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A Thinned High Frequency Linear Antenna
Array to Study lonospheric Structure

1. RADC HIGH FREQUENCY TEST FACILITY

RADC/EECP has assembled a high frequency (HF) radar and communication test facility at the
RADC Verona Test Annex, Verona, NY. The system consists of a set of 36 digital HF radio recetvers
controlied by a DEC Micro-Vax Il computer and an extended aperture linear antenna array. The
Nuss10i Ol Uic iuvaaty is two-foiG: arst, Investigaie pivpagation wechanisms and lirulis fmposed on
HF systemns by the lonosphere; second, explore digital processing techniques such as adaptive sidelobe
cancellation, narrowband noise excision, and time domain noise excision that could lead to
improvement of current and future Air Force surveillance and communications sy<tems which use the
HF frequency band.

The radar system at Verona converts the «F siguals {rciu thic 38 woociuia suilceors of the linear
array to a digital format using A/D converters in each of 36 receivers. Antenna calibration,
beamforming, and all radar processing is carried out by the system computer during post processing.
This report details only the linear antenna array. Information concerning the receivers, operational
methods, and data processing will be presented in a separate report.

The purpose of equipping the test facility with an extended aperture linear array was to create a
high resolutfon probe to study ionospheric structure and use this knowledge to improve backscatter
radar techniques.

(Received for Publication 1 July 1990)




2. LINEAR ANTENNA ARRAY

2.1 Design Objectives

The HF test facility at Verona was designed to measure lonospheric backscatter signals with high
resolution and record the recetver baseband digitally. There are many sources of fonospheric clutter;
radio aurora, F-region irregularities, equatorial irregularities, and others. All these mechanisms
contribute interference that is known to degrade HF propagation performance. Measurements using
the linear antenna array will help provide the data needed to evaluate the effectiveness of digital
processing techniques to reduce interference caused by the frregularitics at the high latitudes. The
backscatter data wiil also be used to characterize or map tonospheric phenomena in the high
latitudes. This mapping will help determine the spatial and temporai extent of tonospheric
frreguiarities.

The frequency range of the recetver system is 5-30 MHz which encompasses most of the HF band.
However, high Intensity phenomena are usually present during nighttime operation when the
ionosphere dictates that the most effective operating frequencies are at the low end of the HF band.
Therefore, 6-12 MHz was used as the design operating band for the linear array. While the array will
certainly work to some extent over a much larger frequency band. the array was tuned to perform best
in the 6-12 MHz region. With this criterion in mind, the 36 element linear array was configured to
obtain maximum resolution in azimuth while still maintaining low sidelobe control over the
operating frequency band of 6-12 MHz.

A random array of elements spaced over a large aperture is one way to approach this problem.
However, it was decided not to use this method for several reasons. First, increased signal processing
is necessary to reduce the sidelobes to levels comparable to a periodic array. Secondly, the mainbeam
pattern and sidelobe levels are difficult to predict during all operating situations. Finally, the array
was to retain as much commonality as possible with other existing HF antenna systems.

A linear array of widely spaced (greater then half wavelength) directional elements was chosen
as a practical solution to the problem. Such an array provides a wide aperture that results in a narrow
beamwidth in azimuth and also provides good sidelobe control. A wider aperture is possible using
subarrays of monopole elements that control grating lobes as the array is scanned. Backpoles placed a
quarter wavelength behind each active element provide increased directivity of the array in the
foiward disection. While a backscreen s more 2ffzctive, environmertal concerns and colocation with
other experiments on the selected site currently prohibit use of a large backscreen. The geographic
coverage area of the array is shown in Figure 1. Note that the coverage area includes a large ovcrlap of
the area associated with the nighttime auroral oval.

2.2 Verona Array Description

The linear HF antenna array at Verona NY is composed of 36 subarrays with a spacing of 20 m
between centers of each subarray. This elemental spacing corresponds to 0.8 wavelength at the upper
design frequency of 12 MHz. The dimensions and components of the subarrays are shown in Figure 2.
The main idea in the subarray design process was to use a given number of monopoles as the basic
components to create a directional element. Two monopole elements. placed a half wavelength apart
‘D, = 12.8 m), in 2 hrcadside configuration provided forward directivity and 1educed the energy
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Figure 1. Verona Linear Array Coverage




Leiry 183ur] PUaing ) 1oy uoneingdyuo) Aeireqng ‘g dingig

w Q¢
/ /
/ ca 7
w G2l w g2l
‘ cd
w
Gc'9/1a
ININ3T3
3AILOV
w
\ ¢l
370dX0vE




received from signals arriving from the direction parallel to the array. Tlie 6 m height of these two
clements was chosen to keep the element length near a quarter wavelength of the operating
frequencies. A 12 m backpole was placed a quarter wavelen,th (D = 6.25 m) behind each of the 6 m
elements. A hefght of 12 m was chosen to keep the backpoles greater than a quarter wavelength even at
the low end of the operating band. The four monopoles acting together as a subarray provide forward
d‘rectivity and wide nulls at angles of +90 degrees and 180 degrees. The spacing between the subarrays
(D) was determined from the constraint of reducing the grating lobe by 10 dB when the array is
scanned 30 degrees at a frequency of 12 MHz.

A schematic of the linear array setup is shown In Figure 3. Several parameters are included in
this figure to point out the major features of the array including its length, spatial orientation,
operating frequency band, scan limits, and minimum beamw!dth.

3. THEORETICAL METHODS AND CONSIDERATIONS

3.1 Calculation of Thecretical Radiation Patterns

Far-fleld aztmuthal radiation patterns were calculated at several stages of the antenna array
development. These stages ncluded a simple monopole element. two elements phased broadside, two
¢ ments phased broadside, two clements phased endflre, a four element subarray, and the 36 element
linear array.

The effect of the ground upon the vertical field patterns was carefully considered. While a finite
ground might have little effect on the input unpedance of a vertical monopole, the field pattern can be
greatly influenced by the ground conductivity. Fortunately for the antenna, (and unfortunately for the
experimenters), the land at Verona is a swamp. Ground conductivity for this area is very high. A
conductivity value of 6 = 0.1 mhos/m and a relative dielectric constant of ¢ = 30 were used for all
calculations. These values were chosen from literature as being consistent for a marshy ground.!
While this Is by no means a perfectly reflective ground it improves the antenna performance at receive
angles close to the horizon. In addition, a ground screen was installed in front of the array to ensure a
stable impedance for the antennia. The ground screen consisted of two 22 gauge aluminum clad wires
extending 75 m in front of each element. Fleld calculations were made with the assumption of an
infinite and perfect ground plane.

3.2 Simple Vertical Monopoile Element

The first antenna structure investigated was a vertical monopole over a perfect ground plane.
This antenna has a radiation pattern similar to a vertical dipole in frece space and is therefore
omnidirectional in the azimuthal plane. The elevation field pattern for a vertical monopole has been
extensively calculated in the past and verified for nearly all situations.? Parameters that influence
the pattern are ground conductivity, element length, element radius, and operating frequency.

1. Jordan, E., Edi. (1986) Reference Data_for Radio Fngineers, Howard W. Sams & Co.
2. Kraus, J.D. {1984) Electromagnetics, 3rd Ed., McGraw-Hiil, p. 518.

{611
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Elevation patterns are shown in Figure 4 for a thin, 6 m monopole over a perfect ground plane and also
with 0 = 0.1 and € = 30. Note that the loss in gain for the antenna over a finite conducting ground
becomes critical only at angles close to the horizon, (greater than 85 degrees). This strongly suggests
good low angle performance for the Verona linear antenna, which allows for long range OTH radar
operation.

3.3 Two-Element Subar.ays

3.3.1 TWO-ACTIVE ELEMENTS PHASED BROADSIDE
The next step in the pattern shaping processing was to add a second monopole and phase the
resultant pair to increase the gain at broadside (0 degrees) while placing a null in the endfire

(90 degrees, 270 degrees) direction. The azimuth pattern for a two-element broadside array of point
sources with D, = 0.5A is described by Eq. (1).

(k - D, - cos (¢))

E(¢) = 2 - sin 5 (1)
where
2
k = X

The pattern resulting from Eq. (1) is shown in Figure 5. Note the nulls in the +90 degrees
directions and maximum directivity to the front and rear of the array.

3.3.2 ACTIVE ELEMENT AND BACKPOLE PHASED ENDFIRE

The next step in the pattern shaping process was the addition of parasitic backpoles placed a
quarter wavelength (D, = 6.25 m) behind each acttve element. One active element and one parasitic
backpole were considered as an endfire array. A backscreen greater than a quarter wavelength in
height (at 6 MHz) and placed one quarter wavelength behind the active radiators acts as a reflector.
This reflector increases gain in the forward direction by several decibels and provides nulling of any
signals arriving from behind the array. Such a backscreen would be over 12 m high and 700 m long.
Environmental constraints and other on-going experiments conducted at the Verona test site
prevented building such a structure. However, the antenna gained significant benefit from a passive or
parasitic element placed one quarter wavelength behind each active element. These "backpole”
elements are connected only to the ground screen and to a copper grounding stake driven 1.2 m deep
into the earth beside each backpole. The increase in electric fleld intensity as a function of azimuth
angle ¢, of one active monopole with a parasitic backpole, is derived by Kraus3 and shown by Eq. (2).

3. Kraus, J.D. (1988} Antennas, McGraw-Hill.
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G(6) =\/ Ry (2)
Ry + Ry - | 229/Z55| cos (2 -1 - 1,)

x[1+

where

Zy
Zgy

-t + dr-cos(¢)]

R, = Self resistance of a vertical antenna element
R, = Effective loss resistance of a single element

‘Ryo + jXq9= Z4,= Backpoles self-impedance

X X
N2 =22
1, = arctan ., To = arctan
m Rija 2 Roy

d , = Spacing between elements

Note in Eq. (2), that as the tmpedance of the backpole element (Z,,) is increased the effect of the
backpole decreases and the gain approaches that of a single active element (G(¢)=1). The effectiveness
of the backpole therefore depends to a large extent upon its length. Also, it can be shown from Eq. (2)
that when the backpole is made longer than /4 it acts as a reflector, and when it is shorter than A/4 it
becomes capacitive and behaves as a director. Changing frequency will alter the performance of the
array since this corresponds to changing the dimensions of the array in terms of wavelength.
Complete cancellation of the signal arriving from 180 degrees is paossible only if dimensions and
physical orientation of the array are perfect. Signals arriving from angles not exactly 180 degrees are
never completely cancelled. This arrangement does however, predict a significant increase in the
forward (O degrees) directivity and a decrease in directtvity to the rear (180 degrees). The field pattern
for one active element and one backpole in a two-element endfire configuration array of point sources
with (D, = A/4) is described by Eq. (3) and illustrated in Figure 6. The pattern shows the largest gain in
the forward direction and indicates a null in the 180 degree direction.

k-D,-sin
E(0) =2 -E, -cos = Du sin (@) @)

where
D, = Distance in wavelength between elements
¢ = Azimuthal scan angle from broadside

2n

k=;\

3.4 Design of Subarray Dimensions

The last step in elemental beam shaping is to combine the broadside and endfire configurations
to create the final subarray. Combination of the broadside and endfire patterns through pattern

10
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multiplication results in the subarray pattern formed by the two active elements and the two passive
backpoles. The pattern for this setup is shown in Figure 7. The main element gain is shown to be in
the forward direction. Nulls are located in the +90 degree and 180 degree directions. This pattern is
considered to be the (heoretical element pattern.

3.5 Caiculation of the Array Factor

The far-field array factor for a linear array of 36 {sotropic point sources is described by Eq. (4).
The field pattern for the array factor with N = 36, D4 = 0.8, and ¢, = O is shown by the plot in Figure 8.
This pattern is for a uniform array where all 36 elements are weighted equally. The peak of the first
sidelobe i1s 13.2 dB below the main beam. The 3 dB beamwlidth is approximately 2.5 degrees.

_sin [n - N -Dg(sin (¢) - sin (¢,)}] (4)
array © N . sin [x - D3 (sin (¢) - sin (¢,))]

E

where
N = Total number of elements

D, = Distance hetween array sensors in wavelengths

3.6 Pattern Multiplication of Array Factor and Subarray Pattern

A broadside (0 degree scan) far-field array pattern for the thinned linear antenna array is also
shown in Figure 8. It was calculated by multiplying the subarray (element) pattern (alsoc shown in
Figure 8) by the array factor. Uniforrn amplitude weighting was used in calculating this pattern.
Characteristic 13 dB sidelobes are seen on etther side of the main beam. However, now a broad
subarray pattern has been placed over the array factor. This results in higher directivity in the
forward direction and nulls at angles of +90 degrees, and 180 degrees.

3.7 Grating Lobe Reductions

A plot of the array factor when the array is scanned off broadside by 20 degrees is shown in
Figure 9. Note the grating lobes that have moved into the pattern. They are located at -120 degrees,
-80 degrees and 160 degrees and are equal in amplitude to the main beam of the pattern now at 20
degrees. Another plot in Figure 9 shows the total array pattern. Notice that the amplitude of the
grating lobes relating to the main beam has been lowered significantly by the element pattern with the
nearest one at -80 degrees now lower by 16 dB. This reduction in grating lobes of the array by using
directive subarrays has permitted the aperture of the array to be increased from 437.5 m for the usual
A/2 spacing between elements to 700 m for 0.8 wavelengths between elements. This corresponds to a
decrease in beamwidth from 4 degrees to 2.5 degrees at the 12 MHz design frequency.

12
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4. CALCULATIONS USING NUMERICAL ELECTROMAGNETICS CODE (NEC)

4.1 Introduction to NEC

The Numerical Electromagnetics Code (NEC)4 is a computer program that uses the Method of
Moments technique to predict the electromagnetic response of antennas and other metal structures.
The physical structure to be analyzed is modeled using wire segments to approximate the correct shape
and electrical characteristics. The required integral equations are then solved to determine the
currents on an electromagnetically excited wire or structure. A step-by-step process using NEC was
employed to model various monopole combinations. These structures were then combined to obtain
the subarray and finally the compleie arra_

4.2 Far-Field Patterns Calculated with NEC
4.2.1 VERTICAL MONOPOLE OVER PERFECT GROUND

A simple vertical monopole antenna was modeled first using NEC. The height of the antenna is
6 m and the element is driven by a 1 V source close to the ground. A calculation assuming a perfect
ground plane was made to create a baseline and verify that the model is accurate. Next, an element
over a finite ground plane was modeled using NEC. An option available with the NEC program to use
Sommerfeld Integrals was employed. This method allows stmulation of a structure very close to the
ground. Various ground plane conflgurations and different frequencies were examined. Resultant
patterns are shown in Figure 10 for both the perfectly conducting ground and a ground with finite
conductivity representative of the earth at the Verona test site (6 = 0.1 mhos/m, € = -30).

4.2.2 TWO ACTIVE ELEMENTS

A stmulation of two active elements phased for a broadside configuration was computed and the
fleld patterns calculated. This arrangement generates the common "figure-eight” pattern with nulls at
+90 degrees in relation to broadside. The resultant azimuth pattern is shown in Figure 11.

4.2.3 MONOPOLE WITH BACKPOLE

Similar to the process using theoretical methods, a backpole was paired with an active element
to reduce the gain in the back half plane. The backpole in the NEC model is again located a quarter
wavelength behind the active element. Ground wires are connected from the front element to the
backpole. The backpuie is nct driven with a voltage but purely reacts in the passive manner described
earlier in Section 3.3.2. This setup as in the earlier theoretical case results in an endfire
configuration. The resultant pattern is shown in Figure 12. Note that nulls approximately 6 dB below
the forward direction are formed at 180 degrees. In this and the following simulations the perfectly
conducting ground plane model was used since only the azimuthal variation is under consideration.

4. Burke, G.J. and Pogglo, a.u. {1980) Numerical Electromagnetics Code (NEC), Tech. Doc. 116,
Naval Oceans System Center.
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4.2.4 FULL SUBARRAY

The full subarray of two active elements and two backpoles was modeled next. Both active
elements are driven in phase by 1 V sources. The resultant pattern for azimuthal scan is shown in
Figure 13. This is the element pattern for the array. 1t is this pattern that can be multiplied by the
array factor to create the full array pattern. The subarray pa-tern calculated using NEC shows nearly
15 dB of increased directivity in the forward direction (O degrees) compared to behind the array
(180 degrees).

4.2.5 MODEL OF THE FULL ARRAY

The final modeling effort is naturally the full array of 36 subarrays and calculation of the
composite element-array far-fleld patterns. Unfortunately, our version of the NEC code cannot
accommodate structures as large as the full array of 36 elements. The largest array that could be
handled in the program was 15 subarrays. The limitation of 15 subarrays decreases the gain,
beamwidth, and number of lobes !n the patterns. The overall response of the 15 element linear array
model should still be a good representation of the 36 element array.

All active elements were fed with a 1 V source with no phase difference between elements causing
the main beam of the pattern to occur in the broadside direction. The result is identical to a plane
wave arriving that is oriented parallel to the array. The resultant azimuthal radiation pattern is
shown in Figure 14. To determine the expected sidelobe behavior of the array, an amplitude weighting
taper was used during calculation of the field pattern. This is done by factoring each of the voltage
sources with a 32 dB cosine squared amplitude weight. The cosine squared function is only one of
many pos-sible weightings and was chosen because it does not broaden the main beam as much as other
comparable weighting functions. The pattern for this simulation is shown {n Figure 15. Notice that
the sidelobe levels have been reduced from the uniform level of 13.2 dB shown in Figure 14 to 32 dB
below the main beam. The main beam has broadened by 1 degree and about 3 dB of main beam
amplitude loss has occurred. This loss and beam spread will cause a reduction in array resolution but
it does not prevent adequate system performance.

5. FIELD MEASUREMENTS

5.1 Introduction and Techniques

The HF test facility using the linear antenna array at Verona NY is currently in operation.
Calibration and testing are complete and some preliminary clutter data have been collected. The
pertinent pattern measurements made were the subarray pattern and the full 36 subarray, linear
antenna pattern. The essential antenna information gained from these measurements includes the
gain, average sidelobe level, beamwidth, grating lobe response, front to back ratio, and scan direction
accuracy.

20
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5.2 Measurement of the Subarray Pattern

The subarray pattern was determined by moving a continuous wave probe across the subarray
aperture and plotting the recetved signal strength as a function of azimuth. Measurements were also
made behind the array to determine the element directivity to the rear (180 degrees). Figure 16 shows
the azimuthal element pattern for all the elements at a frequency of 10.205 MHz. Although not shown
on this plot, the front to back ratio was also measured and is approximately 12 dB. Note that the
subarray or element gain falls off rapidly for signals arriving at angles greater than 25 degrees from
broadside. This falloff in gain permits the array to scan +30 degrees with the grating lobes reduced to
at least 10 dB below the main beam.

5.3 Measurement of the Array Pattern

The field pattern for the full array was measured by scanning the array main beam past a CW
signal transmitted from Ava, NY. Ava is located 21 miles away at a bearing from Verona of 31 degrees
east of true north which corresponds to 21 degrees east of the array boresight. The power of the
transmitted signal was 10 kW and the antenna used was a horizontal log periodic. The resultant full
array pattern is shown in Figure 17. This pattern was obtained using measured data and applying a
32 dB cosine squared amplitude weighting function. Sidelobe response to the test signal is less than
32 dB RMS. Note that the beamwidth is greater than the 2.5 degrees available without the weighting
taper but is still only approximately 4 degrees. This method of course does not account for the
response of the subarray pattern but only the subarray pattern at a single bearing. Therefore, the
actual gain wiil fall off as the scan angles become greater than 20 degrees as shown in Figure 16 by the
subarray pattern.

6. ARRAY DESCRIPTION

The elements and pre-amplifiers for the linear antenna array were designed and built by RADC.
The elements are constructed from electrical supply house materials, including 1-inch diameter rigid
aluminum conduit, pve pipe, pvc flanges, and pvc junction boxes. A diagram of the element is shown
in Figure 18.

The signal output of each active monopole element is fed to a power combiner located halfway
between the elements. The combined output is then band-pass filtered and sent to the pre-amplifier.
Pre-amplifiers were deemed essential to overcome the sum of losses from cables, filters, and power
combiners, which was calculated to be 15-20 dB. The gain of the pre-amplifiers was chosen to be 20 dB.
The output of the pre-amplifier is carried through RG/215 coaxial cable to the receivers located in a
central receive building. The building is located slightly off the middle of the array and 30 m behind
the array. The RG/215-U used for the coaxial feed cable is low loss double shielded cable with an
outside armor sheath. A unique aspect of this array is that each cable that connects a subarray back to
one of the receivers, has a different length. The longest cable is approximately 1600 feet, while the
shortest is 150 feet. Phase and amplitude differences for all channels are accounted for and adjusted
digitally during the beamforming process. Figure 19 details the subarray configuration including the
elements, power combiners, filters, and pre-amplifiers.
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7. DISCUSSION

Once the required operating properties of the antenna, that is, gain, beamwidth, frequency band,
etc. were specified, the antenna design effort and testing for this system, consisting of a three stage
process, began. First, antenna theory was used to design an antenna that would meet these
specifications. Second, numerical methods were used to test the theoretical designs and ensure that
the designs met the performance specifications. Finally, pattern measurements of the fielded antenna
were made to verify that the array performed as designed. Table 1 contains some of the major required
specifications and the results obtained from each of the three techniques used. Although there are
some minor differences, in general, the agreement between the numbers is quite good and shows that

the use of theory and modeling techniques leads to the fabrication of an antenna with the properties
needed for conducting meaningful experiments.

Table 1. Parameter Values from Each of Three Techniques

r—-—_—-—= r—_—_—————"—'——‘———'——_p———-——__——l
Theoretical NEC Field
Parameter Calculations Calculations Measurements
Gain (dB) 26 24 23
BW (dB) 2.5 3 =25
Ave. SLL (dB) 32 = 30 32
F/B Ratio (dB) >20 15 12-14
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