 147 483 647;
type LONG INTEGER 1s range
-9_223_372 036 _854_775_307 .. 9 223 372 036 854 775 307:
tvpe FLOAT is digits 6 range T
-(1630.FF_FFF83E63) .. (1630.FF_FFF83E63);
type LONG_FLOAT is digits 15 range
-(1620.FF_FFFF_FFFF_FFEO3E63) .. (1630.FF_FFFF_FFFF_FFEO3E63) ;
type DURATION is delta 2.0 ** (-14) range .
=131 071.0 .. 131 _071.0;

end STANDARD:;

Ada /L P?Sz =Handbock Jersion 3.3

23 Marcn 133

Appendix F

The Ada Language for the AN/UYK-43 Target

~er .s Ada, as
mming Languace,

The source languacge accepted by the compll
rzgra
("Ada Language

descrived .o zhe Millizary sSzan ca*d, Ada ?
ANSI/MIL-8TD-1813A~.383, .7 fabruary .383
Reference Manua.").

The Ada definizicn permits cerzaln lmplementa:zion

dependencies. Zach Ada ‘Tp;emen:acion 1S reguired o supp.y 3
ccmplece descriprion of its dependencies, to be thoughz of as

ApD pendix T =2 the aAda Language Reference Manual. This sectizn .53
chat cescriptizsn for tne AN, UYK-43 target.

F.1 Options

There are s3everal ccmpller options provided by all ALS/N
Comprlers =zna: directly affecs the D'agmas defined in zne Ada
Language Reference Manual. These compiler options curcently
inclucde tne CHECXS and OPTIMIZEZI options which affect zhe SUPPRISS
and CPTIMIZZI pragmas, respectively. A complete List cf ALS/N
Ccmpiler cpz.ons can pe fzound In Secticon 3.

The CHICXS <ption enables all run-time error checking £or zrne

scurce £..e being compiled, which can ccntain one or more
cempilaticn units. This allows the SUPPRESS pragma to be used .o
suppressing -ne run-time checks discussed in the Ada Language
Reference Manual, but note that the SUPPRESS pragma(s) must Dbe
applied to each compilation unit. The NO_CHECKXS option disables
all run-time error checking for all compilation units within the
source £ile and is equivalent to SUPPRESSing all run-time checks

witnin every compilation unit.

The OPTIMIZE option enables all compile-time optimizations
for the source file being compiled, which can contain one or more
compilation units. This allows the OPTIMIZE pragma to request
either TIME-oriented or SPACE-oriented optimizations be
verformed, but note that the OPTIMIZE pragma must be applied o
each compilation unit. If the OPTIMIZE pradma 1s not present,
rhe ALS/N Compiler's Global Optlmlzer tends to optimize for TIME
sver SPACE. The NO OPTIMIZE option disables all compile-time
cptimizations for all compilation units within the source file
regardiess of whether or not the OPTIMIZE pragma i1s present.

In addition to those compiler options normally provided by
~he ALS/N Ccmmon Ada Baseline compilers, the Ada/L compiler also
imp.ements the EXECUTIVE, DEBUG, and MEASURE options.

riy

F.L Options -0l

U
wn
(o]
L
3]
0
9
0
O
O
A

20 3.5 ada,
.-

"

n
[NS IS
b

The ZXZICUPEVE compller opticon enables praocessing of PRAGMA
IXICTTIVE and allows WITH of units ccocmpiled wizh the RTE CNLY
zpzicn IZ NO_EZXECUTIVE is spec:fled on tne command line, the
oragma wi.. ce ignored and will nave no effec:t on tne genera:zad
ccce.

The DIZIRUG ccocmpller option enap.es DrocCessing of PRACMA DI3UG
=2 provide debugging support. £ NO DEBUG is spec:iiilad, zh
SE2UG pragmas shal.l nave no effect. Program Ln.ts contalning
ZZ2CG pragmas anc ccmpiled wizh zhe DEBUG compiler cpticn may ce
iinked wizh program unlsts contalning DJE3UG pragmas and ccmpiled

z ! on; only «! =5 compiled witn
In a o}

|
v O -
n
11
(¢}
r
O
0
nt
Y]
3
[
s}
¥

The MEASUREZ compiller option enables run-time calls to
Ruin-T.me Perfsrmance Measurement Aids (RTAids) %o record :he
entrance Lntd all subprcgrams whose podies are Lna :tne
ccmpllaticn. Program units compiled with the /MEASURE cption may
ce llnxked wlth prcgram units not ccmpiled with the /MEASURE
Zorisn: at run--ime, only “hose subprograms in program unict
ccompiled witn zne MEASURE cprtion snall have this additicrnal
MIZIASTUREI sucpor:.

£-02 F.1 Options

‘—

Acda, L 2SE Handbcox Jersicn I.3

-

29 Marcn 139.

e JESEN
3oth implementacion-defined and Ada language-defined pragmas .

are provided by ail ALS,N compilers. These paragraphs descr:.oe
-~he pragmas :ecmgw‘zed and processed by the AdasL compller. The
svncax defined in Section 2.8 cf the Ada .anguage Reference
Manual allows a pragma as the only element in a compilartion untl

’
n

(‘) o1

pefcre a compilazion unit, at defined places wizhin a cc mo.-a:i
unitc, or following a cempilation uniz., Ada/L associates pragmas
with compilation units as follows:

a. If a pragma appears before any compilation uniz la a
compilacion, it will affect all following compilation units,
as specified below and in section 10.1 cof the Ada Languacge
Reference Manual.

b. If a pragma appears inside a compilation un.k, it will be
associated with that compilation unit, and with cthe listings
associated with thac ccompilation unit, as described in the
Ada Language Reference Manual, or below.

£ a pragma follows a ccmpilation unit, it will be asscciarted
ich the preceding ccmpilation unit, and effects of the

ragma will be found in the container of that compilation

nit and in the listings associated with that container.

The pragmas MEMORY SIZE, STORAGE_UNIT, and SYSTEM_NAME are
described in Section 13.7 of the Ada Language Reference Manual. .
They may appear only at the start of the first compilation when
creating a program library. In the ALS/N, however, since program
Libraries are created by the Program Library Manager and not Dy

the compiler, the use of these pragmas is obviated. If they

appear anywhere, a diagnostic of severity level WARNING is

generated.

83}

F.2 Pragmas =03

version 3.3 Ada/L ?2SE Handbooxk
29 March 1991

F.2.1 Langquage-Defined Pragmas

The following notes speciiy ilmplementation-specific changes
to those pragmas described in Appendix 8 of the Ada Language
Reference Manual. <Unmentioned pragmas are impiemented as defined
in the Ada Language Reference Manuail.

pragma INLINE (arg {,arg}):

The arguments designate subprograms. There are three
instances in which the INLINE pragma is ignored. Zach
of these cases produces a warning message which staces
that the INLINE did not occur.

a. If the compilation unilt containing the INLINEd
subprogram depends on the compilation unit of its
caller, a routine cail is made instead.

b. If the INLINEd subprogram's compilation unit
depends on the compilaticn unit of its caller (a
routine call is made instead).

c. If an immediately recursive subprogram call is made
within the tcdy of the INLINEd subprogram (the
pragma INLINE is ignored entirely).

pragma INTERFACE (language_name, subprogram_name);

The language_name specifles the language and type of
interface to be used in calls used to the externally
supplied subprogram specified by subprogram_name. The
allowed values for language name are MACRO NORMAL and
MACRO_QUICK. MACRO_NORMAL Indicates that parameters
will be passed on the stack and the calling conventions
used for normal Ada subprogram calls will apply.
MACRO_QUICK is used in RTLIB routines to indicate that
parameters are passed in registers. See Section 7
"Parameter Passing" for details on the space required
to pass various types of parameters.

fou must ensure that an assembly-langquage body

container will exist in the program library before
linking.

F-04 F.2.1 Language-Defined Pragmas

Ada/L PSE Handbook Jersian

oragma QPLIMIZZ (arg):

Tbe argumen" 18 elther TIME or SPACZ. [£ TIME is
the optimizer concentrates on optimizing
de exec'P‘on cime, I[f SPACE is specified, the

c

O
(')
n—‘
8]

b

(D
'L

L4

imlzer concen:zrates 2on optimizi lng code size. The
faulz is If the OPTIMIZE cption is enabled and pragma
£ 1s not presentc, g;obal optimizacion is still
_er'ormeo with che default argument, SPACE Program
units containing OPTIMIZE pragmas and compiled Wwizh the
OPTIMIZE coption may be linked with program units
containing OPTIMIZE pragmas and compiled with the

NO OPTIMIZE option; but only those program units
compiled with the OPTIMIZE option will have global
opt-mlzation suppoeret.

00O O uw
1]

g
'3
Ve
<
(-
[

1]

oragma PRIORITY (arg):

The argument 1s an integer static expression in the
range 0..1.5, where 0 is the lowest use-specifiable task
oriorizy and 15 is the aighest. If the value of the
argument is out of range, the pragma will have no
effect cther than to generate a WARNING diagnostic. A
value of zero will be used if priority is not defined.
The pragma will have no effect when not specified in a
task (type) specification or the outermost declarative
part of a subprogram. If the pragma appears in the
declarative part of a subprogram, it will have no
effect unless that subprogram is designated as the main
subprogram at 1ink time.

pragma SUPPRESS (arg {,arg});
This pragma is unchanged with the following exceptions:

Suppression of OVERFLOW _CHECK applies only to xntege:
operations; and PRAGMA SUPPRESS has effect only within
the compilation unit in which it appears, except that
suppression of ELABORATION CHECK applied at the
declaration of a subprogram or task unit applies to all
calls or activations.

F.2.1 Language-Defined Pragmas -

0}
)]

Version 3.3 Ada/L PSE Hancdbeccek
29 March 199.

F.2.2 Implem&ntation-Defined Pragmas
This paragraph describes the use and meaning of chose

reccgnized by Ada/L wnhich are not specified In Appendix 3
Ada language Reference Manual.

agmas
~ne

0'o

tn

pragma DJE3CUG:

This pragma enables the inciusion of full symboli
information and support for the Embedded Target
Jepugger. The DEBUG PRAGMA is enabled by the /DEBUG
ccmmand line opticn and has no effect if this opticn is
not provided. This pragma must appear within a
compilation unic, before the £irst declaration or
statement.

pragma EXECUTIVE {(arg)]);

This pragma allows you to specify that a compilation
uniz is to run in the executive state of the machine
and/or utilize privileged instructions. The pragma has
no effect 1f the Cocmpiler cpticn NO_EXECUTIVE is
enabled, eicher explicitly or by default.

I PRAGMA EXECUTIVE is specified without an argument,
executlive state is in effect for the compilation unit
and the code generator does not generate privileged
instruccions for the compilation unit. 1If PRAGMA
EXECUTIVE (INHERIT) is specified, a subprogram in the
compilation unit inherits the state of its caller and
the code generator does not generate privileged
instructions for the compilation unit. If PRAGMA
ZXECUTIVE (PRIVILEGED) is specified, the executive
state is in effect and the code generator may generate
privileged instructions for the compilation unit.
Currently, the Ada/L compiler does not generate such
instructions. In the absence of PRAGMA EXECUTIVE, the
compilation unit executes in task state and the code
generator does not generate privileged instructions.
If PRAGMA EXECUTIVE (INTERRUPT CMR) is specified, the
Ada/L compiler generates code which uses executive
state registers instead of task state registers (i.e.
SCI instead of SCT).

PRAGMA EXECUTIVE is applied once per compilation unit,
50 1t3s scope is the entire compilation unit. PRAGMA
EXECUTIVE may appear between the context clause and the
outermost unit. If there is no context clause, PRAGMA
ZXECUTIVE must appear within that unit before the first
declaration or statement. The placement of the pragma
before the context clause has no effect on any or all
following compilation units. TIf PRAGMA EXECUTIVE
appears in the specification of a compilation unit, it

F-06 F.2.2 Implementation-Defined Pragmas

{a

W

3
29 March 1991

S

mustwiso appear i1n the body of that unit, and vice
versa. I[f the pragma appears in a specificaticn but i .
absent from the body, you are warned and the pragma is
effective. If the pragma appears in the body of a
compilation unit, but is absent from the corresponding
specification, you are warned and the pragma has no
effect. PRAGMA EXECUTIVE does not propagate to
subunits. If a subunit is compiled without PRAGMA
EXECUTIVE and the parent of the subunit is compiled
with PRAGMA EXECUTIVE, you are warned and PRAGMA
EXECUTIVE has no effect on the subunit.

pragma FAST_INTERRUPT_ENTRY (entry_ name, IMMEDIATE):

This pragma provides for situations of high interrupt
rates with simple processing per interrupt, (such as
adding data to a buffer), and where complex processing
occurs only after large numbers of these interrupts
(such as when the buffer is full). This allows for
lower overhead and faster response capability by
restricting you to disciplines that are commensurate
with limitations normally found in machine level
iaterrupt service routine processing.

pragma MEASURE (extraction_set, {arg {,arg})):

This pragma enables one or more performance measurement .
features. Pragma MEASURE specifies a user-defined
extraction set for the Run-Time Performance Measurement
Aids and Embedded Target Profiler. The user-defined
extraction set consists of all occurences pragma
MEASURE throughout the program. Extraction_set is a
numeric literal, which is an index into a user-supplied
table. Arg is a variable or a list of variables whose
values are reported at this point in the execution.
These values describe the nature (TYPE) of the values
collected to an independent data reduction program.
Pragma MEASURE is enabled by the /MEASURE command line
option and has no effect if this option is not
provided. This pragma should be applied to a package
body rather than a package specification.

pragma STATIC (INTERRUPT_HANDLER_TASK);

The pragma STATIC is only allowed immediately after the
declaration of a task body containing an immediate

interrupt erntry. The argument 1is

INTERRUPT_HANDLER_TASK. The effect of this pragma will

be to allow generation of nonreentrant and nonrecursive

code in a compilation unit, and to allow static

allocation of all data in a compilation unit. This

pragma shall be used to allow for procedures within .
immediate (fast) interrupt entries. The effect will be

-07

1)}

F.2.2 Implementation-Defined Pragmas -

Version 3.5 Ada/L PSE Handbcex
29 March 1991

for the eempiler o generate nonreentrant code for the
affected procedure bodies. If a STATIC procedure is .
called recursively, the program is erroneous.

pragma TITLE (arg);

This is a listing control pragma. It takes a single
arqument of cype string. The string specified will
apoear on the second line of each page of the source
listing produced for the compilation unit within which
it appears. The pragma should be the first lexical
unit to appear within a compilation unit (excluding
comments). If it is not, a warning message is issued.

pragma TRIVIAL ENTRY (NAME: entry simple name);

This pragma is only allowed within a task specification
after an entry declaration and identifies a

Trivial Entry to the system. A trivial entry
represents a synchronization point, contained in a
normal Ada task, for rendezvous with a fast interrupt
entry body. The body of a trivial entry must be null.

pragma UNMAPPED (arg {,argl);

The effect of this pragma is for unmapped (i.e., not

consistently mapped within the virtual space) .
allocation of data in a compilation unit. The

arguments of this pragma are access types to be

unmapped. If a program tries to allocate more UNMAPPED

space than is available in the physical configuration,

STORAGE_ERROR will be raised at run-time. PRAGMA

UNMAPPED must appear in the same declarative region as

the type and after the type declaration.

F-08 F.2.2 Implementation-Defined Pragmas

Ada/L PSE Handbook Version 2.5

F.2.3 Scope of Pragmas

]

29 March 1991

The scope for each pragma previously described as differing
from the Ada lLanguage Reference Manual is given below:

JE3CG

EXECUTIVE

Applies to che compilation unit in which the pragna

Applies to the compilation unit in which the pragma
appears, L.e., to all subprograms and tasks wizhin
the unit. Elaboration code is not affected.

The pragma is not propagated from specificacicrs

to bodies, or from bodies to subunits. The pragma
must appear consistently in the specification,
body, and subunits associated with a library uni:c.

FAST_INTERRUPT_ENTRY

INLINE

INTERFACE

MEASURE

MEMORY SIZE

OPTIMIZE

PRIORITY

STATIC

STORAGE UNIT

SUPPRESS

F.2.3 Scope of Pragmas -

Applies to the compilation unit in which the pragma
appears.

Applies only to subprogram names in its
arguments. If the argument is an overloaded
subprogram name, the INLINE pragma applies to
all definitions of that subprogram name which
appear in the same declarative part as the

INLINE pragma. .
Applies to all invocations of the named
imported subprogram.

No scope, but a WARNING diagnostic is
generated.

No scope, but a WARNING diagnostic is
generated.

Applies to the entire compilation unit in
which the pragma appears.

Applies to the task specification in which it
appears, or to the environment task if it
appears in the main subprogram.

Applies to the compilation unit in which the pragma
appears.

No scope, but a WARNING diagnostic is
generated.

Applies to the block or body that contains
the declarative part in which the pragma

appears. ‘

-09

i

Version 3.5 Ada/L PSE Handbook
29 March 1991

SYSTEM _NAME —Xo" scope, but a WARNING diagnostic is
generaced.

TITLE The ceompilation unit within which the pragma
occurs.

TRIVIAL _EINTRY Applies to the compilation unit in which the pragma
appears.

UNMAPPED Applies to all objects of the access type

named as arguments.

1y

-10 F.2.3 Scope of Pragmas

Ada/L PSE Handbook

F.3 Attributes

-~
~
-

F.3

29

Jersicn

March

The following notes augment the language-required defin:
cne predefined actributes found in Appendix A of =ne Ada

£
anguage Reference Manual.

T'MACHINE EMAX
T'MACHINE ZMIN
T'MACHINE MANTISSA
T'MACHINE OVERFLOWS
T'MACHINE_RADIX

T'MACHINE ROUNDS

At-tributes

is
is

is

63.

-64.

6.

TRUE.

l6.

FALSE.

-

1.5

Z39.

LO0S

Version 3.5 Ada/L ?SE Hardbock
29 March 1991

F.4 PredefinedLanguage Environment

The predefined Ada language environment consists cf the
packages STANDARD and SYSTEM, whicnh are cescribed belcw.
F.4.1 Package STANDARD

The package STANDARD contains the following definiticns in
addicion to thnose specified in Appendix C of the Ada Language
Reference Manual.

PE boolean IS (false, true);
R Dboolean'SIZE USE 1;

PE integer IS RANGE -2_147 483 647 .. 2_147_483 647;
PE long_integer IS RANGE
-9_223_372_036_854_775_807 .. 3 223 372 036 _854_775_807;

TY?E £lcat IS DIGITS 6 RANGE
-(l6#0.FF _FFF84E63) .. (16#0.FF FF-84E63);

TY2E long _fleat IS DIGITS 13 RANGE

~(16%0.FF_FFFF_FFFF_FFEO#E63)

{164#0.FF_FCFY FFFF _FFEQ#E63);
SUBTYPE natural IS integer RANGE 0 .. integer'LAST;
SUBTYPE positive IS integer RANGE 1 .. integer'LAST:
SUBTYPE long_natural IS long_integer
RANGE 0 .. long_integer'LAST;

SUBTYPE long _positive IS long_integer

RANGE 1 .. long_integer'LAST;
TOR character'SIZE USE 8;
TYPE string IS ARRAY (positive RANGE <>) OF character;
PRAGMA PACX(string);

TYPE duration IS DELTA 2.0 ** (-14)
RANGE -131 071.0 .. 131_071.0;

~- The predefined exceptions:

constraint_error : exception:

numeric_error : exception;
program _error : exception;
storage_error : exception;
tasking _error : exception;

F-12 F.4.1 Package STANDARD

Ada/L PSE Handbook Jarsinn 1.3
7@ March 139
F.4.2 PAtkage SYSTEM
The package SYSTEM for Ada/L is as follows:
TYPE name IS (anuyk43);
syscem_name CONSTANT system.name := system.anuvki3:
storage_unic CONSTANT := 32;
memcry_size : CONSTANT := 1 048_576;
TYPE address IS RANGE O..system.memory size - 1;
-- System Dependent Named Numbers
min_int CONSTANT := =-((2**63)-),
max_int CONSTANT := (2**63)-1;
max_digits CONSTANT := 15;
max_mantissa CONSTANT := 31;
£ine delta : CONSTANT
:= 240.0000_0000_0000_0000_0000_0000_0000_00L#;
“ick TCONSTANT := T4.8828125e-05;
-~ 1/20480 seconds is the basic clock periad.
null addr CONSTANT address := 0;
-- Other System Dependent Declarations
SUBTYPE smaller integer IS
integer RANGE (integer’ FIRST/64)..(integer'LAST/64);
SUBTYPE priority IS integer RANGE 0..15;
TYPE entry kind is (normal, immediate);
physxcal _memory_size CONSTANT := 2**31;
YPE physxcal address IS
RANGE 0..system. physical_memory_size - 1 ;
null phys_addr : CONSTANT physical_address := 0;
TYPE word IS NEW INTEGER;
-~ Address clause (interrupt) addresses
Class_I_Unhandled_address CONSTANT
address := 1640800%;
Class_II Unhandled_address : CONSTANT
address := 16#1800#%;
C?_Operand Memory Resume_address CONSTANT
address := 1641000%;
CP_IOC_Command Resume_address CONSTANT
address := 16#1.00%;
CP_Instruction_Memory_ Resume_address CONSTANT
address := 16#1200%;
CP_IOC_Interrupt_Code_Resume_address CONSTANT
address := 16#1300¢%;
CP_Operand Memory Errcr_address CONSTANT
F.4.2 Package SYSTEM - F-13

Jersion 3.5
29 March 1391

e

CP_Instruction_Memory Error_address

C? _I0C _Command Operand Zrror_address

I0C Memery Zrror_address

22

ny

_Fault_address
IOC_Memory Resume_acdress
Intercomputer Timecut_address

Confidence_Test_Fault_address

CPU_IOC_Microprocessor_Stop_address

Module _Interrupt_address
Power Tolerance_Interrupt_address

CLass_II:_Unhandled‘add:ess

C? Illegal Iastruction Error address
_ GaLl_ - _

Privileged _Instruction_Error_address

Data _Pattern_Breakpoint_address
Operand_Breakpoint _Match_address
Operand_Read_address
OCU_Status_Interrupt_address
Operand Write_ Protection_address

Operand _Limit Protection_address

Instruction_Breakpoint Match_address

7-14

Ada/L

address :=
CONSTANT
address :=
CONSTANT
acddresc :=
CONSTANT
acddress
CONSTAN
address
CONSTAN
address
CONSTANT
address :=
CONSTANT
address :=
CONSTANT
address :=
CONSTANT
address :=
CONSTANT
aédédress :=
CONSTANT
address :=
CONSTANT
address :=
CONSTANT
address :=
CONSTANT
address :=
CONSTANT
afdrgze -
CONSTANT
address :=
CONSTANT
address :=
CONSTANT
address :=
CONSTANT
address :=
CONSTANT
address :=

W3 w3 N

F.4.2

PSc Handboox

164.400¢%;
Z6#2500%;
164.600%;
163170C#;
164.300%;
164#LA00¢%:
16418004,
1641C00¢%;
1641D00%;
L641E0CH;
L6#1F00%;
164280C%;
1642200#:;
16#2300¢%;
1642400¢%;
L ELLL L
1642600#%;
16#2700%;
16#29004#;
16#2A00%;

16#2B00#;

Package SYSTEM

Ada L

PSE Handbcck

Jersion 1.3
29 Marcn 133
-- RTAS<ncerrupt addresses (1642B0l% .. 1l6#2BL7#)
deoug oseudo i1nterrupt CONSTANT address := 1H%28014%;
“MA ds Dseuco addfess CONSTANT address := .6%23.0%:
RPD _Uncderilow_address CONSTANT
address := 15%42C003%;
Instruiction_Ixecute Protection _address CONSTANT
address := 1032D00104%;
Instructizsn_Limit Protection_address : CONSTANT
address := _Hh42E004
Precise.y T.med_Interrupts_address : CONSTANT
address := _.5#27004%
cnce_only pri CONSTANT duration := 0.0;
-- Used to indicate that a PTI is not to be perizd:ic.
SUBTYPE pti_address IS address RANGEZ 16#2F014...5427174;
TYPE pti _state IS (active,lnactive,unregistered);
I0C_Illegal CAR Instructiocn CCNSTANT address := _533507%
Ioc Memory Protection CONSTANT address := 153%:.30%;
I0C C.an“e- .q"cgion_srror CONSTANT acdress := L643300%:
I0C Illegal Chain _Inscruction CONSTANT address := 1643400%;
I0C Confidence Tes:z Faulr CONSTANT address := 16%#:8004%:
.OC_Breaxoo&nt “Match CONSTANT address := 16#39004%;
I0C _CP _Incerrupt CONSTANT address := 16%43300¢%:;
zoc” _EIxcT erna- Interrupt Monitor CONSTANT address := 15#2C20%;
I0C Zxternal Function Monitor CONSTANT address := 1543D0G#;
ool Outout Data Monitor CONSTANT address := 1643£004%:
I0C_Input Data_Monitor CONSTANT address := 164#3F004;

SUBTYPE IO interrupts IS address RANGE
IOC Il legal CAR_Instruction..IOC_Input_Data Monitor;
SUBTYPE channel numbers IS INTEGER RANGE 0..637

The following exceptions ar2 provided as a "convention”
wherepy the Ada program can be compiled with ail implici:
checks suppressed (i.e. pragma SUPPRESS or equivalent),
explicit checks included as necessary, the appropriate
exception raised when required, and then the exception (s
either handled or the Ada program terminates.

ACCESS CHECK

B EXCEPTION;
DISCRIMINANT CHECK EXCEPTION;
INDEX CHECK EXCEPTION;
LENGTH CHECK EXCEPTION;
RANGE_CHECK EXCEPTION;
DIVISION CHECK EXCEPTION;
OVERFLOW_CHECK EXCEPTION;
ZLABORATION CHECK EXCEPTION;
STORAGE CHECK EXCEPTION;

F.4.2 Package SYSTEM

Version 3.5 Ada, . PSEZ Handbcoccx
29 Marcn 19S5.

-- impleméfWtation-defined exceptions.

UNREZSOLVED REFERINCE : EXC:PTIOV,

SYSTEZM ERRCR : ZXCZPTION;

CAPACITY ZRROR : ZXCEZPTION;

-- The exception CAPACITY ZRROR is raised oy =he RTIxec wnen
-- Pr2=-3unTime specified rescurce limi:is are exceeded.

N ADDRESS OF
ns the system.address of the given Class -I:
t for zne speciiied channel
S3eld : IN IO _interr-upts;
_channel : IN channel numbers
TURN address;
he address :to be used in -he
presentation (address) clause.

PRAGMA INTEIRFACEZ (MACRO_NORMAL,ADDRESS CF);

FUNCTICN "AND"

-- racurns the lcgical 22 biz "AND' between two integers.
(sperard a : IN iLnteger;
cperand _b : IN integer

) RETTURN iAbeﬁe:;

PRAGMA INTERFACE (MACRO_NORMAL, "AND"):

TUNCTION "NOT"

-- rercurns the logical 32 bit 'NOT' of an integer.
(operand_a : IN lnteger
)

RETURN integer;

PRAGMA INTERFACE (MACRO_NORMAL, "NOT");

FUNCTION "OR"

-- returns the logical 32 bit 'OR' between two integers.
(operand_a : IN integer;
operand b : IN integer
) RETURN integer;

PRAGMA INTERFACE (MACRO_NORMAL, "OR");

F-16 F.4.2 Package SYSTEM

s]
U

ada/ ! gz Handbcex

&

b

29 March

F.5 Charagter et

Ada compilations may be expressed using the following
craracters in addition to the pbasic character ses:

_cwer case letters:

abcdefghijxlmnopgrstuwvwizyz
special characters:
ts oy 2 e (1 {7

follcring transliterations are permitted:
Exclamation point for vertical bar,
Colon for sharp, and

c. Percent £for double-aquote.

o<
Lo

Character Set -

7ersicn

2 2
- .

Z351L

Version 3.5 ada/L 2SE Handbcox
29 Marcn 1991

F.6 Declaratiom and Representation Restrictions

Declarations are described in Section 3 cf the Ada lLanguace
Reference Manual, and representaczion svecificacions are descri.ped
tn Secrt:ion 13 of the Ada Language Reference Marnual and discussed
nere,

In the Zollowing specificaticns, the capitalized word SIZE
indicates the number of bits used o represent an coject of =he
~ype under discussion. The upper case symbols D, L, R,
correspond o those discussed in Section 3.5.9 of the Ada
lLanguage Reference Manual.

F.6.1 Integer Types

Integer types are specified with constraints cf tae form:

~where:

R <= SYSTEM.MAX INT & 1 >= SYSTEM.MIN_INT

')

or a prefix "t" denoting an integer type, length specifications
e £ .
£ the form:

o
FOR t'SIZE USE n ;

may specify integer values n such that n in 2..64,
R <= 2**(n-l1)~1 & L >= =-(2**(n-1)-1)

or else such that
R <= (2**n)-1 & L >= 0

and 1 < n <= 31.

For a stand-alone object of integer type, a default SIZE of 32 is
used when:

R <= 2*#%3] - 1 & L >= ~(2**31 - 1)
Otherwise, a SIZE of 64 is used.
For components of integer types within packed composite

obiects, the smaller of the default stand—-alone SIZE and the SIZE
from a length specification is used.

F-18 F.6.1 Iateger Types

Ada/L PSE Handbook Jersion 2.3
29 Marcn 139.
F.6.2 Fleating Types

floating types are specified with constraints of =he form:

where D is an lnteger in the range 1 through 1S.

For a prefix "t" denoting a floating point type, lengtn
specifications of the form:

FOR t'SIZE USE n;

are permitted only when the integer value n = 22 for D <= § or M
= 64 for 7 <= D <= 13.

"

F.6.3 Fixed Types
Fixed types are specified with constrain%ts of the form:

DELTA D RANGE L..R
where:

MAX (ABS(R), ABS(L))

-------------------- <= 2%%*3]1 - 1,

actual delta

The actual delta defaults to the largest integral power of 2 less
than or equal to the specified delta D. (This implies that fixed
values are stored right-aligned.)
For fixed point types, length specifications of the form:

for T'SIZE use N;

are permitted only when N in 1 .. 32, if:

R
L

actual_delta <= 2**(N-1)-1 * actual_delta, and
actual_delta >= =-2*#*(n-1) * actual)delta

+

Qr

R - actual _delta <= 2**(N)-1 * actual_delta, and
L >0

1)
|
[
O

F.6.3 Fixed Types -

Version 3.9 Ada/L PSE Handbook
29 March 1991

For stand-aldnée-objects of fixed point type, a default size of 32
is used. For components of fixed point types within packed
composite objects, the size from the length specificaticn will bpe
used.

For speci:ficaszicns of the form:

'l]

CR

(]

"SMALL USE n;
are permitted for any value of X, such that X <= D. X must be
specified either as a base 2 value or as a base 10 value. 1Ncte

that when X is specified as other than a power of 2, actual _deiza
will still be the largest integreal power of two less than X.

F.6.4 Enumeration Types
In the absence of a representation specificaticn £or an

enumeration type "t," the internal representation of t'FIRST is
0. The default size for a stand-alone object of enumeration type
"t" is 32, so the internal representations of t'FIRST and t'LAST
both fall within the range:

~(2**31 - 1) .. 2**31 - 1,
For enumeration types, length specifications of the form:

FOR t'SIZE USE n;
and/or enumeration representations of the form:

FOR t USE <aggregate>;

are permitted for n in 2..32, provided the representations
and the SIZE conform to the relationship specified above.

Or else for n in 1..32, is supported for enumeration
types and provides an internal representation of:

t'FIRST >= 0 .. t'LAST <= 2**(t'SIZE) - 1.

For components of enumeration types within packed composite
cbjects, the smaller of the default stand-alone SIZE or the SIZE
from a length specification is used.

Enumeration representations for types derived from the

predefined type STANDARD.BOOLEAN will not be accepted, but length
specifications will be accepted.

F-20 F.6.4 Enumeration Types

Ada/L PSE Handbook version 3.5
29 March 1991

*.6.5 Acecess Types
For access type, "t," length specifications of tre form:
FOR t'SIZE USE n;

Wwill not affect the runtime implementation of "t," ¢ efor
32 is the only value permicted for SIZE, which i1s the val.ue
returned by the attribute.

™

For collection size specificatiocns of the form:
FOR t'STORAGE_SIZE USE n;

for any value of "n" is permitted for STORAGE_SIZE (and :nat
value will be returned by the attribute call). The collection
size specification will affect the implementation of "t" and Its
collection at runtime by limiting the number of cobjects fcor type
“£" that can be allocated.

The value of t'STORAGE SIZE for an access type "t" specifies
the maximum number of storage_units used for all objects In tre
collecticn for type "t." This includes all space used by th
allocated objects, plus any additional storage required to
maintain the collection.

F.6.6 Arrays and Records
For arrays and records, a length specification of the form:
FOR t'size USE n;

may cause arrays and records to be packed, if required, to
accommodate the length specification. If the size specified is
not large enough to contain any value of the type, a diagnostic
message of severity ERROR is generated.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that the storage space
requirements are minimized at the possible expense of data access
time and code space.

A record type representation specification may be used to
describe the allocation of components in a record. Bits are
numbered 0..31 from the right. Bit 32 starts at the right of the
next higher numbered word. Each location specification must
allow at least n bits of range, where n is large enough to hold
any value of the subtype of the component being allocated.
Otherwise, a diagnostic message of severity ERROR is generated.
Components that are arrays, records, tasks, or access variables
may not be allocated to specified locations. If a specification

F.6.6 Arrays and Records _ F-21

Version 3.5 Ada,/L PSE Handbccxk
29 March 1991

cf this form=*Ps—entered, a diagnecstic message of severity ZRROR
is generacted.

Tor records, an alignment clause of *he form:
AT MOD n

specify alignments of 1 word (word alignment) or 2 words
{doubleword alignment).

If it 1s determinable at compile time that the SIZE of a
record or array type or subtype 1s outside the range cf
STANDARD.INTEGER, a diagnostic of severity WARNING is generated.
Declaration of such a type or subtype would raise NUMERIC ZRROR
~hen elaborated. -

F.6.7 Other Length Specifications

Length Specifications are descriped in Secticn 13.2 of the
Ada lLanguage Reference Manual.

A length specification for a task type "t," of the form:
FOR t'STORAGE_SIZE USE n;

ecifies the number of SYSTEM.STORAGE UNITS that are allocated
r the execution of each task object of type "t." This includes
e runtime stack for the task object but does not include
jects allocated at runtime by the task object. If a
STORAGE_SIZE is not specified for a task type "t," the default
value is 2K (words).

T O cr im0
~OoJJ00

A length specification for a task type "t" of the form:
FOR t'SIZE USE n;

is allowable only for n = 32.

F-22 F.6.7 Other Length Spetifications

Ada/L PSE Handbook Jersion 3.5

-

29 March 1991

F.7 Systea Generated Names

Refer to Section 13.7 of the Ada Language Reference Manual
ana tne section above on the Predefined Language Environmen:z £or
a discussion of package SYSTEM.

The system name is chosen based on the target(s) supported,
but it cannot be changed. In the case of Ada/L, the system name
is ANUYK43.

F.8 Address Clauses

Refer to Section 13.5 of the Ada Language Reference Manual
for a description of address clauses. All rules and restric:zions
described there apply. In addition, the following restrictions
apply.

An address clause may designate a single task entry. Such an
address clause is allowed only within a task specification
compiled with the EXECUTIVE compiler option. The meaningful
values cf the simple_expression are the allowable interrupt encr;
addresses as defined in Table F-1. The use of other values will
result in the raising of a PROGRAM_ERROR exception upon creation
of the task.

IS more than one task entry is equated to the same interrupt
entry address, the most recently executed interrupt entry
registration permanently overrides any previous registrations.

At most one address clause is allowed for a single task
entry. Specification of more than one interrupt address for a
task entry is erroneous.

Address clauses for objects and code other than task entries

are allowed by the Ada/L target, but they have no effect beyond
changing the value returned by the 'ADDRESS attribute call.

=23

7]

F.8 Address Clauses -

Version 3.5
29 March 19391

Ada/L PSE Handbcox

P e e e e e e e e . — — — — — — — E E E — — — — — — - — - —— —————— -
' IsC Interrupt
| Target-Computer Interrupt CODE Entry Address Registration
| CLASS 0
o o e o o o e o e e e e > = " = " — ———— — —— - —— - ————— =
| Class I Unhandled Interrupt None 16#0800#
o e o et e e = - > " S = = T - = - —————————— — ———an 4~
| CLASS I
o e = e = = = > =~ - = - == = = — — —— —— v — = — - = ————
lass II Unhandled Interrupt None 1641800%
CP-Operand Memory Resume 16304 1641000% :
CP-IOC Command Resume 16%41% 16#1100% !
CP~Instruction Memory Resume 16424 16412004 :
CP-IOC Interrupt Code Resume L6#34# 16#13004 |
CP-Operand Memory Error 16444 16#1400#% i
CP-Instruction Memory Error 16454# 16415004 1
CP-I0C Command/Operand Error L6464 16416004 :
IOC Memory Error 16474 1641700%
IPI Fault 16494 16#1900# T
IOC Memory Resume L6#A4 164#1A004#
intercomputer Timeout L6#B# 1641B00#% ,
CP Confidence Test Fault 164C# 1641C00# @
CPU/IOC Microprocessor Stcop 164D# 1641D00# j
Module Interrupt L64E4# 16#1Z00# {
Power Tolerance L64F# 16#1F00#
A o o o e o e S = e A = o ——— — - - —— -
| CLASS II |
P . . — - — - - — — —————— — A . - . D N T S W mD = = M G D D W G G A W D WS WD M D S G A D . - — -
Class IITI Unhandled Interrupt None 16%#2800¢#
Interprocessor Interrupt 16#0# 16#2000# UNDEFINABLE
Floating Point Error 16#1# 16421004 UNDEFINABLE
Illegal Instruction 16#2% 16422004
Privileged Instruction Error 16434 16#23004#
Data Pattern Breakpoint 16#44 16#2400¢#
Operand Address Breakpoint 16454 16#2500#
Operand Read or
Indirect Addressing 16464 16#2600#
DCU Status Interrupt 16474 16427004
Operand Write 16#94% 1642900+
Operand Limit lo4A# 16#2A00#
Instruction Address Breakpoint l6#B# 16#2B00#
RPD Underflow 16#C# 16#2C00#
Instruction Execute L6#D# 16#2D00#
Instruction Limit L6#E# 16#2E00#
Monritor Clock L6#F# 16#2F00# UNDEFINABLE
PTI None L6#2F0L# .. LG6#2FLF# i
Table F-la - Interrupt Entry Addresses
F-24 F.8 Address Clauses

Ada/L PSE Handbook Version 2
23 Marcnh 139

AN/UYK-43(V) Interrupt Summary

isc Interrupt
Target-Computer Interrupt CODE Entry Address Registracion

I0C Illegal CAR Instruction 1640# 1643010+%

IOC Memory Protection 16414 16431IC#
If the above interrupt 1s generated during CAR execution, no
channel number is available. The interrupt will bhe
translated to Class II Unhandled.

UNDEFINED 16424 16432004% UNDEFINABLE f
Channel Function Error 16434 Lo#33IC# ?
IOC Illegal Chain Instruction 16#44%.. 16#434IC# 4

16474% ‘
IOC Confidence Test Fault 16#8# 16#381IC#

If the above interrupt is generated during CAR execution, no i
channel number is available. The interrupt will be ‘
translated to Class II Unhandled.

IOC Breakpoint Match 16494 164391C# ?
If the above interrupt is generated during CAR execution, no

channel number is available., The interrupt will be
translated to Class II Unhandled.

IOC Monitor Clock l64Aa# 16#3AI0# UNDEFINABLE
IOC Processor Interrupt 164B# 16#3BICH
External Interrupt Monitor 16#C# 16#3CIC#
External Function Monitor 164D# 16#3DIC#
Output Data Monitor 164E# 16#3EIC#
Input Data Monitor l6#F# 16#3FIC#

For class III interrupts, the following interpretations apply:

IC => I0C, channel unumber where
164004..16#1F#% indicates IOC 0, channel 16#00..16#1F#%,
16#204%..1643F% indicates IOC 1, channel 16#00..16#1F#%

Table F-lb - Interrupt Entry Addresses (Continued)

F.8 Address Clauses - F-25

Version 3.3 Ada/L PSE Eancdbock
29 March 1991

F.9 UOnchecked. Conversions

Refar to Section 13.10.2 of the Ada Language Reference Manual
Lot a descr.poeion Of LWCAECKou_CONVERIIUN. Lt 1s erroneous if
your Ada program performs UNCHECXED_CONVERSION wnen the source
and zarget oblects nave different sizes.

F.10 Restrictions on the Main Subprogram

Refer to Section 10.1 (8) of the Ada Language Reference
Manual for a description of the main subprogram. The sukz:zgram
designated as the main subprogram cannot have parameters. The
designation as the main subprogram of a subprogram whose
specification contains a formal part results in a diagnecstic cf
severity ERROR at link time.

The main subprogram can we a function, but the return value

will not be available upon completion of the main subprogram's
executicn. The ma:n subprogram may not be an import unit.

F-26 F.10 Restrictions on the Main Subprogram

Ada/L PSE Handbook Jersion 3.5
29 March 1991

F.11 Input/Output

Refer to Secrion 14 of the Ada Language Reference Manual for
a discussion of ada Irpu.,/Cutput and tc Secrticn 12 of the Ada/L
Run Time Environment Handbook £for more specifics on the Ada/L
Input,/Outpuc subsystem.

The Ada/L Input/Output subsystem provides the following
packages: TEXT IO, SEQUENTIAL_IO, DIRECT _I10, and LOW_LEVEL_IO.
These packages execure in the “conrext of the user-writzten ada
program task making the I/0 reguezt. Consequently, all cf the
code that processes an [/0 request cn behalf cf the user-writzen
Ada program executes sequentially. The package IO _EXCEPTIONS
defines all cf -he exceptions needed by the packages
SEQUENTIAL_ IO, DIRECT_IO, and TEXT_IO. The specification of th:
package is given in Section 14.5 of the Ada Language Reference
Manual. This package is visible to all of the constituent
packages of the Ada/L I/0Q subsystem so that appropriate2 exception
nandlers can be inserted.

I/0 in Ada/L 1z performed solely on external files. No
allowance is provided in th2 1/0 subsystem for memory resident
files (i.e., files which do not reside on a peripneral device).
This is true even in the case of temporary fil=s. Wizh the
external files residing on the peripheral devices, Aaa/L maxec
=he further restriction on the number of files that may be oren
cn an individual peripheral device.

Section l14.1 of the Ada Language Reference Manual states that
all I/0 operations are expressed as operations on objects of scme
file type, rather than in terms of an external file. File
objects are implemented in Ada/L as access objects which point to
a data structure called the File Control Block. This File
Control Block is defined internally to each of the high-level I/0
packages; its purpose is to represent an external file. The File
Control Block contains all of the I/O-specific information abouc
an external file needed by the high-level I/0 packages to
accomplish requested I/O operations.

F.11.1 Naming External Files

The naming conventions for external files in Ada/L are of
particular importance to you. All of the system-dependent
information needed by the I/0O subsystem about an external file is
contained in the file name. External files may be named using
one of three file naming conventions: standard, temporary, and
user-derived.

27

m
|

F.11l.1 Naming External Files

Version 3.5 Ada/L PSE Haadbcck
29 March 1991

P.11.1.1 Standard File Names

The standard external file naming convention used in Ada,/L
:dentifies rhe specific location of the external file in rerms cf
the poiysical device on which it is stored. For this reason, ycu
should be aware of the configuration of the peripheral devices on
the AN/UYK-43 at your particular site.

Standard file names consist of a six character prefix and a
file name of up to twenty characters. The six character prefix
has a predefined format. The first and second characzers must be
either "DK," "MT," or "TT," designating an AN/UYH-3(V)
Recorder/Reproducer Set Magnetic Disk, the RD-~358 Magnetic Tape
Subsystem, or the AN/USQ-69 Data Terminal Set, respectively.

The third and fourth characters specify the channel cn which
the peripheral device is connected. Since there are sixty-four
channels on the AN/UYK~-43, the values for the third and fourth
positions must lie in the range "00" to "63."

The range of values for the fifth position in the prefix (th
unit number) depends upon the device specified by the characters
in the first and second positions of the external file name. If
the specified peripheral device is the AN/UYH-3 magnetic disk
drive, the character in the fifth position must be one of th:
characrers "0," "1," "2," or "3." This value determines which of
the four disk units availavie on the AN/UYH-3 is to be accessed.
If the specified peripneral device is the RD-358 magnetic tape
drive, the character in the fifth position must be one of the
characters "0," "1," "2," or "3." This value determines which of
the four tape units available on the RD-358 is to be accessed.

If the specified peripheral device is the AN/USQ-69 militarized
display terminal, the character in the fifth position depends cn
the channel type. If the channel type is parallel then this
character must be a "0." This is the only allowable value for
the unit number when the AN/USQ-69 is connected to a parallel I,/0
channel. This is because the AN/USQ-69 may have only one unit on
a parallel channel. If the channel type is serial then the
character in the fifth position must be one of the characters
IIO'" Ill'li ll2'l| "3'" Il4'l| llS’" "6'" ll‘7'" Or "8“ (the character "8"
will be used to specify a broadcast mode transmission). The
AN/USQ-69 allows up to eight terminals to be daisy chained
together when running on a serial channel.

The colon (":") is the only character allowed in the sixth
position. If any character other than the colon is in this
poesition, the file name will be considered non-standard and the
£ile will reside on the default device defined during the
elaboration of CCNFIGURE_IO.

Positions seven through twenty-six are optional to your Ada

program and may be used as desired. These positions may contain
any printable character you choose in order to make the file name

F-28 F.11.1.1 Standard File Names

Ada/L PSE Handboox versizcn 2,
29 Marcnh .39

(V1)

more intglligible. EZmbedded blanks, however, are not allcwed.

Tre locaticn of an exterrnal £ile on a peripheral device :is
nus a function of the first six characters of the file name
egar dless of tnhe characters that mignrt follcw. For example, L2
e external file "MT000:0ld_Data" has been created and not
suasequenc;y c.csed, an attempt to create the external file
"MT000:New Data" will cause the exception DEVICE ERROR (ra—‘z
than NAME ERROR or USE _ZRROR) to be raised because tnhe peripreral
device cn channel "00" and cartridge "0" is already in use.

V" v

D

You are advised that any file name beginning with "xxxxx:"
(wnere x denotes any printable characzer) is assumed to ne a
standard external f£ile name. 1If this external file name dces ncrt
conform to the Ada/L standard £ile naming conventions, the
excepticon NAME ZRROR will be raised.

F.11.1.2 Temporary File Names

Section 14.2.1 of the Ada Language Reference Manual defines a
temporary £ile o be an external file that is not accessible
after completion of the main subprogram. If the null string is
supplied for tne external file name, the external file is
considered temporary. In this case, the high level I/0 packages
i.-erna;;y create an external file name to be used by the lower
level 1,0 packages. The internal naming scheme used by the I,0
subsystem 1s a function of the type of file to be created (t2xc:,
direct or sequential) and the current date and time. This schere
is consistent with the requirement specified in the Ada Language
Reference Manual that all external file names be unique.

The first two characters of the file name are "TX," "D_," or
"S_." The next eight characters are the date (four characters
for the year, two characters for the month, and two characters
for the day). The remaining ten characters are the time (five
for seconds and five for the fraction part of a second). For
instance, the temporary external file name "D 198803311234598765"
would be a DIRECT_IO file created March 31, 1988 at 12,345.98765
seconds.

F.11.1.3 User-Derived File Names

A random string containing a sequence of characters of leng:h
one to twenty may also be used to name an external file.
External files with names of this nature are considered to be
permanent external files. VYou are cautioned from using names
which conform to the scheme used by the I/O subsystem to name
cemporary external f£iles (see list ltem "b").

It is not possible to associate two or more internal files
with the same external file. The exception USE_ERROR will be

ey
|

[N

(Ve

F.11.1.3 User-Derived File Names

Jersicn 3.5 Ada,L PSZ Handbccexk
29 March 1391

raised 1f zhig restricticn is wviolated.

F.11.2 The FORM Specification for External Files

Secc2n 14.2.1 2f zhe Ada Language Reference Manual deflnes a
ing argument called the FORM, wnich supplies sys:zem-depencent
rmaticn that s sometimes required to correctly process a
uest to create or cpen a file. In Ada/L, =he string argumenc
lied =o zne 7ORM parameter on calls to CREATE and OPEN is
ined while zhe file 1s cpen, so that calls to the functicn

RM can return the string to your Ada program. FORM options
ecified on calls to CREATE have the effects stated below. FCRM
tions specified on calls to OPEN have no effect.

u
23 ot

1 'g .Q oy

. o (0] '

O W npev Uory e
o Om

Ada/L only allows a FORM parameter when a £ile is open or

created on the RD-358 tape drive. A USE_ZRROR will be raised
when a FORM parameter 1s assoclated with any other Ada/L system
device. The TORM paramecter specifically contrzcls the positioning
and formatting of the tape prior to tape I/0 operations. This
seczion -denczifies the arguments cf the FORM parameter. Refer o
Sect.cn 14.2.. cf the Ada Language Reference Manual and :=o
Secticn 12 of the Ada/L Run-Time Environment Handbock £or more
detail cn the use of the FORM parameter.

The FCORM parameter is a string literal of which a maximum of
twenty characszers -s processed. If the supplied FORM string is
longer than tne maximum allowed (20 characters), the exception
USE_ERROR will be raised. The string literal is interpreted as a
sequence of arguments. If you wish to utilize the default
arguments, a “ORM parameter need not be supplied.

Only the first two arguments within the string are processed.
ALl following characters or arguments will cause the USE _ERRCR toO
bpe raised. The arguments are not case sensitive. The argumen:s
must be separated by at least one delimiter. A legal delimiter
censists of a comma or blank. Extra delimiters are ignored. Of
the recognized argquments, at most one formatting and one
positioning arqument are allowed. If conflicting arguments are
used, the exception USE_ERROR will be raised.

Positioning arguments allow control of tape before its use.
The following positioning arguments are available:

a. REWIND - specifies that a rewind will be performed prior to
~ne requested operation.

5. NOREWIND - specifies that the tape remains positioned as is.
c. APPEND - specifies that the tape be positioned at the logical

end of -ape (LZOT) prior to the requested operation. The
LZ07T 1s denoted by two consecutive tape_marks.

F-30 F.11.2 The FORM Specification for External Files

Ada/L PSE Handbocok Version 2.3

The fgrmatting argument specifies information about tape
mat. If a formactlng argument is not supplied, the fi'e is
a sumed to contain a format header record determined by znhe ALS/N

1,0 system. The following formatting argumentcs are available:

P

a. NCHEAD - specifies that tne designated Zl.le nas no neacer
record. This argumenct allows the reading and wrizing of
capes used on computer systems using different header
fcormacs.

D. DENSITY 800 - specifies =-hat the tape is written/read wizh a
densicy of 800 BPI. This is the default density. Ascemptinc
to write/read files of different density cn the same zape
w1ll cause unpredictable results.

c. DEINSITY 1600 - speci:fies that the tape is written/read wizn 3
density of 1600 BPI. Attempting to write/read files of
different density on the same tape will cause unpredic:table
resulcs.

F.1l1.3 File Processing

?rocessing allowed on Ada/L files is influenced by the
racs erist cs of the underlying device. The following
tricticns apply:

a. Only one file may be open on an individual RD-358 tape drive
at a time.

b. The attempt to CREATE a file with the mode IN FILE is not
supported since there will be no data in the file to read.

ry
i

L

[

£.11.3 File Processing

version 3.5 Ada/L PSE Handbooxk
29 March 1391

F.11.4 Text~Faput/Output

TEXT I0 1is vaoxed Dy your Ada program to perform sequential
access 1,0 operations on text files (i.e., files whose content :is
in numan-readable Zorm). TEXT IO is not a generic package and,
Znus, its subprograms may be invoked direcs ly from your program,
islng objects wizh base type Or garent type in the
language-cdefined type character. TEXT_IO also provices the
generic packages INTEGER IO, FLOAT 10, FIXED IO, and
INUMERATION_IO Zor tne reading and writing of numeric values and
enumeration valies. The generic packages within TEXT IO require
ar instanctiation for a given element type before any <f their
subprograms are invoked. The specification of this package is
given in Section 14.3..0 of the Ada Language Reference Manual.

The implementation-defined type COUNT that appears in Secticn
24.3.10 of the Ada Language Reference Manual is defined as
follows:

cype COUNT s range 0...INTEGEZR'LAST;

The implementat:on-defined subtype FIELD that appears in Seczicn
21.3..0 of =ne Ada Language Reference Manual is defired as
Iollows:

[Rdinbd

subtype FIZLD is INTEGER range 0...INTEGER'LAST;

At the beginning of program execution, the STANDARD INPUT
£ile and the STANDARD _OUTPUT file are open, and associated with
the files specified by you at export time. Additionally, if a
program terminates before an open file is closed (except for
STANDARD INPUT and STANDARD OUTPUT), the last line you added to

the file may be lost; if the file is on magnetic tape, the file
structure on the tape may be inccnsistent.

A program is erroneous if concurrently executing tasks
attempt to perform overlapping GET and/or PUT operations on the
same terminal. The semantics of text layout as specified in the
Ada Language Reference Manual, Section 14.3.2, (especially the
concepts of current column number and current line) cannot be
guaranteed when GET operations are interweaved with PUT
cperations. A program which relies on the semantics of text
-ayout under those circumstances is erroneous.

For TEXT_IO processing, the line length can be no longer than
1022 characters. An attempt to set the line length througn
SET_LINE _LENGTH zo a length greater than 1022 will result in
USE_ERROR.

F-32 F.1l1.4 Text Input/Output

Ada,/L PSE Handbock Version 3.3
29 March 1391

F.11.5 Sequential Input/Output

SEQUENTIAL IO is invoked by your Ada program to perform I/0
on cne records of a file in :equentlal orqe' The SEQUENTIAL IO
package also requires a generic instantiation for a given elemen-
cype before any cf its subprograms may be invoked. Once the
package SEQUENTIAL IO is made visible, it will perform any
service defined by the subprograms declared in its specification.
The specification of this package is given in Section 14.2.3 2f£
the Ada Language Reference Manual.

The following restrictions are imposed on the use of the
package SEQUENTIAL IO:

a. SEQUENTIAL_IO cannot be instantiated with an unconstrained !

array type. l
b. SEQUENTIAL_IO cannot be instantiated with a record type wiza
discriminants with no default values. i

c. Ada/L does not raise DATA_ERROR on a read operation if ztne
data input from the external file is not of the instantiating
type (see the Ada Language Reference Manual, Section 14.2.2).

F.1l1l.6 Direct Input/Output

DIRECT IO is invoked by your Ada program to perform I/O of
the records of a file in an arbitrary order. The package
DIRECT IO requires a generlc instantiation for a given element
type before any of its subprograms may be invoked. Once the
package DIRECT_IO is made visible, it will perform any service
defined by the subprograms declared in its specification. The
specification of this package is given in Section 14.2.5 of the
Ada Language Reference Manual.

The following restrictions are imposed on the use of the
package DIRECT_IO:

a. DIRECT_IO cannot be instantiated with an unconstrained array
type.

b. DIRECT_IO cannot be instantiated with a record type with
discriminants with no default values.

c. Ada/L does not raise DATA ERROR on a read operation if the

data input from the external file is not of the ipstantiating
cype (see the Ada Language Reference Manual, Section 14.2.4).

.6 Direct Input/Output _ F-33

|
-

e
(=)

Jersicn 3.3 Ada, L, PSE Handbcoxk
29 March 1991

F.11.7 Low Level Input/Output

“OW_LEV EVEL_IO is invoked by your Ada program to initiate
nysical operations on peripheral devices, and thus executes as

= of a program task. Requests made to LOW_LEVEL IO "om Jour
gram are passed through the RTEXEC GATEWAY to the channe.
grams in CHANNEL I0. Any status check or result inf orﬂat on
is the 'esponsibility cf the inveking subprogram and can be
cootained from the subprogram RECEIVE_CONTROL within LOW_LEVIL IO.

.IOIOIOIU
e S A VR |
O O g

The package LOW LEZVEL IO allows your Ada program to send I,0
ccmmands to the I/0 devices (using SEND_CONTROL) and to receive
status information from the I/0 devices (using RECEIVE_CONTROL).

A program 1s erroneocus i1f it uses LOW LEVEL IO to access a device
that is also accessed by nigh-level I/0 packages such as
SEQUENTIAL_IO and TEXT_IO0. The following is excerpted from :the
package LOW_LEVEL IO.

SUBTYPE channel range IS INTEGER RANGE 0..53;
-- Range of values allowed for channel number.

SUBTYPE device _str IS STRING;
-- To be passed to CHANNEL IO for future implemenzaciocrs
-- of logical path name. The string will be ignored unzii
-- lcgical path name support 1is added.

SUBTYPE btc_int IS INTEGER RANGE 0..16383;
-- Passes transfer counts to/from IO_MANAGEMENT/RTEXEC.

SUBTYPE ic functicons IS INTEGER RANGE 0..20;
-- Specifies the I/0 function to be performed by LOW LEVEL IO.
-- The followina table shows the values associated with device
-- and device functions available.

F-34 F.11.7 Low Level Input/Output

Ada/L PSE Handbook

Versicn 2.5
29 March 199

- - S A D - D D WD D = A D D - G o T D R AR D R D T D T W WD D D W A S S e am wm

Normal Read

Read with Search data

Normal Writ

e

Send EF Command

Initialize Channel

Read with 2
Read with 1
Write

Send 1 word
Send 2 word
Send 1 word

Initialize Channel

Rez-
Write

word EF
word EF

EF Command
EF Command
EF Command (Same as function 3)

Write (Same as function 1)
Send Command

In.tialize Channel

—— . —— - —— ———————— ———————— ——————— — — — - — - — - —— o —

TYPE cap blcck IS

-- Information that can be found in IOC conttol memory on

-- a per channel/ per function basis.

RECORD
cap
instruct _base
index
accumulator
status
buffer_base
bcw
operand_base
END RECORD;

TYPE short_rec_cont

¢+ INTEGER;
: INTEGER;
: INTEGER;

INTEGER;
: INTEGER;
: INTEGER;
: INTEGER;

INTEGER;

rol _block IS

== CAP
-- CAP
-- CAP
-~ CAP
-= CAP
-- CAP
~-- CAP
-- CAP

register.

instruction base.
index register.
accumulator register.
status register.
buffer base.

buffer control word.
operand base.

-- I/0 control block sent to LOW_LEVEL_IO as a parameter
-- when calling subprogram RECEIVE REQUEST.

RECORD
channel

ei word

low_level io.channel_range;
-- Specifies channel of interest.

INTEGER:

T-- External interrupt returned by the peripheral device.

END RECORD;

n

.7 Low Level I

P
—

nput/Output

Version 3.5 Ada/L PSE Handbook
29 March 1991

TYPE recelve_sentrol block IS
-- I/0 control block sent to LOW LEVEL IO as a parameter
-- wnen calling subprogram RECEZIVE REQUES“

RZCORD
daca : low_level io.short_rec_control block;
-- Channel and ei _word.
ef : low level io. cap_block:

-- External Function CAP information.
ouzput : low_level io.cap_block:
-- Qutput TCAP information.

ei : low level io. cap_block;
-- External Interrupt CAP information.
input : low_level io.cap_block;

-- Input CAP information.
END RECORD:

TYPE send control block IS
-- I/0 control block sent to LOW LEVEL IO as a parameter
-- when calling subprogram SEND REQUEST.
RECORD
function_pos : low_level io.io functions;
-- Indicates which I/0 function is to be requested
-- of LOW_LEVEL_IO.
channel : low level io.channel _range;
-- Specifies channel number.
transfer count : low_level io.btc_int;
-- Buffer transfer count for I/0 operation.

buffer addr : system.address;
-- Address of data buffer.
command 1 : INTEGER;

-- Holds the first word of the external
-- function for the device.

command_2 : INTEGER;
-=~ Holds the second word of the external
-- function for the device.

filler_1 : INTEGER;
--~ Passes additional information to
-~ CHANNEL_IO (such as the terminal_address
-~ for the USQ-69 device).

END RECORD:

F~36 F.11.7 Low Level Input/Output

Ada/L PSE Handbook 7Jersicn 3.5
29 March 1391

PROCEDBERE SEND_CONTROL

-- Passes I/0 control information to a procedure in
-- IO_MANAGEMENT/RTEXEC in order to send data to the
-- specified device.

(device : IN low_level io.device_str := "";

-- This string will be ignored uncil

-~ logical path names are implemented.
data : IN low_level_io.send_control block

-- I/0 control block for send request.
)i

PROCEDURE RECEIVE CONTROL

-- Passes I/0 control information to a procedure in

-- IO_MANAGEMENT/RTEXEC in order to cbtain the status of
-- the I/0 operation.

(device : IN low_level io.device_str := "";
-~ This string will be ignored until
-= logical path namcs are implemented.
data : IN OUT low_level io.receive_control block
-- I/0 control block for receive request
)

PROCEDURE RECEIVE_CONTROL

Passes I/0 control information to a procedure in
-- IO_MANAGEMENT/RTEXEC in order to obtain the status of
-- +he I/0 operation.

(device : IN low_level io.device_str := "";
-- This string will be ignored until
-- logical path names are implemented.

data : IN OUT low_level io.short_rec control _block
--1/0 control block for recelve request

)3

F.12 System Defined Exceptions
In addition to the exceptions defined in the Ada Language

Reference Manual, this implementation pre-defines the exceptions
shown in Table F-2 below.

F.12 System Defined Exceptions - F-37

Version 3.5 Ada/L PSE Handboock
29 March 1991

s - - T o APy - - - - - - — - - > - - — === - ———
Name Significance

CAPACITY_ERROR Raised by the Run-Time Zxecu:ive wnen
Pre-Runtime specified resource Limi:s
are exceeded.

PAST_PTI TIME Raised by the PTI support package :if ,
the PTI start time is greater cnan the !
current CALENDAR.CLOCK. :

SYSTEM_ERROR Serious error detected in underlying
AN/UYK=-43 operating system. |

UNREGISTERED PTI Raised by the PTI support package if g
the PTI's state is returred as l
"unregistered". \

|

UNRESOLVED_REFERENCE Attempted call tc 2 subprogram whose 1

bedy is not linked into che executzable
program image. ‘

- ————— — - D D - ——— ———— — - ——— ———— - ——— - ———— —— - — —— - W

Table F-2 - System Defined Exceptions

F-38 F.12 System Defined Exceptions

Ada/L PSE Handbook Version 3.3
29 Marcnh 199L1

F.13 Qggg}ne Code Insertions

The Ada language permits machine code insertions as defined
in Section 13.8 of the Ada Language Reference Manual. This
section describes the specific derails for writing machine ccde
insertions as provided by the predefined package MACHINE CODE.

You may, if desired, include AN/UYX-43 instructions within an
Ada program. This is done by including a procedure in the
program which contains only record aggregates defining machine
instructions. The package MACHINE CODE, included in the syszem
program library, contains type, record, and constant declaracicns
which are used to form the instructions. Each field cf the

These fields are specified in the order in which they appear in
the actual instruction. Since the AN/UYK-43 has several
different fcrmats for instructions, package MACHINE CODE defines
different types for each of these formats. For each of the
fields which must have a certain value for a given instruction
(i.e., part of the opcode), package MACHINE CODE defines a
constant to use for that fleld.

The following procedure implements a floating point
exponential. Note that this actual procedure would not be used,
because package MATH_PACK implements the same operation in a more
efficient manner.

with machine_code; use machine_code;
procedure floating point_exponential
(x : FLOAT;
ex : OUT FLOAT) 1is

BEGIN
formatI'(f_LA,1,3,6,0,0,0);
-- LA Al,B6+0

formatv' (f_FEX,1,£2_FEX,2,0,0,0,£6_FEX);
-- FEX Al,A2

formatI'(f=>f_SA,3=>2,k=>3,b=>6,i=>0,s8=>0,y=>1);
-- SA TA2,B6+1
END;

Note that either positional or names aggregates may be used.
Wwhenever a field does not appear in the MACRO/L instruction, it
must be filled in with 0, since no missing fields are allowed.
For formatI instructions, when k=0, the s and y field are
collapsed and used together. For your convenience, an additional
record type, formatlIi, for immediate. can be used to define the s
and y fields as a single 16-bit quantity. This quantity is
defined as an unsigned integer, so if a negative number x 1is
desired, one should instead put the number x + 65535.

ny

F.13 Machine Code Insertions _ -39

Vversion 3.5 Ada/L PSE Hancdbcok
29 March 1891

Table F-3_gontains a list of MACRO/L instructions and their
Ada/L machine code equivalents, sorted by MACRO/L mnemonic.

*1}

-40 F.13 Machine Code Insertions

Ada/L PSE Handbook Jersicn 3.5
29 Marcn 1391
—————————— Tt . - s = - D - - ———— — = ——— " - —— ————————— —— ———
MACRG/L Ada/L 1
P - - - — - - e " - - - A N e " = . = o - = - - —— -
AA a,y.k,b,s formatI' (£ _AA,a,k,b,i,s,y);
AB a,y,k,b,s formatIl' (£ _AB,a,x,b,i,s,y);
AEZ a,sy,p formatIi'(£_AEI,a,k_AEI,b,i,sY): |
ALP a,y,o,s formatI' (£_ALP,a,k_ALP,b,i,s,Y); |
ANA a,y,x.,b,s formatI' (£ _ANA,a,k,b,i,s,¥); i
ANB a,y,k,b,s formatI' (£ ANB,a,k,b,i,s,y);
ATSF a,b EormatV'(f_ATSF,a,fZ ATSF,b,0,0,0,%86 _ATSE) ;
3C ak,y,b,s formatIa'(f _BC,a,k,b,i,s,y):
3S ak,y,b,s formatclia’' (f 8S,a,k,b,1i,s,y):
32 ak,y,b,s formatIa'(f BZ,a,k,b,i,s,y):
c a,y,<,b,s formatI'(f C,a,k,b,i, S)Y)i
CB formatIVA' (£ CB, a CB,0,i CB);
CBN a,n formatIVC' (f CBN,a,f4 CBN n);
CBR a,b formatV' (£ CBR,a,fZ CBR b,0,0,0,£6_CBR); !
cCT a,b formatIVA' (€ _CCT,a,b,i_CCT); !
cE formatIVA' (£ CE,a CE,0,i _CE); l
CG a,y.k,b,s formatI'(f CG a,k,b,i,s,y);:
CHECL a,y,b,s formatI'(f CHCL,a,k_CHCL,b,i_CHCL,s,y); }
oo G,5e%s0,5 Scrmatl' (£ _ “CL,a,k,p,i,s,y); |
CM a,y,<,b,s formatI' (£ CM,a,k,b,i,5,y); |
CMPS a,b formatV' (£ CMPS.a,EZ _CMPS,b,0,0,0,£6_CMPS); |
CNT a,y,b,s formatl' (£ CNT a,k CNT,b,i,s,y); i
CRB a,b formatcV' (£ CRB a,f2 CRB,b,0,0,0,£6 _CRB); !
CXI a,y,k,b,s formatI'(f CXI,a k,b,i,s,v);: r
D a,y,«x,b,s formatI' (£ _ “D,a,k,b,i,s, Y):
DA a,y,b,s formatI' (£ _ “DA,a,k DA,b, l.s,y), I
DAN a,y,b,s formatI'(f_DAN,a,k DAN,b,i,s,y); 1
oC a,y,b,s formatI' (£ DC,a,k_DC,b,i,s,y); |
DSNZ a,y,k,b,s formatIII' (f DJNZa,f3 _DJNZ,k,b,i,5,¥);
DJz a,y,x,b,s formatIII'(f _DJZ,a,£3 _DJZ,k,b,i,s,y); §
DL a,y,b,s formatI' (£_ dL,a,k _bL, b,i, 3,¥):
DS a,y.b,s formatI'(f _DS,a,k_DS,b,i,s,y);
DSP a,b,m formatV'(f _DSP,a,£2_DSP,b,0,0,m,£6 DSP);
EECM formatIVA' (f EECM,a EECM,0,i _EECM Y;
ESCM formatIVA' (£ _ TESCM, a ESCM 0,1 ESCM)
ETCM formatIVA' (£ _ “ETCM,a ETCM 0,1 ETCM)
FA a,y,b,s formatI'(f FA,a,k FA,b,i,s,y);
FAC a,b formatV' (£ FAc,a,Ez FAC,b,0,0,0,£6 FAC);
FAN a,y,b,s formatI' (£ _ “FAN,a,k FAN b,i,s,y);
FANR a,y,b,s formatI' (£ _FANR,a,k FANR,b,i,s,y); |
FAR a,y,b,s formatI' (£ FAR,a,k FAR,b,i,s,v); |
FAS a,D formatV' (£_FAS,a,£2_FAS,b,0,0,0,£6_FAS); |
FAT a,b formatV' (£ FAT,a,fZ “FAT,b,0,0,0,£6 FAT) |
FD a,y,b,s formatI' (£ _ “FD,a,k FD,b,i,s,y); i
FDR a,y.,b,s formatI'(f FDR,a,k_FDR,b,i,s,y); 1
Table F-3a - Machine Ccde Tnstructions
F.13 Machine Code Insertions F~41

Version 3.5 Ada/L PSE Handboox
29 March 1991

D L Lk g S R e e e e e ——————————— ——— -
| MACRO/L Ada/L |
P s s > o - - - - —— - - - - - —— —— o - ————— - — -
FEX a,o formatVv' (f_FEX,a,f2_FEX,b,0,0,0,£6 FEX); |
FLN a,b formatV' (£ _FLN,a,£2 FLN,b,0,0,0,£6_FLN); |
FLTF a,n formacVv' (£ _FLTF,a,f2_FLTF,n,0,0,0,£6 FLTF); .
M a,y,b,s formatI'(E~FM,a,kQFM,b,i,s,y);
FMR a,y,b,s formatl' (£_FMR,a,K FMR,D,i,s,y):
FPA a,b formatV' (f_FPA,a,£2_FPA,b,0,0,0,£6 FPA);
FPD a,b formatv' (f_FpD,a,f2 FPD,b,0,0,0,£6_FPD);
FPM a,b formatV' (f_FPM,a,f2 FPM,b,0,0,0,£6 FPM);
FPS a,b formatV'(f_FPS,a,f2 FPS,b,0,0,0,£6_FPS);
FSA a,b formacV' (£_FSA,a,f£2_FSA,b,0,0,0,£6 FSA);
FSC a,b formacVv' (£_FsC,a,£2_FSC,b,0,0,0,£6_FSC);
FSD a,b formatVv' (£_FsSD,a,f£2_FsSD,b,0,0,0,£6_FSD); (
FSM a,b formacV'(f_FSM,a,£2 FSM,b,0,0,0,£6_FSM);
FSS a,b formatVv'(f_FsS,a,f2_FSS,b,0,0,0,£6_FSS);
FTSL a,b formatV' (£ _FTSL,a,£2_FTSL,b,0,0,0,E6 FTSL);
HA a,b formatIVA' (f_HA,a,b,0);
HAEI a,b formatIVA' (£ _HAEI,a,b,i HAEI);
HAI fcrmatIVA' (£ _HAI,O0,0,0);
HALT formatIVA' (£_HALT,0,0,i HALT); |
HAN a,b formatIVA' (£ HAN,a,b,0);
HAND a,b formatIVA' (f_HAND,a,b,i HAND);
HC a,b formatIVA' (£ _HC,a,b,0);
HCB a,b formatIVA'(f_HCB,a,b,0);
HCL a,b formatIVA' (£ _HCL,a,b,0); ;
HCM a,b formatIVA' (£ _HCM,a,b,0): i
HCP a formatIVA' (£ _HCP,a,0,0);
HCRC a,b formatIVA' (f HCRC,a,b,i_HCRC);
HD a,b formatIVA'(f_HD,a,b,0);
HDCP a formatIVA' (£ _HDCP,a,0,0); !
HDLC a,m formatIVB' (£_HDLC,a,m);
HDRS a,m formatIVB' (f_HDRS,a,m);
HDRZ a,m formatIVB' (£_HDRZ,a,m);
HDSF a,b formatIVA' (£ _HDSF,a,b,0);
HLB a,b formatIVA' (£ _HLB,a,b,0);
HLC a,m formatIVB'(f _HLC,a,m);
HLCA a,b formatIVA' (f_HLCA,a,b,i_HLCA);
HLCI af4,b formatIVA_1'(f _HLCI,afd4,b,i_HLCI);
HLCT af4,b formatIVA_1'(f BLCT,af4,b,i HLCT);
HLTC a,b formatIVA' (£ _HLTC,a,b,i HLTC);
HM a,b formatIVA' (£ _HM,a,b,0);
HOR a,b formatIVA'(£_HOR,a,b,0);
HPEI a,b formatIVA' (£ _HPEI,a,b,i_HPEI);
HPI formatIVA' (f_HPI,0,C,0);
HR a,b formatv'(f_HR,a,f£2_HR,b,0,0,0,£6_HR);
HRS a,m formatIVB' (£ HRS,a,m);
B o e v e e = v = - - = = — = Ty = . . - — -~

Table F-3b - Machine Code Instructions (Continued)

F-42 F.13 Machine Code Insertions

Ada/L PSE BHBandbook Version 3.5
29 March 1991

T T > R T MR TINS5 T S S S M R T A R . i it s D — —— - — ———— -
MACRO/L Ada/L
HRT a,b formatIVA'(f HRT,a,b,0); ‘
HRZ a,m formatIVB' (£ HRZ,a,m); !
HSCA a,b formatIVA'(E_HSCA,a b,i HSCA); f
HSCI af4,b formatIVA_l'(£_HSCI,afd,b,i HSCI); |
HSCT af4.,b formatIVA 1 (£_ THSCT,af4,b,1 5SCT), |
HSF a,b formatIVA' (f_HSF,a,b, 0); |
HSIM a,b formatIVA' (£ HSIM,a,b i_HSIM); ‘
HSTC a,b formatIVA' (£ HSTC,a,b i HSTC);
HST1 formatIVA' (£ HSTl,a HSTI,b _HSTl,. HST.l):
HST2 formatIVA' (£ HSTZ a HSTZ b HSTZ 1 dSTZ)
HST3 formatIVA' (£ _ THST3,a HST3 b HST3 i HSTB)
HST4 formatIVA' (L dST4,a THST4,b HST4,i HST4)
HSTD a,b formatIVA' (£ HSTD,a,b i HSTD)
HSTV a,b formatIVA' (£ HSTV a,b,1i HSTV):
HV a,b formatV'(f_HV,a,f£2_HV,b,0,0,0,£6_HV); ;
HWFI formatIVA' (f HWFI,0,0,i HWFI); ‘
HXOR a,b formatIVA' (£ HXOR,a b,0); :
IBSC a formatIVA' (£_IBSC,a,0,i IBSC); i
IILM a FormatIVA'(f IILM,a, 0,-_ ILM) }
I0 a,y,b,s formatI' (£ _I0,a,k_IO,b,1,s,y); i
IOCL a formatIVA' (£ IOCL,a,0,i IOCL); ;
IOCR a formatIVA' (£_IOCR,a,0,i IOCR); |
IOCS a EormatIVA'(f_IOCS;a,O,i_IOCS) ;
IOT a,b,m formatv'(f_I0T,a,£f2_IOT,b,0,0,m,£6 IOT): !
IPI y.b,s formatI'(f _IPI,a_IPI,k IPI,b,i,s,y); i
IR formatI' (f IR,0,k IR,0,0,0,0); ‘
IRMMS a,b formatIVA' (f_IRMMS a, b,l_IRMMS); ’
IRMSR a,b formatIVA‘(f_IRMSR,a,b,i_IRMSR): !
ISMSR a,5 formatIVA' (£_ISMSR,a,b,i_ISMSR);
ISP a,b,m formatV'(f I5P,a,f2 ISP,b,0,0,m,£f6 _ISP);
J y.k,b,s formatIII'(f _J,a_J,£3 _J,k,b,i,s8,y)7
JBNZ a,y,k,b,s formatIII'(f£_JBNZ,a,f3_JBNZ,k,b,i,s,y);
JC a,y,k,b,s formatIII'(£ JC,a £3 JC,k, b,x,s,y),
JE yrk,b,s formatIII'(f_ ~“JE,a JE £3_JE,k,b,i,s,y):
JEP a,y,k,b,s formatIII'(f_JEP,a,f3_JEP,k,b,i,s,y);
JG v/ k,b,s formatIII'(f_JG,a_JG,£3_JG,k,b,i,s,y):
JGE y.k,b,s formatIII'(f JGE,a JGE, £3 _JGE,k,b,i,8,y):
JL y.k,b,s formatIII'(f_JL,a,£3_JL,k,b,i,s,y);
JLE Y.k,b,s formatIII'(£f JLE,a JLE,£3 _JLE,k,b,1i,s,¥): ‘
JLT y'k,b,s formatIII'(£ JLT,a “JLT,£3 JLT k,b,i,s,v):
JN a,y.k,b,s formatIII'(£_JN, a,fs_JN k,b,i,8,y);
JNE Yek,0,3 formatIII'(E_JNE,a_JNE-f3_JNE,k,b.1 S,Y):
INF y,k,b,s formatIII'(E_JNF,a JNF,E37INF,Kk,b,i,s,y);: |
JNW y,k,b,s formatIII'(f_JNW,a_JNW,£3_JINW,k,b,i,s8,y); 1
JNZ a,y,k,b,s formatIII'(f_JNZ,a,£3_JNZ,k,b,i,s,y); 1

Table F-3c - Machine Code Instructions {(Continued)

F.1l3 Machine Code Insertions - F-43

Version 3.5
29 March 1991

- —— D - ——— R D S . - . . - D . - —— e —— - — D - . D D . . — A — - = . - e = = s - ==

- —— - - — - - P . e —— . ——— D A . . R D T e - W D W - — — ——— -~ — - =

uBJ

LCM1
LCM2
LCM3
LCM4
LCMA
LCMP
LCMT
LCPA
LCRA
LCT

LDIF
LECM
LIBP
LIM

LIMP
LISR
LLP

LLPN

- —— D D - ———— - - D =, - - S — - D Wy D - D D T - ——— =

[aolie S
nu

ANANXRXNOKANS AXNO
wn

MRNNS RAC -
O ~ v~ 5~ ~ s ~ O~ ~ ~
wunuunon

L ol R N T L N A N L L I e)

A~ DO VLWL WLV

~ WoooTowuwo Oocu
7]

nwnauns-s o~

NS OOoODOoODOoOOoOU0oOo~

L YL R N T T L T TR T S T UL SR Y T T o TR S Y

[I e S e Sl S T T I U I I R VI e SR R I
NN O 0 o~

~ G-
o

a,y,k,b,s

arY'k'b'S
a,vy.k,b,s
a,y.b,s
a,y.b,s
a,y,b,s
a,sy.,po

Ada/L PSE Handbcok

formatIII'(f JOF,a _JOF,£3 JOF,k,b,i,s5,Y):
formatIII'(f_JOP,a,£3 JOP,k,b,i,s,v);
formacIII'(£ uP a,£3 JP '(rbrlr=r!)r
formatIiI'(f qs 0,£3 JS x,b,1,8,y);
formacIII'(£ uSC a,f3 Jsc,k,b,i,s,)i
formatIII'(£f JW a_Jw, £3 _JW,k,b,i,s5,7):
formatIII'(£ _JZ,a,f3 JZ,k.,b,i,s,y);:
formatIl'(£_ LA,a,k,b,i,s,y);

formati' (£ LB,a,k,b,i,s,v);

fo;mat;II'(f LaJ,a,f3 LBJ,k,b,i,s,y);
formatI' (£ LBMP,a,k LBMP,b,i,s,y):
formatIa'(f LCI,ak,b,i,s, v):

formatI' (£ HCMl,a LCM1l,k LCM1l,b,1i LCMl,s,y}:
format['(f_LCM2,a LCM2,k _LCM2,b,i LCM2,s,y);
formacIl' (E LCM3,a LCM3 4 LCM3 b,1 -CMB,S Vo
formatI' (£ _ “LCM4,a LCM4 k LCM4 b,i LCM4 S,Y);
formatI' (£ _ “LCMA,a LCMA k LCMA b,i LCMA S,V);
formatl’ (E LCMP, a LCMP k LCMP,b,i,s,y);
formatI' (£ _ “LCMT,a LCMT,k LCWT b,i1 LCMT,s,y):
ormatl'({ CPA,a,k LCPA,b, i, s,y),

formatI' (£ LCRA,a,k LCRA b,i,s,y):
formatlIa'(f _LCT,ak, b,i,s,y);

formacIl' (£ uD;:,a kybsi,s,y);:

formatIVA'(f _LECM,a_LECM,0,1i_LECM);
formatI'(f LIBP,a,k LIBP b,1i, s,y),
formatIi'(E_LIM,a,k_LIM,b,i,sy);

formatI'(f LIMP,a,k _LIMP,b,i,s,y);
formatIVA' (£ _LISR,a,b,i LISR);

formatI'(£f_ LLP,a,k _LLP, b,i,s,y);

formatI' (£_ “LLPN,a,k _LLPN, b,l S,Y):

formatI' (£_ “LM,a,k,b,i,s,y):

formatI'(£_ LNA a,k,b,i,s,y):
formatV'(f_LRR,a,f2 LRR,0,0,0,m,£6_ LRR);
formatIVA' (£ _LRRA,a, Tb,i);

formatIVA' (f LSCM,a _LSCM,0,i LSCM);
formatI'(£_ LSUM,a,k,b,i,s, y),

formatIVA' (f LTCM,a_LTCM,0,1_LTCM);
formatI'(£_ LXB,a,k,b,i,s,y);

formatI' (£ M,a,k b,i,s, y),

formatI' (£ MS a,k_Ms,b,i,s,y):

formatI' (£ NLP a,k NLP,b,i,s,y):

formatI' (£ OR, a,k_ OR,b,i,s,y);
formatIi'(f_PEI,a,k_PEI,b,i,sy);
formatIVA'(E_PFCD,0,0,i PFCD):
formatIVA'(£_PFCE,0,0,i PFCE);

Table F-3d - Machine Code Instructions (Continued)

F.13 Machine Code Insertions

Ada/L PSE Handbook Version 2.5
29 March 1991

- = - . WD = - S D D R . — . D D D D ey S A A S S A ey . G Y M A W D S W WD - Y WS - AP P R o m. - —

MACRO/L Ada/L

PFR a,y.b,s formatI' (£ PFR,a,k_PFR,b,i PFR,s,¥):

PIE formatIVA' (£ PIE,0,0,i PIE);

PMM y.b,s formacI' (£_ PMM,a PMM,x PMM,b,i,s,y);

PMR Y.b,s formatI'(f_PMR,a PMR,k PMR,b,i1,S,¥);

POP a,b formatV' (£ POP a,f2 POP,b,0,0,0,£6 POP);

PUSH a,b formatVv' (f PUSH,a,f2 PUSH,b,0,0,0,%6 _PUSH)

RA a,y,<,b,s formatI'(f_RA,a,k,b,i,s, V)i

RALP a,y,b,s formatl' (£_ "RALP,a,k _RALP,b,1,s,Y):

RAN a,y.k,b,s formatl' (f "RAN,a,k,D0,1i,s8,vY);

RCCR vy,b,s formatI'(f RCCR a_RCCR,k RCCR,b,1,s,7):

RD a,y,<,b,s formatI'(f RD,a,k,b,i,s,¥);

RI a,y,<,b,s formatI' (E_RI,a,k,b,i,s,y); 1
RICAS a,b formatIVA'(f_RIOAS,a,b,i RIOAS); 1
RISR a,b formatIVA' (£ _ “"RISR,a,b,i RISR); !
RJ y.k,b, formatIII'(f RJ,a RJ,£3 RJ,k,b,i,s,y); 1
RJC a,y,k,b,s formatIII'(f RJC,a,£3_RJIC,k,b,i,8,¥); :
RJSC a,y.k,b,s formatIII'(f_RJSC,a,EB_RJSC,k,b,i,s.y): |
RLP a,y.,b, formatI' (£ RLP,a,k_RLP,b,1,S,Y);

RMMS a,bl formatIVA' (£ RMMS,a,b,1);

RMS a,y,b,s formatI'(f RMS,a,k_RMS,b,i,s,Y):

RMSR y,b,s EormatI'(E_RMSR,a_RMSR,k‘RMSR,b,i,s,y);

RNLP a,y.b,s formatI' (£ _RNLP,a,k_RNLP,b,1,s,Y);

ROR a,y.b,s formatIl'(f ROR,a,k ROR b,i,s,y):

RP a,sy,b formatIi' (£ _RP,a,k “RP,b,i,s8Y):

RPD v.k,b,s formatI'(f RPD,a RPD k,b,i,s,y): :
RRR a,m formatV' (£ _ "RRR,a,£2 RRR,0,0,0,m,£6 RRR); |
RSC a,y,b,s formatl'(f RSC,a,k RSC,b,i,s,y): !
RSD a formatIVA' (f_RSD,a,O i RSD); 5
RXOR a,y,b,s formatI'(f_RXOR,a,k_RXOR,b,i,s,Y): 1
SA a,y,k,b,s formatI'(E_SA,a,k,b,i,s,y);

SB a,y.k,b,s formatI'(f SB,a,k,b,1,38,y): '
SBN a,n formatIVC' (£_ SBN,a,f4 SBN,n);

SBPC a,y,k,b,s formatl' (£ _SBPC,a,k,b,i,3,y);

sC a,y,b.s formatI'(f SC,a,k _SC,b,i,s,¥); \
SCI ak,y,b,s formatIa'(f _SCI,ak,b,i,s,¥); ;
SCMA vy,b,s formatI' (£ _ SCMA,a_SCMA,k_SCMA,b,i SCMA,s,y);
SCMP vy,b,s formatI' (£ _ TSCMP,a SCMP,k SCMP b,i,s,y): s
SCMT vy,b,s formatI' (£ _SCMT,a TSCMT, k SCMT b,i_SCMT,s,y); |
SCM1 vy,b,s formatI' (£ SCMl,a SCML,k_SCMl,b,i TSCM1,s,Y); |
SCM2 vy,b,s formatIl'(f SCMZ a SCMZ k SCM2 b,i SPMZ Sey): \
SCM3 y,b,s formatI' (£ _SCM3,a_SCM3,k_SCM3,b,i TSCM3,s,Y);
sCM4 vy,b,s formatI' (£ _ TSCM4,a SCM4 kK~ SCM4,b,i SCM4 S,Y): 5
SCPA a,y,b,s formatI' (£ _SCPA,a,k_SCPA7b,i,s,Y)7 i
SCRA a,y,b,s formatI'(f SCRA,a,k_SCRA,b,i,s,y): !
SCSR y,b,s formatI' (£ _ “SCSR,a SCSR k SCSR,b,i,s8,vY); 3

Table F-3e - Machine Code Instructions (Continued)

F.13 Machine Code Insertions ~ F-45

Vversion 3.5 Ada/L PSE Handbcoex
29 March 1991

F-46

MACRO/L =~ Ada/L !
SCT ak,y,b,s formatIa'(f_SCT,ak,b,i,8,v):

SDIF a,y,b,s formatl'(f SDIF,a,k _SDIF,b,i,s,y):
SDMC a formatIVA' (f SDMC,a, 0,1 SDMC):

SI8P a,y,b,s formatI'(f SIBP,a.k SIBP b,i,s,y):
SIMC a,b formatIVA' (£ _SIMC,a, Lb,i SIMC);

SIMP a,y,b,s formatI'(f SIMP,a,k SIMP b,i,8,v¥);:
SIRC a,b formatIVA' (£ _SIRC,a, Lb,i _SIRC);

SITC a,b formatIVA' (£ SITC,a,b,i SITC);

SL? a,y,b,s formatl' (£ SLP,a,k sL?, b, i,8,¥):

SM a,y.k,b,s formatI'(f SM,a,k,b,i,s,y):

SMCC a formatIVA'(f SMCC,a,0,1i SMCC):

SMSR y,b,s formaeI' (£_ SMSR,a _SMSR, k _SMSR,Dd,1i,s8,7);
SNA a,y.k,b,s formatI'(f SNA,a,k,b,i,s, y),

SRRA a,b,i formatIVA' (f SRRA,a,b,i);

SSUM a,y,b,s formatI' (£ _ SSUM,a, k _SSUM,b,i,s8,y):
STAF a,bd formatV' (f STAF,a,£2 _STAF,b,0,0,0,£6 STAF);
STSB ak,y,b,s formatIa'(f_STSB,ak,b,i,3,y):

SXB a,y.k,b,s formatI'(f SXB,a,k, b,i,s8,y);

TBN a,n formatIVC'(f TBN,a,f4 _TBN,n);

™R a,b formatV'(f TR,a,f2 _TR, ,b,0,0,0,£6 _TR);
TSBN a,n formatIVC' (£ TSBN,a,E4 _TSBN,n);

TS? v,R,8 formatl'(f TSF,0,k _TsrF, b,i,s, ¥):

TSM bi formatIVA' (E TSM ,a TSM,b,1);

™V a,b formatV'(f TV,a,f2 TV b,0,0,0,£6_TV);
WFBP a,y,b,s formatl' (f WFBP,a,k _WFBP,b, 1 WFBP,s,y),
WFM a,y,b,s formatI' (f_WFM,a,k WFM b,i WFM,s Y):
XOR a,y,b,s formatI' (£ XOR,a.k “XOR,b,i,8,y);

xR y.b,s formatIl'(f XR,0,k XR b,i,8,y);

XRL Yy/D,9 formatI'(f_ TXRL,0,k _XRL,b,i,s8,y);

XS sy,b formatI' (£ xs.a XS,k _XS,b,i,sy):

Table F-31f - Machine Code Instructions (Continued)

F.13 Machine Code Insertions

Aca,/L PSE Handbcok Version 3.5

™

29 March

EXECUTIVE Enables pragma EXECUTIVE and allcws
visibility to units which have been
ccmplled with the RTE _ONLY opticn.
Default: NO_EXECUTIVE

MEASURE Generates code to monitor execution
frequency at the subprogram level for
the current unit. Default: NO MEASURE

NO_CHECKS NO_CHECKS suppresses all run-time
error checking. CHECKS provides
run-time error checking.

Default: CHECKS

l

I

i

|

\

|

|

|

|

|

|

|

I

|

l

|

|

| NO_CODE_ON_WARNING

| - NO CODE_ON WARNING means no code 1is
| generated when there is a diagnostic
l of severity WARNING or higher.

! CODE_ON_WARNING generates code

| only if there are no diagnostics
l of a severity higher than WARNING.
{ Default: CODE_ON_WARNING

I

l

I

l

l

1

l

|

I

NO_CONTAINER_GENERATION
NO_CONTAINER GENERATION means that no
container is produced even if there
are nc diagnostics.
CONTAINER_GENERATION produces a
container if diagnostic serverity
permits.
Default: CONTAINER_GENERATION

Table F-4a - Special Processing Options

.14 Compiler Options .

1391

Versicn 3.5 Ada/L PSE Handbook
29 March 1991

|

| NO_DEBUG If NO_DE3UG is specified, only that
} - information needed to link, export
and execute the current unit 1is

| included in the compiler output.

With the DEBUG cption in effect,
internal representations and
additional symbolic infcrmation are
stored in the container.

Default: DEBUG

NO_TRACE BACK Disables the location of source
exceptions that are not handled by
built-in exception handlers.
Default: TRACE BACK

OPTIMIZE Enables global optimizations in
accordance with the optimization

not included, the optimizatiocns
emphasize TIME over SPACE.

When NO_OPTIMIZE is in effect, no
global optimizations are performed,
regardless of the pragmas specified.
Default: NO_OPTIMIZE

RTE_ONLY Restricts visibility of this unit
only to those units compiled with
the EXECUTIVE option.

%

[

)

I

1

|

|

|

|

[

|

|

l

|

|

|

i

pragmas specified in the source l
l

I

|

I

l

I

|

I

|

|
Default: NO RTE ONLY I
-7 |

|
|
|
|
|
(
|
|
l
!
i
!
|
| program. If the pragma OPTIMIZE is
|
j
Z
|
f
|
I
|
|
f
|
I

Table F-5b - Special Processing Options (Continued)

F-48 F.14 Compiler Options

Ada,/L PSE Handbook

ATTRIBUTE

CROSS_REFERENCE

DIAGNOSTICS

MACHINE CODE

NOTES

SOURCE

SUMMARY

Version 3.5

29 March

Produces a Symbol Attribute Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS_REFERENCE are specified.)
Default: NO_ATTRIBUTE.

Produces a Cross-Reference Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS_REFERENCE are specified.)
Default: NO_CROSS_REFERENCE.

Produces a Diagnostic Summary Listing.
Default: NO_DIAGNOSTICS.

Produces a Machine Code Listing if
code is generated. Code is generated
when CONTAINER_GENERATION option is

in effect and (1) there are no
diagnostics of severity ERROR, SYSTEM,

or FATAL, and/or (2; NO_CODE_ON _WARNING

option is in effect and there are no
diagnostics of severity higher than
NOTE. A diagnostic of severity NOTE
is reported when a Machine Code
Listing is requested and no code is
generated. OCTAL 1s an additional
option that may be used with

MACHINE CODE to output ocatal values
on the listing instead of hex values.
Default: NO_MACHINE_CODE.

Includes diagnostics of NOTE severity
level in the Source Listing.
Default: NO_NOTES.

Produces listing of Ada source
statements. Default: NO_SOURCE.

Produces a Summary Listing; always
produced when there are errors in the
compilation. Default: NO_SUMMARY.

Table -6 - Ada/L Listing Control Options

F.14 Compiler Options

1991

Version 3.5 Ada/L PSE Handbook
29 March 1991

|
MSG Sends error messages and the |
Diagnostic Summary Listing to the |

file specified. The default is to |

send error messages and the Diagnestic |

Summary Listing to Message Output |

(usually the terminal). {

ouT Sends all selected listings to a |
single file specified. The default f

l

|

is to send listings to Standard
Output (ususally the terminal).

Table F-7 - Control Part (Redirection) Options

F-50 F.14 Compilér Options

PAGES DELIBRATELY LEFT BLANK NOT
ESSENTIAL TO REPORT PER TELECON

DAN LEHMANN ADA OFC IDA
DC 10/29/91

PAGES DELIBRATELY LEFT BLANK NOT
ESSENTIAL TO REPORT PER TELECON

DAN LEHMANN ADA OFC IDA
DC 10/29/91

ada/L PSE Handbook

F.1l6 Linkes- Options

MEASURE

PARTIAL

RTL SELECTIVE

SEARCH

SELECTIVE

Version 3.5
29 March 1991

Produces a linked container to pe
debugged. Default: NO_DEBUG.

Produces a linked container to be
analyzed. Default: NO_MEASURE.

Produces an incomplete linked

container with unresolved references.

Default: NO PARTIAL.

Similar to the SELECTIVE option
except that is only refers to RTLIB
units. This option is not supported
during phase links.

Default: NO_RTL_SELECTIVE.

Explicitly searches for the units to
be included in the linked container.
Default: SEARCH for final links;
NO_SEARCH for phase links.

Maps into the program only the
subprograms called by the main
subprogram. Default: SELECTIVE
for final links; NO_SELECTIVE
for phase links.

Table #-10 - Ada/L Linker Special Processing Options

F.16 Linker Options

Version 3.5 Ada/L PSE Handbook
29 March 1991

! No option Linker summary listing always
‘ produced.

DEBUGMAP Generates a debugmap listing.
Default: NO DEBUGMAP.

ZLAB LIST Generates an elaboraticn order
listing. Defaulc: NO_ELAB LIST.

LOADMAP Generates a locadmap listing.
Defaulc:NO_LOADMAP.

l

I

]

t

|

‘ |
1 J
i |
| !
| l
i |
i LOCAL _SYMBOLS Generates a symbols listing with |
| all internal as well as external |
l definitions in the program. |
| LOCAL_SYMBOLS 1s to be used in !
f conjunction with the SYMBOLS ;
i option. If LOCAL_SYMBOLS is |
specified with NO_SYMBOLS, a |

WARNING is produced and the SYMBOLS |

option is activated. I

Default: NO_LOCAL_SYMBOLS l

|

|

I

|

I

l

|

I

Default: NO_SYMBOLS.

UNITS Produces a Linker units listing.

i

|

i

| ‘

i SYMBOLS Produces a Linker symbols listing.
|

{

|

l

| Default: NO_UNITS.

|
|

Table F-11 - Linker Listings Options

F-54 F.16 Linker Options

Aday/L PSE Handbock Version 3.5
29 March 1939

MSG Sends error messages to the file |
specified. The default is to send
error messages to Message Output
(usually the terminal).

0UT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

Table F-12 - Control Part (Redirection) Options

T
|

F.16 Linker Options 55

Jersion 3.5 Ada/L PSE Handbook
29 March 1991

F.17 Exportef Options

DEBUG Permits the generation of a lcad
, module with all debugging facilities
! available. When NO_DEBUG is
! specified or is in effect by defaulc,
‘ no debugging facilities are made
j avallable. Export the program £or
‘ debugging with either the Run-Time
, Debugger (RTD) or the Embedded Target
g Debugger (ETD).
1 Default: NO_DEBUG.

JYNAMIC Deferred,
~0OAD Deferred.

module with all performance
y measurement facilities available.
[When NO MEASURE is specified or is 1in
| effect by default, no performance
| measurement facilities are made
! available. Default: NO_MEASURE
|

REVO In conjunction with the SIM_IMAGE
argument to the IMAGE named parameter,
this option specifies production of a
Target System File suitable for input

|
!
|
l
|
|
!
l
I
|
|
l
l
|
MEASURE Permits the generation of a load |
I
|
|
|
l
|
I
I
I
|
to Revision 0 of SIM/L and PORTAL/43. I

Table F-13 - Ada/L Special Prccessing Options

F-56 F.17 Exporter Options

Ada/L PSE Handbcok Jersicn 3.5
29 March 1991

|

| MSG Sends error messages to the file

i specified. The default is to send
! error messages to Message Output

I (usually the terminal).

|

ouT Sends all selected listings to the
| single file specified. The default
| is to send listings to Standard
i Output (usually the terminal). J
4

Table F-14 - Control Part (Redirecticn) Options

(€]}
~]

F.17 Exporter COptions - F-

Version 3.5 Ada/L PSE Handbook
29 March 1991

DEBUGMAP Generates a segment-by-segment listing ‘
znat describes how the units are mapped |

onto nardware. Defaulz: NO DEBUGMAP. i

- i

_OADMAP Generates a listings that describes how
the units are mapped ontoc the hardware.
Default: NO_LOADMAP.

i _OCAL SYMBOLS As an opticn in additicn to SYMBOLS ;
| - listing, causes the symbols listing to |
| include all internal as well as external |
| definicions in the program. §
1 Default: NO_LOCAL_ SYMBOLS !
!
|
|
|
|

NOC DETAILED Suppresses the listing of subprograms 5
h contained within each EXEC psect in ‘
~nhe DEBUGMAP and LOADMAP listings. !

Defaulz: DETAILED.

| RTEZXEC Produces executive listings instead

| of application listings. It can only
! pe used with the LOADMAP and DEBUGMAP
i options (e.g., /LOADMAP/RTEXEC).

| Default: NO_RTEXEC

|
I

SYMBOLS Generates a symbols listing of all
i external definitions in the program.
i Default: NO_SYMBOLS.

ner
~ae
ECI\JJ.

ng of all units.

(@
pa
=
3
(93]
O Q

e
e

[+1]
oY
P

wn

Table F-15 - Ada/L Exporter Listing Options

F-58 F.17 Exporter Options

