REPORT DOCUMENTATION PAGE <o Approved 5/ /

AD-A240 773

g))

OMB No. 0704-018

110 average 1 hour per responsa, Including the time for reviewing instructions, searching existing data sources, galhlﬂng and A
tlon of information Send comments regarding this burden estimate or any other aspect of this collection of Information, |

rvices, Lirectorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Sulte 1204, Arlington, VA 222024302,
Project {0704-0188), Washington, DC 20503

[T —— ot g
f August 1991 Professional paper
e et em 5 FUNDING NUMBERS
ALGEBRAIC AND PROBABILISTIC BASES FOR FUZZY SETS AND THE PR: ZES0 PR: CD32
DEVELOPMENT OF FUZZY CONDITIONING PE: 0602936N PE: 0305108K
& AUTHOR(S) WU: DN300036 WU: DN488828
1. R. Goodman
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORAMING ORGANIZATION
AEPORT NUMBER
Naval Ocean Systems Center
San Diego, CA 92152-5000
9 SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10 SPONSORING/MONITORING
Office Chief of Naval Research AGENCY REPORT NUMBER

(IED) OCNR-20T
Arlington, VA 22217

Independent Exploratory Development Programs Research and Engineering

Office of the Secretary of Defense
Washington, DC 20363

11 SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13 ABSTRACT (Maximum 200 woids)

This paper first develops an extension of the Negoita-Ralescu Represeniation Theorem for fuzzy sets in terms of flou sets
relative to operators and partitionings. It then reviews in some detail both the random set/random variable basis for fuzzy
sets, as well as the foundation of conditional event algebras. Both of these areas are tied together, first in the form of condi-
tional event indicator function., and then through the development of conditioning fuzzy sets. Spec.fically, it is shown that
the structure of conditional event algebra as proposed here drives the structure for fuzzy conditioning, resulting in condi-
tional fuzzy sets being necessarily of a simple form relative to their membership functions to a given marginal. It is seen that
with this approach, a full calculus of operations, extending that of ordinary conditional events, is obtained.

Published in the bcok Conditional Logic in Expert Systems, North-Holland Publishers, 1991.

91-11
HMWWWWWWWW

14 SUBJECT TERMS 15 NUMBER OF PAGES
data fusion conditional event algebra
conditional events 16 PRICE CODE
17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT IS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280-5500

Standard form 298

91 9 19 106




UNCLASSIFIED

| * 218 NAME OF RESPONSIBLE INDIVIDUAL 21b, TELEPHONE (include Area Code) 21c OFFICE SYMBOL
\ I. R. Goodman (619) 553-4014 Code 421
T T T T T T T T
Accezion For 5 i
NTIS Chikl N )
vhis GaA3 ; i
U asonocad - !
Justificaion o
By .
Cistiibution | ;
Availzhitity Codas '
o e e
Avail andior ,
Dist Special ]
A-t{30 |
NSN 7540-01-280-5500 Standatd form 268
UNCLASSIFIED




Conditiona' Logic in Expert Sysiems
LR. Goodman, M.M. Gupta, H.T. Nguyen and G.S. Rogers (editors)
Elsevier Science Publhishers B.V. (Nonh-Holland), 1991

ALGEBRAIC AND PROBABILISTIC BASES FOR FUZZY SETS
AND THE DEVELOPMENT OF FUZZY CONDITIONING

L.R. Goodman

Code 421, Command & Control Department
Naval Ocean Systems Center
San Diego, CA 92152-5000

Abstract. This paper first develops an extension of the Negoita-Ralescu
Representation Theorem for fuzzy sets in terms of flou sets relative to
operators and partitionings. It then reviews in some detail both the
random setrandom variable basis for fuzzy sets, as well as the
foundation of conditional event algebras. Both of these areas are tied
together, first in the form of conditional event indicator functions, and
then through the development of conditioning fuzzy sets. Specificially,
it is shown that the structure of conditional event algebra as proposed
here drives the structure for fuzzy conditioning, resulting in conditional
fuzzy sets being necessarily of a simple form relative to their
membership functions to a given marginal. It is seen that with this
approach, a full calculus of operations, extending that of ordinary
conditional events, is obtained.

Keywords. Fuzzy sets, membership functions, flou sets, conditional
fuzzy sets, random sets, partitionings, conditional event algebra.

1. Introduction.

Even after twenty-five years following Zadeh's introduction of fuzzy sets (1965),
controversy still persists in this arena of uncertainty modeling: 1. Should one choose a
fuzzy set or probability approach to a particular problem at hand? 2. Can objective
criteria be set up for comparing and contrasting fuzzy sets and probability? 3. What,
exactly, are the relations between the two approaches and can they be reconciled with
each other? 4. Can an analogue of conditioning in probability be ectablished for fuzzy
sets, especially in light of the newly-developed area of conditional event algebra
(Goodman & Nguyen, (1988), Goodman, Nguyen, Walker (1991))?

The first question still remains an open issue to this day. An approach to answering the
second one has been done through the use of game theory, as proposed by Lindley
(1982) and reconsidered by Goodman, Nguyen & Rogers (1991). As for question three,
previously Goodman (1981), Hohle (1982), and Goodman & Nguyen (1985), among
others, initiated work on relating directly fuzzy sets and probability through random set
theory. In another direction, Negoita & Ralescu have considered the relationship
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between fuzzy sets and certain coileciions of nested ordinary sets (or "flou" sets)
(1975), while Gaines has vonsidered both fuzzy sets and probability logic from a
common algebraic framework (1978). {5ce Goodman & Nguyen (1985, Chapter 7) for
a more thorough history of attempts at conuecting fuzzy sets with probability.) The last
question has been addressed by a number of individuals. E.g., Mattila (1986), Sembi &
Mamdani (1979), and Yager (:983) consider extensions and modifications of ordinary
material implication, while Zaldeh (1378), Nguyen (1978), Hisdal (1978), Bouchon
(1987), and Goodman & Stein {19&9) approached fuzzy conditioning with at least some
concept of conditional probability relative to ordinary sets in mind.

A common theme underlies the above issues and their responses: there is a real need to,
once and for all, establish a umfying approach to fuzzy sets, their algebraic or syntactic
bases, and their internal and external relations to probability Recently, conditioning in
probability has been re-examined and it has been demonstrated that a firm algebraic
basis -- in addit:c.. .» the usual numerically-oriented approach -- can be derived for
conditioning. (See Schay (1968), Adams (1975), Calabrese (1987), and Goodman,
Nguyen, & Walker (1991), as well as the work of Dubois & Prade (1990).) Thus,it
would also be desirable to be able to extend the above work to fuzzy sets based on firm
logical considerations.

The purpose of this paper is twofcld: First, to develop a sound algebraic basis for fuzzy
sets, based upon the fundamental work o {‘egnita & Ralescu (1975). This will serve as
a lead-in to the probability basis for fuzzy sei.. In shont, flou sets -- and a new
alternative, but equivalent, representation in the formn. :¥ ordered panitionings -- are
proposed as the natural candidates for the syntactic foundatic.: of fuzzy sets,
underlying the semantic evaluations: fuzzy set membership functions. However, the
scope here is a 1imited one and the very generalized set theory encompassing fuzx) sets
in the form of categories and pseudotopoi will not be treated here. (See, e.g., Barr
(1989), Eytan (1981), Piuts (1982), Goguen (1974), and Stout (1984).)

In addition, extensions of the Stone Representation Theorem to fuzzy sets as, e.g.,
treated in Glas (1984) and Belluce (1986) will not be considered. The second goal of
this paper is to be able to apply the basic algebraic and probabilistic foundations for
fuzzy sets to the development of conditioning and related concepts.

This paper consists of eight additional sections. In section 2 the basic spaces are
considred: partitioning, flou, and membership function spaces and their bijections. In
section 3 a standard procedure is reviewed for inducing isomorphisms from bijection'
relative 1o the base spaces. Section 4 develops operations isomorphic to fuzzy set
membership operations, including cartesian products, sums, Intersections, unions,
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complements, functional and inverse functional transforms, among others. A similar
developent for partitioning sets is given in section 5. Section 6 reviews briefly
conditioning of ordinary sets and establishes a connection with three-valued fuzzy set
membership functions as a special case of finite-valued membership functions. In
section 7, logical models for fuzzy sets are characterized, In turn, external probabilities
of fuzzy sct membership functions are deterinined. These are especially useful as a
ratichale fur . ingle figures-of-merit for fuzzy sews -- analogous to the moments of cdf's.
In a direction opposite to section 7, the underlving probability basis for fuzzy sets is
summarized ir section 8. The focus here is the uniform randomization of flou sets and
partitioning sets, as well as their isomorphic relations to the class of membership
functions. (A third connection between probability and fuzzy sets is given briefly at the
end of sect. 4 via cdf's as formal fuzzy set me—bership functions.) Firally, in section 9
conditional fuzzy sets are defined, based upon random set considerations as developed
in the previous sections. A full calculus of operations and relations is derived,
extending all of the previous results obtained for ordinary conditional events to fuzzy
sets.

2. Fundamental Spaces and Bijective Mappings.

Throughout the remaining paper denote the unit interval {0, 1) ={t:0<t< 1} by u.
Also, let SET denote the collection of all well-defined sets and consider the operators
Part, Flou, Mem:SET - SET and mappings on SET, ¢, y, where for all X e SET,
#X) : Flou(X) + Mem(X) and y(X) : Part(X) - Flou(X).

d
Part(X) = set of all ordered disjoint nonvacuous exhaustive partitionings q of
X, where typically @.n
q =(qt)tEJ , Q:quu; g, € AX); qant=(b, s#i; UJ q,=X. 2.2)
t
q . € q
Flou(X) = set of all flou sets (see originally Gentilhomme (1968)) a of X,
where typically (2.3,
a=m&w,X=%9%?a9ﬁ9&lg%=%wuymlng055931 Q.4

arbitrary real. The right hand side relation is continuity from above.

d
Mem(X) = set of all fuzzy set membership functions f of X

== f:X ), (2.5)
including all ordinary set mdicator functions g: X = {0, 1}
#(X) . Flouw(X) » Mem(X), the fundamental membership mapping is defined for any
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a € Flou(X), ¢(X)(a) : X -+ u, where for all x e X,

d
X (a)(x) =supft:teu & xe at}. (2.6)
w(X) : Pant(X) -+ Flou(X) is the fundamental fuzzy set forming mapping, where for any
q € Part(X) and any tey,

d
(w(X)(q))t=U[qS:se Jq &tsss1). 2.7
All of this leads to
Theorem 2.1. For each Xe SET, ¢(X) 1is a bijection, with inverse ¢(X)'l:
Mem(X) - Flou(X) given for any fe Mem(X) as ¢(X)'1(f) ¢ Flou(X), where for all
teu,

d
@, =L )= (x:xe X & 121() 2.8)

the tth-Ievel (or cur) set of f. Note also that for all x € X, the supremum in eq. (2.6) is
always achieved, so that

X€ a¢(X)(a)(x)' all xe X, (2.9)

Proof: Though Negoita & Ralescu (1975) have developed a representation theorem
with a slightly different form, for purposes of completeness, a full proof for the present
version will be presented here.

Obviously, ¢(X) is well-defined. For any fe Mem(X), define ¢(X)'1(f) as in (2.8).

Clearly, from the basic properties of inverse functions, ¢(X)'l(f) satisfies propenty left
hand side of (2.4). For the right hand side of (2.4) let Jcu arbitrary (nonvacuous).

Then, for any xe X, x¢€ nlf'llt, 1}:tel} iff f(x)=2J iff f(x)2sup(d) iff
x ¢ £ }{sop(3), 1. Thus, (2.4) is satisfied and ¢(X) 1 (f) € Flou(X). In tum, for any
xeX, o0 O =supltzteu & xe £l 1))

=sup{t.1cu & t<f(x)} = f(x), implying that ¢(X) is surjective with q)(X)'l being

a candidate for :s inverse. Next, let a € Fleu(X) arbitrary and for any te u,

@) 00N, = 000@ 1t 1= (x 1 x e X & 9O0@0) 21)
=(x:xeX&sup{s:seu&xeaS]Zt). (2.10)

Now, if xe€ a,, then clearly sup{s:seuv & xe as] 2t. Conversely, if the sup 21,

d
then letting Jx ={s:s€u & X € as}, by RHS (2.4) property,
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Xe€ n(as 1SE€ Jx} = aSUp(Jx) with sup(Jx) 21, wheuce x ¢ asup(J,_) Ca,.
Thus, forall te u,x ¢ a, iff sup{s:seu & xe¢ as] 2tallxe X (2.11)
Combining (2.10) and (2.11) shows

@0 ge0@)), = (x:x e ) =a, @.12)
verifying that for all a e Flou(X),

o) (000 @) = a. (2.13)
It is readily seen that (2.13) is sufficient to show that ¢(X) is injective. Since §X)
was also shown to be surjective, the above shows that it is bijective. Finally, (2.13)
also shows (2.9) directly. a

Theorem 2.2. w(X) is a bijection with inverse t,;t()()'l : Flou(X) = Part(X), given for
any a ¢ Flou(X) as !p(X)'l(a) ¢ Part(X), with index set

J 1 =(x:teu&at-a+¢{b], (2.14)
wX) (@ t
where
a‘+=u{as:t<ssl).teu, 2.15)
and where forall te] R ie, a,-a =0,

WX @ Eor

d
W) @), =3, - (2.16)

+ ’
t
with tue convention that

a1+=g(asl =0. 2.17
Proof: First, note that for any q e Part(X), and hence y(X)(q) € Flou(X): For all
0<s<1<,

(WX)@g =vlag:sel} =X ; (WX =vlg e, s<r)
) u[qr ire Jq’ tsr)= (w(X)(q))l, (2.18)
verifying the left hand side of (2.4). Forany Kcu, let x¢ (w(X)(q))sup(K). Thus,

there exists se J_ with s2sup(K) such thar x e 9 Hence, for each te K, there
exists s € Jq with s> sup(K) and xe 9 Hence,

x € (y(X)(q)) c v = n (YX)q) (2.19)
sup(K) < | %= % wX)a),

n

eK t<s<1 te

Conversely, let x& n (y/(X)(q))l. Since ¢ is a partitioning of X, there is a unique
teK

toelq such that xe q, - Thus, xe n (w()()(q))t becomes: for all te K,
o teK

X € (\V(X)(q))‘. so that for each te K, there is an se .lq with t1<s, x¢ 4g =9,
(o]
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noting that t,2 K. Hence

Xe€ c v = (y(X 2.20
q,c ® selsup(R),1Y (qs) (y( )(q))sup(K) (2.20)

Combining (2.19) and (2.20) shows the right hand side of (2.4) holding. Hence (2.4)
completely holds and y(X)(q) € Flou(X). Hence, y(X): Part(X) -+ Flou(X) is a
weil-defined mapping,

Next, consider the mapping $(X)y(X) : Part(X) + Mem(X) which is also well-defined
since ¢ and y are. Forany fe Mem(X), consider the partitioning

d d
A0 = (@O))gey 3 Ip=range(d = (109 : x e X) ; @) =), @21)

forall se Jt‘ Then, for all x € X, using (2.21),

HXOWOQONX) =suplt:teu&xe U £l(s)
(SEJf,tSS)

=sup{t:teu&xe f'I[t. 11} = f(x), (2.22)

showing ¢(X).y(X) is surjective with
(AX)oWX)(Q(D)) =1, all fe Mem(X). (2.23)
next, for each q e Part(X), define fq € Mem(X) by, forall x e X,

d
f (x) =s, forthat unique se J_ for which x ¢ q (2.24)
Clearly, (2.24) is equivalent to the relation
1) =g, all se g (2.25)
Note, using the notation of (2.21), Jf =range(fq) =Jq. and since for all se Jf ,
q q
(2.25) shows (q(fq))S = f(']l(s) = q,, then one has
a(f ) =gq. (2.26)
Finally, replacing f by fq in (2.23), using (2.26), shows that
(XD W(X))q) = fq- (2.27)

In wr, (2.27) shows that ¢X)oy(X) is also injective. Hence, by the previously
established property of being surjective, ¢(X)oy(X) is bijective.

Next, (2.23) in conjunction with the bijectivity of ¢X)oy(X) shows

w0 o000 = 0006wy (0 = 9. (2.28)
Then, letting a e Flou(X) arbitrary and choosing f= ¢(X)(a) in (2.28), since by

Theorem 2.1, ¢(X)" 1 (¢(X)(a)) = a, one obtains
W(X)"(a) = g(¢(X)(a)), (2.29)
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where by (2.21)
Jq(¢(X)(a)) = range(¢(X)(a)) = (sup{t:teu & xe a‘] 1 x e X),

(2.30)
and for each te Jq(¢(X)(a))' by (2.24),
QX)) = (0@ (). 231)
But, Theorem 2.1 shows .
a, = @) 1t 1 2.32)
and a,= v a= v (¢(X)(a))'1[s.1]
t t<s<l t<ssl
= (@)@ ' v s 1) = @) ). (2.33)
t<s<l
Combining (2.29)-(2.33), shows forall te J Q0
v(X) “(a)
(w00 @), = @@ ® = 0e0@) ' 11 - @o@) e, 1)
=a -3, matching eq. (2.16). (2.34)
t
Finally, by (2.29) and (2.31),
Boa = (@X)@) 1) 2 iff 1€ range(dX)G =leco@y @39
Eq. (2.35) shows (2.14). =

The proof technique of Theorem 2.2 leads immediately to

Corollary 2.1. ¢{X)oy(X) : Pant(X) » Mem(X) is a bijection, where HX)oy(X) can

be expressed as in eqs. (2.27) and (2.24), with inverse (q)(X)ow(X))'l:
Mem(X) - Part(X), which can be expressed, using (2.23) as

@)y 0 = w1y 1O = gy, (2.36)

»
Summarizing, the following diagram of bijections holds:

Flou(X)
w(X) #(X)

Pari(X) - Mem(X)

(X))o W(X)

Figure 2.1. Summary of bijections for Mem(X), Flou(X), Part(X).
The basic relauonships are, omiuning the (X) notation for ¢, w, for all
q= (q[)‘GJ € Pani(X), a = <“()leu € Flou(X), fe Mem(X),and all teu xe X:

q
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¢(a)(x) =sup{t : teu& xea}; (¢"1(f))'= f'llt.l}; (w(a)), w{qs:seJq,tSssl);

=l ) = .
J -{t.teu&a‘- at+¢0], (y (a))t—a‘-at+. all tel 1,4

v ) v 1@

(P W) (Q)(x)=f (x)=s (for that unique se] , wheru xeqs);J 1=
q d @oy) (D

range(f); ((¢°\V)'1(0)S = f'l(s). all s e range(f). 2.37)
3. Isomorphisms among Operations over the Fundamental Spaces: Introduction.

First note the foilowing general constructive procadure:
Let (X, *) be a given space with operation * over X which could be n-ary as

#:X"4X and let Y be any other (nonvacuous) set such that T:X-~Y isa

bijection. Then, define (n-ary) operation 7(*) : Y.y by

d
VY ey ) = A Dy D 2l Yy € Y, @3.1)
d
ie.. %) = To*oT ! (n-ary); 3.2)
so that T and * commute through 7(*):
1‘(*(x].....xn)) = f("‘)('t(xl),....r(xn)), all X X € X, (3.2)

ie, (X,*) and (Y, 7(*)) are isomorphic through <. (A similar construction holds

when r'l is replaced by, say, n: Y + X throughou egs. (3.1)-(3.3)* Call (Y, 7(*))
the space induced isomorphically by bijection 1.

We will apply the above procedure several times throughout the paper to determine the
natural isomorphic counterparts among operators defined over Part(X), Flou(X), and
Mem(X), based on the traditional Zadeh and Zadeh-extended operators and relations
with respect to Mem(X). (See, e g., the standard text by Dubois & Prade (1980) for
background on these operators.) Specifically, the operators and relations to be
considered here are: 1, cartesian products and their specialization to intersections; 2,
cartesian sums and their specialization to unions; 3, subset relations; 4, complement
operator; 5, attribute tranforms/functional extension principle; 6, inverse attribute
ransforms; 7, modifiers -- intensifiers and extensifiers. Conditioning, an important
erghth type of operator will be considered separately in later sections, especially
sections 6 and 10.

First, a brief note on the notation: Unless otherwise specified, X, Y, Z, X, X5, ..., X,
Yl' v Yn € SET arbitrary but fixed for any arbitrary but fixed positive integer n.
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T:X <Y is any mapping and 'I"1 : 2(Y)» P(X) is its inverse mapping, where
£() denotes the power class of () or the class of all (ordinary) subsets of ().

n

Tn: X Xj -+Y is arbitrary asis H:u-u (recalling that u denotes the unit interval).
j=1

Also, choose any continuous n-copula, i.c., cdf of an n by 1 r.v. representing the
joint behavior of n one-dimensional marginal r.v.'s which are distributed uniformly
over u. Thus, cop is the cdf for _¥=( Yy 74.). where 9‘: A=y, j=1,.,n,
relative to some fixed probability space (A, A, p). Dually, denote the DeMorgan
transform 1-cop(li - ()....,1 - ()) (n-ary operation) by cocop (cocopula). (See
Schweizer & Sklar (1983) for general background.) In particular, note Zadeh's original
copula min, as well as prod and minsum(only,  2-copulas)

minsum(s, t) =max(s +t-1,0), all s, teu, as well as a wide variety of other
examples as given in Goodman & Nguyen (1985, sect. 2.3.6). Three important
examples of cocopulas are Zadeh's original max and probsum. and maxsum, where

d d
probsum(s, t) =1 - ((1 -s)-(1-t)) and maxsum(s,t) =min(s +t-1,0) (the latter

being only a 2-copula). (Again, see references above for further details.)

Also, let f“). f(z), f € Mem(X), g ¢ Mem(Y), and fj € Mem(Xj), j=1,.,n all
arbitrary fixed. Use the multivariable notation

d d dn d
f= (fl,....fn) (n arguments) ; X = (Xl.....Xn) s xX = _>_<1Xj X = (xl,...,xn) e xX,
d d d
ie., xj € Xj, j=1.,n ; fx)= (fl(xl)....,fn(xn)) ; for any 1= (tl,...,tn) € un,

d d
cop(l) = COP(‘I""'[n)' When X = X] == Xn' f(x) = (f] (x),....fn(x)) ,x€e X,

The seven types of Zadeh -- and related -- fuzzy set operations and relations defined
through the membership functions to be considered here are in summary:

d
(1) cartesian product of { wrt cop = x o p(f) € Mem(xX), (3.4)

d
xcop(D =cop(f(x)), all xe X. 3.5)

In particular, for X = Xl = .= Xn.
d
intersection of { wrt cop = ﬁcop(D € Mem(X), 3.6)
d

Neop®X) = coplfix)), all x ¢ X. (3.7)
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d

(2) cartesian sum of f wrt cocop =t (f) e Mem(xX)

cocop

d
teocop®W) = cocop(fx)), all x e X.
In particular, for X =X, =.=X,

union of f wrt cocop = Ucocop

d
UcocoP(D(x) = cocop(f(x)), all x e X.
3) £ is in subset relation to £ iff, by def. , <@ ver x.

(£ € Mem(X),

d d
(4) complementof f =f" =1 - fe Mem(X)

d
(5) T-attribute transform of f = T(f) ¢ Mem(Y),

d
T(f)(y) = sup(f(T 'l(y)) = sup f(x)= sup f(x), all yeY,

_ xTly)  Te)=y
In particular, for X = %X,

d
T-attribute transform of f wrt cop = Tc o p(ﬂ € Mem(Y),

d
Teop®) = suple, DT WM = sup (¢, (D).

cop 1
xeT “(y)

d
(6) T'l-atm'bule transform of g = T'l(g) € Mem(X),

d
11g) = g T, ie, T H@)x) = gTOON, all xe X

d
(7) H-modifier of f = H,f, i.e., (Hof)(x) = H(f(x)), all x ¢ X.

(3.8)

(3.9

(3.10)

(3.11)
(3.12)

(3.13)
(3.14)

(3.15)

(3.16)

3.17)

(3.18)
(3.19)

(3.20)

Note that though (6) and (7) look similar in form, (6) is the composition of the
membership function on another (T), while (7) is the composition of a function (H,

necessarily over u) on the membership function.

The next section constructs the isomorphic counterparts of the above over Flou(X).

4. Coustruction of Oberan'ons over Flou Spaces Isomorphic to Those over Fuzzy Set

Membership Function Spaces.

Negoita & Ralescu (1975) and Ralescu (1979) were among the first 1o develop a full

isomorphism between fuzzv set membership functions over a set endowed with Zadeh's

original operations min for intersection or cartesian product and max for union or

cartesian sum and flou (as nested collections of) sets with component-wise intersections
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and unions -- but not complements nor other operations. (This work extended the
carlier work of Gentithomme (1968) who introduced finite collections of nested sets as
"flou" sets to explain multiple logic concepts through the use of ordinary sets, indeed
without referring at all to Zadel's still easlier pioneering effort (1965).) Radecki (1977)
also considered independently a similar situstion, emphasizing the level set forms of the
nested sets relative to given membership functions.

In this section all of the above work is extended to include the seven types of
operations and relations introduced in section 3. The resulting isomorphism from the
procedure of section 3 applied to Theorem 2.1 show why it is natural to employ
Flou(X) as the algebraic basis for fuzzy sets. In addition to the notation introduced in

d d
the previous section, denote 2 = (a(l),...,a(")) ¢ Flou®X) = (Flou(Xl).....Flou(Xn)). when

: d
a® ¢ Flou(X;), j= l,..n arbitrary. Similarly, denote b =®W,...5™) ¢ Flou(y),
when b0 ¢ Flou(Y), j= I..n. Also ¢ Flou() and b e Flou(Y) are typical

d d
elements; ¢(a) = (¢(a(1)),....¢(a("))) (n arguments); for any fe€ u", xas = agl)x..xagn),
- 1 n
etc. For clarity, bold face is used on some operations:
d
(1) cariesian product of g wrt cop = xcop(a) € Flou(xX), 4.1)
d
e | _ el
(Xeop@Py = (97 (X (K@), = (X (@@ It 1]
= v (xa ), 4.2)
over all geun, s
cop(s)=t
for all te u. Intersection becomes for X = X1 ==X
ncop(g) € Flou(X); (r\cop(g)))l = s :” seu",(n aS). all 1teu (4.3)
cop(s)=t ~
For the special case cop = min, note the reductions of (4.2) and (4.3)
n . n .
(K@), = .xla?); O @, = ¢ .la((]), allte u.- (4.4)
J= J=
d
(2) cartesian sum of g wrt cocop = Tcocop(n) € Flou(xX), (4.5)
where analogous 10 the cartesian product case in (4.2),
”cocop(ﬁ))t = v n (x as). foratlte u. (4.6)

over ali seuw’, -
cocop(s)=t
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Union becomes for X = Xl =.= Xn,

o = , R 4.
Ucocop(a) € Flou(X) (Ucocop(a»t over :]_ ‘eun'(u a§) teu @.n

cocop(s)=t
For the special case cocop = max, note the reductions of (4.6) and (4.7)

n ,.dn . n .
(mgy@y = 1 la?) = (j>__<1a§’) "5 (U @), =j:la?). teu, 48)

(3) Forany a% ¢ Flou(x), j = 1,2, it casily follows that

A <a@ igf o) s 9a®) over x it al) ¢ o, @9)
(4) a’ € Flou(X) is given by, forallte u,

a; =@ @M = - @) L 11 = (x x e X & KRS 1-1)

=X- 9@ (1L =Xy (4.10)
where

2 =¢@0-ni= v sl = U a @.11)
(1-v) 1-t<ssl 1-t<s<l

(5) T(a) € Flou(T(X)), where forall te u,

(TG, = (0" @@, = (T 1, 1)
=[y:yeY&sup[s:seu&yeT(as)]Zt]. 4.12)
Define

d
T(a) = (T(at))t cw 4.13)

Now, T(a) € Flou(T(X)). Proof: First, the left hand side of (2.4) can be verified

directly. As for the right hand side of (2.4): Let Jcu,ye n T(as). Hence, y = T(x)
seJ

for some xea_, all sUJ, implying ye T(n as) =T(a
sel

s )), using r.hs. {2.4)

sup(J

property of a itself. Conversely, if ye T(a J)), there exists x€ a

sup( sup(_J) w.ith
y=T(x). But, asup(J)= S(E\Jas, so that y=T(x), xe ag, all  seJ, implying
yen T(as). Hence, r.h.s. (2.4) holds and thus T(a) € Flou(X).

seJ

Next, applying Theorem 2.1 to T(a), shows for all te u,

(T@) = ly:ye Y & §T@)y) 20 = @T@N 'L 11=Tw),  “14)
i.e., using (4.13),

T(a) = T(a). (4.15)
In particular, the multiargument case where X = xX becomes
Tcop(ﬁ) = T(Xcop(ﬂ)). (4.16)

(6) Forall teu,
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alon, = @l oom, = @D s n=T o L i =T1e). @
(4.17) shows

T'o) =10 = @ oY), (“.18)
(7) The H-modifier of a is determined as _
Hea = ¢ (Ho9(a)) € Flou(X), (4.19)

where forall te u,
(Hoa), = (¢ (Hag(@)), = (Hogt@)) [t 11 = (Hogt@)) 1t 11 = ¢y ' 11, 1. (4.20)
If H is monotone increasing with H(0) =0 and H(1) = 1, then (4.20) becomes
(Hot), = ¢ 0, 1)=a | , alltey, @4.21)
H

whence

Ha=a . (4.22)

H

On the other hand, if H is monotone decreasing with H(0) 1 and H(1) =0, then
(4.20) becomes

(Hot), = ¢() 10, B 0] = X 4 gy ), 1) =X 4 S (4.23)
t

Summarizing the above results:

Theorem 4.1. Let * refer to any of the seven types of operations and relations defined

for Mem(X) (or Mem(xX)) in section 3, eqs. (3.4)-(3.20). Let tp'l(*) refer to the
corresponding seven types of operations and relations given for Flou(X) (or related
spaces) in this sectior, eqs. (4.1)-(4.23). Then (using the X form for generality),

¢ : (Flou(X); ¢'1(*)) -+ (Mem(X); *) is a surjective isomorphism.

Proof: Immediate consequence of the construciive procedure of section 3 for ‘t’l

replaced by ¢ (and 1 by ¢'1). relative to the bijection ¢ as shown in Theorem 2.1.

In another direction, recall the concept of the sup norm of a fuzzy set membership
function (see e.g. Goodman & Nguyen (1985, section 3.3)):

d
I - Mem(X) = u ; fif]] = sup f(x). (4.24)
xeX
Then,

d
o @l = supli: vew s ¢, = 1)
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=sup{t:te u & tsf(x),forsome x e X} =||f], all fe Mem(X), (4.25)
5o that

i@}l = [lall, all a e Flou(X), (4.26)

showing the invariance of || || wrt ¢. Similar remarks hold for trace norms, where a

fuzzy intersection relative to a fixed membership function is used.

As a final segment 1o this section, suppose we restrict Mem(X) to Dist(R), the class of
all cumulative probability distribution functions (cdf’s) over the real line R (recalling
that a cdf F is characterized as F:R - u being nondecreasing, continuous from the
right with F(-»)=0 and F(+«)=1). Also, define Ant(R) as the class of all
anti-distribution functions G over u in the sense that G:u-R is any
nondecreasing, continuous from the left function with (abusing notation relative to the
domains of use) G(0) = -~ and G(1) = +«. Also, recall the pseudoinverse of cdf F as
given by

d
F@) =inf F [y, 1], all teu, @.27)
with the usual properties such as FoFP.F=F and FOF.F°=F° etc. (See e.g.,
Goodman & Nguyen (1985, pp. 121 et passim).) Dually, define for each G ¢ Ant(R),

GA and 1(G), where

A4 d
G (x) =sup G "(-=, x], all x e X; 7(G) = ([G(s), M))seu’ (4.28)

and let the range(t) be denoted as Pseu(R). Then, it follows that for all F e Dist(R),
G € Ani(R),

FFA_E . gY%=g, (4.29)

and hence ( )A : Ant(R) - Dist(R) and ( )D : Dist(R) -» Ant(R) are well-defined inverse
bijections of each other. It also follows for any F e Dist(R) that

¢ ® = @ @, @@, =Flin 11 = (B0, +) = (EO, (430)

and for any G ¢ Am(R), &®TG)) = G2, 431)
The above can all be summarized by the following diagram of bijections:

Flou(R) g » Mem(®) ¥ 0
y y 0" =14
Pseu(R) ¢ D1 st(R)
T ()°
Ant(®)

Figure 4.1. Summary of bijections involving cdf's as membership functions
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All of the above can be generalized to R" with suitable modifications. In addition, the
construction technique of section 3, as applied in the earlier part of this section to
developing the bijections among Mem(X) and Flou(X) into isomorphisms is valid
here as a special case, showing a basic connection between probability (via cdf's) and
fuzzy sets.

5. Construction of Operations over Partitioning Spaces Isomorphic to Those over
Fuzzy Set Membership Function Spaces.

d
In addition to the previous notation introduced, denote ¢ = (q(l),....q(")) where

q(i) € Pan(Xj) is arbitrary, j = 1,...,n. Similarly, denote

d d
(Gow@ = (@wa ,dw@™ ), moting g e Pan(X) = (Pan(X,)....PancX,)

while (¢.y)(q) € Mem(X), etc.
By use of the isomorphism construction technique discussed in section 3, where now

'r'1 =¢oy and X is replaced by Mem(X), while Y is replaced by Pan(X), the
following counterparts are obtained for the seven basic membership operations and

relations:
d
(1) cartesian product of g wrt cop = X co p(g) € Part(xX), (5.1
where
-1 -1
Xeop@ = Go¥) (G (¢ ($a1)(@)) (5.2)
with index set
n
J =range(X, (gaW)@)) = X (J ..) (5.3)
*cop@ <o = ¥
Foreach te u,
-1 ()
(1‘<:0(:0p(51))t = ((¢¥) (’fcocop((qbo'I/)(Sl))))l = oveg all (jzlqu )
Eej'{.cocop(g)'
cocop(s)=t
(5.4)

with similar forms holding for “intersections".

d
(2) cartesian sum of g wrt cocop = T

has index set

cocop(“) ¢ Part(xX) 55)
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n
J =t ol )
tcocop@ J_;ocop q¥

Forall teu,

- -1 = x (j)
(foaop@) = @V (egeqp@W@N = v g:,qu )
sel
= Tcocop(g),
cocop(s)=t

with similar forms holding for "unions".

@) Forany o' @ e Pangx), ¢V <q®
iff (4o9)_ @) < @ow)@®).

over

Then it can be shown that

q(l) < q(z) iff q(z) is a refinement of q(l), i.e., for each sel )
q

, : (1 _ (2)
there exists 1. ¢ J @) withs s I &q°" =V q™"

t
q lEIs

(4) Forall g e Part(X), 4’ = (94" ((GoW)@)"),
with index set

Jq: = rang(((po¥Xq)') =1 - Jq ={l-t:te Jq}-
Forall teu

(@), = (@ow)@) ' ®)’
=(x:xex&rq(x)=1-x);=r(';‘(1-z)=q]_[.

(5) T-attribute transform of g =T(q) = (%W)'](T ((9o¥)(q))) € Far(T(X))
with index set

JT(q) = range(T(($o¥)(q)))
= range (T(fq)) = {sup{s:se Jq &ye T(qs)] :ye Y},

Forallte u,

@), = (Tagwlay ' = (16"
={y:yeY &supf{s:se Jq,~yeT(qS)l =]

(5.6)

5.7

(5.8)

(5.9
(5.10)

(5.11)

(5.12)
(5.13)

(5.149)

(5.15)
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(6) T L attribute transform of q= (T'l(q))t = (¢ov)'1('l_' '1((¢ow)(q))).

(5.15)
with index set
3y = range(T™ (Qoy)@)) = range(T(F,)) = range(f,oT)
T(@
={s:s¢€ Jq & T'l(qs) #0).
(5.17)
Forall teu,
(g, = (@ow ' @owr@m,
_ -l “1o0 -1
U RCEIRONC
=76 =1 qy.
(5.18)
(7) H-modifier for q = Hoq = (¢0W)-](Hofq):
(5.19)
with index set
JHOq = range(Hofq) = H(Jq).
(5.20)
Forallte u,
(Hoa), = (o Mo ), = ) O = £ 0 ) =y = v (4
! HOO senton ]
5.21)

Summarizing the above results:
Theorem 5.1. Let * refer to any of the seven types of cperations and relations defined

for Mem(X) (or Mem(xX)) in section 3, egs. (3.4)-(3.20). Let (¢>°l;/)’1(*) refer to
the corresponding seven types of operations and relations given for Part(X) (or related
spaces) in this section, eqs. (5.1)-(5.21). Then (using the X form for generality),
Qo @ (Part(X); (¢°ty)'1(*)) - Mem(X); *) is a surjective isomorphism.

. . -1
Proof  lmmediate consequence of the constructive procedure of section 3 for 7

replaced by @oy (and T by (¢ow)'l). relative to the bijection @y as shown in

Theorem 2.2. ™

Remarks  In summary, the following diagram holds, superseding Figure 2.1
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Flou(X) ; ¢ (%)
iso v / \ iso
@art(X); (Gov) (%) W;s;(x) . (Mem(X): %)

Figure 5.1. Summary of isomorphisms among Mem(X), Flou(X), Part(X).

Thus, the initial Zadeh operations and relations defined over Mem(X), the usual
semantically or numerically-oriented space representing fuzzy set membership
functions, can be isomorphically represented by borh counterparts over Flou(X) and
those over Part(X). The last two spaces in light of Theorems 4.1 and 5.1 can be
considered to be the natural syntactic or algebraic structures representing fuzzy sets. Of
cowrse, a number of other operations and relations could have been considered, but the
above seven seems to be a reasonable demonstration of the natural relations among the
spaces. (Conditioning will be treated later as a special type of operation.)

The next section considers the important special case of finite-valued membership
functions and the corresponding flou and partitioning sets, together with some
relationships with conditional events, as previously developed for ordinary (i.c.,
non-fuzzy) events and sets.

6. Finite-Valued Fuzzy Set Membership Functions and Relations with Conditional and
Unconditional Sets

Jn this section we specialize somc of the previous resulis for the general case to the

se«wng where only finite-valued membership fur.ctions are considered and relate this to

condi.ional event algebra for the three-valued subcase.

In particular, let f e Mem(X) be such that it is arbitrary fixed with
range(f) = [tj j=1..m); O.<.tl <y <.<t S 1,
(6.1
for some arbitrarily fixed positive integer m and real lj. It follows that the
corresponding flou set is from Theorem 2.1

o0 =welm

s’seu (6.2)

wiicre now



Algebraic and probabilistic bases far fuzzy sets 19

9, if tm<s51;

-1
f [tj+l.tj+2,...,tm)
@l =l =t e purtag oy,
i< s St §elzeam] 6.3)
| X.ifOSsStl.
The corresponding partitioning set is from Theorem 2.2
9w = (o¥) e 6.4)
CRVMG)
where from (2.37)
(CRIMOIETRIONYS S 6.5)
(9¥) (D)
where index set
= range(f) (6.6)

e
($y) (D)
given in (6.1).

It is clear by inspection that any finite partitioning q = (qs) se] € Pari(X) arises from

some finite-valued f. (See also the proof of Theorem 2.2.) Similar remarks hold for
the correspondences of finite flon sets, i.e. flou sets with only a finite number of
distinct component sets, and finite-valued membership functions. Summarizing:

Theorem 6.0. Theorems 2.1 and 2.2 remain valid when the bijections ¢, v, and ¢y
are all restricted to the classes of finite-valued elements -- in the above senses -- of
their domains. Indeed, in lighi of Theorems 4.1 and 5.1, these bijections are actually
isomorphisms when so restricted. ’ =

Next, let us treat in some detail two particular subcases of finite-valued membership
tanctions and a modified third subcase.

First, consider single-valued, or equivalently, constant, membership functions and their
correspoading fiou and partitioning sets: For any constant ¢ in u, use the standard
identification with ¢ : X —u, where

c(x) = c(constant), all x € X, 6.7)
is used. Dennte the class of all such functions as
d
Meml(X)=[c:c:X-u.ce u}. (6.8)

The corresponding flou set is easily seen to be
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10 = (@ Ny 69)
where for all s € u,
" X, if0sssc,
@@, =cts, 11 = { (6.10)
9, if c<cssl.
Denote the class of all such flou sets as
d
Flou,(X) = (¢'/(c) : c  ul. @.11)
Next, the corresponding partitioning setto ¢ is
Gy @) = (e @) (6.12)
@y ©
where
Jo . =mange(© = {c); (v e, =c @) = X. (6.13)
($o¥) "(c)
That is,
(oW () = (X} (with index value c). (6.14)
Denote the class of all such partitioning sets as
d
Part; (X) = {($o¥) ') : c € w). (6.15)

Next, consider membership functions which can have possibly two values 0 or 1, i.e.,
the class of all ordinary set membership, or equivalently, indicator, functions
1 Al X -+ {0, 1} € Mem(X), where the standard relation holds for any ordinary subset
A of X

d { 1, if xeA,

1,(x) = (6.16)
A 0, if xeA’.
Corresponding to any 1 A A e P(X), the flou and partitioning sets are:
6110 = @ Mg 617
where
@lam. =111 {x, os=0 6.18)
= S, = .
ATs A A, if 0<s<l.
@y (1) = (@ ) : (6.19)
CRIRIN
index set
J = range(lA) = {0, 1}, (6.20)

By (1)
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unless

A =X, implying J = {1}; or A =0, implying J 1 = (0).
(¢o

71y

CRUR
(6.21)
For A e 2(X) in general again,

(@ 0= 1210 =A% @ow ), =1, )= A 6.22)
The special cases A =X and A =0 yield
(00w (150) = (X) (with index val. 13; (9o¥)" (1) = (X) (with index val. 0). (6.23)
Denote the above class of membership functions with values in {0, 1] as MZ(X) with

the corresponding flou class as Flouz(X) and the corresponding partitioning set class
as Partz(X).

Next, consider any fixed te u and define the class

d
Mcmt 3(X) = {0, 1, l}x = {f : f e Mem(X) & range(f) c {0, ¢, 1} ). (0.24)
In tumn, define the union
d
Mem3(X) =y Memt 3(X), (6.25)
teu 4
noting from (6.24),
Mcm0’3(X) = Mcm]'s(X) = {0, I}X = Mcmz(X). (6.26)

For any teu and any ft € Mc:mt 3(X). the corresponding flou and partitioning sets
are:

Al
610 = (¢ 0D 6.27)
X, if s=0
(4)']({‘))5:(‘1[5, 1= f;](t)u f;l(l), if 0<s<t, (6.28)
-1 .
el it s =1,
@) €)= (@ ENYy, .‘ (6.29)
TR
with index set
J = rangc(f!) = (0.1, 1}, (6.30)

(00w (1)

and for <¢ {0,1,1)




22 L.R. Goodman

(1), if s=0
@), = Gl ={ £, if s=1 (631)
£l if s=1.
Next, let q= (qo, 9 ql) be any ordered partitioning of X where any one or two of
the component q may possibly be vacuous. Denote Pan(3)(X) as the class of all
such ordered partitionings of X. In turn, for each q ¢ Pa.rt(3)(X), define the class

d
al(q) =(f:fe Mem3(X) & forallse (0,¢t, 1}, if qsatfb. then f(x)=s, for all
xeqgte u}. (6.32)

In arelated di:cction, for any sets A, B e &£X), and any te u, define one natural
extension of the ordinary set indicator function given in eq. (6.16) to three values as
(using Vv for max, A for min, etc.) 1(A|B) .

t

d 1, if xe AnB,
I(A|B)t(x) = ]MB(x) v IB,(x)-t =0, if xeB -A, (6.33)
u, if xe B’ .
Finally, define the function l( A|B) as
d 1, if xe A nB,
I(AIB)(X) = lAnB(x) v lB,(x)-u ={0, if xeB 4A, (6.34)
u, if xe B’ .

l( A|B) is the standard conditional event (or conditional set) indicator function, as first
developed independently by Schay (1968) and DeFinetti (1974). More on this topic
later; summarizing the above relations:

Theorem 6.1. The followmng relatons hold among the special cases of Mem(X),
Flou(X), and Part(X) considered above:
Meml(X) }

c Mcm3(X) ¢ Mem(X), (6.35)
(1) Memz(X)(_: Meml 3(X)

with the same relations holding 1 (6.35) when Mem is replaced by Flou and Part.

(i) (Panj(X), (¢°w)'](*)), (Flouj(X); 4)'1(*)). and (Memj(X); *) are all isomorphic
relative to the appropriate restrictions for y, ¢, and @y as given in Theorems 4.1 and
5.1 and summarized in Figure 5 1, when: j = 1, as given in (6.7)-(6.15); j = 2, as given
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in (6.16)-(6.23); and j = (1, 3), as given in (6.24)-(6.31).
(iii) For all A, B € P(X), one can make the natural identification

l(AIB)={l(A|B)t:teu)' (6.36)
Since also
Mem 40= U (e 6.37)
’ (3)
qePart *-/(X)
one also has the identifications
M°m3(x) = U(3) (at(q» = “(AIB) 1A, Be 2(X)).
qePart*~/(X)
teu
(6.38)
Proof: Straightforward from the definitions. "

Brief overview of conditional event indicator functions and conditional events.

With the basic tie-in between conditional even indicator functions and three-valued
fuzzy set membership functions pointed out, a short summary of the development of
conditional events and their indicator functions will be presented. (See Goodman
(1987), Goodman & Nguyen (1988, 1991), and Goodman, Nguyen, Walker (1991) for
general background.)

In the following, unconditional events or sets are indicated by A, B, C, D, .. which, in
place of the concrete situation (via direct considerations or use of the Stone
Representation Theorem), where they are all subsets of X forming a boolean algebra
which is a subclass of P(X), one can consider them to form an absiract boolean algebra
R or events or propositions. In this case, the operators are: conjunction - (replacing
the more concrete N); disjunction V (replacing the more concrete v); complement or
negation ()° (which for simplicity is denoted by the same symbol as in the concrete
case); < (replacing the more concrete C); < (replacing the more concrete C); |1
(replacing the more concrete X); 0 (replacing the more concrete 9); material/logical

d
implication % given as B3 A =B’ VA (replacing the more concrete B’ n A);

material/logical equivalence < given as

d
Be=A=(BaA(A2B)=ABYA'B’ =(A + B)’,

dropping the conjunction notation when no ambiguity arises, where

d
A+B=A"BVAB’, el.
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Conditional events erise in order to provide a systematic/rigorous way to deal with
arbitrary logical combinations of implicative statements relative to all probability
evaluations, when it is appropriate to interpret the probability evaluations of each
scparate implicative statement as a conditional probability in the natural sense. For
example, suppose one wants to obtain the probability p((if B then A)or (if D then
C)), where the evaluations p(f B then A)= p(A|B) (=p(AB)/p(B), assuming
p(B) > 0) and p(if D then C)=p(C|D) hold. No current standard approach exists in
the numerically-oriented field of conditional probability (including Renyi's
comprehensive extension (1970)) whereby the implicatives "if B then A" and "if D
then C" can be given meaning, independent of the particular probability p being used.
This is so that these expressions can be combined with other expressions, in conditional
or uncoaditional form, analogous to the way the unconditionals A, B, C, D, .. can all
be manipulated and combined, compatible with all probability evaluations. Certainly, a
“natural” candidate for such an interpretation is material implication, so that in the
above example one would obtain by the usual Poincaré expansion

p((f B then A) or if Dthen C)) = p((B3 A) V(D3 C)) =p(B’ VAVYD’ v ()

=p(B") + p(A) + p(D’) + p(C) - p(B’A) - p(B’D’) - p(B’C)
- p(AD’) - p(AC) - p(D’C) + p(B’AD") + p(B’AC) + p(B'D’C)
+p(AD’C) - p(B’AD’C). (6.39)

However, the main drawback to the above approach is that material implication is
inconsistent with conditional probability as its probability evaluation since it can be
readily shown: [Author's note: this and all subsequent results can be found in the above
reference Goodman, Nguyen, Walker (1991) or in Goodman (1991) in detail; for the
most part, these references will not be repeated here.]

p(B » A)=a- p(B) + p(AB) = p(A|B) + (p(A" [B)-p(B")) 2 p(A|B),  (6.40)
provided p(B) > 0, where in general strict inequality holds above. Indeed, Lewis

(1976) showed that 1n general there is no function g: R2 -+ R (boolean or otherwise!)
such that equality could hold in a modified version of (6.40), where 3 s replaced by
g ie.,

Forall g:R% =R, itis not true that p(g(A, B)) = p(A| 3), all A, B ¢ R. (6.41)
Thus, the search for syntactic or algebraic interpretations of implicatives compatible
with all conditional probability evaluations, if at all possible must lie in functions

g: R2 -85, where S ¢ R. Of course, if all of the antecedents of the implicatives
present are identical, then no real problem anses and the search for algebraic
representations of “conditional events” g(A, B) = (A|B) 15 avoided. For example, in
the original example, if antecedents B =D, then 1t is indeed natural to compute in
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effect
p((if B then A) or (if B then C)) = p((A|BO v (C|B)) = p((A v C|B)) = p(A V C|B),
(6.42)
provided p(B) >0, where in the standard approach to conditional probability, the
middle two expressions would not be vsed. However, when the antecedents are not all
identical, in general it would seem that one should seek a common denominator-like
antecedent so that the technique provided through the example in (6.42) could be
employed. It will be seen later that this is an equivalent viable approach to the basic
problem, but that the "common denominator” is not trivial.

While it was stated previously that the direction of conditional probability is away from
the algebraic, a relative handful of researchers have seriously considered this problem
at one time or another. This list includes: Boole (1854, Chpt. et passim), Hailperin's
restatement and rigorizing of Boole’s ideas using the modemn approach of
Chevalley-Uzkov algebruic fractions; Mazurkiewicz' original use of principal ideal
cosets (in a boolean algebra) to represent conditional events (1956), Copeland's futile
attempts (seen now in light of Lewis' "triviality" result cited above)(1950, 1956) at
forcing, in effect, conditional events to be in the original boolean algebra R;
DeFinetti's efforts, including the defining of conditional event indicator functions (as in
(6.34)) (1974) independent of all others; Schay's proposal for conditional event
indicator functi. .s (1968), independently coinciding with DeFinetti, but also for the
first time, developing a full calculus of operations and relations for conditional events;
Adams (1975) proposing operations for conditional events that independently coincided
with Schay, but gave no interpretation for the conditional events themselves!; Calabrese
(1987), also independently of all others, first proposing that conditional events should
be interpreted as partial deduct equivalence classes, and in turn developed as Schay
before him, a full calculus of operations and relations coinciding for the most part with
Schay's results; and also recently, among others, Bruno & Gilio (1985) bringing forth
the basic isc e of combining imphcatives compatible with conditional probability and
proposing, in part, a calculus of operations.

All of this lead the author and colleague (H.T. Nguyen) to inquire if there is any
unified approach to the basic probiem which does not rely upon ad hoc formulations for
both the form conditional events must take as well as their operations exten®”  the
usual hoolean ones for the unconditionzl case. Certainly, the indicator function
approach of Schay and DcFinetti was plausible, but Schay (being the only one of the
pair atterapting to develop operations and relations) did not jusufy the choice of his
operations  Similarly, Calabrese provided a rationale for his choice of the structure of

conditional events, but other than empirical appeal, none for his operations and
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relations. The others mentioned in the list above did not attepmt to develop operations
among conditional events with differing antecedents, except for Adams' formal
proposals previously indicated.

The results of this inquiry lead to the following, which provided a new calculus of
operations and relations for conditional events, while at the same time justified and
related the previous work of most of those mentioned above:

Call any g: R2 - S a feasible candidate for being a conditional even forming function
iff S =range(g) and

g(A, B) = g(AB, B); if g(A, B) = g(C, D),

then AB=CD & B=D, forallA,B,C,DeR, (6.43)
noting that when the above holds, then for all prob. p: R -y,
p(g(A, B)) =p(A|B), p(B) > 0; all A,Be R, (6.44)
is well-defined. Also, define the natural mapping nat : R2 <R, where for A,BeR,
d d
nat(A,B)=R-B’ YAB = {x-B’ VAB : x ¢ R}
={y:yeR&ABSy<Ba2A}=(y:ye R&yB = AB), (6.45)

the principal ideal coset generated by B’ with residue AB, noting that for each fixed
B, nat(-, B) : R+ R/RB’ is a homomorphism, where for any A€ R,
nat(A, B) € nat(-, B)}R) = {nat(A, B): A ¢ R} = R/RB”, (6.46)
the boolean quotient algebra with the usual coset operations -, V, ()’
nat(A, B)’ =nat(A’, B) ; nat(A, B)*nat(C, B) = nat(A*C, B),
*=. V,+2allA,B,CeR. 6.47)
Denote

d
R = range(nat) = {nat(A, B): A, B¢ R} = v R/RB’ ¢ AR), (6.48)
BeR

the class of all principal ideal cosets of R.

Theorem 6.2. Structure of conditional events.
(i) nat is a feasible candidate for being a conditional event forming function.

(i) If g: R2 -+ S is any feasble candidate for being a conditional event forming

function, then g 1s globally isomorphic to nat. That is, there is a bijection x:S - R,
where x°g = nat and for ecach Be R, K * SB -+ R/R-B’ is a bijection, and hence, an
isomorphism through the same technique as in the beginning of section 3 inducing an
algebraic structure on S via R/RB’, where
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d
SB = range(g(-, B)) = {g(A, B) : A e R} 6.49)
and
d
xB(g(A, B)) = x(g(A, B)) = nat(A, B), all AeR (6.50)
]

Remarks. Theorem 6.2 justifies the choice for conditional event forrning function to
be nat, so that from now on, define

d d
(A|B) = nat(A, B), all A, B ¢ R; (R|R) = R=((A|B):A,BeR}, 6.51)
and note, via (6.44), any prob. p : R +u extends consistently to p : (R|R) -+ u, where
p((A|B)) = p(A{B), all (A|B)e (R|R), p(B)>0. 6.51%)

It can be shown that the algebraic fraction approach of Hailperin and the partial logical
deduct approach of Calabrese, both cited earlier, are, in fact, equivalent to the form
nat.

Note the division of conditional events into 5 distinct classes:

() Unconditional events in conditional form:
Since it follows readily that one can identify

(A|1) = A, all A€ R, whence Rc (R|R)c 2(R), (6.52)
call all such conditional events unconditional ones, noting the probability assignment,
via (6.44) becomes here simply

PUA| 1)) = p(A). (6.53)
(1) The indeterminate conditional event:
(Aj0)=(0|0) =R, all AeR, (6.54)
noting
p((0]0)) not defined. (6.55)

(I11) Unity-type conditional events: Call the class of all such events %
ForalBe R,B#0,(1|B)=(B|B)=RB"vB=RVvB={x:xe R&x2B},

(6.56)
the principal filter of R generated by B, noting the probability evaluation
P(B|B)) = p(B|B) = 1. 6.57)
(IV) Zero-type conditional events: Call the class of all such events Z
ForalBe R,B#0,(0jB)=(B"|B)=RB" = {xB" : x e R}, (6.58)
the principal ideal of R generated by B’ noting the probability evaluation
p((O|B)) = p((B’|B)) = p(0|B) = 0. (6.59)
(V) Proper conditional events:
Forall 0 <A<B<1,A,BeR,(A|B)=RB’ v AB, (6.59")

with probability evaluation
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0 <p((A|B)) =p(A[B) < 1. (6.60)
Note also the basic properties for all (A|B), (C|D) € (R|R), from (6.43):
(A|B)=(AB|B) & (A|B)=(C|D) iff AB=CD & B=D: (6.61)

Returning to the conditional event indicator function given in (6.34), note that by its
very definition and use of eqs. (6.38) and (6.61), where now the concrete case of
RcP(X) holds, it follows that Mcm3(X) (with the modification that P(X) in its
characterization in (6.38) is replaced by R) and (R|R) are bijective through the
relation

I(AlB)o—o(AlB), allA,BeR. (6.62)

Finally, it should be remarked that the conditional event indicator function takes on the
following forms relative to each of the 5 types of conditional events:

(I) Unconditional events: l( AlD) =1 A€ Men12(X). (6.63)
(II) Indeterminate event: 1(0]0) = u(const.) = Meml(X) (via (6.36)). (6.64)
(OI) Unity-type conditional event: range(1 B B)) ={u,1},0<B<l. (6.65)
(IV) Zero-type conditional event: range(l(()lB)) ={0,u},0<B< 1. (6.66)

(V) Proper conditional events: range(1 ( AlB)) ={0,u, 1}.

The next theorem motivates the choice of operations and relations over (R|R) to be
determined:

Theorem 6.3. Characterization of monotonicity of conditional probabilities, ordering of
conditional event indicator functions and zero and unity values.

As before, let Rc £(X) be a fixed boolean algebra of sets. In addition. suppose
(needed only for probability part) R is atomic. For any (A]B), (C|D)e (R|R), but
not indeterminate:

(i) If (A]B) is not zero-type and (C|D) is not unity type (certainly satisfied if both
are proper), then the following three statements are equivalent:

M l( A|B) <1 C|D) point-wise over X.
(I ABSCD&C'D<SA'B (ie.B2A<D=3Q).
(1) For all prob. p : R ~ u, with p(B), p(D) >0, p(A|B) < p(C|D).

(ii) (A|B) is of zero-type iff ](A!B) <u over X (wrtorder 0<u<1) iff for all
prob. p: R =u with p(B) >0, p(A|B) =0.

(iii) (A]B) is of unity-type iff 1(A|B) 2u over X iff for all prob. p: R +u with
p(B) >0, p(A|B) = 1. n

Consider next the standard functional image extensions of an arbitrary function, say,
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£:Y"4Z tothe power class level ’f\ : .S{Y)n -+ RZ), where

d

A

forall ;e AY), F(A s h) = (87 ) 1% € = L), (6.67)
If 2c 2()" and Rc P(Z) are subclasses of interest, it is important to determine

whether the restriction of ? to 4 isclosed wrt to % i.e., rangc(? restrict. to 2)
c R. In particular, for the problem at hand, Y=Z =R, f is any n-ary boolean

function over R, 2= (RlR)n, and #®=(R|R). It is fortuitous that in this case
closure indeed does hold, as the following theorem states, where for simplicity the hat

A . . .
( ) notation is omitted:

Theorem 64. Functionally-image extended boolean operations and relations over
(R[R).

Forall A,B,C,D, Aj' Bj eR, j=1,.nm
(i) All functionally-imaged extended boolean operations over R 10 being over (R|R)

are closed and computable for n=1 and 2 as:

d
(A|B)" = {x’ :x e (A|B)} =(A"|B); (A|B)-(C|D)
d

{x-y:xe(A|B), ye (C|D)} = (ABCD|r2); (6.68)
d
(AIB)V(C|D)={xVy:xe(A|B),ye (C|D)} =(AB v CD|q2); (6.69)
d
(A|B)+(C|D) = (x +y: x ¢ (A|B), y € (C|D)) = (AB + CD|s,); (6.70)

d
(CID)2 (A|B)=(y=2x:x¢€ (A]|B), ye (C|D))
=(C|D)' V(A|B) = (C’'D V AB|t,); (6.71)

d
(CID)=(A|B)={y @ x:xe (A|B),ye (C|D)}
= ((C|D) 2 (A|B))-((A|B) » (C|D)) = ((A|B) + (C|D))’ =(AB ﬁCD|s2), 6.72)
where

d
) =A’'BVC’'DYBD=A"BYC’'D v ABCD;

d
g, =ABVCDVBD=ABVCDVA'BC'D;

d d
s, = BD; 12=C'DVABVBD=C'DVABVA'BCD. (6.73)

(if) Part (i) above can be extended the same way to arbitrary n, yielding the closed
forms for -, v, +:
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d
(A(|By)-..-(A [B)=(AB-.-A B |r )it =A{B, V.YA'B V(AB -.-A B

(6.74)
(A{|B) V.V (A |B )= (A;B; V.VA B |q);
d
q,=AB;V.YA B V(AIB,-.-A/B); (6.75)
d
(AIBp) +.+ (A |B)=(AB, +.+ A B |s ) s =Bj-.-B. (6.76)

(iti) Extend the natural (partial, indeed, lattice) order < over R to (R|R) by
defining analogous to the case for R,
(A|B) < (C|D) iff (A|B)=(A]|B)-(C|D). (6.77)
Then, it can be shown
(A[B) S (C|D) iff (C|D)=(A|B)V(C|D} iff ABSCD & C'D<A’'B

iff ABSCD&B=23A<SD3C. (6.78)
(iv) Some miscellaneous properties:
Chaining: (A|B)-B = AB; (A|BC)-(C|B) = (AC|B); (6.79)

n
Bayes' Theorem: If A V.V A, 2B, then (A;|B)=((B|A)-Aj| V ((B]A)-A))
j=1

(6.80)

CV(A|B)=(CVA|CVB); (A|B)=(CA{C2 A);

(A|B)=(ABVB’-(0]0); (R{R)=RV (R (0[0); (6.81)

(B|B)=B VvV ©0]0); (0|B)=B’-(0]|0);

#=RA4{0})v(©0]0); 2Z=(R4{1})(0]0). (6.82)
Equal antecedent/reduction to coset operations:
(A |B) *.* (AnlB) =(A > AnlB). =, h (6.83)
Remarks.

(i) Theorem 6.4 shows that any n-ary boolean function over (R|R) is not only closed
but is feasible to compute in terms of the antecedent and consequent consisting of
ordinary unconditional boolean operations. Thus, one evaluates any arbitrary
combination of conditional or unconditional events (remembering unconditional events
are conditional ones with 1 in the antecedent) for a given probability measure
p:R-u as
p(comb((A;[B,),..AA_ | B))

= p((combl(A]B], B]""‘A‘an' Bn)lcome(AlBl, Bl""Aan' Bn)))‘ by Thm 64

= p(combl(AlBl,, Bl....Aan, Bn)lcombz(A]Bl, Bl’ ..,Aan, Bn)), by (6.51") (6.84)
finally obtained by ' e usual rules for condmional probability and boolean algebra
expansions.




Algebraic and probabilistic bases for fuzzy sets 3

Thus, the original example addressed by material implication in (6.39) becomes
p((if B then A)or (if D then C))=p((A|B) v (C|D))
=p((AB V /cd|AB v CD v A’BC’D))
=p(AB v CD|AB V CD ¥ AA’BC’D)
= p(AB v CD)/(p(AB v CD) + p(A’BC’D)), etc. (6.85)

(ii) Returning to Theorem 6.3 (i), it follows immediately that Theorem 6.4 (iii) (eq.
(6.78)) shows the basic compatibility of partial order < over (R|R) relative to
monotonicity of probability and partial ordering of conditional event indicator
functions: For any (A|B), (C{D)e (R|R) not indeterminate with (A|B) not
zero-type and (C|D) not unity type, the following statements are equivalent for R
assumed atomic:

()] 1( A|B) <1 C|D) point-wise over X.

(I  (A|B)s(C|D).
(@)  p(A|B) < p(C|D), all prob. p: R +u, with p(B), p(D) > 0.

(iii) Theorem 6.4 can also be used to show that the algebraic entity ((R|R); -, V, ();
0, 1, (0}0); <) is such that -, vV are associative, iderr, otent, commutii’ve operations
compatible with < being a legitimate meet-join lattice ordering over (K|R), bounded
below by the zero element wrt -, V: 0, are bounded above by the unit element wrt -,
v: 1. In addition, (R|R) with this structure has - and Vv being mutually distributive
and absorbing, as well as involutive operation ()’ (though, not in general
orthocomplemented, thereby eliminating (R|R) here from being a boolean algebra as
R is) such that (,V, ()") is a DeMorgan triple.

(iv) Furthermore, it can be shown directly that (R|R) is always relatively
pseudocomplemented and hence pseudocomplemented.  Specifically, denoting the
relative pseudocomplement of (C|D) wrt (A[B) as (C|D)» (A|B) and the

d
pseudocomplement of (C|D) as (CID)* = (C|D) » 0, and recalling the well-known
results (see Mendelson (1970, p. 182 et passim)) that relative to R, B> A =B =3 A and
B =B’,

d
(CID)» (A[B) = AV (A]B)= (AVA|AVB) A=B’D’ vC’'D; (C|D)" = C’D, (6.86)
reducing to the corresponding unconditional situation for R, when D=B=1. The
pseudocomplement mapping ( )’ : (RIR) = R satisfies the Stone identity
*
(A[B) V(A|B) =1,all (A|B)& (R|R), 6 87)

*
showing ((RJR); ,Vv,0,1; €£;() ) is a Stone algebra. Refernng, e.g., to Gritzer
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(1978), the si.2letal and dense sets of (R|R) are, respectively,

od d 4y
(RIR} ={(A|B) :(A[B)e R|} =R;DR|R)=() "(0)= %u {(0]|0)}, (6.88)
yielding readily the relations (see also (6.82))

* * ok *
D(R|R) =(R|R) Vv (0|0); (A|B) * =(A|B) ,all (A|B)e (RTRY; ©0j0)’ =0.(6.89)
(v) Converse to (iii) and (iv) above, if (R|R) is replaced by an abstract space S and
similarly for operations -, v, ()’, special elements 0, 1, (0]0), partial (lattice) order

<, and pseudocomplement operation ( )*, so that (S; -, v, ()";0,1,(0]0); S; ( )*) is
any abstract Stone algebra with involutive operation ()’ making (-, V,()’) a
DeMorgan triple, such that the formal relations hold in (6.89), then it follows that S
with the above structure is isomorphic to (R|R), with the same algebraic operations

and relations, where now R = S* (guaranteed to be a boolean algebra). Independent
of the above result initially, it can be shown that if m:R -+ 2(Q) is the standard
injective Stone isomorphism, where Q is some set dependent upon R, for any given
boolean algebra, then (m|m):(R|R)~+ 2(Q)]|L2()) is also an isomorphisny,
extending m, relative to the conditional event algebra structure obtained via functional
image extensions of the boolean operations for R and 2(Q), where

d
(m]|m)(A|B) = (m(A)|m(B)), all (A|B) € (R|R). (6.90)
Finally, if the above isomorphic representation of S by (S*IS*) is written
h:S= (S*|S*), then it follows that the composition (m|m)oh : S 4+ (P(Q)| P() is

an injective isomorphism (2 dependent on S*), showing a full extension of the Stone
Representation Theorem for all such abstract conditional event algebras.

(vi) Higher order conditional events, i.c., formal quantities ((A|B)|(C|D)) can be
given meaning and reduced, in effect, to single conditional events by use of the relative
pseudoinverse operation, where A, B, C, D € R are arbitrary. This is based upon the
following observation resulting from eq. (6.45) applied to the definition of conditional
events:

(A|B)={x:xe R & xB = AB) (6.91)
is the solution set of the conjunctive equation xB = AB, which has great intuitive
appeal. Thus, it is perfectly rearnable to define the higher order conditional event

((AIB)i(CID))gI(XIy):(xly)e(RIR)&(XIy)-(CiD)=(AlB>(CiD)l- (6 92)
But it follows from the theory of linear equations in relauvely pseudocomplemented
lattices (which (R|R) is) (see Gratzer (1978) or Goodman, Nguyen, Walker (1991)),
(6.92) becomes
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(A|B)|(CID)) = R|R)-((C|D) » ((A|B)-(C|D)) V ((A|B)-(C|D)). (6.93)
Noting that the class union operation U: 2(PR)) » £(R) is 2 homomorphism wrt
all functionally-imaged extended operations over £(R) to those over £(2(R)), it
follows that it is natural to inquire: What is the effect applying U to (6.93)? First,
note that (6.86) with (A|B) replaced by (A|B)-(C|D) can be shown to have the
invariancy

(C|D) » ((A|B)|(C|D)) = 10 V((A|B)-(C|D))=AVv(A|B)=(C|D)» (A|B),

(6.94)
but where now

d
AO =(B3A)-D’"vVC'D. (6.95)

Thus, (6.93) becomes
(A|B)[(C|D)) = (R|R)- (44 V ((A|B)-(C|D))) V ((A|B)-(C| D))
= (R]R)-AO V((A|B)-(C|D)), (6.96)
by distributivity and absorption properties of the operations.

Hence, applying U to (6.96), using its homomorphism properties and the calculus of
operations from (6.58), (6.68), (6.96),
U((A|B)|(C]D)) = U(R|R)-Ay V (ABCD|r,) = R4y V (ABCD|r,)

= (Oll(’)) v (ABCDIrz) = (ABCD|B-(A’D’ v CD)). 6.97)
Despite the nice algebraic properties of the above reduction, one drawback is that we
do not have compatibility with probability in the sense

P((A[B)[(C|D)) : p((A|B)- (C| D))/p((C| D)

= p(ABCD|A’B v C’D v BD)/p(C|D)

# p(U((A|B)|(C|D)}), in general, (6.98)
unlike the single conditional event case where no U is required. More work must b2
done in this area; forcing closure for higher order conditionals may lead to
contradictions, analogous to Lewis’ results (1976).

(vi) (R|R) with the fundamental image extensions of operations on R can also be
shown to be a modified version of Koopman's comparative conditional qualitative
probability structure as discussed in Fine (1973, pp. 183-186).

(viii) Often, 1 15 more appropriate to consider cartesian products or jointness of
conditional cvents in place of dircct conjunction, and similarly cartesian sums in place
of disjunction. This 15 especially relevant when e.g. conditional events (Alej),
J=1,..n are such that the B_ are ail disjoint -- such as in flow chart instructions -- yet
€qs. (6.74) and (6.75) show that the conjunction always lead to a trivial zero-type event,
and hence zero probability evaluation, while disjunction always dually leads to the
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equally trivial unity case and a unit probability evaluation! Specifically, using the
functional image extension approach as before, it can be shown that for any
(Ale.) € (R|R),j =1,.,n,

(A1 Bl) X..X (Anan) = (A1 X..X .A.nlB1 XX Bn) = (AIBI x..xAan|B1 x..xBn),

(6.99)
(A{IBp 1.1 (A B = (A |B))" x.x (A [B)")" = (A] x.xA/)|B; x.xB )
=(A; t.t A |B; x.xB). (6.100)

Of course, with the use of cartesian products and sums, probability evaluations become
more complex with joint probability specifications now required. Finally, note that no
closure problems arise here, since all cartesian products -- and hence sums -- of boolean
algebras are sill boolean algebras.

(ix) The calculus of operations and relations obtained by functional image extensions
of the boolean ones over R 1o (R|R) also lead to a sound and complete conditional
probability logic of propositions with the tautology class being % and the
contradiction class being 2. In connection with this, it can be shown that the only

possible boolean-like function f : (R|R)? » R|R), i.c..
f((A|B), (C|D)) = (f,(AB, B, CD, D)|f,(AB, B,CD, D)), all A,B,C,DeR, (6.101)

for some boolean functions f 0 f2 : R4 -+ R such that, in the spirit of (i},
f((A]B), (C|D)) e %iff (A|B)<(C|D);all A,B,C,DeR, (6.102)

are f=i“) and f=f(2), where forall A,B,C,DeR,

1) d 2) d

f ((A]B), (C|D)) =C'DVABVB'D’; € ((A|B), (C|D)) =(C’'D VY AB|B V D).
(6.103)

f(1) is actually the consequent of the natural isomorphic image of Lukasiewicz

three-valued logical implication, while {2 s the natural isomorphic image of
Sobocinski's three-valued logical material implication. (See Rescher (1969) for
expositions on L3 and Sob3. The natural isomorphism connecting any three-valued
logic and some choice of conditional event algebra is given below.)

(x) Other topics concerning conditional event algebras have begun to be developed,
including: extension of random variables and relations with conditional random
vanables; problems of assignment of probability to conditional events relative to the
functional image assignment of many values in light of the coset representation of
conditional events as sess of events -- not the traditional single values (see also the
latter part of sect. 7 here), extension of the idea of independence to conditional events
(see also the Nguyen & Rogers paper in this monograph); and Fréchet-like bounds and
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probability expansions for various combinations of conditional events (in the same
spirit as e.g. Hailperin (1984)).

As a final topic in this review, consider the natural isomorphism between any choice of
conditional event algebra -- such as proposed here by functional image extensions, or
that proposed commonly (but independently) by Schay, Adams, and Calabrese, or an
alternative system also proposed by Schay, to be discussed briefly below -- and any
comresponding choice of 3-valued (truth-functional) logic. [We will employ the
abbreviation "ce-alg" for "conditional event algebra."]

Recall the operation construction technique of section 3, whereby a given bijection
between two spaces X and Y with X having a given algebraic structure induces an
isomorphism for Y now having the constructed algebraic structure. Of course, in
general, one cannot guarantee that the constructed isomorphic operations over Y will
be “recognizable” in some sense. Apropos to this, a basic connection was established
between 3-valued indicator functions and conditional events as given in (6.62) -- basic
bijection between Mcm3(X) and (R|R) -- and Theorem 6.3 (sec also Remark (i)
following Theorem 6.4) -- characterization of ordering. However, no algebraic
structure was imposed upon Mem3(X). Of course, since Mem3(X) c Mem(X) (up to
the identification of (6.36)), the Zadeh-like operations and relations over the latter cna
be used over the smaller class. (More on this later.) In response to the above remarks,
the following theorem holds (Goodman (1990)) (see also Goodman et al,1991)):

Theorem 65: The three-valued indicator mapping as the natural isomorphism
connecting all possible choices of conditional event algebras and all
truth-functional three-valued logics.

First, denote the class of all n-ary boolean-like functions f :(R|R)n-*(R|R),
analogous to the binary case given in (6.101), as booln(RIR). Recail that the unit
interval u is also used in effect as a single value between 0 and 1 and define

Qog (0,u, 1} (6.104)
as the common truth set of all three-valued logics to be considered. Any such logic is
n
specified by some set of operations /: Qg-oOoe Quo. Then, there is a bijection
Q" Q"
9:bool (RIR)+Q_°  such that 1 :((R|R); bool (R|R))~(Qy; Q) s an

d
isomorphism: for all (A|B) = (A 1B A [B ) € R|R)",
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d
l(élg)(X) = (l(al lBl)(x),...l(AnIBn)(x))'
forall x € X, assuming R ¢ &X), and forall fe booln(RIR),
ga )™ = a3y (6.105)

Proof: The proof is completely constructive, enabling one to go from any three-valued
logical operator to a corresponding conditional event one and vice-versa. (Again, see
the cited references.) -

In connection with, and as an application of, the above theorem, consider briefly some
of the approaches to defining conditional event operations extending the usual
unconditional boolean ones, other than the functional image extension approach used so
far -- and denoted from now on for convenience as the GN system. As mentioned
before, independently Schay (1968), Adams (1975) and Calabrese (1987), denoted
commonly as SAC, proposed identical ce-alg's. Actually, Schay also proposed an
alternative ce-alg (same reference), which will be denoted simply as S. The
complement, conjunction, and disjunction for these ce-alg's are, with the appropriate
subscripting, for all (A|B), (C|D) ¢ (R|R),

d d
A[B)’SAC - a[B)S = A|B)YN = (a’|B). (6.106)

d d
(A|B) Vg5 (CID) = (AB v CD|B VD), (A|B)- g - (C|D) =
(A|B)" Vgpc (CID))’, (6.107)

a DeMorgan assumption, whence
(A|B)-SAC(C|D) =((B=2A)(D=3C)|BvD)=(ABD’ vB’CD v ABCD|B v D).
{6.108)
(A|B) Vg (C|D) = (AB v CD|BD);
(AIB)-S(C|D) =(A|B)’ Vg (C|DY’)’ = (ABCD|BD). (6.109)

Corollary 6.1. 3-valued logic characterizations of SAC, S, GN systems.

Under the mapping 1 , as in (6.105), the following isomorphisms hold between all
operations defined for SAC, S, GN, and corresponding ones to be found in 3-valued
logic: SAC ~— Sob3; S B3; GN — L3 , (6.110)
where Sub3 is Sobocinskis 3-valued logic (see Rescher (1969, pp. 70, 342)), B3 is
Bochvar's 3-valued internal logic (Rescher (1969, pp. 29-34, 339)), and L3 is
Lukasiewicz' 3-valued logic (Rescher (1969, pp. 22-28, 335)).
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Proof: Consequence of Theorem 6.5. -

Independently, Dubois & Prade (1989, 1990) have expressed interest in the
development of conditional event algebra and, by informal means, pointed out the same
correspondences as in Corollary 6.1, without recognizing the more general impact of
Theorem 6.5. Recently (Goodman (1989)) a minisymposium was organized on
conditional event algebras, as evidence also of the growing interest in the field.

Corollary 62. A characterization of GN.

Call any f, g:(R|R)2-o(R|R) with f extending ordinary conjunction - over R
and g extending ordinary disjunction V over R, monotone preserving iff

lscalBy(cIpy S La|By |y 'galB), cc|Dp 2 Ay Icpy  ©11D
pointwise over X (still assuming throughout here that R ¢ £(X)).

Also, for any operations f, g: (R|R)2-4(R|R) extending -, vV over R and

h: (R|R) =+ (R|R) extending negation over R, call the system (f, g, h) a common

antecedent homomorphism (or coset compatible) ce-alg iff for all A, B,Ce R,
h((A|B)) = (h(AB)|BY); f((A|B), (C|B)) = (f(AB, CB)|B),

g((A|B), (C|B)) = (G(AB, CB)|B) (6.112)
noting that necessarily h(AB) = A’B,
whence h((A|B)) = (A’ |B) (=(A'B|B)). 6.113)

Then:
(i) of the 81 possible binary boolean-like ce-alg's (f, g, h) extending ordinary
conjunction, disjunction, negation, respectively, over R to (R|R), which are
DeMorgan for h such that
h((A|B)) = (A’|B),all A,B¢R, (6.114)
there are 4 which are also commutative and monotone preserving. Letting f = i
j=123,4,forall A,B,C,DeR,
(A|B)- l(C|D) = ABCD; (A|B)-2(C|D)=(ABCD|r2 VB’D');
(A|B)-3(C|D)=(ABCD|BVD); (6.115)
(A]|B): 4(C|D) = (ABCD|r,), (6.116)
where ) is given in (6.73), noting that the SAC and S ce-alg’s are not among this
group, but GN is (determined through 4>

(ii) The unique boolean-like ce-alg extending ordinary conjunction, disjunction, and
negation which is DeMorgan for extended negation h satisfying (6.114) and which 1s
monotone preserving, possesses the common antecedent homomorphism property and
for which its conjunction and disjunction extending operations are mutually distributive
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and idempotent is GN. ‘
Proof: Consequence of Theorem 6.5. (Again, sece the Goodman and Goodman,
Nguyen, Walker references.) s

Remark. Since Lukasic:wicz-l(l (min, max, 1 - ()) logic is the core of Zadeh's fuzzy
set operations relative to the space Mem(X), then Corollary 6.1 shows that the
specialization of fuzzy sets and their Zadeh operations to L3 for M3(X) is
isomorphic to the GN conditional event algebra over (R{R).

Flou and partitioning sets corresponding to conditional event indicatr ¢ functions.

With the basic propertics of conditional events and their operations and relations
established and tied-in with co ‘tional event indicator functions, it is of some interest
to reinterpret egs. (6.27)-(6.31), using the identifications of (6.36)-(6.38): For any A,
B ¢ R (¢ P(X)), the corresponding flou set to 1 (A|B) is

-1 e . "l -1 -l .
] (l(AIB))_[¢ (l(Alg)I)-le 1), ¢ (I(AIB)t)"'((‘P (I(AIB)t))S)SEU’ 6.117)

X, if s=0,
forall seu, (¢‘1(1(A|B) Dg={BsAif0<sSt, (6.118)
! AnB,ift <ss1,
and the corresponding partitioning set is
@0y (1 p ) = “¢°‘*’)'1“(AIB)3 tteu), (6.119)
with index set
i ={0,1, 1}, (6.120)

-1

and for any se {0, u, 1},

B 4A,irs=0,
@ g gy ={ B ifs=1, (6.121)
t A nB,ifs=1.
Analogous to (6.38) for Mem3(X). obtain through the identifications of (6.36)-(6.38),
Flouy(X) = (¢7(15 ) ¢ (AIB) € RIR)). (6.122)
Party(X) = (0o (15 ) £ (A]B) € (RIR)), (6 123)

and clearly Mem3(X). Flou3(X). Pan3(X) are all bijective under the restrictions of ¢,
¥, $o¥ (analogous to the bijection part of Theorem 6.1 (ii)).

Again, from the remark following Corollary 6.2, the Zadeh fuzzy set operations for
conjunction, disjunction, and negation, i.e., min, max, 1 - (), respectively, apphed to
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Mem3(X) component-wise yield an isomorphism with GN ce-alg: For * = min, max,
forall s, teuy,

(1 *1 ). =(1 Jsl-(Q1 ).=(1 N, (6.124)
(IB)t (C|D)s ((A|B)9'1(*)(C|D))t 3 (A|B)’s (AlB)t s
i.e., component-wise over X

mintla By lcipy = LaB)-cjoy ™*Y(aipy oy = 1(A'B)V(C'D);<6 125)

with (A|B)-(C|D), (A|B) V(C|D), and (A|B)" all obtainable from GN as in
equations (6.68) and (6.69).

Hence, the construction technique of section 3 yields the compatible results for the
corresponding flou and partitioning sets, using (6.117)-(6.121) (first, flou):

1 -1 -1
¢l ¢ A epp=eta .
‘A|B) (C|D) A|B)§ (*CID)

ie, for all s, teun, *=min, max, and noting (see suct. 4) * =0in' Ymax’

6.127)

respectively,

.1 -1 -1
w'la N * @ N =9 (1 N
¢ (A|B)’s ¢ (CID),"s ¢ ((A|13)6'1(*)(C|D))l s

X, if s=0

Ty 3 (AnBNCnD) = (AnBnD")u(B'nCAD)u(B'nD’) v
- if 0 <s <, (6.128)
(AanCnD)nr2 = AnBnCnD,
if 1t <s <1,
for * - min and (p'l(*)= -

X, if s =0

qy * ((AnB) v (CAD)) = (A'nBnD’) u (B'nCND) u (B'nD)
= v (AnB)u (CnD)

(6.129)
if 0<s <1,
({AnB) v (CD)) n qz=(AnB) v (CnD)
if t<s <1,
for * =max and (p'i(* =V;
(¢"(1(A|B)))’=¢"(1(A|B),). (6 130)

re., forall s, teu,
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X, ifs=0
(¢"(1(A|B);))S= BaA’if 0<s<t, (6.131)

BHA, if t<ssl.

Furthermore, by use of the basic identities
(B:A)n(D.-aC)=(r2:(AanCnD));((B#A)u(D::C)

=(g 2 (AnB)u(CnD)), (6.132)
which, in their own right, are exact material implication parallels of the corresponding
conditional event identities in (6.68) and (6.69), it follows by inspection of (6.118), that

* in (6.127)-(6.129), for *=min, max, and correspondingly, for ¢ (¥ =-, v,
relative to each of the three possible set values component-wise are isomorphic, i.e.,
symbolically,

X X X "1 (9x
Baal*|Dacl=|B24) 6l*)Ds0)
AnB) lcaD) |anB) 61(*)CnD)). (6.133)
Similarly, for the partitioning sets,
(%wMmmpwwwhmwgﬂwmhmmw%wqu
(6.134)

je,forall teu and se¢ ) ={0,1, 1},

oy (1 0 )
(A|B)6 ¢+ DY),

-1 -1 -1
QoW a1y ), * @ow) Ly 1 D) = (w1 )
P faagm2 "W e =B ) gt ion,

r2-{(An Bn CnD)= (A" nB) vu(C’ nD), ifs=0,
= ré:(An BAD)Yu®B nCnbD)vu (B n D), ifs=t,
(AnB nCnD)r\r2=AABn CnD, if s =1
(6 135)
for * = min and ¢'1(*)= °
g, 1 ((AnB) u (Cn D))=A"nB nC’ nD, if s=0,
-'1q§ =(A"AB AD YU (B ACAD) v (B ADY, ifs=1,
((AnBYu(Cn D)Y)n (AnBYUu(Cn D), if s=1,
(6.136)
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for * = max and ¢'l(**) =V,

(9w (1 gy = oW (14 ) ) (6.137)
ie,forall teu and se {0,¢, 1}
B4A" =AnB,ifs=0,
(@91 gy M = | B’ ifs=1,
t A’ n B=BHA,ifs=1.
(6.138)
In summary:

Theorem 6.6. Apropos to egs. (6.117)-(6.138), the following diagram holds,
superseding Fig. 5.1 for the restriction to three values:

(Flous(X) 5+, v, ()).
)

i somorphism /w ¢Nsomorphism

(Party(X) 5 -,V,( ) g (Mem,(X); min,max,1-()))

i somorphism g 1 isomorphism
((R|R); GN:-, v, ()"

d
-1-1 (. -
§=1" "oy, Rc P(X) boolean algebra; (-, V) = (N, Vp...)

Figure 6.1. Summary of isomorphisms among ((R}R); GN), Mem3(X), Flou3(X),
Pan3(X).

Proof- Combine the results of eqs. (6.117)-(6.138) wuth the compatible results of
Theorem 6.1 (ii). -

7. Models and External Probabilities of Fuzzy Sets and Relations with Conditional
Event Indicator Functions

The primary purpose of this section is to relate on a firm foundation the concept of a
model as a consistent numerical evaluanon relative to: fuzzy sets in general, and
conditional events, in particular, and an appropriate fixed point relative » all
membership functions at that point. In trn, this allows for a ratonale to define
probabilities for fuzzy sets, m general, and conditidnal events, in particular. To this
end, assume throughout that boolean algebra R c #(X). Also. recall (Mendelson
(1970)) the concepts of filters and ultrafilters for R. Call R ammic(), if all finite
subsets of R -- and hence all subsets of R whose complements are finute -- are in R,
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which immediately implies R is atomic. For such R, then essentially any ultrafilter
F of R is in the principal ultrafilter form

d
9‘=.9’x=(A:xeAeR)gR.xeX. @a.n

In any case, denote the class of all ultrafilters of R as (R). Also, define the
mapping & : Q(R) x Flou(X) - u, reminescent of the fundamental membership
mapping ¢ (sce (2.6)), where

&5, a) g sup{t:teu&a e 5}, all FeQR), ae FlouX). (1.2)
Next, define formally a model of Flou(X) as any function /4: Flou(X) +u which is a
homomorphism relative to (0 min’ Ymax’ ()’) over Flou(X) and (min, max, 1 - ())
over u, and hence over Mem(X). If, also # is an infinite homomorphism relative to

w max’ max) and a homomorphism relative to (nprod' prod) for the spaces Floul(X)
and Meml(X), then call £ a strong model of Flou(X). Finally, define
d
Mod,(X) = (§(F, -) : Fe QR)) (71.3)

and denote the class of all strong models of Flou(X) as Mod(X). Before giving the
main theorem, the following lemma should be pointed out:

Lemma 7.1. If Rc 21X) is atomico. then for any e Q(R), there is a unique
comresponding x € X such that

g = .9'x & {( .7x, a) = ¢{a)(x), all a e Flou(X). (7.4)

Proof: Use the definition of ¢ in (2.6), noting from (7.1), for a = (at)teu'
a ¢ 9’x iff xe a, all xe X, teu (7.5)
]

Theorem 7.1 Basic characterization of strong models of Flou(X)

The equation Mod(X) = Modo(X) (7.6)
is true. More specifically, the following holds:

(i) For each Fe QR), &F, ). Flou(X)-u is a strong model of Flou(X). In
panticular. note the case when R is atomic,, by Lemma 7 1. (7 43 holds.

(ii) For each /£ e Mod(X),

d
Fopy=latacR& A0 =1) = Al eam) a.7)

and
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A = §(3 gy +) € Mody(X). (1.8)

(iii) Foreach A« Mod(X), there is a unique x A€ X such that
A(a) = ¢a)(x yo all a e Flou(X). 1.9
If R isalso atomicu, then (7.8) and (7.9) combine to become

1 SN -
Fp=4w=5 b @) 7 £G@) = &5 ,{)x/;a) = §@)(x ),

(7.10)
all a e Flou(Z1).

(iv) Aoy =callc:X-ue Flou, (X). (7.11)

d
Proof (): Let Jcu,a® ¢ FlouX), f, = #a®), s 1, and & € Q(R), all arb. Define

a‘—j-g(sr u_. a®)) and ﬁfi-su &, &), Since (max(€ )y e, 11211, 17, all
= » Yimin -—SEIJJ N . el s ) g il

se ], then by the definition in (7.2), a2 B. Consider the converse: First, as a
supremum, for all &> 0, there exists S5 € J with f SS(X) < sup(fs(x)) <f SS(X) + 6.
selJ
d d
Since Fisafilter,if A={x:xeX & sup(fs(x))Zt] e F,then B=(x:xe X &
selJ

fS(‘S(X) 2t- 8} € F, since the above equation implies Ac B. Then, for all §>0,

d
using (7.2), letting CS . {x:xeX* fs(x) 2t},
a<sup(t:te u& Be F))=sup{d+sup{t-del-6,1-8]&C 5¢€ F)
sel St

=&+ supf{sup{t:te [0,]-6]&C5[e F)
sel ’

=&+ sup{sup{t:teu& C e F) =5+,
sel ’
implying that o< B. Hence, a= B and thus &%, ) is an infinite homomorph. wrt
(Umax’ max) for spaces Flou(X) and Mem(X).
0) ¢ a0
Next, for any av’e Floo(X) and fj =¢av’), j=1, 2, arb, &S, min(f], f2))2
min(é(F, f,), &, fz)), slightly abusing notation and using fact that & is a filter,

Conversely, since fi‘lt, l]nfillt, 1]e & imphes fjlll, 1]e &, by ultrafilier
property, the above inequality reverses, showing finally &(&, ) is a homomorphism

wrt (N min).

min’
d d
Next, letting f = ¢(a), to = §F,a")y=supft teu&k D e 7},
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d d
Dl={xeX:f'(x)2t],t1=§(.9’,a)'=inf[t:teu&E‘e F),

d
Et = {x e X:f'(x) St). By the definitions of sup and inf, for all &> 0, there are

t085t05t08+5, t15-55t15t18 with D‘OSE 5, Dt0+5¢ g, Ellse g,
Et 5t &. This yields the intersection {x:x¢€ X&‘oss f’(x)St1 8] € F, from the
l ’

filter property of 3 Wssthe If 45 s> 26, one could pick midpoint L

t06<t28<[18 with t28-t06>6 and tla'l28>8. Since t28>t08+ 8>t0,

thae F, by sup property of t Since & is a filter, Dt28 ={xeX:f'(x)< tza}

cE
L6
contradiction. Thus, 0S ;- 155 26, forall 6> 0 arbitrary.
In turn, the above inequality implies, by the triangle inequality that
0sty-tysty -t16+t16-t06+t08-t055+28+ 8 =45,

€ F. Since 128<t16-8<t1, then E26‘ F, by inf property of 1, a

which by the arbitrariness of §, finally implies that Yy =1t He_nce. &5, ) isa
homomorphism wrt (()’, 1 - ()) for spaces Flou(X) and Mem(X). Finally, by the

very definition of §(.%, -) applied to ¢'l(c), forany ce Meml(X), &3, ¢'1(c)) =c,
completing the proof of (i).

Proof (ii): Eq. (1.7) follows from the basic properties of filters and ultrafilters. Next,
consider the basic identity for any f = ¢(a) e Mem(X):

f = sup min(l 1 , 1) (over X). (7.12)
teu 1]

By properties of inverse functions,
a=¢'0=sp ¢ min1_, ),
teu f 1]
whence for strong mode! 4,
-1, .
4(a) = sup A(¢ (min(l ) =E8(F, 4, )
teu ) (4

Proof (iii): Consider the identity

f= sup(f(x)-5x) (over X), (7.13)
xeX

where 6x is the Krénecker delia function

0,if y=x, yeX,
S (y) = (7.14)
I, if y=x, yeX.

d
Then, for = ¢{a), ae Flou(X),
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ol o -1 -1
a=¢ (= ig& ¢ "(f(x) Omin @ (5x).
whence for strong model /£,
A(a) = sup min( /f(¢-1(f(x))). /f(¢.1(5x)))) = sup min(f(x), 4(¢-1(5x)))- (7.15)
xeX xeX

The only remaining thing is to consider what values z{(¢'1(8x)) can take:

Case 1. /{(¢'l(8x)) =0, all xe X. But, this case implies by (7.15) that 4(a) =0, for
all a e Flou(X), contradicting the fact that for all ¢ ¢ u, (7.11) holds.

Case 2. /£(¢'1(6x)) >0 for at least two distinct x; € X,j=1,2. But,since £isa
homomorphism, wrt N nin®
0= AN = 447, -5, ) =min(467, N, 4676, M >0,
1 "2 1 2
a contradiction!
Case 3. This is the only case left: there is a unique x A€ X such that

A (¢>'1(6x }) > 0. Furthermore, since min(8x y 5)"2 =0, by homomorphism,

0= A¢™ ) = min( 47 (8, £¢71E))), implying 4675 )=0
whence, by the homomorphism property of £ again,
VTN )=t (7.16)

Finally, substituting (7.16) into (7.15) yields (7.9), provided that (7.11) is valid. The
latter is simply so due to a variation of the standard Cauchy theorem (Aczél (1966, sect.
2.1 et passim)). -

Corollary 7.1. Characterization of strong models when R is aromico.

Suppose that boolean algebra R (¢ &X)) is atomic o Then

Mod(X) = {¢(-)(x) : x € X}, (7.17)
ie., the strong models of Flou(X) coincide with the fundamental membership
evaluations at each fixed point.

Proof: This is a restatement of the right side of (7.10) of Theorem 7.1.
]
The next results, specified to MZ(X) and M3(X), can be developed without full use of

the strong model assumpuion of Theorem 7.1. Throughout, suppose: boolean algebra
Rc 2(X) is atomico; {0. 1} is endowed with the usual classical logic (C,) operations
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SV =1 (3 Q,=1{0,u, 1} hasthe ordering 0Su<1 and is given the £ or,
equivalently, Zadeh) structure min, max, ()’ =1 - (), where now

0'=1,1=0,u"=(t":teu) =u. (7.18)
Also, recall the equivalence of Flouz(X), Memz(X), and AX) by Theorem 6.1 (ii)
(egs. (6.17), (6.18)); one can restrict Flouz(X) and Memz(X) suitably so that £X)
can be replaced in effect by R. Recall, also with R replacing &X), the equivalence
of Flou3(X). Mcm3(X), and ((R|R); GN) (Theorem 6.6). Thus, the definition of a
model remains well-defined when any of the equivalent spaces are interchangeably
used. Note also the natural identification for any model 4

A{xH = /{(SX) = A(x), for all xe X. (7.19)
Let Modz(X) denote the class of all models of R (i.e., Flouz(X)), excluding those
models identically zero over all singletons of X -- and hence identically zero over all
finite subsets of X, all in R. Similarly, denote Mod3(X) as the class of all models of
mem3(X) (i.c., (R|R); GN), etc.) with the same type of exclusion as for Modz(X).

Theorem 7.2. Suppose all of the above hold. Then:

0] Modz(X) ={1 (x):1_ restricted to R, x € X}. (7.20)
Hence, for any 4£: R -~ (0, 1} model of R, there is a unique x A€ X, such that
AA) = lA(x/f), all AeR. (7.21)
(ii) Mod3(X) ={1 (x): 1 restricted to (R|R), x € X]}.
(1.22)

Hence, for any /£: (R|R) - Q, 2 model of (R|R); GN), there is a unique x s& X
such that
A(A|B)) = I(AIB)(X /f)' all (A|B) e (R|R). (7.23)

Proof (i): 1f there exists X|» Xy € X with X|# Xy and é(xl), é(xz) >0, then
necessarily /f(xl) = é(xz) =1, implying 0= 4@) = /{({xl]) ) {xz}) = min(é(xl),
/{(xz)), implying é(xl) =0 or /{(xz) =0, a contradiction. Thus, there is a unique
X 4 with é(x/) >0, i.e, é(x,) =]. Next,let Ae¢ R arbitrary. If X 4€ A, then

A(A) =é([x4} VA-(x /]) =max(/z’(xl), AA - {x 41) =max(, AA - (x =1
(7.29)
If X 4€ A, then X 4€ A’, whence by replacing A by A’ in (7.24), onc obtains
1- £A(A")=1- A(A), mplying 4(A)=0. (7.25)
Thus, (7.24) and (7.25) show (7.21).

Conversely, for any xe X, it follows from standard properues that, in fact,
L) R -y, O))-(10, 1) C,) is a homomorphism.
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Proof (ii): First note from eq. (6.81) the identity here
(A|B)=(AnB)u (B’ - (3|9)), all A,BeR, (7.26)
with corresponding indicator function form (see also (6.34)
l(A B)(x) = max(lAnB(X), min(lB,(x), u)), all x e X, .27
Now, it follows readily that the restriction of any model £ of (R{R); GN) to R isa
model of R and hence part (i) above is valid. Thus there exists unique x AE X such

that (7.21) holds. In addition, note that since (@]@) has the (unique) property that
@)9) = (@]9), then applying 4,

A@D))=1- A(@]|D) = £A(|2) € Q0 , (7.28)
implying by (7.18) that the only possible value of £((@|9)) satisfying (7.28) is
A@|9) =u. (1.29)

Substituting, from the above reasoning, (7/21) and (7.29) into the evaluation of any
(A|B) by 4, using (7.26) and (7.27) yields

A(A |B)) = max(4(A n B), min(£(B"), 4((0[0))))
= max(lAnB(x,z, min(lB,(x), u)) = l(A|B)(x 2 (7.30)
Eq. (7.30) shows (7.23) holding.

Conversely, Theorem 6.6 shows (or it can be shown directly) that for any x e X,
1 (x): (R|R); GN) =~ (Qo; min, max, ( )’) is a homomorphism, i.e., for all A, B, C,
DeR,

La1B)- €y = minChq 3™ Loy La By ®) =1 - 1o 1)) oo

LaByvc D)™ = max 4 5)(%), 1) py(xD- .

External probabilities of fuzzy sets in general, and conditional events and their
indicator functions, in particular.

Remarks. With the stage set by the above results, we can now give a natural
interpretation to the definition of the external probability of a fuzzy set (callled in the
fuzzy set literature simply the probability of a fuzzy event -- see e.g., Dubois & Prade
(1980, pp. 141 et passim)):

Let (A, /£, p) be a probability space, (X, R) a measurable space, and W : A -+ X
some corresponding random variable. Then, W is not only induces the ordimnary

probability space (X, R, pOW']). but more generally the space (X, Flou(X), pOW']),,
where for any a ¢ Flou(X),
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d
(W) = Eyy(0aIOW) = | aXW@hdP(@) = |
weA

Xe

x«a)(x)dP(W“(x».
(7.32)

can now be irterpreted as the p.,W'l -- averaged model value of flou set a (or
equivalently, of fuzzy set membership function ¢a)). Similarly, the "mean"” of a,

d
"E"(a) = Eyy (W ¢a}(W)), (7.33)

when Xc¢ R" can be interpreted as the pt,W‘1 -- averaged model-moment value of
flou set a, etc.

Finally, particularizing the above to conditional event indicator functions in view of the
previous results connecting them to fuzzy set membership functions and flou sets, for
any choice of A, B € Rc KX), eq. (7.32) yields

(oW )01 a3y = Ey(1 4 | gyWD) = 1-pOW LA 0 BY) +0-pW (B - A)

o +upWlEe)
“=pW A A B)) + upWl@B)). (7.34)
Interpreting v literally as the unit interval, makes (7.34) represent not just a single
value but 2 range of values, so that denoting this turther interpretation here by a hat,

one obtains easily the closed interval

(PoW (14 | gy = POV A N BY, pOW AN BY), pW B 2 AN],  (7.35)
using properties of inverse functions so that

pW B2 A) = 1-pwW B + pw A n . (7.36)
However, this leaves the basic problem of how to evaluate or replace this interval of
values by a single one, which by inspection of the unconditional case should be
p(A|B). If formally, u were assigned the value p(A|B) itself, it follows that
substituting this ino (7.34) yields back p(A|B)! However, this formalism, as
intuitively appealing it is, is still onbly a formal mechanism. A more satisfactory
approach to this issue can be developed as follows (see also Goodman, Nguyen, Walker
(1991) for a brief exposition):

A simple and natural way to assign a single figure-of-menit to a closed interval of real
numbers is the computation of a weighted average of the upper and lower boundary
points of the interval. Depending on the criterion chosen, the “optimal" choice of
weights will vary. In general, the equally weighied mean need not be the choice --
unless a cniterion such as the minimization with respect to that point 1n the interval of

the sum of squared distances to every element of the interval is chosen. In line with
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developing an alternative criterion, consider first the following:
Theorem 7.3. In the following, let R denote the ordinary real line and let s o<l € R

be arbitrary fixed and consider the closed interval [so. tO]. Let 1 denote the class of
all intervals [s, t) ¢ [so, 10]. with s <t. Define mapping hl :RxI-R, where

d
hl(A., s, tN=A1+(1-2)s;allleR s, el (7.37)
the boundary-weighting function, and for each positive integer n22, define
recursively, the n'h iterate of the boundary weighting function
d
hyA (s, D =hyh A [s, ) [s, tD; ali e R [s, ] e L. (7.38)
Also, define the special subclass of 1, .
d
Io=[(s,t]:[s,t]el&t-s=l]. (7.39)
Finally, consider for any [s, t] € I, the boundary-weighting invariance class
d
H(fs, t]) = {A: 2 € R & eq. (7.41) holds for all n) (7.40)
hn(lv [Sv l]) = hl(li' [sl l]); n= 11 2| 31 . (7'41)
With the above definitions established, it follows that:
(i) H([s, t]) =@, forall {s,t] e I0 4 {u). (7.42)
(i1) H([s, t]) =R, for [s,t}=u (7.43)
(1ii) H((s, 1]) = [ls (}, forall [s,t]el4 Iy (7.44)
where
d
ls‘=s/(l-t+s), forall s,teR t-s=0, (7.45)

{(iv) In cases (ii) and (iii), the fixed point property also holds
hn(A. {s,itD=24n=123, .., (7.46)
with A arbitrary € R, for (ii) and A = AS" (umquely), for (iii).
(v) Forall [s,tJel- IO’
s< ls,t <t iff [s,tJcu (proper inclus.) (7.47)

Proof. if A e H(s, 1), then, necessarily, choosing in (7.38) n =2 and using (7.41) with

d
Z] = hl(ft, [s. t}).

/1‘ =hl(ll.ls, 1]):);1 t+ (1 -/1‘) S (7.4%)

Solving (7.48) for l] immediately leads to the unique solution
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§ = "'s.t’ if t-s=1. (7.49)

In turn, (7.49) through A is
At+ (1 -A)-s:ﬁ.st, (71.50)
which also yields the solution A = As v provided t- s # 1, showing (iii).

Returning back to (7.48), when t - s = 1, it becomes
A=Ay +s, (7.51)

which, unless s=0 -- whence t=1 in this case and }‘l can be arbitrary in R, has
no solution for '11' This shows (i) and (i1). (iv) follows for (iii) from (7.50), while for
the case of (ii), it is obvious by inspection that (7.46) always holds. Finally, (v) is

shown by consideration of the combination of possibilities 1 -t +s % 0 with t % 1.

Note that Theorem 7.3 (iii) can be generalized in the following sense:

Theorem 74. Let [s,tJcu with s<t and A€ u arbitrary fixed, not necessarily in
H([s, t]). Then,

d
b (A Is, ) = limh (& [s, 1) = A, (7.52)
N-e0 *

with the sequence (h n(l, [s, t]))n=1 2 decreasing to, fixed at, increasing to ls ¢

depending on whether 12 As ¢ A= Ast ,AS As P respectively.

Proof. First, note that if hw(l, [s, t]) exists, then, taking limits as n -~ in (7.38)
yields
h, =lim hn = hl(l im hn-l' [s,t]) = hl(h”. [s, 1),

N =00

the same forinally as in (7.48) with Al replaced by h_. In summary,
h_(A, [s, 1]) exists implies hw(}t, [s, ) = /15 (7.53)

Next, analogous to (7.48) with equality replaced by inequality,
hl(l, s, <A iff AS (S A (7.54)
In turn, (7.54) shows

hz(l' [S) l]) = hl(hl(A' [Sv l])v [S, []) s h](ll [Sv t])
iff As.t < h](l, {s, 1]y if As.t < A, solving for A.

Continuing the above process shows the decreasing sequence
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0<..5h ()., [s,t)s hz(l, [s, 1) s hl(l, (s, t) S A iff l S A (7.55)
(1.55) shows that h (A [s, 1)) exists, if A 'S A. The mcqualmes in (7.55) reverse,
showing finally

h (A, [s, t)) exists, for all 2 e u. (7.56)
Combining (7.53) and (7.56) shows (7.52). 2

As a consequence of Theorems 7.3 and 7.4, call the assignment

d
h ([s, t]) = hl( st {s,th= s " fcr [s,tlcu, (1.57)
thc stable, or fixed point, boundary-weigh:ing average of [s,t]. Extending this idea
further, if fcu is arbitrary, the stable boundary average of A is defined through
the tightest closed interval around A, [inf(A), sup(A£)], provided that
inf( A) < sup(A) and [inf(.A), sup(A)]Cu:

d
h(A)= ho([inf(./{ ), sup(A))). (7.58)
As a basic application of the above, functionally extend a give prob. p:R-u ot

Q: P(R) » 2(u), analogous to the way ordinary boolean operations were extended
from R to P(R) and then were restricted to the subclass (R|R): (See again the
discussion prior to Theorem 6.4)

d
S(B) = {p(A) : A € B}, forall Be 2(R). (7.59)
Hence, (7.59) specializes to the following when B = (1 ]B), for any A, B e R, noting
{6.45) and (6.51) show

(A|B)={y:ye R& A-B<y<Ba3A}, (7.60)

whereby, using the monotonicity of unconditional probabilities,

A

p((A|B)) = {p(y) : y € (A|B)} c [p(A-B), p(B 2 A)] (7.61)
where

A

inf(p((A|B))) = p(A-B) & sup(Q((A]B))) =p(B 2 A)=1-p(B)+pA-B). (7.62)
All of this leads to

Theorem 7.5. Justification for assigning conditional probabilities to conditional events:
p((a|b)) = p(ab).

Let p:R-u be a given probability measure (R erther a boolean algebra, or more
strongly, a o-algebra). Then, for all A, B e R such that p(B) > 0, the stable boundary

A
average of p((A|B)) coincides with p{A|B).
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Proof: In egs. (1.57) and (7.58) let A= 6((A|B)). s = p(AB), t=p(B 3 A), using
(7.61) and (7.62), yielding

A
hoP(A[BY) = h (Is. ) = &,
= p(AB)/(1 - p(B # A) + p(AB))
= p(AB)/p(B) = p(A|B),

noting here that Theorem 7.3 (iii) is applicable, since 1-p(B =3 A) + p(AB) =0 iff
p(B) = 0, which does not hold here. -

Of course, other justifications for why p(A|B) is interpreted as the ratio of antecedent
to consequent probabilities, from the standard viewpoint of conditional probabilities,
not via conditional events, are readily avadable such as the functional equation
approach of Azcél (1966, pp. 319-324). See also the game-theoretic admissibility
approach using conditional events, Lindiey (1982), Goodman et al (1991).

Returning to the computation of probebilities of conditional event indicator fuictions as
part of the more general evaluation of probabilities of fuzzy sets, the basic quandary in
¢gs. (7.34) and (7.35) ¢ 1 now be solved reasonably. The difficulty with obtaining

(pOW'l)(l( A|B)) is the presence of symbol or “third value" u, which if literally

interpreted, yields the equally appearing difficult interval form (p:W'l)(l ( A|B)) in
eq. (7.35). However, with the use of the stable boundary average of an interval, one
now obtains easily

h((PoW )15 gy = h(IPOW (A N BY), W (B 2 AND

=pW A nBY/1 - pW @B 3 A) + pW (A n BY)
=pw (A n Byypw(B))

= (W A |B), (7.63)
using (7.36), a resuit that is naturally compatible with, and extends, the classical
unconditional case

(W )1 ) = Eyy(1,W)) = pow ! (a))
- oW yAY allAe R (7 61)
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8. Summary of Random Sct Representation of Fuzzy Sets.

The following development is a summary of results to be found in Goodi ..n & Nguy« .
(1985, chpts. 5, 6). It is presented here only for purpose of ease of reference and as a
background for the concept of conditional fuzzy sets given in the next section.

First, let (A, £, p) be a fixed probability space such that #%: A'- 1 is a uniformly
distributed random variable. Let (X, B) be a fixed measurable sp~ce -- 2c P(X) is
a o-algebra, and hence a boolean algebra. For each xe X, let Fx( .5‘)g
{A:xe Ae B} be the filter class on x relative o B and let T‘S’c_: P(2) be any
o-algebra with F,(2)¢ & for all xeX. Call any mapping S:A - 2 a random
subset of X iff S is (., ¥)-mcasurable, in which case S indu.es the probability

space (.2, ¥, pOS'l). Denote the class of all 1.ndom subsets of X as RS(X).
distinguishing random subsets only if they differ in their probability evaluations.
dis

Denote the corresponding equivalence relation among random subsets of X as =
for "equal in distribution”. If S e RS(X) is such that range(S) € Flou(X), call S a
nested random subset of X and denote the class of all such as NRS(X) (up to
l's

equivalence ). Also, identify Mem(X) with the more restricted class of all
functions in it which arc actually (.2, Bu)-measurable. The following theorem is a
conglomeration of results from Goodman & Nguyen (1985), modified for the

definitions here:

Theorem 8.1. Summary of basic random set representations involving fuzzy sets.

Part 1.
(i) The one point cov-rage function v : RS(X) » Mem(X) is surjective, where
d d
V(S)(x) =p(xe S)=p(S ¢ Fx) = (pOS'l)(Fx). all xe X, S e RS(X). 8.1)

In particular, for any given fe Mem(X), one can choose {in general, non-unique)

d
S=flie1)={x:xe X&(x)> % re. forany we A,

S =" wo) 11= (o, 0 ¢ A&f0)2 %)),
8.2)
(i) The following statements are cquivalent:
M S € NRS(X)
. dis__]
{I1) There exists fe Mem(X) suchthat S = '[ %, 1].
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dis
(OI) There exists a = (at)teu € Flou(X) suchthat S = a Py where
d
a y(m) =2 gy forall we A. (8.3)
(IV) There exists q = (qt)te ] € Part(X) such that
q
dis d
S =g = v q. (8.9)
(%) teJ ©
% st<l
(iii} For any choice of f e Mem(X),
d
—¢l -
S=f'[% 1= 9U %) ¢ NRS(X), (8.5)
where
d
= Merangess € PatX), (8.6)

noting that (I) and (II) are related via f = ¢a) (Theorem 2.1).

Motivated by the above results, denote for any a € Flou(X) and any q € Part(X), a o

d
as a uniformly randomized flou set and 1( %), where f = ¢(y(q)), as a uniformly

randomized partitioning set; denote the space of all uniformly randomized partitioning

sets of X as Pant(X; %). Also denote the obvious bijections where a - a, and

q-o(¢(w(q)))'l(‘2z), by the common notation id o Flou(X) - Flou(X; %) and
id o Part(X) - Part(X; %).

Thecrem 8.2. Summary of basic random set representations involving fuzzy sets:
Part 2

The following diagram of isomorphisms holds, extending the isomorphisms of Figure
5.1 to the randomized spaces by use of id o

Part(X) —¥L & Flou(X) —2— 1 Mem(X)
|

. Vv

1d% 1d?[
dis

Part(X; %) —Y— FlowX; ¥) = NRS(X)

Figure 8.1. Summary of isomorphisms for Part(X), Flou(X),
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and their randomizatons and Mem(X). -

Relative to Fig. 8.1, the following relations hold for all fe Mem(X), a € Flou(X),
xe X:

v =id ¢ @ = 070 o= (@1 Y = L 1, 8.7
2 g id o) = v (gta) = o) [ 2, 1), (8.8)

f(x) = (Vid (@ D00 = plx e (¢ D) g = v D)) = pex e [ 2, 1),
8.9

$a)(x) = Wid 4 (a))(x) = V(@ o )(x) =p(x € a ) = v @) = pox e £ 2, 1),
(8.10)
Also, directly from sect. 4 replacing index variable t by r.v. %, i.., applying id o
(see eqgs. (4.1), (4.5), (4.10))

2 9 cop b g~ (¢'1(cop°(¢(a), o)) 4= (a Pcop b) 4 2 9/Vcocop P = (@ Ucocopb) A

8.11)
similarly;
@ g/ cop b g = Hid 2@ #cop ¥ 3 = Ha ey, B) = 0" (copo(e(a), $(bY)
= copo(f(a), P(b)) = copo(Ua 4, Vb 4))), (8.12)
and

va o cop b g(x) =plx € (a o"cop b)) = cop(p(x € a 5)), p'x € b 4)) = cop(¢(a)(x),
Hb)(x)),

(8.13)

V(a ?zucocop b 2[)(x) =p(xe(a ?/Ucocop b %)) = cocop(p(x € a %),( plxeb .2[))
= cocop(¢(a)(x), Hb)(x)); (8.14)
2%= (@1 90@)) 4= ) 4, (8.15)

Wa ') = Kid ;) (%) = Hiid ) (a") o) = 0a’) = )’ = Ma )",
(8.16)
v(a'%)(x) =p(xe a’%)= I-p(xeay)=plxe a’?[).
(8.16")
noting
pix € a ) =plx e ga) [ %, 1) = p( % £ Ya)(x)) = Ya)X),

(8.17)

Px € b ) =plx e 9b) [ %, 1]) = p( % < 9OI(x)) = LY.
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When cop=min and cocop = max, all of the above can be strengthened as a direct
uniformly randomized version of the Negoita-Ralescu representation (1975), extended
here in Theorem 4.1. For example,

2 o min D 7= (A0 D) =3 N b o= 0@ [ %, 110 g0y (2, 1)
= (min(@@)(-), PO [ %, 1)

= (@an;, ) Lo 1), @.18)
etc.

In the next development, the single space X is replaced by the family of spaces Xj,
j€J and the single uniform random variable % is replaced by the stochastic process

d
U= ( %)jel’ for some finite or infinite index set J, where % is determined in
distribution by some J-copula cop (with corresponding DeMorgan cocopula cocop),
where each ?ﬂ : A - u is uniformly distributed. Use the abbreviatior
d
. , : - € 0
comb(xco P Tcoco P a) to denote any typical logical combination of a=(a )j ek’

applying operations x__ , f in a well-defined way to a(j) € Flou(X.),je K¢J,
cop’ 'cocop § z
d

d .
finite. Use also the multivariable notation x = (xj)j ek ¢ = (¢(am)j K
d

U= sz)jE K and e.g., the expressions

X = (X): 1 Ty e Oy I, 1)
X=( j)jEK' (x e ¢a) { %, ])—((Xj€¢(a | i )jEK’

eic.

Theorem 8.3. Isomorphic-like evaluations of arbitrary logical combinations of flou sets
through membership functions.

With the above assumptions it follows that if the combination is purely a repetitive
xcop or Tcocop' then the results below are valid with this restriction. However, for
the general case, the following holds:

(i) For (cop. cocop) € {(min, max), (pord, probsum)), then for all ae Flou(X) and

all xe X,

((comb(x a))(x) = p(comb(&, or; (x € ¢(§)-llj_lv 1))

cop’ Tcocop;
= p(comb(&, or; (% < ¢(a)(x))))
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=p(or & (%3 9aM)x)
jeonte

= O oo x sy (8.19)
Mgo (1elj,JeG)

for some index sets Ij’ jel o determined by the combination.

(i) For (cop, cocop) = (min, max), not only does (i) above hold, but in addition,

(«comb(xcop. ’rcocop; 2)))(x) = comb(cop, cocop)(¢(a)(x)).
8.20)
n
Note for logical combinations involving negations of compounds of flou sets, reduce by
DeMorgan properties the negations to equivalent combinations of x and t of the flou
sets so that essentially one has the original comb(x, t,()’;a) replaced by the

equivalent combo(x, t, b), where some of the b(i)=a(j)’ and the remaining

b® =@ e k.

9. Conditional Fuzzy Sets.

In the past, a number of individuals have attempted to define conditional fuzzy sets.
Zadeh (1978, pp. 14-20), based on an analogy "though not completely” with conditional
probability, simply defined conditioning as a kind of specification, not at all reducing to
conditional probabilities. In particular, if f: X xY +u and f2 is the Y-marginal of
fie.,

fz(y) =max f(x,y), all yeY, 9.1
xeX

then Zadeh's condinonal fuzzy set (or possibility) function of f given f2 at y is
f(-,y) : X = u, i.e,, formally the same as f itself with y fixed. Nguven (1978) also
proposed a conditional fuzzy set form not analugous to conditional probability. Nguyen
made an assumption that the conditional form should be the ratio of the joint
membership function to a function -- 10 be specified by a suitable criterion which he
developed -- of borh X- and Y-marginals, again, unlike conditional probabilities. This
sesulted in the fonn
fly|x) = f(x, y)-max(l, fl(x)/fz(y))), xeX, yeY.

9.2)
Kosko (1986) reconsidering fuzzy entropy, also proposed that fuzzy conditioning could
be identified as a "relauve subsethood”, which for discrete X =y 1s a single number,
not a function of arguments
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d
(F 1) =1-(( ) (max(©, £,(x)) - LNV ) £(x))

xeX xeX
= (Y min(; (), 00 § £,000. ©3)
xeX xeX

Hisdal (1978) proposed the definition, for f: X x Y ~u, f; X-marginal,

d ( f(x, y), iffl(x) > f(x, y),
{ 0.4)

fly|x) = _
If(x, y) 1), if fl(x) = f(x, y),

forall xe X,ye Y.

Ramer (1989), on the other hand acknowledging the work of Hisdal and Nguyen,
decided that for any A ¢ X finite and f: X v, letting

A= (xl,..,xm}, X= [xl,..,x xn}; 0< f(xl) < f(x2) £.< f(xm) <.8 f(xn) <1,

m' Xm+1,..,

f(xi 1A) =

d fix)i=1,.,m-l
{ ©.5)

, i =m

From this, Ramer obtains some natural relations satisfied by Hisdal's proposed
definition. In addition, he discusses the limiting continuous case and justifies the
approach through a minimal cross entropy criterion relative to all possible functions on

A. Bouchon (1987) proposed for any two functions f: X ~u and g:Y-u the two
types of conditional forms at any xe X,ye Y

d
i (f(x)lg(y))t =supf{t:teu& Agy), )< fx)}); £ u2 - u cont. t-norm,
9.6)
with special cases

1, if f(x) 2 g(y)

v ()] 8y = min{(f(x)/g(y)), 1)
f(x), if f(x) < g(y) leey prod Bly

()8 = |
0.7
the left hand side of (9.7) being the well-known intuitionistic implication (Rescher
(1969, pp. 44, 45 et passim)).
d d
(i) (f(x)lg(y))Nh = max(Np (g(y)k f(x)); Ny (1) = h'l(h(O) - h(1)} a negation,
(9 8)

where h:u-RY is nonincreasing continuous with h(0) € 4= and h(1) = 0.

Approach (ii) is clearly a generalization of the use of material imphication when
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h=1- (). Bouchon, among other properties discussed, points out
A(fx) | g 0)) y&(y)) = min(f(x), g(y)); /((f(X)Ig(y))Nh. gy) = Af(x), g(y)

9.9
analogous to the usual condition satisfied by conditional probabilities.

Yager (1983) also discussed various approaches to extending or modifying classical
material implication for fuzzy sets. (See also Sembi and Mamdani (1979) for a survey
and analysis relative to fuzzy decision-making.)

In all of the above approaches, no appeal was made to probability theory, except for the
obvious formal similarities. In fact, Mattila (1986) has concluded that fuzzy material
implication is not the appropriate counterpart of conditional probability, in keeping with
the distinction emphasized in this paper and others relative to the development of
conditional event algebra. (Again, see section 6, following eq. (6.38).) Goodman &
Stein (1989) attempted a definition for fuzzy conditioning, based upon the fuzzy set
analogue of the basic characterization of conditional events as the solution set of a
boolean linear equation -- see eq. (6.91). That is, if o is a generalization of Zadeh's
classical (min, max, 1-()) system over Mem(X) (called there a semi-boolean
algebra, being a complete bounded distributive DeMorgan larttice) with conjunction *
and order <, forany f, ge o, the conditional form (f|g) is given by

d
(flg) =(h:he o & h*g=f*g). 9.10)
This led to the form, for any f, ge Mem(X), using Zadeh's operations
(min, max, 1 - ()), for xe X,
f(x) , if f(x) <gx),

(f]8)(x) ={ (.11
[g(x), 1], if f(x) 2 g(x),

reminiscent of Hisdal's earlier independent proposal (see (9.4)). Operations among such
conditional entities were defined by use of the functional image technique, as shown
earlier here for boolean operations extended to conditional event form (see remarks
prior to Theorem 6.4). Unfortunately, unlike the boolean counterpart, closure of
operations did not hold, i.c., the functionally extended form for min over conditional
forms as in (9.10) did not lead back to the same conditional structure in (9.10)).

1t will be seen, however, that the approach taken here to defining conditional fuzzy sets
comes closest to Bouchon's-approach (i) for min = prod (see r.h.s. (9.7)), among all
the proposed definitions. However, even in this case there is difference, as will be seen
below.

With all of the above background established and keeping in mind the random set
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representations of fuzzy sets as summarized in section 8, the following new approach to
fuzzy conditioning is proposed:

Suppose the same setting as in section 8 holds with (A, £, p) a fixed probability

space, ¥=( if)jel a stochastic process of uniformly distributed random variables
: A-+u govemned by copula cop, a collection of corresponding spaces (xj)j e] with
flou spaces Flou(Xj) and membership function spaces Mcm(Xj), j €, etc. Consider

then w.l.o.g. any a(j) € Flou(Xj) and r.v. 9{, j =1, 2. Thus, as in section 8, there are
the natural correspondences

2@ s oy %, 1~ (%3 oalh) — szj?‘[o. oaih) ¢ 2%
@D xp 3 = @D %, #Dr D = (2 5 06D & (2, 5 0P
(%, %) s @60, 6Py

XX
~ (2710, 0 n (2510, ga@yp e 612,
9.12)
where the exponentiation of f refers to the actual relations
%;'0, 01 = (%510 ¢(a°)><*,->1>xjexj- =12,
9.13)
#;'10, g o 2310, 0@
= (710, o Mx 1 0 (2510, 9Py, oy G=1.2
17T
9.14)
Thus, the marginal flou sets, or equivalently, marginal membership functions
X.
correspond via marginal r.v. %j o elements in 67 and the joint flou sets,
X xX

! Since everything

correspond via joint r.v, (’Ztl, ‘112) to elements in £
actually depends only on the range of values £ for any choice of x., for the most
part, we omit the X)» X5 arguments, but it will be always understood that these values
are present consistently, i.e., for any choice of (xl, X)) € Xl X X2, for consequent and
same X, for antecedent: We have already developed successfully an approach which
converts unconditinnal events in a boolean algebra to conditional ones and allows for
feasible computations for natwurally extended boolean operations and relations to these

conditional forms: namely conditional cvent algebra, as detailed in sections 6 and 7.

Hence, it is proposed that the condinonal flou set (a(l) a(z))_ , where f. = tp(a(j)).
cop j
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j=1,2, as usual, are identified with the ordinary conditional set,

d
(@B = ( %;'10, 92 0 (2510, 9a®Ph| 25710, 9a P € (4] 8,
(9.15)
where (.| ) is the conditional event algebra (with choice of operations such as
GN or SAC, ctc.) formed from o-algebra £, in precisely the same way (R|R) was
formed from R. Note also that (a|ff) has a well-defined indicator function
d
l(alﬁ) : A-oQO = {0, u, 1}, where, as in (6.33),
1if we 25110, ™) n 23110, 6P
Loy p@ =10 if we 310, 4™ 4 7’0, gDy

w if @e A 4 2110, 0@ .
(9.16)
Next, consider the probability evaluation of (a|B) by p, based on the usual procedure
(see the discussion in section 7 following eq. (7.31) and basic equation (6.51))

pl(a]B) = p(a| B) = p(a s B/p(B). p(P) > O, 9.17)

where

p(B) = p( %510, 9@ = pa®), 9.18)

since Uy s uniformly distributed over u, and

plen ) =p( %310, 91 2310, 9

= copo(@a (), ga®(- ), 9.19)
by the very definition of cop. Hence, when p(f) > 0,
(@] B = cope(@(a' (), o@D iga@y(.- ). (9.20)

But, since, ¢(a(j)) = f. is the usual membership function corresponding to flous et a(l),
it is clear that (9.20) can be naturally interpreted as the conditional membership

function of ¢(a(1)) given ¢(a(2)), when the latter is not zero. Finally, define for cop
fixed:
For any fJ € X., j =1, 2, the conditional membership function

)
(f] |f2)cop : X1 X X2 - u, where
d

(1 185) e op(X ) %) = COp(fy (x ), f(x)Vf(x,), X e X,

cop
9.21)
j=1,2, provide at X, f(x2)>(). In order to make this compauble with the

three-valued ordinary conditional event ndicator function, define
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d
( |f2) e op(xl’ X) =1, when f,(x,) =0. 9.22)
Combining (9.21) and (9.22) yiclds the compact form for all x. e Xj.
(fl |f2)cop = (COP(fl (xl)’ f(xz))/f(xz))' 8(f2(x2)>0)

+ 8(f2(x2) =0)’ u, 9.23)
where, analogous to (6.36), one makes the natural identification
(fllfz)cop = {(fllfz)cop,t tteu}, 9.24)

where analogous to (6.33), (fl |f2)

is formally the same as (f1 |f2)cop with u
replaced by t, foreach te u,

cop,t

Similarly, if one starts out with flou sets instead of membership functions, one can
define

d
oa®1aDy ) = @10y ©0.25)

d .
and procede with f; = o@Dy, j=1,2,asin (9.21) and on.

Note also the special case where f; =1,, AcX,, f,=1p, BcX,,
d
(pl1B)eop = max(l o 170 = Laxp x xB) = Lk, | X xB) = LA |B)*
(9.26)
the r.h.s. of (9.25) being for two arguments, one in X1 and the other in Xz. IF
Xl =X2=X and A, BcX and the arguments are restricted to be the same.
X =Xy =X, then (9.25) becomes as in (6.34)
(1 AI lB)cop =1 (A|B) (single argument form), 9.27)

showing, so far, compatibility of form of fuzzy conditional membership functions with
the specialized conditional event indicator functions.

Next, returning to the motivating definition in (9.15), for conditional membershi
functions identified as conditional events (a|B) in (.£].£), it follows that the
natural definition of any operation among membership functions is given through the
counterpart over (6| .£):

Analogous to the setting leading to Theorem 8.3, assume (cop, cocop) = (min, max)

and that now ¥= ( %, )iy, s a umtormly distributed stochastic process over u,
i=1,2
with probability space (A, £, p) fixed as before, %j P A - u uniformly distributed

over u with ¥ jointly governed by min Also, assume (Xj Dje)

i=1,2

given spaces
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with each xji corresponding to zzj and that ao)e Flou(X ). bo)e Flou(X.
arb., j € K.

5,2)

Select an arbitrary index set K cJ and consider any well-defined logical combination

of (a(j)lbﬁ)) through X in and tmax' Expressing this in multivariable notation

whcrccg (alb) = ((aO)Ib(’))

min JE K

min jE K

_74=<s§,i>jex; #a|b), 5 = (0| 0b)) -, = (¢ 06Dy
d

X (]l)jEK’ eX ,_]EJ i=1,2,etc.,

$leomb(x . Fras @[D) e N = comb(x oo Fo0 i (@) [ (b)), (X))

d

= pleomb(-, v; (2] 10, &a)x | %510, oOYx 1)

= p(comb(&, or,; (%, S $@)x))] (%, S HLIE)N,

= plogy | By = (e N B PB) iy (9.28)
with the right hand side of (9.28) interpreted in functional form dependent upon
argument x and where conditional event (aol ﬂo) € (| .6) is obtained via the
calculus developed out of Theorem 6.4 and evaluated via (6.51°). In particular,
consider the single argument case where K = {1, 2}, Xj i = X,j=1,2,i=1,2, and for
convenience, let a= ap, b= bl’ c=a, d= b2. Then for *0 = .min, V max, x € X,
and letting

d
o= %] 110, K0 = (% | S G0N B 271510, 90)(0)) = (%, 5 < HOYX),
d d
Y= %5110 9N = (%, | S HAW, 5= %5510, HAX)] = (%, 5 € YK,
(9.29)
(@ ]D) i %o (1) i) = (BDI SO, o *o O Ay
= p(a] B*id) (¢=-.V)
plapydt,y) = p(aPyd)ip(ry), if* = - . (*=")
p(af v ¥8lay) = p(aBV ¥lgy), if * = v, (*=V)
(9.30)
where
d d
r2=a’ﬁV)/5va[3y5; q2=a[3vY6v<z’ﬁ)/6, 9.31)

using (6.68), (6.69), (6.73), and evaluation (6.51°).
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Simplifying (9.30) and (9.31) using clementary probability properties,
p(afyd) = min(¢(a)(x), ¢(b)(x), Kc)(x), ¢(ANXDI)
p(aB v Y9) = min(§(a)(x), ¢(b)(x)) + min(¢(c)(x), ¢(d)(x)) - p(B¥d),

(9.32)
with p(afyd) given in terms of cop and membership funciions as in (9.31).
p(ry) =p(a’ BV v 8) + p(afyd); p(ay) = p(af v 19) + p(a’ By’ 9),
(9.33)
pla’BV Y8 =p(a’p) +p(y §) - p(a’ By’ D), 9.39)
p(a’ ) = ¢(b)(x) - min(a)(x), Zb)(x)); p(y’ &) = Kd)(x) - min(¢(c)(x), Pd)(x)).
(9.35)

p(a’ By &) = p(Bd) - p(BY) - p(apd) + p(afyd)

= min(¢(b)(x), §(d)(x)) - min(¢(b)(x), Kc)(x), d)(x))

- min(@(a)(x), Yb)(x), ¢d)(x)) + p(afyD). (9.36)
Even simpler is the negation evaluation:
¢((alb)min')(x) = (¢(a) | ¢b))(x)" = plx] B)") = pla’ |B) = 1 - p(ax]| B)

=1~ (¢(a)| ¢(b))(x), 9.37)
where

p(e] B) = p(aP)/p(B) = (¢(a)(x), §(bI(x))/Pb)(x) (9.38)

if ¢b)(x) > 0.

Thus, (9.30)-(9.38) show that all extended boolean operations over conditional
membership functions are closed -- due to the conditional event algebra evaluations --
and feasible to compute: being only simple arithmetic functions of the copula at certain

subsets of {¢(a)(x), ¢(b)(x), ¢c)(x), ¢(d)(x)}.

Also, as a check, when @a) = IA' b)) = lB. o) = ]C' od) = lD’ for any choice of
A, B, C, D c X, it is easy to prove, via (9 30), (9.31), and (9.37), that (9.27) shows

(Al Beop = 1A By Ucl'Deop = I(c|D) (9.39)

and for *0 = in' Ymax® corresponding to * = -, V,

(]AIIB)min *o “CI ID)min = 1(MB) *o l(CID) = 1(A|B)"‘(C|D)
TAlBmn” = YaB) = alB) (9.40)

where the RH.S. of (9.40) are the usual (GN) conditional event operations from
Theorem 6.4, given in the indicator funcuon form.

Note that from its very definition, conditional membership funcuons always satisfy the
relations

= {copo(f, g)|2).... ; (flg)

cop’ = copo(f, g),

(9.41)

(f] ])cop = f; if cop is assoc., (f|g)

cop cop' 8
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for all fe Mem(X), g € Mem(Y), and copula cop arbitrary; the dot in the right hand
side of (9.41) being ordinary arithmetic product. Finally, it can also be verified
directly, using the definition in (9.23) that for f and g as above, together with the
assumption now that cop is associative and commutative (such as is the case for
cop =min or prod)and Z is any third space and h € Mem(Z) is arbitrary such that
sup{h(z):ze Z} =1: (9.42)
(f Ig)cop = sup{(f|copo(g, h(Z))cop-(h(Z)Ig)cop tze Z).
(9.43)
The result in (9.43) can be useful as an alternative to Bayes' theorem, where a
parameter of interest is described by f, observed data corresponding to g, and auxiliary
information in the form of attributes described by h, so that (f|copo(g, h(z))co can
te interpreted as an inference rule, while (h(z)|g)cop can be thought of as a
conditional error form. In practice, both the inference rule and error form may have to
be obtained directly, rather than be built up from the antecedent- consequent form,
since these individual functions may not be known. The identity in (9.43) corresponds
to the well-known expansion

p(xly) = Lezp(xly, z)-p(z|y)dz. (9.44)

Applications of earlier versions of (9.43) to problems of data fusion (and track
association, in particular) can be found in Goot Jan (1986). Further analysis and
discu sion of the above results may also be found in Goodman, Nguyen, & Wal'=r
(1991, chpt. 8).

Finally, it is of some interest to be able to determine the probability of a conditional
fuzzy set. This should extend the unconditional case given in (7.32), as well as the
modified conditional event indicator situation as presented in (7.32)-(7.36). There the
ambiguity caused by the presence of the u term leads to an interval of probabilities,
which was resolved by use of the stable boundary weighting average technique ((7.57),
(7.45)), and justified by Theorems 7.3, 7.4). Motivated by the above, suppose that
(A, A£,p) is a fixed probability space, X,.Y are given spaces, (XxY,R) a
measurable space, W : A~ X xY a random variable, and f ; ﬁém(X), g € Mem(Y)
arbitrary, with copula cop fixed Then,

(p‘,W'l)((ﬂg)cop g EW((fIg)cop(W)) =Cp e +cyey, (9.45)
by standard probability expansion, where also using (9.23),

d
¢ = Ew((flg)cop(W)lg(W) > 0) = Ey (cop(f(W), g(WH (W) > 0),

(9.46)
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d d d
¢3 = Egl((E18)eopW)|gW) = 0) = u; e, = p(g(W) > 0); ¢; = p(g(W) = 0).
(9.47)
Hence, analogous to (7.35), substituting (9.47) into (9.45),

(pOW'l)((f|g) Y=Cy'Cy +CqU=[C,r€,Cq ¢ +8,],
) 1717 %2 | B L B | 2

cop
(9.48)

whence the stable boundary average yields

h (oW )(E1g)

cop» = (clcl)/(l - (clc1 + c2) + clcl) = clcll(l - c2) =Cp

(9.49)
which checks with all special cases (including c.e. indicators, etc.).
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