AD-A240 760 - /N

UNUEGIRRY ENTATIONPAGE [masm. (%)

2ge 1 hour per reaponse. INCIuding the ¥me for reviewing INETUCIoNa. searching exsting dEIa SOUCES gEIMenng and MANGINNg e data
nmuwmawummaamwmdmm inciuding suggestions for reducing his burden. 10 Washiigeon

© r— - 1215 Jotterson Davis Highway. Sulle 1204, Aringion, VA 22202-4302, and 10 the Office of information and Reguiatory Aftars. Oftice of
Management and Sudget. Washington, DC 20603.
1. AGENCY USE ONLY (Leave Biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final:18 July 1991 to June 1993
L —T T T S =Y e v
4 TITLE AND SUBTITLE 5. FUNDING NUNBERS

TeleSoft, TeleGen2 Ada Host Development System, Version 4.1, for Macl! Systems
Macllfx under A/UX 2.0 (Host & Target), 91072111.11194

6. AUTHOR(S)
IABG-AVF
Ottobrunn, Federal Republic of Germany

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
IABG-AVF, Industrieanlagen-Betriebsgeselschaft REPOAT NUMBER

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 089

D-8012 Ottobrunn

FEDERAL REPUBLIC OF GERMANY

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY |
Ada Joint Program Office REPORT NUMBER
United States Department of Defense
Pentagon, Rm 3E114

Washington, D.C. 20301-3081

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
TeleSoft, TeleGen2 Ada Host Development System, Version 4.1, for Macli Systems, Ottonbrunn, Germany, Macilfx under
A/UX 2.0 (Host & Target). ACVC 1.11.

";g R H.'
% SLPIQBQ

@

5 91-11061
Mll\tllllilulll‘lll‘ RN

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASoIrIED

NSN 7540-01-280-550 —Standard Form 298, (Rev 2-89)

Prescribed by ANSI Std. 239-128

9

Serwd

AIMER NOTICE

ik 4 ?‘) B
A b A9 B
BN 1
v
SRRV
A0, A 9
a2l O oo

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

e v
CHic S
u R A

!

Accesion for

NTIS CRaos

AVE Zontrol Numcer:
18 July, 1991

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910721I11.11194
TeleSoft
TeleGen2™ Ada Host Development System
Version 4.1, for MaclI Systems
MacIIfx under A/UX 2.0
Host and Target

ST

?repared By:
IABG mbH, Abt. ITZ

- Einsteinstr. 20
N-83012 Ottoprunn
Germany

LABG-VSR

333

™~

« EJ\

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 91-07-21.

Compiler Name and Version: TeleGen2™ Ada Host Development System,
Version 4.1, for MacII Systems.

Host Computer System: Apple Macintosh IIfx under A/UX Version 2.0
Target Computer System: same as Host
See Section 3.1 for any additional information about the testing
environment.
As a result of this validation effo.t, Validation Certificate

#91072111.11194 is awarded to TeleSoft. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

~——

Jofad Vo L

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W~8012 Ottobrunn
Germany

Directof, Lomputer & Software Engineering Division
Institute/for Defense Analyses
Alexandria vA 22311

.
:;f;i%j;/¢/6£§z'

Ada Joint Program Office

Dr. J-%n 3olomond, Dicectior

Department of Defense

Washington DC 20301

DECLARATION OF CONFORMANCE

Customer:

Ada Validation Facility:

ACVC Version:
Ada Implementation:

Ada Compiler Name and Version:
Host Computer System:

Target Computer System:

TeleSoft
5555 Cornersione Court west
San Diego CA USA 92121

IABG, Dept. ITE
W-8012 Ottobrunn
Germany

1.11

TeleGen2™ Ada Host Development
System, Version 4.1, for Macll Systems

Apple Macintosh lifx
under A/UX Version 2.0

Same as Host

Customer's Declaration

|, the undersigned, declare that TeleSoft has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-
STD-1815A ISO 8652-1987 in the implementation listed above.

%‘/&% d %zc/@/ Date: & [@;M /TG

TELESOFT/

oy Raymond A. Parra
/ Vice President

v

General Counsel

ZHAPTER

CHAPTER

CHAP

+3
D]

w

o

P opt s g

(8]

[NS N S}
FSE Ve VN o]

W N

[8 I o

TABLE CF CONTENTS

INTRODUCTICN

USE QOF THIS VALIZATICN SUMMARY REPCRT
REFERENCES coe

ACVC TEST CLASSES
DEFINITICN OF TERMS
IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS .
INAPPLICABLE TESTS

TEZST MCDIFICATICNS
PROCESSING INFCRMATION
TESTING ENVIRCNMENT

SUMMARY QOF TEST RESULTS
TEST EXECUTICN

MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F CF THE Ada STANDARD

()

W MNP

(S I NI [

www

{

i
b

]
N R

CHAPTER 1

INTRCDUCTION

The Ada implementation described above was tested accnrding to the Ada
validation Procecdures {Pro90] against tne Ada Standard [Ada83] using zhe
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementaticn.
For any technical terms used in this report, the reader is referred =:c
?rc90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE QF THIS VALIDATICN SUMMARY REPORT

Consistent with the nazional laws of the originating country, t—he Ada
Cerzification Body may make full and free public disclosure of this report.
In -he United States, this is provided in accordance with the "Freedom cZ
Information Act"™ (5 U.S.C. #552). The results of this validation apply
enly to the computers, operating systems, and compiler versicns identified
in this report.

The organizations represented on the signature page of this report do nct
represent or warrant that a.l statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies cf
zhis report are available to the public from the AVF which performed thi
validation or from:

National Technical Information Service
5285 Pcrt Royal Road
Springfield vA 22161

Cuestions regarding this report or the validation test
directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Divisicn
Institute £or Defense Analyses

1801 Ncrthn Beauregard Street

Alexandria va 22311-1772

[
5

INTRCCUCTICZN

1.2 REFERENCES

(AdaB83] Reference Manual for the Ada Programming Language,
ANSI/MIL-3TD-1813A, February 1583 and I30 8652-1987.

S
1A}
(6]
[¥e]
(&

Ada Compiler Validatrion Procedures, Version 2.1, Ada Joint
Program Cffice, August 1990.

{UG89] Ada Compiler Validarion Capability TUser’s Suide, 21 June 1383.

1.3 ACVC TEST CLASSES

Compliance cf Ada implementations is tested by means of the ACVC.
cocntainsg a collecticn of test programs structured into six test zla s
A, 8, C, D, E, and L. The first letter of a test name rdentif:es the ¢
to which it belongs. Class A, C, D, and E -ests are executable. Class
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and przoduce 2
PASSED, FAILED, or NOT APPLICABLE message indicating the result when t©
are executed. Three Ada library units, the packages REPCRT and SPPRTL3,
and the procedure CHECX_FILZ are uved for this purpeose. The package REPCRT
alsc provides a set of identity functions used to defeat scme compiler
cptimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many test3 £for Chapter 13 of <he
Ada Standard. The procedure CHECK_FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
3 tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to wverify that all violations of
the 2da Standard are detected. Some of the class 3 tests contain legal Ada
code which must not be flagged illegal by the compiler. 7This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

1 scme tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -~ for example, the largest integer. A 1:stT
the values used for this implementation is provided in Appendix A.
addition to these anticipated test modifications, additicnal changes may ce
ired to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for

this implementation are described in section 2.3.

[o
3]

r1)

or esach Ada implementation, a customized tast sulite 1s produced zvy <he

AVrF. This customization consists of making the modificazions Zdescrined

in the preceding paragraph, removing witndrawn tests (see sectizn 2.1) anz,

2Cssibly some inapplicable tests (see Section 2.2 and [UGA3!).

In crder tTo pass an ACVC an Ada implementation must process each zast of

the customized test suite according to zhe Ada Standard.

1.4 ZEFINITICN OF TERMS

Ada Compiler The software and any needed hardware that have =3 e added
td a given nost and target computer SysTam TI 2lllw
cransformation of Ada programs into execitable form ang
axecutlilin theraof,

Ada Compiler The means for testing compliance of Ada implementations,

Ja_ldaticn censisting of the test 3uite, the support programs, =-he AC/~

Capability user’s guide and the template for the validaticn summarzy

(ACVC) report.

Ada An Ada compiler with its host computer system and its

L
Implementation target computer system.

Ada Joint The part of tne certification body which provides polizy and
Program guidance for the Ada certification system.

Cffice (AJPO)

Ada The part of the certification body which carries osut zhe
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for coperations of the Ada certification system.
Organization

(AVC)

Compliance of The ability of the implementation to pass an ACVC versicno.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System associated software, that uses commeon storage for all or

pcart of a program and alsc for all or part of the data
necessary for the execution of the program; 2xecutes
user-written or user-designated programs; performs
user-designated data manipulation, including arichmetic
operations and logic cperations; and that can execute
programs that modify themselves during execution. A
computer system may te a stand-alone unit or may ccnsist oI
3several inter-connected units.

Conformitcy

Zastomer

Ceclaration of
Conformance

Hdest Computer
Svstem

Operating
System

Target
Computer
Systam

Vailgateu ada
Compiler

Validated Ada
Implementation

Validation

b
-y

Fulfillment Dy a pr
requirements gpecified.

An individual or corporate entity who
agreement with an AVF which 3pecifies
conditions Zor AVF services

antears
Tne terms arn
(of any xind) to

A formal statement £rom a customer assuring that conisrmicy
is realized or attainable cn tne Acda .mplementaticn Ior
which wvalidation status 1s realized.

A computer system where Ada source programs are transizrmec
into executable form.

A test %hat contains one or more test oblectives Zsund -
irreievant £for the given Ada .mplementation.

Iz

Internaticnal Organization for Standardization.
Sof<ware that contzuls thne
provides services such as resource allocation,
input/output zontzrol, and data management.
operating systems are predeminantly scitware,
or ccocmplete hardware Implementations are possible.

execurion of programs and zha:
}n Ty
buz

A computer svstem where the executable Zorm of Ada programs
are executed.

ine compiier of a vai.iuatea Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

Tne process of cthecking the conformity of an Ada ccmpiler

“he Ada programming language and of issuing a certificats
for this implementation.

w3

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an Ilavaiid
test objective, fails to meet it3 test aplective, or
contains erroneous or illegal use of the Ada prcgramming

language.

CHAPTER 2

IMPLEMENTATICN ZEPENDENCIZIS

2.. WITHDRAWN TES3TS

The fsllowing zests have been withdrawn Dy the AVO. The raticnale for

w-:?d:aw;ﬁg 2ach Te2s8t 13 available frcm eicner -Zhe AVO or the AVF. The

subdlIczaticn Zate Icr zhis list of wizhdrawn zests i3 91-0S-03.
z2863sC 323206C ”3“P6u 23532382 ~355080 z:2
Z35508N Z3373%2a 23372 3413088 ~433C04A 4
C435345A T4S012A 5456125 Z4s5612C C45h51A 4
849C08Aa 3430038 A74006A 274303A B83C228 28
3830288 B33025D B83C243 Z83CCZhA <83041A B8
Z86800C1F T34021A C97116A C380C2B BA201l 23706LA
CB70018 C237304A CCl223A 3C1225A CCl2ze: BC3003B
3018028 3D1306A AD1BOBA 3D2A02A CD2A21E CC2A23E
TD2A32A CT2A41A CDzA41E CD2A87A CcD2Bl5C 3D3CC6A
2017°08A £D4022A CD4022D C24024B CD4024C C24024D
CD4031A CD408:iD CDS111A CC7004C ED7005SD CD7G05E
AD7005A CD7206E AD7201A AD7291E CD7204B AD7206A
3p8002Aa 8D8004C CD9005A Z2900¢S8 TDA2Q1E TE21072
Cz21i7a CE21178 CE21138B ZE22783 CE2405A ZEilllT
ZZ311sA CE31i8A CE34113 CZ34.23 TL33CTr 27T
CZ32807D CE3812A CE3814A ZE39028

2.2 INAPPLICABLE TESTS

A ze2st is inapplicable if 1t contains test objectives which are irrelevant

Zuor a given Ada implementation. Reasons £cr a test’s inapplicability may

Ze supported py documents issued by the I50 and the AJPQ known as Ada

Czmmentaries and ccommonly referenced in the format Al-ddddd. Fer this

mplementation, the £ollowing tests were determined to be inapplicable for
asons indicated; references to Ada Commentaries are inclucded as

W e
e

3]
[

Trhe £ollowing 231 tests have Ifloating-goint twpe declaraticns reguiring
more digilte "han SYSTEM.MAX ZIGITS
C24113..Y (.4 zests) Z357CEL..Y (L4 zesns)
C33706L..Y (14 rtests) C33707L..Y (14 zests)
Z33708L..Y (14 tests) C35802ZL..2 (13 cests)
T4S8241L..Y (14 tesus) TH4332LL..Y (14 zests3)
C435421L..7 (14 zests) C483521L..2 (135 =ests:
T435824L..2 (1S zests) C456221..2 (13 teszs3)
J45641L..Y (14 zests) C450.2L..2 (13 zests)
T452312, B85301X, 7T805006E, and CO7L1ILG check for a gradefined
~vFe with a name otnher tnan INTEGER, LING_INTZGER, or
EGER: £cr thi3 implementaticn, there 13 no 3ucnh TyTe.

C434238B, B35001l7T, and CT86006H check for zhe precdefined

TI237130 and 38520
~ime other than 7

3 2M..P (3 zests) check fixed-point operations £or
-zes that reguire a 3Y3TEM.MAX MANTISSA of 47 or greater; for tiis
ro.emenzaticn, MAX MANTISSA 13 less znan 47
Z3i5223A..8 (2 tests) ctheck that the proger excepticn is ralsed i
MAZHINE _OVERFLOWS is FALSEZ for floating point =ypes; for <his
_molementaticn, MACHINE IVERFLCIWS s TRUE.

w
(¢ %
Oy
<2
<
s
(29
0
o
L]
o]
P
W
2
(8]
aj
W
'O
LA}
®
[}
]
[
b
o}

ed fixed-point type other than DURATIC

, ZA2009F, BC2204C, and BC3205D check whether a generic unlit can
antiated BEFORE its generic body f{and any of its subunits) 13

4. This implementation creates a dependence on *ene~‘b unics
wed by AI-00408 and AI-00530 sucn that the compilati 2€ =h

riz znit bodies makes the instantlacting units obsolete. (Seea

I21739C u1ses a representation clause specifying a non-cdefault 3ize
Zyr a3 £lcating-point Type.

TIZ2A34A, CDZA 843, TD2AB4I..7 (2 zest
z.auses specifying ncn-defauls sizes

), and CTD2A34C use representation
£or access tyres.

o
]
ro

IMPLEMENTATICIN

PN s e |

Cie are oot ipp,.-:i:-% TRT3.3e e
fzr the given cZcocmeinaticn oI mole

TasT Tile Trerat.cn Mcde _2 Access Mernod
sz2il2s CREATE IN FILE SEQUINTIAL -2
IE2il2E CREATE SUT FILE SECUENTIAL I3
SEZ210F CREATE INGUT FILE DIRECT I3
SE=2ll2: ZREATE IN FILE DIREZT IO
ol CREATE CUT FILE SIRECT 1o
S=21i2N SPEN IN FILE SEQUENTTAL I3
~Z21322 RESET TN FILE SEQUENTIAL I3
cE=2132p sPEN SUT FILE SESUENTIAL I°
sz21322 RESET SUT_TILE SEQUENTIAL I3
szl ~pEN INCUT TILE DIFEICT IS
ZE21328 RESET INCUT FILE DIRECT IO
s=2i327 SPEN IN F1LE SIRECT I9
21327 RESET TN FILE DIRECT I3
sz2102v SPEN CUT FILE DIRECT IO
SE2102W RESET CUT_FILE DIRECT I0
sz3102s ZREATE IN FILE TEXT I3

s23132F RESET Any Mcde TEXT 10

=23:102G SELITE m=mm—=m—- TEXT I3

PEIEehd IREATE cUT FILE TEXT 10

cz31022 opEN IN FILE TEXT I3

TZ3132K spPEN SUT FILE TEXT 7D

The f2llzwing 15 zests check cperations con sequential, direct, and
£il2s wnen multiple iInternal files are associated with the same extarnal
file and cone or more are open for writing; USE_ERROR 13 ra:sed wnen

Wt
0
}e
(U]
u
[2]
w

[§]
3
1Y
(r
]

ion 1s attempted.

Zz21278. .2 CEZ2137G..H CEZ107L CD21108 CZ2110D
JZ2lllz TE2lllH C231113 CE311ID..E CgZ31l4B
TE3LIZA

“hat WRITE ra
13 exceeded for
“ile capacity.

iy oI zhe

3 a
EQUENTIAL_IO. This implementaticn ices

[JEE P

ZZ24%22A checks -hat WRITE raises USE EZRRCR if the capacity ©0f the
sx=arnal f£ile 1ls exceeded for DIRECT IC This implementation dces act
reszrict £ile capacity.

CZZZ334A checks that U3E_ZRRCR is raised if a call to 3ET_LINE_LEZNGTH or

3ET_PATGE_LENGTH specifies a value that is inapprcpriate Ior tne extarna.
£ila. This irplementaticn does not have inapprcpriate values for =2itner
_ine length Sr gage .engti

133 checks3 =—hat PAGE raises LAYCUT _ERRCR when <he value oI tnhe page
ser axceeds ZIUNT/LA3T. For this implementation, the value of
LIUNTYLAST Ls greater =whan 133730 maxking the cnecking of this coiective

_Tpraztizal.

to
t
(o]

Modificat:ions (see section 1.3) were required for 23 tests.

The folluwing tests were sSplit into two Or more tests because this
imp.ementation did not report the vioiations cf th
expacted by the original tests.

371001Q BA1001Aa BA2001C BA200IE 3a300s%a

3730063 BA3C073 3A3008a BA3008B 2A3T712A
CAZT29C, CAZIJC9F, BC3204C, and BC3205D were graded inapplicable by
Zvaluation Mcdification as directed by the AVO. BRecause zne implement
maxes the units with instantiaticns obsclete (see secticn 2.2), zhe Z.
t2sts were rejected at link time and the Class 3 tests were compiled
without errcr.

C21009A, C21009I, CD1ICO3A, CD2A21C, CD2A22J, CD2A24A, and CD2A31A..C

(3 tests) use instantiatiocns of the support procedure Length_Check, which

uses Unchecked Conversion according to the interpretation given in

*2I-00S30. The AVC ruled that this interpretation is not binding under ACVC

.11, the tests are ruled to te passed if they prcduce Failed messages only
om the instantiations c¢f length _Check--i.e., the allowed Report.Falled

messages have tne general form:

Pty bt

-
<

" * CHECK CON REPRESENTATICN FCR <TYPE_IT> TAILED."

]
i
.

CHAPTER 3

PRCCESSING INFCRMATICN

The Ada implementation tested in this validation effsrt is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation,
contaczt:

TeleSoft

5959 Cornerstone Court West
San Diegc, CA 921219, USA
(619) 457-2700

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

PROCESSING INFCRMATIC)
3.2 SUMMARY QF TEST RESULT

R e
-

An Ada Implementaticn passes a given ACVC versiocn i1f L
2f rthe customized cest suite in accordance with the Ada

-l

rocesses each =tes:
rogramming
Language Standard, whether the test is applicable or inapplicablse:
otherwise, the Ada Imp.ementation fails the ACVC {Pro90].

|
P

cr all processed testrs (inapplicable and applicable), a result was
sprained that conforms to the Ada Programming Language Standard.

he list of items below gives the number of ACVC tests in variocus

e 3 All tests were processed, except those that were withdrawn
cause of test errors (izem b; see section 2.1), those that reguire a
cating-point grecision that exceeds the implementation’s maximum
ecision (item e; see section 2.2), and thcese that depend on the suppor:t
a file system -- if none i3 supported (item d). All tests passed,
xcept these that are listed in sections 2.1 and 2.2 (counted in items o

U QO

th 8 ++ O

0 0V

and £, below).
a) Total Number of Applicable Tests 3802
b) Total Number of Withdrawn Tests 34
c) Processed Inapplicable Tests 73
d) Non-Processed I/0 Tests Q

e) Non-Processed Floating-Point
Precision Tests 201

f) Total Number of Inapplicable Tests 274 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

ALl I/0 tests of the test suite were processed because this implementation
supgports a file system. The above number of flcating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were lcaded onto the host computer, the full set of
rests were processed by the Ada implementation.

Test output, ccmpiler and linker listings, and job logs were captured on a
magretic tape and archived at the AVF. The listings examined on-site by
“ne walidation team were also archived.

Tasting was performed using ccmmand scripts provided by the customer and
roeviewed Dy the validation -2am. See Appendix 3 £or a complete listing of
the processing options for this implementation. It also indicates :tne
jefault options. The cptions invoked explicizly for validation testing are
given on t~he next page, wnich was supplied by the custcmer.

MACII

Compiler Option Information

B TESTS:
ada -O D -L <test_name>
| option a description !
| ada invoke Ada compiler |
E -OD perform optimizations |
‘f -L generate interspersed source-error listing ‘
<test name - name of Ada source file to be compiled 4

Non-B Noan-Family TESTS:

ada -m <main unit> -O D <test name>

! option deseription 1
ada invoke Ada compiler
-m produce executable code for <main_unit>
<main unit> name of main Ada compilation unit]
-OD perform optimizations f
<test_name> name of Ada source file to be compiled |

Non-B Family TESTS:

ada -O D <test name>
ald <main unit>

! option description

["ada invoke Ada cor;piler

; -OD perform optimizations

i <test name> name of Ada source file to be compiled
! ald invoke linker

<main unit> name of main Ada compilation unit

LINK:
aid <main unit -
S —_— - - - i}
. option descr!ptlon

aid invoke Linker ;
< main unit name >f main Ada - -mpilation unit

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.

The meaning and purpose of these parameters are explained in
darameter values are presented in two tables. The first table

UG89 .
lists

The

the

va_ues that are defined in terms of the maximum input-line length,

WA

the value Ior SMAX IN_LEN--also listed here.

These values are

expressed

is

nere as Ada string aggregates, where "V" represents the maximum input-line
_ength.

Macro Parameter

Macro Value

> - — — ——————— - = ———— — — " — " — -

$MAX_IN_LEN 200 -- value of Vv
$BIG_ID1 (1..V-1 => ’a’, ¥ => /1)
$BIG_ID2 (1..V=-1 => a7, V => 727
$BIG_ID3 (1..V/2 => ’'a’) s '3’ &
(1..V=1-V/2 => ’aA’)
$BIG_ID4 (1..V/2 => 'A") & "4’ &
(1..V-1-v/2 => ’a’)
$BIG_INT_LIT (1..V-3 => 707) & "2938"
$BIG_REAL_LIT (1..V=5 => 707) & "690.0"
$BIG_STRING1 rwrog (L..V/2 => 'RAT) & "
$BIG_STRING2 rerog (1..V-1-V/2 => 'A’) & ‘1° & ‘"
$BLANKS (1..V=20 => ¢ /)
$SMAX_LEN_INT_BASED LITERAL
"2:m & (1..V-5 => 707) g "1l:"
SMAX_LEN_REAL_BASED LITERAL
"16:" & (L..V=7 => '0’) & "F.E:"
SMAX_STRING LITERAL /" & (l..V-2 => ra’) g '"/

The following table lists
respective values.

Macro Parameter

MACRC PARAMETEIRS

all of the other macro parameters and their

Macro Value

SACC_SIZE 32
SALIGNMENT 4
$SCOUNT_LAST 2_147_483_6456
SDEFAULT_MEM SIZZ 2147483647
SDEFAULT_STCR_UNIT 8
$DEFAULT_SYS_NAME TELEGEN2
$DELTA_DOC 241 .0#E-31
SENTRY_ADDRESS ENT_ADDRESS
$SENTRY_ADDRESS1 ENT_ADDRESS1
SENTRY_ADDRESS2 ENT_ACDRESS2
SFIELD_LAST 1009
$SFILE_TERMINATOR -
SFIXED_NAME NO_SUCH_TYPE
SFLOAT_NAME NO_SUCH_TYPE

SFORM_STRING e
SFCRM_STRING2 "CANNOT_RESTRICT_FILE CAPACITY"

SGREATER_THAN_DURATION
100_000.0

$GREATER_THAN DURATION BASE_LAST
131_073.0

SGREATER_THAN_FLOAT_BASE_LAST
3.40283E+38

$GREATER_THAN_FLOAT_SAFE_LARGE
4.25354E+37

SGREATER_THAN_SHCRT_FLOAT_SAFE_LARGE

0.3

SHIGH_PRICRITY 63

)
(5]

$ILLEGAL_EXTERNAL_

MACRO PARAMETERSZ

BADCHAR*"/ %

$ILLEGAL_EXTERNAL_FILE_NAME2

/NCNAME /DIRECTCRY

SINAPPROPRIATE_LINE_LENGTH

-
-

$INAPPROPRIATE_PAGE_LENGTH

$INCLUDE_PRAGMA1
$INCLUDE_PRAGMA2
SINTEGER_FIRST
SINTEGER_LAST
$INTEGER_LAST_PLUS_1
$INTERFACE

_LANGUAGE

SLESS_THAN _DURATICN

-1

PRAGMA INCLUDE ("A28006D1.ADA")

PRAGMA INCLUDE ("B28006D1.ADA"™)
-32768
32767
327638

~
~

-100_000.0

LESS_THAN_DURATICN_B3ASE_FIRST

SLINE_TERMINATOR

SLOW_PRIORITY

-131_073.0

SMACHINE_ CODE_STATEMENT

$MACHINE_CODE_TYPE
$MANTISSA_DOC
SMAX_DIGITS

$MAX_INT
$MAX_INT_PLUS_1
SMIN_INT

SNAME

$NAME _LIST
SNAME_SPECIFICATICNI
SNAME _SPECIFICATICN2

SNAME

PECIFICATICNS3

w

MCI’ (OP => NCP);
Cpcodes

31

15

2147483647
2147483648
-2147483648
NC_SUCH_TYPE_ AVAILABLE
TELEGEN2
/tmp/X2120A
/tmp/X21208

/omp/X311%A

A-3

$NEG_BASED_INT
$NEW_MSM_SIZE
s&aw_sys_NAME
$PAGI_TZIRMINATCR
$RECORD_DEFINITION

$RECORD_NAME

SVARIABLE ADDRESS
SVARIABLE_ ADDRESS1

SVARIABLE ADDRESSZ

MACRC

l64FFFESFFE4

2147483647

TELEGEN2

R}

]
[2]]

ASCII.F

+

RECORD NULL:
NO_SUCH_MACHINE_CODE_TYPE
32

20438

0.02

VAR_ADDRESS

VAR_ADDRESS1

VAR ADDRESS2

PARAMETERS

COMPILATICN SYSTEM AND LINKER OPTINMYMS

he compiier and linker options of this Ada implementation, as described
Appendix, are provided by the customer. Unless specifically nctad
hi

[=10

references in this appendix are to compiler Zocumentation and not

in

2
Command Summary

-~ -

This chapter gre.enis (e commands avatiable with TeleGen2. Thev appear in aiphabeticaj
order.

CMD-1854N-VL.IIMAC-ID) 27JUL9N 2-1

Chapter 2 Contents

2 Command SUMMATY ..o e 2-1
201 ada (Ada COMPUET) oo 22
2.2 ad (AdA LINKCT) oottt e 2-13

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

2.1. ada (Ada Compiler)

The wia command invokes the TeleGen2 Ada Compiier. Unless »ou specity
otherwise. the tront end. middle pass. and code generator are 2xecuted eacn time
the comptler ts invoked.

Betore vou can compile, vou must make . .re vou have access to TeleGen2 and
have a working sublibrary and library tile available. This was expiained in the
“Getung started” section of the Overview. We suggest vou review that section.
and then compile link. and execute the sample program as indicated nefere vou
attempt o compile other programs.

The svntax of the wia command is shown helow.

1

|
ada [<option>...] <input> |

<option> One of the options available with the command. Compuer options
tall into tour categories.

Library search -l(ibtile, -t{emplib

Execution/output Associate object: -A(ssociate
Enable debugging: -d(ebug
Abort after errors: -E(rror_abort
Rug font end only: -e(rrors_only
Suppress checks: -i(nhibit
Keep source: -K(eep source
Keep intermediates: -k(eep_intermediates
Compile, then link: -m(ain
Optimize code: -Ofptimize. -Graph. -I{nline
Update librarv for multiple files: -uipdate_invoke
Include execution profile: -x(ecution_protile

Listing Output source plus errors: -Liist
Output errors: -F(ile_only_errs. -j(oin
Error context: -C{ontext
Output assembly: -S(“asm_listing”

Other -q(uiet, -V(space_size. -v(erbose

[
[¥)

CMD-18S4N-VLIMAC-ITY 27JULYL

Command Summary (Ada Compiler) ada

<input> The Ada source tile(s) to pe compiled. [t may he

e One or mor= Ada source tiles. for =xample.
/uaser/john/exanple
Prog A.rtext
ziosrc/calc_mem.ada
calcio.ada =2vprog.ada
* . ada

[t more than one file is specitied. the names must he separated
by space,

e A tile contining names of files to he compiled. Such a fife
must have the extension it each name in the file must he on
£ separate line. You can tind details tor using input-list tilcs in
the Lser Guude portion of vour TeleGenZ documentation set.

e A combination of the abave,

Compiler defauits. Compiler defaults are set for vour convenience. In most
cases vou will not need to use additional options: a simple "ada <input>" is
sufticient. However, options are included to provide added flexibility. You can,
tor example. have the compiler quickly check the source for svntax and semantic
errors hut a0t produce object code [-e(rrors_oniv] or vou can compile. bind, and
link @ main program with a single compiler invocation {-m(am]. Other options are
provided for other purposes.

The options available with the uda command. and :he reiationships among them,
dre tilustrated in the tollowing figure.

[)
0
4

CMD-ISZIN-VIIOMACD 27 JULYL

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

| ada
z i —
lebtie e . -tiemplib < sublih > |
. i

,,,,,
J

-Vi spucc;size <000

|
-vierbose

{

i
-efrrors only (compz’z’e 10 ubject)

| -Alsseciate < tile s
|
-d(ebug

i
-i{nhubit <suboption>]..]

[1
(do notopumize) -Ofptimize <suboption >{..]
i
-Giraph
!
-linline_list ~file >

!

J

|
-S(asm_listing”™ <subeption >

-u(pdatel_mvokc*

!
-X(ecution_protiie
|

-C{ onTtext 1
i
-E(rror_abort 999

i H i
-Liist [-F(ile_only errs
1 — n
-j(eimn
1
-K{eep_source

1
-ki{eep_intermedinres
|
-m(ain <unjt>
t
-q(uiet

< (nput >

24 CMD-1854N-VL.IMAC-ID 27JULY1L

Command Summary (Ada Compiler) ada

Below are some basic examples that show how the command is used.

L. ¢Nooptions; The tellowing command compiles the tile sampie. wda.
producing object code that is stored in the working subiibrary
ada sample.ada
[n this example. the working sublibrary is the first subiibrary sted in
tibist.alb. No listings are produced. no progress messages ar2 output. no
intermediate forms are retained. and so forth. In other words. iUs the
simplest example of compilation.

(9]

The following command compiles sampic.ada as above, but because we
used the -L option, a listing tile. sample.l, is output to the working
directory. The listing file shows the source code. errors (if anv. the
number of lines compiled, plus other information.

ada -L -v sample.ada

Progress messages are output during compilation hecause we used the -v
option.

The options available with ada appear below in alphabetical order.

-A(ssociate
The -A(ssociate option is used to associate a toreign object with an Ada
compilation unit. The format of the option is

-A <file>

where <file> is the name of the foreign object file. The object is assumed to
be in the working sublibrarv. Using the -A(ssociate option is meaningtul only
when the object is referenced by a pragma Interface within the file being
compiled. For example, if you use

ada -A new.o calc.ada

the foreign object new.o is associated with the Ada unit in calc.ada (let’s say
it’s unit Calc). Whenever Calc is bound, the foreign object new.o wili also be
bound.

The opticn is particularly useful for associating foreign objects with a main
program. For example. instead of having to expiicitly name the toreign object
during linking, like this:

ald -v -p ’'get_arg.o' show_argument
vou can associate the object during compilation. like this:

ada -v -A get_arg.o show_arg.ada
[f more than one object needs to be associated with a given file. put the
objects in a UNIX archive (<file>.a) or do a partial link 11d -r) of the
objects.

[)
.
(]}

CMD-1834N-VL.IIMAC-I 27JUL91

ada (Ada Compiler)

9

TeleGen2 for Macintosh A/UX

-6

-C(ontext

When an error message is sent 10 stderr. it s helptul to see the lines of the
source program that surround the line containing the error. These lines
provide a context for the error in the source program and help to clarity the
nature of the error. The -C option controls the number of source lines that
surround the error. The tormat of the option is

-C <n>

where <n> is the number of source context lines output tor each error. The
default for <n> is 1. This parameter specifies the total number of lines
output for each error (including the source line that contains the error). The
first context line is the one immediately betore the line in error: other context
lines are distributed betore and atter the line in error.

-d(ebug

To use the debugger, vou must compile and link with the -d{cbug option.
This is to make sure that a link map and debugging information are put in the
Ada library for use by the debugger. Using -d(ebug ensures that the
intermediate forms needed for debugging and the debugging information for
secondary units are not deleted.

Performance note:
While the compilation time overhead generated by the use of -d(ebug is
minimal, retaining this optional information in the Ada library increases
the space overhead. To see if a unit has been compiled with the -d(ebug
option, use the als command with the -X(tended option. Debugger
information exists for the unit if the “dbg_info™ attribute appears in the
listing for that unit.

-E(rror abort

The -E(rror_abort option allows vou to set the maximum number of errors
(svntax errors and semantic errors) that the compiler can encounter betfore it
aborts. This option can be used with all other compiler options.

The format of the option is

-E <n>

where <n> is the maximum number of errors allowed (combined counts of
svntax errors and semantic errors). The default is 999; the minimum is 1. If
the number of errors becomes too great during a compilation, you may want
to abort the compilation by typing <ctrl>-C.

-e(rrors_only

The -e(rrors only option instructs the compiler to perform syntactic and
semantic analysis ot the source program without generating Low Form and
object code. That is. it cails the frent end only, not the middle pass and code

CMD-1854N-VLI{MAC-ID 27JULI91

Command Summary (Ada Compiler) ada

generator! This means that only front end errors are detected and that only
the High Form intermediates are generated. Unless vou use the

-K(eep_intermediates option along with -e. the High Form intermediates are
deleted at the end of compilation; in other words, the library is not updated.

The -e(rrors_only option is typically used during early code development
where execution is not required and speed of compilation is important. Since
only the front end of the compiler is invoked when -¢ is used. -e is
incompatible with ada options that require processing bevond the front end
phase of compilation. Such options include, for example, -O(ptimize and
-d(ebug. If -¢ is not used (the default situation). the source is compiled to
object code (providing no errors are tfound).

-F(ile_only errs
The -F option is used to produce a listing containing only the errors
generated during compilation; source is not included. The output is sent to
<tile>.l. where <file> is the base name of the input file. If input to the ada
command is an input-list file (<file> ilf), a separate listing file is generated
for each source tile listed in the input file. Each resulting listing file has the
same name as the parent file, except that the extension “.1” is appended. -F
is incompatible with -L.

-G(raph
The -G{raph option is valid only with -O(ptimize.

This option generates a call graph for the unit being optimized. The graph is
a file containing a textual representation of the call graph for the unit being
optimized. For each subprogram, a list is generated that shows every
subprogram called by that subprogram. By defauit, no graph is generated.

The graph is output to a file named <urit>.grf, where <unit> is the name of
the unit being optimized. The structure and interpretation of call graphs is
addressed in the Global Optimizer chapter of the TeleGen2 User Guide.

-i(nline_list
The -I(nline_list option is valid only with -O(ptimize.

This option allows you to inline subprograms selectively. The format of the
option is
-I <file>

where <file> is a file that contains subprogram names. The file must contain
subprogram names in a specific form as noted below.

CMD-1854N-V1L.1{MAC-II) 27JUL91 2.7

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

— All visible-subprogram names. each separated by a comma or line feed rhen

— A semicolon or a blank line then
— All hidden-subprogram names, each separated bv a comma or line feed

Tabs and comments are not allowed. If there is no semicolon or blank line,

the subprograms are considered to be visible. If you have no visible units to
inline. use a semicolon to mark the beginning of the hidden-subprogram list.
Inline lists are commonly set up with one name per line.

Each subprogram name in the list is in the form shown below.
[<unit>.]<subprogram>

The unit name indicates the location of the subprogram declaration. not the
location of its body. If a unit name is not supplied, any matching subprogram
name (regardless of the location of its declaration) will be affected. For
example, the list

test; testing.test

indicates that all subprograms named Test should be marked for inlining
except for those declared in either the specification or the body of the
compilation unit Testing.

The first list of subprograms will be processed as if there had been a pragma
Inline in the source for them. The second list of subprograms will negate any
Inline pragmas (including those applied by the first list) and will also prevent
any listed subprograms from being automatically inlined (see A/a suboption
pair. in the discussion of -O(ptimize).

The ability to exempt otherwise qualified subprograms from automatic
inlining gives you greater control over optimization. For example, a large
procedure called from only one place within a case statement might overflow
the branch offset limitation if it were inlined automatically. Including that
subprogram’s name in the second list in the list file prevents the problem and
still allows other subprograms to be inlined.

Since the Low Form contains no generic templates, pragma Inline must
appear in the source in order to affect all instantiations. However, specific
instantiations can be affected by the inline lists. The processing of the names
Is case insensitive.

If vou do not use -/, the optimizer automatically inlines any subprogram that
is: (1) called from only one place, (2) considered small by the optimizer. or
(3) tail recursive. Such optimizations are explained in detail in the Global
Optimizer chapter of the TeleGen2 User Guide.

CMD-1854N-VL1(MAC-II) 27JULYN

Command Summary (Ada Compiler) ada

-i(nhibit

The -i(nhibit option allows vou to suppress. within the generated object code,
certain run-time checks. source line reterences. and subprogram name
information. The -i(nhibit option is equivalent to adding pragma Suppress to
the beginning of the declarative part of each compilation unit in a file.

The tormat of the option is

-1 <suboption>{...]

where <suboption> is one or more of the single-letter suboptions listed
below. When more than one suboption is used. the suboptions appear
together with no separators; for example, **-i Inc”.

|

CMD-1834N-V1.1(MAC-II

(line_info] Suppress source line information in object code.

Bv default. the compiler stores source line information in the
object code. However, this introduces an overhead of 6 bvtes tor
each line of source that causes code to be generated. Thus, a
1000-line package may have up to 6000 bytes of source line
information.

When source line information is suppressed. exception tracebacks
indicate the offset of the object code at which the exception occurs
instead of the source line number.

[name_info] Suppress subprogram name information in object
code.

By default, the compiler stores subprogram name information in
object code. For one compilation unit. the extra overhead (in
bytes) for subprogram name information is the total length of all
subprogram names in the unit (including middle pass-generated
subprograms), plus the length of the compilation unit name. For
space-critical applications, this extra space may be unacceptable.

When subprogram name information is suppressed, the traceback
indicates the offsets of the subprogram calls in the calling chain
instead ot the subprogram names.

[checks] Suppress run-time checks — elaboration, overtlow,
storage access, discriminant, division, index. length, and range
checks.

While run-time checks are vital during development and are an
important asset of the language. they introduce a substantial
overhead. This overhead may be prohibitive in time-critical
applications.

19
D
b=}

27JULIL

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

2-10

a [all] Suppress source line information. subprogram name
information, and run-time checks. In other words, a (=inhibit all)
is equivalent to Inc.

Below is a command that tells the compiler to inhibit the generation ot
source line information and run-time checks in the object code of the units in
sample.ada.

ada -v -i lc sample.ada

-j(oin

The -j(oin option writes errors, warning messages. and information messages
th: - are generated during compilation back into the source tile. Such errors
and messages appear in the file as Ada comments. The comments thus
generated can help facilitate debugging and commenting your code. Unlike
-L, -S. and -F. the -j option does not produce a separate listing, since the
information generated is written into the source file.

-K(eep_source

This option tells the compiler to take the source file and store it in the Ada
library. When vou need to retrieve your source file later, use the axt
command.

-k(eep_intermediates

The -k(eep_intermediates option allows you to retain certain intermediate
code forms that the compiler otherwise discards.

By default, the compiler deletes the High Form and Low Form intermediate
representations of all compiled secondary units from the working sublibrary.
Deletion of these intermediate torms can significantly decrease the size of
sublibraries — typically 50% to 809% for muiti-unit programs.

Some of the information within the intermediate forms may be required later.
which is the reason -k(eep_intermediates is available with ada. For example.
High Form is required if the unit is to be referenced by the Ada cross-
referencer (axr). In addition, both the debugger and optimizer require
information that is saved within intermediate forms.

To verify that a unit has been compiled with the -k(eep_intermediates option
(has not been **squeezed”), use the als command with the -X(tended option.
If the unit has been compiled with -4. the listing will show the attributes

high _form and low_form for the unit.

CMD-1854N-V1.1(MAC-ID 27JUL91

Command Summary (Ada Compiler) ada

-L(ist
The -L(ist option instructs the compiler to output a listing of the source being
compiled. interspersed with error information (if any). The listing is output
to <file>], where <file> is the name of the source file (minus the
extension). If <file>.| already exists. it is overwritten.

[f input to the ada command is an input-list file (<file>.if), a separate listing
file 1s generated for each source file listed in the input file. Each resuiting
listing file has the same name as the parent file, except that the extension *.|”
is appended. Errors are interspersed with the listing. [f vou do not use -L
(the default situation), errors are sent to stdour only; no listing is produced.
-L is incompatible with -F.

-i(ibfile
The -|(ibfile option is one of the two library-search options; the other is
-t(emplib. Both of these options allow vou to specify the name of a library
file other than the default, libist.alb. The two options are mutually exclusive.

The tormat of the -I(ibfile option is
-1 <file>

where <file> is the name of a library file, which contains a List of
sublibraries and optional comments. The file must have the extension **.alb".
The first sublibracy is always the working sublibrary; the last sublibrary is
generally the basic run-time sublibrary (rt.sub). Note that comments may be
included in a library file and that each sublibrary listed must have the
extension “.sub”. For example, an alternate library file, workiib.aib, might
contain the following lines.

Name: mywork.sub

-- For the Remco Database project
Name: calcproj/calclib.sub

Name: $TELEGEN2/1lib/rt.sub

Then to use worklib.alb instead of the default, libist.alb, vou would use:
-1 worklib.alb

-m(ain
This option tells the compiler that the unit specified with the option is to be
used as a main program. After all files named in the input specitication have
been compiled. the compiler invokes the prelinker (binder) and the natve
linker to bind and link the program with its extended family. An executabie
file named <unit> is lett in the current directory. The linker may also be
invoked directly by the user with the ald command.

The format of the option is

-m <unit> —

CMD-1834N-VL.LIMAC-ID 27JUL91 2-11

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

where <unit> is the name of the main unit for the program. If the main unit
has already been compiled. make sure that the body of the main unit is in the
current working directory.

Note:

-O(ptimize

You may specify options that are specific to the binder/linker on the
ada command line if vou use the -m(ain option. In other words, if
you use -m, you may also use -o0. -X. or any of the other ald

options. For example, the command

ada -m welcome -0 new sample.ada

instructs the compiler to compile the Ada source tile sample.ada,
which contains the main program unit Welcome. After compiiation,
the compiler calls the linker. passing to it the -0 option with its
arguments. The linker produces an executable version of the unit,
placing it in file new as requested by the -0 option.

The optimizer operates on Low Form, the intermediate code representation
that is output by the middle pass of the compiler.

When used on the ada command lne. -O(ptimize causes the compiler to
invoke the global optimizer during compilation; this optimizes the Low Form
generated by the middle pass for the unit being compiled. The code
generator takes the optimized Low Form as input and produces more
efficient object code.

Note:

(]
—
ko

We recommend that you do not attempt to compile with optimization
until the code being compiled has been fully debugged and tested,
because using the optimizer increases compilation time. Please refer
to the TeleGen2 User Guide for information on optimizing
strategies.

The format of the option is
-0 <suboptions>

where <suboptions> is a string composed of one or more of the
single-letter suboptions listed below. <suboptions> is required.

The suboptions may appear in any order (later suboptions supersede
earlier suboptions). The suboption string must not contain any
characters (including spaces or tabs) that are not valid suboptions.
Examples of valid suboptions are:

-0 pRiA

-0 pa

CMD-1854N-VI.I(tMAC-I) 27JUL91

Command Summary (Ada Compiler) ada

Table of optimizer suboptions

: P | [opumize with parallel tasks] Guarantees that none of subprograms |
being optimized will be called from parallel tasks. P allows data !
mapping optimizations to be made that could not be made if multiple
instances of a subprogram were active at the same time.

p (optimize without parallel tasks] Indicates that one or more of the
subprograms being optimized might be called trom parallel tasks.
This is a “safe” suboption. DEFAULT

R | [optimize with external recursion] Guarantees that no interior
subprogram will be called recursively by a subprogram exterior to the
unit/collection being optimized. Subprograms may call themselves or
be called recursively by other subprograms interior to the
unit/collection being optimized.

r [optimize without external recursion] Indicates that one or more of
the subprograms interior to the unit/collection being optimized could
be called recursively by an exterior subprogram. This is a “safe”
suboption. DEFAULT

I [enabie inline expansion of subprograms] Enables inline expansion ot
those subprograms marked with an Inline pragma or introduced by
the compiler. DEFAULT

i [disable inline expansion] Disables all inlining.

A | [enable automatic inline expansion] If the [suboption is aiso in effect
(I is the default), A enables automatic inline expansion of any
subprogram not marked for inlining; that is, any subprogram that is
(1) called from only one place, (2) considered to be small by the
optimizer, or (3) tail recursive. Ifi is used as well. inlining is
prohibited and A has no effect. DEFAULT

a | [disable automatic inline expansion] Disables automatic inlining. If i
is used as well, inlining is prohibited and a has no effect.

M | [pertorm maximum optimization] Specities the maximum level of
optimization; it is equivalent to “PRIA”. This suboption assumes that
the program has no subprograms that are called recursively or hy
parallel tasks.

D | [pertorm sate optimizations] Specifies the default “*sate” level of
optimization; it is equivalent to “prIA”. It represents a combination of
optimizations that is safe for all compilation units. including those with
subprograms that are called recursively or by paralle] tasks.

CMD-1854N-VL.I(IMAC-ID 27JUL9 2-13

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

Below are some examples showing the use ot ada with -Ofptimize.

1. The command below compiles and optimizes a single unit in file
optimize.add.

ada -0 D -v optimize.ada

It uses “safe” optimization (D), since the unit may have subprograms
called recursively or by parallel tasks.

2. The command below compiles and optimizes individuaily a series of
units listed in the input list prorvpe lLilf.

ada -0 PrIa -v protypel.ilf
This command telis the compiler that the units have subprograms
called recursively (r) but none calied by parallel tasks (P). [t also tells

the compiler that pragma Inline marks subprograms to be inlined (1),
but that automatic inlining is not desired (a).

[UF]

The command below requests maximum optimization (M), because the
one-unit program in alpha_sort.ada has no subprograms called
recursively or bv parallel tasks.

ada -0 M -v alpha_sort.ada

-q(uiet

By default, information messages are output even if the -v(erbose option is
not used. The -q(uiet option allows vou to suppress such messages. Using
-v(erbose alone gives error messages, banners, and information messages.
Using -v(erbose with -q(uiet gives error messages and banners, but
suppresses information messages. The option is particularly useful during
optimization, when large numbers of information messages are likely to be
output.

-S(“asm_listing”
The -S option instructs the compiler to generate an assembly listing. The
listings are put in the working directory. If more than one unit is in the tile.
separate listings are generated for each unit. The format of the option is

-S <suboption>
where <suboption> is either “e” or "a”.
e [extended] Generate a paginated, extended assembly listing that

includes code offsets and object code. The assembly file is named
<unit>.eif it is a body or <unit> e if it is a specification.

a [assembly] Generate a listing that can later be used as input to an
assembler. The assembly file is named <unit> s if it is a bodv or

CMD-1854N-V1.1(MAC-ID 27JUL91

Command Summary (Ada Compiler) ada

<unit> s if it is a specification.

The listing generated consists of assembly code intermixed with source code
as comments. [f input to the ada command is an input-list fie (<file >.if). a
separate assembly listing file is generated for each unit contained in each
source file listed in the input file. Since -S is also an ald option. if vou use -5
along with -m(atn. an assembly listing is also output during the binding
process.

-t(emplib
The -t(emplib option is one of the two library-search options; the other is
-l(ibfile. Both of these options allow vou to select a set of sublibraries for use
during the time in which the command is being executed. The two options
are mutually exclusive.

The format of the -t(emplib option is
-t <sublib>[,...]

where <sublib> is the name of a sublibrary. The name must include the
*.sub” extension; it must also be prefaced by a path name if the sublibrary is
in a directory other than the current directory. The first sublibrary listed is
the working sublibrary by definition. If more than one sublibrary is listed, the
names must be separated by a comma. Single or double quotes may be used
as delimiters.

The argument string of the -t(emplib option is logically equivalent tc the
names of the sublibraries listed in a library file. So instead of using

-1 worklib.alb

vou could use -t(emplib and specify the names of the sublibraries listed in
worklib.alb (separated by commas) as the argument string.

-u(pdate_invoke
The -u(pdate_invoke (short for “-u(pdate_after_invocation”) option tells the
compiler to update the working sublibrary only after all files submitted in that
invocation of ada have compiled successtully. The option is therefore useful
only when compiling multiple source files.

If the compiler encounters an error while - is in effect, the library is not
updated. even for files that compile successfully. Furthermore. all source
files that follow the file in error are compiled for syntactic and semantic
errors only.

If vou do not use the -u(pdate_lib option, the library is updated each time one
of the files submitted has compiled successtullv. In other words. if the
comptler encounters an error in any unit within a single source file. all
changes to the working sublibrary for the erroneous unit and for all other

CMD-1854N-VL.LUMAC-ID 27JULY1

[P
.

[

w

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

units in that file are discarded. However, librarv updates for units in previous
or remaining scurce files are unattected.

Since using -u means that the librarv is updated only once. a successtul
compilation is faster with -u than without it. On the other hand. if the
compiler tinds an error when vou ve used -« the library is not updated even
when the other source tiles compue successtuilv. The implication is that it is
better to avoid using -u unless your files are likelv to be error tree.

-V(space_size

The -Vispace_size opticn allows vou to specify the size of the working space
for TeleGen2 components that cperate on librarv contents. The format of
the option is

-V <value>

where the option parameter is specified in [-Kbyte blocks: it must be an
integer value. The default value i1s 4000. The upper limit is 2.097.152.
Larger values generally improve performance but increase physicai memory
requirements. Please read the section on adjusting the size of the virtual
space in the Programming Guide chapter of the TeleGenZ Programmer’s
Reference Manual for more information.

-v(erbose

The -v(erbose option is used to display messages that inform you of the
progress of the command’s execution. Sorch merenrs are profazidbyva
banner that identifies the component being executed. It -v is not used, the
banner and progress messages are not output. However, information
messages such as those output by the optimizer may still be output whether
-v(erbose is used or not.

-x(ecution_profile

The -x(ecution_profile option is used to obtain a profile of how a program
executes. The option is available with ada. ald, and aopt. Using -x with ada
or aopt causes the code generator to insert special run-time code into the
generated object. Using -x with a/d causes the binder to link in the run-time
support routines that will be needed during execution.

Important: If vou have compiled any code in a program with the
-X(ecution_profile option, vou must also use -x when you bind
and link the program.

Also make sure that the PROFILING environment variable is
set betore you attempt to ex<cute a program. If the variable is
not set in one of vour log-in scripts. tvpe

setenv PROFILING on

CMD-I834N-VLIMAC-IL 27JULY

Command Summary

(Ada Compiler) ada

before yvou execute a protifed program. Reter 10 the Protijer
chapter of the TeleGen2 User Guude for mer= intormaion o
arotiling.

CMD-I8S4N-VLIMAC-ID 27JUL9L 217

ald (Ada Linker) TeleGen2 for Macintosh A/UX

2.2. ald (Ada Linker)

The ald command invokes the TeleGenZ Ada Linker. The linker tikes the shiect
tot a main program that is produced by the compiler und produces @ LNIX

executable module. To produce executable code, the linker « 1} generates

Sy

elaboration code and a link script (this s called “hinding™ or "nretinsing ™ then
(2) calls the UNIX link editor {({d) to complete the linking process. +Linker”
reters to the TeleGen2 Ada Linker: “link editor” refers to the UNIN Tink cditer -

The linker is invoked by the wid command: it can also be invoKed with the -mian
option of the ada command. [n the latter case the compiler passes apprepriate
options to the linker to direct its operation. The svntax of the command is snown
bejow.

ald [<option>...] unit!
_

<option> One of the options available with the command.
<unit> The name of the main unit of the Ada rrogram to e linked.

Important: ~ When using the a/d command. the body of the main
unit to be prelinked must be in the working
sublibrary.

[n the simplest case, the ald command takes one argument — the name ot the
main unit of the Ada program structure that is to be linked — and produces one
output tile — the executable file produced by the linking process. The executable
file is placed in the current working directory. under the name of the mamn unit
used as the argument to ald. For System V versions of UNIX. it the name is
longer than 14 characters, it is truncated.

The options available with the command. and the relationships among them. are
shown in the figure below.

CMD-I8S4N-VL.LOMAC-IL - 2TJULN

Command Summary (Ada Linker) ald

ulﬂ
. S r - . j
-l(ibfile <tile > -ttemplib <sublib>1,..]
| J
-V{ spacelsize 4000

!
-v(erbose

i
-b(ind_only

!
-n{on-Ada

-o(utput’ <file>
-pt ass_objec]ts ‘<string >
-S("zlsm_h'sting!" <suboption >
-T(racelback 15
-w("‘timjeslice" 0
-X(ceptilon_shcw
X{ ecutioln _protile
-Y(“task_stlack” 10240

|
-v('stack_guard”™ 1024

<unt>

Below are some basic examples that show how the command is used.

1. (No options) The following command links the object modules of all the
units in the extended family of the main unit Welcome. producing an
executable file, welcome. in the working directory.

ald welcome

2. The tollowing command links the main unit Welcome. producing an
executable file, new, in the working directory.

ald -S a -v -0 new welcome

An assembly listing file. new M.s. is produced as well. Progress
messages are output as the command executes.

The options available with ald appear below in alphabetical order.

CMD-1854N-VL.1(MAC-ID 27JUL91 2-19

ald (Ada Linker) TeleGen2 for Macintosh A/UX

220

-b(ind_only

The -b(ind_only option causes the linker to quit after it has created the
elaboration code and the linking order. but before it invokes the UNTX link
editor. Using this option allows vou to edit the linking order tor special
applications and then invoke the link editor directly.

The linking order is contained in a link script. which s an executable script
that invokes the link editor with the appropriate options and arguments. The
name of the script produced is <unit>.Ink, which is placed in the working
directorv. To complete the link process. enter * <unit>.Ink". The name of
the tile containing the elaboration code is <unit> M.o. which is placed in
the object directory of the working sublibrary.

For System V versions ot UNIX. the file names generated as a result of
linking are created by appending the 3-letter extension to the unit name and
truncating the result to 14 characters.

-I(ibfile

The -I(ibtile option is one of the two librarv-search options: the other is
-tiemplib. Both of these options allow vou to specify the name cf a library
tile other than the default. libist.alb. The two options are mutually exclusive.

The format of the -I(ibfile option is

-1 <file>

where <tile> is the name of a library file, which contains a list of
sublibraries and optional comments. The file must have the extension “.alb”.
The first sublibrary is always the working sublibrary; the last sublibrary is
generally the basic run-time sublibrary (rt.sub). Note that comments may be
inciuded in a library file and that each sublibrary listed must have the
extension “.sub”. For example, an alternate library file, worklib.alb. might
contain the following lines.

Name: mywork.sub

-- For the Remco Database project
Name: calcproj/calclib.sub

Name: $TELEGEN2/lib/rt.sub

Then to use worklih.aib instead of the default, ibist.alb. you would use:
-1 worklib.alb

-n(on_Ada

The -n(on_Ada option tells the binder to make the elaboration procedure
accessible from code written in another language. With -n. The iinker
generates elaboration code and produces a link scrint. <unit > .lnk. but does
not cail the link editor. The link script can be edited and submitted to the
link editor.

CMD-1854N-V1L.IIMAC-ID 27JULI1

Command Summary (Ada Linker) ald

The link script produced with the -nion-Ada option ditters from that
produced by the -brind_only option in that the former includes the
-env_foreign module instead of .env. Both modutes are in STELEGEN2/lib.

-o(utput
The -o{utput option allows vou to specify the name of the cutput tile
produced by the linker. The tormat of the option is

-0 <file>

where <file> is the name of the output file. For example, the command
below causes the linker to put the executable module in the file “vorkshire”
rather than “main”.

ald -o yorkshire main

-p(ass_objects
The -ptass_objects option allows vou to pass a string cf arguments directly to
the UNIX link editor. The tformat of the option is

-p '<string>’

where <string> is a string of characters that the UNIX link editor. /d, will
recognize. The string passed to Id may be either objects (e.g., 'cosine.o’) or
options (e.g.. -1<lib> -r’). The string must be enclosed in single quotes. For
example, the command

ald -p 'cosine.o /usr/lib/libm.a’ main

causes the link editor to link the object file cosine.o and to search the library
Jusr/lib/libm.a tfor unresolved svmbol references.

Remember that the UNIX link editor searches a library exactly once at the
point it is encountered in the argument list. so references to routines in
libraries must occur before the library is searched. That is, files that include
references to library routines must appear before the corresponding libraries
in the argument list. Objects and archives added with the -p option will
appear in the linking order after Ada object modules and run-time support
libraries. but before the standard C Library (/lib/libc.a). This Library is
always the last element of the linking order.

You can also use -p(ass_objects to specify the link editor’s -/ option, which
causes the link editor to search libraries whose names have the form
~/lib/libname.a” or ** /usr/lib/libname.a”. For example. the command below
causes the link editor to search the directories /lib and /usr/lib (in that
order) for tile libxyz.a.

ald -p ’'-lxyz’

(~-1" is the {d option: "xyz"" is the option’s argument.
If vou use -p but do not invoke the link editor (bv using -b(iMd_only). the

CMD-1854N-VLLMAC-ID - 27JULN

[P
0

to

—

ald (Ada Linker) TeleGen2 for Macintosh A/UX

binding information specified with -p is included in the link script.

-S(“‘asm_listing”

The -$ option is used to output an assembly listing from the elaboration
process. The format of the opticn is

-S <suboption>
where <suboption> is either “e” or “a™.
e [extended] Generate a paginated. extended assembly listing that

includes code offsets and object code. The assembiv file is named
<unit>_ Me.

a [assembly] Generate a listing that can later be used as input to an
assembler. The assembly file is named <unit> M.s.

-T(raceback

The -T(raceback option allows vou to specify the callback level for tracing a
run-time exception that is not handled by an exception handler. The format
ot the option is

-T <>

where <n> is the number of levels In the traceback call chain. The default is
15.

-t(emplib

The -t(emplib option is one of the two library-search options: the other is
-I(ibfile. Both of these options allow you to select a set of sublibraries for use
during the time in which the command is being executed. The two options
are mutually exclusive.

The format of the -t(emplib option is
-t <sublib>{,...]}

where <sublib> is the name of a sublibrarv. The name must include the
.sub” extension: it must also be pretaced by a path name if the sublibrarv is
in a directorv other than the current directory. The first sublibrary listed is
the working sublibrary by definition. If more than one sublibrary is listed, the
names must be separated by a comma. Single or double quotes may be used
as delimiters.

The argument string of the -t(emplib option is logically equivalent to the
names of the sublibraries listed in a librarv file. So instead of using

-1 worklib.albdb

vou could use -t(emplib and specitv the names ot the sublibraries listed in
worklib.alb (separated by commas) as the argument string. -

CMD-1854N-VLI(MAC-ID 27JULIL

Command Summary (Ada Linker) ald

-w(“timeslice”
The -w option allows vou to specify the slice of time. in milliseconds. in which
a task is allowed to execute before the run time switches control to the first
ready task having equal priority. This timeslicing activity allows for periodic
round-robin scheduling among equal-priority tasks.

The format of the option s

-w <value>

where <value > is the timeslice quantum in milliseconds. If the value
specified is 15, for example. the run time will check each 15 milliseconds to
see if any tasks with a priority equal to that of the executing task are available
to execute. If there are. the run time effects a context switch to the first such
task.

The UNIX virtual time alarm signal SIGVTALRM is used to implement the
-w option. The value of -w is passed to the UNIX run time, which then sets
the UNIX interval timer. Note that while ald will accept values beteen 0 and
2**31-1, not all of these values will be meaningful in the UNIX environment.
For details on the UNIX timing mechanism, please refer to the appropriate
UNIX documentation.

The default is 0 (i.e., timeslicing is disabled). Please note that no run-time
overhead is incurred when timeslicing is disabled.

-V(space_size
The -V(space_size option allows you to specify the size of the working space
for TeleGen2 components that operate on library contents. The format of
the option is

-V <vralue>

where the option parameter is specified in 1-Kbvte blocks; it must be an
integer value. The default value is 4000. The upper limit is 2,097.152.
Larger values generally improve performance but increase physical memory
requirements. Please read the section on adjusting the size of the virtual
space in the Programming Guide chapter of the TeleGen2 Programmer’s
Reference Manual for more information.

-v(erbose
The -v(erbose option is used to display messages that inform you of the
progress of the command’s execution. Such messages are prefaced by a
banner that identifies the component being executed. If -v is not used. the
banner and progress messages are not output.

CMD-1854N-VLI(MAC-ID 27JULI1 2.23

ald (Ada Linker) TeleGen2 for Macintosh A/UX

-

-X(ception show

By default. unhandled exceptions that occur in tasks are not reported:
instead, the task terminates silently. The -X option allows vou to specitv that
such exceptions are to be reported. The output is similar to that displaved
when an unhandled exception occurs in a main program.

-x(ecution_profile

The -x(ecution_protile option is used to obtain a profile of how a program
executes. The option is avaiable with ada. ald, and aopt. Using -x with ada
or aopt causes the code generator to insart special run-time code into the
generated object. Using -x with ald causes the binder to link in the run-time
support routines that will be needed during execution. These run-time
support routines record the protiling data in memory during program
execution and then write the data to two host files, profile.out and profile.dic,
as part of program termination. The files can then be used to produce a
listing that shows how the program executes.

Important: If you have compiled any code in a program with the
-X(ecution_protile option, you must also use -x when vou bind
and link the program.

Also make sure that the PROFILING environment variable is
set before you attempt to execute a program. If the variable is
not set in one of your log-in scripts. tvpe

setenv PROFILING on

before you execute a profiled program. Refer to the Protiler
chapter of the TeleGen2 User Guide for more information on
profiling.

-Y(“task_stack”

The -Y option is one of the two ald options by which you can alter the size of
the task stack (the other is -v). In the absence of a representation
specification for task storage size, the run time will allocate 10240 bvtes of
storage for each executing task. -Y specifies the size ot the basic task stack.
The format of the option is

-Y <value>

where <value> is the size of the task stack in 8-bit bvtes. The default is
10240. A representation specification for task storage size overrides a value
supplied with this option.

-y(“'stack_guard”

The -v option is used to specifv the size of the stack guard. The stack-guard
space is the amount of space allocated per task. trom the task stack. to
accommodate interrupts and exception-handling operations. The format of

CMD-1854N-VL.I¢MAC-ID 27JULYL

Command Summary (Ada Linker) ald

T \Jl::...ull S
-y <value>

where <value> is the size of the stack-guard size in 3-bit bvtes. The value
given must be less than the task-stack size. The detault is 1024 bvtes; this is
the amount allocated unless otherwise specified.

CMD-1854N-VL.IIMAC-ID 27JULI1

(]
0
[]

W

ald (Ada Linker)

TeleGen2 for Macintosh A/UX

[]
0
to
*

CMD-1854N-VL.1(MAC-ID) 27JUL91

APPENDIX C

APPENDIX F CF TH

O]

Ada STANDARD

The only allowed implementaticn dependenciss <crresgend o
implementation-dependent pragmas, to certain machine-dependent cconventlions
as mentioned in Chapter 13 oI zhe Ada Standard, and to certain al.cwed
restricricns on representation clauses. The Implementzation-dependent
charactaristics of this Ada implementaticn, as descriped in this Apcendix,
are provided by the customer. Un.ess specificalliy noted otherwise,
refarences in this Appendix are tc compiler documentation and act to this

repcrz. Implementation-sgecific portions of the package STANDARD, which
are nct a part of Appendix T, are given on the following cage.

MACI

ATTACHMENT F

ATTACHMENT F: PACKAGE STANDARD INFORMATION

For this target system the numeric types and their properties are as follows:

INTEGER:
size = 16
first = -32768
last = —32767

SHORT INTEGER:

size = 8

first = -128

last = =127
LONG_INTEGER:

size = 32

first = -2147483648

last = —2147483647
FLOAT:

size = 32

digits =

‘rst = -1.70141E--38

last = —1.70141E-23%

machine radix =2
machine mantissa = 24
machine _emin = -125
machine_emax = —128

LONG FLOAT:

size = 64

digits = 15

‘Arst = -1.79769E - 30%&
last = —1.79769E-208
machine radix = 2
machine mantissa = 33

mac'nine:emm =-1021

miachine _emax = —1024
DURATION:

size = 32

delta = 2=1.0%E-14

frst = -36400

last = —26400
25JUN91

Page 16

LRM Annotations TeleGen2 pragmas

3.10. LRM Appendix F - Implementation-Dependent
Characteristics

The Ada language definition allows for certain target dependencies. These
dependencies must be described in the reference manual for each implementation.
This section addresses each point listed in LRM Appendix F. Topics that reguire
further clarification are addressed in the sections referenced in the summarv.

3.10.1. (1) Implementation-dependent pragmas

TeleGenz2 has the following implementation-dependent pragmas:

pragma Comment

pragma Export

pragma [mages

pragma Interface_Information
pragma [nterrupt

pragma T inkname

pragma No_Suppress

pragma Preserve_Layout
pragma Suppress_All

3.10.1.1. Pragma Comment

Pragma Comment is used for embedding a comment into the object code. The
syntax is

pragma Comment (<string liceral>);

where <string literal> represents the characters to be embedded in the object
code. Pragma Comment is allowed oniy within a declarative part or inmediately
within a package specification. Any number of comments may be entered into the
object code by use of pragma Comment.

3.10.1.2. Pragma Export

Pragma Export enables vou to export an Ada subprogram or object to either the
C language or assembty. The pragma is not supported for Pascal or FORTRAN.
The syntax is

pragma Export ([Name =>] <subprogram_or_object_name>
(. [Link_Name =>] <string literal> |
{. [Language =>]| <identifier>]);

The svntax and use of the pragma is explained in detail in Section 2.8.3.
3.10.1.3. Pragma Images

Pragma Images controis the creation and ailocation of the image and index tables
‘or a specified 2numeration tvpe. The svntax is

REF-I764N-VILIGRK, UNIXG 12APRIY 311

TeleGen2 pragmas TeleGen2 for 68K/UNIX Hosts

pragma Images(<enumeration_type>, Deferred);

pragma Images(<enumeration_type>, Immediate);

The syntax and use of the pragma is described in detadl in Section 2.7.3

3.10.1.4. Pragma Interface_Information

Pragma Interface_Information provides information for the optimizing code
generator when interfacing non-Ada languages or doing machine code insertions.
Pragma Interface_Information is aiways associated with a pragma [nterface except
for machine code insertion procedures. which do not use a preceding pragma
Interface. The syntax of the pragma is

pragma Interface_Information (Name, -- Ada subprogram, required
Link Name, -- string, default = ""
Mechanism,. -- string, default = ""
Parameters, -- string, default = ""
Clobbered Regs); -- string, default = ""

Section 2.3.2.2 explains the svntax and usage of this pragma.

3.10.1.5. Pragma Interrupt

Pragima [nterrupi is used for function-mapped optimizations of interrupts. The
SVNLax is

pragma Interrupt (Function_Mapping);

The pragma has the effect that entrv calls to the associated entry, on behalf of an
interrupt. are made with a reduced call overhead. This pragma can only appear
immediately before a simpie accept statement, a while locp directly enclosing only
a singie accept statement, or a select statement that includes an interrupt accept
alternative.

Pragma [nterrupt is explained more fuily in Sections 2.11. 2.11.1.5 and 2.11. 1.7
3.10.1.6. Pragma Linkname

Pragma Linkname was formerly used to provide interface to any routine whose
name cannot be specified bv an Ada string literal. Pragma [ntertace_[ntormarion
should now be used for this functionality. Pragma Linkname is described here
oniy in support of older code that may still use it.

Pragma Linkname takes two arguments. The first is a subprogram name that has
been previously specified in a pragma [nterface statement. The second is a string
literal specifving the exact link name to be emploved by the code generator in
emirting calls to the associated subprogram. The syntax is

pragma Interface (<language>, <subprog>

pragma Linkname (<subprog>., <string licteral>);

312 REF-1764N-VI 68K, UNIX) 12APRYIL

LRM Annotations TeleGen2 pragmas

[f pragma Linkname does not immediately follow the pragma Interface for the
associated subprogram, a warning will be issued saying that the pragma has no
effect.

A simple example of the use of pragma Linkname is

procedure Dummy Access(Dummy_Arg : System.Address);
pragma Interface (assembly, Dummy_Access);
pragma Linkname (Dummy Access, "_access"):

3.10.1.7. Pragma No_Suppress

Pragma No_Suppress is a TeleGen2-defined pragma that prevents the suprressicn
of checks within a particuiar scope. [t can be used to override pragma Suppress in
an enclosing scope. The pragma uses the same syntax and can occur in the same
places in the source as pragma Suppress. The syntax is

pragma No_Suppress (<identifier> [, [ON =>] <name>]);

<identifier> The tvpe of check you do not want to suppress.

<name> The name of the object. tvpe,subtype. task unit. generic unt. or
subprogram within which the check is to be suppressed. <name>
is cpuonal.

Section 2.3.2.2 explains the use of this pragma in more detail.
3.10.1.8. Pragma Preserve_Layout

The TeleGen2 compiler reorders record components to minimize gaps within
records. Pragma Preserve_Layout forces the compiler to maintain the Ada source
order of components of a given record type, thereby preventing the compiier rom
pertorming this record layout optimization.

The syntax of this pragma is

Pragma Preserve_Layout (ON => <record_tvpe>)

Preserve_Layout must appear before any forcing occurrences ot the record tvpe
and must be in the same declarative part. package specification, or task |
specification. This pragma can be applied to a record type that has been packed.
If Preserve_Lavout is applied 0 a record type that has a record representation
clause. the pragma only applies to the components that Jo not have component
clauses. These components will appear in Ada source order after the components
with component clauses.

(P

REF.ITAINVILASK, UNIX) [2APRYL 31

TeleGen2 attributes TeleGen2 for 68K/UNIX Hosts

3.10.1.9. Pragma Suppress_All

Suppress_All is a TeleGenZ2-defined pragma that suppresses all checks in a given
scope. Pragma Suppress_All takes no arguments and can bte placed in the same
scopes as pragma Suppress.

In the presence of pragma Suppress_All or any other Suppress pragma. the scope
that contains the pragma will have checking turned off. This pragma should be
used in a safe piece of time-critical code to allow tor better performance.

TeleGen2 has the following implementation-dependent attributes:

'Offset (in MCI)
‘Subprogram_Value
'Cxtended Image
‘Extended_Value
‘Extended_Width
‘Extended_Aft
‘Extended Digits
‘Extended _Fore

3.10.2.1. 'Offset

‘Oftfset vields the otfset of an Ada object from its parent frame. This attribute
supports machine code insertions as described n Section 2.12.2.2.

3.10.2.2. 'Subprogram_Vaiue

This attripute is used by the TeleGenl implementation to faciitate calls o
niterrupt support subprograms. The atribute returns the value of the record tvpe
Subprogram_Value defined in package System. Refer to Section 2.11.2.1 {or more
nformation.

3.10.2.3. Extended attributes for scalar types

The =xtended attribures extend the concept behind the text attributes ‘Image.
"Value. and ‘Width to give the user more power and tlexibdity when displaving
values of scaiars. Extended attributes differ in two respects from their predetined
counterparts:

i Extended attributes take more parameters and allow control of the
rormat of the output string.

2. Extended attricutes are detined for all scalar wpes. including rixed and
“loating pownt apes.

RES D) REF-ITAIN-VILLIOSK/UNIXG 12ZAPRY!

LRM Annotations ' TeleGen2 attributes

Named parameter associations are not currently supported for the extended
attributes.

Extended versions of predetined attributes are provided for integer, enumeration,
floating point, and fixed point types:

Integer Enumeration Floating Point Fixed Point

‘Extended Image ’'Extended [mage 'Extended Image 'Extended [mage

‘Extended_Value 'Extended_Value 'Extended Value 'Extended Value

‘Extended_Width 'Extended Width 'Extended Digits 'Extended Fore
‘Extended_Ant

For integer and enumeration types, the 'Extended Value attribute is identical to
the "Value attribute. For enumeration types. the "Extended_Width attribute is
identical to the "Width attribute.

The extended attributes can be used without the overhead of including Text_[O in
the linked program. The foilowing examples dlustrate the difference between
instantiating Text_[O.Float_[O to convert a tloat value to a string and using
FloarExtended_Image:

with Text_ IO;
function Convert_To_String (Fl1 : Float) return String is
Temp_Str : String (1 .. 6 + Float’Digits);
package Flt_IO is new Text_IO.Float_IO0 (Float); |
begin
Flt_IO.Put (Temp_Stx, Fl); ‘
recurn Temp_Str;
end Convert_To_String;

function Convert_To_String_No_Text_I0(Fl : Float) return String is
begin

recurn Float’'Extended_Image (Fl).
end Convert_To_String_No_Text_IO;

with Text_I0. Zonvert_To_String, Convert To_String No_Text_IO;
procedure Show Different_Conversions Iis
Value : Float := 10.03376;

begin .
Text_I0.Put_Line ("Using the Conver:_To;String, the velue of
the variable is : " & Convert~To_Scring (Value));
Text_IO.Put_Line ("Using the Conver:_To_String_No_Text_ IO,
the value is : " & Convert_To_String No_Text IO (Value) }:

end Show_Different_Conversions;

REF-1764N-VIL6BK,/UNIX) 12APRYY R

Integer attributes TeleGen2 for 68K/UNIX Hosts

3.10.2.3.1. Integer attributes

'Extended_Image
X'Extended_Image(Item,Width,Base,Based,Space_If_Positive)

Returns the image associated with [tem as defined in Text_IO.Integer [O.
The Text_IO definition states that the value of Item is an integer literal with
no underlines, no exponent, no leading zeros (but a single zero for the zero
value), and a minus sign if negative. If the reswting sequence of characters
to be ourput has fewer than Width characters, leading spaces are first
output 0 make up the difference. (LRM 14.3.7:10.14.3.7:11)

For a prefix X that is a disccete type or subtype, this attribute is a function
that may have more than one parameter. The parameter [tem must be an
integer value. The resulting string is without underlines, leading zeros. or
trailing spaces.

Parameters

Item The item for which vou want the image; it is passed (o0 the
function. Required.

¥idth The minimum number of characters to be in the string
that is returned. If no width is specified. the default (0) is
assumed. Optional.

Base The base in which the image is to be displayed. If no base
is specified, the defauit (10) is assumed. Optional.

3ased An indication of whether you want the string returned to
be in base notation or not. If no preference :s specified,
the default (false) is assumed. Optional.

Space_If_Positive An indication of whether or not a positive integer should
be prefixed with a space in the string returned. If no
preference is specified, the default (false) is assumed.
Optional.

Examples
subtype X is Integer Range -10..16;

Vaiues vieided for selected parameters:

nsn

g

X’Extended_Image(5)
X'Extended_Image(5.0)
X’'Extended_Image(5,2) .o
X’'Extended_Image(5.0.2) "loL"

16 REF-17AN-VI 168K/ LNIX) 12APRII

—‘—

LRM Annotations Integer attributes

X’Extended_Image(5,4,2) = " 101"
X'Extended_Image(5,0,2,True) = "2{#L0L4"
X’'Extended_Image(5,0,10,False) - "5"
X'Extended_Image(5,0,10,False,True) = " 5"
X’Extended_Image(-l,O,IO,False,False) - "o1l"
X’'Extended_Image(-1,0,10,False,True) - ".1"
X’Extended_Image(-1,1,10,False, True) = ".1"
X'Extended_Image(-1,0,2,True,True) = 2414
X'Extended_Image(-1,10,2,True,True) - " - 27LH"

REF-1764N-VILABK/UNIX) 12APRY] 37

Integer attributes TeleGen2 for 68K/UNIX Hosts

'Extended Value
X'Extended_Value(Item)

Returns the value associated with [tem as defined in Text_IO.Integer _[O.
The Text_IO definition states that given a string, it reads an integer value
from the beginning of the sring. The value returned corresponds to the
sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype. this attribute is a function
with a single parameter. The actual parameter [tem must be of predetined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a Constraint_Error is raised.

Parameter

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type X Required.

Examples
subtype X is Integer Range -10..15;

Values vielded for selected parameters:

X'Extended_Value("5") = 5
X'Extended_Value("” 5") = 5
X'Extended_Value("2#101#") =5
X’Extended Value("-1") = -1
X’'Extended_Value(” -1") - -1
a8 REF-1764N-V1L.1168K,/UNIX) 12APRY!

LRM Annotations Integer attributes

‘Extended_Width
X’'Extended_Width(Base,Based,Space_If_Positive)

Returns the width for subtype of X. For a prefix X that is a discrete
subtype, this arttribute is a function that may have multipie parameters. This
attribute yields the maximum image length over all values of the type or
subtype X.

Parameters

Base The base for which the width will be calculated. If no base
is specified, the default (10) is assumed. Optional.

Based An indication of whether thé subtype is stated in based
noaation. [f no value for based is specified, the defauit
(false) is assumed. Optional.

Space_If_Positive An indication of whether or not the sign bit of a positive
integer is included in the string returned. If no preterence
is specified. the default (false) is assumed. Optional.

Examples

subtype X is Integer Range -10..16;

Values yielded for selected parameters:

X’Extended Width -3 "I
X'Extend: Widch(l0) = 3 ~"10
X’Extende._Wid:zh(2) = 5 ~"10000"
X'Extended_¥idth(1l0 ,True) = 7 = -[0#]0#"
X'Extended Width(2, True) = 8 = "2#]0000#"
X’'Extended _Width(l0,False,K True) =3 "6
X’'Extended_Width(1l0 ,True ,False) = 7 =" 10#I0H"
X'Extended_Width(l0,True,True) = 7 =" I0#]6#"
X'Extended Width(2,True,True) a 9 - " 2#[0000#"
X'Extended _Width(2,False, True) = 6 - "10000"

REF-1T64N-V1.1(68K,/UNIX) 12APRYL 3-19

Enumeration type attributes TeleGen2 for 68K/UNIX Hosts

3.10.2.3.2. Enumeration type attributes

'Extended_Image
X'Extended_Image(Item,Width,Uppercase)

Returns the image associated with [tem as defined in
Text_IO.Enumeration_IO. The Text_IO definition states that given an
enumeration literal. it will output the value of the enumeration Literal (either
an identifier or a character literal). The character case parameter is
ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype: this artribute is a function
that may have more that one parameter. The parameter [tem must be an
enumeration value. The image of an enumeration value is the
corresponding identifier, which may have character case and return string
width specified.

Parameters

Item The item for which you want the image: it is passed to the
function. Required.

Width The minimum number of characters to be in the string
that is returned. If nu width is specified, the default (0) is
assumed. If the Width specified is larger than the image
of Item. the return string is padded with trailing spaces. If
the Width specified is smaller than the image of Item. the
defauit is assumed and the image of the enumeration vatue
is output completely. Optional.

Uppercase An indication of whether the returned string is in upper
case characters. In the case of an enumeration type where
the enumeration literals are character literals. Uppercase
is ignored and the case specified by the type definition is
taken. If no preference is specified. the default (true) is
assumed. Optional.

320 REF-I7AN-VI 68K/ UNIX) 12APRYL

LRM Annotations Enumeration type attributes

Examples

type X 1is (red, green, blue, purple);
type Y is ('a’, ’'B’, 'c’, IDI);

Values yielded for selected parameters:

X’'Extended_Image(red) = "RED"
X'Extended_Image(red, 4) = "RED "
X’Extended_Image(red,2) = "RED"
X'Extended_Image(red,0,false) = "red”
X'Extended_Image(red,10,false) = "red "
T'Extended_Image(’'a’) = "rg’"
Y’'Extended_Image(’'B’) = "'B'T
¥’'Extended_Image(’a’,6) = "'’ "
Y’Extended_Image(’a’,0,true) - "rarn

REF-1764N-VL.1(68K/UNIX) 12APRYI 3.2

Enumeration type attributes TeleGen2 for 68K/UNIX Hosts

'Extended_Value
X'Extended_Value(Item)

Returns the image associated with [tem as defined in
Text_[O.Enumeration_IO. The Text_[lO definition states that it reads an
enumeration value from the beginning of the given string and returns the
value of the enumeration literal that corresponds to the sequence input.
(LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype, this attribute is a function
with a single parameter. The acrual parameter [tem must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a Constraint_Error is raised.

Parameter
Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type of X. Required.
Examples
type X is (red, green, blue, purple);

Values yielded for selected parameters:

X'Extended_Value("red") = red

X’'Extended_Value(" green”) = green
X'Extended _Value(" Purple”) = purple
X'Extended_Value(" GreEn ") = green

3.22 REF-1764N-VI.II68K/UNIX) 12APRII

LRM Annotations Enumeration type attributes

'Extended_Width
X’Extended_Widch
Returns the width for subtype of X
For a prefix X that is a discrere type Or subtype; this attribue is 2 function.

This attribute yields the maximum image length over all vaiues of the
enumeration type or subtype X.

Parameters

There are no parameters to this function. This function returns the width of
the largest (width) énumeration literal in the enumeration type specified by
X

Exampies

tyre X is (red, green, blue, purple);
type 2 is (X1, x12, X123, x1234);

Values yielded:
i’Extended_Width = 6 ~ ‘purple”
Z'Extended_Width =3 ~'X123¢

REF-I764N-VI.1168K/UN!X) {ZAPRYY 3-23

Floating point attributes TeleGen2 for 68K/UNIX Hosts

3.10.2.3.3. Floating point attributes

'Extended_Image
X’Extended_Image(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with [tem as defined in Text_IO.Float_IO.

The Text_[O definition states that it outputs the value of the parameter Item
as a decimal literal with the format defined by the other parameters. If the
value is negative. 2 minus sign is included in the integer part of the value of
[tem. If Exp is 0, the integer part of the output has as many digits as are
needed to represent the integer part of the value of Item or is zero if the
value of Item has no integer part. (LRM 14.3.8:13, 14.3.8:15)

[tem must be a Real value. The resulting string is without underiines or
trailing spaces.

Parameters

Item The itcm for which you want the image:; it is passed to the
function. Required.

Fore The minimum number of characters for the integer part of
the decimal representation in the return string. This
includes a minus sign if the value is negative and the base
with the '#’ if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fore. leading spaces are output first to make up the
difference. If no Fore is specified. the default value (2) is
assumed. Optional.

Afr The minimum number of decimal digits atter the decimal
point to accommodate the precision desired. If the deita
of the type or subtype is greater than 0.1. then Aftis 1. If
no Aft is specified. the defauit (X'Digiis-1) is assumed. If
based notation is specified, the trailing '#’ is included in
Aft. Optional.

Exp The minimum number of digits in the exponent. The
exponent consists of a sign and the exponent, possibly with
leading zeros. If no Exp is specified. the default (3) is
assumed. If Exp is 0, no expone: * is used. Optional.

Base The base that the image is tc be displayed in. If no base is
specified. the default (10) is assumed. Optional.

Based An indication of whether vou want the string returned to

be in based notation or not. [f no preference is specified.
the default (false) is assumed. Optional. -

3.24 REF-1764N-V1.1(68K/UNIX) 12APR91

LRM Annotations Floating point attributes

Examples
type X is digits 5 range -~10.0 .. 16.0;
Values yielded for seiected parameters:

X'Extended_Image(5.0)
X’Extended _Image(5.0,1)
X’'Extended _Image(-5.0,1)

" 35.0000E+00"
"5.0000E+Q0O"
"-5.0000E+00"

X’ Extended_Imsge(S 0,2,0) " 5.0E+QO"
X'Extended_Image(5.0,2,0,0) " 5.0"
X’'Extended _Image(5.0,2,0,0,2) "101.0"

X'Extended _Image(5.0,2,0,0,2,True) "27#L10L1. 04"
X’Extended _Image(5. 0, ,2,3,2,True) "2iL. L#E+O2"

REF-ITA4N-VI. 168K/ UNIX) 12APRYL 3-25

Floating point attributes TeleGenz for 68K/UNIX Hosts

'Extended_Value
X’'Extended_Value(Item)

Returns the value associated with Item as defined in Text_IO.Float_IO.
The Text_IO definition states that it skips any leading zeros, then reads a
plus or minus sign if present then reads the string according to the syntax of
areal literal. The return value is that which corresponds to the sequence
input. (LRM 14.3.8:9, 14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function
with a single parameter. The actual parameter [tem must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a Constraint_Error is raised.

Parameter

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type of the input string. Required.

Examples
type X is digits 5 range -10.0 .. 16.0;

Values yielded for selected parameters:

X'Extended_Value("5.0")
X'Extended_Value("0.S5E1™)
X'Extended_Value("2#1.01#E2")

L I |
w W wn
o O o

3-26 REF-1764N-VI.I(68K/UNIX) 12APR91

LRM Annotations Floating point attributes

'Extended_Digits
X'Extended Digits(Base)
Returns the number of digits using base in the mantissa of model numbers
of the subtype X.
Parameter

Base The base that the subtype is defined in. If no base is
specified, the default (10) is assumed. Optional.
Examples
type X is digits 5 range -10.0 .. 16.0;
Values yielded:
X'Extended Digits = 5

-
.o s

REF-i7T64N-Vi. 1 68K/UNIX) [ZAPRYL

Fixed point attributes TeleGen2 for 68K/UNIX Hosts

3.10.2.3.4. Fixed point attributes

'Extended_Image

X’'Extended_Image(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as defined in Text_[O.Fixed_[O.
The Text_IO definition states that it outputs the value of the parameter [tem
as a decimal literal with the format defined by the other parameters. If the
value is negative, a minus sign is included in the integer part of the value cf
Item. If Exp is 0, the integer part of the output has as many digits as are
needed to represent the integer part of the vaiue of Item or is zero if the
value of Item has no integer part. (LRM 14.3.3:13, 14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute is a function
that may have more than one parameter. The parameter [tem must be a
Real vaiue. The resulting string is without underlines or trailing spac=s.

Parameters

Item The item for which you want the image; it is passed to the
function. Required.

Fore The minimum number of characters for the integer part of
the decimal repr&sentauon in the return string. This
includes a minus sign if the value is negative and the base
with the *#’ if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fore, leading spaces are output first to make up the
difference. If no Fore is specified. the default value (2) is
assumed. Optional.

aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta
of the type or subtype is greater than 0.1, then Aftis 1. If
no Aft is specified. the default (X'Digits-1) is assumed. If
Sased notation is specified, the trailing '#’ is included in
Aft. Opticnal.

Exp The minimum number of digits in the exponent: the
exponent ccnsists of a sign and the exponent. possibly with
le ding zeros. If no Exp is specified. the default (3) s
assumed. If Exp is 0. no exponent is used. Optional.

Base The base in which the image is to be displaved. If no base
is specified. the default (10) is assumed. Cptional.

REF-1764N-VLLi68K/UNIX) 12APRYL

LRM Annotations Fixed point attributes

Based An indication of whether you want the string returned to
be in based notation or not. If no preference is specified,
the default (false) is assumed. Optional.

Examples
type X is delta 0.1 range -10.0
Values yielded for selected parameters:

X’Extended_Image(5.0)

X'Extendad_Image(5.0,L1)
X’'Extended_Image(-5.0,1)
X 'Extended_Image(5.0
X’Extended_Image(5.0
X'Extended_Image(5.0
X’Extended_Image(5.0
X’'Extended_Image(5.0

REF- ' 7TO4N-VLI6RK/UNIX) 12APRYI

.. 17.0;

" 5.00E+Q0"
"5.00E+Q0"
"-5.00E+0Q"
" 5.0E+00"
"5.0"
"101.0"
"2#10L1. 04"
"2{#1. L{#E+Q2"

Fixed point attributes TeleGen2 for 68K/UNIX Hosts

'Extended_Value

X'Extended_Value(Image)

Returns the value associated with [tem as defined in Text_[O.Fixed_[O. The
Text_IO definition states that it skips any leading zeros, reads a plus or
rmunus sign if present, then reads the string according to the syntax of a real
literal. The return value is that which corresponds to the sequence input.
(LRM 14.3.8:9, 14.3.3:10)

For a prefix X that is a discrete type or subtype; this attribute is a function
with a single parameter. The actual parameter [tem must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an ilegal string is passed, a Constraint_Error is raised.

Parameter
Inage Parameter of the predefined type string. The type of the
returned value is the base type of the input string.
Required.
Examples
tvpe X is delta 0.1l range -10.0 .. 1/.0;

Values yielded for selected parameters:

X'Extended_7Value("5.0") = 5.0
X’Extended _Value("0.5El") = 5.0
X'Extended_Value("2{1.0Ll#E2") = 5.0

REF-1764N-VI.II6BK/UNIX) 12APRY1

LRM Annotations Fixed point attributes

'Extended_Fore
X'Extended_Fore(Base,Based)
Returns the minimum number of characters required for the integer part of
the based representation of X
Parameters

Base The base in which the subtype is to be displayed. If no
base is specified, the default (10) is assumed. Optional.

Based An indication of whether vou want the string returned to
be in based notation or not. If no preference is specified.
the default (false) is assumed. Cpticnal.

Examples
type X is delta 0.1 range -10.0 .. 17.1;

Values vielded for selected parameters:

X’Extended_Fore =3 -- "-10"
X'Extended_Fore(2) =6 -- " 10QOL"

REF-1764N-V1_ 1 (68K/UNIX) [2ZAPRYI R

Fixed point attributes TeleGen2 for 68K/UNIX Hosts

'Extended Aft
X’'Extended_Aft(Base,Based)
Returns the minimum number of characters required for the fractional part
of the based representation of X
Parameters

Base The base in which the subtype is to be displayed. If no
base is specified, the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in based notation or not. If no preference is specified,
the defauit (false) is assumed. Optional.

Examples
type X is delta 0.1 range -10.0 .. 17.1;

Values vielded for selected parameters:

X'Extended_Aft =1 ="I"from0.]
X'Extended_Aft(2) = 4 —"000I" from 2#0.0001#

.32 REF-1764N-VI.II6RK/UNIX) 12APRI1

LRM Annotations Package System

3.10.3. (3) Package System

wvich Unchecked_Conversion;

package System is

-- CUSTOMIZABLE VALUES

type Name is (TeleGen2);

System_Name : constant name := TeleGen2;
Memory_Size : comstant := (2 ** 3J1) -1; --Available memory, in storage units
Tick : constant := 2.0 / 100.0; --Basic clock rate, in seconds

type Task_Data is --
record -- Adaptation-specific customization information
null; -- for task objects.
end record; -~

-- NON-CUSTOMIZABLE, IMPLEMENTATICON-DEPENDENT VALUES

Storage_Unit : constant := 8;

Min_Int : constant = -(2 e 31);

Max Int : constant := (2 ** 31) - 1;

Max Digits 1 constant := 13;

Max Mantissa : constant := 31;

Fine_Delta : constant := 1.0 / (2 ** Max Mantissa);

subtype Priority is Integer Range 0 .. 63,

-- ADDRESS TYPE SUPPORT

type Memory is private;
type Address is access Memory,

-- Ensures compatibility between addresses and access types.
-- Also provides implicit NULL inizial value.

REF-1TRIN-VELGRK/UNIX) 12APRYY 3-33

Package System TeleGen2 for 68K/UNIX Hosts

Null_Address: constant Address := null;

-- Inicial value for any Address object

type Address_Value is range -(2%#31)..(2%*31l)-1;

-« A numeric representation of logical addresses for use in address clauses

Hex 80000000 : constant Address_Value := - 16#80000000#;
Hex 30000000 : constant Address_Value := - 16�#;
Hex_A000Q000 : constant Address_Value := - 167#600000004;
Hex_BOOOOOOO : constant Address_Value := - 16#500000004;
Hex C0Q0QQ00 : constant Address_Value := - 16{400000004#;
Hex_D00QQO0O0Q : constant Address_Value := - 167300000004;
Hex_EOOOOOOO : constant Address_Value := - 16#200000004;
Hex_F0000000 : constant Address_Value := - 164100000004,

-- Define numeric offsets to aid in Address calculacions
-- Example:
-- for Hardware use at Location (Hex_ F0000000 + 16423456784);

funccion Location 1s new Unchecked_Conversion (Address_Value, Address);

-- May be used in address clauses:
-- Object: Some_Type;
-- for Object use at Location (1l6#4000%);

funccion Label (Name: String) return Address;
pragma Interface (META, Label);
-- The LABEL meta-function allows a link name to be specified as address
-- for an imported object in an address clause:
-- Object: Some_Type;
-- for Object use at Label("OBJECTSSLINK_NAME™);

-- System.Llabel returns Null Address for non-literal parameters.

-- ERROR REPORTING SUPPORT

procedure Report_Error;
pragma Interface (Assembly, Report_Error), —
pragma Interface_Information (Report_Error, "REPORT_ERROR"},

.24 REF-I764N-VL.I168K/UNIX) 12APRYL

LRM Annotations Package System

-- Report_Error can only be called in an exception handler and provides
-- an exception traceback like tracebacks provided for unhandled
-- exceptions

-- CALL SUPPORT

type Subprogram Value IS
record
Proc_addr : Address;
Parent_frame : Address;
end record;

-- Value returned by the implementation-defined ’Subprogram Value
-- attribute. The attribute is not defined for subprograms with
-- parameters.

privace

end System;

3.10.3.1. System.Label

The System.Label meta-function is provided to allow you to address objects by a
linker-recognized label name. This function takes a single string literal as a
parameter and returns a vaiue of System.Address. The function simply returns
the run-time address of the appropriate resolved link name, the primary purpose
being to address objects created and referenced from other lznguages.

e When used in an address clause, System.Label indicates that the Ada
object or subprogram is to be referenced by a label name. The actual
object must be created in some other unit (normaily by . nother
language), and this capability simply allows you to import that object and
reference it in Ada. Any explicit or default initialization will be appiied
to the object. For example. U the object is declared to be of an access
type, it will be initialized to NULL.

e When used in an expression. Svstem.Label provides the link time
address of any name, such as a name for an object or a subprogram.

REF-1764N-VL.1(68K/UNIX) 12APRY1 3.35

.

TeleGen2 characteristics TeleGen2 for 68K/UNIX Hosts

3.10.3.2. System.Report_Error

Report_Error must be called from directly within an exception handler. This
routine displays the normal exception traceback information to standard output.

It is essenually the same traceback that could be obtained if the exception were
unhandled and propagated out of the program. Report_Error simply allows you
to handle the exception and still display this information. You may aiso want to
use this capability in a user handler at the end of a task since exceptions in tasks
will not be propagated to the main program. You can also get this capability for ail
tasks by using the - X binder switch.

For details on the output. refer to Section 2.9, “Exception handling.”
3.10.4. (4) Restrictions on representation clauses
Representation clauses are tully supported with the following exceptions:

e Enumeration representation clauses are supported for all enumeration
types except Boolean types.

e Record representation clauses are supported 2xcept for records with
dynamically-sized components.

e Pragma Pack is supported except for dynamically-sized components.
3.10.5. (5) Implementation-generated names
TeleGen2 has no implementation-generated names.
3.10.6. (6) Address clause expression interpretation

An expression that appears in an object address clause is interpreted as the
address of the first storage unit of the object.

3.10.7. (7) Restrictions on unchecked conversions

Unchecked programming is supported except for unchecked type conversions
where the destination type is an unconstrained record or array type.

3.10.8. (8) Implementation-dependent characteristics of the |/O
naclkanae

Text_[O has the following implementation-dependent characteristics:

type Count is range 0..(2 ** 31)-2%

subtype Field is integer range O..1000;

RERL) REF-1T64N-VI.I(6SK/UNIX) 12APRYL

LRM Annotations TeleGen2 characteristics

In procedures Create and Open, the Form parameter is supported as specified by
the POSIX Draft 6, Chapter 8.

The standard run-time sublibrary contains preinstantiated versions of
Text_[O.Integer_IO for types Short_Integer, Integer, and Long_Integer. and of
Text [O.Float_IO for types Float and Long_Float. Use the following packages to
eliminate multiple instantiations of the Text_IO packages:

Short_Integer_Text_[O
Integer Text_IO
Long_ Integer Text IO
Float_Text_IO

Long_ Float Text_[O

REF-1764N-VLI{68K/UNIX) 12ZAPRY! 3-37

TeleGen2 for 68K/UNIX Hosts

A

REF-1764N-VI.1{68K/UNIX) 12APRYL

